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ABSTRACT

AN

vWe-study' the sample path behaviour of .x- processes in the neigh-

bourhood of their level crossings ahd extrema via the development of

Slepian model processes. The results, aside from being of particular

interest in the study of X2 processes, have a general interest in-

sofar as they indicate which properties of Gaussian processes (which

have been heavily researched in this regard) are mirrored or lost

when the assumption of normality it not made. We place particular

emphasis on the behaviour of X processes at both high and low levels,

these being of considerable practical importance. We also extend i

previous results on the asymptotic Poisson form of the point process

of high maxima to include also low minima (which are in a different

domain of attraction) thus closing a gap in the theory of processes.

Key words and phrases:

x processes, upcrossings, extrema, Slepian model process, Poisson

limit, distribution of maximum.
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1. INTRODUCTION

In this paper we shall continue our study of various sample path

properties of x2  processes, begun in Aronowich and Adler (1985).

The x2 process is defined, in law, via a vector X(t) = (X1(t),...,Xn(t))

of n independent, stationary, zero mean Gaussian processes as

n 201.1) Y(t): = XV ( t ) X( t ) = i M t

i=l *

We have already noted in the previous paper why this process is

interesting, and we refer the reader to the introduction there for

details. For the sake of completeness, however, let us recall here

that x2 processes are of applied interest in a number of stochastic

modelling situations, and of considerable theoretical interest as

perhaps the only non-Gaussian process for which it is possible to develop

a theory almost as general as in the Gaussian case. Thus the x2  process

presents a natural candidate for studying the robustness of the Gaussian

theory when similar, but non-Gaussian, processes are considered. As

was the case in the previous paper, our principle concern will be to

see when non-Gaussian behaviour is exhibited by x2 processes, rather

than trying to see what has to be done to obtain almost-Gaussian pheno-

mena. In this view we shall pay particular emphasis to low sections

of the x2 processes (which is clearly bounded below by zero) which

exhibit highly non-Gaussian behaviour, rather than emphasise the high

sections, which are much closer to Gaussian. This emphasis is also re-

lated to and motivated by the applications mentioned in the earlier paper.

.- - ... -. - • " • -. . - . .- . . - .. ." " b -. - -' . '-.- .' .- '. -. .:-v ._ - ,
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The paper is organised as follows. Section 2 studies the fine

behaviour of x2 processes after level crossinos and extrema. Our

approach is to develop the Slepian model process in each case, this

representing the conditional distribution of the original process after

a level crossing or extremum. The model processes take on particularly

simple forms If the level crossing or extremum is either at a high

level or close to zero, and so we study these cases in detail. In all

cases it turns out that at high and low extrema x2 processes look

like random parabolas, as do their Gaussian counterparts and as, in

fact, does any smooth enough function. The differences between the y2

and Gaussian cases show up in the parameters of these parabolas,

which are generally random variables.

From the simple structure of these limiting parabolas it is a

simple matter to deduce the distribution of variables such as the

duration of high level excursions. Examples of this type of calculation

are given in Section 3.

In Section 4 we consider the asymptotic Poisson form of the

(normalized) process of downcrossings of a low level by a x2 process.

Upcrossings have already been considered by Sharpe (1978) and Lindgren

(1980a,b), and these follow the Gaussian model quite closely. Down-

crossings of low levels exhibit somewhat different behaviour, primarily

because of the fact that the process is bounded from below. As is well

known, results of the types of Sections 2 and 4 are often combined

in practice to model processes as a sequence of random parabolas posi-

tioned over the points of a Poisson process. Consequently, the results

of Section 4 are of reasonable applied interest.

. . .
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Given the asymptotic Poisson result it is a comparatively simple

exercise to obtain the (normalized) distribution of inf{Y(t): t E[u,T]}

as T . This is done in the final section 5.

We conclude this section with some definitions and notation.

Throughout the paper we shall assume that the component Gaussian

processes in (1.1) are independent and have a common distribution, with

covariance function

R(t) = R x(t): = E{X(s)X(s+t)}.

We also assume, without any loss of generality, that R(O) = 1; i.e.

the Xi ali have unit variance. We shall assume that each X. is twice. 1

continuously differentiable with probability one. (c.f. Cramer and

Leadbetter (1967) and Dudley (1973) for sufficient conditions on R for

this to be true.) Thus we can define the second and fourth spectral

moments of the Xi , respectively, as

(1.2) x dt = E{Xi(t)}
dt t=O

d 4R(t) E{2W=- x E{X. t)}
x dt 4 t=

where X and X are the first two sample path derivatives of X.

