
AID-AI62 391 A MICROPROCESSOR SYSTEM FOR CONTROLLING THE OHIO STATE i/I
UNIVERSITY COMPACT (U) OHIO STATE UNIV COLUMBUS
ELECTROSCIENCE LAB S PLEASANTS MAY 84 ESL-714198-6

UNCLASSIFIED NOO014-82-K-0037 F/G 28114 ML

NOEEENEEEE

I 2,8 12.5

II111_L25

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963-A

['•

I."

-.4. Y . -'. ..- . ..-.- i-- ..- •. . . ". . .*, " ". .i.- ,-,-2-. -
-.. •.-, ... -.. - . . - ..-

The Ohio State University

A MICROPROCESSOR SYSTEM FOR CONTROLLING
THE OHIO STATE UNIVERSITY COMPACT RANGE

TARGET SUPPORT PEDESTAL
(V)

(0 by

Shawn Pleasants

F <The Ohio State University

ElectroScience Laboratory
Deportment of Electrical Engineering

Columbus, Ohio 43212

D
Technical Report 714190-6

3 Contract N00014-82-K-0037

. LiiMay 1984

[IISThIBUTTON STATEMENT A

Approved for public releosel
Distribution Unlimited

kDepartment of the Navy
Office of Naval Research
800 North Quincy Street

Arlington, Virginia 22217

85 10 29 081

NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.

I

; -

®; 50272 -i0 *j 6 3
REPOT DOCUMENTATION 1. REPORT NO. 3. Recipient's Accession No.

PAGE f eotOt

4. Title and Subtitle S eotDt

A MICROPROCESSOR SYSTEM FOR CONTROLLING THE OHIO STATE __Mayj984-

UNIVERSITY COMPACT RANGE TARGET SUPPORT PEDESTAL

7Author(s) S. Performing Organization Rapt. No
Shawn Pleasants --- - EL7496

9. Parforming Organization Name and Address 10. Project /Task /Work Unit No.LThe Ohio State University ElectroScience Laboratory 1.Cnrc()o rn()N
Department of Electrical Engineering I.Cnrci)o rn()N

Columbus, Ohio 43212 (C)

(G N00014-82-K-0037
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered

Department of the Navy, Office of Naval Research Techni cal6800 North Quincy Street 14

iy Arlington, Virginia 22217 . --..

I.Supplementary Notes

16. Abstract (Limit: 200 words) - ____ ._ _ _--.--.

SAn advanced microprocessor-based stepper motor controller for the target support
pedestal of the Ohio State University's compact backscatter measurement range has
been constructed. The controller accurately controls target rotation and providesI
the target aspect angle to a host computer. Custom software for the controller
implements a set of commands that provide variable rotational velocities and W
accelerations, as well as special stepping routines useful for the backscatter
measurement process. The commands can be invoked remotely by a host computer or
locally via a front panel keypad. ..

37. OOCumnIt Analysis a. Deacriptors

b. hdentlflera/Opon-Ended Term,

C. COSATI Field/Group *-:v'~~no~d.Scrt ~yusei1d f.~o e

(Formerly ltTlS-1s)I
Departmnrt of Commerce

TABLE OF CONTENTS

Page
.,LIST OF TABLES s . . o. . . o *. . .iv "

LIST OF FIGURES* v ,I'

INTRODUCTION .. 1

hi. CHAPTER

I. HARDWARE ADDITIONS AND MODIFICATIONS 5

A. MODIFICATIONS 0..........*...... 7

B. HARDWARE ADDITIONS 11
C. PEDESTAL ELECTRONICS 19

IT. SOFTWARE g o... o o 23

A P. ACCELERATION AND DEACCELERATION METHOD............... 24
B. SOFTWARE ORGANIZATION.................o......... .. 32
C. SOFTWARE DEFINITION OF COMMANDS 34
0. STEPPING ROUTINES..... 37
E. POSITION ENCODER........ o... so ... 39
F. PROGRAMMING THROUGH THE RS232..,................... 41
G. AVAILABLE MEMORY AND MEMORY MAPPED I/O............... 43

III. COMMAND DESCRIPTIONS............................. 48

Acc-io:, For

NTIS C >&

DTI -T, A.

t6L - ,++ ; rd,+

D "t

L I ..

L ,

LIST OF TABLES

Table Page

1.1 WIRING LIST FOR DIP SOCKETS ON THE INTERFACE BOARD 17

2.1 NECESSARY TIME DELAY BETWEEN MOTOR STEPS TO ACHIEVE
CORRESPONDING VELOCITY 25

2.2 LIST OF THE COMMANDS RECOGNIZED BY THE CONTROLLER,
THEIR ASSOCIATED KEYS, AND SOFTWARE ROUTINES THAT
IMPLEMENT THE COMMANDS 35

2.3 ALL VARIABLES DEFINED IN THE PROGRAMS AND THEIR
CORRESPONDING MEMORY LOCATION IN RAM...................... 44

i

viv

..- .. L .- - - --•

LIST OF FIGURES

Figure Page

1.1. Block diagram of stepper motor controller showing host
computer and pedestal interface 6

1.2. Pinout differences between Intel 2732 EPROM and Wintek
assignment and printed circuit used to reshuffleappropriate pins I0 .

1.3. Interface board layout 12

1.4. Schematic of circuits on interface board 13

1.5. Stepper motor driver board layout 21

1.6. Schematic of stepper motor driver and shaft encoder
multiplier ciruits .. 22

2.1. Flow chart of main routine STARTMAIN 33

i

: "7;

V%

~ ~ : .:~ *. ;' .*

INTRODUCTION

The Ohio State University ElectroScience Laboratory has developed a

test object support pedestal as part of the compact radar backscatter

measurement range. This project involves the development of a

programmable, microprocessor based controller for the stepper motor in

the pedestal assembly of the compact range. The purpose of this report

is to describe the hardware and software development work done on the

controller and to describe its use. The pedestal stepper motor rotates

targets for radar cross section measurements. Custom software written

for the controller provides programmable velocities and accelerations of

the stepper motor. Radar test measurement techniques impose a limit on

the velocity range of 0.1 to 9.9 degrees/second in 0.1 degreu/second

increments. Accelerations of 1.0 to 5.0 degrees/second 2 in 0.1

degree/second 2 increments are provided to help rotate heavy and large I'

targets as well as to protect expensive targets from jerk when starting

the motor. Specialized stepping routines were written for the radar

test measurement process.

-i

"
%1-

Three computer and interface circuit cards were purchased from

Wintek Corporation for the construction of the controller. Advantages

exist for buying manufactured boards. One is the elimination of

- hardware development and debug time. Another advantage is that Wintek

offers a complete line of various boards and software that can be used

to enhance the controller and tailor it to various applications. The

I- three cards constitute a complete microcomputer system with a Motorola

6800 microprocessor, 4K of EPROM program memory, 1/2K of RAM memory, 40

parallel I/O lines, one serial I/O port configured for RS232 operation,

a keypad for entering data and commands, 15 programmable LED's for

displaying data, and one each A/D and D/A converter. The controller

- interfaces to a POP 11/23 host computer through a RS232 communication

- link for computer control. A forty foot cable connects the controller

to the pedestal. All drive circuitry for the stepper motor is contained

*" in the pedestal itself. Four TTL level signals are sent to the motor

" for stepping. Located on the pedestal shaft is a shaft encoder that,

through additional circuitry at the pedestal, produces 4000 pulses per

shaft revolution with a direction line indicating clockwise or

counter-clockwise rotation. Another signal produced by the shaft

encoder gives one pulse per revolution. The 4000 pulses per revolution

give 0.09 degrees resolution in shaft position. Chapter I describes in

further detail the hardware and modifications and additions done to the

Wintek system for this application.

