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Lagrangian Boundary Equation and Unsteady Separation of /571

Elliptical Cylinder at Angle of Attack
Chen Yunming

e e

(Institute of Mechanics, Academia Sinica)

/

Abstract . , : : -
\ (/w»/JAE}: Y } o ,j i ke Ty ian
In this wexk, the Lagrangianboundary equation is introduced to

steady the separation of an abruptly moved elliptical cylinder at the

e

path

angle of attack. Not only the occurrence of separation singular

Ahay A

points but also their forward movement with time were calculatad.

The computation also revealed that the separation pattern would

AR

change from trailing edge separation to leading edge separation.

}n regard to the methodology of computation, a transformation was
introduced to map the non-uniform mesh on the physical plane)to
the uniform mesh on an auxiliary plane. Thus, it is only
required to tighten the mesh (locally on the physical plane to
improve the accuracy without increasing too much computing time.
in addition, the advantages of the equal space finite difference,
such as simplicity and high accuracy, will remain. Furthermore,
‘a complicated variable boundary problem (separation point moving
%E forward) was treated as a fixed boundary problem which

I
]

significantly simplifies the process. “Cgrme % . v

!

— M
g {

-

I. Boundary Layer Equation in Lagrangian Coordinates
In fluid dynamics, the Euler descriptive method is most

commonly used because the majority of meaningful flow is steady.
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Furthermore, the stress tension of a Newtonian fluid in Euler
coordinates 1is simple. However, the Lagrangian method is also very
useful for problems concerning separation with unsteady boundary
layer, non-Newtonian fluids whose viscous tension is related to
the microscopic history, or when specific particles in the fluid need
to be tracked individually (such as turbulent diffusion).

In order not to complicate the problem, the discussion is
limited to the unsteady two~dimensional boundary layer of an
incompressible fluid. The following basic relations can be
obtained from xEEx+xn"x=1’ yE£x+ynnx=0:

Ee== ] Ey=—x,/]

N~ —yel/] a,=x/] N
where J=x5y“-xny5. In this case, the continuity equation is

wels +ugn, + vl +og, =0 a)

From equation (1) and u=x v=y _, we get

) (B)
56;_ (reyq = 7aye) = —a_tL -0
Thus, the continuity equation becomes
J = Xe¥p - X, Vg = 1 (2)

Because the Jacobi determinant represents the area ratio of
mapping, the ahove formula is the Lagrangian expression of the
conservation of fluid volume.

a

a\ _ 3 _ D
Note that (sfi = Xg 3: X 3F < ﬁ; then the boundary layer

equation becomes

Manuscript received on April 5, 1983
1) This paper is dedicated to the 15th anniversary of the death
of Professor Guo Yonghui.
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e ) (3

We get the following by expanding the parenthesis

1 - t
Ny~ — —p, + v[x;’l“ et 3% SUTHEL o $T TR G LY
P

(3"

+ (z,u,, + x,u;)x‘, - x,u.,x“]

Note that equation (3) is not coupled to equation (2). It can be b e

used independently to solve x(g,n,t). In this case equation (2)

A S R TR

. -
2

can be used to find y(g,n,t). The characteristic functions for

s )
L
»
'

equation (2) are

dE d' dy -
AT T AT ATy a)

Hence, we know that dx/&x=0. Thus, we can integrate along_the

LN CF R A
%
14

P
Bt}

x=constant curve to get

5 : S
(C.q)ﬁ—— (C-q)_!l_ ‘G-'l"-d, ~ (4) ::.7.-:

¢ y Sgﬁ —x, S!i xg Lm Vit

4

2 2

Let us assume that x=n ¢(g) and t=(g+U,t)/n ; it is then
j possible to obtain the similarity solution to equation (3')-the
ot steady motion of a semi-infinite plate (Blasius solution). From

LI A
LR s

equations (2) and (3) it is also possible to get the Falker-Skan
solution and the merging point flow. Nevertheless, the most
noticeable advantage of the Lagrangian coordinate is in the f?ii

treatment of unsteady boundary layer separation. With the

exception of the classical case of two-dimensional steady

ML NN L PR L) LY
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boundary, the criteria for boundary layer separation are still not yet

clear, For instance, there are many types of separation of a three-
(1]

dimensional steady boundary layer . There were controversies
on the separation of an unsteady two-dimensional boundary layer.