Furthermore, we then have the following behaviour for P and its

derivatives near the origin:

(1.3) R(t) :1 - + - + o(t as t

2 4T4+ ' s ~'

.-.
. . .
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' t2)
(1.4) 1i(t) + X1 < O(t as t 0

It is immediate from the definition (1.1) of the x2  process

Y that it inherits from the Xi  both stationarity and twice differen-

tiable sample paths, so that we can express its first and second order

derivatives via those of the X. . We have
1

n

(1.3) !(t): L Y(t) :2 Z. Xi(t)) i(t ) =2X'(t)~)<(t),

dt i=l

where R(t) = ('l(t),...,)(n(t)). Similarly, writing )(t) for the

vector of second order derivatives of the Xi , we have

2  nr.-(1.4) Y(t):=dt- Y(t ) 
= 2 E [)(2(t) + Xi(tOXi(t0]

dt11 1

= 2{X'(t) *(t) + X'(t) x(t)}.

Furthermore, Y has mean n and covariance function

(1.5) R (t): = E{Y(s)Y(s+t)} = 2nR 2(t)
Y -

To avoid uninteresting technicalities, we shall assume throughout

the paper that all the joint (finite-dimensional) distributions of

Y,J and Y are non-singular.

As we have already noted, considerable emphasis will be placed onstudy-

ing the sample path properties of _X2  processes via model processes

created by conditioning the original process, in a horizontal window

sense, on some event having occurred. We shall assume throughout

.. . . . .

m ~~~~~~. . ......... .. """ m .m ... "m"m""."m"(' .m'"m"
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that the reader is familiar with this idea, and with the basic itivation

and methodology behind it. A full survey of the model process approach

is given in Lindgren (1984), and a background sufficient for our pur-

poses can be found in Section 10.3 of Leadbetter, Lindgren and Rootzen

(1983).

In order for the model process approach to be meaningful it is

necessary to assume that Y is ergodic. This clearly follows from

the ergodicity of the Xi  processes, which, in turn, follows from

(1.6) R(t) - 0 as It,

a condition which we shall henceforth assume.

Finally, in order to compare results in the x2  case to corres-

ponding results for Gaussian processes, we shall require a Gaussian

process "matched", in terms of its second order properties, to our

x2  process. Such a process, Z(t) say, will be defined to have mean

n , variance 2n , and covariance function (1.5), identical to that of

the x2  process.

*. " . .- . . . . . . . . . . .
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2. BEHAVIOUR OF X2  PROCESSES AFTER A LEVEL CROSSING

In this section we study the x2  proc ss Y(t), t > 0, given

that at t=O the process crossed, either from above, or from below,

a given level. It is now well known that the appropriate framework

for such a study is via the notion of "horizontal window" (h.w.)

conditioning introduced by Kac and Slepian (1959), and the so-called

Slepian model process. For details of the latter we refer the reader

to Lindgren's (1984) recent review.

We commence by considering Y(t) , conditioned, in the above

sense, on having an upcrossing of the level u > 0 at time t = 0.

We write Y u(t) for the conditional, or "model", process. Then,

writing for equivalence in law, we have

Theorem 2.1

(i) Following an upcrossing,

Ln 2
(2.1) Yt)= {R(t)Vi - (t)Wi//x+ Ai(t)}

i=l

where the random vectors V (V1 ,...,v) ' , W (Wl ,... ,W)' have

the joint density

(2.2) p(v,w) : -n2"(n+l)/2r(n/2)(y'w)+exp{-w'w/2},

with respect to (surface measure) (Lebesque measure) on the cylinder

(y v = 1 ]Rn. Here (-)+= maxf.,OP, and .i(t) are independent, zero mean,

'aussian irocesses, independent of V,W, and with the common covariance function:
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(2.3) r(s,t) = R(s-t) - R(s)R(t) -(s)A(t)Ix

- (ii) The characteristic function of the joint distribution

of Yu(t 1),...,Yu(tk) is given by

(2.4) (V...k) eu/2 n/2 exp{- uA - i~z}d~dz

whe re

I-2iv,1  -2iv 2 R12  ... -2ivk R1k 2i'1 -2iER1

-2 ivi 2 1-2i 2  ... -2i: 2i -2R

2vP21 l~v 2  21~R

= det

-2iviRkl -2 iv2Rk2  k  k k

-2iv IR 1  -2iv 2 R2  ... 2R k  1 -2i

!2ivA I 2iV2 ... 2ij -2i-, 1

1," l2iv, -2iv2R 12 . . -2ijk 'l k R1

.- 2iv, 1R2, 1-2i V2  . . -2i \)k R2k R 2

• B = det

"/-2iv R k l -2i V2 Rk2 .. -2i, k R k

_---2i vl R, -2i V2 R2  ... -2i)k R k  I

and Rj R(tj), Rj = R(t j-t ),j= (tj. =,(tj-t ).

