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I OBJECTIVES C' E R SEARCH EFFORT 4YE

Central to almost all aspects and applications of artificial

intelligence are the representation and manipulation of large bodies of

knowledge about the world. When viewed from the perspective of their

ability to express facts about the external world, however, most

knowledge representation schemes currently used in artificial

intelligence are constrained by the limits of first-order logic. That

is, they provide terms for referring to individuals, predicates for

expressing properties and relations of individuals, and mechanisms that

achieve some of the effects of propositional connectives and

quantifiers. Much research effort has been expended on ways of

organizing knowledge bases and developing information retrieval

mechanisms; in terms of pure expressive power, however, existing

representation systems are rather limited.

This issue is brought into sharp focus when one seriously attempts

to analyze the semantic content of expressions in natural language,

since many types of linguistic expressions seem to require something

beyond first-order logic to represent their meaning perspicuously.

Specifically, natural languages have special features for dealing with a

variety of concepts that are central to our commonsense understanding of

the world. For instance, linguistic systems of tense and aspect are

intimately connected with commonsense conceptions of time. Adverbial

modification, nominalization phenomena, and categorical distinctions

among verb phrases appear to depend on such notions as state, event, and

process. Predicate complement constructions frequently involve concepts

of "propositional attitude" such as knowledge, belief, desire, and

intention. The linguistic features of singular/plural and mass/count

are used to sort out individuals, collective entities, and substances.

In all these cases, either it is not clear how to express these concepts

17



in first-order logic at all, or it is clear that they can be expressed

in first-order logic only by very indirect means.

This project has undertaken a program of basic research in

knowledge representation, focusing on the representation of concepts

needed for the semantic analysis of natural language. The objectives of

the project are to produce formalisms, suitable for manipulation by

computer, for the representation of specific concepts that are important

for natural-language semantics, and to give an independent account of

-, the meaning of such representations using the tools of formal logic.
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II STATUS OF THE RFSEARCH EFFORT

A. Previous Results

I. Development of Autoepistemic Logic

The major technical achievement of the first year of the

project was the development of a logic that characterizes systems that

represent and reason with information about their own beliefs. We call

this logic "autoepistemic logic." The problem of representing and

reasoning with information about knowledge or beliefs of other agents

has received much attention recently in artificial intelligence.

Designing a system that can represent and reason about its own beliefs,

however, poses some unique problems. The nature of the difficulties is

suggested by an old philosophical puzzle: Why are sentences of the form

"P is true, but I don't believe P" extremely odd, although sentences of

the form "P is true, but he doesn't believe P" are not? Using the first

person (making a statement about one's own beliefs) makes nonsense out

of a sentence that is perfectly reasonable in the third person (making a

statement about someone else-s beliefs).

For a simple logical language for making statements about

one's own beliefs, we were able to construct a very natural formal

semantics and define sets of beliefs that are both sound and complete

with respect to that semantics. (Roughly speaking, a set of beliefs is

sound if it contains only statements that must be true whenever the

premises of the set of beliefs are true, and it is complete if it

contains all the statements that must be true whenever the premises of

the set of beliefs are true.)

Autoepistemic logic turns out to be quite similar to logics

that have been proposed to model what is called "nonmonotonic

reasoning." Commonsense reasoning is "nonmonotonic" in the sense that
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we often draw, on the basis of partial information, conclusions that we

later retract when we are given more complete information. The

following example is frequently used to illustrate the point: If we know

that Tweety is a bird, we will normally assume, in the absence of

evidence to the contrary, that Tweety can fly. If, however, we later

learn that Tweety is a penguin, we will withdraw our prior assumption.

If we try to model this in a formal system, we seem to have a situation

in which a theorem P is derivable from a set of axioms A, but is not

derivable from some set A' that is a superset of A. The set of

theorems, therefore, does not increase monotonically with the set of

axioms; hence this sort of reasoning is said to be "nonmonotonic."

Some of the most interesting recent attempts to formalize

nonmonotonic reasoning are the nonmonotonic logics developed by Drew

McDermott and Jon Doyle [1] [2]. These logics, however, all have

peculiarities that suggest they do not quite succeed in capturing the

intuitions that prompted their development. By comparing McDermott and

Doyle's logics with autoepistemic logic, we have been able to diagnose

the reasons for their peculiarities and show how they can be eliminated.

Our work on autoepistemic logic is described more fully,

focusing on its relationship to nonmonotonic logic in an article we have

recently published [3], which is reproduced as Appendix A.

2. Representing the Dependence of Action on Knowledge

One of the representational problems we have studied is the

relationship between knowledge and action. Both knowledge and action

are among the basic concepts that underlie many different areas of

commonsense and expert knowledge, but the interaction between the two is

particularly important when applying artificial intelligence techniques

to planning.

Planning sequences of actions and reasoning about their

effects is one of the most thoroughly studied areas within artificial

intelligence, but relatively little attention has been paid to the

important role that an agent's knowledge plays in planning and acting to
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achieve a goal. Virtually all planning systems in artificial

intelligence are designed to operate with complete knowledge of all

relevant aspects of the problem domain and problem situation. Often any

statement that cannot be inferred to be true is assumed to be false. In

the real world, however, planning and acting must frequently be

performed without complete knowledge of the situation.

This constraint imposes two additional burdens on an

intelligent agent trying to act effectively. First, when the agent

entertains a plan for achieving some goal, he must consider not only

whether the physical prerequisites of the plan have been satisfied, but

also whether he has all the information necessary to carry out the plan.

Second, he must be able to reason about what he can do to obtain

necessary information that he lacks. For example, to call someone on

the telephone, just being physically able to dial a telephone is not

sufficient; one must also know the person's telephone number. One can

plan to acquire this information, however, by looking up the number in a
telephone book.

Under this project, we have refined and extended our previous

work on the dependence of action on knowledge [4]. Our main thesis is

that the knowledge required for an action can be analyzed as a matter of

knowing what action to take. An agent could know that to call Smith on

the telephone he needs to dial Smith's telephone number, but still not

know what to do because he does not know precisely what action dialing

Smith's telphone number is. That is, he might not know whether dialing

Smiths telephone number is the action of dialing 221-1111, or dialing

221-1112, or dialing 221-1113, and so on. We may assume he has a

general procedure for dialing telephone numbers, but unless he knows

which number to apply it to, he does not, in the relevant sense, know

what to do.

In our previous work, we successfully applied this analysis to

actions that are treated as nondecomposable wholes, but our treatment of

complex plans was less satisfactory. To represent complex plans, we

introduced concepts of sequential actions, conditional actions, and
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iterated actions. Formalizing the knowledge prerequistes of these

complex actions was somewhat ad hoc, however. In particular, for

conditional actions ("if P is true, then do ACTION1, otherwise do

ACTION2") we had to state independently the fact that, in order to carry

.- out a conditional action, an agent must know if the condition is true.

-.I The work performed under this project remedies this and a

number of other deficiencies. The key change is to view a complex plan

as a description of a sequence of actions. Then the knowledge

prerequisites of complex plans can be given a treatment similar to that

for simple actions, so that the agent is assumed to have sufficient

knowledge to carry out a plan if he knows what sequence of actions the

plan describes. The problem of conditional actions is handled

automatically, because what action is described by a conditional action

description depends on whether the condition is true. Hence an agent

must know whether the condition is true to know what action this is.

