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I. TINTRODUCTION

R Thermal insulation characterization of polymers is an important require-

ﬂ ment for present and future aerospace systems. Examples include a Neoprene/
Kevlar composite used in rocket motors, as well as insulating blankets of

'if fused silica or other materials. Furthermore, the construction of new homes

- requires the use of lightweight fibrous insulation whose thermal properties

> need to be known.

The significance of thermal radiation in fibrous insulations has been
demonstratedl’2 by conducting guarded hot-plate experiments under vacuum.
. Tong and Tien3’4 categorized the analyses of such experiments as those which-
experimentally determine effective conductivities caused by radiation and
. those which consider the detailed equations governing the intensity of

} radiation in an absorbing and scattering medium.

- The thermal diffusivity a is the parameter of interest in transient-heat
v . conduction problems, as opposed to steady-state problems in which only the

& thermal conductivity K plays a role. For a homogeneous body, a may be calcu-
. ) lated from K, the density p, and the specific heat ¢. If a, p, and c are
measured in a given temperature range, K may be calculated over that range.
This is especially advantageous when steady-state calorimetry for K is

v difficult, e.g. at high temperatures.

W One method of measuring the thermal diffusivity is the flash tech-

.f niques'lz. A flash of radiant energy is deposited over one face of a disk-
shaped sample that 1is surrounded by a heating element and enclosed in a

- vacuum. For a homogeneous sample, a may be calculated from the sample thick-

ness L and the time t1/2 (the time for the rear face to achieve one half {its

N ultimate temperature). To within a numerical factor, a is essentially

It has been observedl? that problems involving large temperature

P R 3]

differences and short heat-pulse propagation times may lead to situations in

v
PR RN

which the basic equations, boundary conditions, and assumptions of the flash
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technique data-reduction scheme are inapplicable. For these problems there
may be no way to convert an observed oscilloscope trace into a meaningful
value for some physical parameter. Conditions occurring during space vehicle
reentry, laser irradiation problems, measurements at cryogenic temperatures,
and materials with anisotropic conductivity may lead to situations in which

the flash diffusivity method may not be viable.

On the other hand, some nonhomogeneous materials have been successfully
characterized by the flash technique. The flash technique has been applied to
some heterogeneously dispersed composites and layered samples, including some
carbon fibers, fiber-reinforced materials, individual layers of layered

composites, and dispersed composites.12

The continuing challenge of composite-sample characterization by means
of the flash technique is illustrated by recent case histories and journal
publications. Flash-technique analysisl3 of a Neoprene-covered Kevlar cloth
composite revealed that the diffusivity value could not be calculated for the
Kevlar layer solely on the basis of the measured rise times and the properties
of the virgin Neoprene. The rise times were too short, indicating that the
conductivity values for the virgin Neoprene were too small for the Neoprene in
the composite. In a second example, fibrous insulation, it has been shown
that steady-state and transient methods of determining thermal conductivity
often give different results, especially for such porous insulating materials

as rockwool and kapok.2 This discrepancy arises from the contribution of

internal radiation to the conduction of heat and should be even larger for
an intrinsically transparent material. Although recent publications3'4 have
addressed this issue from other viewpoints, internal radiation has not, to the

present author's knowledge, previously been allowed for in the development of

the flash technique.

Therefore, we see that some currently interesting sample types are in
some way too complicated for available flash-technique analysis. The
instrumentation is producing experimental outputs that are apparently in need

of more refined interpretation. In any particular case, any one of a number
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ﬁh
‘f: - of different adjustments may be necessary. These adjustments are necessitated
; by four categories of physical effects:
.ﬁ ' 1. Radiant-energy penetration during flash heating of the diffusivity
¢ sample (time = Q).

o

1 2. The contribution of internal radiation and absorption to heat

* transfer (time > 0).

N 3. Heterogeneous sample media.

. 4, Anisotropic sample media.