Proof. Part (i) of the Theorem is given in Lindgren (1980c, 19R4).

The distribution of V and W is the h.w. conditional distribution ot

X(O)/Au and (O)/ , given an upcrossing of a level u at t=O.

.-

i i i ~~~~~~~~ ~ ~~~. . . .-u n n I l i i l l I"' Ii ... . . . "I
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Note that although (O) and (O) are independent, V and W are

not.

(ii) Under the conditions given in the Introduction, we have:

(2.5) PWyY(O) =0, Y(O) > 0 ) hw. = zlp(y,u,z)dz,

0

where p(y,u,z) is the joint density of Y (Y(t I),. ..,Y(t k))"'

Y(0) and Y(0), and i is the expected number of upcrossings of the

level u by Y(t) in unit time. Thus

(2.6) (u/2__ n ) 2 -u/r(n/2)(u2 - e

(see Sharpe (1978)).

The joint characteristic function of Y, Y(O) and Y(0) is given

by.

p(v,vo. ) =E(expfi[\v'Y + v0Y(0) + c()

k
-E exp{i[ Z v.X'(t.)X(t.) y (OXO + X(O (O]

-{~xi ~. 2(. + 2 n

-{E(exp i[(Xj, X1(0),X 1(0)) (ix~ 1 (0)' IX())')

where X 1  (X I(t 1)'...'X 1(tk)) and

00

S 0
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The covariance matrix of the normal variates X1,X 1(0),* 1 (0) is

(c.f. (1.2))

1 R 2 ... R k RI -I

R21 1 . .2k

(2.7) M . . . . . . .

R kl RkQ ... 1 '

RI R2 ... Rk 1 0

L~ -P 0

Therefore (see, for example, Lukacs and Laha (1964)),

E(yv 0,E) ={det(I-2i ,),-n/2

and a simple calculation shows that

det(I-2i MN) =A - 2iv 0B

where A and B are given after (2.4).

33
,4: Te Usainte invrion theorm forForier transform,O isno hv

_0 
j=0

k 2 iv'y R - UV k
-.(20) - e f e (A-2i 0B) e OdE jf dv

-O- -O -CO -W

To evaluate the innermost integral we note that

. . . . . . . .t l-2i . 4N .. . . .A - .oB ,

i. .
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CO 0,a=+1
(2.9) f(a+aiv)'n/ 2e O dv =0 a2

-00 L2un/2 le-U/r(n/2) , a = -1

for Re(a) > 0, (Gradshteyn and Ryzhik (1980), p. 318.).

Thus
CO

f(A-2ivoB)-n/2e-iUVOdvo= (2B)-n/2 (A _ i)-n/2e-iUvOd\)

= 2run/ 2-1 (2B) -n/2exp(-uA/2B)/r(n/2)

(since Re(A/B) > 0, or else the density (2.8) would be degenerate,

which would contradict the assumptions made in the previous section.)

Substituting (2.8) and the above into (2.5) and changing the

order of integration, we now obtain:

p(yiY(O) = 0,Y(O) > 0)h.w =

k (2T)-uk/ B ' uA iuz]dBdz T/ dvj
• .-. :... fe - f 2z fexp[ 2--n

-- . .0 2/2 u 0 -0 j=l

Since the expression in braces does not depend on y , it equals

the characteristic function ,(v) of (2.4), and the proof is complete.

Remark. Similarly, if we now write Y to denote the process Y condi-~U

tioned (in the horizontal window sense) on a downcrossing of Y(t) of
:ill *

the level u at t=O, then it is easy to check that Yu has a repre-

sentation identical to that of Y , with the single difference that in
+. +

the density (2.2) the expression (v'w)+  should be replaced by (-v'w) +

Furthermore, in the characteristic function (2.4) the range of the

z-integration should be changed to the negative half-line.

• ............. .......... *........ . ." 12'.-
.'.:'-. .-.:. .• .; ,::" *. "-".".:, " , , ,.-. ". .. ... ...', . . . . .." . ..' . . .i ii
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* The density (2.2) turns out to be relatively awkward to work

with, primarily because of the function (1) appearing there.