This work is presented in full in a paper by Moore [5], included as

Appendix B.

3. Semantic Analysis of Adverbial Modifiers and Event Sentences

A good example of the way a careful analysis of the meaning of

natural-language expressions gives us insight into the representation of

commonsense knowledge is presented by our work on the adverbial

modification of event sentences. Whether or not there is a fundamental

semantic distinction between event sentences, such as "John went to New

York," and stative sentences, such as "John was in New York," is one of

the more puzzling problems in representing the meaning of expressions in

ordinary English. The latter sentence can be analyzed as saying simply

that a certain relation, that of location, held between John and New

York at some past time. This type of analysis seems less satisfactory,

though, for the former sentence. "Went" does not seem merely to express

a relation the way "is in" does. Rather, it appears to describe an

event, indicated by the fact that it makes sense to ask "When did it

happen?" af er being told "John went to New York," but not after being

told "John was in New York."
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One suggestion as to how event sentences might differ from

stative sentences is provided by Davidson [6], who suggests that event

sentences be represented as explicitly asserting the existence of the

event being described. Roughly speaking, this amounts to treating "John

- . went to New York" as if it were "There was a going of John to New York."

Davidson's suggestion is intriguing, but, heretofore, there has been

relatively little evidence to support it. The study of adverbial

modification of event sentences conducted under this project has

provided the most convincing support to date for the kind of

* ' representation of event sentences given by Davidson and has cleared up

several related problems. This work is described more fully in a paper

by Croft [7], included as Appendix C.

To summarize this work briefly, we have developed a unified

analysis for most "-ly" adverbs and adjectives, namely, as predicates.

A small class of adverbs, all indicating modalitv or uncertaintV

("possibly," "probably, "allegedly," etc.), must he rreat. d is modal

operators over propositions, as their semantics implies: thus, ohn

probably ate the cookie" would be represented as

PROBABLE[EAT(JOHN,COOKIE)]. The corresponding adjectival forms are

interpreted, using restricted quantification notation, as modal

operators over the description; thus, "any possible solution" will be

(ANY X: POSSIBLE[SOLUTION(X)]).

All other adjectives and adverbs that have the property of

"factivity" (viz., if the sentence with the adverb/adjective is true,

then the sentence without the adverb/adjective is also true), are

predicates. The presence of " -ly" is syntactically determined: if the

predicate is modifying a verb or adjective instead of a noun, the "-ly"

is added. The semantic difference between "adjectives" and "adverbs" is

that the former are the properties of objects, the latter of events,

events being represented as event variables following Davidson [6].

Thus, "John slowly entered the room" is ENTER(E,JOHN,ROOM) & SLOW(E).

There are two unusual cases, which must be accounted for.

First, a sentence like "Maggie rudely spoke to the Queen" is ambiguous
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between a manner reading ("The manner in which Maggie spoke to the Queen

was rude") and a fact reading ("The fact that Maggie spoke to the Queen

was rude"). While the first reading is represented by modification of

the event variable, the second reading represents an assertion about a

state of affairs, the state of affairs of the proposition "Maggie spoke

to the Queen" being true, which we represent by the FACT operator. Thus

the two readings are SPEAK(E,MAGGIE,QTEEN) & RUDE(E) and

SPEAK(E,MAGGIE,OUEEN) & RUDE(FACT[SPEAK(E,MAGCIE,QUEEN)]) respectively.

Second, adverbs of intention ("intentionally," "willingly," etc.), which

display referential opacity and other intensional behavior, must be

represented as predicates taking an agent and a proposition as well as

an event.

All possible derivational patterns between adverbs and

adjectives are found. Adverbs like "bitterly," which take an individual

and an event, are derived from adjectives that take an individual and

describe his emotional state. Adverbs like "slowly," which take an

event only, have derived adjectives that take an individual and a role:

"John ran the mile fast" vs. "John is fast (at running the mile)."

Finally, for adverbs like "rudely" or "cleverly," which take an

individual and an event (or FACT operator), the corresponding adjectives

are identical in semantic form: in the manner reading, "John cleverly

" solved the problem" and "John was clever at solving the problem" are

both represented as SOLVE(E, JOHN,PROBLEM) & CLEVER(E).

- Adjectives and adverbs that are "gradable" (viz., can be

modified by degree terms or placed in comparative constructions) will

have additional arguments in the predicate structure, and that is being

* investigated in other work on this project. The fact that gradability

applies to both adjectives and adverbs, however, is another confirmation

of their underlying semantic unity.

4. The Deduction Model of Belief

Reasoning about the knowledge and beliefs of computer and

human Agents is assuming increasing importance in artificial

i" 8
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intelligence systems for natural-language understanding, planning, and

knowledge representation. A natural model of belief for robot agents is

the deduction model: an agent is represented as having an initial set of

beliefs about the world in some internal language and a deduction

process for deriving some (but not necessarily all) logical consequences

of these beliefs. Because the deduction model is an explicitly

computational model, it is possible to take into account limitations of

an agent s resources when reasoning.

This project has provided partial support for an investigation

of a Gentzen-type formalization of the deductive model of belief.

Several original results have been proven. Among these are soundness

and completeness theorems for a deductive belief logic, a correspondence

result that relates our deduction model to competing possible-world

models, and a modal analog to Herbrand's Theorem for the belief logic.

Specialized techniques for automatic deduction based on resolution have

been developed using this theorem.

Several other topics of knowledge and belief have been

explored from the viewpoint of the deduction model, including a theory

of introspection about self-beliefs, and a theory of circumscriptive

ignorance, in which facts an agent doesn't know are formalized by

limiting or circumscribing the information available to him. These

results are presented in the Ph.D. dissertation of Konolige [8] and are

summarized in a shorter paper [9], included as Appendix D.

B. Recent Results

1. Possible-World Semantics for Autoepistemic Logic

In our previous work [3] we developed a nonmonotonic logic

for modeling the beliefs of ideally rational agents who reflect on their

own beliefs. We called this system "autoepistemic logic." We defined a

simple and intuitive semantics for autoepistemic logic, and we were able

to show that the logic was both sound and complete with respect to this

semantics. However, the nonconstructive character of both the logic and

its semantics made it difficult to prove the existence of sets of

9



-Q .. .. ',N

beliefs satisfying all the constraints of autoepistemic logic. We have

recently developed an alternative, possible-world semantics for

autoepistemic logic that enables us to construct finite models for

autoepistemic theories and to demonstrate the existence of sound and

complete autoepistemic theories that are based on given sets of

premises.

The language of autoepistemic logic is that of ordinary

propositional logic, augmented by a modal operator L. Formulas of the

form LP are interpreted informally to mean "P is believed" or "I believe

P. For example, P -> LP could be interpreted as saying "If P is true,

then I believe that P is true." If a set of formulas is to be

interpreted as a representation of the beliefs of a rational agent, then

a formula LP will be true with respect to a certain set of beliefs if

and only if P is in the set. That is, the statement "I believe P" is

true for a particular agent just in case he, in fact, believes P. In

the original semantics we developed for autoepistemic logic, we simply

stipulated that this constraint had to be met by models of autoepistemic

theories. This had the effect that the specification of a model had to

include a potentially infinite list of all the formulas of the form LP

that were to be taken as true. The resulting lack of structure in the

models made it extremely difficult to prove results concerning the

models of particular autoepistemic theories.

