
7 R1,62 443 OOTSTRRPPIN 0 COWS REGRESSION NODELCU) STANFORD, UNIV ut
CA LAB FOR COMPUTATIONAL STATISTICS N L WJORT NOV S5
LCS-TR-21 NSSSI4-83-K-6472

UNCLASSIFIED F/O 12/1 ML

MENEMONEE



-

1111.0 L. M2 25. -

11111- wI2 2

E.8

11111.25 I . 11 .

MICROCOPY RESOLUTION TEST CHART

NATONA 8VE~vOF TANARO -9K3-

. . . .. ..... .
-7C



BOOTSTRAPPING COX'S REGRESSION MODEL

Nils Lid Hjort !

(V)

N Technical Report No. 21

November 1985

I1I

IDTI 0

Laboratory for 19SE

Computational
Statistics

*Department of Statistics
.- ~ Stanford University

-- D PUTrON STATEMENT A
Approvr d tg ij. reeao

70
Disti,, 1j,.



This document and the material and data contained therein, was developed

under sponsorship of the United States Government. Neither the United States

nor the Department of Energy, nor the Office of Naval Research, nor the U.S.

Army Research Office, nor the Leland Stanford Junior University, nor their em,-

ployees, nor their respective contractors, subcontractors. or their employees,-

makes any warranty, express or implied, or assumes any liability or respon-

sibility for accuracy, completeness or usefulness of any information, appara-

tus, product or process disclosed, or represents that its use will not infringe .

privately- owned rights. Mention of any product, its manufacturer, or suppliers

shall not, nor is it intended to, imply approval, disapproval, or fitness for any

particular use. A royalty-free, nonexclusive right to use and disseminate same

for any purpose whatsoever, is expressly reserved to the United States and the

University.



S/ F--t :-7I7

Bootstrapping Cox's regression model .cs.Fr

Unannounced
by Justiflica tion

By
Nils Lid Hjort Dit Jbjt . . . . ..------------

Norwegian Computing Centre Availabity Codes-, i A v i -a n d / o r-

and Dist nio
SP2cial

Department of Statistics, Stanford Universit

Abstract. Statistical inference in Cox's regression model is

usually carried out using traditional (first order) large

sample theory. In the spirit of earlier success stories one

might try to bootstrap data in order to better assess the r

sampling variability of t eCox estimator. Such a bootstrap

scheme is proposed in 4e ee paper. An asymptotic justi-

fication is given, showing that inference based on the bootstrap

procedure is first order equivalent to the standard one. The

problem of constructing more accurate moderate-sample confidence

intervals is also addressed, employing second order fine-tuning

of the bootstrap. &

Key words: Bootstrap; Confidence interval; Cox model; Second

order asymptotics.

Work supported by a National Science Foundation Grant MCS80-24649,
Office of Naval Research contract N00014-83-K-0472.

-~ - -. o .



1. Cox regression and a bootstrap method.

0
We consider a Cox regression model of the following form: X0 ,.. .,X are independent

lifetimes for n individuals. X0 has continuous intensity (or hazard rate)

Bz i .-..i

ai(s) = a(s) e (1.1)

where z is a covariate measurement for individual no. i, a(.) is left unspecified,

and B is the parameter of primary interest. Observed is (Xi ), i ,...,n,

where

X, min{X c}, 7-1
i (1.2)

6i = <{X < ci}
.

c is the "censoring time" for no. i.

We will assume, for simplicity and for ease of exposition, that z i's and

ci's are non-random and that B (and zi) is one-dimensional. Generalisations

are possible in several directions, see Kalbfleisch and Prentice (1980), Andersen

and Gill (1982), Prentice and Self (1982, 1983), Cox and Oakes (1984), Andersen

and Borgan (1985). The important p-variate case is treated in Section 5.

Define

N Wt = IiX? < t, Xo < c.1,
i 1 3.i - (1.3)

Y t) = I{X i > t, c > t.

Cox' partial likelihood can be written

n Yi(s)exp(Bzi dNi(s)
L(8) =  I[ ]I {} ,(1.4)

LB =l sI r .i=l s>0 n .(s)exp(Bz.) (1.4)

cf. Gill (1984). Cox' estimator 8 is the 8 value maximising L(6) or equivalently

n o n Bz
log L(B) =Z I [Bz. - log Z Z Y (s) e }] dN (s).

i=l 0 j=l i

This function may be seen to be concave so that B also may be defined as the

solution to

1...
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UM8 3 log L(B)/a836 .[,:

l (zi  SI(sB)} dN (s) 0, (1.5)
i- 1 (0)S (s,B)

where

(k) 1 k
S (sB) E (z.) Y (s)exp(Bz ) k = 0, 1, 2. (1.6)

t
We shall also need a nonparametric estimator of A(t) = f0c(s)ds, the

cumulative intensity for individuals with z = 0. The natural estimator is

t dN(s)
,(t) =/ , t 0>,

0 .n 1 Y (s)exp(Rz

cf. Johansen (1983), Andersen and Borgan (1985), where N(.) E EjnlN (.).This

is a step function with jumps exactly at observed life-lengths, i.e. in

J = {t: AN i(t) = 1 for some i}. (1.7)

(AB(t) = B{t} = B(t) - B(t-) for right continuous functions.) Since these jumps

estimate conditional probabilities we modify the estimator above very slightly

so as to get jumps

AN(s)/n
AA(s) min 1, s J. (1.8)s(O (s,B) -. .

Our main concern in this paper is assessing the variability of B, by

estimating its bias, its standard deviation, and by constructing confidence

intervals for 8 based on 8. There exist answers to these questions based on

large sample theory, reviewed in Section 2, but the approximations involved may

be coarse. Recent success stories for the bootstrap, see for example Efron

(1982a, 1985a, 1985b), Bickel and Freedman (1981), Singh (1981), Beran (1982),

Freedman and Peters (1984), Abramovitch and Singh (1985), indicate that the

" sampling variability of B may be more accurately computed using bootstrap

procedures.

2
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Such a bootstrap method is now described. There are continuous c.d.f.s

F, Fi .. IF nhaving respectively ax, al..... acn of (1.1) as their intensities; in

fact

F(t) 1 - exp{-A(t)},

Fi(t) 1 - exp{-A (t)",(19

where A, AV ....,A nare the cumulative intensities. We could use

F(t) =1-exp{-i(t) ,

as estimators, but prefer

F~t) 1 [lt)

~~ Ct) - - exp(az ~(.0
i [01,H { AA(s)1

A is a step function, corresponding to a probability distribution concentrated

on the set J of (1.7), and this distribution is exactly F above, cf. Kalbfleiscb

aand Prentice (1980, Ch. 2). Furthermore, the canonical analogue of (1.1) for

discrete distributions is

exp(Bz)
1 - A(s) U { - AAisw (1.11)

cf. Kalbfleisch and Prentice (op. cit., Ch. 4). This leads to F above.

Now generate independent realisations

0*
X -Fg i I ....,n

and define

* 0* * 0
X, min{X I 1{X* c} (1.12)

CX l s I .,(x n 6 n is our bootstrap data. Calculate B as in (1.5), but

based on the bootstrap sample.

G(t) Pr~fi* < t} (1.13)

is the bootstrap distribution of a which in practice is obtained as

3



BOOT
- E 1{ *b < t} (1.14)

BOOT
b- 1

*b *

for a large number BOOT of independent realisations 8 of 8 • This requires

of course computing power and time.

The bootstrap idea is that G, the distribution of 8 given data, approxi-
S... -.

mates G, the sampling distribution of 8, or more ambitiously that '

Q(1 , B)Idata - Q(B, 8) (1.15)

for any well-behaved function Q.

Summoning the necessary amount of courage to follow this principle, we

can define

(A) The bias-corrected estimate 8: write E(d 8) bias. Since

(8 - 8)Jdata -B

the bootstrap estimate of bias is
1 BOOTbiasoo E,(6 a ) = iOOT Z (a~ )..'...z..".

BOOTOO ( -)biasB b=l

Hence
BOOT 

"
I 1 y *b i212.

BOOT BOOT b=l

should have less bias than 8.

(B) The bootstrap estimate of standard error is similarly

1 BOOT

*b 2
o [Var (a) W BO- :; (8 -(51

BOOT BO z 1

aBOOT intends to estimate (Var B) . One may also employ more robust versions

of CBOOT" That this sometimes is necessary is explained in Rey (1983) and

Parr (1985), for example; see also a comment in Efron's reply to the discussants

in Efron (1981b).

One may also estimate for example EIA - $1 and {E(8 - 8)212 in similar

ways.

4
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(C) The bootstrap percentile interval:

G (ci) <8< l~

should have coverage probability close to l-2a. This interval can further be

corrected in various subtle ways; this is the topic of Section 4.

Section 2 reviews some known large sample theory for Cox regression.

The same methods of proof, essentially elegant modern martingale techniques,

are supplemented with brute force arguments in Section 3 in order to arrive

at an asymptotic justification for the bootstrap procedure, for example

T/n * -)Idata -n (8 - 8).

One may also prove the stronger result

,rn (.) - A(.) {(.) -A(.)}

The going gets tougher in Section 4 as we attempt to correct the percentile

interval fir bias and acceleration, which is the bootstrap way of doing second

order asymptotics. Essentially Efron's (1985b) program is followed, but since

the nuisance parameter a(.) is infinite-dimensional some intermediate analysis

in an approximating finite-dimensional model is necessary.

An important ingredient in our construction of better intervals is the so

called acceleration factor. It turns out that the calculation of this factor

involves finding the skewness of a certain martingale. a technical problem

solved in the Appendix, where also other mathematical necessities are dealt with.

Some potentially interesting other uses of the skewness formula are pointed out

in Section 5, along with some other remarks.

5
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The results of our efforts is a confidence interval (4.18) that should

be more accurate than the standard one, but which requires much more computation.

The bootstrap sample size BOOT in (1.13), (1.14) should be at least 1000.

Importance sampling and possibly smoothing tricks to estimate the necessary

quantiles of 6 can perhaps be used to speed up convergence.

0* I.,.
Remarks. (1) X is simulated from Fiv which has probability masses

exp(azi) --

F (t) = {l - } t,
i [0,t)i

exp ( zi) (1.16)

AA (t) - 1 - (1 - AA(t)}

for t c J of (1.7). We could also have used Fi defined after (1.9), and the

results would be the same in an asymptotic sense. However, looking at AF i(t)

reveals that the difference could be appreciable for small and moderate sample

sizes, i.e. exactly in situations where the bootstrap is called for to fine-

tune large sample approximations. Notice that F (t) > Fi(t) always.

The choice of Fi as opposed to F or for example smoothed versions, is
i i

faithful to the original bootstrap spirit in that it reduces to the usual

Kaplan-Meier estimate when $ - 0 (or when every z. 0) (and A is reduced to

the usual Nelson-Aalen estimator), and is in this case also equal to the

ordinary empirical distribution function when no censoring is present.

(2) The bootstrap scheme proposed above is particularly suited to the

case where the censoring times c. are known. (If there is no censoring at

all then each c= c.) It utilises the information about ci and z for individual

no. i effectively. A typical example of this "fixed censorship" situation is

one where individuals enter the experiment at different times, but where there

is a fixed "data collection day", as was the case with the data Efron (1981a)

considers.