Even the evaluation of the mean and covariance functions of the

* model process, is a difficult task, since it involves computation

of the second and fourth order moments of V and W. However, the

joint characteristic function is more amenable for evaluation of the

moments of Y Ct, and leads to

Corol Iary2.1 The model process Y u(t)(Y* (t)) has the mean function

rn(t) 2(t 2t/(2.10) =n + (u-n)R Ct t. R(t)R(t) v'T 7 T
m* (t)

and the covariance function

P(s' t)2 22
(2.11) =2(n-2u)R2(t)R2(s) + 2nR2(t-s) + 4(u-n)R(t)R(s)R(t-s)

+ (2/x)(2u-irw-2)R(t)R(s)k(t)k(s) + 4xAt sR -)

-(21X 
2 ) 2 (t)k2 (s) +12 7u/X{2R(t)A(t)R 2(s)+2R(s) (s)R 2(t)

+ (1/X)R(t)R (t)R (s) + (l/X)R(s) k(s)R (t) -2R(s)J (t)R(t-s)

-2R(t)R(s)R(t-s)}

Proof. The results follow via appropriate differentiation of (2.4)

with k=1,2. Tedious calculations are omitted.



. t . . ,. . . , , . , . . . . . . -. . . . . - , . l o - -
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In order to compare the last result with the one obtained in

the Gaussian case, we use the matched Gaussian process Z(t) men-

tioned in the Introduction with mean and covariance function equal

to those of Y(t). For this process, the means of the model pro-

cesses at upcrossings and downcrossings are given by

2
mz(t)} = n + (u-n)R2(t) + 2n-r/x R(t)R(t)m(t)J

To see how these differ from (2.10), Figure 1 gives the means

of the model processes of a x2  process and a matched Gaussian

process conditioned on a downcrossing of the level at t=O.
t2

(Covariance function R(t) = e ) Note that the x2  process

has a flatter, and higher, minimum than the matched Gaussian process.

Both return reasonably quickly to the mean level of 4.

Figure 1 near here

We now turn to the study of the model processes Y and Y*
U U

at high and low levels, respectively. In these cases the model

processes take on particularly simple forms which are useful both in

the modelling of x2  processes at extrema and for prediction pur-

poses. We need to start with a technical result.

..........
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Lema 2.1 Let X = (X1,...,X M)', Y = (Y1,.9Ym be independent random

vectors; X' N(O,a21), Y ,- N(O,b 21). Denote X = X'X, Y = Y'Y, Z = X'Y Then

the joint density of X,Y,Z is given by

(2.12) p(x,y,z) = C(xy - z2 )(m-3)/2exp{-x/2a 2 - y/2b2} , x > 0, y > 0,
xy-z > 0;

c 2m-I (ab)mr(m/2)r((m-l)/2)

Proof. The conditional ch.f. of Y,Z, given X x, is

*vy,zlX=x(Vl,9) E(exp{iv lY'Y + iv2 x'YI )

m 2
n n E(exp{iviYk + ii2.XkYk})

k=l

2 m2
exp{-i xx/4v 1 } ii E(exp{ivl(Yk + V2Xk/2V1 )2})

_1v2 :w k=l 1

For every k1l,...,m the r.v. Y 2vl has a N vx/2v,,b2)

distribution. Therefore the expectations in the last expression yield

the ch.f. of a non-central X2 distribution:.".22

2 2 1/2 2 k
E(exp{ivl(Yk+,2Xk/2,l) 2) = (1-2iv ) exp{ 2.

.ii[4,
l (l -2ib2,jlI

Consequently

S22

JYZ (vl9v2) (l-2iV Ib 2)/ exp{ _v 22
2(--2i\xb

This being dependent on x only via x'x = x, we can replace the condi-

tioning event accordingly. Using the inversion theoreti one obtains

Ebel.... ..... .......
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2 co 2)-/ O b2 xv 2p(yzlx) (2) -  (-2ivlb 2)m/ 2 e-ivY fexp -{ 2

- 20 -0 2(1-2iv b2) - 2}2d1

2 xexp{-z2 /2b2X} (m-1)22b¢ex2{- )/2 _f(1-2ib V) exp{-i(y-z2 /x)v}d l
b/(r)3/2 - 1 1

Applying (2.9) to the above yields

p(y,zlx) = (Y-Z2/x) (m-3)/2exp{-y/2b 2 1 2

.. x 2m/2b m-I ) /2)

2Finally, (2.12) follows on observing that X/a2  is a xm variate.

