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more than one thousand), the first step is by far the most expensive. The
Prise Tree structure is used to compute efficiently this localization step.

A preliminary implementaion of the Set Operations and Ray Casting algorithms
has been constructed.
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Intoducton

1. Introduction ---

We address the problem of computationally efficient representation of polyhedra.
Many algorithms for manipulating polyhedra are naturally decomposed in two steps: ...

the localization of the faces that intersect a given field of interest, and the subsequent
proceaing of these faces. Here are some practical examples:

1. Clipping: Localize all the faces of a polyhedron that intersect a viewing pyramid,
then process them to determine which ones are visible.

2. Set Operations between solids: Localize all the intersecting faces of two p)lyhedra,
then ptrocess them to find the intersection polygons of the two polyheclr;, and to
determine whether or not all the other faces are part of the resulting solid.

3. Ray lasting: Localize all the faces of a polyhedron intersected by a send-infinite
straight line (the light ray), and process these faces to find the first inters,-.ction, and
compltte the display parameters.

In the case of polyhedra with many faces (typically more than one thotsand), the .- '
localization step is the most expensive. This is more generally true of algorithms that
manipulate a large' number of objects. The basic method proposed in the litterature
to speed up this step is to include each object in a simple enclosing box, the.2 build a
hierarchy of these boxes, and use it to direct the search. This method has beer used for
the Clipping and Ray Casting problems by Clark [1976], Rubin and Whitted 11980], and
more recently by Weghorst, Hooper, and Greenberg 11985]. It has also been applied to
algorithms for Set Operations, essentially in the Constructive Solid Geometry approach
(Requicha and Voelcker [1982]).

All these algorithms are "object" based: low level boxes in the hierarchy usually
represent either complete polyhedra, or primitive solids. They are not well suited to
the manipulation of a set of polyhedra each having thousands of faces. Such polyhedra
are of practical importance, in particular they can be models of real, digitized objects
that no simple CAD system can handle. Examples are organs from CT scanners (Arty,
Frieder and Hermann [1978]), or objects measured using a laser rangefinder (Faugeras
and Pauchon [1983]).

Two recent methods, one for Set Operations between solids (Mantyla and Tamnminen
- [1983]), and the other for Ray Casting of fractal surfaces (Kajiya [1983]) Lave been
A designed to deal explicitly with such polyhedra. They use "face" hierarchies t.at enclose

the faces themselves in boxes.
We present a new method, called Prism Tree, to represent polyhedra with many

faces. This is also a "face" representation, that describes polyhedra as a te.:nary tree
of prisms as enclosing boxes (Figure 1). It generalizes the Strip Tree represer tation for
planar curves (Ballard [1981]) and derives from a polyhedral approximation 3lgorithm:
(Faugera: et a. [1984]) that is described in Section 2. However, Prism Trees lave much
wider apilications, in particular they are information preserving, which is no', the case
of the approximation algorithm.

The representation is intrinsic to the surface, as opposed to the EXCELL structure
used by Mantyla and Tamminen [1983], or to the Octree representation foi volumes

:%~
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(Jackins and Tanimoto [1980], Meagher [1982], [ftikhar [1981]), that are attached to a
particular reference frame. It is therefore invariant under rigid transformations. We show
that Prism Trees can be used to speed up the localization& step of Set Operations and RayIi Casting algorithms for polyhedra with many faces. They unify the approaches of the
Mantyla and Tamminen (although the data structures are very different) and KaJiya
algorithms, and in general demonstrate an improvement over these methods.

We first sketch the underlying polyhedral approximation algorithm (Section 2). Then
we define the Prism Tree structure, and give sonme properties (Section 3). Section 4 de-
nroe a set operations algorithms for P insm Trees, and Section 5 generalies to the Pris m
Tee structure a Ray Casting algorithm proposed recently by KaJiya [1983] for fractal our-
faces. The crucial loolization step has been fully implemented. The implementation of

the processing step is under way. Examples, featuring set operations between synthetic
solids and Ray Casting display of both synthetic and real objects, are given. Detailed

algoiths, nd i geera demnstatean mproemet oer tesemetods

We st setc theundelyig poyheral pproimaion lgoithm(Secion2). hen.- - ..-
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p! Wmsl versions of the algorithms can be found in the appendix.

