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ABSTRACT
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have been heavily researched in this regard) are mirrored or lost
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1. INTRODUCTION

In this paper we shall continue our study of various sample path
properties of x%> processes, begun in Aronowich and Adler (1985).
The x2 process is defined, in law, via a vector X(t) = (X](t),...,xn(t))

of n independent, stationary, zero mean Gaussian processes as

(1.m) Y(t):=X"(t)x(t) = gx?(t) .
i=1

We have already noted in the previous paper why this process is
interesting, and we refer the reader to the introduction there for
details. For the sake of completeness, however, let us recall here
that 2 processes are of applied interest in a number of stochastic
modelling situations, and of considerable theoretical interest as
perhaps the only non-Gaussian process for which it is possible to develop
a theory almost as general as in the Gaussian case. Thus the x? process
presents a natural candidate for studying the robustness of the Gaussian
theory when similar, but non-Gaussian, processes are considered. As
was the case in the previous paper, our principie concern will be to
see when non-Gaussian behaviour is exhibited by x% processes, rather
than trying to see what has to be done to obtain almost-Gaussian pheno-
mena. In this view we shall pay particular emphasis to low sections
of the x2 processes (which is clearly bounded below by zero) which
exhibit highly non-Gaussian behaviour, rather than emphasise the high
sections, which are much closer to Gaussian. This emphasis is also re-

lated to and motivated by the applications mentioned in the earlier paper.




.........

The paper is organised as follows. Section 2 studies the fine
behaviour of x? processes after level crossinas and extrema. Our

approach is to develop the Slepian model process in each case, this

representing the conditional distribution of the original process after
a level crossing or extremum. The model processes take on particularly
simple forms if the level crossing or extremum is either at a high
level or close to zero, and so we study these cases in detail. In all
cases it turns out that at high and low extrema x2 processes look
like random parabolas, as do their Gaussian counterparts and as, in
fact, does any smooth enough function. The differences between the 2
and Gaussian cases show up in the parameters of these parabolas,

which are generally random variables.

From the simple structure of these limiting parabolas it is a
simple matter to deduce the distribution of variables such as the
duration of high level excursions. Examples of this type of calculation
are given in Section 3.

In Section 4 we consider the asymptotic Poisson form of the
(normalized) process of downcrossings of a low level by a x2 process.
Upcrossings have already been considered by Sharpe (1978) and Lindgren
(1980a,b), and these follow the Gaussian model quite closely. Down-
crossings of low levels exhibit somewhat different behaviour, primarily
because of the fact that the process is bounded from below. As is well
known, results of the types of Sections 2 and 4 are often combined
in practice to model processes as a sequence of random parabglss posi-

tioned over the points of a Poisson process. Consequently, the results

of Section 4 are of reasonable applied interest.
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Given the asymptotic Poisson result it is a comparatively simple
exercise to obtain the (normalized) distribution of inf{¥Y(t): te[u,T]}
as T >« _, This is done in the final section 5.

We conclude this section with some definitions and notation.

Throughout the paper we shall assume that the component Gaussian

processes in (1.1) are independent and have a common distribution, with

covariance function
R(t) = Rx(t): = E{X(s)X(s+t)}.

We also assume, without any loss of generality, that R(0) = 1; i.e.

the Xi alt have unit variance. We shall assume that eacn Xi is twice

continuously differentiable with probability one. {c.f. Cramer and
Leadbetter (1967) and Dudley (1973) for sufficient conditions on R for
this to be true.) Thus we can define the second and fourth spectral

moments of the Xi » respectively, as

2 .
L. -dR(t L2
(12) =0 -—azé—l- EOXC(t))
£=0
4
- . - d'R(t) - eyl
Ve -;Eﬁ——\ FCACITN
£=0

where X and X are the first two sample path derivatives of X.
Furthermore, we then have the following behaviour for R and its

derivatives near the origin:

2 4

(1.3)  R(t) =1 -2 vt 4ot as t - 0

9




----------

..........
..........

(1.8)  |R(t) + 2] <0(t®) ast-9.

It is immediate from the definition (1.1) of the x2 process
Y that it inherits from the Xi both stationarity and twice differen-
tiable sample paths, so that we can express its first and second order
derivatives via those of the Xi . We nave

n
(1.3)  ¥(0): =L v(o) =2 zx (0% (1) = 2x'(8) X(t) ,

dt i

where X(t) = (i](t),...,in(t)). Similarly, writing X(t) for the

vector of second order derivatives of the Xi ,» we have

. d2 n_ .
(1.4) Y(t)::azz Y(t) =2 'zi[Xi(t) + Xi(t)xi(t)]
i=i

20" (t) X(t) + x'(t) X(t)1.

