
-I DA62 420 CONVERS 33 - A THREADED CODE INTERPRETIVE COMPILER FOR ilADAI67 THE PDP-11 NICROCOMPUTER(U) ARIZONA UNIV TUCSON DEPT OF
CHEMISTRY G R SINS ET AL. 25 NOV 85 TR-41

UNCLRSSIFIED N99S14-83-K-020 F/G 9/2 ML

lllllllllEllEI
EIIEEEIIIEIIE

1.8
0111.0 1.4 _

CROP RESLUIO TES22AR
NTOA REUO TNARS-16

It13

i " ml unclassified/ _,
SECURITY CLASSIFICATION OF THIS PAGE rlen Dat Etlefd)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
41.-..-'

4. TITLE (ad Subtitle) S. TYPE OF REPORT & PERIOD COVERED

CONVERS 3.3 -- A Threaded Code Interpretive
Compiler for the PDP-11 Microcomputer I.-.e:r.m

S. PERFORMING ORG. REPORT NUMBER

0 1. AUTNOR(a) S. CONTRACT OR GRANT NUMBER(o) o%

G. R. Sims and M. B. Denton NOO014-83-K-0268

9." ,PE.RFORMING ORGANZATION NAME AD ADRESS 10. PROGRAM ELEMENT PROJECT, TASK(% *PROMNGOGN4TO NM N DRS AREA & WORK UNIT NUMBERS(0 Deoartment of Chemistry
,, University of Arizona NR 051-549

Tucson, Arizona _ 5721 2--2---!
.CTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

November 25, 1985
13. NUMBER OF PAGES

_ _ _ _ _ _ _ _ _ _ _ _33
Id. MONITORING AGENCY NAME A AOORESS(If different Iron Controlling Office) IS. SECURITY CLASS. (o this repot)

unclassified

ISa. DEC.ASSIFICATION/OOWNGRADING
SCHEDULE

. l DI SIRIBUTION STATEMENT (of this Report)

"* This document has been approved for public release and sale:

_. I ELECTE

17. DISTRIBUTION STATEMENT (of the abstrt mitered In Block 20, If different frm Report.

IS. SUPPLEMENTARY NOTES

Prepared for publication in the Journal of Chemical Information and

Computer Sciences

IS. KEY WORDS (Continue on refverse eldo it nece y and Identify by block number)

Threaded code, interpretive compiler

C-:) 20. AGI r,%/CT (C fl e 0 a remrl side it no.copeooy and idoptify by I~o n lber . . .

20.J innreat * nterpretive compiler ca' NVERS 3.3 is oresented. This
lanauaqe is intended for use in laboratory instrument control and data acauisi-
tion aoolications. Discussed are the philosophy behind the development of this * ;'.'-
language, the internal operation of the interpreter and the compiler, and the

C1 £.: advantages this lanquaae offers over other programming lanquaqes in its intended
applications. CONVERS is compared and contrasted to BASIC interpreters, FORTRAN
compilers, and particularly to typical FOPTH interpretive compilers. Programming
examples and execution time benchmarks for code written in BASIC, FORTH, FORTRAN,

D ID . 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0t02.LF.0144 01 SCAH(aSECURITY CLASSIFICATION OF THIS PAGE ('When DetE Erntored)

OFFICE OF NAVAL RESEARCH

Contract N00014-83-K-0268

Task No. NR 051-549

TECHNICAL REPORT NO. 41

CONVERS 3.3 -- A Threaded Code Interpretive Compiler

for the PDP-11 Microcomputer

by

G.R. Sims and M.B. Denton

Prepared for Publication in the Journal of Chemical

Information and Computer Sciences

-- o

University of Arizona
Department of Chemistry
Tucson, Arizona 85721 -TIC

November 25, 1985 D

Reproduction in whole or in part is permitted for any
purpose of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited.

7=

',5 12 17 121

CONVERS 3.3 -- A THREADED CODE INTERPRETIVE COMPILER FOR

THE PDP-11 MICROCOMPUTER
*.'.q"t-

G. R. Sims and M. B. Denton ..S
D e p a r t m e n t o f C h e m i s t r y .
University of Arizona

Tucson, AZ 85721

Abstract

threaded code interpretive compiler called CONVERS 3.3 is presented.

This language is intended for use in laboratory instrument control and data

acquisition applications. Discussed are the philosophy behind the develop-

ment of this language, the internal operation of the interpreter and the

compiler, and the advantages this language offers over other programming -.

.i.

= . ° o.4°.

languages in its intended applications. CONVERS is compared and contrasted

to BASIC interpreters, FORTRAN compilers, and particularly to typical FORTH

interpretive compilers. Programming examples and execution time benchmarks

for code written in BASIC, FORTH, FORTRAN, and CONVERS are presented.

.1 Accesior, ForiNT/S CRA&l

U. .al-o -.o d

J .4.if' ;o:'" '":j......

By .

Dist
Av

a ,
..........

"%
-Jo°

f''

E 14. 1

, !

CONVERS VERSION 3.3A FOR THE PDP-11

CONVERS was developed In the laboratories of the Department of Chemistry
at the University of Arizona in response to the need for an interactive
programming language optimized for instrument control and data
acquisition. Many of the ideas imbedded in CONVERS were first imple-
mented in FORTH, a language developed by Chuck Moore, then of the
National Radio Observatory. The original authors of CONVERS, S.B.
Tilden and M.B. Denton, felt that while FORTH is a brilliant concept for
instrumentation control, it also has some real shortcomings. Some of
the problems with original FORTH are;

()difficult to tailor the system for different peripherals,
2 almost no error checking,
(3) very difficult to understand the "inner workings".

When CONVERS version 2.1 for the INTEL 8080 based microcomputers was
written, it remedied many of these drawbacks. CONVERS is much more
forgiving than FORTH when an error is made. It is also very simple to
modify CONVERS to communicate with peripheral devices, no mysterious
system generation process is involved. CONVERS 2.1 for the INTEL 8080
has been in use for many years now and has found wide application in
academic and industrial environments. The success of CONVERS is
-reflected in the fact that many FORTH systems written in recent years
have begun to resemble CONVERS more than original FORTH.

CONVERS version 3.3A for the PDP-11 departs from original FORTH even
more than CONVERS 2.1. The changes implemented are mainly due to the
rapid advancement in microcomputer hardware over the past 5 years.
Whereas micros in the past were typically equipped with 8K or 16K bytes
of memory, todays micros are usually equipped with at least 64K bytes.
Mass storage devices have also made tremendous gains, most 8080"type
microcomputer systems were typically equipped with small single sided,
single density 5 1/4 inch minifloppies. Today's microcomputer systems
often have several megabyte storage on Winchester and double sided,
double density floppy disk drives.

CONVERS version 3.3A for the PDP-11 capitalizes on these improvements in
hardware by including descriptive error messages and more thorough error
checking. A directory system for the disk is also implemented in order
to simplify the writing of source code and make CONVERS program and data
storage compatible with the RT-11 operating system. The entire initial
machine code dictionary has undergone careful re-evaluation and re-
writing to optimize for usefulness and speed.

To keep CONVERS understandable by those who are not professional
programmers, the initial machine code dictionary is written in as simple
form as possible. All entries are coded in assembly language. The use
of macros has been avoided. This means anyone with a rudimentery

CONVERS INTRODUCTION page 2

understanding of assembly language and basic computer architecture can
understand CONVERS at the most elementary level.

This manual was written to explain the basic concepts and programming
techniques for the novice as well as to explain this version of CONVERS
in detail for the experienced CONVERS programmer. .