As previously mentioned, the motor can step with speeds of 0.1 to

9.9 degrees/second and accelerations of 1.0 to 5.0 degrees/second 2.

2

* 'rZffl T~..

INTRODUCTION

The Ohio State University ElectroScience Laboratory has developed a

test object support pedestal as part of the compact radar bdckscatter

measurement range. This project involves the development of a

programmable, microprocessor based controller for the stepper motor in

the pedestal assembly of the compact range. The purpose of this report

is to describe the hardware and software development work done on the

controller and to describe its use. The pedestal stepper motor rotates

targets for radar cross section measurements. Custom software written

for the controller provides programmable velocities and accelerations of

.* the stepper motor. Radar test measurement techniques impose a limit on

the velocity range of 0.1 to 9.9 degrees/second in 0.1 degree/second

increments. Accelerations of 1.0 to 5.0 degrees/second2 in 0.1

*degree/second 2 increments are provided to help rotate heavy and large

targets as well as to protect expensive targets from jerk when starting

the motor. Specialized stepping routines were written for the radar

test measurement process.

I

S1 7.
'12:

Three computer and interface circuit cards were purchased from

Wintek Corporation for the construction of the controller. Advantages

exist for buying manufactured boards. One is the elimination of

hardware development and debug time. Another advantane is that Wintek

offers a complete line of various boards and software that can be used

to enhance the controller and tailor it to various applications. The

three cards constitute a complete microcomputer system with a Motorola

6800 microprocessor, 4K of EPROM program iemory, 1/2K of RAM memory, 40

parallel I/O lines, one serial I/O port configured for RS232 operation,

a keypad for entering data and commands, 15 programmable LED's for

displaying data, and one each A/D and D/A converter. The controller

interfaces to a PDP 11/23 host computer through a RS232 communication

link for computer control. A forty foot cable connects the controller

to the pedestal. All drive circuitry for the stepper motor is contained

in the pedestal itself. Four TTL level signals are sent to the motor

for stepping. Located on the pedestal shaft is a shaft encoder that,

through additional circuitry at the pedestal, produces 4000 pulses per

shaft revolution with a direction line indicating clockwise or

counter-clockwise rotation. Another signal produced by the shaft

encoder gives one pulse per revolution. The 4000 pulses per revolution

give 0.09 degrees resolution in shaft position. Chapter I describes in

further detail the hardware and modifications and additions done to the

Wintek system for this application.

As previously mentioned, the motor can step with speeds of 0.1 to

9.9 degrees/second and accelerations of 1.0 to 5.0 degrees/second 2 .

2

4 7-7

Motor stepping is controlled by entering the desired speed and

acceleration rates through the keypad. Software was written so that

motor rotation can be predicted by the physics equations

v = at and v2 = 2as

where

v = velocity (degrees/second)
a = acceleration (degrees/second2)
t = time (seconds)
s = distance (degrees)

The controller can operate in two modes: (1) local, where data and

commands are entered through a 16 key keypad on the front panel and (2)

remote, where a host computer transmits data and commands to the

controller over an RS232 link. Twenty-one commmands are implemented on

the controller. Six of them are for setting parameters for the stepping

routines (speed, acceleration, position, terminal position, scan angle

start, scan angle stop). Eight commands are used to choose one of four

* .stepping routines (two commards, clockwise and counterclockwise, for

each routine). The four routines are: (1) rotate to terminal angle and

deaccelerate to stop, (2) jog motor one step, (3) rotate motor

continuously until a stop command is entered and (4) scan from the

current scan angle start to the scan angle stop. The last command steps

• the motor so that it is at full speed when passing through both the

start and stop scan angles. The other seven commands include setting

the mode for local or remote, clear entered data, start scan (used in

conjunction with scan command), stop motor with deacceleration, change

3

L

,, ,., ,.. - .. '. , _ . . . , .. - .'i. i ' .L TII"

.- I..

LED display data to show all stepping parameters, send current position

to host computer, and set a debug mode that is used when under RS232

control for helping to debug the controller programming. Chapter II

discusses the software implementation of the commands while Chapter III

gives more detailed information on the commands and how to enter them

into the controller.

The controller has been completed and tested out on a properly

equipped pedestal. All features presented in this report were tested.

Controller operation in the manual mode was verified easily by entering

data and commands through the keypad. Remote mode operation by

programming through the RS232 interface was verified by using an

Osbourne microcomputer as the host. All stepping routines control motor

acceleration, constant velocity and deacceleration as specified.

4.I

4-..

4

4 . 44

44 . [',..

* - *4 4 ~ - - 4 4 4 - 4 . 4 - - .4 4 4 *

, CHAPTER I

HARDWARE ADDITIONS AND MODIFICATIONS

The microprocessor based programmable pedestal controller

P' incorporates three boards purchased from the Wintek Corporation. The

heart of the controller is a control card utilizing a Motorola 6800 up.

Four kilobytes of EPROM (Intel 2732) and one half of a kilobyte of RAM

(four Motorola 6810's) comprise the program and scratch pad memory,

respectively. Also on this card is an asynchronous communcation

[interface adaptor (a Motorola 6850 ACIA) which is used with some extenal

circuitry to comprise a RS232 communication link. Forty programmable

I/O lines are also provided with outputs on a fifty pin connector. The

other two cards are an I/O card with a sixteen key keypad and fifteen

LED's and an analog interface card with one 8-bit A/D converter and one

8-bit D/A converter. A forty-four pin, five slot back plane is used to

connect the cards together. A block diagram of the system appears in

"' Figure 1.1. Complete details on these cards can be found in the Wintek

F Micro Modules Reference Manual. Also, the chips on these cards are

Motorola standards and information on them can be found in their data

books. In the following sections is information on the modifications

and hardware additions done to the cards to tailor them to this

application.

L5
g "j%'

hi

__-______ -j z

CH 0 0

w0 z

ZwI~ 4-

C4C

ILL

U) IL

inVJ Iij-J If2 a Li 0 0 4
FE > 4-)

M
Uv Lt-

X 0~

02 Oalw
00 ld0.H

It IW6
Zed w'

A. MODIFICATIONS

Since the purpose of this project is to control a stepper motor,

some sort of timing base is needed to create a constant time delay

between motor steps. A problem arises here as the Wintek system has no

timing base except a 1200 HZ clock that creates interrupts for

refreshing the LED's on the I/O card. This doesn't provide enough

resolution as the time delays needed must be accurate to the

microsecond. The problem was rectified by replacing one of the Motorola

6821's that provides the parallel I/O lines with a Rockwell 6522

Versatile Interface Adaptor. This chip provides the same functions as

the 6821 but has in addition two 16 bit internal timers that operate at

the system clock frequency of one MHZ. Thus, time delays to the

microsecond can be realized. The two chips are nearly pin for pin

compatible except for differences on six pins. Therefore, a few printed

circuit lines had to be cut and jumpers soldered to accomodate the 6522.

Listed below are the pin differences between the two chips.

Pin 6821 6522

35 RS1 RS3

36 RSO RS2

37 IRQ RS1

38 IRAB RSO

21 R/1

22 CSO R/W

7

Wintek addressing places the following address lines on the chip select

pins of the 6821.

Pin 6821 Address Line

22 CSO A 9

23 A12

24 CS1 A 4

The following changes were made to accommodate the 6522.

1) The 6522 has two chip selects, CS1 (pin 24) and T37 (pin 23).

This is the same as CS1 and M of the 6821. Therefore, A12

was left on S7 but A4 was cut from CSI and AO was jumped in

its place. A4 is used for one of the register selects.

