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I. INTRODUCTION

Thermal insulation characterization of polymers is an important require-

ment for present and future aerospace systems. Examples include a Neoprene/

Kevlar composite used in rocket motors, as well as insulating blankets of

fused silica or other materials. Furthermore, the construction of new homes

requires the use of lightweight fibrous insulation whose thermal properties

need to be known.

The significance of thermal radiation in fibrous insulations has been

demonstrated1 ' 2 by conducting guarded hot-plate experiments under vacuum.

Tong and Tien 3 '4 categorized the analyses of such experiments as those which

experimentally determine effective conductivities caused by radiation and

those which consider the detailed equations governing the intensity of

radiation in an absorbing and scattering medium.

The thermal diffusivity a is the parameter of interest in transient-heat

conduction problems, as opposed to steady-state problems in which only the

thermal conductivity K plays a role. For a homogeneous body, a may be calcu-

lated from K, the density p, and the specific heat c. If a, p, and c are

measured in a given temperature range, K may be calculated over that range.

This is especially advantageous when steady-state calorimetry for K is

difficult, e.g. at high temperatures.

One method of measuring the thermal diffusivity is the flash tech-

nique5- 12 . A flash of radiant energy is deposited over one face of a disk-

shaped sample that is surrounded by a heating element and enclosed in a

vacuum. For a homogeneous sample, a may be calculated from the sample thick-

"* ness L and the time t1 /2 (the time for the rear face to achieve one half its

ultimate temperature). To within a numerical factor, a is essentially
-. ,L2/tj 2

I 122
It has been observed12 that problems involving large temperature

differences and short heat-pulse propagation times may lead to situations in

which the basic equations, boundary conditions, and assumptions of the flash

5I.?



technique data-reduction scheme are inapplicable. For these problems there

may be no way to convert an observed oscilloscope trace into a meaningful

value for some physical parameter. Conditions occurring during space vehicle

reentry, laser irradiation problems, measurements at cryogenic temperatures,

and materials with anisotropic conductivity may lead to situations in which

the flash diffusivity method may not be viable.

On the other hand, some nonhomogeneous materials have been successfully

characterized by the flash technique. The flash technique has been applied to

some heterogeneously dispersed composites and layered samples, including some

carbon fibers, fiber-reinforced materials, individual layers of layered

composites, and dispersed composites.12

The continuing challenge of composite-sample characterization by means

of the flash technique is illustrated by recent case histories and journal

publications. Flash-technique analysis 13 of a Neoprene-covered Kevlar cloth

composite revealed that the diffusivity value could not be calculated for the

Kevlar layer solely on the basis of the measured rise times and the properties

of the virgin Neoprene. The rise times were too short, indicating that the

conductivity values for the virgin Neoprene were too small for the Neoprene in

the composite. In a second example, fibrous insulation, it has been shown

that steady-state and transient methods of determining thermal conductivity

often give different results, especially for such porous insulating materials

as rockwool and kapok.2 This discrepancy arises from the contribution of

internal radiation to the conduction of heat and should be even larger for

an intrinsically transparent material. Although recent publications 3 ,4 have

addressed this issue from other viewpoints, internal radiation has not, to the

present author's knowledge, previously been allowed for in the development of

the flash technique.

Therefore, we see that some currently interesting sample types are in

some way too complicated for available flash-technique analysis. The

instrumentation is producing experimental outputs that are apparently in need

of more refined interpretation. In any particular case, any one of a number

6
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of different adjustments may be necessary. These adjustments are necessitated

by four categories of physical effects:

1. Radiant-energy penetration during flash heating of the diffusivity
sample (time = 0).

2. The contribution of internal radiation and absorption to heat
transfer (time > 0).

3. Heterogeneous sample media.

4. Anisotropic sample media.

An adjustment accounting for the first effect and applying to both the

layered-composite and porous-insulation types is discussed in this paper.

This mathematical modification of the current flash-technique data-reduction

method explicitly allows for an exponentially decaying spatial penetration of

incident radiant energy into a layered sample. A method of experimentally

evaluating the characteristic length associated with the exponential

penetration function will be proposed.