6
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In other situations the random censorship model could be more appropriate.

Then c1, C2,... are considered as being independent of X Os and with a common

c.d.f. R. Our bootstrap procedure should then be modified as follows: If 6, 0,

so that c. is actually observed, use ci C ci. if =1, i.e. ci is not

observed, generate a likely outcome: ci R the Kaplan-Meier curve for R.

Or, slightly more fancy: If 6 = 1 then one knows that the unobserved c. is

to the right of X. cf. (1.2), so one should perhaps generate ci from R/R(x s).

In any case one uses

X in{X~ ,*ci} =I{X 0* < }C

instead of (1.12).

A related version could generate all c1  -.1. ,cn independently from R;

this would however not utilise the available information about the observed

c.oso

Ci S

The resampling schemes discussed above simplify to those used by Efron

(1981a) in the case of no covariates (or all covariates equal).

(3) If z is dichotomous (treatment /control, say) the bootstrap schemes

nsimplify to close relatives of one used in Efron and Gong (1982, Section 7).

More generally, if the z.'s take on K different values z correspon-

ding to K treatments or groups, then the bootstrap procedure amounts to

0*,
generating X s in groups, say

X 0* iid. W~t = 1 - a1 {l _ ,A()}((k)) j
k,j (k) [0,t]k

where n k is the number of individuals having z = z (k) k = 1,... ,K.

observe that the Xklj 'os above are not resampled from the original

observations, even when no censoring is present. Rather, they are generated

In thanaseise uor

from a better and model-based estimate (k;F of their true F_.

example the usual empirical distribution for observations from group k.

7



(4) An important and related comment is that the Cox structure (1.1)

is explicitly relied on in the sense that if the model is wrong, then 8 may

display a different sampling variability. Thus the second order correct

confidence intervals for B we construct in Section 4 are not necessarily

even first order correct when the model is wrong (then the meaning of the

"true" parameter B must be changed to the "least false" parameter; see Hjort

(1985)). Similar remarks apply to the confidence intervals constructed under

model assumptions in Efron (1985a, 1985b). More robust confidence intervals

(for the least false parameter) would possibly be the result if one resampled

the triplets (Xi, 619 z ) directly, see the arguments in Efron (1982a, Section

5). This scheme is used in examples in Tibshirani (1984) and in Efron and

Tibshirani (1985).

Resampling the triplets does not utilise the fine structure of the Cox

model, and it is felt that the bootstrap scheme proposed here, based on the

best available estimated model, is better suited to catching the finer aspects

of the sampling variability of 8. It is still possible, however, that the two

schemes are first order asymptotic equivalent, and that a second order correction

to the simple method can match the second order correction we present in

Section 4 for the model-utilising method.

It appears important to sort out the consequences (at least asymptotically)

of using the simple method versus the model-based method, when the model

is correct, and for specific departures from the model. This is not done here.

8
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* 2. Asymptotic theory for Cox regression.

* Introduce
t

M (t) =N (t) -f Y (s)exp(B z.) dA(s), i =1,... ,n (2.1)
1 1 0 i 0 1

*where 6 denotes the true value of B. These are square integrable, orthogonal
0

martingales with variance processes
t

(Ml M )(t) =f Y.i(s)exp(B oz ) dA(s). (2.2)

* The family of a-algebras implicitly referred to is

F t a{N C s), Y () S < t}, t > 0.

Assume that the individuals are observed over a time interval [0, T] .

Then from (1.5)

n T ~ l
UMB E f 1z - ( 6) dM (S)

i=1 0 i S (s,R)

n T ~ )s~)
+ z f {z Y Y(s)exp($ z) dA(s). (2.3)

1~l0 i S (s 0S' 2.o

The second term vanishes when 6 = 60 i.e. U(6 U(6, T) is a martingale, with
0 0 0

NO (U6) U( (T) E f (z 0() d(M., M )(s)
n 0 0 n 1 (0)i~ 0 S (s,6)

(1) 2
T S (s,6

{S S()s,6 - }dA(s),
0S0(0)(s6

using (1.6). Assuming

S(k) (a s(k) (sa, 0<s< T, k =0, 1, 2 (2.4)

uniformly in s and in a neighbourhood of 60, in probability, it follows that
d

n 2 U(6) 0 N(0, E) , (2.5)

where

(2 - (1) (s , B )2(2 6

0 0) s(0) (s,8 dB)
0

9



To employ a Taylor argument we need

1() 2log L(B)/302 _ -S)3

ni T S(2) (1) 2
-~~~~~ dN (sS).8 ~ s,)

i-l 0 S() (s,B) S ((S8a) *'i'

Using (2.1) once more we get

1 1 n T [S(2) (S8) S 1 (sB)2 ..

- () Z 1 t(0) (0) I dM i(S) F
i= 10 S sB) S 0(s,B)

T () 2 (0
+ -{ '}IS (s,B )dA(s).

0S(0) (O S(0)040

It can be shown, using Lenglart's inequality, that if 8 B , then the first

term goes to zero in probability, and

16 E. (2.7)
n

This implies, using

o-U(S) =U(8) + '(6) (A 0

for some 8between Band 8,that
0

nW( - I }(-)}&L 2 U~
0 n 0

d l-
Z~ N(0,E) = N(0, E ) (2.8)

since 8 may be shown to consistent.

All this is in Andersen and Gill (1982) along with the necessary regularity

conditions. That paper also establishes the consistency of the natural estimator

Z CF {S2 (sBa) } (0) ) (2.9)
0 S ()

* for E, and explores the simultaneous convergence in distribution of Vrn ( 0-

100
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3. Asymptotic justification for the bootstrap.

The aim of the present section is to show that inference based on the bootstrap

method of Section 1 is asymptotically equivalent to the traditional inference

that is now carried out each week on the basis of large sample results like
V.-..

those of Section 2. With such a result in the rear one could try to go further,

exploring the possible superiority of the bootstrap to the traditional analysis F

in situations with smaller samples, by extensive simulation studies, as for

example in Freedman and Peters (1984), or by theoretical investigations, for

example along the lines of Beran (1982, 1984), Abramovitch and Singh (1985),

Efron (1985a, 1985b). Some speculations of this sort are offered in Section 4.

With (1.15) representing the basic bootstrap idea we hope to compare the

distribution of 8 - B with that of S - 8 given data. We limit the discussion -,i
0

to sequences of outcomes where the Cox estimator B converges to the true B • This
0

event, call it o has probability 1 under the regularity conditions of Tsiatis

(1981). It is not yet clear whether strong consistency of 8 can be established ..

under weaker conditions of the type made by Andersen and Gill (1982); their

martingale techniques yield only convergence in probability. We will henceforth

assume sufficient regularity to ensure

Pr(Q2) Pr{a - = 1.

*(Of course every random element, including covariate processes and censoring

mechanisms, must then be defined on a proper common probability space. Without

the strong consistency assumption the results below must be rephrased in a more

cumbersome manner, and become of "in probability" type.)

We will avoid being too general here, and also avoid putting up all the

needed regularity conditions; these are rather given implicitly by the arguments

offered below. The i.i.d. like framework of Tsiatis (1981) will be sufficient;

. .-



it is suspected that also Andersen and Gill's conditions will make the arguments

work.

The bootstrap sample is (Xi 1 ,i ,...,n as in (1.12). Define

N (t) = I{X < to 6 D=
i i -l

0*
y *(W - I > t, I~ > ti

Mi (t) - f1Mf1i s d S

Nt =N (t) Ef Y (S) M S)
0,t i i

where A is given by (1.8) and (1.11). The M, s become orthogonal martingales

w.r.t.

F a[N (S), ; S s < t}, t > 0,
t i _

with variance processes

(Mi M )Ct)!tzt Y~ Cs) AA(s){l AA CS)}, (3.2)

cf. Gill (1980) or Helland (1982). Furthermore Y C)is predictable (or pre-

visible), i.e. Y. (t) is known at time t-.

8was defined as the solution to

U (B) Ef{z - 0* s0 dN *(s) =0, (3.3)

i=1 0 S Cs,a)

where

S ( 908  = z ' (z) kY (s)exp(az) k 0, 1, 2. (3.4)

We also need --

I (M au Cs)/a
- n T S (2)*CB - M s(l*s,a) 21  ~)

E f - } dN s).(3.5)
-- i=l 0 t5 CO)*c5 8 ) S(o)* (S,8)

12



Proposition. With probability one,

n (* - B5)Idata N(O, E

^* 1 * ^* ~* *

and both Z - - - I (B) and n - - - I (a) converge to Z in probability.n n.

Indication of proof: The Taylor argument leading to (2.8) can be repeated

to give .

'W( t- B I (B 6 U*t), (3.6)
n

where B is between B and B We must prove that, for sequences in 0 , (i)
0

U( N(O, E), (ii) --n1(6) E S whenever B - B0, and (iii) B a B

Basic to these results is the convergence

p, sup s(k)*(s s(k)(s lil
Pr{ ss ()* ) - S( ) > e Idata} 0, a.s., every c > 0,

O<s<T, (sBO(,)EBaa
0. (3.7)

(k)* (k) (k)(i.e. S (sO) ought to converge to the same s (s,B) as did S (s,) in (2.4),

uniformly in s and in a neighbourhood B of B0, in probability, given data, for
0

outcomes in n o This can be established using a (weak) law of large numbers for
0

the space of right continuous functions with left hand limits on [0, T] to a

separable Banach space, available from the proof of such a (strong) law given by

Andersen and Gill (1982, Appendix II).

Start out writing

(B) n T _(l), *

U =  {i E (s dM. (s)
il 0 S (s,) 

.

n T (it*(s
+ E f {Z - S )} Yi*(s)dAi(s)

i=l 0 S 0(s,)
* *

1(8) + U 2(8)

as in (2.3). Now U2 (B) does not vanish for B = B, but one may prove that

n u2 (0) 0 0, a.s.,

by writing

13
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exp(dzt)
A(s) - 1 - ( S - .A(s)

=A(s)exp(ez1 ) - 0 i A.(s) 2 j. (3.8)
p

(One could for simplicity assume the covariates to be bounded.) AA(s) of (1.8)

is of order 0 C-) Next look at n" U( U*(B) U*(i, T) is a martingale
(k)*....4

(the processes S (k)*(s,8) are predictable in this conditional bootstrap framework),

and " -.
n• T

1 *- )*(T 1 n T 2)* 2 ,
.-n (U l(8), U1())(T) n Z- f {z i - (s* } Y (s)AA (s){J - AAi (s)}

i=l 0 S( (s,8)

{- • (O*s', } dA(s),
-" /{s()*(sg) ( *

where A means ignoring 0 {AA(s)2 } terms. That
_ * - d p  

-

n Ul(8) N(O, E), a.s.

follows now by Rebolledo's central limit theorem for martingales, cf. Andersen and

Gill (1982) or Helland (1982), using (3.7), Pr(Qo) = 1, and a necessary lemma
0

which states that

T p T
H (s) d(s) f f h(s) dA(s) (3.9)

0 n 0

if H is predictable and converges to h in probability. (3.9) is proved in the Appendix
n

Now (i) stated in the beginning of the proof is demonstrated. (ii) and (iii)

may be arrived at by similar efforts, following the route offered us by Andersen

and Gill (1982) and repeatedly using arguments involving (3.8) and (3.9) when

encountering new difficulties, and Lenglart's inequality. We will refrain from

giving all the details here.

