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Abstract 

The problem of detecting a signal known except for amplitude in non- 

Gaussian noise is addressed. The noise samples are assumed to be 

independent and identically distributed with a probability density function 

known except for a few parameters. Using a generalized likelihood ratio 

test it is proven that for a symmetric noise probability density function 

the detection performance is asymptotically equivalent to that obtained for 

a detector designed with a priori knowledge of the noise parameters, A 

computationally more efficient but equivalent test is proposed and a 

computer simulation performed to illustrate the theory. 



I. Introduction 

A large body of knowledge is available in statistical detection 

theory for the detection of a known deterministic signal in noise with 

a known probability density function (PDF)''• •'  In practice, the noise 

characteristics are never known a priori since they depend on unknown 

or incompletely understood physical phenomenon.  ■'   Relatively little 

is known about the design of optimal detectors for this situation.  One 

approach which has been investigated is to use Bayesian methods and 

assign priors to the unknown parameters of a noise PDF. "^ ■*  The 

resulting  "optimal"  detector  requires multidimensional  integration 

which is generally not practical.  Furthermore, the performance will be 

critically dependent on the choice of the priors; the appropriate 

choice is never known a priori.  The entire problem becomes much more 

difficult  when  the  noise  can  no  longer  be  characterized  as 

Gaussian.[8]'f^l'tlO] 

The approach which is taken here is to apply the theory of 

generalized likelihood ratio testing for composite hypothesis 

testing.'• •' The noise PDF is assumed to be known except for a finite 

set of parameters. The unknown parameters are then estimated using 

maximum likelihood estimators. This approach does not require the 

arbitrary selection of priors as in the Bayesian detector. The 

difficult multidimensional integration required by the Bayesian 

detector  is  replaced  by  a  multidimensional  maximization  of  the 



likelihood function. Of course, this maximization may be also 

difficult to implement. By retaining the parametric form of the noise 

PDF it is expected that the detection performance will exceed that for 

the optimal nonparametric or robust detector. '■     -^ 

Accepting the desirability of a generalized likelihood test 

(GLRT), several important properties are shown to hold for large data 

records. The main theorem states that the asymptotic (large data 

record) performance of the GLRT is equal to that of a clairvoyant GLRT 

detector if the noise PDF is symmetric. (Examples of S3mimetric PDFs 

are the Gaussian, Laplacian and Gaussian mixtures.) The claivoyant 

GLRT is one which designs the detector using perfect knowledge of the 

unknown noise parameters. Hence, the GLRT asymptotically achieves an 

upper bound in performance and so can be said to be optimal. The 

theoretical results are quite general and apply to many practical cases 

of interest.  Computer simulation results confirm the asymptotic theory 

for finite data records.  Similar but less general results had been 
1 

obtained by the author in [12], 

The paper is organized as follows. Section II provides a review 

of the GLRT and its asymptotic properties. The GLRT as applied to the 

detection problem is described in Section III while its performance and 

the main theorems are given in Section IV. Section V applies the 

theory to detection in non-Gaussian noise while Section VI describes 

the results of a computer simulation. 



II Review of Generalized Likelihood Ratio Testing 

This section summarizes the important theory to be used later. 

The material has been extracted from references [1], [2], [3]. Consider 

the problem of testing the value of a  k = r+s  dimensional parameter 

e = -r 
Q 

where 6  is rxl and 0  is sxl.  A common hypotheses test is that 9 lies 

in an r dimensional subspace or ■• •' 

HQ:  ir = 0' is (1> 

Hl=  ir *  0' is 

6 is of no concern and may take on any value. It is sometimes 

referred to as a nuisance parameter. Assuming the data 

X = [XQ XII ... x«_,] are observed with a joint probability density 

function p(x ; 9 , £3). a generalized likelihood ratio test for testing 

(1) is to decide Hj^ if 

V V^ > r '     (2) 
p(x ; 0,6 ) 

-  - -s 

for some threshold y. Q is the maximum likelihood estimator (MLE) of 

6„ assuming H« is true while 9 , 9  are the joint MLEs of 9  and 9 

A 
assuming H,  is true. 9   is found by maximizing p (x j 0,9 ) over 9 . 