,I
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II. THEORETICAL DEFINITION OF THE PROBLEM

A. HOMOGENEOUS SLAB

For a homogeneous slab between x =0 and x L, the governing equations

(as in Ref. 14) are

+

J = -KVT (1)

3T
V * J + PC = 0 (2)

where T = T(x,t) is the temperature as a function of position x and time t,
K, p, and c are the thermal conductivity, density, and specific heat, respec-

tively, and J is the flux (energy per area and time). Homogeneity implies

constant K, p, and c, so combining the equations gives the partial differ-

ential equation (PDE)

aV2 T =T (3)

at

where

K (4)
PC

The boundary conditions (BC) for the homogeneous slab are VT = 0 at

x = 0 and L (no heat loss). The initial conditions (IC) are

T(x,O) = -_- 6(x) (5)
PC

where Q is the energy per area deposited on the slab surface (x - 0 at

t = 0), and 6(x) is the Dirac delta function. Separation of variables

[T(x,t) = W(x)T(t)] leads to the ordinary differential equations (ODE)

W" + (A/a)W - 0 and T' + AT - 0, where A is the separation constant and primes

denote differentiation. In general for this Sturm-Liouville problem,

9
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Wn-A n sin Snx + Bn cos Bnx and T= e - t - e n •The above BC imply that

all An  0, and the eigenvalue equation sin OnL 0 leads to
- n in"x+ n.o Bn n n TeaoeBCipyta

r= L' n = 0,1,2... (6)

(including negative n only changes the Bn definition). The Bn are specified

by the IC with the result

2 2
T(xt) = [I + 2n7 cos--r-exp (n 7 at)] (7)

pcL n-1

The ultimate x - L temperature is Q/pcL, so the dimensionless temperature

22
:,j. versus time profile at x = L is

V = 1 + 2 7 (_I)n exp - n t8)
n=1 L2

Approximating the V result by the first two terms (valid as t + i), one

observes that V- 1/2 when

L Xn4L
a- 2 = 0.1404 (9)

Using the full series expression,
12

2
a - 0.1388 tL/2 (10)

Thus, the thermal diffusivity of a homogeneous slab can be measured by

measuring the thickness L and the rise time tl/ 2 . This can be done to within

0.5% precision.12  On the other hand, the IC and BC assumptions, such as delta

function temperature-pulse across the entire sample and complete thermal

* isolation, limit the accuracy of the measurement. Models have been developed

that generate corrections up to 21% in magnitude in the measured values.
12

10
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B. COMPOSITE SLAB

Surprisingly enough, although a unique solution can also be shown to

exist for a composite slab consisting of individual layers, that solution

cannot be constructed by an extension of the Sturm-Liouville approach
(p. 414 of Ref. 15). Instead, the Laplace transform technique (Chapter XII

in Ref. 14) is used. The standard analysis for the simplest composite (two

layers and one-dimensional heat flow) will first be summarized, using mostly

the notation of Ref. 10. Then, in the following sections, recommendations for

modifying the mathematics and the measurement algorithm will be stated,

relying on the standard analysis as a starting point.

The two-layer problem is defined by the following equations:

Partial differential equations (PDE):

2 TT 1
KIVT plcl -at 1 < x < 0 (11)

2 2 (1 2K2VT2  P2 c 2-~- 0< x < t (2

Initial conditions (IC):

TI(xO) -0 - XI < x < 0 (13)

T 2(xO) - 0 0 < x < £2 (14)

Boundary conditions (BC):

-KIVT 1 (-X 1 ,t) - Q6(t) (flux pulse) (15)

VT2 (Z 2 ,t) 0 (no back-side heat loss) (16)

T (0,t) - T2 (Ot) (no interfacial resistance) (17)

1 1
K VT I(O,t) - K2 VT2 (Ot) (zero divergence at interface) (18)

11



Notice particularly that the temperature pulse in the IC of the Sturm-

Liouville problem has been replaced by a flux pulse in the BC of this Laplace

problem. Com~bining the above equations, we have the following results:

PDE & IC:

d2-

dx

d 2
K 2d2 22{sT 2  0} (20)

ODE:

d T s - =

2 T,-T 0 (21)
dx a,

2-

dT2  S - = 2 0 (22)

dx a2 2

BC:

-K dT s>0(3

dK1 )2- 0 Q s >0 (23)

Idx2

T 1 (0,s) T T2 (0,S) s >0 (25)

-~ x - 0, s > 0 (26)

Letting wi '/a,.t, the ODEs in Eqs. (21) and (22) have the solutions

Ti -Ai cosh w ix + B i sinh w x. Using the BCs in Eqs. (23) through (26), one

obtains

12



A 0

B1  0

a (27)

A2  0

B2  p

where the matrix a has the elements aij (i,j = 1,2,3,4), and a13  -sinh

a14 - -cosh w2£2  a2 1  1 , a23 = -1, a3 2 = K w, a34 = -K2 w2 , a41 = sinh I X ,

a4 2 = -cosh w1£1 , all other aij being zero. Furthermore, p Q/K W1 .

Solving by determinants,

det (a) w2 2 cosh t1 1 sinh 2£2

+K 1 sinh w Z1 cosh w2 £2 (28)

A1 = pKl 1W cosh w2t2 /det (a) (29)

B1  -pK2w2 sinh W2 '2/det (t) (30)

A2  Plw cosh w2t2 /det (a) (31)

B2 = -pK w1 sinh w2t2 /det (a) (32)

Introducing

= K2w2  K2p2c2
a _ and lu s

* and noting that w Ki - / /Kipic, Eqs. (28) through (32) become
ii

det (a) !KPcl [sinh Uis cosh /U2 s + a cosh Y sinh iU2s] (33)

13



. - a WL . . ,-. ., .- _ _- j ,- , , . - - - -. L. -.... .- ,. , -. -.- -

A, = Q cosh m2Z2/det (a) (34)

. B1 - Q (- a sinh w2 2 )Idet (a) (35)

A2 - Q cosh /det (a) (36)

B2 = Q (- sinh w2 /2)/det (a) (37)

Hence

T- det (a) (cosh w2t2 cosh wlx- a sinh w 2 2 sinh wlX) (38)

T 2 iet(a) (cosh w212 cosh w2 x- sinh w2 X2 sinh w2x) (39a)

T det Q cosh [Us - x/ 2 )] (39b)

Combining Eqs. (33) and (39b) and introducing TO  - Q- , we have

2 1  cosh [iU ( I - x/t2)] (40)

0 s sinh VU-s cash vU -s + a cash U-s sinh VU S
1 2 1 2

On the entire complex plane the series expansions of the factors in the

denominator vary as s ['s (0 + even powers)] (1 + even powers). Therefore

the denominator behaves as s near s - 0 (simple pole at s - 0). The nature of

the remaining roots of the denominator has been investigated (pp. 324-326 of

Ref. 14, pp. 409-410 of Ref. 15 and Appendix A of Ref 16). There are no

- complex roots. The function T2 /T0 is meromorphic, with poles at s - 0 and

s S no n = 1,2,3,..

The Mittag-Leffler Theorem states that any meromorphic function can be

expressed as a sum of an entire function and a series of rational functions.

In our case, letting f(s) 2 /T0

14
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rn 1 f f(s')ds (1a

n-0 n c

where rn is the residue of the nth/pole. The contour integral in Eq. (41a)

can be shown to be zero as in standard texts on complex analysis. Thus

f (S) - o+~ r n (41 b)

f(s) -- lim sf(s) + n .( ) - ) (41c)~S 4O n=1Y'( n (s Sn)

where

cash [v'U~s (I -/

X(s) 2 (42)

Y(s) =sinh / scosh .'U~s + a cosh V'is sinh AU-s (43)

Thus, letting X - U U we obtain
1 2'

T2 1 + X ~( (sn-) (44)
T0 s V F-(X+ a) n-iY'( n (s sn)

2

Using the inverse Laplace operator,g'-1 , one obtains

T 2 1 +- X (s) esnt(5

T 0 AT (X+ a) n- I Y (Sn)
2

Consider the following definitions:

15



On V U 2 sn n - 1,2,3 .... (46a)

Xa '-I (46b)
Xa+ 1

I H (46c)
a X

12

U , i - 1,2 (46d)

After considerable algebra, it results that

r0 28/U nQ e Cos [nl- x/.t2 ) ]