2 ." P * h sa l Approximation

ha this section, we describe the polyhedral approximation algorithm (Fauge -as et al. 74.
119841). As we will see in the sequel, the Prism Tree employs a variant of this algorithm.
The data consists of a polyhedron of genus 0 (ie without holes, we will see the reason

of this restriction below), whose faces are not necessarily triangular. The polyhedron is
described by an object graph OG whose nodes are the vertices of the polyhedron, and
arcs are the polyhedral edges joining them. The algorithm generalizes to 3D space a
recursive polygonal approximation algorithm (Duda and Hart [1973]). Using a breadth
first apprach, it approximates the initial polyhedron by a polyhedron with t iangular
faces Tis.

ST~

R

A

Figure 2. The split step. The triangle T = PQR is replaced by the three triangles T, = PQM, TI =

Q RM, T3 RPM that are closer to the original surface. ___

At each level of the recursion, we associate to each triangle T a set of attribul.es: a part

ST of the surface to approximate, the three vertices P, Q, R of T, the error ET Ineasured

by the maximum distance between the points of ST and the triangle plane, and he point

M where this maximum is reached. The triangulation is represented by an adjacency .. :

graph AG: the nodes are the triangles themselves, and two nodes are linked by an arc if"

they share a common edge.
Startbig with a rough approximation (described below) of the surface, the algorithm

loops over the following steps until the error associated to each triangle is le.ss than a

given threshold e.

. . . ", ... , .....
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4 Priem ree

Spit Stop For each triangle T such that er > e, do: (Figure 2)

1. IMt TI, T2,T3 be the three triangles PQM, QRM and RPM, and STI, ST2, ST3 the
assciated surfaces (obtained with a method to be described), compute the corre-

gpm awn agree , IT~,, eT,, and the points where they are reached MI, Mt2 , M3.

2. Replac T by the Tis in the adjacency graph (in particular, for each previously neigh-
bar of T, replace T in its list of neighbors by the coresponding Ti).

Nf we only use this step, old edges are never removed, even if they are a very bad apprax-
imnation of the surface. This is the reason why we use the following step.

P\ b

Figure 3. The Adjustment step. The trage n 6aereplaced rsetvlbyT'ad2,ndT16
and T1

Adjustment Step: For each pair of neighboring triangles 7' P*QR and T4 = PQR

that have been created at the previous step and whose associated error is greater than e,
eliminate the edge QR (Figure 3):

1. Find in ST" U S74 the point M that is the closest to the bissector plane of Ts and
* T7, and lies at the maximum distance from QR.

2. Let 71" and T2' be the triangles P*QM and P4RM, compute as before the associated

surfaces ST",, ST20, the errors e' and e2, and the points MI* and M2'. Compute the

3. Replace 2' and 74 by the four new triangles in AG.

same~~ ~ wa th trage T .an .~ .n thi attribte.



we have outlined the algorithm, we now initialise the adjacency graph, and d .fine the
M~ recursively.

Initlaliaatiou of AG: Choose three points P, Q, R on the surface (Figure 4). We can
compute the shortest cycle of 00 that contains these points and is the closesi to their
plane. An the surface is of genus 0, this cycle cuts it into two connected compon ents ST,
and ST2 (Giblin [1977]). The initial graph is composed of two nodes correspcnding to
the same triangle PQR, but whose associated surfaces are ST1 and ST2. The t-vo nodesI
are linked by three arcs corresponding to the three edges of the triangle. Notice though
that any other initial triangulation could have been used. In particular, trianguilations
based on 1he smooth patches between surface discontinuities (as in the Intrinuic Patches
represent.ations of Brady, Ponce, Yuille, and Asada [1984]) could be used to yield better
approxim ttions of the original surface.

Th angle: T

Split Poin't
Suiface: ST

......... A

I Enw.N:E 2
Split Point.:M 2
Surface: ST 2

S.A 2l

Figure 4. The initial adjacency graph. The three paths [PQI, IQRI and fliP] define a cycle 6. a cuts the

surface into two partsi ST, and ST2. They define the initial graph.____

Definition of the STs: We consider only the split step (the case of the adjustment
step is quite similar and will be omitted), and use once again the fact that a cycle of a
surface of genus 0 cuts this surface into two components. Suppose (Figure 5) t~h v. we have
associated to a triangle T a surface ST, delimited by a cycle composed of the tn~ -ee paths

[PQ1, [QR], and [RP]. Let 1P1.2,PI2.3, P3.1 be the bissector planes of the paiis (71,T2),
(T2 ,T3), and (T3,TI). Find a path IPM1 between P and M in ST as the shortest path as
close as possible to P,1 . Define similarly the path [QMJ. The three paths PNVJ, (MQ],
and IQP] define a cycle [PMQJ in ST that cuts it into two connected comipcnents STI

12.
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F-ism S. The Mdsace ST is split into three parts by the paths IPM], IQM, .aidIRM1

and S11. We associate ST, to TI. We can now find in ST' a path [RM], that splits STV
into two components ST2 and 5T3, that we associate to T'2 and T3.