2) The 6522 has four register selects for its 16 internal

registers while the 6821 only has two register selects to

access its 4 internal registers. The table on the previous

page reveals that RS1 (pin 35) and RSO (pin 36) of the 6821

become RS3 and RS2 of the 6522, respectively. Thus, nothing

was done to these lines. RS1 (pin 37) and RSO (pin 38) of the

6522 correspond to TW and T-I of the 6821. Therefore,

these lines were cut from pins 37 and 38 and A2 and A4 were

jumped in their place, respectively. This makes A2 correspond

to RS1 and A4 to RSO.

3) The R/W line was removed from pin 21 of the 6821 and jumped to

pin 22 of the 6522. The line removed from pin 22 in order to

jumper in the R/W line is not used for anything.

8 .

I, ., ,- -.. .: . . W - - - Z T .7k1 6 .'

4) The interrupt lines removed from pins 37 and 38 of the 6821

were jumped to pin 21 of the 6522, which was vacated due to

change 3.

5) The enable signal from the processor was removed from pin 25

and the system phase two clock was jumped in its place. This

was done because the timers in the 6522 need the uninterrupted

system clock frequency for constant counting.

For this scheme to work, address line A9 must be a '1' when addressing

the 6522 to avoid memory conflicts with the RAM. The following memory

map for the 6522 results.

CS1 RSO RS1 RS2 RS3

X X X 0 X 1 I X 0 0 0 A 0 A A A

A15 A14 A13 A12 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al AO

One other modification was done to the Wintek control module. The

module is configured for an Intel 2708 EPROM, while we are using the

Intel 2732 EPROM. Pages 8, 9 and 10 of the Wintek Micro Modules

Reference Manual discuss the necessary printed circuit line cuts to II
be made and jumpers soldered in order to accomodate the 2732. However,

this is not the real problem. Wintek permutes some of their address and

data lines from the Intel standard pinout. Figure 1.2 a shows the pin

differences between the two. The problem was corrected in hardware by

making a small printed circuit board that reshuffles the address and

data lines from Wintek to the appropriate Intel 2732 pins. A copy of

the printed circuit layout appears in Figure 1.2 b. A standard 24 pin

9

I IW

E7I 43vc 1£ 3 Vcc

£6E a 23 £3 A£0O 2 23 3AS

A£5 3 22 AS AIC 3 22 A
INTELWINTEK

A4 4 232 21 3Ail A2 4 PIN 21 3Al1

A3C 5 4K18 203E A3 5 ASSIGNMENT 20 1E-
EPRlOM

£2- 6 EP[1 3AO A4 6 It A10

Air 7 #0 3I Ar5 7 is 3 E

AO 1? 3107 A6 8 7 300

0 o 9 16 306 DOE 9 I6 3D1

air 10 IS 3D5 o017 11 15 :I 02

02 it 4 04 "5 12 14 03

OND 03 OND D4

(a)

- W

(b)

Figure 1.2. Pinout differences between Intel 2732 EPROM and Wintek
assignment and printed circuit used to reshuffle
appropriate pins.

10

.-

solder tail socket was soldered in the pins marked Intel to accomodate I
the 2732. A 24 pin wire wrap socket was soldered into the pins marked

Wintek and then the body was sniped off, leaving only the wire wrap

pins. These pins are then plugged into the memory socket provided on

the Wintek control module board. A wire wrap socket was chosen because

the memory socket on the Wintek board requires long leads in order to

make good contact.

B. HARDWARE ADDITIONS j
An interface board was wire wrapped to provide drivers and

receivers for the RS232 communication link and for the stepper motor

interface cable. A block diagram showing board layout appears in Figure

1.3 and a circuit diagram is presented in Figure 1.4. A Motorola 1488

is the RS232 driver and Motorola 1489 is the receiver. Signals for

these chips are supplied via a cable from a fourteen pin DIP connector

on the control card that carries the necessary signals from the 6850

asynchronous communications interface adapter. Following is a list of

the necessary connections to be made on the DIP socket and signal-pin

correspondence.

" Connect baud clock to transmit and receive clocks (pin 2 to pins

11 and 12)

" Connect DCU and M to ground (pins 8 and 12 to either 3, 4 or 5)

* Transmit data (pin 9)

* Receive data (pin 13)

7.

W ---

TO RS232 TO PEDESTAL CABLE
9dB-25 10 PIN AMPHENOL

':3DIP DIP

SOCKET3 I SOCKET#41

TO ACIA DIP TO 50 PIN I/0
SOCKET ON CONNECTOR
MPU BOARD MPU BOARD

Figure 1.3. Interface board layout.

12

I'.

20 0S

PIN 4 DIP 4PI DPI

PIN :IP4PINI7 DIP 2

13 88M #IETO

PIPI IS DIP 4

_j4SET A HAFTN C

SHAFRESE CONTROL UN

133

D IR C T : " r Z 2 A 3 . 7 K.O

An on-board clock (555 oscillator) is used for the transmit and receive

clocks of the ACIA and is set for 9600 HZ. The frequency can be

adjusted by pot P1 on the control module. Data Carrier Detect (DCO) and

Clear To Send (S) must be tied to ground to ensure proper operation of

the ACIA. Transmit data from the ACIA is fed to the MC1488 driver and

out to pin 2 of the RS232 connector. Receive data for the ACIA is

acquired from pin 3 of the RS232 connector through the MC1489 receiver.

Wintek claims that baud rates of only 300 to 1200 can be used for

ACIA operation. This is assuming the ACIA control register is set to

divide the transmit and receive clock inputs by sixteen. The ACIA also

can be set up for no clock frequency division, making possible higher

baud rates. With this in mind, the on-board baud clock was set at 9600

HZ for a baud rate of 9600. This is the highest possible baud rate for

the PDP 11/23 host computer.

A 74LS240 driver/receiver chip is used to interface the control

module to the cable connecting the pedestal. This chip has high drive

capabilities needed to drive the forty to fifty feet of cable. Three

state outputs are permanently enabled. The drivers in the chip (a total

of eight) are inverters but the receivers at the pedestal are also

inverters (Schmitt triggered), nullifying the inversion. The four motor

phases are outputted through port B bits 3 to 0 of the 6522 and to the

74LS240 drivers.

Three of the gates in the 74LS240 are used to receive three signals

from the shaft encoder: (1) direction, (2) position pulses and (3) one

revolution pulse. As mentioned before, these gates are inverters but

4-7-

14

Kf

this time the drivers located at the pedestal (emitter follower

amplifiers) do not invert. Thus, results of the inverted signals must

be handled in software. The position pulse input is taken to CA1 input

of the 6522, which is programmed to respond to edge transitions. One

revolution pulse is input on CA2 of the 6522 and also programmed to

respond to edge transitions. Direction is tied to PA7 of the 6522.

When CAI input sees an edge transition of a position pulse, it latches

in the direction bit on PA7 until the microprocessor responds to the CAI

interrupt request.

Also on this interface board is a circuit to provide controller

reset through a front panel push button. The circuit diagram also

appears in Figure 1.4. The microprocessor responds to the reset by

starting program execution at the address specified in locations FFFE H

(high byte) and FFFF H (low byte) of the EPROM. A 74121

non-retriggerable one shot is used for the push button reset for two

purposes: (1) to debounce the pushbutton and (2) to hold the reset line

low long enough for the processor to recognize and initiate the reset

operation. The 6800 requires the reset line to be low for a minimum of

eight microseconds. The one shot delay of approximately 30 ms is plenty

long enough to satisfy the reset requirement and ample time delay for

switch debounce. The RC timing network holds the reset line low at

power-on to reset the up. Diode D1 isolates the effect of the output of

the one shot on the RC network while 02 provides a short circuit to

ground at power-down for discharging the capacitor.