14
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4. Confidence intervals.

The standard confidence interval for 8 is based on the large sample result

Vn (8 - 8)/T - N(O, 1), a consequence of (2.8) and (2.9), writing T 1/0,

* 11. In fact,

Pr B (rn - 8)/T < t} = '(t) + O(n- )

under mild extra conditions, for example boundedness of the covariates. Thus .

(4.1
Pr { - z(1-) < 8} = 1 - a + O(n-),

in particular the standard interval

<(al -A +8z ) n (4 .2 )

has coverage probability I - 2a + O(n ). Here

z(a)= - (1-a) = -l (a), z(l wa) a -l (l-a). (4.3) ..I
These confidence intervals (and similar ones for one out of several relative

risk parameters 8i"'" ,8p) are widely used in biostatistics and the engineering

sciences and can even make it to The New York Times.

The present section is concerned with the possibility of constructing

'" confidence intervals for 8 with better moderate-sampling properties than the

standard one.

Before we embark on that journey, let us briefly comment on the order 
of

magnitude argument that led to (4.1). Results of A.I in the Appendix can be

. shown to imply that n (a2 - G2) converges to some normal limit in distribution. 4

It follows therefore from (2.8) that An (8 - 1) (1a2 + 0 (n .. U-

and the martingale n U(S ) behaves in the correct way: It converges to a

normal (0, 02), and one may show using techniques of the Appendix that it has

skewness Yl nn where Yln tends to some y'1 and kurtosis Y2,n/n where Y2,n

tends to some y2. These facts surely indicate that the speed is the usual

towards normality, i.e. (4.1) is true. A more careful analysis, that perhaps

15

"-* *----*"*.



also could lead to a Berry-Essden theorem for F (8 8 )/ could start out

0

rewriting n - U(Bo ) as A - n- B where
0 n n

1 n T
A - I {z -e(S, dM (s),n r- 1 ' -.

Fn i-i 0 s,)

1 n T
B - Zr Z (s) dM (s),

z (s) V n {E(s, o) - e(s,o)'-n 0.O 0

(1) (0)and where we for convenience have used E(s,8) = S (s,B)/S (s,8) and e(s,8)

(1) (0)for its limit in probability s((s,B)/s (s,8). The point of the rewriting

is that A has independent summands, whereas U(Bo ) has dependent summands.n 0

If the covariates are bounded, then the n distributions governing the n

martingales M,... ,M are close to each other, and one can write down an
n n

Edgeworth-Cramgr expansion or even a Berry-Ess~en theorem for A One may further
n

show, using martingale techniques as in Section 2, that (An , Bn ) tends in
n n

distribution to (A, B), say,where A and B are independent and Gaussian. -

The brief discussion above can be made rigorous in the sense of securing

(4.1), and can possibly also be used to establish (at least the existence of)

an Edgeworth-Cram~r expansion for n (8 - 8 ).

4.1. Percentile and bias corrected bootstrap intervals.d (d.*)

The results of Section 3 imply ,n ( - 8)/r - N(0, 1) a.s., where )2

* *l 1/a. 2 . This will imply that the bootstrap percentile interval

-(a) < < 8,-1(1-a) (4.4) ?;;;

is first order asymptotically equivalent to the standard interval (4.2).

Let us in what follows suppose that sufficient regularity is in force

to ensure

16
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Pr*(Vn ( B)/r < t} t(t) + O(n ) a.s. (4.5)

writing (T )2 - , where the a.s. in the statement reminds us that the bootstrap

. probabilities Pr, are conditioned on the random data. Uniform boundedness of the

covariates is sufficient for this Berry-Essden type statement to be true. (The

arguments below are basically valid even without (4.5) and (4.1), but results must

then be rephrased in a cumbersome manner less suited for exposition.) Then

Pr {8 < 8 + tT*/n} = G(8 + tt*/rn) = P(t) + O(n - ) a.s.,

and one can show from this that

- = + z(l-a) */v + O(n 1 ) a.s.,

G-(a) = g- z(l-c) *T/n + O(n -1 ) a.s.

Hence (4.4) is first order equivalent to the standard interval (4.1), in particular

Pr {8-(c1) < 8 < G-I( - a)} I - 2a + O(n -
2) a.s. (4.6)

There are ways to incorporate slight corrections to the percentile interval,

the simplest of which is Efron's bias-corrected intervals, see Efron (1981b, 1982a,

1985a). Suppose that a smooth increasing transformation h exists with the property

that

/ {h() - h(8)} N(-bX, X2 ), (4.7)

,n {h(8*) - h(a)} N(-bX, A2), (4.8)

where - and mean "approximately distributed as". b could be zero, in fact

Sections 2 and 3 in a sense show that b will be zero, asymptotically, to the

first order. We may think of b above as a second order fine-tuning of this,

say b = b //n.-
0

The normal pivotal assumptions (4.7), (4.8) give a bias-corrected

percentile interval, as in Efron (1982a,Ch. 10). The result is

G f-{(z)+ 2b)} < 8 < G {((z + 2b)} (4.9)

17



where b 1 -G(80)}- compensates for the possible bias of the observed 8 as an p

estimate of B. If Pr,(B < 81 - Pr(; < 81 - then b 0 and (4.9) reduces to

the ordinary percentile interval.

It is not obvious that b can be taken to be the same" in (4.7), (4.8); this

is rather an optimistic (but educated) guess trusting the bootstrap approximation

idea. There are also theoretical reasons for believing in a common b b /n,
0

however. Further comments on this and the question of how precise the -

statements in (4.7), (4.8) must be are offered in the next subsection.

4.2. Second order correct intervals.

A competing interval

BLOW < 8 < 8UP

to (4.2) and (4.4) would be more accurate if

Pr {LO< 8} = 1 - a + O(n-), Pr {p < 81 = a + O(n- ). (4.10)
LOW UP

Perhaps many intervals share this property; we are only interested in those

that are "inferentially correct", which we take to mean "based on the Cox

estimator 6". (8 is an asymptotically optimal estimator according to Begun et

al. (1983) (but shares this property also with for example Bayes estimators,

see Hjort (1985).) We should therefore look for intervals of the type 8LOW .
(l-a) (a/ , le)( -a "--

-z ( /nn + A (a) /n, + z ('-a) n + A (-a)/n with the A 's chosenn UPn n -

to make (4.10) true. Such intervals could be termed second order correct.

It is clear that second order asymptotics in some form or another must

enter the discussion if such sharper intervals are to be constructed. The approach

described now is due to Efron (1985b). The following may be read as essentially

a review of his method, but with more attention paid to order of magnitude argu-

ments and to the assumptions actually used to make the second order statements true.

The results of Section 2 imply via the delta method the more general first

order asymptotic result

Pr [-n {g(i) - g(a)}/A(B) < t] = (t) + O(nl)

18
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for each smooth transformation g, with X,(8) Ig'(8) r. This is not sharp

enough to get to (4.10). But assume that for some smooth increasing g and some

cleverly chosen constants ao, b 0

n {g(8) - g(8)}/)(8) N(-bo//vn, 1), () ( + a{g(8) - g(8o )}

in the sharper second order sense, i.e.

Pr[in {g(8) - g(B)}/X(B) < t] = ¢(b /Yn + t) + 0(n-l,
B 0

where X(8o) is the standard deviation for the limiting distribution of Vn' {g(8)
0

- g(8)1 under some reference parameter value 8o . In order to improve chances

of there being such a sharper g both a bias-correction in the form of bo/ and

0

an acceleration-correction entering the standard deviation have been allowed.

The limiting standard deviation of rn {g(8) - g(8)} under 8 is of course not

always of the form X(8o) + ao{g(B) - g(8o)}, we would in our situation expect

it to depend also upon the unknown hazard function ci(.) for example. However,

the statement needs only be local in character, i.e. valid for B in a neighbourhood

of the reference point 8, and the dependence upon a(.) and possibly covariate

values may be subsumed in the (approximate) constant a 0

There is no harm in taking g(8) -0 and X( o) = 1 since this can be arranged

by adjusting g accordingly. We therefore state the assumption above as

,,r- Y - . .

H (t) = Pr { ( " - < t} = 0(bo/n+ t + 0(n -  (4.11)
n 8 a Y o

0

writing y = g(B), Y = g(i). (The 0-term depends upon both 6 and t; the extent to

which uniformity is needed is discussed later.) Notice the similarity to Edge-

worth expansions; the r.h.s. may be written 0(t) + 4(t)8o/n + O(n-l.

Under assumption (4.11) a second order correct confidence interval for 8,

involving g, ao, bo, may be constructed. One has

19
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'rY ( + a y) (Z-b/rn)

where Z is very close to being standard normal,

(r Z - b IFn < D ti= (t + b IF) + 0O(n )
8 0 (4.12)

Pr a{Z < t} 0 (t) + O(n )

It follows that

da b
(1a + a Y) (1 + -~(Z- *

0

It should be safe to take logarithm~s since both Y and (Z -b /Frn)/Fr are close
0

to zero; see Efron (1982b, Sections 4 and 8) for a more careful treatment, and

the corresponding discussion in Efron (1985b). Hence

da b
h(y) =h(y) + W, W =log {1 + --R (Z -- )1(4.13)

rn An

where h(t) =log -(l + a 0t). The natural interval on this hfg(5)} scale becomes

h(y) w (a < h(y) < h(Y) -w

(a) ~ (1-at) .
where Pr {W < w a, Pr {W < w I - a. Some analysis shows that

aa (a b o O n 3/2)
W =) log [l + -(z ci+) ~

VF F

and similarly for wlc) Using h 1(t) (1/a0) (et 1) and some algebra

-l (a)
=T2 h (h(Y) -w }

UP+On-3/2

where(-)

2 y + +(-fa y)0
vrn- 0 l (a /,Fn) z (a) +b ,rn

-3/2
and similarly for yLO = L + Q(n )

20



Our "correct" interval is now

8 <8< ; g (Y g (Y (4.14)
L UP

One has by (4.13)

Pr{B < 8l Pr {y < Y}UP UP

O~~n -3 /2 ) ''.'.

= Pr {h{y - -3/ < h(y)}
8 UP _

= pr8 {h(y) - w(c) + O(n3/2) < h(y)}

(a) -3/2
Pr {W < w + O(n

} e p ( ( a ) )  O n 1 ) ]' " "

= Pr [Z - b _IP < {-/a}{exp(w 1} + O(n--

(a) -1
= O[bo/0n + {n/a0 {exp(w( )) - 1} + O(n1)] + O(n - )

(az) -1 -1 -1
={z(V + O(n + O(n a + O(n),

and similarly

Pr{ < 81- a + O(n ).
.LOW.