We are now in a position to prove the following result, which hinges

on the representation (2.1) for Yu and the corresponding representation

for Y
U

Theorem 2.2 Define the normalised and limit model processes

VY(t): = Y (t/VW- u + 2vx ZtU

;t) : 2 2A + x Zt+I

=(t): (I/u)Yu(Ut ; 0 =  t -2/XZt + 1

where Z : V'W and Y' w'w. Then Z and T are, respectively Rayleigh

and Xn+1 variables with joint density

2 (n-3)/2 -, /2

°,.1

.. 1

.o - ez

If. ~~ ~ P(' ::. 7: -.:,.. .i ; .:;-: ; ! 7-;i i,i--l--2 n -- l 0 7 _. , zL> . iii Wi . .: .; ..-.
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Furthermore

(i) P{9.im sup jY (t) - Y(t)j = 01 =1
U4C It14 0-U

(ii) P{2.im sup IY*(t) - Y*(t)I = 91 = 1
u+Oltl<t 0

Proof. (i) By (1.3)

R(t/A,) = 1 - +00t

as u - ,, where the 0-terms tend uniformly to 0 for It in any bounded

interval. From Theorem 2.1 we have

ium xt 2(1+0(1)) + 2/3xtV'Wlc()

n 2 t2

By (1.4) and (2.3) the Ai(t) have continuously differentiable

sample paths with A.i(0) = A.i(0) = 0 , and thus A.i(t//JU) = 0(t/Fu) as

u -+ 00 uniformly for bounded t. It remains therefore to find the dis-

tribution of Z = V'W. But since this is equivalent to the h.w. conditional

distribution of Y(0)/2,/7--X , given an upcrossing of a level u at t=O,

its density is given by

(2.13) p(z) = -1 4uxzp(u, 2/'u77z) ,z >0,



17

where p(-,.) is the joint density of Y(O) and Y(O) .Given

X(O) =x, ?(0) = 2x'X(O) is a normal zero mean r.v. with variance

4xx'x ,and since this depends on x only via x'x = u, we may conclude

that i(O), given Y(O) = u, has (conditionally) a N(O,4Xu) distribution.

Therefore

P(u,Y) =P(Y'ju)p(u) u(n)/eu/xp.. 2 8}
A~2(+3)/2rn)

pWz z e-z2 /2 ,z >0

the desired result.

(ii) In a similar way, via (1.3) and (1.4), as u -~0

1 2R(/u t) = 1 - Xut (0+00))

kA- t0 = -xvu W+0(0))

A~~ ( t) O(/iit)

uniformly for bounded t. From the remark following Theorem 2.1 we can

then deduce that

Y (t) I + At 2W'W + 2,AItV'W + o( nuu -

The joint distribution of Z =V'W and y W'W
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is equivalent to the h.w. conditional joint distribution of ?(0)/2/u-

and i'(O)i(O)/X , given a downcrossing of the level u at t=0 . Their

4 joint density is

.,*e

(2.14) p(z,*) = -1 4uxizip(u,2/uA z, ) , z < 0

where p(.,,,.) is the joint density of Y(O), !(O) and '(O)X(O)/x

By Lemma 2.1, this density is

n-3

Y 24 xf-1 - zP/2}
' ~=(. y¢ - /24 Texp{-/2-

"-" 2n+l  n/2 -1r(n/2)r((n-l)/2)

and a substitution into (2.14) concludes the proof.

The above theorem can be summarized as follows. Near an upcrossing

of a high level u the x2  process can be approximated by a random

parabola
°' -X ut2 + 2 v5: u zt + u

2

Near a downcrossing of a low level u the X process can be approximated by

Xt 2 - -u-Zt + u

which, because of the random coefficient Y, is of quite a different form to

the Gaussian case.

(It is interesting to note that the model process in the Gaussian case

takes a similar asymptotic form, viz.

- Aut 2 + /TZt + U,

with Z once again Payleigh.)

.o.

_ :,. - :i:-'": :; :: i ::,::., > .:.i-: ::: :,,i::.. ::::-..... . ': "" "'" : -" i . ':-: i "" "i
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It is intuitively obvious that low and high level crossings should be

followed by extrema. The model processes for extrema should therefore have.-

very similarform to those forcrossings. We shall derive the limitingmodel pro-

cesses of extrema with the aid of the following result.

Lemma 2.2 Let X = (X(tl),...,X(tk))' where X(t) is a stationary,

Gaussian, zero mean process with covariance function R(t) (R(O)-l)

and finite second and fourth spectral moments (X and v respectively).

Then the conditional distribution of X, given X(O) = x, )((O)=k , X(O)=x

is multivariate normal with expectation

:XcxRi+Ri R. XR. + R.

and covariance matrix

(ti,t.)  : Rij - 1- [AaRiR.+R.R +R R.
1 3 3ij-l,..,k )3i ~tl 1 .jj

"1 }.-. ~~+ ( lli.+ 1:i

where a v/x

Proof. The covariance matrix of X,X(O),X(O),X(O) is

1.R Rlk
R R

21 R2k R2 "2 R2
S . . . . . . . . . . . . . . . . 7 S 11 S 2

Rkl Rk2 ... 1 k  -k Rk say.
R, R2  ... R 1 0 -A S21 S22
1- "2  "" -k 0 L01  2

-kk- 0 01
"I R2 . .. 'P]R1  P "" Rk -)  0

. . . . . . . . . . . . . . . . .