15

0 ie. .

A list of the pin signals on the four DIP sockets on the interface

board and their connections is shown in Table 1.1. A ten conductor

cable is used to connect the controller to the pedestal. Each conductor

is a twisted pair with one of them used as a ground. In addition, each

twisted pair has its own shield and the cable itself has a shield.

In addition to setting speeds through the keypad, an analog knob is

present on the front panel. It has a detent position (when the knob is

pointing straight up) that corresponds to zero velocity. Turning the

knob clockwise rotates the pedestal clockwise and counterclockwise for

the other direction. The knob is attached to a 25kz pot inside the

controller. The center tap is taken through a shunt capacitor and

series resistor to the analog input of the A/D convertor on the analog

1/0 board. The RC network delays transitions of pot output voltage in

order to create acceleration and deacceleration. End terminals of the

pot are tied to ground and five volts. The software is written to

interpret zero to two volts as counterclockwise speeds and three volts

to five as clockwise speeds. Voltages in the range of two to three

volts are interpreted as zero velocity in order to create a symmetric

dead zone around the detent position mentioned earlier.

An analog output signal to control the horizontal input of the X-Y

plotter is available at the back panel through a BNC connector. It is

- made available from an eight bit D/A converter on the analog interface

card. The voltage produced is proportional to the current position of

the pedestal; zero degrees produces zero volts while 359.99 degrees

corresponds to approximately 4.8 volts.

.16

Ph.

TABLE 1.1

WIRING LIST FOR DIP SOCKETS ON THE INTERFACE BOARD

DIP I FUNCTION RS232 OB-25

10 B XMIT 2

11 B RCV 3

12 SIGNAL GND 7

CHASIS GND I

PEDESTAL CABLE
DIP 2 FUNCTION 10 PIN AMPHENOL

1 POSITION PULSE H

2 DIRECTION K

3 ONE REV PULSE J

4 +12 V A

5 BSM 04 G

6 BSM 03 F

7 BSM 02 E

8 BSM 01 D

9 SHAFT ENCODER GND C

13 +12 V and MOTOR PHASE GND B

17

TABLE 1.1 (CONTINUED)

ACIA CONNECTOR

DIP 3 FUNCTION S2 ON MPU BOARD

1 XMIT 9

5 RCV 13

9+ -- V 1

11 GROUND 3

14 +12 V 6

*15 -12 V 7

1/O CONNECTOR
DIP 4 FUNCTION SI ON MPU, BOARD

1POSITION PULSE 10 (PIA U8 CAl)

3 DIRECTION 14 (PIA U8 PA7)

4 ONE REV PULSE 36 (PIA U8 CA?)

5 SM 4 28 (PIA U8 P833)

6 SM 4)3 30 (PIA U8 PB2)

7 SM 32 (PIA U8 P131)

8 SM i 34 (PIA U8 PBO)

12 GROUND 2

13 +5V 1

15 RESET OUT TO PIN Z of
BAC KPLANE

16 RESET IN N/O TERMINAL
OF RESET SWITCH

The stepper motor located in the pedestal is a 200 step, four phase

motor made by Slo-Syn (model # M092 F0O9). In full step mode, the motor

takes 200 steps per revolution, but this application uses a half step

sequence that gives 400 steps per revolution, or 0.9 degrees/step. On

the stepper motor output shaft is a 100:1 reduction gear box further

reducing the distance per step to 0.009 degrees. The output of the gear

bnx is attached to the pedestal shaft. The stepping sequence for the

four phases is

Step 01 02 03 04

1 1 0 1 0

2 1 0 0 0A

3 1 0 0 1
CW CCW

4 0 0 0 1

V 5 0 1 0 1

6 0 1 0 0

7 0 1 1 0

, 8 0 0 1 0

1 1 0 1 0

Mounted on the pedestal shaft is a Hewlett-Packard shaft encoder

(model # HEDS-6010) that produces two phase quadrature signals of 1000

pulses per revolution. External circuitry at the pedestal multiplies

the phase quadratures to produce a 4000 pulse per revolution position

19
°-

. . . .

.

"~~~~~~~~~~~~~~~~-'.-.- -, - ---- - ------ ".-.,' ---- - -''." - .-. .' '" ,-" - -. . ' " " -,"- .". '' -"''.-

- - -.. r. r Ci . V *)7 -- I W- -7 -t -7-17.X ~ Vcv~v Vr r ' r~r crr,9c* w

signal, or 0.09 degrees/pulse. Direction is also determined by the

external circuitry. Stepper motor drive circuit board layout is shown

in Figure 1.5. Figure 1.6 shows the schematic of the motor drive

circuitry and shaft encoder multiplier circuit. The four motor phases

and three shaft encoder signals, along with power and ground, are

transported on a ten conductor cable.

2'-0

P,.°J.

i~20

%,k

02 04 01~ 03 comm.

0 0

N60

N605

{4II a3 a1 CD0IIEC09
01 02 0

IOI

PII 10

0°

• p, ~IAT605 .'.

Figure 1.5. Stepper motor driver board layout. [

21,

I x'

as PONw' EDG CONNECTOR

Scomm.

BSM, 3> ,0
I >

-i ING055 0

INIOS$

*I TCDOE O(C TOi

I II * v PHASE

OONIt I K ,BSM4 6>A1AT E

I w " EINDEX

TOONE -EV

- ,,os II PHASE,
I'o I I GU D.iU E

PULSE 12 V HSERi

"- . Figure 1.6. Schematic of stepper motor driver and shaft encoder
multiplier ciruits.d

22+1V

WI .II C04

C O N 1

. ,'P- , .- • .- - . -;- ., - .- - . . . - .. , - .- - ,, ,.w,.

, " -" " - --' .. " '-' '-"- ". . ." '- - - '' ," ' " p." -'.7a . '- -' ' " % ., '

CHAPTER II

SOFTWARE

Software development was done on a Hewlett Packard 64000 computer

Vi equipped with a 6800 microprocessor emulator. The 64000 is a general

purpose computer that has an editor, assembler, linker and so on.
.°

Programs are written in the Motorola 6800 assembly language and

assembled and linked into absolute code. This part of the computer is

all very standard and provides no real advantage over other computers.

jj- The powerful tool of this computer is the emulator. The external part

of the emulator seen by the user is a 40 pin "pod" which has the exact

pinouts of the 6800 microprocessor. This pod plugs into the socket on

the hardware where the microprocessor belongs, interfacing it to the

64000 computer. Programs written and resident on the 64000 can be run

on the hardware as if the actual 6800 microprocessor was in the socket.

The emulator also has extensive debugging capabilities for testing the

programs. After being assured the programs are working correctly, an

EPROM can be burned to dump the programs on the 64000. The processor

and EPROM can then be plugged back into their sockets and the

microprocessor system is operational.

23

• 23 ,

A. ACCELERATION AND DEACCELERATION METHOD

The pedestal controller is capable of stepping the pedestal shaft

at speeds from 0.1 degrees/second to 9.9 degrees/second in 0.1

degrees/second increments. The motor itself is actually stepping at 100

times these speeds due to a 100:1 gear reduction between the motor

* output shaft and the pedestal shaft. Time delay between motor steps is

* given for a few velocities in Table 2.1. The binary equivalent of the

decimal values shown is the actual value loaded into the 16 bit timers

* used to create the time delay. The decimal time delays were calculated

by the following equation.

second degrees 40000 steps
Time delay (step) = (x second)(60 degrees)

Accelerations of 1.0 degrees/second 2 to 5.0 degrees/second2 were

programmed to behave in accordance with the following physical laws:

(1) v = at

(2) v2 = 2as

where

v = velocity (degrees/second) A
"' a = acceleration (degrees/second2)

t = time (second)

s = distance (degrees)

" 24

-U-, * -. ~"-U*. P. -""'"..... .."''" - 2. J I

TABLE 2.1

NECESSARY TIME DELAY BETWEEN MOTOR STEPS
TO ACHIEVE CORRESPONDING VELOCITY

Velocity (degrees/second) Time Delay Between Steps (us/step)

0.1 90000

1.0 9000

2.0 4500

3.0 3000

4.0 2250

5.0 1800

6.0 1500

7.0 1285

8.0 1125

9.0 1000

9.9 909

25f
;225

. .: . ..