The polyhedral approximation algorithm (Faugeras et al. (19841) was initially pro-

posed in the context of Computer Vision, with the purpose of obtaining from an original

polyhedron (typically with 5000 faces) a reasonable approximation with only typically

500 faces. The main point was to compress the information as much as possible, while

preserving as much as possible the shape of the object. Unfortunately this is not always -

possble, in particular for very complicated objects with iportant concavities, adi

practice the approximation can become relatively poor (Ponce 19831). We now derive

from this algorithm the Prism Tree structure, and show that these problems disappear,

mainly because this representation is informiation preserving.

********~** *~* * .*..i
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3. Prism Trees

3.1. Definition
The polyhedral approximation algorithm provides us naturally with a I i -rarchical

representation of the surface: the successive subdivisions of the surface yield a ternary ..

tree structure, where each node represents a triangle and the associated suface, and
stores two kinds of information, geometric and structural.

The information carried by the STs is too complex for being directly usei at each
level of the tree, so the "geometric" part of a non-leaf node is a simple bo:, easier to
manipulate. However, we store in each leaf of the tree a description of the associated
connected component ST of OG. In fact this description will not only contar.t the edge
information corresponding to OG, but also a description of the faces of t6!. original _J

polyhedron adjacent to ST. This is important as it is in fact this face nforim.tion that
will be u.med in the processing step of our algorithms.

Since by definition, the STs partition the original graph, this makes the repf'csentation
information preserving. the original polyhedron can be recovered from its Pism Tree

representation. Consider a triangle T, and the bissector planes P1, P2, P3 of T and. its
neighbors;. We define the box associated with ST to be the smallest truncatc pyramid
(called prism) with three faces PPi parallel to the Ps, and the two remaining ones, TB 1 "

and TB 2, parallel to T, that encloses ST (Figure 6).t
The structural information of each node consists of three pointers, notei1 Son[i],

i E [1,2, 3. The root of the tree points to the two half-surfaces defined by the initialization
step. The Sons of a node associated to a split triangle point to its three sub-triangles,

and the Sons of a node associated to an adjusted node point to its two sub-triangles (the
third pointer is nil). We will refer to a node by a pointer Pt to it. Figure 7 s;hows the
Prism Tree model of a sphere. Notice that the prisms get thinner and thinner as the
resolution increases.

3.2. Some Properties

We now give fundamental properties which relate the intersection of two prisms toI' the intersection of the underlying surfaces. The first one is obvious: if two pii;ms don't
intersect, then the underlying surfaces don't intersect either. In this case, wc. say that
the associated nodes have a null intersection.

The converse proposition is evidently false in general: two surfaces can hav.! an empty
intersection, although the associated prisms intersect. In fact, it is impossibl] to decide

that the surfaces associated to two nodes intersect before the leaf level, as the STs