Furthermore, Y has mean n and covariance function

(1.5) R (£): = EQY(s)Y(s+t)) = 2nR§(t)

To avoid uninteresting technicalities, we shall assume throughout
the paper that all the joint (finite-dimensional) distributions of

Y,y and Y are non-singular.

As we have already noted, considerable emphasis will be placed onstudy-

ing the sample path properties of x? processes via model processes

created by conditioning the original process, in a horizontal window

sense, on some event having occurred. We shall assume throughout




that the reader is familiar with this idea, and with the basic wotivation
and methodology behind it. A full survey of the model process approach
is given in Lindgren (1984), and a background sufficient for our pur-
poses can be found in Section 10.3 of Leadbetter, Lindgren and Rootzen
(1983).

In order for the model process approach to be meaningful it is
necessary to assume that Y is ergodic. This clearly follows from

the ergodicity of the xi processes, which, in turm, follows from
(1.6) R(t) >+ 0 as |t| » = ,

a condition which we shall henceforth assume.

Finally, in order to compare results in the x2 case to corres-
ponding results for Gaussian processes, we shall require a Gaussian
process "matched", in terms of its second order properties, to our
x? process. Such a process, Z(t) say, will be defined to have mean

n , variance 2n , and covariance function (1.5), identical to that of

the 42 process.
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2. BEHAVIOUR OF x® PROCESSES AFTER A LEVEL CROSSING

In this section we study the x2 process Y(t), t >0, given
that at t=0 the process crossed, either from above, or from below,
a given level. It is now well known that the appropriate framework
for such a study is via the notion of "horizontal window" (h.w.)
conditioning introduced by Kac and Slepian (1959), and the so-called
Slepian model process. For details of the latter we refer the reader
to Lindgren's (1984) recent review,

We commence by considering Y(t) , conditioned, in the above
sense, on having an upcrossing of the level u >0 at time t =0,
We write Yu(t) for the conditional, or "model", process. Then,

writing £ for equivalence in law, we have

Theorem 2.1

(i) Following an upcrossing

(2.1) Y (t)

nm-m 3
———
=
pe)
o~
(nd

Wy = RO/ + 8 (1),

where the random vectors V = (Vi,...,V )' , W = (W

the joint density

(2.2) plv,w) = n"'”z‘(””)/Zr(n/Z)(y'w)+exp{—y‘\y/2},

with respect to (surface measure) « (Lebesque measure) on the cylinder

. n + . , _
(v'v=1) x R. Here (+) =maxi+,0}, and ;(t) are independent, zero mean,

faussian nrocesses, independent of V,W, and with the common covariance function:




(2.3) r(s,t) = R(s-t) - R(s)R(t) - R(s)R(t)/Ar .

(ii) The characteristic function of the joint distribution

of Yu(tl)"“’yu(tk) is_given by

(2.4) o )= 8 e
2.4 P(Vyseeesy ) & —mr——— ziexp{- 55 - i£zl}dedz
1 K 2mu 0 e 28
where
where - .
]-21v] —21\)2R]2 ees -21ka]k 212R] -21gR]
-21v1R21 1—21v2 C -ZikaZk 21€R2 —215R2
A = det --------------------------
-21v]Rk] 21v2Rk2 1-21vk 212Rk -2ing
-21\)]R] 21\)2R2 —Zikak 1 -2i¢
_Ziv]R] 21v,R, zwkrzk -2ia 1
. 3 . ﬂ
]-21\)] -21\)2R]2 21\)kR-|k R]
--2'I\)-|Rz1 1-21\)2 21\)kR2k R2
Bomdet |+ f ¢ttt e e e
-Ziv]Rk] 21'\)2Rk2 ]-Zivk Rk
-Ziv]R] -21'\)2R2 —ZTvKRk 1 _
= ), R, = -t ),R.=R(t )R, = R(t.-t ).
and RS R(tJ) Ry, R(tJ t,) RS (tJ) RJ;_ (tJ t)

Proof. Part (i) of the Theorem is given in Lindgren (1983c, 1984).
The distribution of V and W 1is the h.w. conditional distribution o!

X(0)//u and X(0)/V/% , given an upcrossing of a level u at t=0.




';ﬂ.lli.

Note that although X(0) and ¥(0) are independent, V and W are

not .