However, it turns out that, for autoepistemic theories

representing sets of beliefs satisfying certain stability conditions, we

can define models that have much more structure. The conditions of

interest are that (1) the set of beliefs is closed under ordinary

logical consequence, (2) whenever a formula P is believed, it is 2.1
believed that P is believed, and (3) whenever a formula P is not

believed, it is believed that P is not believed. We have been able to

show that a set of beliefs sacisfying these conditions can be -

characterized by a set of possible worlds such that a formula is

believed if it is true in every world in the set, and a formula of the

form LP is true in a particular world if P is true in every world in the

set.

10
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The important consequence of this demonstration is that such a

set of beliefs can be characterized by a finite set of finite possible

worlds whenever the number of atomic formulas in the language is finite.

This in turn lets us define finite models under the same conditions,

whereas, under our first definition, the models are finite only if the

entire set of beliefs is finite.

With finite models, we can explore certain questions that are

much harder to address with the infinite models of our original

approach. For instance, consider what beliefs would be justified on the

basis of the set of premises {~LP -> Q, -LQ -> P}. Informally speaking,

these formulas say "If I don't believe P then Q is true" and "If I don't

believe Q then P is true." Suppose these are an ideally rational

agent's only premises. If he does not believe P, he can reflect on the

fact that he does not believe P and he will conclude that Q is true.

Conversely, if he does not believe 0, he can reflect on that and

conclude that P is true. Thus it seems that he has grounds for

believing P only if he does not believe Q and vice versa. So there are

apparently two possible stable belief states that can be based on these

premises. With the possible-world semantics for autoepistemic logic, we

can demonstrate such conclusions rigorously by examining all the

possible-world models of the premises. The details are presented in a

recent paper [10], included as Appendix E.

2. A Weak Logic of Knowledge and Belief

Beginning with the work of Jaako Hintikka in the early 1960's

(11], a number of attempts have been made to formulate and analyze

varying conceptions of knowledge and belief by using the techniques of

modal logic. In such research, the relevant notions are symbolized by

one place modal or intensional operators on sentences. Various axioms

governing these operators are then proposed. The important

methodological conception is that one will be able to apply fairly

standard techniques and results from the study of modal logic to the

analysis of, and comparison between, such systems. Indeed, most

A 11
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proposed systems have been exact analogues of one or another standard

modal logic; that is, one simply replaces the modal operator for

necessity with that for knowledge or belief. In the case of belief One

must drop the analogue of the basic modal principle that, if it's

necessary that P, then P. There are, after all, false beliefs.

Though we cannot reasonably idealize away false beliefs, any

logic of knowledge and/or belief will have to embody some degree of

idealization. Still it has seemed to many that the commitment to fairly

standard modal systems has brought with it thoroughly inappropriate

idealizations. Two distinct dimensions of idealization have been noted,

and the locations of most proposed logics of knowledge and belief along

these two dimensions have been criticized.

All standard modal logics or logics of necessity have been

extensions of the system called K, which is the minimal modal logic.

When conceived of as a basis for logics of knowledge and belief, this

system yields the result that the subjects or agents in the intended

domain of the theory know or believe all classical logical tautologies

and, further, know or believe all the classical tautological

consequences of anything they know or believe. With respect to the

logic of necessity, these results are widely accepted. Surely all

tautologies are necessarily true and, surely, if something is a logical

consequence of a necessary truth, then it is itself a necessary truth.

This has seemed to many to be a wildly inappropriate requirement on

knowledge and/or belief. Unfortunately, committing oneself to working
Nor within modal logics weaker than K involves giving up some, perhaps much,

of the power of analysis yielded by standard techniques in the theory of

modal logics.

The other dimension of idealization has been that of

"introspective" (or reflective) competence. How much are our subjects

oassumed to know or believe about their own knowledge and/or beliefs?

Here, too, there has been a good deal of disagreement. With regard to

knowledge, it has centered around the acceptability of the principle

that, if one knows that P, one knows that one knows that P. (The

.12
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analogous principle in modal logic is that, if it is necessary that P,

then it is necessary that it is necessary that P.) With regard to

belief, a further locus of controversy has been the negative counterpart

of the foregoing principle; namely that, if one doesn't believe that P,

then one believes that one doesn't believe that P. The analogous

principle about necessity is itself controversial.

Under this project, we have explored less drastic

idealizations along the dimension of introspective competence. The

considerations motivating commitment to the system K as a base are

largely purely technical or tactical--the main point being simply a

desire to separate problems that are separable in principle. With

respect to knowledge, we suggest that one should begin, at least, with

no more than the basic system K together with the principle that, if one

knows that P, then P. In the case of belief, more drastic deviations

from standard systems are proposed. In particular, a new axiom--called

Y--is suggested. In one formulation, the axiom amounts to the

following: if one believes that P, then one doesn't believe that one

doesn't believe that P. This formulation brings out an essential

feature of the proposed system: As an alternative to idealizing in such

a way as to guarantee great scope -', -,ridical introspection, the

suggestion is to idealize in such a way as to guarantee against false

introspective beliefs.

Considerations in favor of such an alternative idealization

come from a number of sources; two, in particular, are the Paradox of

the Preface and, most centrally, Moore's Paradox. The principle

underlying the former is that we don't believe that all of our beliefs

are true. Indeed, surely it's irrational for us to believe that we are

in no way mistaken in our beliefs. Then we must reject the following

principle: we believe that, if we believe that P, then P. (The

analogous principle for knowledge is obviously correct.) Moore-s

paradox consists in this: It is odd or self-defeating for someone to

assert both P and that he doesn't believe that P. (That is, any

utterance of any instance of the sentence form "P; but I don't believe

13
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that P." is, in some sense, self-denying.) The moral of Moore's

paradox, at least with respect to the logic of belief, is that we do not

believe of any one of our beliefs that we don't believe it. This is

precisely the point of the axiom Y.

The full development of these ideas is presented in a paper by

Israel [12], included as Appendix F. Israel characterizes the axiom Y,

and the resulting system K + Y in terms of the now standard model-

theoretic techniques for modal logic. This yields both soundness and

completeness results. He shows in what ways the formalization is weaker

than standard logics of belief and sketches briefly some more general

considerations about the appropriateness, given varying conceptions of

the role of beliefs in action, of modal logics of knowledge and belief.

3. Plan Synthesis

Part of our work deals with techniques for automatic planning.

Previous work in this vein has been highly experimental in nature, the

standard methodology being to explore possible techniques by

constructing working programs. Because of the emphasis on

- experimentation, very little has been done to analyze the techniques to

determine why they work, when they are applicable, and whether it is

possible to generalize them to solve larger classes of problems. Our

work provides at least part of the missing analysis and introduces new

techniques for plan synthesis.

