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Empirical Development of Ground Acceleration,
Velocity, and Displacement for Accidental Explosions
at J5 or the Proposed Large Altitude Rocket Cell at
Arnold Engineering Development Center

Abstract

This study is an assessment of the ground shock which may be generated in the
event of an accidental explosion at J5 or the Proposed Large Altitude Rocket Cell (LARC)
at the Arnold Engineering Development Center (AEDC). The assessment is accomplished
by reviewing existing empirical relationships for predicting ground motion from ground
shock. These relationships are compared with data for surface explosions at sites with
similar geology and with yields similar to expected conditions at AEDC. Empirical rela-
tionships are developed from these data and a judgment made whether to use existing
empirical relationships or the relationships developed in this study.

An existing relationship (Lipner et al.) is used to predict velocity; the empirical rela-
tionships developed in the course of this study are used to predict acceleration and
displacement. The ground motions are presented in table form and as contour plots.

Included also is a discussion of damage criteria from blast and earthquake studies.

This report recommends using velocity rather than acceleration as an indicator of
structural blast damage. It is recommended that v = 2 ips (v = .167 fps) be used as the
damage threshold value (no major damage for v < 2 ips).

Introduction

The purpose of this study is to determine the
effects of ground shock in the event of an acciden-
tal explosion at the proposed Large Altitude
Rocket Cell (LARC) or the existing J5 rocket
development test cell on the Armold Engineering
Development Center (AEDC), Arnold Air Force
Station, Tennessee. An aerial photograph of
AEDC is shown in Fig. 1. An accidental explosion
of up to 100,000-Ibm (50T) TNT equivalent could
accur at the proposed LARC, or an accidental ex-
plosion of up to 30,000-Ibm (15T) TNT equivalent
could occur at the existing 5 rocket development
test cell.

The results of this study will be used by
Structural Mechanics Associates {(SMA), of
Newport Beach, California, to provide adequate
tie-down and lateral-force design requirements for
structures and also design data for buried and
aboveground piping and ducting.

The effects of high explosive (HE) induced
ground shock and of nuclear explosion {NE) in-
duced ground shock have been studied in terms
of craters, air slap, blast efficiency, blast geometry,
ground layering, ground material, geometry of
structures, fragment generation, and a number of
other ways, Some studies led to the development
of sophisticated computer models, others to em-
pirical methodology. This study identifies existing
empirical methodology and compares it with spe-
cific explosive events. These events have geology
and blast geometry comparable to conditions at
the proposed LARC site or the existing 5.

Major uncertainties (site properties, test and
analysis data base, scaling of data base to other
geologies, blast size, etc.) exist and, where appro-
priate, are discussed,

Site Description

The site information was provided by E. M.
Caldwell at AEDC and J. Kent Lominac, Area En-

gincer with the US. Army Corps of Engineers.
Caldwell furnished the surface information by



Figure1. The AEDC Complex.
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making available the USDA Soil Survey for
Coffee County, Tennessee. Lominac furnished the
subsurface information by making available vari-
ous soil-boring investigations conducted by the
U.S. Army Corps of Engineers and Dames &
Moore.

Arnold Air Force Station is in south-central
Tennessee, approximately 70 miles southeast of
Nashville. The site for the proposed LARC facility
at AEDC is located on the northeast side of the
Retention Reservoir, about one-half mile north-
west of the [4¢ and )5 rocket development test
cells! and approximately one mile northwest of
the Aeropropulsion Systems Test Facility (Fig. 2).

Geologically, AEDC is located in the High-
land Rim Physiographic Province near the drain-
age divide of the Duck and Elk Rivers. West of the
site is the Central Basin; east of the site is the tran-
sition to the Cumberland Plateau, which is fol-
lowed by the Valley, the Ridge, and the Blue
Ridge Provinces.

Surface elevations tange from about 960 feet
to 1200 feet. AEDC is at approximately 1100 feet
elevation,

The overburden at the site is primarily
limestone/dolomite residual material formed by
weathering of in situ bedrock, The soil can con-
tain large amounts of residual chert, occurring as
angular blocks and fragments. The U.S. Army
Corps of Engineers soil-boring investigations indi-
cate that the chert can be so concentrated as to be
mistaken for bedrock. The overburden also con-
tains sand, gravel, and silt mixtures.

o, N
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The first sound rock occurs at a fairly uniform
elevation ranging from 1038 to 1043 feet. Approxi-
mately 28 feet of hard, dense, light gray, massive,
siliceous limestone exists, containing some cavi-
ties filled with calcite crystals. The limestone has
tested out sound and unweathered except for ap-
proximately horizontal bedding planes in the first
5 to 15 feet. These planes, or seams, vary in thick-
ness from 2 to 18 inches; they are evidenced by
leaching and solution oxidation discoloration,

Below the limestone, a 19- to 21-foot-thick
shale formation occurs (Chattanooga Shale) at a
faitly uniform elevation ranging from 1011 to 1014
feet. The shale is hard, dense, black, and ce-
mented. It appears to be extremely fissile at the
top and fairly thick-bedded at the bottom.