themselves are only represented at this level. So we say that two nodes that are not

- ~~~ This is a natural way to define the box as, by definition, ST is the part of the surface that biee within " ....," ''

tie Pis (or more precisely, it is the part of the surface delimited by a cycle which is the int ,rsection ofthe T(ioi amotralreiwayt eietebxas ydntS is thet arto h ufc h~iswti

-the surface and the three planes), even though in the general case, points of ST ran lie outsid. of the Ps

(remark however that if ST is convex, then it lies entirely inside the Pis). The two remaininig faces are
used to "close" the box, and their distance corresponds to T.

I. --
o4. '
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r.7

IaeePPoSadP 3- -

Figure 6. Definition of the prism associated to a triangle. The upper part of the figure shows the geometry -.. i
of the bimletar phanes PP~s and the parallel planesm TB~s. The lower part shows T and its neighbors Tia,"

* and the construte encloing prs.
I

*both leaves have a poaible intersection. At the leaf node, we can decide if the surfaces .t]
associated to two leaves Pt1 and Pt2 intersect by testing directly each face of ST1 against ,:]
each face of SqT 2 . If any of these couples intersect, then STI and ST2 intersect, and we -.-

i ~say that Pt1 and Pt2 have a clear intersection. Otherwise, we say again that they have '" -

a ml intersefatio. .

T s
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rith m we have developed for manipulating Prism Trees. If the surface associated with

a node ltersects an object (a line, another surface..), then the same property holds for
all the macestors of the node. Conversely, if the surface associated to a iieh, does iI .

intersec an ob*t, then the same property holds for all the descendants of this node.
This will allow the efficient localivation of intersections by pruning the tree of possibilities
n som as possible. *..

3.3. A lemma

We have noted in the previous section that the geometric information carried by a
non-lea node of a Prism Tree is too poor to directly test the intersection of the under-
lying surface with another object. We now give a lemma that, given certain additional
conditions of regularity, relates the intersection of a straight line and a prism to the
intersection of this straight line and the surface ST associated to this prism.
Definition: A prism is said to be regular if the associated planes PP, PP2, and PP
are the bissector planes P1, P2 , and P3 themselves.
The regular prism notion is analogous to the notion of regular strip introduced by Ballard
11981] for Strip Trees. It ensures that the intersection of the surface ST associated to
a regular prism and the union of the PPis is a closed curve. It is then easy to show
the following lemma (see Faugeras and Ponce 11985] for a more general statement and a
detailed proof, based on Jordan's theorem).
Clear Intersectlon Lemma: If a straight line intersects both the planes TBI and TB2

of a regukr prism, then it intersects the underlying surface ST an odd number of times.
As it implies that the line and the surface intersect, we also say that the straight line and ..
the prism have a clear intersection (Figure 8).

This lemma could be used for deciding if a point is inside or outside a polyhedron
represented by a Prism Tree, by counting the number of clear intersections of a semi-
infinite straight line traced from this point with the nodes of the tree, using a method
similar to the one developed by Kalay [1982] t.

A straight line that has a clear intersection with a prism intersects at least one time
the associated ST. We have implemented this property in our Ray Casting algorithm
(see Section 5) to prune as soon as possible the list of the triangles that may intersect a
given ray.

3.4. Some remarks

Contrarily to the polyhedral approximation algorithm, the Priam Tree is proposed
in the context of Geometric Modelling, and it is used only for localization purpose. In
our algorithms, the ultimate processing step is the same one as for a classical polyhedral
representation. This slightly different approach has some important consequences.

First, we use in fact a variant of the approximation algorithm. We no longer stop
dividing a node when the error gets small, but when the size (number of points) of the
associated ST is less than a given value (6 points per leaf in the examples presented in

t Mmntyis and Tamminen 119631, using their Box-EXCELL data structure, have actually implemented
a shaila method for testing the inclusion f a point inside a polyhedron. . *

!At; .- ,
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Figure 8. The dear intersection lemma. The ray intersects ST between its two intersections with the TBs..

the sequel): so the depth of the tree representing a n faces polyhedron is O.(Log (n)),
., ~ ~and the number of faces processed is proportional to the number of leaves found during

,9.4 the localization step.

Second, as the representation is information preserving, and as the Prism 7tse is used
0 for localization only, even poor approximations of an object give exact results. The only