,. 25 * .

.. t ~ -

Thus, with a given speed and acceleration input, the time necessary for

acceleration and the distance travelled during acceleration can be

calculated. The software calculates these values by solving for t = v/a

and s = v2/2a. Then, the number of steps needed to travel the

acceleration distance can be found (steps = s (degrees)/O.009

(degrees/step)). .

Acceleration is accomplished by calculating a starting delay time

between the first two motor steps and a constant delta time delay that-

is subtracted after each step from the previous step delay time until

the constant velocity step delay is reached. By adding the delta time

delay to the previous step delay, deacceleration is achieved. The graph

below helps to relate the algorithm.

S S S S S S 5

t t t t t t t
e e e e e e e
p P p p p p p

I t i tj I tk I tc tc I tc

+Istart delayl+ +I 1+ +1 I delay for constant
time delta time speed (tc)

TSTART delay (At)

Delta time delay can be found from the following equations.

ti + tj + *** + tk = T Where T=v/a, the total time
for acceleration.

but ti = tc + steps (At) 'steps' is the number of
steps needed to travel the

tj = tc + (steps - 1) (At) acceleration distance.

tk = tc + At

26
Vo.

' ,_" " L: ..; " .-

Then

[tc + steps (At)] + [tc + (steps - 1)(At)] + oo' + (tc + At) : T

steps steps

tc + i j At =T

i :i i :1

steps steps

At Z i = T- tc

i =1 i =1

steps

The summation i i can be represented in equation form as

I.i =1

steps
(steps) (steps + I)

2 , Also, it can be shown that Z tc is equal to

- i =1

T/2. Thus, the result is

.- iAt •(steps) (steps + 4)
At = T - T/2 = T/2

or

T
At = (steps) (steps + 1)

This is the equation used in the software to determine At. T is first

found from T = v/a and steps is then calculated from knowledge of

the distance traveled during acceleration (steps = s/0.009 where

s 2 /2a).

727

i-- .'.-- "" -"-. "*, " - ".- - " -~ * .. " -" " "

The starting delay time, TSTART, between the first two steps is

found now by the following equation.

TSTART At * steps + tc

The software initiates acceleration by jogging the motor one step

and then loading the starting delay time, TSTART, into internal timer I

of the 6522 and initiates counting. While the present delay is counting

down, the controller calculates the next delay value by subtracting At

from TSTART and loading the result into timer l's latches. When timer 1

times out the starting delay, the 6522 is configured to transfer the

delay contained in timer l's latches into the timer and initiate

counting again. Also when timer 1 times out, an interrupt is generated.

The controller responds by jogging the motor one step and calculating

the next delay value by subtracting At from the present delay value that

is timing out in timer 1. The resultant value is loaded into timer l's

latches so that when the present delay times out, the next delay value

-is transferred from the latches to the timer and starts counting. This

process continues until the controller calculates a next delay value

that is less than the desired delay corresponding to the programmed

velocity. At this point, the controller loads the constant velocity

delay value into timer l's latches and sets a flag indicating to the

following interrupts to only jog the motor and not to calculate any new

delay values.

Deacceleration is accomplished in a similar manner. The delta

delay value, At, is added to the present delay value and the result is

28

71 .. 28

r .

stored in timer 1's latches as the next delay value. This process

continues until the interrupt handler calculates a next delay value that

is greater than the starting delay value TSTART. At this point,

depending on which stepping routine has been invoked, the motor is

stopped completely or continues to step at the velocity corresponding to

TSTART until necessary to stop.

As an example, assume that the controller has been programmed for a

velocity and acceleration of 5.0 degrees/second and 2.5 degrees/second 2 ,

respectively. The acceleration time, T, is found as:

T = v/a = 5.0/2.5 = 2.0 seconds.

Next, the distance travelled during acceleration is calculated.

v2 = 2as - s = v2/2a = (5.0)2/(2.2.5) = 5.0 degrees

The value s is used in calculating steps, the number of steps necessary

to travel the acceleration distance during the acceleration time. The

distance travelled per motor step is 0.009 degrees. Thus,

software routine
steps = s/0.009 = 5.0/0.009 = 555.55... => 555 (does integer division)

Now, the delta delay time At can be calculated.

T
At = (steps) (steps + 1)

2.0
At = TSb)T516T

again, software routine
At = 6.48 => 6u seconds (does integer division)

29

This is the value that is either subtracted for acceleration or added

for deacceleration to the present delay between motor steps to generate

the next delay value between steps.

The multiply and divide routines are integer and are implemented in

software. Therefore, values are scaled to represent decimal numbers.

All values with units of time are represented in microseconds, with the

least significant bit (LSB) being 1 us. Time was represented in this

manner because delays between motor steps for the velocity range must be

resolvable to the microsecond (see Table 2.1). Also, the timer used to

create the delays operates at 1 MHZ, or ls/clocking. Distance and

position values are represented in units of degrees that are accurate to

0.01 degrees, with the LSB being equal to 0.01 degrees. This was done

because the shaft encoder has a resolution of 0.09 degrees. With this

in mind, for the example given, the binary representation in memory for

T is 2,000,000 and s is 500. The value for At would be the binary value

6 since it is accurate to the microsecond.

Finally, the starting delay time is calculated as (shown using

computer values)

TSTART = At • steps + tc

= 6 • 555 + 1800

= 5130 Ps

The acceleration and velocity ranges of the controller were chosen

for several reasons. A simulation of the calculations done by the

30

controller to determine acceleration constants was performed on a VAX

11/780 for all combinations of velocity and acceleration in the ranges

of 0.1 to 9.9 degrees/second and 0.1 to 9.9 degrees/second 2 ,

respectively. A minimum of 1.0 degrees/second 2 was chosen because at

accelerations and velocities below 1.0 degrees/second 2 and 1.0

degrees/second, the starting delay times become too large to represent

in the 16 bit timer operating at 1 MHZ. Even with 1.0 degrees/second 2,

velocities of 0.1 to 0.4 degrees/second still have exceedingly large

starting delay times for the 16 bit timer. The controller compensates

for this by dead starting the motor at these velocities irregardless of

the programmed acceleration. Also, the combination of low accelerations

and high velocities results in delta delay times that are less than lIs,

which is less than the accuracy of the timer. Even at 1.0

degrees/second 2 acceleration, velocities of 6.9 degrees/second and above

have delta delay times of less than 1 vs. The controller is programmed

to default the delta delay time to lus when this occurs. A ceiling of

5.0 degrees/second 2 was chosen primarily for practicality. There was no

need to accelerate the motor any faster than this since slow velocities

are used for taking measurements and to protect expensive targets. For

instance, a velocity of 1.0 degrees/second and an acceleration of 9.9

degrees/second 2 results in an acceleration time of 0.1 seconds. This

hardly provides any acceleration at all, defeating the need for

acceleration completely.