We have approached the question of automatic planning from a
rigorous, mathematical standpoint. Our methodology has been to develop

a mathematical framework in which to study planning problems, to explore

this framework for theorems that can be used to constrain the search for

- -a solution, and then to construct planning techniques based on the

" theorems that were found. By following this methodology, it has been

possible to develop techniques (a) that are capable of solving a much

broader class of problems than had previously been considered, and (b)

that are guaranteed to find a solution if one exists. Furthermore, it

. has been possible to unify many existing ideas in automatic planning,

showing how these ideas arise from first principles.

14
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The mathematical framework that has been developed is very

much like that of first-order dynamic logic [13]. In this framework,

the world may be in any one of a possibly infinite number of states.

Performing an action causes the world to jump from one state to another.

A planning problem in this framework consists of a description of the

initial state, a description of the goal state, and a description of the

allowable actions. The problem is to find a sequence of actions that is

guaranteed to force the world into a state satisfying the goal

description, given that the world may initially be in any one of the

states satisfying the initial-state description. (State descriptions

may be incomplete; that is, there may be more than one state satisfying

a given description.)

Formally, a state description is a set of formulae in first-

order logic, and a state is a first-order model. Actions are binary

relations on states. For planning purposes, though, all that we need to

know about an action are its preconditions and its regression operator.

The preconditions of an action are a set of formulae defining the states

in which the action may be performed. A regression operator for an

action is a function mapping formulae to formulae such that the

regression of a formula is the weakest condition that must be true

before the action is performed in order for the formula to be true

afterward. One of the contributions of our work is a language for

describing the effects of an action and a way of computing regression

operators from action descriptions in this language. The language is

significant in that it combines the generality of the situation calculus

[14] with the notational convenience of STRIPS [15]. This allows the

frame problem of the situation calculus to be circumvented to the same

extent that it can be done in STRIPS.

The planning techniques are based primarily on two

observations. The first is that the world changes state only as the

result of an action. Therefore, if a formula is false, it will become

true only if an action makes it true. The second observation is that a

plan must be finite since we would like our goals to be achieved at a

15
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definite point in the future. Consequently, there will always be a last

point in a plan when a formula becomes true if it becomes true at all.

These observations lead us to the following theorem: a formula is true

at a point P in a plan if and only if (I) the formula is true in the

initial state and remains true until at least point P, or (2) there is

an action prior to P that causes the formula to become true and the

formula remains true thereafter until at least point P. This theorem

tells us that, to construct a plan to achieve some goal, either we must

introduce an action that makes the goal true or we must prevent the goal

from becoming false if it is true initially. From this theorem it is

possible to derive a planning technique. The details are presented in a

paper by Pednault [16], included as Appendix G.
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ABSTRACT

Commonsense reasoning is "nonmonotonic" in the sense that we often

draw, on the basis of partial information, conclusions that we later

retract when we are given more complete information. Some of the most

interesting products of recent attempts to formalize nonmonotonic

reasuning are the nonmonotonic logics of McDermott and Doyle [McDermott

and Doyle, 1980; McDermott, 1982]. These logics, however, all have

peculiarities that suggest they do not quite succeed in capturing the

intuitions that prompted their development. In this paper we

reconstruct nonmonotonic logic as a model of an ideally rational agent's

reasoning about his own beliefs. For the resulting system, called

autoepistemic logic, we define an intuitively based semantics for which

we can show autoepistemic logic to be both sound and complete. We then

compare autoepistemic logic with the approach of McDermott and Doyle,

showing how it avoids the peculiarities of their nonmonotonic logic.
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I INTRODUCTION

It has been generally acknowledged in recent years that one

important feature of ordinary comonsense reasoning that standard logics

fail to capture is its nonmonotonicity. An example frequently given to

illustrate the point is the following. If we know that Tweety is a

bird, we will normally assume, in the absence of evidence to the

contrary, that Tweety can fly. If, however, we later learn that Tweety

is a penguin, we will withdraw our prior assumption. If we try to model

this in a formal system, we seem to have a situation in which a theorem

P Is derivable from a set of axioms S, but is not derivable from some

set S' that is a superset of S. The set of theorems, therefore, does

not increase monotonically with the set of axioms; hence this sort of

reasoning is said to be "nonmonotonic." As M-nsky [1974] has pointed

out, standard logics are always monotonic, because their inference rules

make every axiom permissive. That is, the inference rules are always of

the form "P is a theorem if Q1,'.Qn are theorems," so that new axioms

can only make more theorems derivable; they can never invalidate a

previous theorem.

Recently there have been a number of attempts to formalize this

type of nonmonotonic reasoning. The general idea is to allow axioms to

be restrictive as well as permissive, by employing inference rules of

the form "P is a theorem if Q1,'.. Qn are not theorems." The inference

that birds can fly is handled by having, in effect, a rule that says

that, for any X, "X can fly" is a theorem if "X is a bird" is a theorem

arrl "X cannot fly" is not a theorem. If all we are told about Tweety is

that he is a bird, we will not be able to derive "Tweety cannot fly"; .

consequently, "Tweety can fly" will be inferable. If we are told that

Tweety is a penguin and we already know that no penquin can fly, we will

be able to derive the fact that Tweety cannot fly, and so the inference

that Tweety can fly will be blocked.

I.



Ooe of the most interesting embodiments of this approach to

nonmonotonic reasoning is McDermott and Doyle's "nonmonotonic logic"

[McDermott and Doyle, 1980; McDermott, 1982]. McDermott and Doyle

modify a standard first-order logic by introducing a sentential operator

"M," whose informal interpretation is "is consistent." Nonmonotonic

inferences about birds being able to fly would be sanctioned in their

system by the axiom [McDermott, 1982, p. 33]

(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)).

This formula can be read informally as "for all X, if X is a bird and it

is consistent to assert that X can fly, then X can fly." McDermott and

Doyle can then have a single general nonmonotonic inference rule, whose

intuitive content is "MP is derivable if -P is not derivable."

ciclermott and Doyle's approach to nonmonotonic reasoning seems more

interesting and ambitious than some other approaches in two respects.

First, since the principles that lead to nonmonotonic inferences are

explicitly represented in the logic, those very principles can be

reasoned about. That is, if P is such a principle, we could start out

believing Q -> P or even MP -> P, and come to hold P by drawing

inferences, either monotonic or nonmonotonic. So, if we use McDermott

and Doyle's representation of the belief that birds can fly, we could

also represent various inferences that would lead us to adopt that

belief. Second, since they use only general inference rules, they are

able to provide a formal semantic interpretation with soundness and

completeness proofs for each of the logics they define. In formalisms

that use content-specific nonmonotonic inference rules dealing with

contingent aspects of the world (i.e., it might have been the case that

birds could not fly), it is difficult to see how this could be done.

The effect is that nonmonotonic inferences in McDermott and Doyle's

logics are justified by the meaning of the premises of the inferences.

There are a number of problems with McDermott and Doyle's

nonmonotonic logics, however. The first logic they define [McDermott

and Doyle, 1980] gives such a weak notion of consistency that, as they

2
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point out, MP is not inconsistent with -P. That is, it is possible for

a theory to assert simultaneously that P is consistent with the theory
and that P is false. McDermott subsequently [1982] tried basing

nonmonotonic logics on the standard modal logics T, S4, and S5. He

discovered, however, that the most plausible candidate for formalizing

the notion of consistency that he wanted, nonmonotonic S5, collapses to

ordinary S5 and is therefore monotonic. In the rest of this paper we

develop an alternative formalization of nonmonotonic logic that shows

why these problems arise in McDermott and Doyle's logics and how they

can be avoided.