The first section of the manual, "CONVERS, an Interpretive Compiler"
explains why CONVERS was created and why it is a unique language. The
"CONVERS Primer" is a tutorial for those people who have never
programmed in CONVERS or FORTH. The Unabridged Dictionary gives
detailed information on all of the IMCD entries, and, finally, the
appendixes contain detailed information on specialized subjects. This
manual does assume that the user has at least a vague idea of how a
computer works and what machine code is. Useful reference books to
accompany this manual are the appropriate Digital processor manual, the
peripheral and interfaces manual, and Machine and Assembly Language
Programming for the PDP-11 by Gill.

• . .

'Ai):

-'Ai-..

:: ':::

.7 -'-"

I A "A A

I-. rf-*.

CONVERS AN INTERPRETIVE COMPILER
* .. -

The two common classes of high level languages are interpreters (BASIC,
APL, LISP, etc.) and compilers (FORTRAN, PASCAL, "C", ALGOL, etc.).
Each class has definite advantages and disadvantages. Interpreters are
interactive, which makes them easy to learn and use, but the penalty for
being interactive is slow execution time. Programs written in compiler
languages generally run much faster, but compiler languages are more
difficult to learn, and programs are very tedious to write and debug.
One obvious question immediately arises -- why not incorporate the most
desirable characteristics of compilers and interpreters into a single
language? Additionally, due to the unique and diverse requirements
found in many applications, why not allow the programmer the flexibility
to actually tailor the language to fit a specific programming problem?
Other requirements for this hypothetical language are high memory ef-
ficiency, fast execution time, and it must be easy to understand how the -
language works at the most elementary level.

A language described originally in 1974 by C.H. Moore, then of the
National Radio Observatory, offers most of the desired characteristics
described above. However, this language, called FORTH, has some major
shortcomings. One major problem with FORTH is that its "internal
workings" are exceedingly complex. The second major flaw is that FORTH
has very few error messages and diagnostics. This is largely due to the
fact that FORTH was conceived at a time when computer memory was very
expensive.

Drawing from experience gained from programming in BASIC, FORTRAN, and
FORTH, a new approach to software named CONVERS has been developed. The
word "approach" has been used because CONVERS does NOT in any way
resemble traditional programming languages. First of all, programming
techniques are very different, being inherently "modular". Secondly,
there is no separation of programming language and operating system.

In order to fully appreciate the CONVERS (and FORTH) "interpetive
compiler" approach, it is first necessary to review the characteristics
of typical interpreters and compilers.

A TYPICAL INTERPRETER

An interpreter is mainly a collection of commands (machine code
subroutines) which can be executed upon request. Programming an inter-
preter simply involves requesting the execution of the appropriate
commands in a logical order. A program enters the interpreter as sym-
bolic source code which is input from either a terminal or mass-storage
device. As the souce code is input, the interpreter accepts the com-mands one at a time, searches through its set of commands to see if the
requested function exists, and if it does exist, the command is

~ ~ .. *.* *.* . :.-.....

CONVERS INTERPRETIVE COMPILER page 4

executed. If the requested function does not exist, or can not be
executed as requested, the programmer is immediately informed.

The fundamental advantage of an interpreter over a compiler is that it
is always much easier to learn to program, largely because the program-
mer is informed of a mistake as it is made. The ease of learning an
interpeter language is evident by the popularity of BASIC in personal
computers. In fact, BASIC was originally conceived as a "teaching
language" for persons with absolutely no computer background (BASIC
stands for Beginners All-purpose Symbolic Instruction Code). The prime
disadvantage of an interpreter are low execution speeds. Interpreters
are inherently slow because each command entered must be interpreted
before it is executed. In most cases, the interpretation cycle takes
much more time than actual command execution.

A TYPICAL COMPILER

A conventional compiler accepts symbolic source code from a mass storage
device, interprets the commands, then transforms the commands into
machine code which is then written to a mass storage device. The role of
the compiler is only to translate the source code into machine (or
"object") code. The compiler plays no role in the actual execution of
the object code. To execute the program, the object code must first be
loaded from the mass storage device.

The prime advantage of a compiler language is fast execution time. The
compilation step requires a great deal of time, but the actual program
execution speed is very fast since the program contains within itself
all of the code it needs to execute. The big disadvantage of a compiler
language is the non-interactive nature. To make any change in a
program, whether it be to correct an error or make a modification, the
entire source code must be recompiled, relinked, reloaded, and only then
can the program be executed to see if the change was successful. This
non-interactive approach makes writing programs very frustrating and
time-consuming for an inexperienced programmer. The difficulty in
learning a compiler language is reflected in the fact that after an
entire college semester course in FORTRAN, students are still not con-
sidered to be experienced programmers.

THE CONVERS APPROACH

The prime advantage of an interpreter is its interactive nature. This
is also the case with CONVERS. As soon as CONVERS is loaded and run-
ning, it is waiting to accept, interpret, and execute commands much like
BASIC. Unlike traditional interpreters, however, CONVERS also has the
ability to accept, interpret, and COMPILE symbolic source code. Thus
CONVERS has two "states", the executive state where code is interpreted
then executed, and the compile state where code is interpreted then
compiled.

In both states, CONVERS is truly an interpreter, the difference being
that it can be an "executive interpreter" or an "interpretive compiler".

h. - . -,- . . . -/ - .. . - -. •..

CONVERS INTERPRETIVE COMPILER page 5

The extremely powerful "interpretive compiler" mode is unique to CONVERS
and FORTH. This is the mode that combines the best features of an
interpreter and compiler and set CONVERS and FORTH apart as fundamen-
tally better languages for their targeted applications. Since CONVERS is
truly an interpreter, even while in the compile state, diagnostic error
and warning messages continue to appear while compiling a program.
Thus, CONVERS remains interactive while programs are being written!

The bulk of CONVERS is made up of small program units (subroutines)
which have English language names. This collection of subroutines is
called the "dictionary" and an individual subroutine is called a
"dictionary entry". To execute a dictionary entry, the name of that
entry is typed on the terminal. For instance, to execute the entry
which rings the terminal bell, the word "BELL" is typed. Programming
CONVERS involves the simple process of creating new dictionary entries.
To put CONVERS in the compile state, a colon and space are typed, then
the name for a new dictionary entry is typed. For instance;

SOUND

creates a new dictionary entry called "SOUND". The entry "SOUND"
can consist of any previously defined entry. Suppose for sake of
argument that the entry "SOUND" should cause the terminal bell to
ring five times. One way to achieve this is to type BELL five times;

: SOUND BELL BELL BELL BELL BELL

Now "SOUND" consists of the machine code required to ring the terminal
bell five times. Typing the semicolon ends the new definition and
returns CONVERS to the executive state. To execute "SOUND", its name is
typed. It is important to reiterate here that the entry "SOUND" con-
tains the actual machine code neccesary to ring the bell five times.
When the "SOUND" entry is executed, CONVERS does NOT need to go through
the time-consuming process of searching through the dictionary to find
the "BELL" entry, the search step was done when "SOUND" was compiled. -'-

The dictionary entries which make up CONVERS when it is first started
(such as "BELL") are called the "INITIAL MACHINE CODE DICTIONARY"
(hereafter known as the "IMCD"). When a new entry is programmed it
becomes a part of the "USER DICTIONARY". CONVERS does not distingush
between IMCD and the user dictionary entries, it is simply a term used
to distinguish between what CONVERS consists of when first started and
what a user adds to CONVERS while -ogramming.

Since the entry "SOUND" is now a part of the dictionary, it can be
compiled as part of yet another new entry such as;

1+2RING 1 2 + SOUND

The entry "1+2RING" consists of the machine code required to add the
numbers 1 and 2, then ring the terminal bell five times.