* The velocity maximum of 9.9 degrees/second was chosen for some of

the same reasons as above. Since the primary interest is in slow

velocities for data taking and to protect expensive targets, fast

31

velocities are not necessary. However, the faster velocities of 5 to 10

degrees/second provide fast enough rotation of the pedestal so that

excessive time delays are not encountered in positioning the target for

data taking. For example, a velocity of 9.9 degrees/second requires

approximately 36 seconds to rotate the target 360 degrees while a

velocity of 0.1 degrees/second requires one hour for one revolution of

the target.

B. SOFTWARE ORGANIZATION

The main software routine, STARTMAIN, shown in flow chart form in

Figure 2.1, begins with a one time initialization pass for memory

locations and the I/0 devices. The main body of the routine simply

reads the keypad or RS232, depending on the mode. If any data are

* found, a subroutine is called to determine if the data represent a

number or a command. If a number is found its value is stored and the

program returns to reading the input device. When a command is entered,

the main routine calls a subroutine that executes the desired command.

Any data entered prior to the command is used, if necessary, by the

"" command subroutine. After execution of the command subroutine, control

is returned back to the main routine and polling of the input device

"- resumes until data is entered again. This method provides flexibility

of the command keys, should they desire to be changed, by simply

changing the subroutine call corresponding to that key. Data values

from zero to nine can be input and twenty-one commands are implemented.

Chapter III discusses the commands and their syntax.

32

INITIALIZE
X/O DEVICES

RY~S LONOIO

[MEMO NO

REOELCA OA

ORRMT

Figure 2.1.2 FlwcatoIansotn TRM

33E

SPEED CNTROLL

BY NO

C. SOFTWARE DEFINITION OF COMMANDS

A list of the commands and their associated keys along with the

subroutine name that implements the command is found in Table 2.2. The

program listings are well commented so only a brief overview is given

here. The listings are not included with the report because of their

length but are available at the ElectroScience Laboratory.

Six commands are used for setting parameters used by the stepping

- routines. The commands are SET SPEED, SET ACCELERATION, SET POSITION,

SET TERMINAL POSITION, SET SCAN ANGLE START, and SET SCAN ANGLE STOP.

These commands use data that were entered prior to the execution of the

command. If any of these commands are invoked inadvertantly without any

data having been entered, the subroutine will return without effecting

* the present value. SET SPEED and SET ACCELERATION store the entered

" data in binary at ten times the actual value. That i,, 0.1

- degrees/second is stored as a binary 1 and 9.9 de.,rees/second as binary

99 (same for acceleration). Commands for setting angles result in a

binary number equivalent to 10 times the entered value. Thus, angles

are accurate done to 0.01 degrees. This was done because the shaft

encoder has a resolution of 0.09 degrees.

The five following commands require no data input. In fact, for

the first two commands listed, if data are mistakenly entered before the

command is invoked, the subroutine will return without execution of the

command. The commands are SET MODE, SET DEBUG, STOP, CLEAR and CHANGE

DISPLAYS. SET MODE toggles the controller between local or remote

- ~ operation. SET DEBUG toggles the RS232 debug mode on and off. Details

34

4..' 4L.i

TABLE 2.2

LIST OF THE COMMANDS RECOGNIZED BY THE CONTROLLER, THEIR ASSOCIATEO
KEYS, AN OTAEROUTINES THAT IMPLEMENT THE COMMANDS

KEY COMMAND SUBROUTINE NAME

0-9 data 0-9--

A set angle SET-ANGLE

B set terminal angle SET-TANGLE

C clear data CHANGE-.PNT

0 set mode SET-..MODE

E set speed SET-.SPEED)

F shift SHIFT

35

k TABLE 2.2 (CONTINUED)

KEY COMMAND SUBROUTINE NAME

Pressing the shift key first will redefine the keys for the next key
stroke only as follows:

0 go to terminal angle CW TANGLECW

1 go to terminal angle CCW TANGLECCW

2 scan CW SCANCW

3 scan CCW SCANCCW

4 go continuously CW CONTCW

5 go continuously CCW CONT_CCW

6 jog one step CW JOGCW

7 jog one step CCW JOGCCW

8 start scan STARTSCAN

9 send position over RS232 SEND-POS

A stop with deacceleration STOPMOTOR

B set debug mode SET-DEBUG

C set scan angle start SCAN-START

D set scan angle stop SCAN.STOP

E set acceleration SETACCL

F change display data CHANGEDIS

.4

36

I "5.{ ilt--- " -.

on the debug mode are given in Section F. STOP calls a subroutine that

stops the motor with deacceleration. If the motor is not rotating,

execution of the command does nothing. When invalid data is entered,

CLEAR can be executed to cancel the data. It clears the display of

entered data and returns back to the regular display information. Since

all stepping parameters cannot be displayed on the fifteen LED's at

once, two sets of led display data are kept in memory. CHANGE DISPLAYS

toggles between the two sets of display information.

D. STEPPING ROUTINES

Four different stepping routines are programmed into the

controller. They are: (1) rotate continuously until a STOP command is

entered, (2) rotate to the current terminal angle and deaccelerate to a

stop, (3) jog motor one step and (4) scan pedestal from the current scanr. -
angle start to the scan angle stop. This last command will rotate the

motor so that it is at full speed when traveling through the scan start

and stop angles. Eight commands are associated with these four

routines, one each for clockwise and counterclockwise rotation. A

nineth command, STARTSCAN, is used in conjunction with the scan

routines. When the scan command is given, the motor will rotate from

its current position to a second position and stop that will give the

motor enough distance of travel during acceleration in order to be at

37

L °.." -

full speed when it passes through the scan angle start. The STARTSCAN

command starts the motor from this position for scanning.

All of these routines, with the exception of JOG, start the motor

with acceleration and stop it with deacceleration, except for speeds of

0.1 to 0.4 degrees/second, which are programmed to always start and stop

with no acceleration. Before the motor is started, subroutines DETDIST

and DELTIME are called to determine the stepping parameters of starting

* delay time TSTART and delta delay time At. Subroutine STARTMOTOR is

then called which loads the starting delay time into the timer 1 counter

of the 6522 and initiates counting. The first delta delay time is

subtracted from the starting delay time and the result is loaded into

timer 1 latches. When timer I times out the present delay, it loads the

value from its latches into the counter and starts counting down again.

From this point, motor stepping is interrupt driven. When the timer

times out, an interrupt is generated. The controller responds to the

interrupt by jogging the motor one step and then calculating the next

delay value by subtracting the delta delay time from the present delay

value and loading the result into timer I's latches. This process

continues until the next delay time calculated by the interrupt handler

is less than the delay for the programmed constant velocity. When this

occurs, the delay for constant velocity is loaded into timer l's latches

and all interrupts after this just step the motor and return.

Since the stepping routines are interrupt driven, the subroutines

that initiate stepping are free to do other things. While the motor is

38

|. -"

rotating, the three routines, excluding JOG, monitor the keypad or RS232

port (depending on the mode) for data input but the only commands

responded to are STOP and CHANGE OISPLAYS. All others are ignored.

- When a STOP command is found, the motor is deaccelerated to a stop and

the subroutine returns back to the main program. This is the only

* responsibility of the rotate continuous subroutine. The terminal angle

and scan routines have one other important responsibility. Since these

routines must stop the motor at a specific terminal angle, a

deacceleration position must be known where the motor starts

deaccelerating so that it will stop at the terminal angle. This

position is calculated by subroutine DETDEAPOS before the motor is

started. While the motor is rotating, the subroutines check the current

position to see if it equals the deacceleration position. When this

condition is found, the routines set a flag for the interrupt handler to

start deacceleration. After this, while the motor is stepping at the

*" velocity corresponding to TSTART, the routines will check the terminal

position against the current position and when found equal stop the

motor completely and return to the main program.