The interval (4.14) depends upon the unknown quantities g, aO , b., and

approximations to and 8 must be devised. (4..14) was derived under

toLOW UP

assumption (4.11); its bootstrap version isr y Y)iii* -1

H (t)(r -Pr < t} = P(b In + t)'+ O(n- ) a.s. (4.15)
n 0 +

writing y = g(8 ), Y = g(B). Assuming (4.15) to be true and remembering (1.13),

G(B) = Pr,{a < a}
* O-l1

= H (0) = P(b /n) + 0(n 1 a.s.,n o

G( Bp) U Pr,{g(8) < g(UP)}

(1-a)z~l a  + b /n"1"
"* - 1 :. zo-

Pr[y - y < +- (1 0 y  - - ( -a )  10
on 1 -- a/n z +b/n

z ( 1-a ) + b /'n

= H [ ]0-.(1n (a1-)a+
n 1 - (a / 'n) {z(z a) + b In}

0 0 ,

S(z~la) + O(n- ) a.s.,

21
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(ai)

00 0O

(a  ) +z + b r'n I',

[c-.ii. -1

¢(z a + 0(n) a.s.,

where b.')+/-
b z[- + b b/'n}"(.16

z + (4.16),n 1 a /n) (z~l a + b /,(rn} I.'

and analogously for z . Hence

b /n- -I {G( ) + O(n- )} = ¢-{G( ) + O(n-) a.s.,

{zO(nl)} = G l{$(z[l-]} + O(n3/2) a.s., (4.17)

= 1 [ai] O-n 1 .r~(i~ + -(3 /2GLOW  G {D(z + O(n + O(n ) a.s.

All this leads us to propose

W= G-l{¢( ])} < _ G'l{¢(z1-])} = (4.18)
LOW U

as the "final" interval, where

(1-0i
l- z +

z +. 0 (4.19)ln 1 (aol) {z~ l  + vrln -:':

and correspondingly for z , where /v = [- and where /n is an
0 0

estimate of a /An, a separate and difficult problem returned to in the following h.

subsection.

The resulting interval (4.18) does not depend upon the transformation g

or upon bo, ao9 and is Efron's acceleration and bias corrected (ABC) interval.
^[l-a] (1-n) z[n]

Observe that if n is large, then z is close to z and z is close

(a)
to z , i.e. (4.18) is not very different from the simple percentile interval

(4.4), which in 4.1 was found to be first order equivalent to the standard

interval (4.2). (4.18) purports to make the necessary next order corrections.

22
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Each of the proposed estimates a of 4.3 has the property that a - a
0 0 0

-(ni). Also, b // - b // = O(n- )(nV = a.s. so that-.,.
p 0 0

z z +o( ),
p

entailing

8UP = {D{(z- + 0 (n-)}pp _ ._

= G-l{o(z[l-L])} + O(n3/2) .
p= D (z + 0 (n- 3 22 )

p -3/2 
(4.20)

LOW B LOW +  p (nJ

Suppose that the normalising transformation g is nearly perfect, i.e.

-1the O(n ) term of (4.11) is practically zero. Statisticians have experienced

wondrous g transformations like that in many situations, for example Fisher's

tanh transformation of the correlation coefficient and Wilson-Hilferty's

cube root of the chi squared. Then the pivotal statement (4.13) is in force

with a distribution for W that is really independent of the unknown parameters

(1-cu)
6 and A, and the interval constructed from it, h(y) - w < h{g(6)} <

(ci)h(y) - w would be the correct interval in a strong sense, both inferentially

and probabilistically, cf. the discussion following (4,10). What we have

actually shown is that (4.18) has endpoints coming very close to the correct

endpoints g [h {h(y) - wl }] , g [h-{h(y) - w ], namely erring by

just 0 (n -3/2)
p

This seems to be Efron's motivation for and justification for the ABC

interval (4.18). A perhaps separate issue is whether (4.18) is second order

correct in the sense of the discussion following (4.10). We have come very

close to establishing (4.10) too. Remarks (2) and (3) below explain why the

key assumptions (4.11) and (4.15) can be trusted, and these assumptions were

shown to imply that 8 < B < U had the prestigious O(n- ) property. The

LOW- UTP
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question is whether p + 0 (-3/2 implies Pr <8- Pr ($ <8

+ O(n-). This certainly looks reasonable, and should be true under very mild

conditions. A formal proof might perhaps need the existence of Edgeworth-Cram~r

expansions ror Y (8 Up- 6)/r and F(n -()/0, cf. the discussion in the

beginning of Section 4.

Remarks. (1) From (4.16) we see that the confidence interval just as

conveniently can be given in terms of a = a / n and b = b In instead of a and0 0 0

b . We used a and b only for motivational purposes and for keeping track of
0 0 0

the various oreders of magnitude involved in the discussion. Indeed a, bo, and

g are allowed to depend upon n too, but in a "stable" manner.

(2) The assumption (4.11) is not as restricitive at it may appear to be.

It states that the distribution of 5, to a second order approximation, is a

scaled normal translation family, in the language of Efron (1982b). It is an

implicit result of Efron (1985b) and an explicit result of DiCiccio and Tibshirani

(1985) that such a transformation always exists for one-parameter problems, and

also, in appropriate senses, in multi-parameter and nonpat~metric models. The

precise definitions behind these "appropriate senses" are (in their current

formulation) evasive and circumventive in nature, however, and involve least

favourable reductions to one-parameter situations, and are perhaps not entirely

satisfactory. We shall indeed follow Efron (1985b) and DiCiccio and Tibshirani

(1985) and employ one-parameter reduced models in the following subsection,

where we struggle to find estimates for a a0/Fn, and essentially use the

arguments of 4.2 in the reduced model. Of course the Cox model fits neither of

the categories mentioned above, because of its infinite-dimensional nuisance

parameter. It can however be closely approximated with one with finitely many

parameters, as explained in 4.3 below. On these grounds assumption (4.11) can

be trusted.
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(3) It is not at all obvious that (4.11) implies the other key assumption

(4.15). H and H are close, and indeed the efforts of Section 3 establish
n n-,

supt 1Hn (t) - Hn (t)Il - 0 a.s. Needed now is a sharper statement, for example

W (t)l - 0 a.s.€ ut [ln~t -I n  .

or ideally (pointwise) a.s. boundedness of n1Hn(t) - Hn(t)I A
n n

Results of Bickel and Freedman (1980, 1981), Singh (1981), and Babu and

Singh (1983) indicate that indeed H Wt H Wnt + O(n -I  a.s. A lesson learned--o-"
n nii-.-

from these papers is that such results should not be taken for granted, however,

and that small changes in the definition of statistics may result in drastic

asymptotic differences. For example, it may be true that the distribution functions

H and H of the non-standardised variables Fn y ) and n (y -•

n o-* t b-. .-q

respectively, have n sup IHn°(t) - H *(t) = O(log log n) a.s. even thought n.. n

n suPt IH n(t) - H (t) - 0 a.s. This effect is not necessarily visible fornn -.

worldly sample sizes, however; log log of a (US) billion is 4.50. And as pointed

out in Remark (4) below only pointwise closeness is needed.

The.cited papers employ the machinery of Edgeworth-Cramdr expansions and

establish the validity of such using Taylor expansions of characteristic functions.

Such techniques work well for fully observed i.i.d. variables but do not lend

themselves easily to the present situation, due to the presence of censoring and

covariates and the implicit definition of B. There are nevertheless reasons to

believe that H and H are sufficiently close. In the notation of earlier
n n

sections

_n- = 1 -l Uo
n ("** .-i - *. - ""

n) = -- I(*) (n U +0 )},n p

where the martingales n -  U o  and n U have very similar features. They

are both asymptotically normal with the same variance E according to Sections
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2 and 3. Furthermore, with a considerable amount of effort one may show that
-,'.- "..

* they have skewnesses y /n, y*n/n and kurtosises Y /n, y n satisfying
ln l,n 2,n 2,n

"" Yl,n Yl' l,n l 1'2,n Y112' Y2,n Y2 for appropriate limits y 1 9 Y2 "

* These facts, combined perhaps with techniques as in Bhattacharya and Ghosh (1978),

Hall (1983a),Withers (1983), open up for Cornish-Fisher expansion type study

of the closeness of H to H . This is not pursued here.
n n

(4) Let us point out the extent to which the basic assumptions (4.11) and

(4.15) were used in the construction of the super bootstrap interval (4.18) and -..

the verification of its second order correctness. (4.11) was used to get to the

pivotal statement (4.13) and the a and I - a points of W appearing there. It is

only necessary that (4.11) holds for t = z
(a) - b //n + O(n- ) and for t = z (l -a )

O0

b/A- + O(n- ), i.e. roughly only for the two points -z (1-a) nd(1-a)
0

However, the 0-term appearing in (4.11), or in (4.12), must be uniform for 6-in

a neighbourhood of the reference point 13

(4.15) was used to get estimates of bo/V/n and for G(aLW) G P

Precise estimates of H (t) were needed only for t = 0 (around which the approxi-
n

mations work best), for t = {z (a) + b}/{l - a(z(a) + b)}, and for t = {z (l-a) + b)
(1~-a) (1-a) (1-a) .

/{i - a(z + b)}, i.e. roughly only for the three points 0, -z , z

But again, the almost surely statement in (4.15), which here can be read as

"conditioned on 0 being very close to $ 0, must be uniform over a neighbourhood

of 0 values.

(5) The proposed confidence interval (4.18) has been given in terms of
| -i

G where G is the bootstrap distribution (1.13). Of course G is in reality

only approximated as in (1.14), requiring BOOT evaluations of 0 The investigation

of Efron (1985b, Section 8) indicates that BOOT = 1000 is a rough minimum.
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(6) An important final comment in this subsection is that there are

other possible approaches to second order correct intervals. If we think ofA -) ,rn + A Ca) /n, j + z (1 -a)
the "right" interval as having endpoints 0 - z(l-a)/, + An  , .-)

+A(1-a)n(rAn) l-A)/n, then the problem is to get hold of the second order coefficients

A () and A n and it is clear that many different methods could manage

this, in the same way as there always are a variety of consistent estimators

for a given statistical parameter.

The route chosen in this paper has been the one invented in Efron (1985b),

but carried out in a semi-parametric model. There are also variations on the

bias and acceleration corrected bootstrap interval (4.18). It may be possible

to devise approximations to b and a that require less computing than the ones
0 0

proposed here. Another variation could use ideas from DiCiccio and Tibshirani

(1985), involving the explicit construction of a smooth transformation g having

property (4.11). One such g consists of a variance stabilising mapping followed

by a skewness-reducing transformation. Possessing g one could evaluate the

interval (4.14) directly.

The perhaps most natural tools from classical statistics with which to

fine-tune large sample results are expansions of the Edgeworth-Cramgr and

Cornish-Fisher type. The key idea would be to "remove skewness" in one fashion

or another. (It turns out in 4.3 below that the acceleration a is connected
0

to the skewness of a certain log-likelihood.) Methods using related ideas

(expansion of log-likelihoods) were put forward in early important papers by

Bartlett (1953a,b) and in an unpublished report by Tukey (1949). A recent

reference is Abramovitch and Singh (1985) who use Edgeworth-Cram4r methods to

construct better intervals, both "classical" Cremoving skewness) and based on

the bootstrap. Other references, mostly concerned with the i.i.d. nonparametric
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case, are Hall (1983a) and Withers (1983).