Likewise, 6 , 6  are found by maximizing p(x j 6^, 6^) over Q^,   9„. 

The statistics of LQ are difficult to obtain in general. For 

large data records (N large) or asymptotically it may be shown that 

2 InLg is distributed in the following manner.  •'''■■' 

2 InL^ - X 
u   r under H 

0 

2 InL- ~ X' iX.r) under H, 
u 1 

(3a) 

(3b) 

Here X^. represents a Chi squared distribution with r degrees of 

freedom and X' (A.,r) represents a noncentral Chi square distribution 

with r degrees of freedom and noncentrality parameter X. Note that 

X' (0,r) = Xj. or the distribution under HQ is a special case of the 

distribution under H^ and occurs when A, = 0. The noncentrality 

parameter X,, which is a measure of the discrimination between the two 

hypotheses, is 

^ = ^l [h,^,(^'^s) - h^^^^o.Bs)  i-^,^(p.es)4^^(o.es)] er (4) 

where Q^,  Q^  are the true values.  The terms in the brackets of (4) are 

found by partitioning the Fisher information matrix for 9 

1(9) = 
h^Q^^^^'   §s)   1Q Q   (Or. is) 

In  fl (?r, es)   I^ ^ (pr. «s) 

and the partitions are defined as 

(5) 



Ie.6,<2f 5s) '^  II^^S^U^^^S^l  I      t xr 

i«^e3(er. e^) =E |(^i±^U^^^^) I     rxs 

(6) 

tJstJr orOs 
s X r 

-fis^s "r  -s 

dlnp\ / 31np^ 
3«s  ae ] S X s 

All the partitions of the Fisher information matrix are evaluated at 

0_ = 0 and the true value of Q^   for use in (4). — r   — — s 

The motivation for using a GLRT is that for large data records it 

exhibits certain optimality properties. (It should be noted that in 

general the hypothesis testing problem of (1) does not admit a 

uniformly most powerful (UMP) test.'- ■") These optimality properties 

are that of all the tests which are invariant to a natural set of 

transformations the GLRT exhibits the largest probability of detection 

for all values of the unknown paramaters. The GLRT is said to be the 

asymptotically uniformly most powerful invariant (UMPI) test.'' ^ The 

conditions under which the asymptotic results apply to finite length 

data records are difficult to quantify in general. Heuristically, it 

may be said that the asymptotic results will apply if 

1) The MLEs necessary to define the GLRT are adequately characterized 

by their asymptotic properties or the PDF of the MLE is Gaussian 

with mean equal to the true parameter value and covariance matrix 

equal to the inverse of the Fisher information matrix and 



2) The value of Q^ when H-j^ is true is close to the value when HQ is 

true or Q^ ~ 0. In effect, it says that we must be testing for 

slight departures of 9  from zero. 

To implement the GLRT requires one to find the MLEs under HQ and 

Hj. In many cases this is a difficult analytical task. To avoid some 

of the difficulties use can be made of the Rao test which is 

asymptotically equivalent to the GLRT. The Rao test ^'^•'' ^^■' decides H, 

if 

4= 
ainp(x ; 0 ,e ) ^ 

—       —r —s 
ae 
-r 

f^      ainp(x ; e ,9 ) 
V (0.9 )  r^ ^—^ 

-r - 

> Ti   (7) 
6 = 0 —r  - 

where 

V(9 , 9 ) = 
- -r  -s le 9 <§r'5r) - ^9 9 ^^r'^s^ l9'9 ^^r'^s^ ^""9 B^^-r'V 

rr rs        ss rs 

Note that only the MLE of 9 under Hn need be found.  The MLE of 9^ and -s -r 

9^ under H^ are no longer required.  Also, the statistics of Lj^ are 

given by (3). 