Linderlying the shale is a shaley limestone,
identified as the Catheys Formation of the Tren-
ton Group. This shaley limestone is hard, dense,
and light-to-dark mottled gray in color.

A static groundwater level has been mea-
sured at 6 to 18 feet below ground surface. Dames
& Moore of Atlanta reported that the near-surface
groundwater resulted from a combination of shal-
low water conditions, perched water, leakage
from underlying artesian aquifers, and surface
accumulation. Groundwater investigations carried
out by the U.S. Army Corps of Engineers identi-
fied the pervious zone at the top of the first sound
rock as an artesian aquifer.

Surface Burst Ground Shock Phenomenology

Explosive detonations produce motions and
stresses in the earth’s surface. These motions and
stresses are collectively called ground shock. The
ground shock induced by explosive detonations
depends on the explosive type, design and yield,
the height or depth of burst (HOB). and site
characteristics. Three gemeral types of ground
shack have been defined™

Airblast-Induced (Al) Ground Shock: The
ground stresses and motions caused by
the propagating airblast, Airblast-
induced ground shock generally pro-
duces the high-frequency components
of the motions,

Direct-Induced (D) Graund Shock: The
ground stresses and motions caused by

the initial stress wave from the energy
coupled at the burst point in near-
surface and underground detonations.

Crater-Induced (CI) Ground Shock: The
late-time ground stresses and motions
produced by crater formation in a cra-
tering detonation.

For a surface burst, the phenomenology at
early-time is dominated by airblast effects. The
airblast arrives first, causing air slap on the
ground surface. This produces strong downward
and outward motions. Compressional motions
follow and are associated with the DI/CI ground
shock. These compressional motions are a domi-
nant late-time phenomena, praducing large up-
ward and outward low-frequency ground motion.



Figure 2. Site for the proposed LARC facility at AEDC.
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The range and magnitude of the Al or DI/CI
ground motions are dependent on the yield, HOB,
and site conditions. It should be noted that, close-
in and at early time, ground motion will be Al or
D1/CI, but generally not both.

With increasing range from the burst point,
the relatively simple motions become a complex
wavetrain of surface waves. These surface waves
appear to be relatively insensitive to blast geome-
try. As the horizontal distance from detonation in-
creases, the complex wavetrain of surface waves is
similar for a buried cratering burst, for a surface
burst, or for an air burst,

Ground-energy coupling is dependent on
several factors beside yield, of which the most sig-
nificant are blast design characteristics, HOB, and
site properties. Blast design characteristics include
blast source concentration (spherical/point source,
directed source, line source, etc.) and type of blast.
The design of the blast source {i.e., concentration)
aids in directing the energy. The type of blast also
affects ground-energy coupling. High explosive
sources {TNT, PETN, PBX, eic.) have been found
to be approximately twice as efficient as a nuclear
source in generating airblast; conventional explo-
sives convert most of the energy into blast and
shock while a nuclear source expends a portion of
its energy thermaily.

The effect of HOB is a major contributor in
ground-energy coupling. As HOB increases, Al ef-
fects become more dominant, with DI/CI effects
diminishing. [n general, as HOB increases and Al
effects dominate, the close-in early-time ground
motion is maximum in the vertical direction. Al-
ternately, as DI/CI effects dominate, the close-in
early-time ground motion is maximum in the hor-
izontal direction.

Because many site property effects influence
ground-energy coupling, these effects can only be
broadly generalized. For nonhomogeneous geo-
logical layering, stiffer layers transmit shock
faster. Thus, ground shock in a stiffer layer at
depth can outrun the airblast conditions still in
existence near the surface, Layering and stiffness
can also have the effect of strengthening ground
shock by wave reflection.

As indicated, the ground shock will be a re-
sult of either Al or DI/CI effects and can be bro-
ken down into three regions of disturbance types:
superseismic, transseismic, and subseismic.’