IL11"" I M14 KIM -- 1k--.-R

CONVERS INTERPRETIVE COMPILER page 6

One way to think of the dictionary is merely as an "erector set" of
components which may be used over and over to assemble an ever incre-
asingly sophisticated set of modules which can in turn be readily
intermixed to achieve the desired final program. CONVERS does not have
a limited command set because the act of programming actually creates
new commands. Because new commands are actually created while program-
ming, CONVERS can then be thought of as a language to write specialized - -

languages! In a typical situation, the "language" that one would create
will have the commands necessary to execute some task or series of
tasks. The collection of user-defined entries designed to execute these
tasks are called an application dictionary. An application dictionary
is stored on a mass-storage device and loaded into CONVERS when needed.
Once a task is finished, the user can remove an application dictionary
(or the application dictionary can even remove itself). Typical ap-
plication dictionaries might include floating point math operations, a
text editor, data collection commands, etc., all written in CONVERS!

Since CONVERS is a true interpreter, it is very easy to learn. It takes
most people two sessions with a terminal (4 to 6 hours) to learn the
IMCD commands and the programming techniques. Actual coding and testing
programs are almost trivial once a good algorithm has been established.
Debugging is especially simple since each entry can be individually
tested.

WHAT CONVERS SHOULD BE USED FOR

The interpretive compiler approach to programming languages is a general
concept that is desirable in any computer language, but it is totally
inconceivable to write a single language that is ideal for every im-
aginable application. CONVERS itself has been carefully optimized for
use in control and data acquisition applications. CONVERS is NOT tar-
geted for the types of applications that are performed on a mainframe
computer; it is designed to operate on micro and minicomputers in a
single-job, single-user environment. CONVERS is definitely the language
of choice whenever a small computer system is interfaced to the "real
world" through A/D converters, D/A converters, stepper motors, etc.

In general, all compilers and interpreters are too inflexible to use for
any highly specialized application, such as instrument control and data
acquisition since the only commands available to the programmer are
those included in the language by the software vendor. The only way to
add commands is an awkward process of writing the needed function in
assembly language and forcing the high level language to call the
function.

For years one of the most popular compilers, FORTRAN, has been misused
for many applications. FORTRAN was intended to be strictly a "number
crunching" language (FORTRAN is a hyphenation of FORMULA TRANSLATOR),
and it is very good for this specific application. FORTRAN was NEVER
intended to be used for the types of applications CONVERS is targeted
for.

CONVERS, on the other hand, was never intended to be strictly a "number
crunching" language; however, many simple data reduction and statistical

CONVERS INTERPRETIVE COMPILER page 7

calculations are as easy, or easier, to program in CONVERS than in other
languages.

When numerical analysis of data is very complex (or if data reduction
programs already exist in another language), CONVERS can be used for the
instrument control and data collection process only. Later the data can
be analyzed with programs written in a language designed for numerical
analysis (such as FORTRAN). Thus, the appropriate language is chosen
for the particular problem.

..... . -p--.... ..---------..

~~1*~~~~~ I.~ - -I I , . . . s

A CONVERS PRIMER

Since CONVERS is a interactive language it is best learned by spending
some time at a terminal writing and executing dictionary entries. This
primer is designed to help the beginning programmer learn CONVERS by
explaining what the commonly used initial machine code entries
(hereafter known as IMCD entries) do and how to use them in programming.
Throughout the primer there are numerous examples which the student
should try out as the primer text is being read. When an example is
indicated, you type the underlined text and CONVERS will respond withthe text within the < > symbols. For instance, in the example;

1 1 +. <2>

you type the "I I + . and CONVERS will type the '2".

In addition to the examples are suggested problems the student should
attempt to solve. Successfully solving the problems will indicate a
thorough understanding of the IMCD entries presented in the examples.
This primer does not describe all entries in the IMCD. Many entries are
so rarely used that including them in this primer would only be a source
of confusion. The unabridged dictionary listing contains detailed
information on every IMCD entry. Once some programming experienced is
gained, the unabridged listing should be examined in order to become
acquainted with the full range of IMCD entries.

................................

- • •-.......-

CONVERS PRIMER
page 9

STARTING CONVERS

The file CONVER.SAV should be properly configured for the computer

system on which it is to be run. Assuming it is, and CONVER.SAV is on

the system disk, boot the RT-11 monitor and type;

R CONVER

When CONVERS is running, it will respond with the message;

<CONVERS VERSION 3.3A FOR LSI-11>
<RX02 RESIDENT DISK HANDLER>
<--RESET-->
<--RECOVER-->

The resident disk handler message is dependent on the particular
com-

puter system it is running on. For now it is of no concern.

.. - - - - - - - - - - .

°'-

.~ .

CONVERS PRIMER page 10

CONVERS TERMINAL INPUT AND OUTPUT

Because CONVERS is a highly interactive language, the most important and
most often used input/output device is the console terminal. Certain
terminal keys have special functions in CONVERS. These are;

RETURN or ENTER
A carriage return is a terminator. It signals that input is
finished.

SPACE
A space is also a terminator. It has exactly the same function
as a CR. This is very different from other languages where a
space is a delimiter. A delimiter only separates words of
input while a terminator indicates input is truly finished.
CONVERS does not operate on strings of typed words, it
operates on each word as it is typed in.

AC

Typing a -C executes the RESET entry. This causes any
executing program to be unconditionally terminated, the system
input and output device is reset to the console terminal, and
most system variables are reset to the same conditions as when
CONVERS was started. The AC key might be called the "panic
button".

As

Typing a AS key causes the processor to hang in a loop until a
AQ or AC is typed. All processing is stopped except for
servicing interrupts.

AQ

Typing a AQ breaks the processor out of the hang loop discussed
above.

RUB or DEL
Typing a RUB deletes a previously typed character. If CONVERS
is configured for a video terminal, the character deleted is
removed from the screen. If CONVERS is configured for a
printing terminal, a "*" is typed to indicate a character was
deleted.

All other keys, including escape and control keys are assumed to be part
of an entry name or a number. CONVERS treats upper and lower case
letters equally.

-- aA

CONVERS PRIMER page 11

SECTION I -- NUMBER INPUT/OUTPUT AND RADIX CONTROL

Number Input is done simply by typing a number on the terminal. After a
space or return is struck, the typed number will be converted from ASCII
to binary and placed on top of the stack. A number can be entered in
either base 10 (decimal radix) or base 8 (octal radix). When CONVERS is
first started, it is in decimal radix. Number output is also very
simple. When a period is typed, followed by a terminator (space or CR),
the top number on the stack is converted from binary to ASCII and output
to the terminal. When a number is output to the terminal, it is removed
from the stack. Of course, there must be a number on the stack to
output before a "." is typed. If the stack is empty and a " is typed,
the error message; - -

STACK UNDERFLOW
--RECOVER--

will appear.
Changing number input/output radix between decimal and octal is very
simple as it only involved typing the words OCTAL or DECIMAL;

OCTAL
Forces number input/output to be done in octal radix. Octal is
a high precedence entry so the number radix can be changed
while in the middle of a colon definition. i

DECIMAL ',

Forces number input/output to be done in decimal radix.
DECIMAL is a high precedence entry so the number radixcan be
changed while in the middle of a colon definition.