Cox (1980), Sprott (1973, 1980), Barndorff-Nielsen (1985), and DiCiccio

(1984) use saddlepoint approximation techniques to obtain second order

corrected approximations to the distribution of the maximum likelihood

estimator, and construct intervals based on these.

If one could effectively estimate the skewness of the distribution of

8 directly, the chi squared approximations as in Hall (1983b) would be an

attractive alternative.

Still another and seemingly unrelated method uses a Bayesian framework.

If one uses as endpoints the lower and upper a-point calculated from an a

posteriori distribution for 8, then this interval can be second order correct

(in the frequentist sense adhered to here) for a cleverly chosen a priori

distribution for the parameters 8, a(.). Such an approach is investigated in

general terms in Welch and Peers (1963), Welch (1965), Peers (1965), and

recently extended and clarified by Stein (1985). Stein's paper is written

*. "non-rigorously but with some care". Using such an approach in the present

situation would involve constructing the a priori distribution as a solution

to a differential equation (derived for the approximating finite-dimensional

model also studied in 4.3 below) and then carefully checking that each in a

long row of approximations involved in Stein's arguments is of sufficient

precision. The a priori distribution would be improper, but different from

the one derived from Jeffreys' non-informativity principle.
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Let us mention a final possibility. One may invert the likelihood ratio

tests for 8 8o, using the limiting X approximation. More specifically,

consider

D (B) -2 log L(8o)/L(a)
n o0

n T S (s,i)
2 E f {(6 -8)z. - log } dNi(s),

i=l 0 S (sd'oS

where L is the partial likelihood given in (1.4). One can show that Dn(8 )

n o

tends to a X in distribution under ao, even if the likelihood only is the

partial one, using results of Andersen and Gill (1982). This can of course

be used to test 8 = 8o , and a natural interval is

I = 08: Dn (0) < (z}. " '",

That I really is an interval follows from log concavity of L.

I is a natural interval since it is based on a natural and perhaps

even optimal family of tests. One can also give arguments in the direction

of showing that it is second order correct in the sense discussed after

(4.10). Peter Bickel has pointed out that a Bartlett correction factor

could lead to even more precise intervals, with coverage probability 1 - 2a

-3/2+ O(n- ).

Finding I in practice would be a difficult but solvable numerical

problem. The situation is less clear when the problem is finding a second

order correct confidence interval for one out of p relative risk parameters

in the multi-parameter Cox model.

There is perhaps a common theme underlying the various approaches,

since nearly all of them involve expansions of likelihoods in one form or

another, but this theme is at present not fully understood.

29

_ 7 o.



4.3. Computing the acceleration constant.

The only quantity left to specify in the proposed confidence interval (4.18)

is the estimate a ao/ n of the acceleration constant a = a n. Efron (1985b)
0 0

provides formulae for a in multiparameter and nonparametric models. The Cox

model under study has however an infinite-dimensional nuisance parameter. Although I
a direct approach is possible, working only in the "continuous" Cox model, we "

shall below approximate it with one with only finitely many parameters, find an

appropriate value for a in this model, and afterwards take a "fine limit" to

get back to Cox.

The traditional statistical analysis of Cox' model starts out with the

partial likelihood (1.4). The real or full likelihood can also be written down,

but involves the hazard rate a(.):

n T -,

L(8, a(.)} = n exp If {log a (s)dNi(s) - Y(s) (s)ds}],
i=l 0

i.e.

n T
log L{O, a(.)) = E f [{log a(s) + Bz }dN (s) - Yi(s)exp(z )(s)ds ] . (4.21)

i=l 0 ii-i

L{B, a(.)} is in fact (proportional to) the Radon-Nikodym derivative of the

probability mechanism governing the (Ni, Y ) processes under (S, a(.)) w.r.t.

a product of simple Poisson processes, see e.g. Brdmaud and Jacod (1977, Sections

2.7 and 3.5) or Aalen (1978, Section 3).

Let us approximate the above model with one where a(.) is taken constant

on each of many small intervals. Split [0, TI into m such intervals with mid-

points s. and lengths ds., and let C(s) = a(s.) for s in interval no. j. The

resulting model has m + 1 parameters and can be handled in Efron's (1985b)

framework. The intention is to let m tend to infinity and the max mesh to zero

after the necessary intermediate analysis (and n is fixed). We shall, more for

notational and technical convenience than out of necessity, assume that Yi is

constant on each of the m small intervals. dN (s.) denotes the increase of
ij

counting process N over interval no. j (and is 0 or 1).
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First we need maximum likelihood equations and information matrix in theL

reduced model. Write L~m L (61(D) f or the (full) likelihood in the approxi-

mating model, i.e.

n m
log L~m E Z {log cx(s ) + Bz IdN (s)- Y (s s)exp(6z1 )W~S.)ds 1, (4.22)

i=l J-1i J

where e (8, ci(s 1 ).. . ,(s m)) is the parameter and D =((N.i(s), Y (s)) ;s < T1

is the data. Calculations give

soL(M) n m)d
1: E {z dN (s Y (s )exp(z W±S. )d

1=1 j=l Ij

n T
Ef z {dN (S) Y Y(s)exp(Ozi)ct(s)ds},

aoL(in) naoL = E {dN (s )/c(s Y (S ()epB asd)
aa(s) j .. ex(z)tsd,

-dN(s )/c(s) - s '~(s $)ds;

(Mn) n m
a~o Y (s )z 2exp(Ozi WtS )ds.

962 1=1 j=l i ~ i.

T
-- n I S(2(s, O)c(s)ds,

a~logL~m) dN(s )/cL(s.) 2 6.
aa(s.) ac(s)

=is used to indicate the result evaluated back in the Cox model, i.e. after

having mn sent to infinity. It follows that the maximum likelihood estimators

B, CL (sl)1 . 'OLsm~ satisfy

ci~s.ds. = dN(s.)/n

3 (0) C.

n T
The l.h.s. of the last equation E f .1 {z~ E(s, B)}dN (s), where we now

write
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E(s, 8)-s((s, 8)Is()(s, 8). (4.23)

It is encouraging to notice that 0 obtained in this way, after letting m tend

to infinity, is identical to the usual Cox estimator B, cf. (1.5); indeed we

shall not distinguish between them in what follows. A similar remark applies

to the cumulative estimated intensity A, compare (1.8). This can be taken as

additional credit to the partial likelihood approach and is related to earlier

findings of Johansen (1983) and Bailey (1984).

The observed information matrix is

21l 22J

with elements
T (2)

-l n f S (s, 8)dA(s), 1
0

2 = {nS (SI ) )ds <m% (4.24)112 (s 1 ".J.

12 = diag {dN(s )/a(s )2; j < m}. -

22• 

Next we need Stein's (1956) notion of a least favourable one-parameter

family for 8 at the fixed parameter point e = (8, c(Sl),...,as)). The least

favourable direction at this point is P^ = I-1, where v is (3y/38, ay/a(Sl), 1

... ,ay/aa(SW))' evaluated at e, and where y = y(8) is the parameter of particular

interest. Here y is just S and

= ~-( 1]= ( 3.(4.25)
Well known matrix formulae and some algebra yield

I1= ll-i2 122 121) - n -, (4.26)

i21 1 11 {l E(s., l(s (4.27)
_ 22 121 .n j M
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Stein's least favourable family is the one passing through e in the direction P,

F - (Lm)(T I)E L(m)(e + TrII)}. (4.28)

T is in a neighbourhood of 0 and is the only unknown parameter here;

denotes a hypothetical new collection of data {(NiCs), Y (s)); s < T drawn from
i""

L(m)(e + TiI6). The Fisher information bound for an estimate of 8(T) = + TiI1

evaluated at T = 0, is the same as the bound for estimating 8 in the original

m+l parameter family, evaluated at 8. F is the only reduction to a one-parameter

family where the problem of estimating 8 does not become artificially simpler.

See also Tibshirani and Wasserman (1985).

Efron's formula for an estimate of the acceleration a = is 

;(m) SKEW L0 log L(m)(e + zi16)}. (4.29)

The result after differentiating log L(m) 8 + Till, a(sl)_ TE(s I, )(sl) 1I .

&(S) - TE(sm , m1ks m iI} w.r.t. T and putting T 0 0, where E(sj 8)

is (4.23) evaluated for 8 8 and with the "new data" D, is the variable

(m) lln m {~ ~j is z)(J.''"' .
ff)=il n m z - E(s., 8){dN - ( )exp( )&(s )ds.}. (4.30)

i=l j=l i j i J

am) SKEW ( Im)} can now be evaluated in an explicit way, using ("time-
6

discrete") ideas from the proof of the ("time-continuous") lemma in the Appen-

dix. We are more interested in a, the limit of a as m tends to infinity. One

1
may prove that a = 6 SKEW (V} where V is the limit variable

n T

- T - E (s,8)} {dN (s) - Y (s)}, (4.31)
n i-l 0 i 1

where N i  Y now denote hypothetical data drawn from the distribution with
i'

cumulative hazard A of (1.11), i.e. exactly equivalent to coming from a
* * * * *.".-,

bootstrap sample (XI , 6i )"'''(X ' 6 )' compare (1.12), (3.1). E (s,8)
n n

n *n * (l* (Q)*
here denotes E •s)exp(az / Y (s)exp(z.) = S( (s,8)/S (s,8). . .

jlj j s j=lYj  "
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One possible method of computing a is therefore to exploit the generated

bootstrap data samples (even more). Each of the BOOT bootstrap samples leads

not only to a realisation of 8 but also to a realisation of V, say V*b This

could for example be computed at the beginning of the numerical routine that

finds 8 , compare (3.3). Now use the empirical skewness of these BOOT V-values ... L

as an estimate of the skewness of V, i.e.

SKEW {V * ,...,V }. (4.32)
6

Of course the constanL 2-1 may be removed before computing the skewness.
n

The scheme above, taking advantage of the data and the model using raw

computing power, is in the true bootstrap/meat axe spirit, and does not require

any theoretical knowledge, however interesting, of for example the skewness of

a martingale. If Statistician A followed the procedure above to fill in his

value for a a n in the confidence interval (4.18), then he has done his
0

job and has the (second order) right not to be interested in an explicit

formula Statistician B may have worked out for a.

The present author will nevertheless join forces with Statistician B

and proceed working on alternative approaches to the computation of a. Explicit

(or less implicit) expressions are always valuable, and can here lead to a

better understanding of the acceleration factor, but the prime reason for

carrying out the reasoning below is that the formulae that are obtained are

of use also in other statistical problems.