3-.-



II NONMONOTONIC LOGIC AND AUTOEPISTEMIC REASONING

The first step in analyzing nonmonotonic logic is to determine what

sort of nonmonotonic reasoning it is meant to model. After all,

nonmonotonicity is a rather abstract sXntactic property of an inference

system, and there is no a priori reason to believe that all forms of

nonmonotonic reasoning should have the same logical basis. In fact,

McDermott and Doyle seem to confuse two quite distinct forms of

nonmonotonic reasoning, which we will call default reasoning and

autoepistemic reasoning. They talk as though their systems were

intended to model the former, but they actually seem much better suited

to modeling the latter.

By default reasoning we mean the drawing of plausible inferences

from less-than-conclusive evidence in the absence of information to the

contrary. The examples about birds being able to fly are of this type.

If we know that Tweety is a bird, that gives us some evidence that

Txeety can fly, but it is not conclusive. In the absence of information

to the contrary, however, we are willing to go ahead and tentatively

conclude that Tweety can fly. Now even before we do any detailed

analysis of nonmonotonic logic, we can see that there will be problems

in interpreting it as a model of default reasoning: In the formal

semantics McDermott and Doyle provide for nonmonotonic logic, all the

nonmonotonic inferences are valid. Default reasoning, however, is

clearly not a form of valid inference. I

Consider the belief that lies behind our willingness to infer that

Tweety can fly from the fact that Tweety is a bird. It is probably

something like most birds can fly, or almost all birds can fly, or a

typical bird can fly. To model this kind of reasoning, in a theory

whose only axioms are "Tweety is a bird" and "Most birds can fly," we

ought to be able to infer (nonmonotonically) "Tweety can fly." Now if

4'4

z. L



. . . . .o , . . . . . . . . . .w- - -° - . . . . . . . . . . . . .

this were a form of valid inference, we would be guaranteed that the

conclusion is true if the premises are true. This is manifestly not the

case. The premises of this inference give us a good reason to draw the

conclusion, but not the ironclad guarantee that validity demands.

Now reconsider McDermott's formula that yields nonmonotonic

inferences about birds being able to fly:

(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X))

McDermott suggests as a gloss of this formula "Most birds can fly,"

which would indicate that he thinks of the inferences it sanctions as

default inferences. But if we read M as "is consistent" as McDermott

and Doyle repeatedly tell us to do elsewhere, the formula actually says

something quite different: "For all X, if X is a bird and it is

consistent to assert that X can fly, then X can fly." Since the

inference rule for M is intended to convey "MP is derivable if -P is not

derivable," the notion of consistency McDermott and Doyle have in mind

seems to be that it is consistent to assert P if -P is not derivable.

McDermott's formula, then, says that the only birds that cannot fly are

the ones that can be inferred not to fly. If we have a theory whose

only axioms are this one and an assertion to the effect that Tweety is a

bird, then the conclusion that Tweety can fly would be a valid

inference. That is, if it is true that Tweety is a bird, and it is true

that only birds inferred not to fly are in fact unable to fly, and

Tweety is not inferred not to fly, then it must be true that Tweety can

fly.

This type of reasoning is not a form of default reasoning at all;

it rather seems to be more like reasoning about one-s own knowledge or

belief. Hence, we will refer to it as autoepistemic reasoning.

Autoepistemic reasoning, while different from default reasoning, is an

important form of commonsense reasoning in its own right. Consider my

reason for believing that I do not have an older brother. It is surely

not that one of my parents once casually remarked, "You know, you don't

have any older brothers," nor have I pieced it together by carefully

'5 r I



sifting other evidence. I simply believe that if I did have an older

brother I would know about it; therefore, since I don't know of any

older brothers, I must not have any. This is quite different from a

default inference based on the belief, say, that most MIT graduates are

eldest sons, and that, since I am an MIT graduate, I am probably an

eldest son.

Default reasoning and autoepistemic reasoning are both

nonmonotonic, but for different reasons. Default reasoning is

nonmonotonic because, to use a term from philosophy, it is defeasible:

its conclusions are tentative, so, given better information, they may be

withdrawn. Purely autoepistemic reasoning, however, is not defeasible.

If you really believe that you already know all the instances of birds

that cannot fly, you cannot consistently hold to that belief and at the

same time accept new instances of birds that cannot fly.
2

As Stalnaker [1980] has observed, autoepistemic reasoning is

nonmonotonic because the meaning of an autoepistemic statement is

context-sensitive; it depends on the theory in which the statement is

embedded.3 If we have a theory whose only two axioms are

BIRD(TWEETY)

(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)),

then MP does not merely mean that P is consistent--it means that P is

cunuistent with the nonmonotonic theory that contains only those two

. axioms. We would expect CAN-FLY(TWEETY) to be a theorem of this theory.

If we change the theory by adding -CAN-FLY(TWEETY) as an axiom, we then

change the meaning of MP to be that P is consistent with the

nonmonotonic theory that contains only the axioms

-CAN-FLY(TWEETY)
BIRD(TWEETY)
(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)),

and we would not expect CAN-FLY(TWEETY) to be a theorem. The operator M

changes its meaning with context just as do indexical words in natural

language, such as "I," "here," and "now." The nonmonotonicity

6
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associated with autoepistemic statements should therefore be no more

puzzling than the fact that "I am hungry" can be true when uttered by a

particular speaker at a particular time, but false when uttered by a

different speaker at the same time or the same speaker at a different

time. So we might say that, whereas default reasoning is nonmonotonic

because it is defeasible, autoepistemic reasoning is nonmonotonic

because it is indexical.
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III THE FORMALIZATION OF AUTOEPISTEMIC LOGIC

Rather than try directly to analyze McDermott and Doyle's

nonmonotonic logic as a model of autoepistemic reasoning, we will first

define a logic that demonstrably does model certain aspects of

autoepistemic reasoning and then compare nonmonotonic logic with that.

We will call our logic, naturally enough, autoepistemic logic. The

language will be much like McDermott and Doyle's, an ordinary logical

language augmented by autoepistemic modal operators. McDermott and

Doyle treat consistency as their fundamental notion, so they take M as

the basic modal operator and define its dual L to be -M-. Our logic,

however, will be based on the notion of belief, so we will take L to

mean "is believed," treat it as primitive, and define M as -L-. In any

case, this gives us the same notion of consistency as theirs: a formula

is consistent if its negation is not believed. Since there are some

problems with regard to the meaning of quantifying into the scope of an

autoepistemic operator that are not relevant to the main point of this

paper, we will limit our attention to propositional autoepistemic logic.