Media, such as soil, rock, and water, propa-
gate wave disturbances at velocities that are func-
tions of the material properties. At the ground sur-
face, three types of wave disturbance produce the
majoerity of the ground motion; they are identified

AEDC-TR-B5-50

as primary (p), secondary (s), and Rayleigh waves.
The p- and s-waves are also known as body
waves and are, respectively, compressional and
shear in nature, Rayleigh waves are also known as
surface waves. The presence of all three waves is
not limited to the surface, but the Rayleigh wave
attentuates rapidly with depth. Flint and Skinner
further describe the manner in which these waves
deform solids.* The speeds of propagation {C) of
these waves are related as follows:

C>C > Gy

where C, is the p-wave propagation velocity, C, is
the s-wave propagation velocity, and C, is the
Rayleigh wave propagation velocity. The above
relationship indicates a point at or just beneath
the surface is first affected by the p-wave arrival,
second by s-wave arrival, and finally by arrival of
the Rayleigh wave. At the surface, the p- and
s-waves decay faster with range than does the
Rayleigh wave.

The superseisimic region is defined as that re-
gion where airblast velocity exceeds all wave
propagation velocities:

U>C.>C,

where UJ is the airblast velocity. Since U is larger
than C, or C,, no disturbance exists ahead of the
airblast, and ground shock trails airblast.

When airblast shock velocity falls below the
p-wave propagation velocity but still exceeds the
s-wave propagation, the region is known as
transseismic. [n this region, compressional distur-
bances can propagate in the ground ahead of the
airblast:

G >U>C,

When airblast velocity falls below the s-wave
propagation, the subseismic case exists:

G=>C>U

For both transseismic and subseismic regions,
compressional and shear disturbances can propa-
gate through the ground ahead of the airblast
shock. For that reason, they are often collectively
referred to as the owtrunning region to indicate that
ground shock has outrun the airblast shock.

Several factors can influence or contribute to
the complex nature of the surface waves at early-
or late-time. One result of such influence or con-
tribution could be refracted and reflected waves
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cutrunning airblast shock when superseismic con-
ditions would otherwise exist at the surface. An-
other could be the existence of superseismic con-

ditions when outrunning conditions would
otherwise exist at the surface.

Study Methodology

Competent ground shock prediction for a site
can be obtained through use of large-scale com-
puter code modeling techniques. Simplified tech-
niques are available’ but have large uncertainties
associated with them. Most of the techniques are
based on some combination of data from theoreti-
cal studies and field test observations. These tech-
niques approximate the complete environment
that will result from disturbances arriving from all
sources by superimposing air detonation, surface
detonation, and contained detonation motion ac-
cording to their relative time-phasing.

For this study, apprapriate surface explosion
methodology is identified and used to predict
ground matiens at AEDC for an accidental explo-
gion in the )5 and in the proposed LARC rocket
development test cells. For such an explosion, it is
believed that mest of the energy will be directly
coupled with the ground (i.e., most of the airblast
will be contained). The predicted motions are
compared with measured ground motions for
events similar in yield and site conditions. A judg-
ment is then made as to which procedure makes
the best predictien of ground motions.

Lipner et al.® used a ground shock data base
gathered from nuclear and high explosive test re-
sults, They used the data base to generate ground
motion predictions for surface burst air slap, sur-
face burst clese-in DI/CI, and surface burst
ground roll conditions. For each surface burst con-
dition, four generic site types are defined: (a} dry
sail-seismic velocity less than 3,000 fps, (b) wet
soil-seismic velocity between 3,000 and 6,000 fps,
(c) dry soft rock—seismic velocity between 6,000
and 12,000 fps, and (d) hard rock-seismic velocity
greater than 12,000 fps. Parameters are defined for
each generic site category with each surface burst
condition.

A recommended weighting factor of 2.0 can
be applied to the equivalent TNT yield.> This
weighting is recommended when blast wave
strengthening is expected from ground reflection.
The site conditions at AEDC (stiffer soils with
near-surface ground water table [GWT]) are such
that blast wave strengthening may exist.

The generic wet site surface burst close-in
DI/Cl and surface burst ground roll relationships

for conditions at AEDC are shown in Figs. 3-7.
Ground roll is the name given by Lipner et al. to
ground motion found in the outrunning region.
Figures 4 and 5 show that, for AEDC, the generic
relationships indicate that ground roll will domi-
nate acceleration and velocity at ranges of 40 feet
and greater for both yield sizes.