E} An adjustment accounting for the first effect and applying to both the

layered-composite and porous-insulation types is discussed in this paper.

t? This mathematical modification of the current flash-technique data-reduction
QE method explicitly allows for an exponentially decaying spatial penetration of
jj incident radiant energy into a layered sample. A method of experimentally

evaluating the characteristic length associated with the exponential

T; penetration function will be proposed.
:i
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II. THEORETICAL DEFINITION OF THE PROBLEM

A. HOMOGENEOUS SLAB

For a homogeneous slab between x = 0 and x = L, the governing equations

(as in Ref. 14) are

> +>

J = =KVT (1)
> +> aT
Ve«J+ pc 3 " 0 (2)

where T = T(x,t) is the temperature as a function of position x and time ¢,
K, p, and ¢ are the thermal conductivity, density, and specific heat, respec-
tively, and J is the flux (energy per area and time). Homogeneity implies
constant K, p, and ¢, so combining the equations gives the partial differ-

ential equation (PDE)

2, _ dT
aV'T = % (3)
where
K
a= = (4)

>
The boundary conditions (BC) for the homogeneous slab are VI = 0 at

x = 0 and L (no heat loss). The initial conditions (IC) are
T(x,0) = %z §(x) (5)

where Q is the energy per area deposited on the slab surface (x = 0 at

t = 0), and 8(x) is the Dirac delta function. Separation of variables
[T(x,t) = W(x)1(t)] leads to the ordinary differential equations (ODE)
W* + (AMa)W =10 and t' + At = 0, where A is the separation constant and primes

denote differentiation. 1In general for this Sturm-Liouville problem,
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fk =it —82 at
: W, = A, sin B x + B, cos B,x and T = e =e n + The above BC imply that
L A all A, = 0, and the eigenvalue equation sin BnL = 0 leads to
“::-". L
:_:‘-:. Bn =‘.E_, n= 0,1,2000 (6)
e (including negative n only changes the B, definition). The B, are specified
(:% by the IC with the result
HeN
At Q n 2.2
7 nmx -n=w
T(x,t) = el [1 + 2 Z cos —— exp f———f—— at)] (7)
n=] L
-;;- The ultimate x = L temperature is Q/pcL, so the dimensionless temperature
‘iﬂ% versus time profile at x = L is
ik v n - n2n2 t
- V=1+2 § (-1)" exp G———jf—g—) (8)
: n=1 L
Approximating the V result by the first two terms (valid as t + =), one
] observes that V = 1/2 when
N 2 2
. 4
o a= 520 < 0.1400 H— (9)
::-‘\ L tl/Z 1/2
-
f;éi Using the full series expression,12
r‘:”:“. Lz
S a=0.1388 —— (10)
L 172
;}. Thus, the thermal diffusivity of a homogeneous slab can be measured by
o measuring the thickness L and the rise time t;;;. This can be done to within
523 0.5% precision.12 On the other hand, the IC and BC assumptions, such as delta
- function temperature-pulse across the entire sample and complete thermal
T isolation, limit the accuracy of the measurement. Models have been developed
;:Q that generate corrections up to 21% in magnitude in the measured values. 12
.
R
-;:_-t: 10
R
o A e L e e N .
o W S, S N S AL P SR P P L T i W L TR N T T T A IR . 2, ca s

a
.

- ol ale . N . - - -
LT A VLY e L AN R O N St i w NI W R RN




B. COMPOSITE SLAB

Surprisingly enough, although a unique solution can also be shown to
exist for a composite slab consisting of individual layers, that solution
cannot be constructed by an extension of the Sturm-Liouville approach
(p. 414 of Ref. 15)., Instead, the Laplace transform technique (Chapter XII
in Ref. 14) is used. The standard analysis for the simplest composite (two
layers and one-dimensional heat flow) will first be summarized, using mostly
the notation of Ref. 10. Then, in the following sections, recommendations for
modifying the mathematics and the measurement algorithm will be stated,

relying on the standard analysis as a starting point.
The two-layer problem is defined by the following equations:

Partial differential equations (PDE):

aT

2 1
KIV Tl plcl -3?- 21 <x <0 (ll)
2 3Ty
KZV T, = P3¢y FE- 0<x<« L, (12)
Initial conditions (IC):
Tl(x,O) =0 -2, <x<0 (13)
Tz(x,O) = 0 <x< 22 (14)
Boundary conditions (BC):
>
-KlVTl(-ll,t) = Q&(t) (flux pulse) (15)
>
VTz(lz,t) = 0 (no back-side heat loss) (16)
Tl(O,t) = TZ(O,t) (no interfacial resistance) (17)
> *
KIVTI(O,t) = KZVTZ(O,t) (zero divergence at interface) (18)

11
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B Notice particularly that the temperature pulse in the IC of the Sturm-
‘ Liouville problem has been replaced by a flux pulse in the BC of this Laplace
P “‘)
S0 problem. Combining the above equations, we have the following results:
A
L PDE & IC:
>, 2_.
:\‘; d Tl -
s K, 2 - pjcy {sT; -0} =0 (19)
A X
dz?z _
5 Kz 7~ PyCy {s'I‘2 -0} =0 (20)
‘..:‘. dx
b ODE:
.‘\'.‘u —

)
|

244

s —
-&—T =0 (21)

-'_0' " L "1 -,

S,
N

13
4
N

T, =0 (22) .

<. [— =Q s>0 (23)
x —= =0 s>0 (24)
T, (0,8) = T, (0,s) §>0 (25)
- K, — = K, —~ x=0,8>0 (26)

- Letting w, = s/ai, the ODEs in Eqs. (21) and (22) have the solutiouns

¢ sinh w;x. Using the BCs in Egs. (23) through (26), one

' Ti = Ai cosh w,x + B

Al obtains

[
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where the matrix a has the elements 343 (i,j = 1,2,3,4), and aj3 = =sinh m212,

aM = -cosh wzlz 321 =1, 323 = -1, 832 = Klml, 834 = "szz, 841 = sinh wlll,
a,, = =-cosh wlzl, all other a4 being zero. Furthermore, p = Q/Klwl.

Solving by determinants,

det (a) = szz cosh w2 sinh w, £,

+K1w1 sinh w 2 cosh w2, (28)
A} = pK,w, cosh wzlz/det (2) (29)
B) = -pKyuw, sinh w,%,/det (a) (30)
Ay = pKjw, cosh w222/dec (2) (31)
B, = -pKjw, sinh w,2,/det (a) (32)

Introducing
g = :f:f = ;%;%;% and /ﬁ;g 5 li“ﬁ

and noting that wiki = Vs /Kipici, Eqs. (28) through (32) become

det (a) = Vs /Klplcl [sinh /Uls cosh /Uzs + o cosh JUls sinh /Uzs] (33)

13
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Ay = Q cosh wzlzldet (a) (34)
B, = Q (- o sinh w,1,)/det (3) (35)
A, = Q cosh wzzzldet (a) (36)
B, = Q (- sinh wzlz)/det (a) (37)
Hence
T o= -
T, = Jaot ey (cosh w,%, cosh w x = ¢ sinh w,%, sinh wlx) (38)
EE = Jet 3 (cosh mzzz cosh wyX = sinh wzlz sinh wzx) (393a)
T o= Ts (1 -
T, = et @ N [/U,s (1 = x/2,)] (39b)
Combining Eqs. (33) and (39b) and introducing T0 : -2 , we have
VK. p. ¢
17171
T, _ cosh [/U,s (1 - x/1,)] (40
0 sl/2 sinh /Uls cosh JUzs + ¢ cosh /Uls sinh /ﬁ;;

On the entire complex plane the series expansions of the factors in the
denominator vary as vs [/s (1 + even powers)] (1 + even powers). Therefore
the denominator behaves as s near s = 0 (simple pole at s = 0). The nature of
the remaining roots of the denominator has been investigated (pp. 324-326 of
Ref. 14, pp. 409-410 of Ref. 15 and Appendix A of Ref 16). There are no
complex roots. The function Té/TO is meromorphic, with poles at s = 0 and

8§ = sn’ n= 1,2,3,00' .