(ii)  Under the conditions given in the Introduction, we have:

0

(2.5)  plyl¥(0) = 0, ¥(0) 2 0) = u‘1é |2ip(y,usz) ez,

where p(y,u,z) 1is the joint density of Y = (Y(t]),...,Y(tk))',
Y(0) and 9(0), and u is the expected number of upcrossings of the
Tevel u by Y(t) in unit time. Thus

(2.6)  w= % (uy2)(N-1)72 -ur2

(see Sharpe (1978)).
The joint characteristic function of VY, Y(0) and ?(O) is given
by:

= E(explily'Y + vY(0) + €¥(0)]))
3

‘!J(Y ’Vo’ E)

1}

1}

n

E exp{i[ £
3=1

k2
{E{exp i [ ¢ v.X](t.)
j=1 J J

{E(exp [(X], %,(0),%

..,X](tk))' and

:
0

Yk
v £
£ 0

Xt )+ '
v ()%t 5) +vpX

0~

(0)

X

(0) + 2:zx (0)X(0) 1}
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The covariance matrix of the normal variates X],X](O),X](O) is

(c.f. (1.2))

(2.7) M= | e e e e
R R ! Re R
R, R, Re 1 0
L-R1 Rz -Rk 0 A ]

Therefore (see, for example, Lukacs and Laha (1964)),
W(vavg,€) = ldet(I-2i yNH™/2
and a simple calculation shows that

det(I-2i MN) = A - 2ivB ,

4]

where A and B are given after (2.4).

Using the inversion theorem for Fourier transforms, we now have

o] [--] k
(2.8) p(y,u,z) = (Zn)'k"zj cor Ju(vsvnse)exp{-i[v'y+tv utez]rde 1 dv, .
- 0 -00 - () - O J':O J
k-2 .. 0 -iv'y [ ocigz : -n/2_-iuy k
= (2n) -c{"'_c{ e - ~_0{ e -o{ (A—21vOB) e °d\)0dg_j1=11dvj

To evaluate the innermost integral we note that
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0 y @ = +]

© . /2 - u
(2.9) {(B+aivy) N/24= 490 gy = . L
- 0 lam% e r(ns2) , a

]}
]
—

for Re(g) > 0, (Gradshteyn and Ryzhik (1980), p. 318.).
Thus

o«

. -n/2 -iuv
f(A-21 \)OB) e Od\,o

00 -Q0

- (28)"/2 ;m(.ll_ v, ) 2" U0y,

= 200271 (28) ™™ 2 xp(-ua/2B) /1 (n/2)

(since Re(A/B) > 0, or else the density (2.8) would be degenerate,
which would contradict the assumptions made in the previous section.)
Substituting (2.8) and the above into (2.5) and changing the

order of integration, we now obtain:

ply[Y(0) = 0,¥(0) > 0) , =

-] [+ ' 2 -n/2 o o0 k
-k -v'y eu/ B ud
s@nr L fe ~~{——f 2] fexpl- Y5 - HZZJdadz} T dv, .
R 2/Z00 0 -= 28 =1 3

Since the expression in braces does not depend on Y it equals

the characteristic function y(v) of (2.4), and the proof is complete.

*
Remark. Similarly, if we now write Yu to denote the process Y condi-

tioned (in the horizontal window sense) on a downcrossing of Y(t) of

the level u at t=0, then it is easy to check that Y: has a repre-
sentation identical to that of Yu , Wwith the single difference that in
the density (2.2) the expression (y'vg)+ should be replaced by (-y'vj)+
Furthermore, in the characteristic function (2.4) the range of the

z-integration should be changed to the negative half-line.
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The density (2.2) turns out to be relatively awkward to work
with, primarily because of the function (')+ appearing there.
Even the evaluation of the mean and covariance functions of the
model process, is a difficult task, since it involves computation
of the second and fourth order moments of Y and W. However, the
joint characteristic function is more amenable for evaluation of the

moments of Yu(t), and leads to

*
Corollary2.1 The model process Yu(t)(Yu (t)) has the mean function

m(t) 2 2 .
(2.10) () =n + (u-n)R°(t) + R°(t)/xr 5 R(t)R(t) v2mu/xr
m*(t

and the covariance function

o(s, t)}
(2.11)
p*(s,t)

2(n-2u)RE(£)R2(s) + 2nR®(t-s) + 4(u-n)R(t)R(s)R(t-s)

+

(2/2) (2u-mu-2)R(t)R(s)R(L)R(s) + (4/A)R(t)R(s)R(t-s)

2/ 2R (1)R2(s) T /amu/ni2R(t)R(t)RE (s)+2R(s)R(s)R(t)

+

(1/MRER(E)RE(s) + (1/2)R(s)R(s)RE(t) -2R(s)R(t)R(t=5)

2R(t)R(s)R(t-s)} .