Autoepistemic logic is intended to model the beliefs of an agent

reflecting upon his own beliefs. The primary objects of interest are

sets of autoepistemic logic formulas that are interpreted as the total

beliefs of such agents. We will call such a set of formulas an

autoepistemic theory. The truth of an agent's beliefs, expressed as a

propositional autoepistemic theory, will be determined by (1) which

propositional constants are true in the external world and (2) which

formulas the agent believes. A formula of the form LP will be true with

respect to an agent if and only if P is in his set of beliefs. To

formalize this, we define notions of interpretaLion and model as

follows:

8
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We proceed in two stages. First we define a propositional

interpretation of an autoepistemic theory T to be an assignment of

truth-values to the formulas of the language of T that is consistent

with the usual truth recursion for propositional logic and with any

arbitrary assignment of truth-values to propositional constants and

formulas of the form LP. A propositional model of an autoepistemic

theory T is a propositional interpretation of T in which all the

formulas of T are true. The propositional interpretations and models of

an autoepistemic theory are, therefore, precisely those we would get in

ordinary propositional logic by treating all formulas of the form LP as

propositional constants. We therefore inherit the soundness and

completeness theorems of propositional logic; i.e., a formula P is true

in all the propositional models of an autoepistemic theory T if and only

if it is a tautological consequence of T (i.e., derivable from T by the

usual rules of propositional logic).

Next we define an autoepistemic interpretation of an autoepistemic

theory T to be a propositional interpretation of T in which, for every

formula P, LP is true if and only if P is in T. It should be noted that

the theory T itself completely determines the truth of any formula of

the form LP in all the autoepistemic interpretations of T, independently

of the truth assignment to the propositional constants. Hence, for

every truth assignment to the propositional constants of T, there is

exactly one corresponding autoepistemic interpretation of T. Finally,

an autoepistemic model of T is an autoepistemic interpretation of T in

which all the formulas of T are true. So the autoepistemic

interpretations and models of T are just the propositional

interpretations and models of T that conform to the intenced meaning of

the modal operator L.

This gives us a formal semantics for autoepistemic logic that

matches its intuitive interpretation. Suppose that the beliefs of an

agent situated in a particular world are characterized by the

autoepistemic theory T. The world in question will provide an

assignment of truth-values for the propositional constants of T, and any

9



formula of the form LP will be true relative to the agent just in case

he believes P. In this way, the agent and the world in which he is

situated directly determine an autoepistemic interpretation of T. That

interpretation will be an autoepistemic model of T, just in case all the

agent's beliefs are true in his world.

Given this semantics for autoepistemic logic, what do we want from

a notion of inference for the logic? From an epistemological

perspective, the problem of inference is the problem of what set of

beliefs (theorems) an ideally rational agent would adopt on the basis of

his initial premises (axioms). Since we are trying to model the beliefs

of a rational agent, the beliefs should be sound with respect the

premises; we want a guarantee that the beliefs are true provided that

the premises are true. Moreover, since we assume that the agent is

ideally rational, the beliefs should be semantically complete; we want

them to contain everything that the agent would be semantically

justified in concluding from his beliefs and from the knowledge that

they are his beliefs. An autoepistemic logic that meets these

conditions can be viewed as a competence model of reflection upon one's

own beliefs. Like competence models generally, it assumes unbounded

resources of time and memory, and is therefore not a plausible model of

any finite agent. It is, however, the model upon which the behavior of

rational agents ought to converge as their time and memory resources

increase.

Formally, we will say an autoepistemic theory T is sound with

respect to an initial set of premises A if and only if every

autoepistemic interpretation of T in which all the formulas of A are

true is an autoepistemic model of T. This notion of soundness is the

weakest condition that guarantees that all of the agent's beliefs are

true whenever all his premises are true. Let I be the autoepistemic

interpretation of T that is determined by what is true in the actual

world (including what the agent actually believes). If all the formulas

of T are true in every autoepistemic interpretation of T in which all

the formulas of A are true, then all the formulas of T will be true in I

10
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if all the formulas of A are true in I; hence, all the agent's beliefs

will be true in the world if all the agent's premises are true in the

world. However, if there is an autoepistemic interpretation of T in

which all the formulas of A are true but some formulas of T are false,

then it is possible that I is that interpretation, and that all the

agent's premises will be true in the world, but some of his beliefs will

not.

nur formal notion of completeness is that an autoepistemic theory T

is semantically complete if and only if T contains every formula that is

true in every autoepistemic model of T. If a formula P is true in every

autoepistemic model of an agent's beliefs, then it must be true if all

the agent's beliefs are true, and an ideally rational agent should be

able to recognize that and infer P. On the other hand, if P is false in

some autoepistemic model of the agent's beliefs, then that model, for

all he can tell, might be the way the world actually is; he is therefore

justified in not believing P.

The next problem is to give a syntactic characterization of the

autoepistemic theories that satisfy these conditions. With a monotonic

logic, the usual procedure is to define a collection of inference rules

to apply to the axioms. For a nonmonotonic logic this is a nontrivial

matter. Much of the technical ingenuity of McDermott and Doyle's

systems lies simply in their formulation of a coherent notion of

nonmonotonic derivability. The problem is that nonmonotonic inference

rules do not yield a simple iterative notion of derivability the way

monotonic inference rules do. We can view a monotonic inference process

as applying the inference rules in all possible ways to the axioms,

generating additional formulas to which the inference rules are applied

in all possible ways, and so forth. Since monotonic inference rules are

monotonic, once a formula has been generated at a given stage, it

remains in the generated set of armulas at every subsequent stage.

Thus the theorems of a theory in a monotonic system can be defined

simply as all the formulas that are generated at any stage. The problem

with attempting to follow this pattern with nonmonotonic inference rules

" '. 9 " i i . - .- / . - i - i . -. '. i ? .U:



is that we cannot draw nonmonotonic inferences reliably at any

particular stage, since something inferred at a later stage may

invalidate them. Lacking such an iterative structure, nonmonotonic

systems often use nonconstructive "fixed point" definitions, which do

not directly yield algorithms for enumerating the "derivable" formulas,

but do define sets of formulas that respect the intent of the

nonmonotonic inference rules (e.g., in McDermott and Doyle's fixed

points, MP is included whenever P is not included.)

For our logic, it is easiest to proceed by first pecifying the

closure conditions that we would expect the beliefs of an ideally

rational agent to possess. Viewed informally, the beliefs should

include whatever the agent could infer either by ordinary logic or by

reflecting on what he believes. Stalnaker [1980] has put this formally

by suggesting that a set of formulas T that represents the beliefs of an

ideally rational agent should satisfy the following conditions:

1. If Pl, ...,pn are in T, and Pl,'.,Pn Q, then Q is in T
(where I-" means ordinary tautological consequence).

2. If P is in T, then LP is in T.

3. If P is not in T, then LP is in T.

Stalknaker [1980, p. 6] describes the state of belief characterized by

such a theory as stable "in the sense that no further conclusions could

be drawn by an ideally rational agent in such a state." We will

therefore describe the theories themselves as stable autoepistemic

*theories.

There are a number of interesting observations we can make about

stable autoepistemic theories. First we note that, if a stable

autoepistemic theory T is consistent, it will satisfy two more

intuitively sound conditions:

4. If LP is in T, then P is in T.

5. If -LP is in T, then P is not in T.

12
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Condition 4 holds because, if LP were in T and P were not, -LP would be

in T (by Condition 3) and T would be inconsistent. 4 Condition 5 holds

because, if -LP and P were both in T, LP would be in T (by Condition 2)

and T would be inconsistent.