T2 = Q ~ C2  + e n 2 [( /)J(47a)
T 2 +pC + 222n cosXn c°Sa n - QsinXn sin8n

T2 (t 2,t)V(t) - (47b)

where T2,max Q/[1lPlCI + X2P2c2 ]. The equation that gives the roots of the

denominator in Eq. (40), when recast in terms of circular functions, deter-

mines the real, positive eigenvalues B = On = V-U2sn according to

sin XB cos$ + a cos XB sin$ - 0 (47c)

Furthermore, when the slabs have identical parameters,

-n i t

4£ 49

T2 =- X-- 1 + 2 e Cos [2w - x/12  (47d)

which corresponds to the V result given in the homogeneous sample analysis.

This shows that the flux-pulse, dual-slab, Laplace analysis can reduce to

the temperature-pulse, homogeneous-slab, Sturm-Liouville analysis for an

16
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appropriate choice of parameters. Finally, if V(t) or t1/2 is measured and
compared to Eqs. (47a) or (47b), one unknown material parameter can be,,,:.:.:obtained by standard computer techniques.

N1.

I

p"

i 17

9"" ""'" "': % '" " ' " " " ' '' " "" ' " " 'L"""" . .'' " . .""' ' ' ' " ";



III. ANALYSIS OF THE RADIANT-ENERGY PENETRATION EFFECT

Suppose that the incident electromagnetic energy is converted to heat

throughout the depth of the first layer of a two-layer composite according to

Qke-k(x + L 1
Q(x) e - ' - I < x < 0 (48)

( - e 1)

The normalization was chosen to ensure that Q energy units per area are

incident. This is the same Q as in the standard solution above, in which all

the electromagnetic energy is converted to heat at the front interface. We

will first analyze what effect this penetration will have on the observable

quantity t1/2 .

Equations (11) through (18) are the same as before, with the following

exceptions:

-k(x + X1)
Qk e

Tl(x'O) < k - LI ( x < 0 (13')

Pl 1 - e

and

-K IVT 1(-lil t )  0 (15')

Now Eqs. (19) through (26) are the same as before, with the following

exceptions:

2- T-k(x + I)
d- T Qke

1Kc 1 (i - ek£) 0 (9)

and

19
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1 /

I'!-'.,The solution to the ODE, Eq. (19'), is somewhat different than before:

T (x,S) - A l cosh w 
x + B l sinh w

x + Qke (19x+ 1)

1 e- k 1 2 2

-o KI.- 
2

'."Al 0

'L: - a A 2p (27')

F--

-"" B2  P

p.

-'V.

All the entries of a are the same, but now

pso = -Qk e (49a)

-( -2 2(49a)k 2)

No te ari euainEq-(7 bcoe

P+Qk e (49b)

I 0) 1

p - (49c)

B 2  I p

-kL1

. : UK 1 (1 - ekL 2  -k2 )

' . -ktl

We will assume only a limited penetration consistent with e < 0.05, or ktI > 3.

Q,20
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-kL 1

To a reasonable approximation, therefore, we set e , p", and p' equal

to zero, and

p i Q (50)Ki I W1 k 2 a

In the limit that k + - (delta function, or surface, energy deposition),

p + Q/K1W1 as in the standard solution above. Therefore, we can follow the

changing solution as surface deposition is continuously changed to deposition

in depth. We can do this rigorously if nonzero p" and p' are considered.

Here we consider only the case of small penetration, k~l > 3.

Since the problem has only changed to the extent of a modification of the

factor Q in the quantity p, it is seen immediately that

T 2 cosh [VU (2 - x/1 2 )]
(40 -)

T 1 s/k2 a [sinh VU~s cosh /Uis + acash/Uis sinh /U s]
01 1 2 1 2

Hence the change in the problem which is due to finite radiant-energy penetra-

tion is seen in a change in the pole structure, as shown in Fig. 1.