Proof. The results follow via appropriate differentiation of (2.4)

with k=1,2, Tedious calculations are omitted.




In order to compare the last result with the one obtained in
the Gaussian case, we use the matched Gaussian process Z(t) men-
tioned in the Introduction with mean and covariance function equal
to those of Y(t). For this process, the means of the model pro-

cesses at upcrossings and downcrossings are given by

mz(t) 2 - .
=n + (u-n)R°(t) + /2nn/x R(t)R(t) .
m*(t)
2
To see how these differ from (2.10), Figure 1 gives the means
of the model processes of a xﬁ process and a matched Gaussian
process conditioned on a downcrossing of the level % at t=0.

2
=1
(Covariance function R(t) = e % .)

Note that the y2 process
has a flatter, and higher, minimum than the matched Gaussian process.

Both return reasonably quickly to the mean level of 4,

- - - - e W e e -

Figure 1 near here

- - - - = n e e En A = T G e -

We now turn to the study of the model processes Yu and Ya
at high and low levels, respectively. In these cases the model
processes take on particularly simple forms which are useful both in
the modelling of x% processes at extrema and for prediction pur-

poses. We need to start with a technical result.
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Lemma 2.1 Let X = (X],...,X ', Y = (Y],...,Ym)' be independent random

m
vectors; X’vN(Q,azg), Y N(Q,bzl). Denote X = X'X, Y = Y'Y, Z = X'Y . Then

-~

the joint density of X,Y,Z is given by

(2.12)  p(x,y,2) = C(xy - 22)(m'3)/2exp{-x/2a2 - y/2b2} , x>0,y >0,
2
xy-z~ > 0;

¢l = 27 (ab)™(m/2)T((m-1)/2) .

Proof. The conditional ch.f. of Y,Z, given X = x, is

by,z|x=x(V12v2) = E(exp{ivyY'Y + dv,x'Y})

m 2
n E(exp{iv]Yk +ivx Y })
k=1

WX k!

m
exp{-ivs '/} T E(expivg (Y, + vp%, /2v)°)

1
For every k=1,...,m the r.v, Yk + vzxk/Zv] has a N(vzxk/Zv],bz)
distribution. Therefore the expectations in the last expression yield

the ch.f. of a non-central x% distribution:

E(exp{iv](Yk+v2xk/2v])2}) = (]-21v1b2)-T/26XD{

Consequently

-v,b T x'X
. 2, -m/2 vor T 1
= -2 —_—
wY’le=§(v]’\)2) (] f—"\)-lb ) exp{Z(]-"’iv b2
-

This being dependent on x only via x'x = x, we can replace the condi-

tioning event accordingly. Using the inversion theoren one obtains

LARE it R A A A A S SO o i




-2 @® ) - _. -]
p(ysz|x) = (2n) -0{(]-21v]b2) /2e=1v Y fexp - 7, -2y ey,

=0 2(1-21v]b

2,52 ®
expl-2 /2b°x} 1y 5552, )-(m-l)/
ovem 4 ]

zexp{-i(y—zz/x)v]}dv] .
Applying (2.9) to the above yields

- (y—zz/x)(m'3)/2exp{-y/2b2}
/rx 2™ 2pMo((m-1) /2)

p(y,zx) sy Yy > 22/x (x > 0).

Finally, (2.12) follows on observing that X/a2 is a Xi variate.

We are now in a position to prove the following result, which hinges
on the representation (2.1) for Yu and the corresponding representation

*
for Y .
u

Theorem 2.2 Define the normalised and limit model processes

2

Y () = Y (6/A) - ugY (£): = it ¢ 2/K 2t
V(t): = (VY (A1) 4§ T(t): = aet® - 2/A 7t + 1

where Z = V'W and v =w'w. Then 7 and v are, respectively Rayleigh

and x2 variables with joint density

n+1

2y(n=3)/2 -u/2
. 2(w-2) e S0 .
p(wa) 2("'1)721~(”£T) y 2 O, U Z

2




Furthermore
(1) Paimsup [¥ (t) - Y (t)] = 0) =1
u—w|t|_<_t0
(11) Plim sup [Y*(t) - Y3(t)| = 0} =1
w0|t| <ty Y
Proof. (i) By (1.3)
. 2

R(t/Vu) =1 - %%—-(1+0(1))

-2 (140(1))
U

R(t/Vu)

as U > =, where the o-terms tend uniformly to 0 for t in any bounded

interval. From Theorem 2.1 we have

T (t) = xt?(140(1)) + 2/%eV W(1+0(1))

n

2
* LGV ¢ 211 - B (0(1) Wy, (6440
'I:

+ 2/3 t(140(1))W,8. (t//0)) .

