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ﬁ. Memory Behavior of An Elastomeric Glass by
:'\‘! Presgsure- and Temperature-Perturbation Methods
1,
A
zs:: Because of the heterogeneity of glass structure, the rate
o of structural change in glass with aging time fluctuates from
h.:-“: point to point leading to a wide distribution of relaxation times,
SR
:_ asymmetrical and nonlinear relaxation behavior after heating or
o
ey cooling. Moreover, a glass has been shown to exhibit the complex
1{‘: memory behavior if temperature history is given [1]. The structural
t': relaxation of amorphous polymers has been dealt in different angles
Ay
such as by phenomenological models [2-7], statistical models [8-10]
§£‘j and by molecular dynamics by diffusion and stochastic models [11-13].
j':i Complex relaxation behaviors would be revealed if any perturbation
1
S of temperature and/or pressure were given. By annealiﬁg for a
:1:;_: specified time at high pressures and releasing the pressure,
w4 N
ﬂ'\‘::: the polystyrene glass was shown to expand in volume with time, an
. analogous memory behavior [14]). Attention was focused on the
f -: relaxation behavior of the PS glass that was formed from the
-::EE pressure~densified melt by application of additional pressure
"' (pressure-vitrified glass) and the glass that was formed by cooling
"'\;i the pressure-densified melt (temperature-densified glass) [15, 16].
.S:C: In fact, those glasses were relaxing with memory at atmospheric
oy pressure, reflecting the nature of perturbations previously applied.
__.‘; We report, for the first time, the memory behavior of structural
N
:_:_5: relaxation of glass of Solithane 113, a polyurethane elastomer,
:;\3 by pressure perturbations and also by temperature perturbations
’; from an original state of pressure and temperature (P,T) of 2.5 KBar
"'\.;:‘E and 159C. We have used Young's modulus, obtained from the compressive
R
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stress-strain curves of the glassy samples, as a parameter to study its
g_ aging behavior. Young's modulus has been reported earlier as a parameter
&
to monitor aging behavior of PET, PC, and some linear epoxies [17].
A}
o The mechanical tests, used to monitor the aging behavior, were carried
$‘
‘; out in an equipment capable of keeping the sample under different com-
‘ bined conditions of pressure and temperature, ranging respectively from
ﬁ 1.0 Bar to 7.0 KBar and from ~100° to 100°C. Dow Corning 200 (5 cs
" '
% viscosity) Silicone o0il was used as the pressure medium. The silicone
N
oil was found to be inert with Solithane under different conditions of
}. pressure and temperature. By systematic steps of changes of pressure
: and temperature, Solithane could be brought to different glassy states
‘ ‘of pressure and temperature. In all experiments, temperature increases
f . were carried out at a rate of 0.5°C/min. and decreases at 1.0°C/min.
2
d All pressure perturbations were applied at a rate of 0.25 KBar/min. in
L]

increasing and 0.5 KBar/min in decreasing.
As shown in the scheme of Fig. 1, a rubbery (liquid) sample was

first brought to the state of 2.5 KBar and 15°C, by first cooling from

T A A

room temperature and then increasing the pressure. The solid line in
S Fig. 1 represents variation of the glass transition temperature (Tg)

with pressure for Solithane [18]. The liquid sample was transformed

to a glass (or specific Z; glass) [18, 19] at a fixed point 2.0 KBar

and 15°C. As soon as the glags reached 2.5 KBar and 15°C, aging

started with the characteristics of that state (P,T). This unperturbed

-
b Y

glass (Control sample) was tested in compression to obtain the stress-

X

strain curve after one hour aging time. The compressive stress was

applied momentarily at a rate of € = 0.02/min. on the relaxing glassy

i ar R e

sample, so that the loading time was insignificant compared with aging
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time. The test was repeated for three more samples and the average
Young's modulus (E) was determined to be 0.38 x 1010 dynes/cm?. 1In

the next series of tests, liquid samples, after formed into glass at

the same condition as the Control sample, were brought to 3.0 KBar

f} % at 159C, annealed for one hour, given a pressure perturbation by

a
ﬁ:ﬁ decreasing to 2.5 KBar, and then aged for one hour. The glassy
v samples were tested in compression. The average E for four samples
%&ﬁ was found to be 0.52 x 1010 dynes/cm? which is 37% above that of
:2¥§ Control sample. A series of samples were brought, respectively, to
‘jff 3.5, 4.0, 4.5, 5.0, and 5.5 KBar at 159C, annealed for one hour at
035; . the respective pressure and given pressure perturbation, AP, of 1.0,
iiﬁ: 1.5, 2.0, 2.5 and 3.0 KBar to 2.5 KBar. The perturbed glasses were
i"? aged for one hour and then tested in compression. The-Fig. 2 shows
? 3 the variation of average Young's modulus, obtained for one hour
;% aging at 2.5 KBar after different magnitudes of pressure perturbations.
§!  Each point in Fig. 2 represents an average of E from at least four
ﬁﬁ# samples. For any pressure perturbation given above 2.5 KBar, the
g&% modulus of the sample is higher than that of unperturbed sample in
g;s proportion to the amount of pressure perturbation.
iG:& The Fig. 3 shows the scheme of pressure- and temperature-
:%ik perturbation experiments. First, a glass was formed at 2.0 KBar
?3&§ and 15°C and tested for mechanical response after different aging
7z time at 2.5 KBar and 159C (Control sample). All experiments began

Y
Eﬁ;} with a liquid sample at room temperature and atmospheric pressure,
;%éﬁ so that uniformity of the chronology of glass-history for all samples
%2§~ was preserved. Once again, in this series of tests, the compressive
£
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stress was applied momentarily ( €= 0.02/min) on the glassy--samples,

so that the loading time was negligible compared with aging time.