difference is that the tree of a poorly approximated object may have bigger prisms at a
given level in the tree than a well approximated one, and that the tree can be unbalanced.

Note also that the Prism Tree is intrinsic to the surface it represents: its geometric

features are not constructed according to a particular frame, but to surface features. This

implies that the structure of a prism tree is invariant through rigid transforma;ions.

A last, but important remark: the approximation algorithm has been designed for . *'

surfaces of genus 0, which is an unfortunate restriction. We can extend our algorithms

and analyses to more general surfaces by initially dividing them in components of genus
0 (e.g., cut a torus in two components along its parabolic lines), and considering a simple

V .triangulation of these components as the initial AG. The drawback is the add tion of a
A% (possibly) interactive first step to define this triangulation. But as long as this triangu-

IM100011



12 Prism Trees

haim i simple enough (ie the number of initial nodes of the Prism Tree is bounded and .
small emch), it dos not change the overall complexity of the Prsm Tree algorithms.

Te prce can be worth paying for including very complicated, real objects in a high
level Graphics environment. This is quite similar to the approach advocated earlier, that
first segments the surface into smooth patches (Brady, Ponce, Yuille, and Asada [1984]),
yielding better approximations of the original surface.

4. Set Operations Between Solids

Boundary representation modellers (Braid [1979], Mantyla and Sulonen [1982]) repre-
sent surfaces by faces, edges, and vertices, and the neighborood relations between them.
Set operations between solids are then computed by first finding the boundary intersec-
tion (which is a set of polygons) of the two objects, and then classifying the faces, edges,
and vertices outside or inside according to the operation considered.

The first step, finding the intersection polygons, is the most expensive one. A naive
implementation leads to a complexity of 0 (v.n), where the two objects compared have
respectively m and n faces. To speed up these algorithms, Mantyla and Tamminen [1983]
use the localization/processing decomposition scheme, by first localizing the intersecting
faces of the two objects, and then computing the polygons themselves. They organise the
3D space for each polyhedron into a hierarchical data structure, called Box-EXCELL.
This structure is not intrinsic to the surface. It consists of a hierarchy of non overlapping
rectangular cells, each of them pointing to all the faces whose enclosing boxes intersect
it. A cell that intersects too many boxes is subdivided, so that the number of boxes by
terminal cells remains small. For each edge of one polyhedron, they find all the faces
of the other polyhedron that it intersects by visiting the associated Box-EXCELL struc-
ture. Mantyla and Tamminen's experiments show that the localization step complexity
is reduced to 0 (m + n) (it cannot be less in their case as each edge of both polyhedra is
visited).

We use the same decomposition approach, but the localization of the intersection is
2:4 different. Our algorithm is a direct generalization of the Ballard's algorithm (Ballard
N [1981]) for finding the intersection of two curves. We represent the two polyhedra by

Prism trees and mark all the nodes that correspond to intersecting faces by visiting in
parallel the two trees (this is similar to the algorithms for Octrees intersections (Meagher
[1980]), although the result obtained by our method will not be approximate, as for
Octrees, but exact). At each level, if two prisms don't intersect, then the associated
surfaces don't intersect either, so the nodes and all their descendants are marked non-
intersecting. Otherwise, if the two nodes are leaves and the associated STs intersect, we
mark them a intersecting, as well as their ancestors, otherwise we also mark them non-
intersecting. In the remaining case of two non-leaf intersecting prisms, the bigger prism
is subdivided (this heuristic, originally proposed by Ballard [1981] in the 2D case, has for
purpose to always compare prisms of equivalent sizes), and the recursion proceeds.

The processing step then begins: we classify the non intersecting inside or outside
nodes of one tree with respect to the other one by classifying one node, and propagating
its status to its connected component of non-intersecting nodes (as two neighboring non-
intersecting nodes are necessarily either both inside or both outside), and eliminate -

. -':,- .: - .; ,.:..:.: :....:,..:... ... . . . .. . . . . . . . . . . . . . ...... ,. ..... ... .......... ...-..... .-. ...-..-.
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the inside or the outside nodes according to the operation performed. The connected
component exploration is done by using a neighbor finding algorithm (Faugeras ad Ponce
[1983,85]), analogous to the one developed by Samet [1982] for Quadtrees, and that finds
any neighbor of a node at the same level of the tree in constant average time. We have
not yet included in the program the construction of the intersection polygont;, but we