By (1.4) and (2.3) the Ai(t) have continuously differentiable
sample paths with Ai(o) = Ai(o) =0 , and thus Ai(t//ﬁ) = o(t/Vu) as

u + =, uniformly for bounded t. It remains therefore to find the dis-

.y L B i i i At el el

tribution of Z = V'W. But since this is equivalent to the h.w. conditional

distribution of ?(0)/2/5? » given an upcrossing of a level u at t=0,

its density is given by

(2.13)  p(z) = v aurep(u, 24 2), z - O,




where p(-,-) is the joint density of Y(0) and Y(0) . Given

X(0) = x, ¥(0) = 25'8(0) is a normal zero mean r.v. with variance

4)x'x , and since this depends on x only via x'x = u, we may conclude

that Y(0), given Y(0) = u, has (conditionally) a N(0,4\u) distribution.

Therefore

u(n'3)/2e'U/2exp{-¢;8Au}

p(u,y) = plyfulp(u) = 2312 o)

and a direct substitution into (2.13) Teads to

2
p(z) =ze2 72,250,
the desired result.

(i1) In a similar way, via (1.3) and (1.4), as u~> 0

RO/T t) =1 - ;—Autz(Ho(]))
R(Vu t) = -a/U t(1+0(1))

Ai(/U t) = o(/u t)

uniformly for bounded t. From the remark following Theorem 2.1 we can

then deduce that

2

VH(t) = 1+ athw s 2R+ oD

The joint distribution of Z = V'W and y = W'W




is equivalent to the h.w. conditional joint distribution of Y(0)/2/ux
and X'(O)X(O)/A s given a downcrossing of the level u at t=0 . Their

joint density is

(2.14)  p(z,v) = u']4uxlz|p(u,2/ﬁi'z, V) z <0

where p(-,-,-) is the joint density of Y(0), V(0) and X'(0)X(0)/% .
By Lemma 2.1, this density is
n-3

>

(g4 = L0~ $2/8) 2 expl-y/2 - w2}
PLYsY, 1 — n/2-1
2™ 2= 2 r((n-1)/2)

and a substitution into (2.14) concludes the proof.

The above theorem can be summarized as follows. Near an upcrossing
of a high level u the x2 process can be approximated by a random
parabola

ut? + 2/ 7t +u .

Near a downcrossing of a low level u the X2 process can be approximated by

AWtz -du it +u

which, because of the random coefficient ¥, is of quite a different form to

the Gaussian case.

(It is interesting to note that the model process in the Gaussian case

takes a similar asymototic form, viz.

-%Autz + /NIt + u,

with 7 once again Rayleigh.)
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It is intuitively obvious that low and high level crossings should be
followed by extrema. The model processes for extrema should therefore have a

very similar form to those for crossings. Weshall derive the 1imitingmodel pro-

- cesses of extrema with the aid of the following result.

Lemma 2.2 let X = (X(t]),...,X(tk))' where X(t) 1is a stationary,

q
PR

Gaussian, zero mean process with covariance function R(t) (R(0)=z1)

and finite second and fourth spectral moments (2 and v respectively).

Then the conditional distribution of X, given X(0) = x, X(0)=x, X(0)=x

is multivariate normal with expectation

o AR, +R. R, AR. + R. l
.. y = 1 NP I i
. Na-T) A 2 (a-1)  Jis1,... .k

and covariance matrix

- _ ] . ..
{p(t’i’tj)}i P {R‘ij m[AaRiRj"'Ri RJ.+RJ.R_i

: + (a=MRR, + 1§ ]
> PIOATIie,k

- 2

where o = y/\

- Proof. The covariance matrix of g(,X(O),)'((O),')Z(O) is
i 1 R]2 R]k R] -R] Fﬁ

v b R | Ry R R
: Ra Re 1 Re R R say
” Ry R R ] 0 -

Ry R, . -R, 0 »o0




From the basic properties of the multinormal distribution it
follows that the conditional distribution of X is normal with mean

- ~1 VA O
y = S]ZSZZ(X’X’X)

and covariance matrix

i -1
oltitdd 5= 81 = 5155, -

Remark. Lindgren (1970) derived a similar result for x = 0 .