Instead of V, consider

n T "1 -i ,-T
V --n f ~z - E(s,6o)} {dN (s) - Y (s)exp($ozi)dA(s)}. (4.33)

i-i 0 0 ip8ids)

V is just a constant times

34

. .. . . .



n T
U - f {z -E(Ss dMi (s),  (4.34)

rn i- 1 0

employing once more the martingales (2.1). a' = - SKEW (V} is considerably
6

easier to give a formula for than is a - SKEW {V}, and it will also be

easier to construct estimates a' for a' with sufficient precision. The results

of the Appendix can be shown to imply that for the proposed a' displayed later

a' (n ) a.s., or a -a 0 -n a' - a=O(n 2) a.s., which is

good enough, compare (4.19) and the arguments following it. Using a' instead

of the a that would result from explicit moment evaluations saves us from a
large amount of terms like (1 - AAi(s)}3 Ai(s) - AA (s)3{l - Ai (s)} etc.,

i -iA i is)

cf. (3.8). The a-ingredient chosen for citation in the preceding sentence

will in its a' version be simply exp(azi)dA(s).

An exact expression for a' is obtained as follows, using formulae for

the second and third moments to be found in the Appendix. One has EU2  ER
2

and EU3 = ER /n where
3

1 nT "''"

R n i=El f {zi E(S )2 i(s)exp(%ozi)dA(s)

{S (2) (s
o ) - S(1 ) (s o )2 /S( ) (s,8o ) }dA (s), (4.35)

0 000

n T
R E {z. E(s,B )13 y epaz)As3 n i= z1 0 Eis)exp(Zi)dA(s)

1 Tt n n
+ -f E Z {z -E(S,B {z -E(t,a )}2y (t)exp(B z.)dA(t).

n 0 i=l j=l j o j

(4.36)
Hence

a' =ER /{64n- (ER (43/3)3 2
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There are a number of ways to proceed to get hold of (a version of)

a'. One might stick to exact expressions, using for example

EY.(s) = Pr{X ° > s, c. > s} = exp{-A(s)exp(3 z.)} lfc. > s),
Si 0 01 -

and arrive at long and complex expressions for ER, and ER Then one should

plug in S and A for B and A where necessary and compute the whole thing.
0

(The formula above applies when the censoring time ci is known; in the random

censorship model

EY.(s) = exp{-A(s)exp(B zi)} R[s,-)
. 01 o

is appropriate, where R denotes the distribution of censoring times, and for

which a Kaplan-Meier estimate is available.)

Or one might use some approximations. It is demonstrated in the Appendix
^ 2 2 ER + 0p(n- 2), s0 that 02 is a good enough estimate of EU

2 ,
thatER+0( ),stht2

2 2 p
and that R 3 R ' + R 3  is within 0 (n 2 ) of ER3, where

n T

R3' - E f0 {z. - E(s,8)} 3 Y.(s)exp(az )dA(s), (4.38)
3 n .: 0  1 1 i

1n T t
R -3 E . {._E(s,)}exp(Sz.)dA(s){ziE(tL)} 2Y.(t)exp(z )dA(t).
3 n i=1 00 1 1

(4.39)
It follows that

a' + (4.40)

6/n I 3

(-l) 1 1 (-l)
is within 0 (n of a' = SKEW {U} -- SKEW {V!, and also within 0 (n

p 6 6 p

of 1/6 times the skewness of U evaluated at the maximum likelihood estimates

, a nd finally within O (n - ) of a computed as in (4.32).

The confidence interval (4.18) obtained by inserting a' above is there-

fore also second order correct. Variations exist. Since a is computed in any

case and since R 3' also is easy and natural to compute from the data, in that

36 -
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it provides a measure of how skew the distribution of covariate calues z

is in the actual experiment, one might consider keeping these in the

formula for a' but bootstrapping to get hold of an equivalent version of R3"

viz.
T t n * n ''

3 3 n f f Z {z.-E (s,8)}dM (s) E {z -E (t,8)}2y (t)exp(4z)dA(t),
n 0 0 ji=l i j P.j

compare (4.36), (4.39).

There is basically a choice between the bootstrap based a of (4.32),

requiring a large number of computations of the variable V of (4.31), and

the explicit formula a' involving 3 ' and R3"" The latter choice displays

the oldfashioned un-bootstrap feature of consistently estimating a population

parameter in an explicit way, but the first choice may still be the most = - _ .

practical one, given that the statistician has decided to generate bootstrap

samples. A final reason for working out the a' formula is that one conceivably

might construct approximations to the bootstrap distribution G itself

without bootstrap samples, perhaps using Edgeworth-CramEr expansions techniques

or perhaps using a method similar to one invented in DiCiccio and Tibshirani

(1985).
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5. Concluding remarks.

(1) It was shown in Section 4.2 how the assumptions (4.11), (4.15) led

to the second order correctness of the confidence interval (4.18). General

difficulties with multiparameter families caused however the somewhat evasive

treatment of the acceleration factor a presented in Section 4.3, where

recourse was taken to a certain least favourable one-parameter family. Thus,

following Efron's (1985b) construction, we rather employed the equivalent

local version of (4.11) for this least favourable reduction. The arguments

of Section 4.2 easily carry over to the reduced model.

Part of the problem is the difficulty of obtaining a proper and universally

agreed upon definition of a second order correct interval in the presence of

nuisance parameters. We may speculate with Efron (1985b) that given a suitable

and sensible definition, (4.18) will indeed be second order correct. More work

is needed in this area. A study of transformations to approximate normality

in multi-parameter models, parallelling and extending the work of Efron (1982b),

would be welcomed.

(2) The first half of Section 4.3 was concerned with the problem of '

obtaining the least favourable one-parameter family in the Cox model, considering

a(.) as an infinite-dimensional nuisance parameter. The problem was solved

via intermediate analysis in a finite-dimensional approximating model. One

can also obtain the same result separately and more directly, working only

in the time-continuous Cox model, using a suitable extension of Stein's notion

of a least favourable reduction for models with infinite-dimensional nuisance

parameters. Such an analysis is indeed provided by Begun et al. (1983, Section 6)

(with slightly different assumptions). Both approaches are valid; there is only

the recurring problem of "where to put the hard part".
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(3) The most important extension of the model studied in Sections 1-4

is the traditional p-variate Cox model, in which individual no. i has covariates

zi  (Zl I .. VZip and hazard rate ai(s) = a(s)exp(8'z i) - a(s)exp(81zi I +

+ 8pZ 5. Most of the discussion of earlier sections goes through for
p "p

the p-variate model, with only minor modifications. In particular the basic

bootstrap scheme is as in (1.10) - (1.12), only with 8 z + ... + Z
1 i'l p i'p

replacing $zi. There are now p bootstrap distributions Gi(t) = Pr 8 < t}.
i* i

There are p-variate versions of Sections 2 and 3, involving at crucial

points a multivariate martingale central limit theorem. Involved in this is

a p x p covariance matrix Z with elements

T
j2= f {2(s8 ) - s(l)( s ,8o) (1) (s,8/s (0) (s,8)dA(s), (5.1)0 JRf 0o S

cf. (2.6), where s(1)S ) and s(2)(S ) are the limits in probability of

S0 jR 0l~'j n A_(2)o (s 1 .) n,.-
respectively S() = i= Z i,JYi(s)exp(8'zi) and (2 ) n ZzilZi,JZi,'

Yi(s)exp(8'zi) Also involved is the natural analogue of (2.9), a consistent

estimator .with elements oj£ After working through the details one arrives

at an asymptotic (first order) justification of the bootstrap procedure, and

in particular it may be verified that < (1-a) is asymptotically

equivalent to the traditional large sample theory based confidence interval

for a , namely 6 - z (l-a)(;iis/n < + z (a) /in, writing

as usual a and a for the elements of respectively Z and .

Suppose a second order correct interval is sought for the parameter 8. It

can be demonstrated along the lines of Section 4.2 that

G[- < 1 (5.2)

is such an interval, where
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, . z~~z - z + 1,.-:
- b + (5.3 )

[ (z + ) ''

and similarly for z,[a , and where b1 - 1,o/n" 6 {G 1(8.)}" It remains

only to find the appropriate acceleration factor a a /v'n.
l.o

The treatment of this problem in the univariate case of Section 4.3 can

be parallelled. The approximating finite-dimensional model with a likelihood

analogous to (4.22) has p + m parameters. Skipping many details, one arrives

at the equivalent of (4.31),
n T.."
z K (s,) {dNi * - (s)dj (s)* (5.4n i=l 0 I i '  s-i sdis' .4!>

where
^ ~P lu {z- -

Kli(s,8) = " {li,u - * (s,)}, (5.5)
um1

, (1)* (O)* - = , * n *
E (s,8) =S (s,)/s (s,A) E z. Y. (s)exp(8'z ) Y (s)exp(8'zu u i= ,U i i.

(5.6)

As in Section 4.3 there are at least two ways to proceed to get hold of

1
a, - SKEW {V or another second order equivalent version lying within

-"

O (n ) of a One effective method, given that the statistician has decided
p -

to generate bootstrap samples in the first place, compare the discussion in
• b l*b, s

Section 4.3, is to evaluate bootstrap replicates V along with the 1 s,

and use 1/6 times the empirical skewness of these values for a1. Another

possibility is to use an explicit formula. Consider

n T '

VI Z Kp(s'8) {dNi(s) - Yi(s)exp(8'z i)dA(s)}, (5.7)

with

P luK i(s,8) =rI a {z - E (s,8o)}' (5.8)
,i u0 i'u u 0

writing Eu (s,8) 1(s'8)/s((s'()' The plan is to evaluate the skewness

of VI at the maximum likelihood estimators 8, A.
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Some matrix algebra combined with results from the Appendix can be used

to show that EV1  + 0(n ) a + 0 p(n ), i.e. a 1- EV1  0(n)

Also needed is EV 3, expressions for which are obtainable via the methods of
1'

the Appendix. The result is that

a1 R 1 ,3 ' + R1,3  =-+ 0 (n-1 , (5.9)
(64 3n /2 ~ 1

where

n T P '1u3
E a fz -E (SB)}]Y (s)exp($'z )dA(s), (5.10)1,3 n ~ 0u i'u u i i 7

n T t p4
-3 f ft E a {z -E (s,A))1]exp(A'z )di(s)

1,3 i 1l 0 0 u-1 i'u u i

1 -u(t)lep8z)itd t) 5ll
E a {z -'UE tj}epAz )y()d()(51)
u1 iu

(4) The formulae derived in the Appendix for the skewness of a martingale

have use also in other problems. Let us briefly point out two applications.

(4a) Consider first a parametric Cox model, where the underlying common

a(.) is assumed constant over the time interval tO, T], say a (s) - 8epB

The log likelihood for this model, provided the data are collected over this

interval, for example in the form of counting processes N and at-risk indicators

Y as in previous sections, becomes

n T
log L(5,8) E f ((log e + Bzi)dNi(s) Y i(s)Oexp(Bz i)ds}. (5.12)

i=l 0

The maximum likelihood estimators ~,8solve the equations

n T
Elg f z {dN (s) -Y (s)eexp(az )ds} 0,

n T
Elg f O {N (s) -Y (s)oexp(Bz )ds) 0.
iDo0 iii
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8 and 8 are asymptotically optimal estimators by the results of Hiort (1985).