Conditions 2-5 imply that any consistent stable autoepistemic

theory will be both sound and semantically complete with respect to

formulas of the form LP and -LP: If T is such a theory, then LP will be

in T if and only if P is in T, and -LP will be in T if and only if P is

not in T. Thus, all the propositional models of a stable autoepistemic

theory are autoepistemic models. Stability implies a soundness result

even stronger than this, however. We can show that the truth of any

formula of a stable autoepistemic theory depends only on the truth of

the formulas of the theory that contain no autoepistemic operators. (We

will call these formulas "objective.")

Theorem 1. If T is a stable autoepistemic theory, then any
autoepistemic interpretation of T that is a propositional
model of the objective formulas of T is an autoepistemic model
of T.

(The proofs of all theorems are given in the appendix.)

In other words, if all the objective formulas in an autoepistemic

theory are true, then all the formulas in that theory are true. Given

that the objective formulas of a stable autoepistemic theory determine

whether the theory is true, it is not surprising that they also

determine what all the formulas of the theory are.

Theorem 2. If two stable autoepistemic theories contain the
same objective formulas, then they contain exactly the same
formulas) 5

Finally, with these characterization theorems, we can prove that

the syntactic property of stability is equivalent the semantic property

of completeness.

Theorem 3. An autoepistemic theory T is semantically complete
if and only if T is stable.

13

.,........................ -. **1f



By Theorem 3, we know that stability of an agent's belieiI

guarantees that they are semantically complete, but stability alone does

not tell us whether they are sound with respect to his initial premises.

That is because the stability conditions say nothing about what an agent

should not believe. They leave open the possibility of an agent's

believing propositions that are not in any way grounded in his initial

premises. What we need to add is a constraint specifying that the only

propositions the agent believes are his initial premises and those

required by the stability conditions. To satisfy the stability

conditions and include a set of premises A, an autoepistemic theory T

must include all the tautological consequences of A U {LP I P is in T} U

{-LP I P is not in T}. Conversely, we will say that an autoepistemic

theory T is grounded in a set of premises A if and only if every formula

of T is included in the tautological consequences of A U {LP I P is in

- T} U {LP I P is not in T}. The following theorem shows that this

syntactic constraint on T and A captures the semantic notion of

i " soundness.

Theorem 4. An autoepistemic theory T is sound with respect to
an initial set of premises A if and only if T is grounded in
A.

From Theorems 3 and 4, we can see that the possible sets of beliefs

that an ideally rational agent might hold, given A as his premises,

ought to be just the extensions of A that are grounded in A and stable.

We will call these the stable expansions of A. Note that we say "sets",

because there may be more than one stable expansion of a given set of

premises. For example, consider {-LP -> Q, -LQ -> P} as an initial set

of -premises.6 The first formula asserts that, if P is not believed, then

Q is true; the second asserts that, if Q is not believed, then P is

true. In any stable autoepistemic theory that includes these premises,

if P is not in the theory, Q will be, and vice versa. But if the theory

is grounded in these premises, if P is in the theory there will be no

basis for including Q, and vice versa. Consequently, a stable expansion

of {-LP -> Q, -LQ -> P} will contain either P or Q, but not both.
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It can also happen that there are no stable expansions of a given

set of premises. Consider, for instance, {-LP -> p}.7 If T is a stable

autoepistemic theory that contains -LP -> P, it must also contain P. If

P were not in T, -LP would have to be in the T, but then P would be in

T--a contradiction. On the other hand, if P is in T, then T is not

grounded in {-LP -> P}. Therefore no stable autoepistemic theory can be

grounded in {-LP -> P1.

This seemingly strange behavior results from the indexicality of

the autoepistemic operator L. Since L is interpreted relative to an

entire set of beliefs, its interpretation will change with the various

ways of completing a set of beliefs. In each acceptable completion of a

set of beliefs, the interpretation of L will change to make that set

stable and grounded in the premises. Sometimes, though, no matter how

we try to form a complete a set of beliefs, the result never coincides

with the interpretation of L in a way that gives us a stable set of

beliefs grounded in the premises.

This raises the question of how to view autoepistemLc logic as a

logic. If we consider a set of premises A as axioms, what do we

consider the theorems of A to be? If there is a unique stable expansion

of A, it seems clear that we want this expansion to be the set of

theorems of A. But what if there are several stable expansions of A--or

none at all? If we take the point of view of the agent, we have to say

that there can be alternative sets of theorems, or no set of theorems of

A. This may be a strange property for a logic to possess, but, given

our semantics, it is clear why this happens. An alternative (adopted by
McDermott and Doyle with regard to their fixed points) is to take the

theorems of A to be the intersection of the set of all formulas of the

language with all the stable expansions of A. This yields the formulas

that are in all stable expansions of A if there is more than one, and it

makes the theory inconsistent if there is no stable expansion of A.

This too is reasonable, but it has a different interpretation. It

represents what an outside observer would know, given only knowledge of :
the agent's premises and that he is ideally rational.

15
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IV ANALYSIS OF NONMONOTONIC LOGIC

Now we are in a position to provide an analysis of nonmonotonic

logic that will explain its peculiarities in terms of autoepistemic

logic. Briefly, our conclusions will be that the original nonmonotonic

logic of McDermott and Doyle [1980] is simply too weak to capture the

notions they wanted, and that McDermott's (19821 attempt to strengthen

the logic does so in the wrong way.

McDermott and Doyle's first logic is very similar to our

autoepistemic logic with one glaring exception; its specification

includes nothing corresponding to our Condition 2 (if P is in T, then LP

is in T). McDermott and Doyle define the nonmonotonic fixed points of a

set of premises A, corresponding to our stable expansions of A. In the

propositional case, their definition is equivalent to the following:

T is a fixed point of A just in case T is the set of
tautological consequences of A U {LP I P is not in T}.

Our definition of a stable expansion of A, on the other hand, could be

stated as

T is a stable expansion of A just in case T is the set of
tautological consequences of A U {LP I P is in T) U {-LP I P
is not in T}.

In nonmonotonic logic, {LP I P is in T} is missing from the "base" of

the fixed points. This makes it possible for there to be nonmonotonic

theories with fixed points that contain P but not LP. So, under an

autoepistemic interpretation of L, McDermott and Doyle's agents are

omniscient as to what they do not believe, but they may know nothing as

to what they do believe.

This explains essentially all the peculiarities of McDermott and

Doyle's original logic. For instance, they note [1980, p. 69] that MC

does not follow from M(C /\ D). Changing the modality to L, this is
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equivalent to saying that -LP does not follow from -L(P \I Q). The

problem is that, lacking the ability to infer LP from P, nonmonotonic

logic permits-interpretations of L that are more restricted than simple

belief. Suppose we interpret L as "inferable in n or fewer steps" for

some particular n. P might be inferable in exactly n steps, and P \/ Q

in n+l. According to this interpretation -L(P \/ Q) would be true and

-LP would be false. Since this interpretation of L is consistent with
McDermott and Doyle's definition of a fixed point, -LP does not follow

from L(P \/ Q). The other example of this kind noted by McDermott and

Doyle is that {MC, -C} has a consistent fixed point, which amounts to

saying simultaneously that P is consistent with everything asserted and

that P is false. But this set of premises is equivalent to {-LP, P},

which would have no consistent fixed points if LP were forced to be in

every fixed point that contains P.