The OCTAL and DECIMAL entries are known as "permanent" radix changes
because if the word OCTAL is typed, all number input and output is done
in octal radix until a DECIMAL is typed. If CONVERS is in octal radix
and a single number in decimal radix needs to be entered, type a D and a
space, then the number. Likewise if a single number needs to be output
in decimal radix, type a "D.". The entries "D" and "D." are known as
temporary radix changes because they are in effect for only one number.
Similar temporary radix change entries exist for octal radix also;

DS..0

Input a single number in decimal radix.
EXAMPLE: OCTAL 34 D 34 <42> <34>
The first 34 Is entered in octal-radix and the second is
entered in decimal radix. Both numbers are output in octal
radix.

-

U-.1 J'A- f- "~ " " " " - - W ' -. - ' --- ; W. -7 717.,i

S., */i

CONVERS PRIMER page 12

Input a single number in octal radix.
EXAMPLE: DECIMAL 0 34 . <28>

0.
Output a single number in decimal radix.
EXAMPLE: OCTAL 20 20 . <20> D. <16>

Of
0.

Output a single number in octal radix.
EXAMPLE: DECIMAL 16 16 . <16> 0. <20>

Since the PDP-11 is a 16 bit computer, the largest integer number that
can be entered in octal radix is 177777. The largest number that can be
entered in decimal radix is 65535. In decimal radix, bit 15 (the most
significant bit) of the processor is usually Interpreted as a sign bit.
If bit 15 is set, the number is negative, and if bit 15 is clear, the
number is positive. When bit 15 is treated as the sign bit, the range
of integer numbers that CONVERS can accept is -32768 to +32768. When
the entry DECIMAL is typed, the number output is "signed", that is, the
numbers are output in the range from -32768 to +32768. Another entry
exists however, which outputs numbers In "unsigned" format, from 0 to
65535;

. /DECIMAL/
Forces number input/output to be done in decimal radix, but the
output is unsigned.

Whether DECIMAL or /DECIMAL/ is the number radix, the number 65535 is
the largest number CONVERS will accept. The only change is in the
output format;

EXAMPLE: DECIMAL 65535 . < -1>

EXAMPLE: /DECIMAL/ 65535 . <65535>

If a number larger than 65535 (decimal) or 177777 (octal) is typed on
the terminal, the error message;

NUMBER TOO LARGE

will appear. The only characters that may be typed when entering a
number in decimal radix are the numerals 0 through 9, and the minus sign
(-). In octal radix, the only characters that may be typed are the
numerals 0 through 7. If any illegal character is typed, the error
message;

NO SUCH ENTRY

will appear.

1.. .

- - - - - - - - -.

CONVERS PRIMER page 13

SECTION II -- TEXT OUTPUT

It is essential that an interactive computer language be able to output
messages to a programmer or program operator. Several entries exist
which output text, and/or aid on formatting number output.

CRLF
Outputs a carriage return and line feed to the terminal.

SPACE
Outputs a space to the terminal.

BELL
Rings the bell on the terminal.

OUTPUT
Fetches the top number on the stack and interprets it as the
starting address of an ASCII string. The ASCII string is
output to the terminal until a zero byte is detected.

4 TEXT
Allows the programmer to define an entry that, when executed
will put the address of a stored ASCII string on the stack.
EXAMPLE: TEXT HOWDY-MESSAGE HOWDY! -
An entry called HOWDY-MESSAGE has been created. When this
entry is executed, the address of the ASCII string "HOWDY!" is
put on the stack. This string can then be output with the
OUTPUT entry.
EXAMPLE: HOWDY-MESSAGE OUTPUT <HOWDY!>
The TEXT entry will store any ASCII character including CRLF.
The up arrow character (A) is used to indicate end of text.
There is no limit to the number of characters that may be
stored within a string.

.t.A....................

-j: 11- L "_1CZXK ,U T J '- CLC" ir X r

CONVERS PRIMER page 14

SECTION III -- ARITHMETIC AND LOGIC OPERATIONS

In CONVERS, all logical and arithmetic operations are performed on the
stack, in reverse polish notation, in the same manner as Hewlett-Packard
calculators. To perform an arithmetic or logic operation, the - -

parameters used in the operation must first be placed on the stack.
During execution of the operation, the parameters are removed from the
stack. After the operation is completed, the result is left on the
stack.

As an example, consider the addition entry, "+" which adds the top two
numbers on the stack. To add the number 13 and 47, the following is
typed;

13 47 +

When the "+l executes, the 13 and 47 are removed from the stack. The
only thing left on the stack is the result, 60.

The stack logic and arithmetic entries are fundamental to any CONVERS
program; therefore, they should be memorized. This is not really very
difficult since there are not very many entries (41 total) and most
entries have names which are familiar, such as "AND", "OR" -. etc.
Listed below are the rest of the stack operators. Type in the examples
and make sure you are fully acquainted with all details of these
entries.

Vp.+

Add the top 2 numbers on the stack.
EXAMPLE: 14 37 + . <60>

Subtract the top 2 numbers on the stack.
EXAMPLE: 24 13 - . <11> (decimal radix)

INC
Increments the top number on the stack by one. This is
equivalent to I + except it uses less memory and executes
faster.
EXAMPLE: 1 INC <2>
EXAMPLE: -20 NC. <- 1999>

DEC
Decrements the top number on the stack by one. This is
equivalent to i - except it uses less memory and executes
faster. -
EXAMPLE: 1 DEC_. <0>
EXAMPLE: -00EC . <- 2001>

l.q.

-~~~ -. - -I~ ~ - - - - -- - - - - --

CONVERS PRIMER page 15

Multiply the top two numbers on the stack. The multiplication
is unsigned and no overflow check is made.
EXAMPLE: 200 10 * . <2000> (decimal radix)

,* EXAMPLE: -134 -786 * • <-25748> (decimal radix)
EXAMPLE: 2000 3 <- 5536> (overflow to sign bit)
EXAMPLE: 20000 4 * <14464 (overflow to carry bit)

Divide the top two numbers on the stack. All divisions are signed.
EXAMPLE: 13 4 / . <3>
EXAMPLE: - / <-10000>
EXAMPLE: N4797T <0>

/R
Similar to / except the remainder is also provided. The top
number on the stack is the quotient and the second number is
the remainder.
EXAMPLE: 134 /R < <3>. <1>"
EXAMPLE: 797 7R . <0- . <793>

Similar to / except the quotient is rounded off rather than

truncated.
EXAMPLE: 13 4 /A . <3> -
EXAMPLE: 15 4 /A . <04"

21
Quick divide by two. This shifts the data bits in the top
number on the stack right one bit. This is equivalent to an --
arithmetic shift right. The sign bit is not shifted so the
division is signed. "2/" will use less memory and execute
faster than "2 /", but it accomplishes the same function.
EXAMPLE: 175000 2/ . <176400> (octal radix)
EXAMPLE: -1536 2/ <- 768> (decimal radix)

2*
Quick multiply by two. This shifts the data bits in the top
number on the stack left one bit. This is equivalent to an
arithmetic shift left. The sign bit is not shifted so the
multiplication is signed. "2*" will use less memory and
execute faster than "2 *", but it accomplishes the same
function.
EXAMPLE: 245 2* . <490> (decimal radix)

1211
Quick unsigned divide by two. This shifts all bits, including
bit 15, right once. This is equivalent to a rotate right after

CONVERS PRIMER page 16

the carry bit is cleared. "/2//" is the only way to perform an
unsigned division, i.e., a division where bit 15 is considered
to be a data bit.
EXAMPLE: 176500 /2// . <77240> (octal radix)
EXAMPLE: -704 /2// . <32416> (decimal radix)

Quick unsigned multiply by two. This shifts all bits,
including bit 15, left once. This is equivalent to a rotate
left after the carry bit is cleared.
EXAMPLE: 76543 /2*/ . <175306> (octal radix)
EXAMPLE: -246 /2"/ <-492> (decimal radix)