Applying the arguments of Lindgren (1984) it follows from the
above lemma that the model process obtained by conditioning Y(t)

on having a local extremum of height u at t=0 can be written as

(2.15) O R(EDV; = REML /YR + DIR(E) + R(E)H,AVGT + Ki(t)}z ,

1

ne>s
—

where Ki(t) are independent, normal, zero mean processes, independent
of V, W, H, and with the common covariance function o(s,t), of

Lemma 2.2. The distribution of V, W, H is the h.w. conditional
distribution of X(0)/vu , %(0)//% and [X(0) + AX(0) 1/ WaT

given an extremumof height u at t=0 . Note that with probability 1
V'V=1 and V'W=0. Also, /ulo-T) V'H + W'W - u is restricted

to negative or positive values, respectively, according to whether (2.15)
comes from conditioning on a maximum or minimum, It was shown in Arono-
wich and Adler (1985) that, given Y(0) = u and Y(0) = 0 , the random
variables X'(O)%(O)/x and x'(O)X(O)/~.ﬁT:TTT' are conditionally inde-
pendent having Xi-] and -/;——gT + N(0,1) distrinutions »ospectively.

IR SRS T gh - S

vy




Furthermore, since

R(t) = -2+ (w2)t? + o(t?) , t -0
and

K;i(t) =o(t), t=~0
with probability 1, we have the following

*
Theorem 2.2 Let Vu(t) and Vu(t) be the h.w. model processes given

maxima and minima of height u at t=0 respectively. Write

v, (t) =y, (t//) - u
V() = (Y (A t) .
u u
Then
(i) Primsup |V (t) + at?] =0} =1
o] t] <ty "
(1) Praimsup | V2(t) -t -] =0y =1,
us0|t] <ty
where v =W'W is a x* ,; random variable.

Proof. Using the preceding remarks, the proof is straightforward.

3. THE LIMITING DISTRIBUTION OF LENGTH AND HEIGHT OF AN EXCURSION

As a consequence of Theorem 2.1 we can obtain the limiting distri-
bution of the length and height of an excursion above high and below

Tow levels. let T, and TG be the lengths of h.w. excursions by

Y(t) above and below a level u, respectively, i.e.
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TS inf{t > 0: Yu(t) = y}
T: = inf{t > 0: Y:(t) = u}.

Theorem 3.1

(i) Pim /A T, = 22//x}y = 1.
U

(i1) Plaim <% 44 = 2L 4.,
uv0 iy

Proof. From Theorem 2.1 we have that with probability 1

gim Yu L £im inf{t > 0: Yu(t//U)=u} = 2Z/Vx

Uco Uoo

*
vim ot /A= giminfit > 0: Y (/it) = u) = 25
us0 u+0 "

By using the joint density of Z and vy , it is easy to obtain the
2Z

density of ¢ = as
/Ay
(n+3)/2_,n+3
p(g)=2 r(—z—_) ~|F"(n;_3; n+]s"'2_2) ,£>O
A(n+1)/2n!gn+2 AE

where ]F] is a degenerate hypergeometric function.

Now let Qu and Q: be the heights of h.w. excursions by Y(t)

above and below a level u, respectively. Thus

Lo
n

max{Yu(t) -ur 0 <t <1}

*
min{u - Yu(t): 0 <t <t} .

O
n

SN . T e e e e
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3.2

Theorem

Proof.

Note that 22

(i) P{ azimQ = 2%} = 1.
u_)mu

(i1) P{ me:/u=zz/w} - 1.