Thus the previous solution, Eq. (41b), is modified to become

r 0  r r k

f(s)- 0+ _ rk (41b-)s n=1 s - s n  s - s k

Since k 1 i> 3, k is positive, and sk > 0. Now, considering Eqs. (42), (43),

and (40'),

r (51a)
Si'u 2 (X + a)

21
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Fig. 1. The Pole Structure for the Two-Layer Composite with
a Finite Penetration Depth of Electromagnetic Energy.
The difference in this solution, compared to the case
of electromagnetic energy conversion to heat at the
surface only, is the appearance of a new pole at

k k(ci C is the contour for the integration that
inverts T 2(x Is)/T 0

-~ 22



4.

rsk  n (s n )
rn (s - S (s) (51b)

X (s k )
rk k (sk ) 5c)

' Wek ote that rk is proportional to e 0 O, since we have taken
1.Ie = 0 as an approximation. Thus the_ st term in Eq. (41b') must be

ignored. Only if p" * 0, p' * 0, and e * 0 in Eq. (27') would it be con-

sistent to keep such terms. In our approximation, then, Eq. (41b') differs

from Eq. (41b) only through the -Sk/(S n - Sk) multiplicative factor in

Eq. (51b).

Using sk = k2 1 and sn -- B2 /U2 Eq. (47a) becomeskn2

2
T2  1 eSnt/U 2 cos [n (I -x/ 2 )2 i 2 1 en2

T + 2 2 cosXBn cos n - sinXBn siB (52)
T2,max n=l I + Bn/U k 2a

Equation (52) is the master equation for the p " = p' = 0 approximation to the

finite-energy penetration problem. Two tasks now remain: First it will be

demonstrated that this energy penetration can significantly affect experi-

mental results. Then it will be indicated how the computer data-reduction

algorithm might be modified to include codetermination of k along with the

usual parameter evaluation.

The significance of Eq. (52) can be judged by evaluating it for the case

of identical-layer parameters and in the first-term (n = 1) approximation

analogous to Eq. (9):

W 2 alt//41 2

1 2 e 1/2 1 (53a)2 1 + n 2/4k 2 1

4 2, 2

• 2 [Ln4 - n( + 4k ] tl/ 2  (53b)
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Letting 20) be the rise time for the spatial delta-function energy deposition

[Eq. (9)], we have

" ' ' 4 1 2
= t2 (53c)

12 1/2 7- 2 a 4( 4k 2 2iraI  4k2£

1 1

Letting SF be the fractional deviation (shortfall) of the rise time in the

finite-deposition case, we obtain

t -(0) In(l + w
2 /4k2 X2)

SF = (0) /= -n4 (53c)
* ,i ti/,2

for the approximation ki > 3. Figure 2 shows the result for the shortfall

of the rise time versus k II or the characteristic penetration depth 1/k.

The approximations used in the knstruction of Fig. 2 could be removed

by the rigorous (p * 0, p' * 0, e * 0) solution of Eq. (27), the

subsequent inclusion of the rk residue in Eq. (41b'), and the use of the

entire series in Eq. (52). However, even with those refinements the

-SF (ki1 = 3) is still expected to be in the 10 to 20% range, even though the

energy reaching the midplane of the sample is only e -3 = 5% of that converted

to heat at the front interface.

We see that the finite penetration of radiation may cause a significant

rise-time shortfall. How can this effect be allowed for in data reduction?

In one standard form (p. 493 of Ref. 10) of the flash-technique data

reduction, the eigenvalue equation [Eq. (47c)] is solved with the measured

auxiliary parameters and a first guess at a1, which is chosen as the unknown.

The first guess is a 0.1388 1 /t 2 , as in Eq. 10. (Presumably a, - 0.1404

1 /t1/2 [Eq. (9)] would also lead to a convergent series.) The deviation from

V(t - t1 /2 ) is calculated, and an iteration algorithm is devised which
i + I_ I i i-i1terminates when a 2 (a + a ) converges to a reasonable limit.
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Fig. 2. The Magnitude of the Percent Shortfall (-SF) of the
Measured Rise Time in the Thermal Diffusivity Measure-
ment of a Homogeneous Layer of Width 21i, Graphed as a
Function of k£I and of the Characteristic Penetration

1 I -ki.
Depth of I/k. In our approximation (p" = p e - 0),
it1 >3, and only the n I rise times are compared.
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Bulmer and Taylor use only the t1/2 experimental output, because they feel

that curve fitting to more points requires using extremes of the experimental

curve which are inherently less accurate.