ABS
Take the absolute value of the top number on the stack.
EXAMPLE: -1024 ABS . <1024> (decimal radix)
EXAMPLE: 1024 ABS <1024> (decimal radix)
EXAMPLE: 177777 ABS . <i> (octal radix)

NEG
Negate the top number on the stack by taking the 2's
complement. If the number on the stack is positive, the NEG
entry will make it negative. If the top number on the stack is
negative, the NEG entry will make it positive.,
EXAMPLE: 34 NEG . <-34> (decimal radix)
EXAMPLE: -34 NEG . <34> (decimal radix)

COM
Complements the top number on the stack.
EXAMPLE: 200 COM <177577> (octal radix)

DROP
Removes the top number from the stack. ". -

SWAP
Swaps the high and low byte of the top number on the stack.
EXAMPLE: 170023 SWAP . <11760> (octal radix)

SWITCH
Switches the top two numbers on the stack.
EXAMPLE: 45 67 SWITCH . <45> . <67>

DUP
Duplicates the top number on the stack.
EXAMPLE: 12 DUP . <12> . <12>

. -~ . 4 4 4 - . .• , A

CONVERS PRIMER page 17

OVER
Switches the second number on the stack with a number in the
interior of the stack. The top number on the stack indicates
how far down in the stack to go to get the particular number
to switch with the second number on the stack.
EXAMPLE: 1 2 3 4 5 3 OVER
This switches the position of the 2 and 5 on the stack and
removes the 3. Now the stack lor'" like, 1 5 3 4 2. This can
be seen by displaying the stack;
* <2> <4>. <3> <5>. ">
Note thal a "1 OVER" is The same-as a "SWITCH".

UNDER
Gets a number in the interior of the stack and moves it to the
top. The top number on the stack indicates how far down in the
stack to go to get the particular number to be moved to the
top.
EXAMPLE: 1 2 3 4 5 6 7 4 UNDER . <4>
Note that a "1 UNDER" is the same as a "DUP". A "0 UNDER" just
puts zero on the stack.

AND
Performs a logical and on the top two numbers on the stack.
EXAMPLE: 7 177 AND . <7>

OR
Performs a logical or on the top two numbers on the stack.
EXAMPLE: 272 1415 OR , <1677> (octal radix)

XOR
Performs a logical exclusive or on the top two numbers on the
stack.
EXAMPLE: 241 16734 XOR . <16575>

Tests top 2 numbers on the stack for equality. If the numbers
are equal, a 1 is put on the stack. Otherwise, a 0 is put on
the stack.
EXAMPLE: 12 12 = . <1>

L EXAMPLE: T77TT Qo>
EXAMPLE: -146 -1 6 <<1>

Tests to see if the second number on the stack is greater than
the top number. If the condition is true, a I is put on the
stack. If the condition is false, a 0 is put on the stack.
EXAMPLE: 13 12 > , <1>
EXAMPLE: TT1>, <0>

',, .".

CONVERS PRIMER page 18

Tests to see if the second number on the stack is less than the
top number on the stack. If the condition is true, a I is put
on the stack.
EXAMPLE: 12 13 < <1>
EXAMPLE: T1 <, <0>

Test to see If the second number on the stack is greater or
equal to the top number on the stack.
EXAMPLE: 144 144 >= <1>

Tests to see if the second number on the stack is less than or
equal to the top number on the stack.
EXAMPLE: -763 -763 <= . <1>

Same as > except bit 15 is not considered to be a sign bit, it
is treated as a normal data bit.
EXAMPLE: -13 12 >/ . <1>
EXAMPLE: 176500 170UUO >! . <1> (octal radix)

I<I
Same as < except bit 15 is not considered to be a sign bit, it
is treated as a normal data bit.
EXAMPLE: 156 -89 /</ . <1>

Same as >- except bit 15 is not considered to be a sign bit, it
is treated as a normal data bit.

Same as <= except bit 15 is not considered to be a sign bit, it

is treated as a normal data bit.

MAX
Compares the top two numbers on the stack and removes thesmaller number. The larger number is left on top of the stack.

EXAMPLE: 450 23 MAX <450>

MIN
Compares the top two numbers on the stack and removes the
larger of the two numbers. The smaller number is left on top
of the stack.
EXAMPLE: 23 450 MIN . <23>

* -, Oo,* , .

CONVERS PRIMER page 19

/MAX/
Same as MAX except bit 15 is not considered to be a sign bit,
it is treated as a normal data bit.
EXAMPLE: -453 890 /MAX/ .<-453>

/MIN/
Same as MIN except bit 15 is not considered to be a sign bit,
it is treated as a normal data bit.

Deposits the second number on the stack at an address which is
the top number on the stack.
EXAMPLE: 23 100000 /A (octal radix)
This deposits the numer 23 at the address 100000. Since the
moves an entire word, the address must be an even number so
that it is on a word boundry (The ! entry will work at odd
boundries with some CPU's but is is definitely bad practice).
WARNING!! Don't change the contents of memory unless you know
that CONVERS is not using that memory. You can determine where
the end of CONVERS is by typing DP. This will put the highest -
memory address CONVERS is using on the stack
EXAMPLE: o 101 o 177566 ! <A)
This deposits the AS-CII code for the letter "A" at the address
of the console terminal output register. This causes the
letter "A" to be typed on the terminal.

Treats the top number on the stack as an address. The address
is removed from the stack and the contents of the address is
put on the stack.
EXAMPLE: 100000 @ <23) (octal radix)
This put the contents of the address 100000 on the stack. The
contents was 23. Since the @ moves an entire word, the address
must be an even number so that it is on a word boundry.

B YTE!
Same as i except only a single byte is moved. The byte to be
deposited into memory should be the low byte of the top number
on the stack. The byte can be deposited into the low or high
byte of a memory address; therefore, the specified address does
NOT need to be an even number.

B YTE @
Same as @ except only a single byte is moved. The specified
address can be the low or high byte of a memory word. The byte
will be moved to the low byte of the top number on the stack.

The high byte of the top number on the stack will be zero.

EX:I: 100000- @ . <23 - otlrdx
Thsptth'otnt fte drs 100000 on-. th- c. The... .

T -L .71P ' -I '. P .- V .

CONVERS PRIMER page 20

Up till now, all examples have involved executing entries. No new
entries have been created (except for HOWDY-MESSAGE). At this point, it
is appropriate to start compiling entries which perform logical and
arithmetic functions. When a programmer defines a new entry it becomes
a part of the "user dictionary". To indicate to CONVERS that an entry
is going to be defined, a colon is typed. Next, a name for the new
entry must be entered. Next, the entries which will be compiled into
the new entry are typed, and finally, a semicolon is typed. For in-
stance, suppose an entry is to be defined that will multiply the top
number on the stack by 13 and add 7 to it. This entry would be created . -"
by typing;

: TESTO 13 * 7 +

If TESTO is executed before a number is put on the stack, a stack under-
flow error will result. At this point, create the entry TESTO by typing
the line shown above. Now, try out the entry by entering some numbers
on the stack and executing TESTO;

DECIMAL 10 TESTO . <137>

O TESTO . <7>

Now, the entry TESTO can be included as a part of yet another user
defined entry. Try entering this entry;

* TESTI MAX TESTO

The entry TESTI must have two numbers on the stack before it is
executed. When TESTI is executed, the larger of the top two numbers is
selected (the smaller number is dropped), the number is multiplied by
13, then 7 is added. Finally, the result is output. Try this by
executing;

10 12 TEST. 163>

At this point, try to write and execute an entry that requires three
numbers 'o be on the stack. The entry should find the smallest of the
three numbers, multiply the number by 27, and output the number to the
terminal.