Figures 6 and 7 indicate that ground rell dis-
placement will dominate at ranges of 200 feet and
greater for both yield sizes. The equivalent yield
scaling relation for DI/Cl velocity and displace-
ment has not been demonstrated to be consistent
(DI/CI velocity and displacement are more consis-
tent when scaled to crater volume) and may have
2 high uncertainty associated with the predicted
values. This is particularly true for displacements
where the data base has been generated from in-
tegrated acceleration and/er velocity time
histories,

The acceleration relationship in Fig. 3 is taken
from Crawford et al? and from Newmark and
Haltiwanger,” who specity:

a = a{W/1 MT)(R/1000 ft) 4, 1))

for all ranges. where the acceleration correction
factor, a,, is 140 g for hard rock, 25 g for soft rock,
and 5 g for dry soil; the explosive force, W, is in
megatons {MT); and the distance from the explo-
sive source, R, is in feet. Lipner et al. used a value
of a, for wet soil between that for soft rock and
dry soil. They found the relationship to be very
conservative in estimating acceleration. In the
ground roll region, they subscribe to the usual
practice of equating vertical and horizontal accel-
eration, The relevant surface burst conditions
from Lipner et al. are given in Tables 1 and 2.

Sauer and Schoutens’ use a ground shock
data base derived from nuclear explosive tests at
the Nevada Test Site (NTS) and the Pacific Prov-
ing Ground (PPG). The outrunning acceleration
relationships developed from the PPG data are as
fallows:

a, = 2 x 10'R/wW'H-35 2)
for 150 = (R/W'Y) =< 800,
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Figure 3. 15T [1] and 50T [2] equivalent {2.0 weighting factor) surface burst close-in peak DI/CI

acceleration for generic wet site.

a, = 1 x 105R/WV3)-2

{3)
for 800 < (R/W') < 3000,

where W is in kilotons, R is the ground range in
feet, and a, is the maximum vertical acceleration
in g. The associated error range is + 200%, - 70%.
The NTS data have the following relationship:

a, = 175 x 105(R/W'/% 2

@
for 800 = (R/W'"%) =< 3000,

where values and the associated error are as de-
fined previously. The NTS data are asymptotic to
the defined relationship but fall far below it in the
scaled region less than 800 [(R/W'?) < 800]. Sauer
and Schoutens suggest that horizontal accelera-
tion should also be taken as equal to vertical in
the outrunning region. It is enly in the
superseismic region that horizontal values are
suggested to be significantly below vertical val-
ues. For that region, they suggest horizontal val-
ues of 0.2 to 0.5 times the vertical accelerations.
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Figure 4. 50T TNT equivalent (2.0 weighting factor) surface burst peak DI/CI velocity [1] and peak
ground roll velocity [2] for generic wet site.

Table 1. Surface burst close-in peak DI/CI parameters.f
Environmenf Value = (Reference ValueXW/ 1 MTY'(1000 ft/RP

Scaling 20
Envirpnment Reference valoe factora uncertainty
parameter Diry soif Wet aofl Soft rock Hard rock A B factor
Crater volume 50 170 40 E 1 0 1.8
10° #4
Displacement 100 510 rid 50 43 3 a5
(n}
Velacity 50 180 110 150 2/2 2 as
ips)
Acceleration H 15 5 1] 1 4 5
®
Stress 75 750 280 5000 2/3 1 4
(psD
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Figure 5. 15T TNT equivalent (2.0 weighting factor} surface burst peak DI/CI velocity [1] and peak
ground roll velocity [2] for generic wet site.

Table 2. Surface burst peak ground roll parameters.’

Envirowment Value = (Reference ValueXW/1 MT)(10,000 ft/R)

Scaling
Prediction Environment Generic site factors
parameter parameter Dry soil Wet soail Sort rock Hard rock A B
Reference Displacement 15 1.5 1.1 b6 2/3
value {in.)
Velocity 6.0 6.0 24 23 1/2 3/2
{ips)
2 uncertainty Displacement 5 4.0 50 50 - -
factor Velocity 35 35 49 40 - -
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Figure 6. 50T TNT equivalent surface burst peak DI/CI displacement [1] and peak ground roll

displacement [2] for generic wet site.

Sauer and Schouten present the following
correlations for maximum vertical velacity in the
outrunning region:

for NTS,

v, = 2 x 10%R/W'3)-2 (5)
for PPG,

v, = 5 x 107(R/WYY-2 (6)

where v, is in fps, R is in feet, and W is in mega-
tons. Sauer recommends that the maximum hori-
zontal velocity be taken as 0.25 to 0.5 of the maxi-
mum vertical velocity in the outrunning region,

10

Displacement in the superseismic region is
predicted by various models which correlate air
slap overpressure to maximum displacement. In
the outrunning region, Sauer and Schoutens
found that an inverse-square law attenuation with
ground range fit their PPG data, although the
scatter was quite large. They also found that hori-
zontal displacements appear to be approximately
equal to vertical displacements, The Sauer and
Schoutens PPG displacement relationship is:

Boad W3 = 7600(R/WV3) -2, )

where d,,, and R are in feet and W is in kilotons.
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Figure 7. 15T TNT equivalent surface burst peak DI/CI displacement [1] and peak ground roll

displacement [2] for generic wet site.