.- - - - - -
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From the basic properties of the rrultinormal distribution it

follows that the conditional distribution of X is normal with mean

.=S12S22(xx)

and covariance matrix

{P(tit) S - S -Ii'j 11 12S22S21•

Remark. Lindgren (1970) derived a similar result for x 0

Applying the arguments of Lindgren (1984) it follows from the

above lemma that the model process obtained by conditioning Y(t)

on having a local extremum of height u at t=O can be written as

(2.15) . {ru R(t)V i - k(t)Wi//-+ [XR(t) + i+ i
i=l

where Ki (t) are independent, normal, zero mean processes, independent

of V, W, H, and with the common covariance function p(s,t), of

Lemma 2.2. The distribution of V, W, H is the h.w. conditional

distribution of X(O)//u , (O)/Tfx and [X(O) + X(O)]/x

given an extremumof height u at t=O . Note that with probability 1

V'V = 1 and V'W = 0 Also, /uiTC 1TV'H + W'W - u is restricted

to negative or positive values, respectively, according to whether (2.15)

comes from conditioning on a maximum or minimum. It was shown in Arono-

' wich and Adler (1985) that, given Y(O) = u and i(0) = 0 , the random

variables *'(0)((0)/x and X'(0)X(O)/,'-7 are conditionally inde-

pendent having 2 n d - + N(0,1) distriut;,- . ,upectively.
and"
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Furthermore, since

2 2R(t) :- + (v/2)t + o(t t 0

and

K.(t) 0 O(t), t , 0

with probability 1, we have the following

Theorem 2.2 Let V (t) and Vu(t) be the h.w. model processes given

maxima and minima of height u at t=O respectively. Write

''L- u(t) =  u(t//U) -u

S.(t)= (I/u)v (r t)

U U

Then

(i) P{Xim sup V (t) + Xt2  0} = 1

(ii) P{iim sup I P ) - At 2 - l = o} 1
uOt I<t 0

where T = W'W is a X2 n+ random variable.

Proof. Using the preceding remarks, the proof is straightforward.

3. THE LIMITING DISTRIBUTION OF LENGTH AND HEIGHT OF AN EXCURSION

As a consequence of Theorem 2.1 we can obtain the limiting distri-

bution of the length and height of an excursion above high and below

- low levels. Let T and T* be the lengths of h.w. excursions by
u u

Y(t) above and below a level u, respectively, i.e.
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Tu = inf{t > 0: Y (t) = u}u

T* = inf{t > 0: Y*(t) = u}.

Theorem 3.1

(i) P{iim /U Uu = 2Z//3} I.

(ii) P{Rim */U Z =
u O u Ty

Proof. From Theorem 2.1 we have that with probability 1

kim /u T = 9im inf{t > 0: Y (t/vu)=u} = 2Z//5

Zi M Tu/*u = Rim inf{t > 0: Yu(=ut u} 2Z
• u u

i4~0 U U4,0 U'

By using the joint density of Z and Y , it is easy to obtain the

density of C_ 2Z as

n2 2(n+3)/2( -)  Fn+2
r(- 2 -= 1 F 1(-2 , n+1, - 2p 2 > 0X n+l)/2 nl n+2£ X -2 'nl

where 1F1  is a degenerate hypergeometric function.

Now let Q and Q be the heights of h.w. excursions by Y(t)

above and below a level u, respectively. Thus

Qu= max{Y (t) - u: 0 < t <

:* .*

Qu =min{u - Yu(t): 0 <t < u
QU U U
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Theorem 3.2

(i) P{ im Qu Z2}= 1.
U4-

(ii) P{ 2imQu=Z2/Y} = 1.

Proof. We have, with probability 1,

9im Qu =  im max {Y u(t/ - u: 0 < t <_ 2Z/A }= Z
u-

im /u = 2im min{l - Y *(v- t)/u: 0 < < Z Z2

u O 4-u O- U

Note that Z2  is an exponential r.v. with mean 2, and, as a simple

calculation shows , : /T has the density

n-l (n-3)/2 <1p(d):T _ _

4. ASYMPTOTIC POISSON CHARACTER OF THE PROCESS OF LOW LEVEL DOWNCROSSINGS

It is well known that the high level upcrossings and (by symmetry)

the low level downcrossings of a Gaussian process often behave, after

appropriate normalization, like the points of a Poission process. This

occurs under two conditions. One, a local condition, requires that the

sample paths of the process be sufficiently smooth. The second is a mixing

condition, generally expressed by requiring that the covariance function

tends to zero fast enough at infinity.