E. POSITION ENCODER

A Hewlett Packard shaft encoder is mounted on the pedestal shaft

near the stop of 4,e pedestal. It produces two phase quadrature signals

of 1000 pulses per revolution. External circuitry multiplies the two

phase quadratures to get 4000 pulses per revolution, or 0.09

degrees/pulse, and a direction bit. This information is what the

39

controller receives. The position clock is connected to CAI of the 6522

and the direction bit to PA7. CAI is set to produce an interrupt on a

negative edge transition. The interrupt handler responds to the

position clock interrupt by calling subroutine READPOSITION which reads

the direction bit to determine whether to increment or decrement the

position value in memory. If the direction bit is high, INCPOS is

called to increment the position value by 9 (LSB equals 0.01 degrees) or

if the direction bit is low, position is decremented by 9 by routine

DECPOS.

The D/A converter on the analog I/O module that drives the position

axis of an X-Y plotter is updated at this time. It is an 8 bit D/A

converter but the position is represented with 16 bits (again, LSB

0.01 degrees, so 359.99 degrees is stored as 35999 binary, or 8C9F hex).

Thus, the 16 bit position has to be scaled to 8 bits. It is done in the

following manner. The 8 bi. converter has 256 possible codes to

represent 360 degrees, or 1.41 degrees per code. Therefore, the 16 bit

position value is divided by 141 (scaled by 100 since LSB = 0.01

degrees) and the integer result is used as the D/A code.

Also when a position interrupt occurs, the new position value is

sent to the host computer via the RS232, no matter the controller mode.

A total of four 8 bit bytes are sent. The first two bytes are the same,

AO hex, and indicate that the following two bytes are the position. The

third byte is the most significant and the last is the least significant

byte of the position data.

40

-P.,

= 9
°

. , - - . . , - - -. 2 -- m -- .. - T - i, . .7" r . .

F. PROGRAMMING THROUGH THE RS232

To program the controller through the RS232, the host computer must

serd data in the exact sequence as if programmed through the front panel

keypad. For example, suppose it is desired to set the velocity to 2.5

degrees/second. The programming sequence would be:

1) Send binary equivalent of 2 in first byte.

2) Send binary equivalent of 5 in second byte.

3) Send SET VELOCITY command (binary 14, or hex E, since

key corresponding to SET VELOCITY is E).

After each of the above data transmissions, the controller will

return a two byte code indicating that the data was accepted, processed

properly, and the host computer can send more data. This code is the

same for both bytes and is DO hex. Should the command that is sent

invoke a stepping routine, the controller does not send this two byte

code until it has completed the stepping routine and the motor has come

to a complete stop. This is done so that the host computer knows when

the controller has completed the stepping routine and returns to polling

the RS232 channel. At this time more data can be sent. During the

stepping routine all data received through the RS232 is ignored except

for the STOP command or CHANGE DISPLAYS command. This allows the host

computer to stop the motor or change the displayed stepping parameters

at any time.

If an error is detected or invalid data is received by the

controlle- during transmission, it will return a one byte error code to

41

the host computer corresponding to the error. Following is a list of4

errors and their associated error codes.

Error Code (hex)

overrun error EQ

framing error El

invalid data E2

parity error E3

In the event of an error, the host computer must decide what action to

take. The controller does nothing other than sending a code to identify

the error. Valid data received from previous transmissions before the

error is not lost.

A debug mode is programmed into the controller to aid in debugging

it when programming. The command SET-..EBUG invokes this mode. Executing

4. the command again turns off the debug mode (i.e., SET-.DEBUG toggles the

debug mode). If an overrun, framing, or parity error is detected, the

same error code as sent back to the host computer is displayed on LE'

1 and 2. In the event that invalid data (data greater than OF hex) is

received, the value will be stored directly on LED 2 as a seven segment

code, along with an E on LED 1. The seven segment code displayed on LED

2 then corresponds to the invalid data received, thus identifying it.

When the debug mode is off, no error codes or invalid data are shown on

the LED's but error codes are still sent to the host computer.I

42

G. AVAILABLE MEMORY AND MEMORY MAPPE) 1/0

Four kilobytes of program memory (Intel 2732) is available on the

control module. All but approximately one hundred bytes have been used.

Scratch pad memory consisting of 512 bytes of Motorola 6810 RAM is also

available with less than half being used. The stack also occupies this

memory starting at location FF hex and working down. All I/0 devices in

the system (keypad, LED's, A/D and D/A converters, parallel I/O) are

memory mapped through Motorola 6821's. Memory maps of the RAM, ROM, and

I/O devices can be found in the Wintek Reference manuals, with the

exception of PIA U8, which was replaced by the 6522. The new memory map

used for the 6522 was discussed in Section A of Chapter 1. All

variables used in the programs are listed in table 2.3 along with the

program name where the variable is defined and its associated address

in RAM.

43

7.II \ -'- " . ". '- .-' ' '- .", "- ,' ", ", ,' .', \ ' ,' , -v '.' " '- .., -' '-, ', £ ', ,. .' '. , .' -: -.. ." " L '. "- .' ",' ". .' ..'. .' Z " '. -.-. ." .' " ..-'. '. L " '. .:

TABLE 2.3

ALL VARIABLES DEFINED IN THE PROGRAMS AND THEIR
CORRESPONDING MEMORY LOCATION IN RAM

ADD RESS (HEX) LABEL ROUTINE

00 KEYCODE READKEY

01-IF BUFDATA LEDDATAO

10 BUFENDOATA LEDOATAO

11-1F BUFENTRY LED-ENTRY

20 BUFENDENTRY LED-ENTRY

21-22 BUFPNT DISPLAY

23-24 BUFSTART DISPLAY

25-26 BUFEND DISPLAY

27 MODE SET-MODE

28-2A KEY DECIPHER

2B KEYEND DECIPHER

2C-2D KEYPNT DECIPHER

2E KEYCNT DECIPHER

2F SHIFT SET-SHIFT

30 INTRCNT INTRHAND

31-32 POINTER INDEX

33 OFFSET INDEX

34-36 POSITION SET-.ANGLE

37-39 T-POSITION SET-TANGLE

3A-3C SCPOSTART SCAN-START

3D-3F SCPOSTOP SCAN-.STOP

44 .

~ i 'K>

TABLE 2.3 (CONTINUED)

ADD RESS (HEX) LABEL ROUTINE

40DIRECTION JOG

41-42 STEPPNT JOG

43 OELAY-H SET-.SPEED

44 OELAY-L SET-.SPEED

*45 COUNT SHOW

-46 LEDPOS SHOW

47 LEDOFFSET SHOW

48-49 WHICH-BUF SHOW

4A-58 BUFDATAl LEIDATAI

59 ENDDATAI LED-.DATAI

5A WHICH-DIS CHANGE-.PNT

5B STEPCNT INTRHAND

5C-5D MINUEND SUBT-.BIN

5E-5F ADDER ADD-.BIN

60-61 SCRATCH READ-.POSITION

62-63 POS-BIN POS-.BIN

64-65 TPOS-BIN TPOS-.BIN

66-67 SCST-BIN SCAN-.START

68-69 SCSP-BIN SCAN-.STUP

6A-6B RESULT 8CDTOBIN

6C LOAD_.CNT OIS..POS

6D ACCORDEA STARTMOTOR

-~6E STEPAGAIN STARTMOTOR

45

* - -.- .. t-1UCWV .. W

TABLE 2.3 (CONTINUED)

ADD RESS (HEX) LABEL ROUTINE

6F LASTKEY READ

72-73 DEAPOSBIN DETDEAPOS

74-7b COMPARED CMPBIN

76-77 SWITCH CMPBIN

78 OKTOSCAN SCANCW

79-7A DIFF STARTSCAN

7B NUMREV STARTSCAN

7E-7F SAVETPOS SCANCW

82-85 DIVIDEND DIVIDE

86-89 REMAIN DIVIDE

8A-8D DIVISOR DIVIDE

8F DIG-COUNT DISPOS

90 VEL _ SPEEDKNOB

91 VELO SPEEDKNOB

92 SPEEDIS SHOWSPEED

93 SPEEDIOTHS SHOWSPEED

94-95 DELTA-POS DETDEAPOS

96 OKTUACCL ACLORNOACL

97-98 TESTDIFF ACLORNOACL

99 ACCELERATION SETACCL

9A-9B DISTANCE DETDIST

9C MULTCNT MULTIPLY

46

.°.