Comparison of Predicted Values to Specific Sites

AEDC has a general site condition of approxi-
mately 80 feet of wet (GWT at about 12 feet), lay-
ered soil made up of clays, silts, and sands overly-
ing limestone/dolomite. Two event series have
similar test media: DISTANT PLAIN and
MIDDLE GUST.

Most event data lack acceleration and dis-
placement measurements. Some studies have cal-
culated accelerations, where maximum vertical
downward acceleration is related to the shape of
the rise time to the maximum velocity. At the
ground surface, the rise is equal to the rise time of

11

the airblast. A rise time relationship can also be
used that considers the wave propagation velocity
of the media and their seismic in situ velocity.
Near-surface maximum displacements are found
from integrated near-surface velocity time
histoties.

Acceleration Comparisons

Acceleration data, as indicated, are not as
widely available as velocity data. Of the six events
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referenced for velocity data, only three had accel-
eration data (DISTANT PLAIN 24, 3. and 5). The
acceleration data for these events are shown in
Figs. 8 and 9, along with the data for DISTANT
PLAIN 4 (a 50T TNT equivalent yield event). The
gemeric acceleration relationship [Eq. (1)] and the
Sauer and Schoutens outrunning acceleration
relationships for PPG [Eqs. (2) and (3)] and NTS
[Eq- (4)] along with a least-squares regression
analysis, are plotted for comparison with event
data. The least-squares regression analyses give:

a, = 6.7 x 105R/WVH-19, ®

9

a, = 1.7 x 10°R/WY3)-18,
where W is in kilotons, R is in feet, and a is accel-
eration in g, The regression analyses give results
very similar to the Sauwer and Schoutens NTS
relationship.

The Sauer and Schoutens NTS relationship
seems to fit well with the vertical acceleration data
{Fig. 8). According to the Sauer and Schoutens
finding, for a 20T TNT equivalent event at NTS,
their relationship should highly overpredict accel-
erations at ranges of less than about 220 feet. But
for the DISTANT PLAIN data, the NTS relation-
ship predicts quite well for the range under its
expected use (data are asymptotic); the limited
data available in the outrunning region indicate
the relationship is adequate. No data are available
in the range outside the upper limit for the
relationship.

The horizontal acceleration data are shown in
Fig. 9. The scatter is large, which is typical for
maximum horizontal acceleration data. The best
correlation, other than the least-squares regres-
sion analysis, comes from using one of the Sauer
and Schoutens weighting factors for the
subseismic region {the 0.2 a,,,, correlates best).
Many experts recommend assuming maximum
horizontal and vertical accelerations to be equal in
the outrunning region, but this assumption does
not appear valid with the data available (NTS
peak a, is shown in Fig. 9 for the outrunning
tange). Again, no data are available outside the
upper end of the NTS relationship range limits, so
the assumption is made that it still holds.

No directly measured acceleration data are
available for larger yield events on wet, layered
siles. Indications are that, in the outrunning re-
gion, acceleration is not very sensitive to yield

12

scaling so the relationships should held for higher
yield events.

The Sauer and Schoutens NTS relationship
{with horizontal acceleration correction) or the
least-squares regression analyses are suitable for
predicting ground acceleration at AEDC, It is felt
that the least-squares regression relationships are
most appropriate.

Velocity Comparisons

Velocity data for the relevant events are
taken from edited peak ground motion data.
Some event data are reported as peak horizontal
and vertical for varying range and depth; others
attempt to repert Al velocities separate from
DI/CI velocities. For these cases, no vertical com-
ponent of DIACI velocities is reported. Since the
Al and DI/CI horizontal velocities are approxi-
mately equal for these cases, and espedially since
ground motion in the oputrunning region is not
source dependent. both surface burst conditions
are plotted.

160T TNT Equivalent Yield Events

DISTANT PLAIN 6 and MIDDLE GUST Il
are 100T TNT equivalent yield events suited for
comparison to evaluate ground motion prediction
for an accidental explosion at the LARC at AEDC.
The near-surface peak velocities are shown in
Fig. 10. Four velocity relationships are plotted: the
Sauer® using DISTANT PLAIN, PRAIRIE FLAT,
and FLAT TOP events; the Lipner ¢t al. generic
ground rolt wet site (Table2); the Sauer PPG
[Eq. (6)); and the Sauer NTS [Eq. (3)). The best fit
comes from the generic ground roll relationship
with the recommended twice-the-yield weighting
factor (curve 2b).