The Mittag~Leffler Theorem states that any meromorphic functiom can be
expressed as a sum of an entire function and a series of rational functions,

In our case, letting f(s) -'TZ/TO
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e
8 s - 1 [ f£(s7)ds”

. I n

\:: f(s) = ) s - 8 M 2ni I si - : (41a)
. n=0 n c
L
S5
:':: where r, is the residue of the nth/pole. The contour integral in Eq. (4la)

oy
‘-f. can be shown to be zero as in standard texts on complex analysis. Thus

< o T Tn

:\‘\ f(S) = S— + 2 ;T (41b)
L™ n=] n

o

o ® X(s )

£(s) = 5 lin s(s) + | prryromoy (41c)

s+0 n=] n n
28 where
0 cosh [/U.s (1 - x/2,)]

i 2 2

o X(s) = — (42)
/s

Y(s) = sinh /Uls cosh /Uzs + ¢ cosh /Uls sinh /Uzs (43)
3: Thus, letting X = UI/UZ’ we obtain

i
N

) T ® X (s))

8 T - , N S R RCETN (44)
b 0 s /U_Z (X + 0) n=l n n

' Using the inverse Laplace operator,fﬁ'l, one obtains

Z:I;

e T » X (s ) st

o

» Tl vye (43)
Tl 0 v’ﬁ; (X + 0) n=l n
",
¥
W
h:. Consider the following definitions:
:I.

& 15




+
.

k)

B, = /-U2sn n=1,2,3..., (46a)
p=Xotl (46b)
%=% (46¢c)
2
Ui = ;;, 1i=1,2 (464d)

After considerable algebra, it results that

2
-8B t/U
Q ©w e O 2cos [Bn(l - x/lz)]
T, = 1+27
n=1

cosXB, cosB - AsinXB_ sinf_ (47a)

T, (2,,t)
v(e) = 22— (47b)
2 ,max

where T = Q/[2%,p,¢, + L,p,¢c, ]. The equation that gives the roots of the
2 ,max 17171 27272
denominator in Eq. (40), when recast in terms of circular functions, deter-

mines the real, positive eigenvalues B = Bn = /-Uzsn according to
sin XB cosB + o0 cos XB sinB = 0 (47¢)

Furthermore, when the slabs have identical parameters,

—nznzalt

® 43
o nn
T, = 7?%3;3; 1+ ZHEI(-l) e cos [5—- (1 - x/lz% (474d)

which corresponds to the V result given in the homogeneous sample analysis.
This shows that the flux-pulse, dual-slab, Laplace analysis can reduce to

the temperature-pulse, homogeneous-slab, Sturm-Liouville analysis for an

16
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appropriate choice of parameters. Finally, if v(t) or t)/o is measured and

compared to Eqs. (47a) or (47b), one unknown material parameter can be
obtained by standard computer techniques.
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IIT. ANALYSIS OF THE RADIANT-ENERGY PENETRATION EFFECT

Suppose that the incident electromagnetic energy 1is converted to heat

throughout the depth of the first layer of a two-layer composite according to

-k(x + 21)

Q(x) = Qk e

" -2, <x<0 (48)

(l-e b

The normalization was chosen to ensure that Q energy units per area are
incident. This is the same Q as in the standard solution above, in which all
the electromagnetic energy is converted to heat at the front interface. We
will first analyze what effect this penetration will have on the observable
quantity tl/2'

Equations (11) through (18) are the same as before, with the following

exceptions:

-k(x + 21)
Qk e
T,(x,0) = i -2, <x<0 (137)
c(l-e b
1%
and
>
'KIVT1(°£1,t) = 0 (15°)

Now Eqs. (19) through (26) are the same as before, with the following

exceptions:

2= -k(x + ll)
Qk e




A W e W
aty U152,

1 -
- (KIT‘-) =0 (23 )
X = -21

The solution to the ODE, Eq. (19°), is somewhat different than before:

“%k(x + 2,)
- Qke 1
T (x,s) = A, cosh w,x + B, sinh w x + (19°°)
1 1 1 1 1 -kzl 2 2
Kl(l - e ) (w; - k%)
1
Now the matrix equation, Eq. (27) becomes
A 0
Bl -
a = ” 27
2 |4, . (27°)
Bz P
All the entries of a are the same, but now
p-” = gk e (49a)
kb2 2
K, (1 -e ) (w; = k%)
1 1
—kll
p” = *Qk e (49b)
kb2 2
(1 -e ) (m1 - k)
2
p = o (49¢)
kb2 2
lel (1l ~e ) (wl - k%)
-kll

We will assume only a limited penetration consistent with e < 0.05, or kll 2 3.

20
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-k
To a reasonable approximation, therefore, we set e s P°°, and p~° equal

to zero, and

- (50)
K,w -
171 ( k2a1 )

In the 1limit that k +» « (delta function, or surface, energy deposition),

p + Q/Klw1 as in the standard solution above. Therefore, we can follow the
changing solution as surface deposition is continuously changed to deposition
in depth. We can do this rigorously if nonzero p“” and p” are considered.

Here we consider only the case of small penetration, kzl 2 3.

Since the problem has only changed to the extent of a modification of the
factor Q in the quantity p, it is seen immediately that

EZ _ | cosh [/UZS (1 - x/£2)] (40
T0 sl/z(l - s/kzal) [sinh /ﬁ;g cosh /Uzs + ¢ cosh /ﬁ;g sinh /ﬁ;;]

Hence the change in the problem which is due to finite radiant-energy penetra-

tion is seen in a change in the pole structure, as shown in Fig. 1.

Thus the previous solution, Eq. (41b), is modified to become

ro [ rn rk
f(s)ss—+ ) —— t T (41b*)
n=] n k

Since kzl 2 3, k 1s positive, and s > 0. Now, considering Egs. (42), (43),
and (40°),

ro B — (518)
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Fig. 1. The Pole Structure for the Two-Layer Composite with
a Finite Penetration Depth of Electromagnetic Energy.
The difference in this solution, compared to the case
25 of electromagnetic energy conversion to heat at the
e surface only, is the appearance of a new pole at

s = kzal. C is the contour for the integration that
o inverts T,(x,s)/T,.
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o
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N
x -s, X (s.)
. k n
5 r = - = (51b)
‘o n (sn s, )Y (sn)
f: X (sk)
_::: rk = - Sk -Y—(—s—'j' (SIC)
. k
N )
o WSRBOte that r, is proportional to e + 0, since we have taken
- e 1. 0 as an approximation. Thus the_kist term in Eq. (41b°) must be
ignored. Only if p“~ # 0, p° # 0, and e 1 # 0 in Eq. (27°) would it be con-
St sistent to keep such terms. In our approximation, then, Eq. (41b~°) differs
;ﬁ: from Eq. (41b) only through the =5, /(s, - Sy ) multiplicative factor in
L Eq. (51b).
K Using s = kzal and s = -8!21/02 Eq. (47a) becomes
- 2
A T Bnt/UZ cos [B_ (1 - x/2.,)]
xe _2_ . 1+ 2 z 1 a 2 (52)
\ ) T?_’max n=l 1 + B /U k o) cosXBn cosBn -Q sinxen sinen
j‘ Equation (52) is the master equation for the p“” = p” = 0 approximation to the
. finite-energy penetration problem. Two tasks now remain: First it will be
, demonstrated that this energy penetration can significantly affect experi-
- mental results. Then it will be indicated how the computer data-reduction
{:} algorithm might be modified to include codetermination of k along with the
:;: usual parameter evaluation.
1)
ol The significance of Eq. (52) can be judged by evaluating it for the case
of identical-layer parameters and in the first-term (n = 1) approximation
I analogous to Eq. (9):
3)
2
1., 27y ty/9/49)
Z; 21 200242 (532)
o 1 + 5°/4k"2
- 1
.‘l
ue? .2
. I 5— [n4 - an(1 + 5 2)] = Y/2 (53b)
A5 LECH 4kl
-.,:’:
N
2
23
N
‘
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T Letting ti?% be the rise time for the spatial delta-function energy deposition