We would argue that the entire experimental V(t) curve contains some

relevant information, and that at the very least one additional parameter, k,

should be derivable from this information. We propose that a figure of merit,

2 i1 i+ I +RMS (k a 1 ), be formed for the first determination, a 1 in the

following manner:

-2:RMS 2 (k + -,, a i + I) "N . ex(t n  - V(t n ) 1 2 (54)

n=i
where N points tn on the time scale are chosen. Vexp(t) is the experimental

trace, and Vk(t) is given in Eq. (52), in this case with k + -. Now a

different initial guess can be made for a I using a finite value of k:

41 2  2
a-". 21 [Zn4 - In(1 + --- )] (55)4k. 22 2i. wt 1 / 2  4k2£

1/2 1

il + 1 2an +eAfter convergence to a new a , the quantity RMS2(k, a can be
calculated. When RMS2(k, a i + 1) reaches a minimum as a function of k, that

is the best k for the measurement.
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IV. SUMMARY AND CONCLUSIONS

Current and future aerospace and construction industry materials require

efficient thermal analysis techniques, including the flash technique for

thermal diffusivity. This is not possible unless the data can be adequately

reduced for polymer composites and porous blankets. This paper has been

concerned with radiant-energy penetration into a layered sample subjected to

flash-technique conditions. A mathematical modification of the standard

flash-technique solution for layered structures was presented which allows for

an exponentially decaying penetration of radiant energy into the first of two

layers. The following conclusions were drawn:

(1) A new (simple) pole in the Laplace-transformed solution appears
on the complex s or $ plane. Thus the inverse Laplace transform,
which gives the response function (back-face temperature versus
time), contains an 2dditionallterm. Furthermore, there is a small
modification (0 + an/U 2 kaI) to the previous terms.

(2) The appearance of a new pole signifies in general the emergenace of
a new kind of physical behavior, because the residue of the new
pole may in general be significantly larger than those of many of
the original poles. However, to facilitate the evaluation of the
importance of thil effect, a small-penetration approximation was
made in which e I was set equal to zero.

This is approximately true for k£l 3 (e -k11  0.05) . In this
approximati2n, t~e new term is suppressed and only the
(1 + B /U gk a ) modification retained. However, it must be kept
in ming t at lor more extensive radiant energy penetration, this
approximation would not apply, in which case the new term in the
solution could specify a radical departure of the response
function from its previous behavior. Furthermore, extensive
penetration might also require the exponential function Q(x) to
extend over more than one layer.

(3) A numerical example was evaluated for the e-1 - 0 approximation
in the case of identical layer parameters and the first-term
(n - 1) approximation to the back-face rise time. It was found
that the rise time shortfall (1/k - 33% of I) 18% of the rise
time that would obtain if all the radiant energy were deposited on
the surface. Here, 1/k is the characteristic penetration depth of
the exponential radiant-energy deposition function. Thus, even
when the radiant energy deposited at the sample midplane is only
5% of that deposited on the surface, an 18% correction is
necessary.

27
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(4) The standard fathy e c hyiq u Ia ta - d u cj ° n algorithm considers
iterations, a 1Wf [aI  + a'I  ], which are required to
converge to a reasonable limit. Only the tl/ 2 experimental data
are used. If the entire V(t) response function were used, how-
ever, a figure of merit might be defined that allows for the
experimental determination of k.

(5) Modifications such as the ones reported here are expected to open
up the flash technique to the analysis of advanced polymer
composite and insulating blanket material.
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LIST OF SYMBOLS

Ai, Bi constant coefficients in the solution of the ordinary
differential equation for T2.

a matrix of the coefficients Ai, Bi arising from the boundary
conditions [see Eq. (27)]

c specific heat

f(s) = T 2 (x,s)/T0

H =X/0

i layer index for the composite slab (layer I is hit by the
incident flash)

J thermal flux

K thermal conductivity

1/k characteristic penetration depth of the radiant energy into
the first layer of a composite slab (k + for surface
deposition only)

' , . -Laplace (inverse Laplace) operator

' L thickness of the (homogeneous) layer

X £i thickness of the ith layer

p, p', p" nonhomogeneous entries in Eqs. (17) or (17')