20T TNT Equivalent Yield Events

PLAIN 24A, 3, and 5, along with MIDDLE
GUST 1, are 20T TNT equivalent yield events
which correspond best for comparison purposes
to those expected for an accidental explosion in
the |5 rocket development test cell at AEDC. The
near-sutface peak velocities are plotted in Fig. 11,
The Lipner et al. ground roll velocity for the ge-
neric wet site is plotted, along with the Sauer NTS
and PPG velocity relationships. The best fit is the
generic ground roll relationship utilizing the
twice-the-yield weighting Factor (curve 3b).
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PPG [3], Sauer NTS [4] peak velocity relationships.

Displacement Comparisons

Displacement data available are derived from
integrated velocity time histories, The displace-
ment data are shown in Figs. 12 and 13. Data from
varying size events are plotted together. with
vield used to weight the range and displacement.
Least-squares regression analyses generate the
following relationships:

d, /WYY = 24 x LONR/W'Y (10)

15

B/ WP = B x 10HR/WYY 265 (an
where d, . and dy .. are in inches, W is in kilo-
tens, and R is in feet The Sauer and Schoutens
PPG displacement relationship [Eq. (7)] 15 plotted
{curve 2) in Figs. 12 and 13; their relationship falls
considerably below the data. The generic site rela-
tionship is not plotted as it is not compatible with
vield weighting. A comparison of the value pre-
dicted by the generic site relationship with the
data shows that the generic relationship predicts
vastly beiow the data.
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Figure 11. Near-surface peak velocity for surface and surface-tangent 20T high explosive events at
wel, layered sites: Saver PPG (1], Sauer NTS [2} Generic Ground Roll [3a), Generic Ground Roll
w/2.0 yield weighting [3b] peak velocity relationships.

The vertical and horizontal displacements de- i /WY = 1 x I0MR/WYHY 28 (12)
rived [rom the integrated velocity time histories
are 5o similar in magnitude that a single relation-
ship is developed to predict ground displacements where d  is in inches, W is in kilotons, and R is
at AEDC. That relationship is: in feet.
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Results

The near-surface acceleration, velocity, and
displacement ground motions for the required
yields at specific intervals are listed in Tables 3
and 4, for a 15T and 50T TNT equivalent explo-
sion, respectively. The 15T and 50T TNT equiva-
lent yield acceleration ground motions are based
on Eqgs. (8) and (9), the velocity ground motions
on the Lipner et al. generic wet site relationship
on Table 2, and the displacement ground motions
on Eq. (12).

These relationships [Eqgs. (B), (9, (12}, and
Table 2] give the best estimate of what will occur

Table 3. 15T TNT equivalent explosion at J5.

at the near-surface. Unique conditions may exist
which will cause values either higher or lower
than those predicted {e.g., an extreme yield could
result in over-predicted ground motions; highly-
directional blast geometry could cause either a re-
duction ar an increase in the vertical component
of motion; it is even possible that the cell itself
could induce ground-energy coupling to increase
the horizontal component). Although such condi-
tions could exist, it is believed that the assumption
of best-estimate is valid. And it should be stressed
that the equations of motion presented here are

Acceleration (g} Veloclty (fpa) Displacement (in.)
a, Range (/1) a, Range it} ¥y n Range (f) d Kange (fth
300. 48.0 50. ».7 15. 1.5 511 300. 14.0
150 69,1 25, 61.3 10. 5.0 66.9 150. 18.0
75 29,5 0. 705 5. 25 106.3 75. 230
5. 1232 15. 84.3 4. 20 123.3 5. 26.6
25. 1774 10. 108.7 3. 1.5 1454 25. 3.1
H. 199.5 9, 116.1 2 14 195.7 0. 369
15, 221 8. 1249 L K 310.7 15. 409
M. 287.3 K 135.8 9 A5 3333 10. 47.3
9. 3.7 & 149.5 ] A 360.6 5. 60.6
8. 323.1 5 167.6 7 a5 3941 4. 685.6
7. 346.7 4. 1927 L] 3 436.8 3 77
B, 376.0 3. 20.6 ] 25 4£93.2 2. B4.0
5. 413.8 2 297.1 4 2 5724 1. 1072.7
4 465.4 1 458.2 3 15 693.4 75 1193
3 1.5 9 4594 2 Jd 904.6 5 137.9
1. 670.3 B 5268 15 075 1100.6 25 176.6
1. 265.4 7 5726 1 05 422 15 o
9 10204 b 630.5 09 M5 15472 05 3133
b ] 1085.7 5 7087 48 04 16736 025 4020
7 1184.7 4 8124 07 035 18254 005 7142
b 12632 3 9724 £ A3 2027.4
5 1390.4 2 12529 05 A25 22894
4 1563.7 A5 1499.7 i A2 2656.6
3 1819.3 .1 1932.2 03 {H5 az183
2 2252.1 05 29799 02 01 4217.2
A5 2620.1 i} 005 6694.3
d 324325
{5 4671.5