...........

1--T.11- __ -,17 7 7.

CONVERS PRIMER page 21

SECTION IV -- CONSTANTS, VARIABLES AND ARRAYS

For most programing applications, it is essential that constants,
variables, and arrays be used to store data, parameters, and inter-
mediate results of calculations. It is also necessary that the stored
values be accessible by any entry in the dictionary. In CONVERS, all
constants, variables, and arrays are created with dictionary name
headers; therefore, they are really dictionary entries. Because numbers
are stored as dictionary entries, the stored values are inherently
global, that is any other entry can access the stored number.

CONSTANT
Assign a name to a number.
EXAMPLE: 14 CONSTANT FOURTEEN
when FOURTEEN is executed, the number 14 will be put on the
stack. Once a constant is defined, it cannot be changed.
EXAMPLE: FOURTEEN . <14>

VARIABLE
Reserves an memory location to store a variable in.
EXAMPLE: 7 VARIABLE LOOPVAR
This string creates a variable called LOOPVAR. The value of he
variable is iniially 7. When LOOPVAR is executed, a memory
address is placed on the stack. The contents of this address
is 7. Executing LOOPVAR @ first gets the address of the
variable, then gets the contents of the address, so 7 is left
on the stack. To alter the contents of a variable, the desircd
value is deposited at the address of the variable. For
example, executing 6 LOOPVAR ! will change the value of LOOPVAR
to 6.
EXAMPLE: 456 LOOPVAR LOOPVAR @ <456>

ARRAY
Reserves a section of memory for number storage. The top number
on the stack is the number of memory locations to be reserved
for the array.
EXAMPLE: 100 ARRAY DATA-ARRAY
An array called DATA-ARRAY is created which can store 100 data
points. To get the address of a particular data point in the
array, a displacement is put on the stack, and the array name
executed. For example, to get the address of the first data
point in the array DATA-ARRAY;
0 DATA-ARRAY
is executed. See this is so by outputting the address with a
".". To get the contents of this address, 0 DATA-ARRAY @ is
executed. To store the number "X" in the first data point, X 0
DATA-ARRAY ! is executed. Since there are 100 data points in
this array, the maximum displacement is 99.

CONVERS PRIMER page 22

EXAMPLE: 34 10 DATA-ARRAY
EXAMPLE: 10 DATA-ARRAY @ . <34>

To familiarize yourself with the number storage entries, try these
additional examples. Remember that earlier the entry TESTO was defined
which multiplied the top number on the stack by 13, then added 7. Let's
try writing this entry again, but instead of using the numbers 13 and 7,
use constants that are equal to 13 and 7;

13 CONSTANT THIRTEEN 7 CONSTANT SEVEN

TESTA THIRTEEN * SEVEN +

Now try executing TESTA and confirm that it performs the same function
as the entry TESTO. The VARIABLE entry is by far the most commonly used
number storage entry used in programming. It allows CONVERS to be very
flexible in computations etc. To demonstrate this, let's define an
entry which will multiply the top number on the stack by a variable,
then add the number 7. First, define the variable;

0 VARIABLE *VAR

Now write the entry to perform the mathematical fuction;

* TESTB *VAR @ * SEVEN +

If TESTB is now executed; L

45 TESTB . <7>

The result will be 7 since the contents of the variable *VAR is zero.
At this point, change the value of the variable to 13;

13 *VAR

and execute TESTB;

45 TESTB . <592>

Array storage is very similar to variable storage, the only real dif-
ference is that an offset must be specified to access a data point.
Arrays are normally accessed through DO LOOPS which are described in the
next section. Further examples of arrays will be postponed until DO
LOOPS are described.

At this point, the student should try creating some entries which use
variables and constants. Try writing an entry that will add a constant
to a variable, then multiply this intermediate result by a another
variable.

Before continuing to the next section, let's consider what will happen
if we try to create an entry with the name TESTO. Remember that TESTO

.V.X .o , -,

CONVERS PRIMER page 23

was created earlier, and unless CONVERS was exited and restarted, it
still exists in the user dictionary. Try typing;

N TESTO

CONVERS won't let you define another entry with the same name so it will

<TESTO IS DEFINED IN THE USER DICTIONARY>
<CANNOT CREATE NEW ENTRY WITH THIS NAME>

There are several other types of error checks made when compiling a new
entry. One of the most common errors is to try to compile an undefined
entry, usually because of a typing error. See what happens when you do
this by typing;

TESTX 1 1 + TSTO

CONVERS will reply with;

<TSTO NO SUCH ENTRY>

This is just a warning message that indicates a typing error was made.
You can go ahead and finish the compilation by typing the correct name;

TESTO ;

Another warning message that may appear in a compilation is;

<NUMBER TOO LARGE>

This indicates a number has been typed which is too large to be convert-
ed. This often happens when CONVERS is in decimal radix and you try to
type in an octal number. This is also just a warning message and you
can type in the correct number and continue. A different type of error
occurs if the following is typed;

TESTY 1 1 + LOOP

CONVERS will type;

<DO LOOP COMPILATION ERROR>
<--RECOVER-->

The LOOP entry is an IMCD entry that will be introduced shortly. For
now, all that needs to be said is that this compilation is not correct.
Notice the message --RECOVER--. Most error messages in CONVERS output
this to indicate a fatal error has occurred and the error was corrected
through the RECOVER entry. If you are in the middle of compiling a new
entry when a fatal error occurs, everything you have typed in so far has .-.-
been destroyed and you must start over. In addition, any numbers that
were on the stack are removed. This must be done in order to prevent
compiling a entry which would crash CONVERS if executed.

• ..-

CONVERS PRIMER page 24

SECTION V -- CONVERS BRANCHING AND LOOPING ENTRIES

CONVERS has many of the branching and looping constructs found in high
level languages. The DO LOOP construct is familiar to nearly everyone
who has programmed in a high level language. The unconditional branch- . "-
ing construct, BEGIN AGAIN is not as familiar since it is designed
primarily for control and data acquisition applications. The condi-
tional branching entries, IF ELSE THEN and END sound familiar since the
same names are used in PASCAL etc., but notice that in CONVERS the names
have different functions which make them much more flexible and
powerful.

IF
ELSE
THEN
END

These three entries make up the "IF-ELSE-THEN" conditional
branch. The entry "IF" tests the top number on the stack. If
the top number is not zero, any entry compiled after "IF" and
any entry compiled after "THEN" is executed. (i.e. any non-zero

Nw number on the stack is treated as a "true" condition). If the
top number on the stack is zero, any entry compiled after
"ELSE" and any entry compiled after "THEN" is executed. The
syntax for the construct is;

"IF" (entries) "ELSE" (entries) "THEN" (entries)

The "ELSE" is optional, but "IF" and "THEN" must be present.
Entries compiled after "IF", "ELSE", and "THEN" are also
optional. The END entry is a special entry which causes
unconditional termination of the entry in which the "IF-ELSE-
THEN" construct is compiled. When END is executed, entries
compiled after a "THEN" will NOT be executed.
EXAMPLE: : TST LOOPVAR @ 10 > IF BELL ELSE CRLF THEN SPACE;
The entry TST will check the contents of the variable LOOPVAR
(LOOPVAR was defined earlier, remember?) If the contents of
LOOPVAR is greater than 10, a BELL will be executed, followed
by a SPACE. If the contents of LOOPVAR is less than or equal
to 10, a CRLF will be executed followed by a SPACE. Try this
by depositing numbers greater than and less than 10 in LOOPVAR
and executing TST.
EXAMPLE: : TSTO LOOPVAR @ 10 >= IF BELL THEN
In this example, if the contents of LOOPVAR is greater
than or equal to 10, a BELL will be executed. If the contents
of LOOPVAR is less than 10, nothing will be executed. In this
example, "ELSE" is not required.
EXAMPLE: : TST1 LOOPVAR @ 776 = IF BELL ELSE THEN
In this example, if the contents of LOOPVAR is equal to 776, a
BELL will be executed, otherwise nothing will be executed.
EXAMPLE: : TST2 LOOPVAR @ IF END THEN BELL

%. -,'1°°'~~~~~~~~~~~~~~~~~~~~~~..-.-,° .,...",.% • .".. .,. . °. ." - •. .. .°.- . .". °..-

CONVERS PRIMER page 25

In this example, if the contents of LOOPVAR is zero, a BELL

will be executed, otherwise nothing will be executed. Try all
of these examples by changing LOOPVAR and checking the results
when the new entries are executed.