We have, with probability 1,

2im Q= 2im max {Y (t/Vu) - uz 0 <t <2Z/V% }= 2 s
ure U u

vim Q/u = 2immin{l - YO(At)/u: 0 <t < 25y = 2y
uy0 u+0 /Ay

is an exponential r.v. with mean 2, and, as a simple

calculation shows , ¢ = Zz/w has the density

n-1

plz) = =5 ((n-3)/2

» 0 <z <1

4. ASYMPTOTIC POISSON CHARACTER OF THE PROCESS OF LOW LEVEL DOWNCROSSINGS

It

the low

appropriate normalization, like the points of a Poission process.

sample paths of the process be sufficiently smooth.

tends to zero fast enough at

occurs under two conditions,
condition, generally expressed by requiring that the covariance function

Sharpe (1978) extended the upcrossing result tc y2

the mixing condition

is well known that the high level upcrossings and (by symmetry)
level downcrossings of a Gaussian process often behave, after

This
One, a local condition, requires that the

The second is a mixing

infinity.
processes under

R(t) = 0(t™®) for some 0 <« <1 as t » =, and
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Lindgren (1980) sharpened this by requiring only R(t)an t - 0 as

t+=. In this section we shall look at the corresponding result for
downcrossings of low levels. (Unlike the Gaussian case, this does not
follow trivially from the high level result.) As did Sharpe, we shall
model our proof very closely on Cramér and Leadbetter's (1967) presentation
of the Gaussian case. In the end we shall require the stronger mixing
condition R(t) = 0(t™®) rather than the weaker R(t) ant » 0 .

We note now that this is not due to the "older" style of proof, but is due
to the fact that the left hand tail of a 2 distribution has a power

decay to zero, unlike the exponential decay of the right hand tail. We also

note that although Berman (1983,1984) has a general theory of rare everts
that would seem to incorporate the next result, it turns out that verifying
that our conditions fit into his framework is as much work as proving every-

thing virtually from scratch.

To avoid needless repetition of considerable detail, we shall
assume throughout the following that the reader is equipped with copies

of both Sharpe (1978) and Cramér and Leadbetter (1967).

Theorem 4.1 Let the common covariance function R(t) of the component

Gaussian processes Xi(t) , i=1,...,n, satisfy

(4.1)  R(t) =1 - A t°+

N + o(t

as t - 0,

(4.2) R(t)

0(t™®) forsome 0 < o<1 as too.

Let Du(r) denote the number of downcrossings by Y(t) of the level wu

in the interval (0,t), and let y = EDU(1) . Then for every fixed k=0,1,...,

kK -1
e
k!

(4.3) ﬁiﬁ P[D,( 5—) = k] =1




.............................

Proof. The (Gaussian) proof in Cramér and Leadbetter (1967) is set out
in the form of five lemmas, three of which carry over with only minor

modifications in notation: Lemma 1 uses merely the fact that the limit

of n-1 p
-u
@) - Pn T e

is zero as u - 0; Lemma 3 follows directly from Lemma 2; while the
proof of Lemma 5 is a direct adaptation of Sharpe's (1978) proof of his
result (4.20).

We are left therefore with the task of proving Lemma 2 and pointing
out the differences in the proof of Lemma 4.

Lemma 2 can be expressed as

(45) 0, = B0 ()0, ()1 1/ED, ()= 0

for an interval of length

N il

) u[r/u8+ ]

where
(4.6) 0 < (k+4)g < o < 1.

(For notation see Cramér and Leadbetter (1967)).

Proof of (4.5). Using (4.5) of Sharpe (1978) and (12.2.10) of Cramér

and Leadbetter (1967) we write




‘t.l t

1
4.7y  Q, = u]t] (f) dsy (f) ds, E[V7(s,)V(sp) [¥(sq)=Y(s;} = ulp(u,u) ,

where p(-,:) is the joint density of Y(sl) and Y(s,) . The density

2
p(u,u) can be obtained by a straightforward modification of the expres-

sion given in Miller (1980), p. 162 for the 2-variate Rayleigh density

function
%‘ 1 - '—u"‘" UlRI)
u e 1- Iﬂ%g_(]_RZ
(4.8)  plu,u) = R ,
2 2 Nya2
(1-R°) |R| F(§92

where R stands for R(s]-sz) and I 1is the modified Bessel

v

function of the first kind and order v,

Substituting (4.8) and the result (Sharpe, p. 379)

ELY (5097 (5,01 (59)=¥(5,)=u] < 2u12(1-R) -R1/(1-R)

into (4.7), we find
TS B 1ljR2 A(1-R%) R ulR
=t é é Yue I (—l—%-)ds]ds2 ,

(4.9) Q —
Q-2 Rz 7 IR

with K an unspecified positive constant.