19



AEDC-TR-26-50

Table 4 50T TNT equivalent explosion at LARC.

Acceleration (g) Velocity (ips) Displacement (in.)
Ta,  Range i) a, Range (it} v, v Kange () d Range (f9
300. 7.7 50. 59.4 15.0 75 763 300, 4.2
150. 103.2 25. 91.5 10. 50 1000 150. 3.0
75. 1486 2, 1052 5. L5 158.7 75. 9.7
50. 184.0 15, 126.0 4. 0 184.2 5a. 459
25, 265.0 10. 1623 3. 1.5 2231 25 588
20. 298.0 9. 1734 2 1.0 292.4 20. 637
15. 346.7 8. 186.6 1. 5 464.2 15. 70.6
10. 429.2 7. 2028 9 A5 497.9 10. 81.6
9. 453.7 6. 2234 B A 334.6 5. 1045
8 4827 5. 2503 7 33 533.8 4. 1131
7. 517.9 4 287.8 6 3 652.5 3 1254
6. 561.6 3 45 5 .25 736.8 2 1449
5 618.2 2. 443.8 A | 855.0 1. 185.6
4. §95.2 1 6845 3 B 1] 10387 75 2057
i 8089 9 7311 2 A 13572 50 2377
2. 10013 ] 7669 15 075 1644.1 25 304.5
1. 421 7 554 .1 05 2544 15 365.3
9 15243 b 1.9 09 D45 112 05 541.0
k] 16218 5 1055.6 08 E ) 15000 025 &93.0
r 17399 4 12136 07 D35 27328 005 12313
A 18859 3 14526 06 D3 J028.5
5 0770 I 18716 05 025 32400
4 13358 .13 2240.3 04 02 3968.5
3 717.7 10 2886.4 .03 015 4807 5
2 1364.1 05 34514 02 01 6299.6
15 341 iyl 005 100000
I 4584582
05 6978.3

only for the near-surface case of a surface blast. In
stiff soil, ground mations from a surface blast will
atterate with depth.

Figures 14 and 15 give ground acceleration
contours for a 15T TNT equivalent surface explo-
sion at J5. The ground acceleration contours for a
50T TNT equivalent surface explosion at the pro-
posed LARC are shown in Figs. 16 and 17.

Ground velocity contours for a 15T TNT
equivalent surface explosion at J5 are shown in

Fig. 18. Figure 19 displays the ground velocity
contours for a 50T TNT equivalent surface explo-
sion at the proposed LARC.

Contours of ground displacemnent for a 15T
TNT equivalent surface explosion at J5 are shown
in Fig. 20. Displacement contours for a 50T TNT
equivalent surface explosion at the proposed
LARC are shown in Fig, 21.
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Figure 16. Near-source peak vertical acceleration contours (in g) for a 50T TNT equivalent surface
explosion at the proposed LARC.
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Figure 17. Near-source peak horizontal acceleration contours (in g) for a 50T TNT equivalent sur-
face explosion at the proposed LARC.
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15T TNT equivalent surface explosion at J5.
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Figure 21. Near-source peak vertical or horizontal displacement contours (in in.) for a 50T TNT
equivalent surface explosion at the proposed LARC.
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Discussion of Damage Indicators

Maximum Acceleration as an
Indicator of Damage

Same indication of average damage that may
occur from ground shock can be gleaned from
earthquake damage studies. Figure 22 gives aver-
age damage versus earthquake intensity for ten
construction types. Intensity levels for an accel-
eration can be generated using Fig. 23.

For the AEDC complex, these figures can be
used lo estimate average damage caused by
ground acceleration. Ground acceleration can first
be obtained from Figs. 14-17 at a specific location
or structure. This maximum value can then be
used to estimate earthquake intensity from Fig. 23.
With the intensity value, Fig. 22 can be accessed to
estimate average damage.