Ill  Statement of Problem and Detector 

We will consider the problem of detecting a signal known except 

for amplitude in independent and identically distributed non-Gaussian 

noise.  The univariate PDF of the noise is assumed to be known except 

for a finite set of parameters.  Mathematically, we have 



HQ:  X,. = n^ (8) 

H^: x^ = (is^ + n^ . 

for t = 0, 1, .... N - 1. \i, the amplitude, is unknown and can take on 

any value while s^ is known. The PDF of n^, which is the same for any 

t is denoted by p(n; a), where a is a set of unknown parameters. The 

PDF for the noise is not restricted to be Gaussian, only that it 

satisfies certain regularity conditions to insure the validity of the 

asymptotic MLE properties. 

The problem of (8) can be recast as a test of the amplitude 

HQ:  ^ = 0, a ; •       (9) 

Hj^:  H 3^ 0, a ;. 

which is recognized as a composite hypothesis testing problem of the 

form of (1). Because |i may take on positive or negative values it is 

well known that no UMP test exists, even for a priori knowledge of 

a."- •' Hence a GLRT is proposed. Due to the independence of the noise 

the GLRT of (2) reduces to 

LG   = 

T        p(x    - jis     ;   a) 
t=0             ^           ^ 

N-1 
T        p(x     ;   a) 

t=0              ^ 

(10) 

where   the   identification B =     [ 9       0       ]=[(i     5]     lias   been  made. 

A X     A 
\i   is the MLE of \i  under H^ and a, a are the MLEs of a under H^  and HQ, 

A   A 
respectively. \i,   a  are found by maximizing 



N-1 
T    p(x - |is  ; a) 
t=0      t    t      . 

A 
over n and a while a is found by maximizing 

N-1 
T   p(x  ; a) 
t=0     '^  ~ 

over a. 

IV Asymptotic Performance of GLRT 

The asymptotic performance of the GLRT given in (10) may be found 

by making nse of  the results of Section II. Making the identifications 

« = 1:1 ■ |:l 
so that 6^ is a scalar or r = 1 and o is an sxl vector, we have from 

(3),(4) 

2 InLg ~ X-j^ under Er (11) 

~ X'  (1, X)  under H, 

where X. = ji* f I  (0, a) - I  (0, a) I ^(a, a) I^ (0. a) 1       (12) 
L -jiH   -   "na   - -aa - - -|ia   - J 

10 



The probability of detection 

Pjj = Pr { 21nLQ > y'   |H-^} (13) 

and the probability of false alarm 

Pp^ = Pr { 21nLQ > y' | ^0^ ^^"^^ 

are easily fonnd by noting that a X' (l.X) random variable is 

equivalent to the square of a normal random variable with mean ^X. and 

variance 1. *• ■'  It can be shown that 

^FA = 2Q(^') (15) 

PD " ^^^' - J^) + Q (^7' + jT) (16) 

foo    1        r ^ 
where Q (.^)   = L -r=-  e     dz 

I? {2^ 

It is interesting to note that the probability of detection increases 

monotonically with X. Furthermore a special case of the theory 

presented in Section II occurs when Q , the nuisance parameters, are 

known. For the problem at hand Q ~ ^' ^^ 5 ^^ known, then the 

clairvoyant GLRT as given by (10) becomes 

11 



N-1 j 
T      p(x -  (IS   ;a) 

^GC =    -^  ■ <1^> 
T      p(x   ;   a) 

t=0 

and  the  asjnnptotic  statistics  of 2  InLpp are  given by  (11)  but with 

^c = ^'* ^^l^^°' -^ ^^^^ 

Note that the performance of the GRLT when a is known is always better 

than or at worst equal to the performance when a is unknown since 

Xg 2 X.  The loss in performance when o is unknown may be attributed to 

the reduction in Fisher information due to having to jointly estimate ji 

and a, even though a is of no concern.  If it happens that  X^ = X then — c 

the GLRT will produce the same detection performance as the clairvoyant 

GLRT detector, i.e., the GLRT which incorporates a priori knowledge of 

the unknown parameter a. From examination of (12) and (18) this will 

be the case if 

Ijia^O' 5) = 0 (19) 

This condition is equivalent to requiring the MLEs of n and a to be 

asymptotically uncorrelated (and hence independent) when n is close to 

zero. 