In the late fifties, based on special cases (separation of steady

boundary layer in solid wall motion), Sears et al introduced the

M-R-S condition: wu=0 and 8u/3y=0 at separated points[ZJ. In the

seventies, Sears and Tellionis used the divergence of numerical
methods to determine the occurrence of singular points-the -
physical appearance of separation[3’4]. For instance, at a Eff&?
certain time after the cylinder begins to move (t=2u t/R=1.3) the -
calculation of a certain time in the flow field is divergent, a
singular point appears. However, the computation performed by

Cebeci et al could last until t=2.8[5]

. They believed that the

divergence of the computation performed by Tellionis et al is a

PARNS, AR VLR IRIN SRl R RS AR g ko Ky TR 8
.
.
"
.

problem of the specific scheme and does not necessarily have any

physical significance. The problem became clearer after Shen

Shenfu et al introduced Lagrangian coordinates to treat the

problem[6].

(Pous LA
A

AL
el

In Lagrangian coordinates, a steady flow is also unsteady.
l Thus, it is possible to use one description for both steady and i
unsteady boundary layer separations. From equation (4) one can
see that when a certain point in the flow field has the following
B properties
: . x, =0, x =0 (5) s
2 € n SN
then the integral along the X=X  curve through this point is

I going to approach infinity (on the 1/\/Re scale). The above

formula shows that the fluid masses near (Es,ns) reach the same




position X=xg in the x-direction at the same time. Because the
volume is invariant, thus it extends to infinity in the y-
direction. It seems to have an unsurmountable obstacle in the x-
direction. The fluid masses cannot continue forward. They are
separated from the body and move toward infinity in the y-
direction (on the scale of.1/V/R3). This is the definition of
separation given by Prandtl earlier.

In the following we will prove that equation (5) is valid

for separation of a steady flow in a solid wall movement. It is

obvious we have

*  dx c
’—5‘“(“’ d))—t(x, &, >) (6)

texy Tt gy - 0}

oty + tady = 0 (7> /573

1f u(xs,vs)=0 in the flow field (not in the solid wall x#g),
from equation (6) we know that t - ®. Based on equation (7),
equation (5) must be satisfied. We also have uy=xgun-xnug=0,
i.e., the M-R-S condition.

In Lagrangian coordinates, the separation condition (5)
shows that a separation point is an extremum of x(£,n), instead
of a singular point (a singular point appears only when we try to
determine y and y is not needed in calculating x). Therefore,
there is no difficulty and ambiguity in the numerical

computation. It is clearly indicated in reference (6] that

cylinder separation begins to emerge at €=3.0 and es¢111°.
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II. Unsteady Separation of Elliptical Cylinder with Angle
of Attack

In the following we will extend the above one step further
to apply the Lagrangian coordinate to calculate the unsteady
separation of an abruptly moved elliptical cylinder with angle of
attack. There are two objectives: first we not only want to
calculate the occurrence of an unsteady separation but also to
track it with time. Next, we want to study the variation of the
position of separation with angle of attack. That means when the
angle of attack is increased, it changes from trailing edge
separation to leading edge separation (which is the cause of
stalling of aircrafts). As the first step, we temporarily
neglected to reverse influence of separation on the pressure
distribution, which is allowed in the initial stage of
separation. This reverse influence is taken into account in the
next step. Because the calculation of pressure distribution is
an independent subroutine, taking the reverse influence into
account has no effect on the numerical solution of the boundary
layer itself. It is essentially a problem to accurately simulate
the separation vortex in the external flow, which is another
special topic to be specially discussed elsewhere.

In the following, physical quantities with ' represent
dimensional parameters and those without ' are dimensionless
quantities. First, we introduced an elliptical coordinate to use ¢
to replace the arc length x' to describe the points on the
surface of the ellipse, i.e., to change variables from (g,n) to

(9y ,n). The unknown function is still x (which is a function

........................
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of ¢). In a Cartesan coordinate (X,¥), an ellipse is X=a cos¢ and
J=b sine (where a and b are the long and short axes). The arc

length of the ellipse is

x' - K:\/n’sin’da 4+ blcos’ ¢y dy, (A)

It is rendered non-dimensional as

o(¢) = 2 . 5"‘\/E0 + E,;sin* y do (8) »

e -+ ] RS

1

where E,=(2b/a+b), and E,=4 a-b/a+b. The inverse is noted as o S

(x). In this case the variables are E=x(¢,) and ¢°=¢(E). The QI%J

non-dimensional potential velocity is

‘ e - 1 .
U “,_) - o COSASIN 51_: = sinccosdr (9)

2ua VE, + Esin'¢

where a is the angle of attack. The origin is placed at the apex
of the a semi-axes. Therefore, the leading edge stagnation point
is ¢=-&, X, =x(-a)=-x(a). The time is rendered dimensionless as

t=4u°t/a+b. The ordinate is also made non-dimensional as

y=2y'/a+b \Jha(a+b) / v. . The non-dimensional velocity is

u=u'/2u_.