From examination of Figs. 14-17, it is seen
that very high accelerations are predicted close-in,
Because of the nature of the explosion that may
occur at J5 or the proposed LARC, it is felt that the
accelerations bias ground motion concerns. Earth-
quake studies of damage have generally found
that long duration with low g can be more damag-
ing than short duration of high g. These studies
have also found that long-period ground motion
can selectively damage taller or multistory build-
ings while leaving smaller buildings undamaged.
The high accelerations may occur but are of short
duration. The majority of the motion will be long
period, low frequency. Figure 24 shows typical
near-surface acceleration ground motions. Typical
near-surface velocity ground motions are shown
in Fig. 25. Table 5 lists the peak acceleration or
velocity ground motions with range and the ap-
proximate duration of the ground meotions for the
DISTANT PLAIN events referenced. Since dura-
ticn is relatively short, velocity is a better indi-
cator of damage.

L

Maximum Velocity as an
Indicator of Damage

Studies of blast damage have resulted in the
establishment of threshold values of velecity for
damage to ordinary dwellings. Duvall and
Fogelson'® found that no damage occurred for
v = 2.0 ips (v = .167 fps} and that major damage
occurred for v > 5.4 ips (v > 450 fps). They rec-
ommend thai only two zones be established, a
safe zone and a damage zone, where 2 ips (167
fps) separate the zones. Edwards and
Narthwood'! report that no damage occurs for
v < 4.3 ips (v < .358 fps) and that major damage
oceurs for v = 9.0 ips (v = .750 fps). The Duvall
and Fogelsen criteria are based on a data “pool”
o that their values encompass a wide variety of
structure types on different foundation materials.
The Edwards and Northwood criteria are based
only on six structures, half situated on wet, silty,
clay soil, the others on well-consolidated glacial
till. The structures were either frame or brick, all
with stone masonry basements. The values they
came up with are often used as guidelines for
damage, but a review of their data indicates poor
correlation and large standard deviation,

Empirical correlations developed by Trifunac
and Brady'? can be used to relate peak velocity to
Modified Mercalli Intensity (MMI). Their 50 per-
cent confidence level correlations of peak hori-
zontal velacity at a stiff soil site to MMI are given
in Table 6. These intensity values can be used in
conjunction with Fig. 22 for an estimate of average
damage per construction type. It can be seen that
the empirical velocity-intensity correlation for
earthquake damage compares well with the
Duvall and Fogelson criterion for blast damage
given above,

Recommendations

It is recommended that v = 2 ips (v = .167
fps) be used as a lower bound for an indication of
structural blast damage. This correlates to a
ground acceleration of 0.15 to 0.25 g.
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Further discussion on use of these ground
shock estimates has been included in the design
criteria document prepared for use at the AEDC
site.?
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Table 5. Near-surface peak acceleration or velocity magnitudes and duration of the ground motions
for DISTANT PLAIN Events referenced.

Range Ground motion parameter with associated duration

Event i a, (@ ty (ms) a @ 1, ms)
2A° 8¢ 702.0 156 583 100.0
L1 1910 7.5 106 75.0

95 1240 825 112 1125

125 95.9 475 226 1000

210 387 ».2 55 1025

390 70 87.5 42 102.5

3 60 195.0 831 187 92.0
H 1040 90.3 14.0 B4.0

105 539 73.6 4.0 68.0

150 o2 68,9 123 4.0

toas 121 135 19 620

a4+ 240 108 750 49 200.0
320 4.6 750 0.5 262.5

450 6.1 3250 1.2 3250

700 3.0 250.0 0.6 2875

5 50 165.0 66.3 M4 800
70 225.0 7.5 4.3 87.5

105 53 528 104 w0

150 36.5 9zs 144 57.5

225 204 1154 34 57.5

Range

Event {ft) v, (fps) ty o) v, (fps) ty (s}
# &0 255 22 00 29
80 e 14 79 22

9 295 12 39 17

140 22,0 o8 21 1.1

162 175 10 14 11

Nofes: * DISTANT PLAIN 2A, 3, 4, and 5 measured acceleration; velocity arrived at from Integrated acceleration.
+ DISTANT PLAIN 4 duration dala are questionable.
# DISTANT PLAIN 6 measured velocity; acceleration arrived at from differentiated velocity.

Table é. Trifunac and Brady 50 percent
confidence level correlation of peak hotrizontal
velocity to Modified Mercalli Intensity (MMI)

for a stiff soil site.
i

MMI (ips) (fps)
v 1.22 a.10
AU | 37 0.20
vn 4.63 9.9
A 9.29 077
X 18.00 1.50
X 35.00 292
X1 68.42 5.70
xn 133.40 1112
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