v

. [Eq. (9)], we have

o

< 2

AN 4 2

WX (0 1 i

- t1/2 1/2 I ln(l + 3 2) (53¢)
T a 4k

- 1 1

if Letting SF be the fractional deviation (shortfall) of the rise time in the

finite-deposition case, we obtain

t (0) an(l + 112/4k222)
o SF = VN VE S 1 (53c)
L (0) n4
-; for the approximation kzl 2 3. Figure 2 shows the result for the shortfall
%Y
,g? of the rise time versus kll or the characteristic penetration depth 1/k.
¥ The approximations used in the_ﬁinstruction of Fig. 2 could be removed
e by the rigorous (p°“ # 0, p* #0, e 1 # 0) solution of Eq. (277), the
lt? subsequent inclusion of the r residue in Eq. (41b°), and the use of the
A \‘--
85 entire series in Eq. (52). However, even with those refinements the
- -SF (kl1 = 3) is still expected to be in the 10 to 20% range, even though the

energy reaching the midplane of the sample is only e 3 = 5% of that converted
to heat at the front interface.

We see that the finite penetration of radiation may cause a significant

rise-time shortfall. How can this effect be allowed for in data reduction?

;JI In one standard form (p. 493 of Ref. 10) of the flash-technique data

?:' reduction, the eigenvalue equation {Eq. (47c)] is solved with the measured

;:; auxiliary parameters and a first guess at a, which is chosen as the unknown.
o The first guess is a = 0.1388 2 /tl/Z’ as in Eq. 10. (Presumably a = 0.1404

ﬁ;f 2 /tl/2 [Eq. (9)] would also lead to a convergent series.) The deviation from

;:} V(t = t)/;) is calculated, and an iteration algorithm is devised which

;i; terminates when ui +1 _,( i ) converges to a reasonable limit.
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33 25 20 143 11110 9.1 83
166 125
_£_196 Of (1’

The Magnitude of the Percent Shortfall (-SF) of the

Measured Rise Time in the Thermal Diffusivity Measure-
ment of a Homogeneous Layer of Width 2%, , Graphed as a
Function of k£, and of the Characteristic Penetration

1

Depth of 1/k. In our approximation (p“" = p~ = e-kzl = 0),

kzl 2 3, and only the n = ] rise times are compared.
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; " Bulmer and Taylor use only the ty /2 experimental output, because they feel
' e that curve fitting to more points requires using extremes of the experimental
E}:- curve which are inherently less accurate.

:}ﬁ We would argue that the entire experimental V(t) curve contains some

i relevant information, and that at the very least one additional parameter, k,
ﬂ"? should be derivable from this information. We propose that a figure of merit,
;:ﬁ rMS2 (k » , ci + l), be formed for the first determination, a} + 1, in the
izf following manner:

Y

Rmsz(k«»oai+l)--l-r§ v, (e ) = v (e )|? (54)
k. | N exp n
R n=1

,§3$ where N points t  on the time scale are chosen. Vexp(t) is the experimental
e trace, and V. (t) is given in Eq. (52), in this case with k + ». Now a

;f: different initial guess can be made for @, using a finite value of k:
B\
;:_,.. 42% “2

o a, = ——— [6 - (1 + —2)] (55)
T n t1/2 4k zl

LG

J_:_- i‘ + l 2 b4 + 1
- After convergence to a new ) , the quantity RMS<(k, a ) can be

L +

:t{. calculated. When RMSZ(k, c} l) reaches a minimum as a function of k, that
b is the best k for the measurement.
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IV. SUMMARY AND CONCLUSIONS