intend to do it in a near future, by using a solid modeller for polyhedra devcloped by
Lanusse 11985]. As already noted, the addition of this module will not change the overall
complexity of the method, as the number of faces by leaf is always bounded.

Figure 9 shows the application of this algorithm to set operations between a slphere and
a double cone, whose Prism Trees representations contain approximatively 1000 leaves
each. The computing time for the localization step is only 25o on a VAX class mini-
computer. Of the million of possible intersections, less than one thousand are actually
tested. The processing step takes about Is.

We may make some remarks about the complexity of the localisation procedure. At
a given level of the tree, only the intersecting nodes are again subdivided. This would
lead, if only one of the sons of each intersecting node was also an intersecting one, to a
complexity of 0 (Ni.K), where N is the number of intersecting faces, and K the depth
of the tree. Such a best case is evidently not realised in practical experimen'.:s, but it '

indicates that the complexity depends on the shape of the intersection polygon, and on
the logarithm of the total number of faces (corresponding to the depth K of the tree),
so the method seems better than the Mantyla and Tamminen one, although a more
careful study is necessary. Notice anyway that an advantage of this method is that,
the representation being intrinsic, it does not have to be recomputed when the object is
rotated (the same advantage holds with respect to Octrees (Iftikhar [1981]). A procedural
version of the localization algorithm is given in the appendix.

5. Ray Casting

Hidden surface elimination algorithms (Sutherland, Sproull, and Schumacker [1974]),
and in particular Ray Casting methods (Roth [1982]), although they are among the more
general and allow a lot of "special effects", are usually computationally expensive: if N. is
the number of surface elements, N. ray-surface intersections must be computed for each
pixel. This makes the "naive" version of this approach unusable for moderately complex
polyhedral objects each often containing more than 1000 facets for images containing
at least a quarter million pixels. To increase the efficiency of Ray Casting algorithms,

localization methods have been used.
Clark 1976], and after him Rubin and Whitted [1980], enclose the objects composing

the scene in a hierarchy of simple boxes (parallelepipeds). At each level, if the box .
does not intersect the ray, the corresponding objects are rejected. Otherwise, the box is
subdivided, etc.. Weghorst, Hooper, and Greenberg 119851 have successfully applied more
sophisticated versions of similar methods to very complex scenes. However, these methods

• are object oriented: they use hierarchies of objects, bounded by simple volumes, but they
are not really designed for dealing with polyhedra that contain themselves thousands of
faces.
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rigur 9. The uppa part of the figure shows the leaves marked Intersection in the trees rrsenting the
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Figue 10. The fractal subdivision process: for each edge of the original triangle T, a subdivision point ofI height zs* is computed, and T is replaced by the four tuiangles Tim, Tit, Tit~, and Tit. The 'cheasecake
is obtained by translating the original triangle ailong the Z as.

Recently, Kajiya [1983] has proposed a face oriented method for rendering fractal
surfaces (Fournier, Russel and Carpenter f 19821) using Ray Casting. His surface model
in similar to ours, except that it is non deterministic. The surface is a polygonal height
field. It is recursively subdivided, each triangle being replaced by four subtriangles whose-7
vertices are generated by a stochastic process (the subdivision in 4 triangles eliminates the
need for an adjustment step, but on the other hand, the subdivision cannot be stopped
for some triangles as the polyhedral structure would not be preserved). Kajiya encloses

-IN each triangle in a so called "cheesecake" extent (Figure 10), which is a prism obtained by
translating the triangle along the vertical to enclose the associated surface. To intersect
the ray with a surface, KaJiya visits the associated tree: if the ray intersects a bocc, then it
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is again tested against the descendants. Otherwise, the ray is guaranteed not to intersect
q of ste descendants. The tree is visited until the fint intersecting leaf triangle is

TJt method is readily extendible to Pvimn 7ee. There are, however, some differ-
eer as the fractal surface is defined as a height field, the cheesecakes associated to the

ses of a given node never intersect each other. This implies that they can always be
sorted from the nearest to the farthest with respect to a given ray. In particular, if only
ome fractal surface is displayed, the corresponding tree can be visited in a strict depth

rst manner. If the closest node is always visited first, then it is guaranteed that the first
intersection found will be the actually closest ose.