As shown in the scheme of Fig. 3, pressure perturbation
experiments were carried out as follows. Compressive test samples
were subjected to different hydrostatic pressure levels above
2.5 KBar, viz., 3.0, 4.0 and 4.5 KBar at 15°C and held at those
pressure levels for ten hours. Then the pressure was released
to 2.5 KBar, samples still teing in the glassy state. The samples
were aged for one hour and then tested in compression. The above
procedure was repeated for different aging time. The temperature
perturbation experiments were carried out in a similar way. The
liquid samples were all initially pressurized to 2.5 KBar at 15°C
and, without waiting.at that state, they were cooled down immediatély
to lower temperatures, held at those temperatures for ten hours,
heated to 159C, aged for a specific time, and then tested for
the elastic response. It is emphasized here that, in all cases
of experiments, only one kind of a glass was formed at the state
of 2.0 KBar and 15°9C from liquid state. The relaxation behavior
of that unperturbed glass at 2.5 KBar and 159C is compared with
that of the glass which is perturbed with different magnitudes
of pressure or temperature beyond the point 2.5 KBar and 15°C.

The Fig. 4 shows the memory effect due to pressure perturbations

whcih was described above. The solid line represents the aging

characteristic of unperturbed glass at 2.5 KBar and 15°9C. The
three dashed lines, respectively, represent the relaxation behavior
at 2.5 KBar and 15°C of the glasses which were given pressure

perturbations AP of 0.5, 1.5 and 2 KBars, each with annealing

time of ten hours. Several observations are noted:
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1. The higher the AP, the greater the initial
AE = Ep - Eypp 1is.

2. The higher the AP, the steeper the slope of the initial

modulus drop is.

3. All curves trace back to the unperturbed.

4. The higher the AP, the shorter it takes to trace back

to the unperturbed.

5. All cu;ves remain above that of unperturbed.

As shown in Fig. 5, we observe very much the same memory
behavior for temperature perturbation as for the pressure perturbation,
which is described below:

1. The larger the AT, the greater the initial

AE = Ep - Eypp is.

2. The larger thé AT, the steeper the slope of the initial

modulus drop is.

3. All curves trace back to the querturbed.

4. The larger the AT, the shorter it takes to trace back

to the unperturbed.

5. All curves remain above that of unperturbed.

The difference between the relaxation of both temperature- and
pressure-perturbed glasses is that the former takes less time relatively
to retrace the unperturbed relaxation path than the latter.

At a particular instant, the experimentally observed physical
quantity, such as the Young's modulus (E) in our case, reflects the

statistical average of Young's moduli due to all relaxing molecular
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units at that instant. The ten-hour aging at the state of pressure
above 2.5 KBar or temperature below 15°C is enough for the molecules
to undergo certain extent of relaxation processes characteristic of
that state (P,T). When the state is perturbed to 2.5 KBar and 15°C,
the molecules are forced to recover from their relaxation processes
which were already set at the previous state (P + AP, 159C) or

(2.5 KBar, T + AT). Since there is a distribution of relaxation times
of all relaxing units, we observe that the net experimental Young's
modulus (E) has a higher value followed by a drop initially and then
eventually "remember" its characteristic state value.

The relaxation due to a particular mode of molecular motion may
be associated with a specific amount of free volume in excess of the
equilibrium free volume [20]. There may be various modes of motions
of different but nearly the same magnitudes of relaxation times which
are possible for the same size of excess free volumé. But considering

the fact that a glassy polymer may have a very wide range of excess

free volume fractions of various sizes, it would be possible to
attribute each relaxation time (T;) arising from a particular size of
excess free volume fraction. The shorter relaxation time is character-
ized by smaller size excess free volume and the longer relaxation time
by larger size [20]. Hence, when a glass is perturbed to a state of

2.5 KBar and 159C, either by pressure or temperature, there may be

Ly different levels of perturbation on the excess free volume of different
sizes and so the overall relaxation of a glass is history dependent.

: This is clearly evident in Figs. 4 and 5. The glass with different
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L« history of pressure or temperature perturbation exhibits different
:.:, relaxation behavior. In both cases, the glass relaxes witﬂ-entirely
different relaxation time.

The excess free volume diminishes with -aging time during the
course of relaxation. Such kind of time-dependent excess free volume

decay results in a distinct memory relaxation behavior, if the glass

has a different annealing history. As shown in Fig. 6, when the
:' - glass was annealed for different duration of 10 hours and 100 hours

at the same state of 4.5 KBar and 15°C and then perturbed to second

state of 2.5 KBar and 15°C, the relaxation follows different scheme.
The annealing for 100 hours at 4.5 K3ar causes more collapse of excess
- free volume than that for 10 hours at that state. And so, when we
L perturb these glasses to the test state, the former shows higher

modulus and steeper modulus drop, initially. thHan the latter.
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Scheme of pressure-perturbation experiments of different magnitudes.
Deviation of Young's modulus obtained at 2.5 KBar and 15°C after
different magnitudes of pressure perturbations were given. The samples
were annealed, for one hour at 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 KBar.
Scheme of pressure- and temperature-perturbation experiments.

Memory behavior of relaxation of samples tested at 2.5 KBar and 15°C
after different kinds of pressure-perturbations.

Memory behavior of relaxation of samples tested at 2.5 KBar and

159C after different kinds of temperature-perturbations.

Memory behavior of relaxation of samples tested at 2.5 KBar and

15°C after pressure-perturbation from 4.5 KBar at which samples

were annealed for 10 and 100 hours.
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