2
Sharpe (1978) extended the upcrossing result to Y processes under

the mixing condition R(t) = O(t - ') for some 0 1 as t ., and
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Lindgren (1980) sharpened this by requiring only R(t)zn t -, 0 as

t--. In this section we shall look at the corresponding result for

downcrossings of low levels. (Unlike the Gaussian case, this does not

follow trivially from the high level result.) As did Sharpe, we shall

model our proof very closely on Cramer and Leadbetter's (1967) presentation

of the Gaussian case. In the end we shall require the stronger mixing

condition R(t) = 0(t " a) rather than the weaker R(t) Znt , 0

We note now that this is not due to the "older" style of proof, but is due

to the fact that the left hand tail of a x2 distribution has a power

decay to zero, unlike the exponential decay of the riqht hand tail. We also

note that although Berman (1983,1984) has a general theory of rare eve-ts

that would seem to incorporate the next result, it turns out that verifying

that our conditions fit into his framework is as much work as proving every-

thing virtually from scratch.

To avoid needless repetition of considerable detail, we shall

assume throughout the following that the reader is equipped with copies

of both Sharpe (1978) and Cram6r and Leadbetter (1967).

Theorem 4.1 Let the common covariance function R(t) of the component

Gaussian processes Xi(t) , i=l,...,n, satisfy

S + t4  4
(4.1) R(t) = 1 - Lt 2 + + o(t ) as t -. 0,

(4.2) R(t) = 0(t - ) for some 0 < < 1 as t c.

Let D (-) denote the number of downcrossings by Y(t) of the level u
u

in the interval (0,T), and let j = ED (1) Then for every fixed k=0,1,...,
u

k -T
Pr ( e(4.3) 9.im P[Du( -L ] = k

u k

" -'- - " - ...' T --I -L .- 0 ? i -. - ..."" - - ""
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Proof. The (Gaussian) proof in Cramer and Leadbetter (1967) is set out

in the form of five lemmas, three of which carry over with only minor

v. modifications in notation: Lemma 1 uses merely the fact that the limit

of h-

(4.4) /, u Te': ~~ ~7 2 Tt r--72)

is zero as u 0 0; Lemma 3 follows directly from Lemma 2; while the

proof of Lermma 5 is a direct adaptation of Sharpe's (1978) proof of his

result (4.20).

We are left therefore with the task of proving Lemma 2 and pointing

out the differences in the proof of Lemma 4.

Lemma 2 can be expressed as

(4.5) Qu = E{Du(tl)[Du(tl)'I]}/EDu(tl ) - 0

for an interval of length

where

(4.6) 0 < (k+4)B < < I.

(For notation see Cramr and Leadbetter (1967)).

Proof of (4.5). Using (4.5) of Sharpe (1978) and (12.2.10) of Craner

and Leadbetter (1967) we write

...
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(4.7) Qu fd f= 0 0pIu(

where p(-,.) is the joint density of Y(s1) and Y(s 2 ) The density

p(u,u) can be obtained by a straightforward modification of the expres-

sion given in Miller (1980), p. 162 for the 2-variate Rayleigh density

function

n I- u uJRJu2 "  e 1--- In- ( - )
u e l-R n-2 1-R

(4.8) p(u,u) = n- I

(1-R2 )JR 2 ")2

where R stands for R(s1-S2) and IV  is the modified Bessel

function of the first kind and order v.

Substituting (4.8) and the result (Sharpe, p. 379)

E[Y-(Sl )1-(s 2)1 ' s l ) = Y( s 2 ) = u ] < 2u[ (l-R 2 ) - I 2 ] / ( l - R 2 )

into (4.7), we find

(4.9) Q1 v I R ( -R )-R in- (u-R)dslds 2

0 (IR2)21RI T 27 2 "

with K an unspecified positive constant.

Mak:ng the change of variables s = s2- s and denoting the inte-

grand in (4.9) by g(s) we obtain

tl

Qu - K f g(s)ds
0

by the virtue of g being an even function.