Prism TWes do not have this nice property, and in particular non-regular sM of a
same node may intersect. We have to maintain an active list of all the nodes whose
associated surface may intersect a given ray. This disadvantage is a price to pay for
generality. Notice however that the same problem would arise for fractal surfaces defined
on non-planar objects, or simply when several of them are to be displayed simultaneously.
Moreover, the clea intersection lemma of Section 3 is going to help us keeping the active
list short.

Assume that the ray is parameterised by A, and let Alin (Pt) and A.,.. (Pt) be the
values of this parameter at the extremities of the intersection of the ray with the node Pt.
Following Kajiya, we say that a node Pt1 shadows a node P if A,,,. (PtI) < ,lv (Pti)
(Figure 11). Kajiya conjectures that this notion could be used to prune the active list,
but remarks that, unfortunately, a node can be shadowed at a given level and though
have visible descendants, as the intersection of the ray with the box does not imply the
intersection of the ray and the surface. We solve this problem by proving the following .. -

i ]lemma.

Shadowing Lemma: if the intersection of Ray and Pt I is clear, and if Pt 2 is shadowed
by Ptl, then Pt 2 and his descendants are not visible from the considered pixel, and Pt2
can be removed from the active list.

Proof: as the intersection is clear, Rqy intersects the surface associated to Pt1 at a
point that verifies A,,, (Pti) < A < A... (Ptl), and so hides the surface associated to
Pt2, whose each point verifies Ames (Pti)< Alvin (Pt) < A .

Using this property, we can find for each pixel the point of the scene seen by the pixel by
a breadth first visit of the trees of the objects composing the scene (so as to eliminate as
early as possible the shadowed nodes). At each step of the recursion a A,.,,-sorted list of
the nodes that intersect the ray at this level is maintained. The process terminates when
the list is either empty or only composed of leaves. The first element of the list is then IL
used to compute the display parameters, by finding among the (few) faces associated to
this leaf the closest one that intersects the ray.

Again, we discuss the complexity of this algorithm. First notice the interest of the
cler intersection notion. In the ideal case, there are only clear and null intersections, so
the algorithm visits only one branch per tree and per pixei, and due to the shadowing .. .... ...
between trees, one can expect to visit entirely a single branch of a single tree. This is an
important advantagse over Kajiya's algorithm, where the execution time is proportional

% %.-end"
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Pt I Pt 2  Pt 3
Figure 11. The intersection of a ray with the nodes of a Prism Tree. Pt, and Ray have a clear intersection,
so Pt2 and Pt 3 , that it shadows, have no visible descendants. Conversely, the shadowing of Pts by Pt." ~~alone would not imply that Pt3 has no visible descendant, as Pt2 and Ray don't have a clear intersection..:f--

to the number of objects in the scene (although it is unlikely that several fractal surfaces
are going to be displayed in the same image).

In the case where few clear intersections occur, or the different surfaces are close
enough so that only few shadowings occur, the complexity degenerates, and becomes
again proportional to the number of objects. Even in this case though, it is likely that a
ray will in general intersect only one of the sons of a node, so only a few branches will be
explored.

Figure 12 shows the application of this algorithm to the union of the double cone
and the sphere, and to a Renault automobile part. The resolutions of the images are
respectively 512 x 512, with a CPU time of two hours for 2000 leaves, and 256 x 256, with
a CPU time of 28 minutes for 1000 leaves. Once again, in our case, the processing step is
not complete, as we display the approximation and not the surface itself. Nevertheless, the
remark made at the end of the previous section still holds, and a complete implementation
will not change the overall complexity of the algorithm. A procedural version of the
algorithm can be found in the appendix.

6. Conclusion

We have presented a new method for localizing the search for geometric intersections
in the polyhedral case. It has proved efficient for the two classical problems studied. We
are continuing our work on the complete implementation of the processing step. Also, a

All more rigorous study of the algorithms complexity is needed.

,V.- .- .
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Figure 12. Examples of applications of Ray Casting to the union of the double cone and the sphere, and
to an automobile part

We believe that Prism Trees have important potential applications, in particular for
complex, real 3D objects, digitized as polyhedra with thousands of facest. In this optic,
we give two examples.

Today's most sophisticated Graphics systems deal with (relatively) simple objects. Us-
ing the Ray Casting algorithm in conjonction with a laser rangefinding system (Faugeras
and Pauchon 1983') will allow us to include "real life" objects, from industrial parts to