Next, the following transformation is introduced to map the
semi-infinite plane (-agg, <x—d,0gn<+=) to the square (Ogagl, OgB

<:
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P )

G~ C [iz,srctg (A,'.g 1'29) - “J‘ —d,
- SR '} (10)

n/s=1g 8= 25,(1 + 4z

2
where C, h, and h, are constants. h, =4(1+d)/ (=5:(Z+4d))» and h, = /574
Vd/(2+d) which make
AT 4 d 4 cosan); C(3 + d — cosxa))
¢ (a)
simple. C should be chosen so that¢,=s=—dwhen a=1(in our T: ‘i

calculation d=0.55 and C=1.942).

Boundary Conditions: conditions for the leading edge and

trailing edge stagnation points and the wall surface are

a""J,l(Jl—_lz‘:—‘li);u-qu—f‘:‘ (11
B=0:um 0, 5r=2¢ )
At infinity, 8=1, u=U(¢) and x=x(E,n==, t). Fortunately, an
integral expression can be found for x(g,n ==,t) to simplify the

computation program. From

14

"2 ‘ g . f L S - N

orm Ll — (Ey + E, sin’$) = |Edln ¥ = Fuadeos(p—d)  (B)
.U SsnfY = 4) g 2

we get

- gl +a)/2] PRy S
AR TG , B A E {COS (JJ —_— PR ‘J’o o]
’ ! (12)

g [(bo +d)/2]
where E,=E,+E,sinza. 9o =9(E) is already known. When t is given,
and x(¢) can be determined.
Velocity distribution and displacement thickness: when x
remains unchanged, the following can be calculated for each

increment
AS -— ’35_ A)' — '—I,'AV, A’T L x:Ay.

By €]
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Starting from the wall, g,= x, n,=0, B2 =80 =X Ay, Ny=n,+ (D)

XeBdYs oo oees £ ~En-1 -(xn)n_1Ay, "nsnn-1+(x£)n-1Ay’ u(En,nn)

u(x, nAy),....... With u(x,y), it is not difficult to calculate

the displacement thickness 6, .

ﬁ ITI. Numerical Method

Under the transformation (10), the basic equation (3')

becomes
) wr = TLOIU O3 2 (B) + i Fsgy — rurihes = % thaa — £iar
\- -+ (.r,u, e rply )Xug ™ TplipTes + (zaug — x5u.) (13)
ﬁ < (28,180 — xgagfar)] — By

o Because there is a circular flow area on the flow field,

- therefore, it is necessary to have corresponding countermeasures

in the difference scheme and integration method.
1. Difference Scheme: An implicit difference scheme

(Crank-Nicholson) is used for partial derivatives of time. A

center difference scheme is used for x , x_,, X ,, X , X_, u__,
ac BB af a B aa

u and u However, a tail wind difference scheme is used for

g8’ aB’

u, and uB terms, i.e., forward difference if the coefficient is

positive and backward difference if otherwise. Thus, the

difference equation can be stabilized.
2. Because the equation is non-linear, its coefficients are

related to unknown functions. They must be solved by iteration.

i
'
{

We used the Gauss-Sider iteration method to solve the difference

R | . . .
PRIVRIRIRIS T B

equation. In each iteration, n simultaneous algebraic equations

are solved for a specific a value (i.e., a specific x position).

............. s e
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n is the number of mesh points in the B-direction. After u and x
are determined, the equation for the next a« is integrated to
complete the iteration step by step from one end to the other.
However, thé direction of integration of « is changed after each
iteration: 1if it is from a=1 to a=0, then the next time
integrate from a=0 to a=1. Because the effect of the circular
flow comes from both sides, this method can quickly spread the
effect of boundary conditions to every point. Our experience
shows that this can significantly accelerate the rate of
convergence.

3. Because the motion is started abruptly, it is a singular
point at t=0. The proper selection of an initial value when t is
very small can ensure the accuracy of the entire computation.

The details are discussed in reference [6].

4. Determination of Point of Separation /575

The conditions for the first occurrences of separation
(singular point) are

N =23u/3y =0 and D =

+ =0 (A)

2
*geXnn Xen
The deviation is in reference [6]. However, D=0 is no longer
true at the point of separation at later times. Therefore, we
used the direct condition (5) to determine the point of
separation. With known x, and X values on a mesh point, the

€
intersect of x€=0 and xn=0 can be determined by intrapolation.
There are usually two intersects, corresponding to the positive
and negative values of D. The intersect corresponding to D<0 is

the true point of separation. As shown in Figure 5, there is
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another point where x€=0 and h on the inside of the enclosed

curve (which corresponds to points outside the boundary layer as

discussed in 3). This point is the minimum of x(g,n,t). Thus, D>

0.