An example which illustrates  this behavior  is  the  following 

classical problem.  Consider the detection problem of (8) with s^ = 1 

12 



and n^ ~ N(0, <y ). The noise samples are independent and identically 

distributed and the variance a is unknown. The amplitude |i can be 

either positive or negative so that no UMP test exists. The nuisance 

parameter in this problem is the noise variance a . If one derives the 

GLRT, (see Appendix A) then the test statistic is 

21nL, Nln 

N-1 

1 - 

where   x = - I x   ,  which is the sample mean. 
^ t=0  ^ 

(20) 

If however a    were known, then the GLRT would yield 

21nL 
GC 

i2 

r/^ 
(21) 

which might be referred to as a clairvoyiant detector since it makes 

use of a priori knowledge of or . Now assume N —> <» so that by the law 

of large numbers x -> ji and assume ji is close to zero. Then from (20) 

21nLn converges to 

21nLG -^ 
Nx 

(22) 

using the relation In(l-x) ~  x for x << 1 . But by Slutsky's Theorem 

21nLQ converges in distribution to that of 21nLQp.  Recall that it is 

13 



assTuned \i -^0  and hence 

,  N-1 

whether or not a signal is present. Since the distributions of LQ and 

LQQ are asymptotically identical, their performances are identical. It 

is an easy matter to show that (19) holds or 

I^a*( 0, <T') = 0 (23) 

(Actually I » (ji, cr ) = 0 for any (i in this case.) A careful 

examination of the form of I„„*((i» o ) reveals that the symmetric 

nature of the Gaussian PDF is responsible for (23). In fact as is now 

proven l^^^^i (i. o) will be zero whenever the PDF of the noise is an even 

function. 

Theorem 1: Assume that N samples of a process x^ = jis^ + n^ are 

observed, where the noise samples are independent and each one is 

distributed according to the PDF p(n; a) which depends on the 

parameter a. s^, the signal, is known. If p(-n; a) = p(n; a), for all 

a, then I„Q((ij ct) = 0. where the Fisher information is based on 

{XQ, X^, ..., ^i»i—1 J • 

14 



Proof:  By the definition of the Fisher information 

I  (fi, a) = E 

N-1 N-1 
ain   T p(x  - |is ; o)   din  T p (x  - (is ; a) 

t=0    ^ ^ 1=0^^" 
an da 

(24) 

Since the noise samples are independent, p(x^ - (is^; a) is independent 

of p(x^ - (is-; a) for j # i and each term 

31np(x - (IS ; a) 

where 0 = |i or a^^ has expectation zero. Hence, 

N-1 
I  (ji, a) =  2  E 

t=0 

31np(x - (IS ; o)   91np(x - (is ; a) 

"(la dn da 
(25) 

Consider a single term in the summation, which may be written as 

1- 31np(x - (IS ; o)   91np(x - (is ; o) 

3(1 da p(i^ - |is^; o )dx^ 

Using the chain rule this becomes 

~s. 
31np(x - (IS ; a)   31np(x - (is ; a) 

9(x^ - |is^) da 
p( X - us ; a)dx 

Letting n^ = x^ - (is^, we have 

15 



-'t 

31np(ii ; a)  31np(n ; a) 

on 9a t  -   t 

Tliat this last expression equals zero follows from the assumption that 

p(n^; a) is an even function in n^.  For p(n^; a) even 

31np(n ; a) 

da 

is even in n^ and 

91np(n ; a) 