0*
Bootstrapping can be performed as follows: Generate X from the

i

estimated distribution F exponential with parameter , and let

* 0* * 0* * ,
Xi  Mmin{X i , c}, i  I{Xi  < ci1}. This leads to N and Y as in (3.3),

i 1,... ,n, and then to bootstrap replicates 8 , . Let G(t) - Pr{8* < t.

Suppose a second order correct confidence interval for 8 is to be

constructed. This can be done exactly as in Section 4, but with a new formula

for a = a /n. Following the reasoning of Section 4 in this case, which is
0

1
similar but in fact much easier, one gets a = SKEW {V}, where[. 6-

1 nT 
I E f {zi -E(a)} CdN.*(s) -Yi (s)Oexp(Bzi)ds}
n i=1 0 i-

I n T ,
= - E (z - E(8)} {N (T) - Oexp(z ) 0 Yi (s)ds}. (5.13)

in il i 0

Here E(8) = f0S (s,8)ds/ 0S (0)(s,8)ds. a may be computed using bootstrap

replications of V, or using

E 2  {F (2) ( () -(1)()2/F

" n 1  {Z. E(8)}36exp(8z) fY (s)dsFn -n i= 1 0 1'

3n T
- i E zi- E(8)}36 2exp(28z 0 tY(tldt]'
n0

where F(k) 8 ) f TSk(sB)ds.

Similarly other first order asymptotic statements in other parametric .-.

survival data models may be "corrected" to second order using the bootstrap

approach and results from this paper.
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(4b) As a second example of the use of the developed methods, consider

the "Kaplan-Meier problem" of obtaining nonparametric estimates of the unknown

t
cumulative distribution F and the unknown cumulative hazard A(t) -fa(s)ds

0
based on a partially censored sample of n observations from F. Let again X1

be the uncensored observation for individual no. i and let ci be the censoring

*time, so that X, = min{Xi, c Iand 6, = I(Xo < c I are observed.
ii i i-

The natural estimator for A is Nelson and Aalen's A~t) =fdN(s)/Y(s),0
01 0s n

where N (s) =I{X <-,6 } s I{X 0 >s, c. > s}, and N Z Nli i- ,i ,iii.i

Y Z Y Th Kaplan-Meier estimator for F is F(t) 1I - -~)/Ys
n-I[O,tIl -d~)Ys1

and lies uniformly within 0 (n )of 1 -exp{-A(t)}, see for example Hjort
p

(1984, Section 3).

t - nt-
if M (t) =N Wt -frY (sac(s)ds and M Z Mil and A(t) =fJ(s)ci(s)ds

i i 0i M =

where J(s) =I{Y(s) > 01, then

Z (t) = An {A(t) - Yt} A f J(s)dM(s)/Y(s)
n 0

n t
- f{nJT(s) /Y (s)1 dMi(s). (5.14)
r~i i-

Let us assume the random censorship model, where the c i's are drawn independently

from a distribution R, and independently of the X 0 ,s. Then EY (s) =Ffs,-~)Rfs,D)

-exp{-A(s)}R~s,o) =y(s), and Y(s)/n converges to y(s) uniformly on [0, TI in

probability, also nJ~s)/Y(s) converges to lfy(s) uniformly on [0, TI in probabi-

lity provided y(s) is bounded away from zero in this interval (which amounts

to saying y(T) > 0).

Z nis a zero mean martingale, and

n t
EZ Ct) 2 

=E - Z f {nJ(s)/Y(s)1 2 Y (sac(s)ds
n n i 1 O 0

t t

=E f (n1(s)/Y(s)}ct(s)ds -~f{l/y~s)}ct(s)ds =a(t)
2 . (5.15)

0 0
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d
It is a well known fact by now that Z (t) - Z(t), a Gaussian martingale with

n

Var Z(t) = o(t) 2. This result combined with a natural estimator of a(t) is

widely used to get pointwise or simultaneous confidence bands for A(t) and

a fortiori (via F(t) - I - exp{-A(t))) for F(t), see for example Andersen

and Borgan (1985) and Hjort's (1985a) discussion contribution.

The methods and results of the present paper make it possible to obtain

the asymptotic skewness of the Nelson-Aalen estimator. The formulae in A.III

can be shown to imply

SKEW{i(t)) = SKEW{Z (t)}
n

=1 I/y(s)2}a(s)ds + 0(t) 1/at) 3 + 0(n-1). (5.16)

n 0 --2

The slightly alarming consequence is that the distribution of A(t) always is

skewed to the right (a lower bound for the skewness is {A(t)
- I +3

-l+ O(n ), using the Cauchy-Schwarz inequality). The traditional first order

asymptotic statements effectively ignore this positive skewness. There are

ways of "repairing for skewness" now that it has been detected. These matters

will perhaps be returned to at a later occasion.
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APPENDIX

A.I. Preliminaries.

Some of the more involved technical arguments that were needed several places

in Sections 2-4 are tended to here. We 
shall not hesitate to make convenient 

,

assumptions as long as they are statistically reasonable. Thus we postulate

at once that the covariates are uniformly bounded, i.e.

1zI < M for every z (A.1)

for some large enough M. Following Andersen and Gill (1982) we assume through-

out the Appendix that S(k)(s,8) = 1 JLJ ep( converges to s me

(k)n 
j lj

s (s,8) uniformly for s in [0, TI and for 8 in a neighbourhood of each

reference point 8 , in probability, k = 0, 1, 2, 3. This is indeed a conse-

quence of the reasonable assumption that the empirical distribution of the

first n z i's converges to some distribution on [-M, MI and that the empirical

distribution of the first n ci's converges to some distribution R on [0, m]

with the property that R[T, o] > 0. (No censoring at all corresponds to R{-}

(k)1.) The limit functions s (s,8) are continuous in 8, so that suPt<T(k) (k) (0)i
Is(k)s,) - S(k)s,Bo). 0 too. Finally s0(s,8) is bounded away from zero

for s < T and for 8 in a neighbourhood of 8 0

Since we aim at second order asymptotic results we must ask for even more

than mentioned above. Define

Cn(t) = n (k) (k)
Cn (t ( S (t,B) -s (t,8)l

(k) (k) k n kn (S (t,8) ES (t,8)} + n Z ( y(t)exp(az.) - s(k)(tB)}
n j=l

= (Cnl t) + Cn 2 (t), (A.2)

writing y (t) = EY (t) = Pr{X ° > t, c. > t}. Assume for the moment that the

c.'s are drawn independently from the distribution R; the case with known

censoring times can be handled similarly but with slightly heavier notation.
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A fair amount of details lead to

EIC (t) -C (12ICni(u) (t1
n,l nii n' - CniI 2

in 2 n
< 1 ( 2k (s,t) I2ri (Z exp(28z )6 E j(Z expC26z )6 (t,u)

j ~ j , 1
2n 2

+ -Z(z) 2exp(26z ) (s,t)6 (t,u)} ,s < t < U

where 6 Cs ,t) y y(s) y y(t) F F(s,-)R[s,-) -F [t ,-)Rft,-) < F.[s,t) + R[s,t)

< exp(S z.)(A(t) -A(s)} + R~s,t). Hence the above expectation is

j <3 1
2k exp(2 18 IM) texp(18!M)(A(t)-A(s)) + Rfs,t)]

M2kexp(2101M) [exp(181M){A(u)-A(t)} + R[t,u)].

This can be used to prove that (C Iis tight, following the arguments in the
n,l

proof of Theorem 15.6 in Billingsley (1968). Similarly (C I is tight. All of
n ,2

the arguments used can be made uniform over bounded sets of values of 8.The

conclusion we need from all this is

sup8  supO~< Is'(t,$) - 5(k (tB$) I 0 (n1 ) (A.3)
0c --t< p

In fact C (.) will converge to a zero mean Gaussian process in DIIO, T]!. A

j final consequence of the efforts above is L
supO<< Is () t') s (k (t,$ )1 0 (n- (A.4)

_~< 0 p

A.II. The convergence of MH (s)dA(s).

The lemma stated as (3.9) was needed several times in the course of Section 3

and is also needed, along with an error estimate, in connection with the

problem of estimating the accerelation factor a =a 0 ynwith suf ficient pre-

cision. The proof below is some steps longer than actually needed to show

convergence in probability since we in some cases shall need to kniow that the

convergence rate is n
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Lemma A.l. Let H ()be a predictable and bounded stochastic process,
n

and assume that H nconverges to some h uniformly in probability. Then

T p T
f0H (s)dA(s) -~ foh(s)dA(s). Furthermore, if supOc,,T IH n (s) - h(s)I - 0O(n ),

t -
then sup ~<Ifo Hn(s)dA(s) - f0 h(s)dA(s)I - n')

- n n
Proof: Writing N -E11Ni)M = Z iMis we deduce from dN C s) dM C~s) +

(0)
Y (s)exp(B z )dW(s) that dN(s)/n =dM(s)/n + S (s,B 0dA(s). Hence by a Taylor

expansion argument

7T T dN(s)/n
W fH (s)di(s) = H (s)

o n a n (0)(s)

=T H 1 -Sl(s,8) (8 )+ - 0) - )2 dM(s)

0 S O ( S( 0 (s, =0 (0)o(O )Sa0 S(0 s S ( )0 n

T S 1 (S,0 a a2  (0
+ f H (s) {1 ( - +_I___ (8' - 8s
o n 5(0) 0s8  1- =0) 2~ ( 8 0 0 As

= i)+ (ii) + (iii) + (iv) + (v) + (vi),

say, with 8somewhere between B and 8.

(i) is the martingale L(t) = n- 0 H (s)S (0) (s,8 ) 
1dM(s) evaluated at T

n 0

and divided by /n-. The mart ingale has variance process

in t (0) -2
(L,L)(t) Z f H (s) S Cs,8 Y (sexp(s zi)dA(s)n i 1 O n '0 i

t 2 (0) -1
f H (s) S (Sa dA(s).
0 n 0s8

Lenglart's inequality, see for example Andersen and Borgan (1985, Section 3),

implies

Pr{sup IL(t)I > n} < 6/2+ Pr{(L,L)(T) >61
0<t<T

for all positive 6 and n. Choosing 6 big enough to make the second term less than
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a prescribed c and afterwards an even bigger n to get 6/n2 less than c too, we

see that SUPo<t<T IL(t)I, and in particular L(T), is bounded in probability.

Consequently (i) - 0 (n ).
p

(ii) is similarly (8 - 8) times 0 (n 2) i.e. (ii) 0 (n) (iii)
p pT

is (8 - 80)2 times fT Kn(s)dM(s)/n, say, where Kn is bounded in probability.B u010 K n S d ) n nu x .

But K(s)dM(s)/n I ){dN(S) + Y (s)expoz )dA(s)} <I n
{1 + A(T) n (illexp(.ozi }  o<s<T .Kn(S) . Hence (iii) 0 (n-

- -
P

(iv) is of course within If, {H (s) - h(s)}dA(s)l < A(T) suPO<s<T lHn(S)
Tn

- h(s) I of the limit h(s)dA(s), and is accordingly 0 (n under the extra
p

assumption stated in the lemma. (v) = 0 (n for reasons similar to those
p

explained in connection with (iii). Finally (vi) 0 (n
p

TThere are also occasions where I H (s)dA(s) needs to be studied for
0On

processes H that are not predictable. The most important of these cases aren

of the type Hn (s) = H (sA), say, where Hn (s,8) is predictable and converges

uniformly in probability to some h(s,8o). (H (s, ) is not predictable since
o n

it depends upon 8 which is not even measurable w.r.t. the history up to time s.)