5. Choice of Mesh Number: NEx Nn X At,

Doubling Ng or Nn will nearly double the computation time.
NE primarily affects the resolution in the € direction, which is

mainly determined by the extent of pressure variation. Nn is
primarily determined by velocity distribution and by < . For

instance, the circular flow region extends in the n direction at

RN
R

large attack angles. Therefore, N_ should be increased. The e

1

final NE’ Nn and At are determined by trial runs (i.e., doubling

the meshes without affecting the result significantly).

IV. Results and Discussion

1. Trailing Edge Separation - Leading Edge Separation.

Computations are made at three angles of attack (with the

semi-axis ratio of the ellipse b/a = 0.5).

At zero angle of attack, &=0, separation occurs at the
trailing edge at x = 2x's/(a+b) = 2.85 (the semi-~-circumference is o «
3.23). Several transformations o(g,t) and B8(E,n,t) were
attempted and results showed that the one recommended in the
second section is better. It does not add too much computing
time but can maintain better accuracy. The movement of the point

of separation with time, Xy~to, as well as a comparison of 6, and

T, at separation and their corresponding known solutions are

11
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i )
i
W e
P e
é shown in Figure 1. Results obtained using two different meshes, ;ﬁﬁg
65x17x0.05 and 73x33x0.0125, are in good agreement. The time at ,”1'

K e
A which separation occurs is t_=1.8. o
ks K
b At a medium angle of attack of &=22.92°, separation still D
occurs in the trailing edge, as shown in Figure 2. Another :? )

N

! transformation was attempted when the angle of attack exists to R

>
X make the mesh points closer near the apex of the semi-axis. AN
~ =
ala—~a) .- e

) o=C [In, arctg (b,lg —7—-) - (a — a,)]

A T o (B) AN
vt Il
} where C and o, are determined by a=0 at ¢=-& and a=1 at ¢==-&. -

However, the result is not as good as that obtained using

equation (10). At a medium angle of attack, the pressure S

>, S
i gradient near the leading edge is not sufficient to cause 1;-2
_ separation., But, the trailing edge is not sufficient to cause f .
g separation. But, the trailing edge stagnation point is shifted 3;;
;} to the flat position of the ellipse where separation shows up ?;2
’ very late at ts=3.8 because the pressure variation is slow. The i:;
§ mesh remains to be 65x17x0.05. After tightening the mesh in the 8 T
ZE -direction by one fold, xg,ty and ug do not change by one
;. percent. As the trailing edge siﬁgularity is developing (i.e., —
f; grad x is decreasing but not yet zero), the singularity near the }€f
éi leading edge (where pressure varies violently) is also b
j% developing, but much slower. —
é The separation at a large angle of attack of &=50°, just as &EL
ig expected, occurs at the leading edge where pressure fluctuates Eﬁ;
,{ violently. The ratio of the distance from the leading edge ;::
’| oo
: 12
-

" ’

+
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stagnation point to the separation point, X(&)+x gr to the semi-

circumference is 0.32. Consequently, the time of separation also
arrives much earlier; ts=2.1. In this case, the backflow area
and separation point are far away from the wall. Therefore, the
mesh is increased to 65x65x0.05 (not too different from the
result obtained with the 65x33x0.05 mesh). The calculated
results are shown in Figure 3. As the leading edge singularity
(i.e., decreasing grad x) is developing, there is trailing edge
singularity underievelopment.

Summarizing the three cases above, separation always occurs
in the rear half when & is not large. While after a exceeds a
certain critical value @, separation will occur in the front
half. In this case, ts will also decrease. Therefore, the

variation of tg with the angle of attack is as the ts~f& curve

shown in Figure 4. The jump of the value of t, at a=&c is caused

by the "jump" of the point of separation from the rear of the

cylinder to the front. Similar "jump" phenomena also occur with

i: the steady separation of an ellipse[1]. From this study we know
32 that singularities can develop in front and rear of the body due
.‘ to an inverse pressure gradient (decreasing grad x with

singularity develops faster. Singularity does not occur in one

place and this singularity will "jump' from the rear to the
front.