'\ 

is an odd function in n^. The integral is then an odd function which 

is integrated over an even interval resulting in zero. To prove the 

even property of 31np(n^; a)/9o consider the ith component 

91np(n^; a) lnp(n ; a + A.) - lnp(n ; a) 
=  lim 

^*^i        A.^0 ^i 
1 

where A^ is a vector with all zeros except for the ith element which is 

the small increment A^. It is clear from examination of the partial 

derivative definition that if the PDF is an even function for all a, 

then 91np(n^; a)/9a£ is also even.  Next consider 

16 



31np(n ; a) lnp(n + A; a) - lnp(n ; a) 
.        =  lim 

31np(-n ; a) Inp(-n  + A; a) - Inp(-n ; a) 
a        =  lim 
^%        A ->0 ^ 

=  lim 
A ->0 

= - lim 
A ^0 

lnp(n - A; a) - lnp(n ; a) 

A 

Inp(n ; a) - lnp(n - A; a) 

31iip(n ; o) 

The last step follows from the definition of the derivative which 

states that the same limit must be obtained for an approach from the 

right or the left. Hence 91np(n^; a)/3n^ is an odd function as 

asserted. Since each term in the sum of (25) has been shown to be 

zero, the conclusion of the  theorem that I„a(^» 5^-0 follows. 

Theorem 2: Assume that N samples of a process s.^ = (is^ + n^ are 

observed, where the noise samples are independent and each one is 

distributed according to a symmetric PDF, p(n; a). The PDF of the 

noise depends upon a vector a of unknown parameters. Then the GLRT 

(10) for testing ji = 0 vs [i ^^ 0 has asymptotic performance given by 

(15) and (16) with X given by (18) and the performance is as good as 

the performance of the clairvoyant GLRT (a known) as given by (17). 

Proof:  follows directly from previous discussion. 

17 



The next theorem concerns the implementation of the GLRT via the 

Rao test. . 

Theorem 3:  All statements hold tme in Theorem 2 if the GLRT is 

replaced by a Rao test which is defined as 

j  31np( X - fis ; o) 

t=0 

V 
3^ ^ = 0 

I  (0, a) 
> y\ 

where  a   is   the  JILE under  HQ  and 

(26) 

N-1 
I  (0, a) = 1    s\ 
Mfi t=0 

'p'(n; a)' 

p(n; a) , p(n; a)dn (27) 

p'( nj a) denotes the derivative with respect to n. The quantity in 

brackets is the Fisher information for a shift in mean or the intrinsic 

accuracy of a PDF. ■■ ^ 

Proof: The asymptotic equivalence of the Rao test to the GLRT is 

proven in [3]. We now prove that the Rao test for our problem is given 

by (26) and (27). Starting with (7) let Q^. = ^ and 65 = a . Also note 

that I  (|i,a) = p . Then, 

18 



31np( x; |i, a) 

4 = 
oF 

I  (O.a) 

I  (ji, a) is found as follows. 

I     (|i,   a) = E 

N-1 
ain    T   p(x -  (IS   ;   a) 

t=0 ^ ^    ~ 

= E 
/N-1    31np(x    -  (IS   ;  a) \2 

Vt=0    " ^^ /, 

N-1 
=     I       E 

t=0 

N-1 
=    1       s*   E 

t=0       ^ 

H-1 f 

t=0    ^     J- 

91np(x    -  (IS   ;  a) \ 2 

/ ainp(n^;   a)\ 2 

"   r p'(n   ;   a) 

CO   I     P^^t'   -^ 
p(n   ;   o)dii 

p(n;   a)dii 

which   is   independent  of  n  and  hence   I„„(0.   a)   follows. 

To    avoid    the    integration    required    to    compute    In„(0»2)     it    is 

19 



possible to use the asymptotic equivalence 

I  (ti. a) 
(1(1 

N-1 
1    si    E 

t=0 ^ 

31np(n ; a)N 2 

an. 