Q heat per unit area deposited on sample

rO  residue of f(s) at s - 0

rn  residue of f(s) at s - sn (n - 1,2,3, ooo)

rk residue of f(s) at s = s k

2S i + 1
RMS2(k, a ) figureo Terit for deviation of Vk(t) from Vexp(t), using

1 a 1

s Laplace-conjugate variable to the time t

location of the simple poles of T2 /To on the complex s-plane
(n = 1,2,3, ... ) (so - 0 simple pole evaluated separately)
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LIST OF SYMBOLS (Continued)

s k2a the new simple pole that appears as a result of
finite radiant-energy penetration

SF fractional shortfall of the measured rise time (penetration
case) below that occurring for surface-energy deposition only

[see Eq. (53c)]

Ti(x,t) temperature in layer i at position x and time t

Ti (s,t) Laplace transform of Ti

t/ characteristic rise time of the back-face temperature of the12 'sample in the flash technique

T2,max . Q/[glPl cI + i 2 P 2 c 21

- Q/1KI P 1c

t(0)
1/2 back-face rise time when there is surface-energy deposition

only

X2 /Q2

Ui s i/i

VW back-face response function

V (t) measured back-face response functionVexpt)mauebakferepnefnto

Vk(t) back-face response function [see Eq. (52)] for the case of
finite k

x - IU/U2

X(s),Y(s) useful functions for residue evaluation [see Eqs. (42)
and (43)1

a thermal diffusivity

i the value of a after i iterations of the standard data-
reduction algorithm for the flash technique

n eigenvalues of the boundary-condition problem ( --s nn - 1, 2, 3, ... )

V differential operator
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LIST OF SYMBOLS (Continued)

6 Dirac delta function

p density

a - K2 w2 /Klw1 - ,K 2 '2c2/K 1p 1cI

a(X0 + 1)/(X + 1)
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LABORATORY OPERATIONS

The Laboratory Operations of The Arospace Corporation is conducting

experimental end theoretical investigations necessary for the evaluation end

application of scientific advances to ne military space systems. Versatility

and flexibility have been developed to a high degree by the laboratory person-

net in dealing with the many problems encountered in the nation's rapidly

developing space systems. Expertise in the latest scientific developments is

vital to the accomplishment of tasks related to these problems. The labors-

torties that contribute to this research are:

o scs aratory: Launch vehicle and reentry fluid mechanics, teat
transf ight dynamics; chemical and electric propulsion, propellant
chemistry, environmental hazards, trace detection; spacecraft structural
mechanics, contamination, thermal and structural control; high temperature

thermomechanics, gas kinetics and radiation; cv and pulsed laser development
including chemical kinetics, spectroscopy, optical resonators, beam control,
atmospheric propagation, laser effects and countermasures.

Chemistry and Physics Laborstor: Atmospheric chemical reactions, atmo-

spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,

thermiontc emission, photosensitive materials and detectors, atomic frequency
standards, and environmental chemistry.

Electronics Research laboratory: Microelectronics, GaAa low noise and
power devices, semiconductor lasers, electromagnetic and optical propagation

phenomena, quantum electronics, laser communications, lidar, end electro-
optics; communication sciences, applied electronics, semiconductor crystal and
device physics, radionetric imaging; millimeter wave, microwave technology,
and R? systema research.

Information Sciences lbsearch Office: Program verification, program

translation, performance-sensitive system design, distributed architectures

for spaceborne computers, fault-tolerant computer systems, artificial intel-
ligence and microelectronics applications.

Materials Sciences Laboratory: bevelopment of new materials: metal
matrix composites, polymars, and ew forms of carbon; nondestructive evalua-
tion, component failure analysis and reliability; fracture mechanics and
stress corrosion; analysis and evaluation of materials at cryogenic and
elevated temperatures as wall am in space and enemy-induced environmnta.

Space Sciences Laboratory: Jhgnstospheric, auroral and cosmic ray phys-

ics, van-particle interactions, magnetosphertc plasma waves; atmospheric and

ionospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radiation; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic storms and

nuclear explosions on the earth's atmosphere, ionosphere and magnetosphere;
effects of electromagnetic and particulate radiations on space systems; space
instrumentation.
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