2. How to Improve Accuracy

13
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increasing y-axis). Where separation occurs depends on where the

The special feature of the Lagrangian coordinate is that the

................




mesh on the (£,n) plane varies with time. The mesh near the

leading edge stagnation point becomes larger as the masses move ;

downstream. Therefore, the mesh should be closer. Next, in e
r:.\\ﬂ
order to improve resolution, the mesh should also be closer near R

the apex of the o semi-axis where the pressure varies violently.
However, too many mesh points will lead to excessive computing
time. If the mesh is only tightened locally, not only the
difference scheme is complicated but alsc the accuracy is
affected due to the fact that the mesh is non-uniform (for
instance the center difference is no longer accurate to the

second order). We solved the problem by introducing the

transformation (10) and an elliptical coordinate (8) to make a
uniform mesh on the (a,B) plane to become the non-uniform mesh on

the (g€,n) plane - tightened at the semi-axis apex and the leading

-
edge stagnation point. 1In this case, although the equations are Iﬁjﬂ
complicated, yet logarithmic 2élculations will not bring about Ei#
any difficulty in substance. :,;
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3. Variable Boundary Problem - Steady Boundary Problem /577

In the Euler method, this is a variable boundary problem on
the (x,y) plane plane which should be integrated from x=0 to X=X
and xg decreases with time. This problem is very complex. In
the Lagrangian method, this is also a variable boundary problem
on the (g,n) plane. However, it can be treated as a steady
boundary problem, still integrating from «a=0 to a«=1. The contour
of the solution x(g,n,t) after separation is shown in Figure 5.
The solution x(g,n,t) itself is normal on the (£,n) plane. It
corresponds to finding y by integrating (4) along the curve
x=constant on the physical plane (x,y). However, it is not
possible to enter the enclosed curve X=X_ starting from the solid

wall, i.e., points inside the curve are outside the boundary

17




! layer (which is infinity on the scale of VRe). The x values on

these points, in some sense, can be considered as the analytical

extension of the x values of external points. IR

S

4. Intensity of Separated Vortex e

o P ‘:_-

At a specific time t , points inside the singular curve x(g,n

yte )=X correspond to separated points. However, at a separated

singular point (Es,ns) au/ay=0, us#O and ns+0 (not on the wall).
In this case, below it we have (x=xs, n<ns) au/ay<0.

Furthermore, the y value calculated according to equation (4) is

4 -A & N VEESTE S R A
Yoy
e
o
N &

finite. Therefore, this part is not separated. Furthermore,

only the part above it is separated (x=xs, n>n_ and du/ay>0).

According to the M-R-S condition, in the coordinate in motion at

A LA LTI 2 3
1
’
1]

(w'=u'-u;), we have w'=0 and aw'/ay=0. 1In addition, the vortex

flux separated from the boundary layer to enter the external flow

L

is/?sw'aw'/ay dy = w'2=%(u'~u')?. The intensity of the

separated vortex can thus be determined. It provides an

important parameter for the next step to take the inverse effect

+Ca"HER W WV 5.8

of separated vortex on the pressure distribution into

s

consideration. After each step at, it is possible to calculate
the newly increased separated vortex intensity. (How to simulate

separated vortex and its movement is another topic.) Based on

T T ey RS - .
'

the separated vortex, we can calculate a new pressure
distribution. The new pressure distribution can be used in the
numerical integration in the next step at.

This work was performed under the guidance of Professor Shen

Shenfu. The author wishes to thank Dr. Van Dommelen for his

T Ay YR Y TR V. RERT .-

unselfish assistance during the course of this work.
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T T KGR ANGIAN BOUNDARY LAYER EQUATION AND
T 72 UNSTEADY SEPARATICN OF THE ELLIPT:C
SYLINDER AT ANGLE OF ATTACK

Chen Yupmirzg
(Iratitute »* Vechanics, Acodemia Binica)

A‘:stract _

l.acranrian ¢ ordinates were "trm‘uced to investigate the unstendy boundary laver
memazaiion of ollintie eylinder a* anyle of attack. The - forward-moy et of the se
~neation peint with time was ea’cv'ated. As well as the first oceurrnes of separation.
Tt wnr a'sn feomd that the eepavat oo opattern would chance, as exjecred, f rom Tear-
=y arition to fore-separation as the angle of attack increased.

T reepect to the numerica’ methodogy, coordinate tranusformitiors wore iniro-
Anen” 3 mep the momunifrrn meth points in the physical plane to the unifo = mesh
=<7 4= 'n the atxialliney = are -» implify the finite difference ¢ omnata, and  the
samniionted moving-hourdary problem was treated in & fixed-hourdata o voatner,
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