,  N-1    N-1 

N n=0 ^  t=0 

p'(n ; a) 

p(n ; a) 

which for (i = 0 (so that x^  = n.^) becomes 

1(0.a)  ~ r, 
,  N-1    N-1 1    _    2     _ 

^ n=0  ^  t=0 

p'(x ; a) 

p(x  ; a) 
(28) 

This result follows from the law of large numbers. In essence, the 

integral of (27) is replaced by a Monte Carlo evaluation. Rao's test 

becomes «• 

N-1  31np(x - (IS ; a) 
I  -    *     t 

L t=0 
3(1 

4 = 
(1 = 0 

(29) 
, N-1     N-1 

^ n=0      ""    t=0 

p'(x^; a) 

p(x ; fi) 

The asymptotic statistics of L^' are identical  to those of L^ and 

21nLQ.  In the next section an example of the use of Lj,' is given. 

20 



V Application to Detection in Non-Gapssian Noise 

Consider tlie problem of (8) when n^ has a Gaussian mixture PDF or 

1-8 2CT, 2CT, 

p(n) = 
(30) 

{2^ B 
{2^ 

where Oj >> dp. The first term represents the usual background noise 

while the second term is an interference component. As an example a 

realization of the noise time series for Og = 1, a-r = 100 and s = 0.1 

is shown in Figure 1. The noise spikes are obviously due to the 

contaminating component. The unknown noise PDF parameter is assumed to 

be the mixture parameter e. It is assumed that the noise variances CTQ 

and a-r are known. The known signal s^ is assumed to be a DC signal 

with amplitude one so that the problem is to detect a DC signal \i of 

unknown level in independent and identically distributed contaminated 

Gaussian noise with an unknown mixture parameter e. The noise PDF is 

symmetric for all e in the range [0,1] so that the results of Theorems 

1—3  apply.  The Rao test of (29) becomes 

N-1 31np(x - |i; e) 
1      — 

t=0 
3^ 

4 = 
^=0 (31) 

N-1 

I 
t=0 

p'(x ; 8) 

p(x ; s) 

A A 
where e is the MLE of e assuming Hn is true or e is the value of e over 

21 



the interval [0,1] which maximizes 

^      [  (1 -  s)  ,^U^)  . e  ^^U^)  ] (32) 

where  0„(n)   = -=     e and  0y(n)   =-;=     e B {lii 'B ^   <T- 

Some simplifications to (31) are possible. 

91np(i -  n;   e) 

an |i=0 

-(1-^)^"^ 
A/V  ^^ 

— ''B^V »^^ - M—r-^i^V*'^ 
B 

p(x^ -  H;   e) 

[ (1 - a) (x^/g;) ^3(.^) . a (x^/a;) ^^(x^) ] 

(1   -   8)    ^gd^)    +   8    0j(l^) 

so  that 

H  =  0 

4 = 

N-1    p'(x   ;   8) 
I 

t=0       P^'   "^ 

N-1 
I 

t=0 

p'(x   ;   e) 

p(x   ;   I) 

(33) 

where p(x^;   e)   =   (1 -  e)   ^g^^t^   "*" ^ ^I^^t^ 

p'(x^.;   8)   = -[(1  -   8)   (x^/ag*)   ^^U^)   +  8(X^/CTJ*)   0i(x^)] 

22 



The asymptotic performance of Ln' is given by (15) and (16) where 

X = n'  I^l^(o, s) 

From (27) with s^ = 1 

X = N^* 
f « r p'(n; 8) ■|2 
 ; r    p(n; 8)dn (34) 

J-<= L p(n; e) J 

The noncentrality parameter X cannot be evaluated in closed form so 

that a numerical evaluation is required. 

VI  Computer Simulation Results 

The performance of the detector described in previous section is 

now examined via a computer simulation. To siunmarize the assumptions 

the detection problem addressed is 

HQ:  it = ^t 

%:  i^ = ji + n^ 

for t = 0, 1, .... N-1. N was chosen to be 500. The signal level n is 

unknown and can be positive or negative. The noise samples n^ are 

independent and identically distributed with PDF 
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12 12 
^ - -(n/a  ) - -(n/CT_) 