statues, in such an high level Graphics environment and to obtain from them the realistic
images that only Ray Casting programs authorize.

Similarly, the Set Operations algorithm could be used in CT tomography (Artzy, .
Frieder and Hermann 019781) to obtain slices of an organ in an arbitrary direction, or
more generally to cut it along an arbitrary surface.

7. Appendix

We now present in more detail the procedures used to find the intersection of two
surfaces, and to display the object represented by the P)risni Tree using a Ray Casting
imethod. We give thenm in a pseudo PASCAL form, the declarations of types and variables
being omitted.

7.1. The Surface-Surface Intersection Procedure

This procedure is straightforward. the two trees are visited in parallel in a depth
first search manner, until all the intersection leaves are marked (using the flag M ark).

t This i. the typical output of scanning procssf , that vcasure successive slic'e of the surface of a 3D -

object. s laser digitizers or CT scanning.

. .
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Then aD their ancestors re also marked. We suppose that we dispose of the following
W functions

Val (Pt): this real function returns the volume of the box associat to Pt.

Leaf (Pt): this boolean function returns true iff the node Pt is a leaf.

Marked (Pt): this boolean function returns true iff Pt is not nil and is marke. (i.e. the
EAftMark inset to 1).

Priemint (Pti,Pt2) is a 3-valued function that returns clear, possible, or null according
to the type of intersection of Pt1 and Pt 2 . This function is the key of the algorithms that
manipulate the Prism Trees. In the special case of the leaves whose associated prisms
intersect (and only in this case), Prismint tests directly the intersection of the surface 4..
patches themselves, and returns clear if they actually intersect.

Procedure Find - Surfaces - Interection (Pea, Pt)
be&h
if Primint (Pt,Pts) 0 nuU them

been
Loci - Leaf (Pti); Let 4- Leaf (Pts,
if e1 and Let

then be& Pt t .Mark .- 1; PIt . ark q-lmd I "
ebe The recursio PWcesd )"

if Let or (Vol (Pti) > Vol (Pt,))
then be&ln ,

f i - -Ito 3 do
FiRd - Suries. - Intersection (P t .Son [j] ,P t);

if Marked (Pt, t .Son ])
or Marked (Pt, I .Son (2)
or Marked (Pt .Son [31)

Sthen Pit Mark M -ar

for i 4- 1 to do.
Find - Surfaes - Ierjectio (Pt,, P, t .Son 4i);

if Marked (Pt, t .Son [1))
or Marked (Pt, T .So [2))
at Marked (Pt, T .Son [3))

then P9t t Mark 1
end

end nd-,,-

7.2. The Ray Casting Procedure

The elements of the A,m-sorted list of nodes, Active - List, are 5-fields records: the
first field, Node, is the corresponding node of the Prism Tree, the second one, Next, is
a pointer to the next element of the list, the third one, Old is used for the breadth firstvisit of the tree. Its value is 1 if the node has been inserted at the previous iteration.

The last two fields caracterize the intersection of the ray with the prism. Avod is the
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unimum value of the parameter A of the ray such that an intersection occurs, and PN.*,.
set omy if the node is a leaf and has a clear intersection with the ray, is the firstpoint of

Jnterseetim of ST and the ray. It is used for computing the display parameters.
We -pgme to dispose of the following procedure and function:

Insert (Q, N, Am,) inserts the element Np in the list Q by comparing the A,,,, value

associated to N to the one of the currently visited node.
.," .%.

RayWt (Ray, Pt, Ami,, Amax, Pmin) is a modified version of Prismint. It is also a 3-valued

function, the clear intersection notion being extended to the intersection of a straight line

and a regular prism. Its additional features are that it returns the extremal values A,.

and A,. of the intersection of Ray and Pt, and in the case where Pt is a leaf and the
intersection is clear, it also returns the closest intersection point Pmi,."

Function Rayeast (Ray, Pt, P..):boolean;
begin (* initialize parametes'
with Active - List I .Next T do

beginNode +- Pt; Old +- 1; A N. -co end;
Am:,o *- +co; A -- +oo; P.,, .- nil;
repeat ( main loop I

All - Leave s-- true; Empty -- true;
P *- Active - List; Q4- P T .Nezt;
while Q # ml do (* auxiliary loop: visit the list')

if Q T AN.d > Am.o0
then Q - nil ( the rest of the lit is shadowed*)

else if Leaf (Q .Node) (* non shadowed leaf? if yes, it shadows)
then begin Empty +.- flase; Q 4-- nil end (* everything behind')

else if Q T .Old = 0
then (* non-leaf new node that gets old, go on')

begin All - Leaves +- false; Q t Old.- 1;

P *- Q; Q -- Q I .Next end
else begin (* non leaf old node, divide')

for i -- 1 to 3 do
begin
Inter +- Rayint (Ray,Q T .Node T .Son [i], Am,,-A-.,Pmi);
if (Inter $ null) and (Amin A-< ,o) then

begin (* insert the son')

New (Np); Insert (Q, Np,Amj,);
with Np T do

begin Old4-- O; ANd ." Am.; PNI. 4" Poj,.;

Node - Q I .Node T .Son [i] end;
if (Inter = dear) and (Am.. < A ,,.s.0)

then Amax.o 4 Am, ;.
end end;

Q - I Next; P t .Next - Q
end;

until AlI - Leave er Empty;
if Empty then Rayeaet *-- false .

ele Legin P,,, " Active - L.t I Next? .PNEN&; Raycast .- true endend;,... .,
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