BEGIN
AGAIN

These entries form one type of looping construct commonly used
in CONVERS. A BEGIN AGAIN loop construct Is used when the
number of loops to be made is infinite or undetermined. The
BEGIN entry marks the start of a loop, and the AGAIN entry
marks the end of the loop. When the number of loops to be made
is undetermined, the BEGIN AGAIN loop construct is most often
used in conjuction with the conditional branching entries IF,
ELSE, and THEN.
EXAMPLE: : TST3 BEGIN BELL AGAIN
This is an infinite loop which rings the terminal bell. This
loop can only be broken with operator intervention (hitting a
0C). The BEGIN marks the beginning of the loop, and AGAIN
causes a jump back to BEGIN.
EXAMPLE: : TST4 BEGIN CSR BYTE@ IF ELSE AGAIN THEN
In this example, the processer remains in a tight loop as long
as the contents of CSR is zero. When the contents of CSR is
nonzero, the loop is broken. This is how a "ready" bit is
checked on a peripheral device for input/output applications.
TST4 cannot be entered at this point because CSR has not been
defined. For I/O applications, CSR would be a control and
status register on an interface board.

DO
I
J

K
LOOP

These entries form the most common looping structure used in
CONVERS because the programmer specifies the number of loops to
be executed. The entry DO marks the beginning of the loop, and
the entry LOOP marks the end of the loop. The I,J,K, and IJ
entries put loop indexes on the stack. Do loops can be nested
but an inner loop must be
completely enclosed within an outer loop. The I entry gets the
loop index of the innermost loop and puts it on the stack. The
entries J and K get the loop indexes of successive outer loops.
The IJ entry is special and will be described by example.
EXAMPLE: : TST5 10 0 DO BELL LOOP
The entry77S5 rings the bell on the terminal 1U times. The
number 10 preceding DO specifies the loop should execute 10
times. The 0 specifes that the loop index (I) should start at
zero and count up. Notice that this convention is very
different from most other languages!
EXAMPLE: : TST6 10 0 DO I . LOOP

-.5 ° " ""."" ° " - ' - • • - " • ° • - - ° ' - • .- . , o - • ' ° ' - " - " . " . ' , " . . , . - ' '

k- -L .7 R7 . 4 1 17

CONVERS PRIMER page 26

The ul" entry put the loop index on the stack each time through
through the loop. Because the index was specified to start at
zero, this example outputs the numbers 0 through 9 to the
terminal.
EXAMPLE: : TST7 103 DO I . LOOP.

I This entry outputs the numbers 3 through 12 to the terminal.
EXAMPLE:: TST830 00 100 00 J . I . LOOP CRLF LOOP
This is a two dimensional loop. The 'J puts the loop index of
the outer loop on the stack and the "I" puts the loop index of
the Inner loop on the stack. In this example, he numbers;
00010203040506070809 --

1 0 1 112 13 14 15 16 17 18 19
2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
are output on the terminal.
EXAMPLE: : TST9 3 0 DO 10 0 DO IJ . LOOP CRLF LOOP
The entry TST9 will output;
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
to the terminal. Notice that the IJ entry is equal to J (outer
loop count) 10 * I +. The IJ entry was created specifically

for accessing sequential data points in an array from nested DO
LOOP's.
DO LOOP's are used only when then number of "loops" to be made
is known exactly. If the number of uloops" to be made is not
known, the BEGIN-AGAIN construct must be used. An IF-ELSE-THEN
construct can NOT be used to branch out of a DO-LOOP. If this
is attempted, CONVERS will crash.

The branching and looping entries are by far the most useful entries in
CONVERS. Without these entries CONVERS would strictly be a "low level"
language. With these entries, CONVERS is able to span the range of high
to low level in one language. DO LOOPS are very useful for accessing
data points in arrays, as was mentioned earlier. As an example of DO
LOOPS and arrays, suppose data is to be put into an array, then each
data point is to be divided by 5.

Remember a 100 point array was created earlier called DATA-ARRAY. Now
create an entry that will initialize all points in the array to zero;

CLEAR 100 0 DO 0 I DATA-ARRAY ! LOOP;

and another entry to display the array on the terminal. One hundred
points will not fit on the terminal on one line, so the display entry
should output 10 lines of 10 data points per line;

DISPLAY 10 0 DO 10 0 DO IJ DATA-ARRAY @ . LOOP CRLF LOOP_"L

Now, make sure these entries work by executing them;

CLEAR DISPLAY

A pattern of 100 zeros should appear on the terminal. Now, write an
entry that will add a variable to each point in the array;

A. " .

CONVERS PRIMER page 27

0 VARIABLE +VAR

ADD3 100 0 DO +VAR @ I DATA-ARRAY @ + I DATA-ARRAY ! LOOP

Try out these entries by executing;

568 +VAR I ADD3 DISPLAY

The number 568 will appear on the terminal 100 times.

At this point, try to write entries based on DO LOOPS that will put the
numbers 0 through 99 in sequential data points of the DATA-ARRAY. Point
0 should contain 0, point 9 should contain 9, and point 99 should con-

-~ tain 99. Next , try writing an entry that will display the contents of
DATA-ARRAY as 4 columns and 25 rows. Just to keep things interesting,
ring the terminal bell every time a new row is output. The branching and
looping entries are the most flexible, and therefore the most complex
entries in CONVERS. Make sure you have tried all of the examples and
fully understand how each of the branching and looping constructs work
before continuing.

-p.

*q ' o' °-.p.i}j

.1*.

4. -

- -. -i

______ .4~ ... 5-. - - 2--

CONVERS PRIMER page 28

SECTION VI -- OTHER CONVERS ENTRIES

As you might guess, there aren't many more different classes of CONVERS
entries to discuss. The following are assorted entries that can't be
classified with the type of entries discussed so far.

EXIT
This causes CONVERS to stop running and reboot the RT-11
operating system.

FORGET
The FORGET entry removes entries from the user dictionary.
EXAMPLE: FORGET TST3
The entryT3T, and all entries defined after TST3 are removed
from the dictionary. Try this and verify that it works by
trying to executing TST3 after it is "forgotten".

FIND
Puts the starting address of a CONVERS dictionary entry on the
stack. FIND is a high precedence entry so it cannot be
compiled.
EXAMPLE FIND TST2
The top number on the stack will now be the starting address of
the TST2 entry. If the entry is not found in the dictionary,
the message;
NO SUCH ENTRY
is output to the terminal. Try this by trying to "find" the
entry TST3.