/^ 1-e 2B^ 8 i I p(n)   =     e + 
{^ (J^ ^ <Jj 

The noise variances Og and <JJ are assumed to be known and cr^ = 1, 

CTj = 100 for purposes of the simulation. The mixture parameter e is 

assumed  to be  unknown and  s  = 0.1.     The  SNR  is  defined  to be 

2 

SNR = 10  log^„ -^      dB (35) 

which represents the output SNR of a matched filter, (i is set for each 

SNR by using (35). The Rao test is given by (33). A clairvoyant 

detector is defined to be identical to (33) except that the known value 

of 8 is used in place of its MLE under HQ. The theoretical asymptotic 

performance of the Rao test and the clairvoyant detector are given by 

(15) and (16) with X given by (34). For a Pp^ of 10~* the simulation 

results for the Rao test and the clairvoyant test as well as the 

theoretical asymptotic performance are shown in Figure 2. As expected 

the theoretical asymptotic results appear to accurately predict 

performance. The Rao test performance is nearly identical to that of 

the clairvoyant test in accordance with Theorem 3. 

As a benchmark to which performance might be compared it is 

illustrative to consider a matched filter. The matched filter which 

would result if the contaminating Gaussian PDF were ignored is to 

compare the sample mean tr  a threshold or 
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TTie matched filter requires the additional knowledge of the sign of |i. 

For the simulation n was chosen to be positive. The matched filter 

might be used if the mixture parameter were unknown. This would 

correspond to assuming that e = 0 when in fact s > 0. A limiter of 

course would improve the performance. The results are shown in Figure 

3. The Rao test allows one to detect signals 30 dB lower than a 

matched filter, clearly illustrating the importance of using the 

mixture parameter information in any detector. 

VII  Conclusions 

¥e have shown that for detection of known signals of unknown 

amplitude in non-Gaussian noise whose PDF is not completely specified 

that near optimal performance may be obtained. The optimality is an 

asymptotic  optimality  (large  data  records  or  small  signals)  but 

generally holds  for problems  of practical  interest.   The  optimal 
I 

detector is obtained by using a GLRT or a tlao test, the latter being 

easier to implement, and is based on the assumption that the PDF of the 

noise is symmetric. This condition is not overly restrictive in that 

nearly all real world noise has this property. Another benefit of the 

theory is that the detection performance is easily computed 

analytically. Future work will extend the results to the case of 

non-independent noise. <i 
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Appendix A 

Example of GLRT Clairvoyant Performance 

In this appendix the GLRT for two detection problems are derived. 

Consider the generic problem of 

% : ^t = °t 

% : x^ = (1 + n^ 

for t = 0, 1. ..., N-1. 

ji is an unknown amplitude either positive or negative. n^ is 

independent and identically distributed noise samples with each sample 

having the PDF n^ ~ N(0, a ). In problem 1 the noise variance a is 

assumed unknown while in problem 2, <y is known a priori. The GLRTs 

for problems 1 and 2 respectively are 

1  ?■  /    «.* 

N-1   1 

t=0 ^2n a 

r  i^ (-t - ^^ 
2a    t=0 

L =    (A-1) 

1   ^-^      2 

t=0 ^2jta 

and 
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N-1 

N-1 
T 

t=0 

1 
e 

- \ I 
la    t=0 "t- 

Sc= 
^2ncT* 

N-1 
T 

t=0 
1 

e 
la    t=0 

1 

^2na' 

(A-2) 

It is well known that for problem 1 

N-1 
*   1 
^^ ~ N  ^  ^t  "" "  t=0  ^ 

s ,  N-1 

^ t=0   ^ 

,  N-1 

*" = N  ^  ""t "  t=0   '^ 

and that for problem 2 

|X = X 

Substitution of the MLEs into (A-1) and (A-2) yields 

LQ = (iVa»)N/2 

^GC= 
la 

N-1 
(X  - 1)  -  2   X 

t=0   ^        t=0  "^ 

N-1 
1 

Since <y = a - x , 

,3SF 



h- 1 - 
or 

N/2 

so that finally 

2 m Lg = N In 1 - 
, N-1 

Also, after some simplification 

^GC  =« 
2a' 

which yields 

-JIT      Ni 

a 
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