Current and future aerospace and construction industry materials require
efficient thermal analysis techniques, including the flash technique for
thermal diffusivity. This is not possible unless the data can be adequately
reduced for polymer composites and porous blankets. This paper has been
concerned with radiant-energy penetration into a layered sample subjected to
flash-technique conditions. A mathematical modification of the standard
flash-technique solution for layered structures was presented which allows for
an exponentially decaying penetration of radiant energy into the first of two

layers. The following conclusions were drawn:

(1) A new (simple) pole in the Laplace-transformed solution appears
on the complex s or B plane. Thus the inverse Laplace transform,
which gives the response function (back-face temperature versus
time), contains an Qdditionallterm. Furthermore, there is a small
modification (1 + Bn/Uzk al) to the previous terms.

(2) The appearance of a new pole signifies in general the emergeuce of
a new kind of physical behavior, because the residue of the new
pole may in general be significantly larger than those of many of
the original poles. However, to facilitate the evaluation of the
importance of thki effect, a small-penetration approximation was
made in which e 1 was set equal to zero.

This is approximately true for kll 23 (e-kzl < 0.05) . 1In this
approx}matign, E?e new term is suppressed and only the

(1 + B°/U,k“a,) ~ modification retained. However, it must be kept
in ming t%at }or more extensive radiant energy penetration, this
approximation would not apply, in which case the new term in the
solution could specify a radical departure of the response
function from its previous behavior. Furthermore, extensive
penetration might also require the exponential function Q(x) to
extend over more than one layer.

(3) A numerical example was evaluated for the e-kzl = 0 approximation
in the case of identical layer parameters and the first-term
(n = 1) approximation to the back-face rise time. It was found
that the rise time shortfall (1/k = 33% of £;) =~ 18% of the rise
time that would obtain if all the radiant energy were deposited on
the surface. Here, 1/k is the characteristic penetration depth of
the exponential radiant-energy deposition function. Thus, even
when the radiant energy deposited at the sample midplane is only
5% of that deposited on the surface, an 18% correction is
necessary.

27




&

5

oy (4) The standard flaghstechgique data-feduction algorithm considers

; iterations, cii 3 15 = i-[afis + a(i B], which are required to

. converge to a reasonable limit. O%ly the t1/2 experimental data
> are used. If the entire V(t) response function were used, how-
<. ever, a figure of merit might be defined that allows for the

%’ experimental determination of k.

(5) Modifications such as the ones reported here are expected to open
A up the flash technique to the analysis of advanced polymer
) composite and insulating blanket material.
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LIST OF SYMBOLS

ria

4

Ay, By constant coefficients in the solution of the ordinary
differential equation for T2.

Pt
v e

a matrix of the coefficients Ay, B; arising from the boundary

y conditions [see Eq. (27)]

2 £

ﬁ c specific heat

' f(s) = EE(X’S)/TO

3 H = X/o

] i layer index for the composite slab (layer 1 is hit by the
- incident flash)

J thermal flux
-
. K thermal conductivity

N 1/k characteristic penetration depth of the radiant energy into

the first layer of a composite slab (k + « for surface
. deposition only)

0 ¥y, 71 Laplace (inverse Laplace) operator

ij L thickness of the (homogeneous) layer

)

li thickness of the ith layer

3 P, P’ P°° nonhomogeneous entries in Eqs. (17) or (17°)

v Q : heat per unit area deposited on sample

: T, residue of f(s) at s = 0

2 T, residue of f(s) at s = s, (n = 1,2,3, ...)
iz . residue of f(s) at s = s

N

& RMSZ(k, a{ + l) figureioi Terit for deviation of Vk(t) from Vexp(t), using
3 a, = a