Then another Taylor expansion saves the day:

T T
I H (s,A)dA(s) = f LHn(s,8o) + h H(S,8) ( - 8 ) +
o n 0 o -n o o

+ 2HS') ( - B)2} dA(s),

T - -1
and these terms can be shown to be f h(s,8)dA(s) + 0 (n ) + 0 (n 2) + 0 (n- )

p p p
under reasonable restrictions.
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A.III. The skewness of a martingale.

To arrive at suitable expressions for the acceleration factor a a /n we
0

needed the skewness of the random variable

n T
U E I ( z E(s,8 ) (dN (S) -Y (s)exp(B z )ads)ds}. (A.5)

n 0 0 i oi

The formulae derived below are also useful in other statistical problems.

They can be used to obtain estimates of the skewness of parameter estimators

in models with censoring, pointing to the possibility of correcting first

order asymptotic statements in such situations, and can also be used to

obtain the skewness of nonparametric estimators like the Nelson-Aalen and

the Kaplan-Meier estimators.

Let in general terms NI,...,N be 0-1 counting processes observed over the
n

time interval (0, TI with intensities of the form Y1 (s)dA,(s),...,Yn (s)dA (s), i.e.

t
M (t) = N (t) - f Y (s)dAi(s), t > 0, i 1 1,...,n (A.6)
i 1 01

become martingales w.r.t. the a-algebras F = (s), Yi(s); s < t}. We take the .

at-risk indicators Y to be non-increasing left continuous 0-1 processes, and

take the martingales to be orthogonal, i.e. M M is a martingale when i 4 j.

Finally let dA.(s) a (s)ds, i.e. A is absolutely continuous, i f 1,... n.

Lemma A.2. Let hi,...,h be a.s. bounded and predictable processes. (It

suffices for hi to be a caglad function, i.e. the paths are left continuous

with right hand limits, and to be progressively measurable w.r.t. the F 's.t

The interpretation is that h (s) is known already at time s-c for small enough E.)

Consider
T

Z = f hi(s)dM(s), i-- 1,...,n. (A.7)

Then Zl,... ,Zn are orthogonal and the following formulae are true:
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n n T
E( E Z )2 E E f h (S) 2 y (s)dA (S), (A. 8)

TTt
E (Z 3) =E f h (S) 3 y (s)dA (s) -3 E f f h (s)dA (s) h (t) 2 y (t)dA (t),

£ 0i 0 0 . 1 1 1
(A.9)

T t

E(Z1. Z 2) =E ffh (s)dM (s) h (t) 2 y (t)dA (t), 1 4J, (A.10)

nl n T
EC E z )3 E E f h (s)3y Cs)dA (S)

T t n n
+ 3 E f f E h Cs)dM (s) E h.(t) 2 y CtdA (t). (A.ll)

0~i 0 J-i j

Proof: h1 may be a function of N. and Y values for j 4 , as is the
J

case for U of (A.5). Zand Zmay accordingly be dependent, but they are

nevertheless orthogonal martingales (here evaluated at the endpoint T). This

and formula (A.8) are standard facts, see for example Andersen and Borgan

(1985) or Gill (1980).

Think of Z as a Lebesgue-Stieltjes integral,

'z Z E hi(s )dMi(su)

where dM(s) dN (s -Y (s )dA (s) N [s 9s Y (s C)A [s ,s )
i u i u i u i u i u'u+l i u iu u+l

A M C s ) - M C s ), for a fine grid 0 =s 0< ... < s m T. Given the history

of everything happened in [0, s), i.e. FS 9 Y Cs) is known and N [s,s+ds) is

binomial {Y (s), A ts,s+ds)}. This can be used to evaluate the expectation of

CZ ' 3  E h (s )3dM Cs )3 + 3 E h Cs )dM Cs )h Cs )2dM (s )2 -

i u i u i u i u i v i v
U U<v

+ 3 E h(s )2dM (s )2 h(s .d (s
<w i< u i u i v di v)

+ 6 E hi(su)dMiCs )hj(sv)dM (sv)h (s )dMiC(s)
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Here E(h (s ) 3 dM ( s ) 3 1F h (s h s) 3yi(s) t1-dA (s )} 3 dA (s )-dA Cs )3
u iu - u i u i u i u

{l-dA C s )} h (s )3  (s )dAi (s

E{h (s )dM Cs )h CS )2dM Cs ) 2 1F
u i v iv v-

h1 (s )dM (s )hV ()y( {l-dA (s )}2dA Cs )+ dA Cs )2{l-dA (

Ah (s )dM Cs )h (s )2y Cs )dA Cs)d1 sh s)Y£v .v()}iu iu i v iv iv
= h (s )dA (s )h Cs )2y Cs )dA (s)Iu i U i v iv iv

and similarly E~h (s )2dM (s )2h (s )dM (s )I~FI 0, Efh (s )dM (s )h (S)
Su u i v v v- i U i ui v

dM (s )h (s )dM (s )IF 10. Hencev i w i w w-

E(Z 1)3 -E Z h (s )3y (s )dA Cs )-3 E E h (s )dA (s )h Cs )2y Cs )dA (s )i iu i u i u i u i u i v i v i v
u U <V

Formula (A.9) follows by appropriate limiting arguments. Rigor can be achieved

by first proving the formula for h a predictable step function and next for
i

a general a.s. bounded predictable process, compare the abstract way in which

such processes are defined in Meyer (1971).

Next look at

n n
~Z.)3= E Z.3 +3 E Zzz z zZ.

Using arguments similar to those above formula (A.10) can be proved, whereas

ECZ Z Z ) 0 when the indices are distinct. It follows that

n n T n T t
OE(Z Z )3 E E I h -S3 s~A() 3 E r If h (s)dA(h t2 (t)dA.(t)

i=l 1 1- 0 i-1 0 0 1i

T t
+ 3~ ff h(s)dM. Cs h(t)2y.(t)dA.(t)I,

ij 0 0  3

from which the final formula (A.11) follows upon using dM CS)y()

-dA Cs)Y C)
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Now let us apply these formulae to the variable U of (A.5) and (4.33).

*Firstly, EU2 ER 2Pwhere

R - E f (z E(s,6 Y1 y s)exp(B z W } d(s)2 nj 0 i 0 1

o (S ((s'o / (s,O )IdA(s).

Clearly R 2 converges in probability to an underlying population parameter P 2

* which is exactly Z a2'~ compare (2.6). The natural estimator R obtained by
2

inserting a and A for 8 and A where necessary is just Z a 2 of (2.9). The -

assumptions and results of A.l imply ER2  a2 + 0(n-1), R2 = 2 02 + 0 (-)

and hence a2 ER 2 + 0 (n-) ~.0 is a good enough estimate of EU2.
p

Secondly, EUj3 =ER 3 rn where

1nT
R f fz -E(s,O )13 y (s)exp($ z W(s)

3 n i0 a o i

1Tt n n
+ 3 - f f r {z -E(s,a )IdM (s) E {z. -E~t,a )1 2y.(t)exp(B z Wd(t)

n 0 1 ., 1 l 0 1 1 l 1 0 3

-R ' + R" (A.12)
3 3

The following considerations will show that there are certain population

parameters p 3
1 ' P 3 %

1 such that

ER ' P3 + O(n ) ER" + p 3 +(n 2 ) (A.13)33 3 3

so that

EU P3 +P 3 10 + +0(n 1 ) (A.14)
/i;?

(k)
*p 3  and P I# can be expressed in terms of the limit functions s (s,a), k

0, 1, 2, 3; in fact and for the record

T T
! g'(s,, p -3 / g"(s,$ )dA(s), (A.15)

3 00)d ) P3  00

where
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n

g (as -p-limit of-! E (Z - E(s,B )}3 y (sexp(B z) (A.16)
3 0n 0 o oo

1nt
g3"1 (t,8 0 p-limit of n E f (z i- E(s,0 ,)Iexp($ oz i)dA(s){z i-E(t,S 0 exp(Ozi).

(A.17)
The specific form of these population parameters need not concern us here,

what is important is to get ni-consistent estimates of them.

p clearly the limit in probability of R3
1  is easy to handle. The

* natural estimator is

Z f {z~ E(s,A)13 yi(s)exp(izi)di(s). (A.18)

The results of A.I and AMI imply ER3  P I3  + 0(n2),1 3  P3  + 0(n)

so R 3 = ER3' + 0 P(n 1) is good enough for ER 3 Next consider ER 3" and p 31

* Write

U (t) I Znt z E(s,B )I dM s)

nI Yrni=l 0  0 - 1~~,

B ~n (t ~ £(j-~, 12y. (t) exp( z )- (2) (1)ta 2s)

*so that
T

ER "=3 E I U (t)B (t) dA(t). (A.19)
3 0 n n

*Here -{U(t), B (t)} will in fact converge jointly to some Gaussian (U(t), B(t)1,

T T
f U (t)B (t) dA~t) will converge in distribution to f0 U(t)B~t) dA(t), and

T
ER~t -~P" 3 f EU(t)B(t) dA(t) (A.20)

3 3 0

*gives another interpretation of the population parameter

We shall have to be somewhat circumventive now, due to the fact that

although EdM1 (s)y~ (t) -0 for i J, EdMi(S) {Zj E(t,B )} 2 y (t) may still be

0
* different from zero. If B Mt is as B (t) above, but with the deterministic.n n
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(1) (0)
limit function e(t,O s (tB V/s (t,'a replacing E(t,B ) then

0 0 0 0

B(t) - B -n t - Yrn. {E , 0 e(t.0 )12 S(O (t,8) 0

and supt, lB()-BtI 0 (n) according to A.I. Using this one may show
_< n n p

that
T

ER "-3 E f U (t)B (t) dA(t) + 0(n <)
3 o n n

compare (A.19), and this latter integral is easier to handle since E{z -E(s,8 0)

dM (s) 1z -e(t, )}2y (t) 0 Owhen i j. One ends up with

ER E 1 Zf f{zi-E(s,B ))dMi(s){z _E(t,S )12yi(t)exp(s z )dA(s) +0(n 2)

and since dM (s)Y (t) =-dA (s)Y (t) the claim about the expression for P3
1

in (A.15), (A.17) follows. More importantly, it also follows that

R. 3~ z 1 n t -E(s,Aex z )d(sf -E t, }2y exp~z )di-.
3 n 1 1 0 0 iiiii

(A.21)

has~ ~ ~ -h rprt htR P3 t +O0(n )ER3"+O0(n h). (The integration3 3 3 p
takes place on 0 < s < t < T, as opposed to 0 < s < t < T.)

We may conclude that

EU 1+ 3 )1 + 0 p(n 1 ) (A.22)

and that

SKEW {U} =~ + 0 (n-) (A.23)
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