Mak:ng the change of variables s = 5,-5

2751 and denoting the inte-

grand in (4.9) by g(s) we obtain

Qu <K [ g(s)ds
0

by the virtue of g being an even function.
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An asymptotic expansion of Iv for large arguments

(Abramowitz and Stegun (1964), p. 377) gives that for some x > 1

s .
a_a

there exists a C > 0, such that

I(x) < Ce/Vx

Taking x = ufR » we have that as long as

1-

(4.10) 1> |R(s)| > - g-+ %r.+ T,

then

(.01 1 (U8 < culBhy 12 ulRL
B2 R 1-R 1-R
Let
= inf (s > 0: [R(s)] < - 9-+,’9£-+1 }

From condition (4.1) we deduce that there is a positive ¢ such that

(4.12)  1-C,s% > [R(s)|  for0 <s < .

Write
1 u 2 1/2
S*=[C-.I(1+2_- —4—+] )]

Clearly So < S8* and s* m"zg— as u-> 0.
1

Since

1- c]sz/z < (1 + c]sz/z)'1 ,




it follows from (4.12) that

2 2
(4.13) 1+ |R| <2 - Ci5" < for 0 <s <s, .
1 1+C]sz/2 0

Using (4.1), it can be shown that

2\ 22 2
}\(]-R - _ v=2A .
) R e e es o

Applying (4.11), (4.13) and (4.14) we have
50 %0 L ouy-l
g g(s)ds < Ké s(A + 7-3) exp - {

u
1+|R

|}ds

. -
<K = [¢(s*/C]W'2' - %—](-/{+%- - %)

Yu

~ K[ o(u/2) - %ﬂ +0 asu->0,

where o(-) 1is the standard normal probability integral.

Furthermore, since exp{--E—Z-} is bounded away from zero, and
1-R

? 22
Mli%:%—»k as § »> = .

(1-R%)

(this follows from (4.2)), we have for the remaining part of our
integral:

t

[ gtsves < vl R %, (B s
s - S n-2
o} 0 5 1-R
n-1 t 2-n
sxu? sy ? 1, (2ls)es
5o 2
e e i T e e e S e e N

T Y
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where 2(s) = UR(s)|

1-R™(s)

Since

z'VIv(z) +27%/r(v¥1) asz-+0,

(Abrahmowitz and Stegun (1964, p. 375), the last inequality becomes

t1 n-1
{ gls)ds < K(t;-sg)u 2.
S
0
From t] N u8'1 as u >0 we have for sufficiently small u that
t < 2,871 | which leads to
f ]Q(S)ds ckuf (287 - Sn)
So n-1
7 B
Ku +0 as u > 0.

This completes the proof of Lemma 2.
The only modification in the proof of Cramér and Leadbetter's (1967)
Lemma 4 to be made is the order of the probability of the event 9,

(pp. 265-266). This event in our case becomes
g. = (Y(v,q) < w

of probability

P(g,) = 0(u"'?) .

To avoid confusion we will denote Cramér and Leadbetter's n by n'.

Consequently the final part of Lemma 4 becomes
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2{1-8(k+1))+a(k+1)/2
P{Dk} - P{Ek} = 0(n|k+]un/2) )

= 0(u

+0 asu-~->0,

where of course, in the definitions of the above events, upcrossings

are replaced by downcrossings and {g(vq) > u} by {Y(vq) < u} .

5. LIMITING DISTRIBUTION OF EXTREME VALUES

The 1imiting extreme value distribution of max Y(t) as 7T +» « was

0<t<T
derived by Sharpe (1978) who showed that
1 -e
P[é-max Y(t)-uTiz]+ e as T » o
O<t<T
where n-1

/AT T(log T) © 1

Thus the asymptotic distribution of max Y(t) is of Type 1 (c.f. Lead-
O<t<T

better, Lindgren and Rootzén (1983)) precisely as in the Gaussian case.
One expects that since 2 processes are bounded below, with power-type
densities, the asymptotic distribution of min Y(t) should belongto a differ-

O<t<T
ent domain of attraction. This is in fact the case, as the following result indicates.

Theorem 5.1 The minimum of @ x2 process has an asymptotic distribution

of Type 3. Specificaly, under the conditions of Theorem 4.1

(5.1) P{v, min Y(t) > z} -+ e ,2>0,a T->=»




Proof. It follows from the asymptotic Poisson character of the down-

crossings process that

T

P{min Y(t) > u} » e asu->0

O<t<T

where u and T are related via

Iy E%l
(5.3) = uT v W ('2-) T

for large and small u .

Putting = in (4.3) we obtain

2
2( r(n/2) ]ﬁTT'Z i
T/ A/n

(5.2) readily follow.
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Figure 1: Mean functions for and matchec Gaussian processes

2
% 4
in the neighbourhood cof a downcrossirg of 3 at t=C.
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