. 1 1
Q: s Laplace-conjugate variable to the time t

;ﬁ Sq location of the simple poles of T./T. on the complex s-plane
o] (n=1,2,3, ...) (sg = 0 simple pole evaluated separately)
\
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" ' LIST OF SYMBOLS (Continued)
\
.}: S = kza = the new simple pole that appears as a result of
b finite radiant-energy penetration
Y
SF fractional shortfall of the measured rise time (penetration
+ case) below that occurring for surface-energy deposition only
" [see Eq. (53c)]
{ Ty(x,t) temperature in layer i at position x and time t
.Ti(s,t) Laplace transform of Ty
e t characteristic rise time of the back-face temperature of the
- 1/2
‘ sample in the flash technique
&
v T2 max = QLR pyey + 2yp)c,]
:: ti?% back-face rise time when there is surface-energy deposition
PN only
Ml
. 2 -
uy = li/ai
/Uis = 4w
v(e) back-face response function
Vexp(t) measured back-face response function
ij Vk(t) back-face response function [see Eq. (52)] for the case of
y finite k
\ X = /U,/0,
n X(s),Y(s) useful functions for residue evaluation [see Eqs. (42)
- and (43))
:f a thermal diffusivity
’ ai the value of a, after i iterations of the standard data-
o reduction algorithm for the flash technique
; Bn eigenvalues of the boundary-condition problem (= /—Uzsn s
A n=1,2,3, ...)
. v differential operator
8
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§ Dirac delta function

o P density

LIST OF SYMBOLS (Continued)

o = KZ“’Z/Kl“’l = v’l(zpzcz/l(lplcl

b Q (Xo + 1)/(X + 1)
i;: w = Vs/a
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LABORATORY OPERATIONS

The Laboratory Operations of The Aerospace Corporation is conductiag
experimental and theocetical investigations necesssry for the evaluation and
application of sclentific advances to new military space systems. Versatility
and flexibility have been developed to a high degree by the laborstory person-
nel tn dealing with the many problems encountered in the nation's rapidly
developing space systems. Expertise in the latest scientific developments is
vital to the accomplishwent of tasks related to these problems. The laboras-
tories that contribute to this research are:

Aerophysics laboratory: Launch vehicle and reentry fluld mechanics, heat
transfer and flight dynamics; chemical and electric propulsion, propellant
cheaistry, environmental hazards, trace detection; spacecraft structursl
mechanics, contamination, thermal and structural control; high temperature
thermomechanics, gas kinetics and radiation; cw and pulsed laser development
including chemical kinetics, epectroscopy, optical resonators, beaa control,
atmospheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atwo-
spheric optics, light scattering, state-specific chemical reactions and radia-
tion transport in rocket plumes, applied laser spectroscopy, laser chemistry,
laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum snd radiation effects on materials, luhrication and surface phenomena,
thernionic emission, photosensitive materials and detectors, atomic frequency
standards, and environmental chemistry,

Electronics Research laboratory: Microelectronics, GaAs low noise and
power devices, semiconductor lasers, electromagnetic and optical propagation
phenomens, quantum electronics, laser communications, lidar, and electro~
optics; communication sciences, applied electronics, semiconductor crystal and
device physics, radiometric imaging; millimeter wave, microwave technology,
and RP gystems research.

Information Sciences Mesearch Office: Program verification, program
translation, perforsance-sensitive system design, distributed architectures
for spaceborne computers, fault-tolerant computer systems, artificial intel-
ligence and microelectronics applications.

Materials Sciences Laboratory: Development of new materisls: metal
watrix composites, polymers, and new forms of carbon; noandestructive evalua-
tion, component fatlure analysis and reliability; fracture mechanics and
stress corrosion; analysis and evaluation of msterials at cryogenic and
elevated temperatures as well as in space and enemy-induced environments.

Space Sciences Laboratory: Msgnetospheric, auroral and cosmic ray phys-
1cs, wave-particle intersctions, magnetospheric plasma waves; atwospheric and
fonospheric physics, density and composition of the upper atmosphere, remote
sensing using atmospheric radistion; solar physics, infrared astronomy,
infrared signature analysis; effects of solar activity, magnetic stotws and
nuclear explosions on the earth’s stwosphere, fonosphere and magnetosphere;
effecte of electromagnetic and perticulate radiatione on space aysteams; space
instrumentation.
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