:: . . . .I
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An asymptotic expansion of I for large arguments

(Abramowitz and Stegun (1964), p. 377) gives that for some x > 1

there exists a C > 0, such that

" (x) < CeX/v7

';.. u R
Taking x = we have that as long as

(4.10) 1 > IR(s)l > - +

then

(4.11) u R  cu R -112 ulRl
1-R 1-V

Let

s o =inf {s >0: R(s)I <- +

From condition (4.1) we deduce that there is a positive C1  such that

(4.12) l-C1S2 > IR(s)I for 0 < s < so

Write _
". 2  1 12

Clearly so s* and s* as u 0.

Since

1 - Cls2/2 < (1 + CLs /2)-1

.. ---....-.--..-..,' .'-.-...- . .". " ,-.- -''i-i' ' -. ',.. ..- .- . . -i , . " . " '.. ". . .,. - .
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it follows from (4.12) that

(4.13) 1 + I RI < 2 - CS2 < 2 for 0 < s < s o

.1s 1+CS,2/2

Using (4.1), it can be shown that

(4.14) (I-R R -R vX2 s+ o(s) as s - 0
)(_R)3/2 2

Applying (4.11), (4.13) and (4.14) we have

S0  ~ s( + ex -) U~df" g(s)ds < Kf u2 + uT-I x d

o o 1+IRI

1

H/+T u -
< K -- s* /2-- (/+-- T

I K[o(u/2) 2 0-] 0 as u.0,

where p(.) is the standard normal probability integral.

Furthermore, since exp{- -T ) is bounded away from zero, and
1-R

l ( R 2  X; sass - ,

(1-R-')

(this follows from (4.2)), we have for the remaining part of our

integral:

, ttI 2-n ds
2 Rn2J g(s)ds < K s IRI- - I (u

"so - sO ln-__R2d
-2 -

n-l 2-n

K u f Z(s) 7 -  n -2 (Z(s))ds

.A .2 'A

. . . . . O.. . . . . . . . . . . ..-
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where Z(s) = uR s)l
l-R (s)

Since

..z 'I(z) - 2-V/r(v+l) as z 0V

(Abrahmowitz and Stegun (1964, p. 375), the last inequality becomes

t 1  n-i

I g(s)ds < K(tl-s 0)U .

so

From t 1  B-l as u - 0 we have for sufficiently small u that

t < , which leads to

. n-l

f g(s)ds < Ku7 (2v1 - s )
so n-l

Ku 40 as u 0.

This completes the proof of Lemma 2.

The only modification in the proof of Crarngr and Leadbetter's (1967)

Lemma 4 to be made is the order of the probability of the event gr

(pp. 265-266). This event in our case becomes

gr = {Y(Vrq) < u}

of probability

"f! I 0(un/2)
."P{gr } =O(/)ir

To avoid confusion we will denote Cramer and Leadbetter's n by n'.

Consequently the final part of Lemma 4 becomes

,... ..-.- -. . ..... . .... -. •.. .. • •. .. ... -.., 
.
-.' - -_ . .,.i .. .-"-:'' "-,' ': ; ,'," = .' ,,, . " ' ,.".. . . .: - , : - i " :i " - i ' " :i :7
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P{Dk}  P{Ek} 0(n k+lun/2) (u l  )

0 as u-O

where of course, in the definitions of the above events, upcrossings

are replaced by downcrossings and {c(vq) > u} by {Y(vq) < u}

5. LIMITING DISTRIBUTION OF EXTREME VALUES

The limiting extreme value distribution of max Y(t) as T - was
O<t<T

derived by Sharpe (1978) who showed that

P[ -max Y(t) uT < z] e-e-z  as T
O<t<T

where n-1
= log[-FT T(log T)2

T  r(n/2) T]

Thus the asymptotic distribution of max Y(t) is of Type 1 (c.f. Lead-

O<t<T

better, Lindgren and Rootz6n (1983)),precisely as in the Gaussian case.

One expects that since x2 processes are bounded below , with power-type

densitiesthe asymptotic distribution of min Y(t) should belong toadiffer-
O~t<T

ent domain of attraction. This is in fact the case, as the following result indicates.

Theorem 5.1 The minimum of a x2  process has an asymptotic distribution

of Type 3. Specificaly, under the conditions of Theorem 4.1

n-l

(5.1) P{vT min Y(t) > z} 41 e , z > 0 , as T -

O<t<T



.1 31

* where

(5.2) vT X/2 r~n2 TI

Proof. It follows from the asymptotic Poisson character of the dowin-

crossings process that

P{min Y(t) > u} et as u-0
0 <t<T

where u and T are related via

n-
(5.3) T= uT- rF7(jU) 2 T

for large T and small1 u

n-i

Putting T =Z in (4.3) we obtain

2
* u~2~r(n/2) jn-Tz

and (5.1) -(5.2) readily follow.
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