."..'7-2'

- - .--.--... 2-

CONVERS PRIMER page 29

SECTION VII -- DISK INPUT AND OUTPUT IN CONVERS

The most common disk operating system used with the smaller PDP-11 and
LSI-11 computers is RT-11. This is a very well refined operating system
since it has been In existence for a number of years. Because so many
people are familiar with RT-11 and so many programs are written to run
under it, the file structure in CONVERS emulates the RT-11 file
structure. Since RT-11 has all of the utilities needed to perform such
functions as disk formatting and initialization, directory maintenance,
etc., these utilities are not included in CONVERS. The main advantage
in having CONVERS disk files compatible with the RT-11 files is that
information can be passed between CONVERS and other programming
languages. For instance, CONVERS can be used to collect data from an ,
experiment, then write the data to a disk file. A program written in
FORTRAN can then be used to analyze the data. When file names are
specified in CONVERS, it must be compatible with RT-11. A name can
consist of the letters A through Z and the numerals 0 through 9. Up to
six characters specifiy the file name, and three chracters the file
extension. The name and extension are separated by a period.

LOAD
Moves a CONVERS source file from disk to memory and executes
and/or compiles the source as if the input were being typed
from the terminal. One limitation in using the LOAD entry is
that the file being loaded cannot load another file
simultaneously. Once the LOAD is finished, the last entry
compiled in the dictionary will be executed, irregardless of
what it is. This provides the facility to have a program start
itself once it is loaded. If you do not want to use this " '
feature, make the last entry in the source file a dummy entry,
i.e., one that does nothing, such as;

* :DUMMY;
The default file extension for a CONVERS source file is .CON.
EXAMPLE: LOAD FP.CON
EXAMPLE: LOD -
Trying to load these files will result in the message;
<FILE NOT FOUND>
<--RECOVER-->
If the files are not on the disk.
At this time, CONVERS does not have a text editor. To write a
CONVERS source file, use any desired editor which operates
under RT-11, such as TECO. When writing a source file, enclose
comments in parentheses such as;

GO GET-DATA VARIANCE ; (get data, calculate variance)
Anything In parentheses will be totally ignored.

WRITE-IMAGE
Writes the entire user dictionary to the disk under an assigned
file name. This type of file is called a memory image file and

a' ' ,

CONVERS PRIMER page 30

it contains compiled CONVERS source code. Reading and writing
memory image files eliminates the compilation step required
when a source file is loaded. The default file name extension
is .IMG
EXAMPLE: WRITE-IMAGE DICT.IMG

GET
Reads a memory image file from disk to the dictionary from a
named file. A memory image file is created by compiling source
code from the terminal or disk, (using the LOAD entry), then
writing the memory image to disk (using the WRITE-IMAGE entry).
The default file name extension is .IMG. Just as in the LOAD
entry, once the',GET is completed, the last entry in the
dictionary is executed. Getting a memory image file is much
faster than loading a source file because the compilation step
is avoided. A memory image file should only contain entries
which have been loaded from a source file, not typed from the
terminal. Also, the source file should always be retained
because an image file can never be "de-compiled". Before
executing the next example, "forget" the first entry in the
user dictionary, MESSAGE. Make sure it's gone by trying to
"find" MESSAGE, then execute;
EXAMPLE: GET DICT
And confirm that all entries are back in the user dictionary.

WRITE
Writes data from a named array to a named disk file. If a disk
file is found with the same name as the specified file, the old
file is deleted before the new one is written. The default
file name extension is .OAT. To remember the syntax for the
WRITE entry, think write from array, to data file.
EXAMPLE: WRITE DATA-ARRAY DATA1

READ
Reads data from a named disk file to a named array. The array
must have been defined previous to the read and it must be
large enough to hold all of the data. The default file name
extension is .DAT. To remember the syntax for the READ entry,
think read from data file to array.
EXAMPLE: READ DATA1 DATA-ARRAY
Try writing the DATA-ARRAY, change the DATA-ARRAY, then read
back from disk and verify that DATA-ARRAY is restored.

DELETE
Deletes a named file. A file extension must be specified as
there are no defaults.
EXAMPLE: DELETE DATAI.DAT

./4

S~- ---.--------------- •

CONVERS PRIMER page 31

This forces CONVERS into an interpreter mode while executing a
compiled entry. This is the only way file names may be
specified as part of a user defined entry. At compilation - -.-
time, the ASCII characters of everything enclosed within
brackets is put into memory directly. When the entry is
executed, the input routine fetches the ASCII characters from
memory, just as if they were being typed from the terminal.
The right and left brackets are used to enclose the entry to be
executed and the disk file and data array which the disk entry
is to operate on. Only one command may be enclosed within a
single set of brackets.
EXAMPLE: : DATA-WRITE L WRITE DATA-ARRAY DATA1]
Now try executing this entry to verify that it works. Note
that this entry;
LOAD+WRITE [LOAD FP WRITE DATA DATA1 J *

is not legal because two commands are enclosed in one set of
brackets. LOAD+WRITE should be written as;
LOAD+WRITE [LOAD FP] [WRITE DATA DATA1] ;

CHOOSING THE DISK UNIT TO READ OR WRITE TO

The portion of CONVERS which directly interacts with the disk is called
the resident disk handler. The number and type of resident disk hand-
lers in CONVERS is dependent on the disk hardware available for a
particular computer system. When CONVERS is first started, a message is
typed on the terminal which indicates which resident handlers are in-
cluded in the IMCD for that particular system. Also, the disk unit and
drive which CONVERS will initially communicate with when first started
is dependent upon how CONVERS was generated (see appendix A for details
on generating CONVERS). All resident disk handlers have within them,
entries which select the disk unit and drive to which data will be read -
and written. The names of these entries correspond to the RT-11 names
for a given unit and drive. Presently, resident handlers exist for the
RX01 single density diskette unit, the RX02 double density diskette
unit, and the RLOI and/or RL02 hard disk. The entries to select a disk
unit and drive are then;

for the RXO1; OXO (drive 0) and DXI (drive 1)
for the RXO2; DYO (drive 0) and DY1 (drive 1)
for the RLO1/RLO2; DLO (drive 0) and OLl (drive 1)

Notice that unlike RT-11, there is no colon following the name of a
drive. In CONVERS, when a particular drive is selected for reading or
writing, all disk transfers will occur with that drive until a different
drive is selected, there is no "system disk" as there is in RT-11.

As an example, suppose it is desired to copy a data file from drive 0 to ..-
drive I of a RX02 diskette unit. First, the file must be read from
drive 0 into an array;

DYG READ DATAl DATA-ARRAY

CONVERS PRIMER page 32

and now the array written to drive 1;

DYI WRITE DATA-ARRAY DATAI

At this point, if another disk transfer is executed, such as;

LOAD FP

CONVERS will go to drive 1 to find FP.CON, it will not go to drive 0 as
RT-11 would. If there is no disk in drive 1, the message;

RXO2 DISK ERROR
--RESET--
--RECOVER--

will appear.

--I-

-a - a;' m- _7 -7 -

Page 33

ACKNOWLEDGMENT

This work was supported in part by the Office of Naval Research.

REFERENCES

1. C. Moore, Astronomical Astrophysics Supp. 15, 497 (1974).

2. 5.8. Tilden and M.B. Denton, J. Auto. Chem. 1, 128 (1979).

3. Scott B. Tilden and M. Bonner Denton, CONVERS An Interpretive Cornp ile,
Department of Chemistry, University or Ar~izona, Tucson, Arizona 85121
(1980).

4. Arthur Gill, Machine and Assembly Language Programuming of the PDP-11,
Prentice-Hall, New Jersey (1918).

5. James W. Cooper, The Minicomputer in the Laboratory, Wiley, New York
(1983).

i-

4

FILMED

DTIC
mid V