TABLE 2.3 (CONTINUED)

ADD RESS (HEX) LABEL ROUTINE

9D-9E MULTIPLIER MULTIPLY

9F-AO LOW-.ANS MULTIPLY

A1-A2 MULTIPLICAND MULTIPLY

A3-A4 STEPS DELTIME

-A5-A6 DELTA-.TIME DELTIME

A7-A8 START-TIME DELTIME

A9-AA COUNT-TIME DELTIME

AB DEBUG SET-..EBUG

*-AC-AD SAVE DET-DEAPOS

AE-AF STOP-.TIME UEL-TIME

80-BI POS-BUF READ-POSITION

B2 INDEX-POS INTRHAND

r

-. 47

CHAPTER III

COMMAND DESCRIPTIONS

Twenty-one commands are implemented on the controller. Clockwise

rotation is defined when looking straight down on the pedestal from

above. Following is a description of each command and how to enter it.

Data 0-9: Keys marked 0-9 represent that decimal number. When a

number is pushed, present data on the screen will be cleared

and the new data will appear on the blank screen. A total of

3 numbers can be entered at once. Any more numbers entered

after the first three will be ignored. Values for

acceleration and velocity are entered without the decimal

point. That is, a value of 1.0 degrees/second is entered as

10 (no decimal point). Angles are entered as whole numbers

only from 0-359.

A - SET POSITION: Sets the current position to the entered data. If no

data has been entered the command returns without changing

the current position value. Care must be taken as values

greater than 360 can be entered.

48

%!

,..1

"* 'L e .'. " -£ - ., .;,4 " . ' " .' : " '; . , ..- t - . ., . - . -

t'! ! I 'i: i ' [,- " ' :,-'- 'z.'. ": ? -" - A. fl5 ... t g-. -,' ,~x .:,. *.-, . !., '-."-, 1

B - SET TERMINAL POSITION: Sets the terminal angle with the entered I
data. If no data is entered, the command returns without

changing the current terminal angle. Care must be taken as

values greater than 360 can be entered.

C - CLEAR: Clears any data entered and resets the display back to the

original display information.

D - SET MODE: Toggles the mode of the controller back and forth between

remote and local. The new mode is reflected on the first LED;

O for local and 1 for remote. While in remote this key is

still functional in order to set mode back to local. All

other keys are disabled.

E - SET SPEED: Sets the speed to the entered data. If an invalid

velocity, or no velocity is entered, the command returns

without execution or effecting the current speed value.

Speeds of 0.1 to 9.9 degrees/second are possible in 0.1

degrees/second increments. To enter 0.1, a 0 is entered first

, followed by a 1. There is no decimal point. A velocity of

9.9 degrees/second would be entered as 99.

F - SHIFT: This key relabels the 16 keys with different commands on the

next key stroke only.

49 1...... .

.* .. *

F 0 - ROTATE TO TERMINAL ANGLE CLOCKWISE: Rotates motor from the

present position to the current terminal angle in the

clockwise direction. If the current position equals exactly

the terminal angle, the motor will still rotate one full

revolution back to the terminal angle. If the position is

within the tolerance of ± 0.04 degrees of the terminal angle,

but not equal to it, the pedestal will not rotate and the

command will return.

F 1 - ROTATE TO TERMINAL ANGLE COUNTERCLOCKWISE: Same as rotate to

terminal angle CW but direction is CCW.

F 2 - SCAN CLOCKWISE: This command sets up the motor for the actual

scan. It does this by rotating the motor from the current

position to a terminal position that will allow the motor,

when given the start scan command, to accelerate to full

speed before it passes through the scan start angle. The

motor will rotate to this terminal position in the direction

that provides the least distance. After the motor has

reached the position and stops, the direction is set for CW.

The STARTSCAN command must then be given to start the scan.

F 3 - SCAN COUNTERCLOCKWISE: Same as SCAN CLOCKWISE but direction is

counterclockwise. Also, the controller uses the SCAN ANGLE

STOP for the scan starting angle and SCAN ANGLE START for the

-- scan stopping angle.

50

F:'.
F 4 - ROTATE MOTOR CONTINUOUSLY CLOCKWISE: Starts the motor with

acceleration and rotates it continuously in the clockwise

direction until a STOP command is entered.

F 5 - ROTATE MOTOR CONTINUOUSLY COUNTERCLOCKWISE: Same as rotate

continuously CW but direction is counterclockwise.

F 6 -JOG CLOCKWISE: Jogs motor one step clockwise.

U F 7 - JOG COUNTERCLOCKWISE: Jogs motor one step counterclockwise.

F 8 - STARTSCAN: This command starts the motor with acceleration from

the current position and direction set up by the commands

L SCAN CW or SCAN CCW. The motor will be at full speed when

passing through both the SCAN ANGLE START and SCAN ANGLE

STOP, at which time it will deaccelerate to a stop. If SCAN

CCW had been previously invoked, the motor ar jally rotates

from SCAN ANGLE STOP to SCAN ANGLE START.

F 9 -SEND POSITION: Sends current pedestal shaft position to the host

computer. Four bytes are sent; the first two (AO hex)

signify the following data is the position and the last two

are the position.

L F A - STOP MOTOR: Stops motor with deacceleration from current speed.

This command can still be entered from the keypad while in

remote mode.

p.:

51

Z7....

.
2 .* .~ *. . . * -

-' F B - SET OEBUG MODE: Toggles the debug mode on and off for RS232

operation. For a description of the debugger, see Section H

of Chapter II.

F C - SET SCAN ANGLE START: Sets the scan angle start with the current

entered data. If no data has been entered, the command

returns without effecting the current value. Care must be

taken as angles greater than 360 can be entered.

F 0- SET SCAN ANGLE STOP: Sets the scan angle stop with the current

entered data. If no data has been entered, the command

returns without effecting the current value. Care must be

taken as angles greater than 360 can be entered.

F E - SET ACCELERATION: Sets acceleration with the current entered

data. If an invalid acceleration or no acceleration is

entered, the command returns without effecting the current

acceleration. Values from 1.0 degrees/second 2 to 5.0

degrees/second 2 can be entered in increments of

0.1 degrees/second 2 . No decimal point is provided

so a value of 2.5 degrees/second 2 must be entered as 25.

F F - CHANGE DISPLAY DATA: Toggles back and forth between two sets of

data displayed on the LED's. The data displayed at power-on

is shown below.

52

or--

- -10 1100101001116501 5-

MODE POSITION TERMINAL SPEED
(DEG.) POSITION (DEG/SEC)

(DEG.)

The other set of data that can be displayed with this command is:

1010101 13161011 2.151

SCAN SCAN ACCLERATION
ANGLE ANGLE (DEG/SEC 2)
START STOP

(DEG.) (DEG.)

These are power-on initialization values.

53

SC-- .. .- .

ii FILMED

DIC

dM -2A