On the other hand, McDermott and Doyle consider it to be a problem

that {MC -> D, -D} has no consistent fixed point in their theory.

Restated in terms of L, this set of premises is equivalent to {P -> L'

P}. Since a stable autoepistemic theory containing these premises will

also contain LQ, it must also contain Q to be Lonsistent. (Otherwise it

would contain -LQ.) But Q is not contained in any theory grounded in

the premises {P -> LQ, P}; it is possible for P -> LQ and P both to be

true with respect to an agent while Q is false. So there is no

consistent stable expansion of {P -> LQ, P} in autoepistemic logic;

hence, this set of premises cannot be the foundation of an appropriate

set of beliefs for an ideally rational agent. Thus, our analysis

justifies nonmonotonic logic in this case, contrary to the intuition of

McDermott and Doyle.

McDermott and Doyle recognized the weakness of the original

formulation of nonmonotonic logic, and McDermott [1982] has gone on to

develop a group of theories that are stronger because they are based on

modal rather than classical logic. McDermott's nonmonotonic modal

theories alter the logic in two ways. First, the definition of fixed

point is changed to be equivalent to

17
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T is a fixed point of A just in case T is the set of modal
consequences of A U {-LP I P is not in T},

where "modal consequence" means that P I- LP is used as an additional

inference rule. Second, McDermott considers only theories that include

as premises the axioms of one of the standard modal logics "T," "S4,"

and "S5."

Merely changing the definition of fixed point brings McDermott's

logic much closer to autoepistemic logic. In particular, adding P I-LP
as an inference rule means that all modal fixed points of A are stable

expansions of A. However, adding P I- LP as an inference rule, rather

than adding {LP I P is in T} to the base of T, has as a consequence that

not all stable expansions of A are modal fixed points of A. The

difference is that, in autoepistemic logic, if P can be derived from LP,

then both can be in a stable expansion of the premises, whereas in

McDermott's logic there must be a derivation of P that does not rely on

LP. Thus, although in autoepistemic logic there is a stable expansion

of {LP -> P} that includes P, in McDermott's logic there is no modal

fixed point of {LP -> P} that includes P. It is as if, in autoepistemic

- - logic, one can acquire the belief that P and justify it later by the

premise that, if P is believed, then it is true. In nonmonotonic logic,

however, the justification of P has to precede belief in LP. This makes

the interpretation of L in nonmonotonic modal logic more like "justified

belief" than simple belief.

Since we have already shown that autoepistemic logic requires no

specific axioms to capture a competence model of autoepistemic

reasoning, we might wonder what purpose is served by McDermott's second

modification of nonmonotonic logic, the addition of the axioms of

various modal logics. The most plausible answer is that, besides

behaving in accordance with the principles of autoepistemic logic, an

ideally rational agent might well be expected to know what some of those

principles are. For instance, the modal logic T has all instances of

the schema L(P -> Q) -> (LP -> LQ) as axioms. This says that the

agent's beliefs are closed under modus ponens--which is true for an

18
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ideally rational agent, so he might as well believe it. S4 adds the

schema LP -> LLP, which means that, if the agent believes P, he believes

that he believes it (Condition 2). S5 adds the schema -LP -> L-LP,

which means that, if the agent does not believe P, he believes that he

does not believe it (Condition 3). Since all these formulas are always

true with respect to any ideally rational agent, it seems plausible to

expect him to adopt them as premises. Thus, S5 seems to be the most

plausible candidate of the nonmonotonic logics as a model of

autoepistemic reasoning.

The problem is that all of these logics also contain the schema

LP -> P, which means that, if the agent believes P, then P is true--but

this is not generally true, even for ideally rational agents. 8 It turns

out that LP -> P will always be contained in any stable autoepistemic

theory (that is, ideally rational agents always believe that their

beliefs are true), but making it a premise allows beliefs to be grounded

that otherwise would not be. As a premise the schema LP -> P can itself

be justification for believing P, while as a "theorem" it must be

derived from -LP, in which case P is not believed, or from P, in which

case P must be independently justified, or from some other grounded

formulas. In any case, as a premise schema, LP -> P can sanction any

belief whatsoever in autoepistemic logic. This is not generally true in

modal nonmonotonic logic, as we have also seen, but it is true in

nonmonotonic S5. The S5 axiom schema -LP -> L-LP embodies enough of the

model theory of autoepistemic logic to allow LP to be "self grounding":
The schema -LP -> L'-P is equivalent to the schema -L~LP -> LP, which

allows LP to be justified by the fact that its negation is not believed.

This inference is never in danger of being falsified, but, from this and

LP -> P, we obtain an unwarranted justification for believing P.

The collapse of nonmonotonic S5 into monotonic S5 follows

immediately. Since LP -> P can be used to justify belief in any formula

at all, there are no formulas that are absent from every fixed point of

theories based on nonmonotonic S5. It follows that there are no

formulas of the form -LP that are contained in every fixed point of
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theories based on nonmonotonic S5; hence there are no theorems of the

form -LP in any theory based on nonmonotonic S5. (Recall that the

theorems are the intersection of all the fixed points.) Since these

formulas are just the ones that would be produced by nonmonotonic

inference, nonmonotonic S5 collapses to monotonic S5. In more informal

terms, an agent who assumes that he is infallible is liable to believe

anything, so an outside observer can conclude nothing about what he does

not believe.

The real problem with nonmonotonic S5, then, is not the S5 schema;

therefore McDermott's rather unmotivated suggestion to drop back to

nonmonotonic S4 [1982, p. 45] is not the answer. The S5 schema merely

makes explicit the consequences of adopting LP -> P as a premise schema

that are implicit in the logic's natural semantics. If we want to base

nonmonotonic logic on a modal logic, the obvious solution is to drop

back, not to S4, but to what Stalnaker [1980] calls "weak S5"--S5

without LP -> P. It is much better motivated and, moreover, has the

advantage of actually being nonmonotonic.

In autoepistemic logic, however, even this much is unneccessary.

*Adopting any of the axioms of weak S5 as premises makes no difference to

what can be derived. The key fact is the following theorem:

Theorem 5. If P is true in every autoepistemic interpretation

of T, then T is grounded in A U {P} if and only if T is
* grounded in A.

An immediate corollary of this result is that, if P is true in every

. autoepistemic interpretation of T, then T is a stable expansion of

A U {P} if and only if T is a stable expansion of A.

The modal axiom schemata of weak S5,

L(P -> Q) -> (LP -> LQ)
LP -> LLP
LP -> L-LP,

simply state Conditions 1-3, so all their instances are true in every

" autoepistemic interpretation of any stable autoepistemic theory. The
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nonmodal axioms of weak S5 are just the tautologies of propositional

logic, so they are true in every interpretation (autoepistemic or

otherwise) of any autoepistemic theory (stable or otherwise). It

immediately follows by Theorem 5, therefore, that a set of premises

containing any of the axioms of weak S5 will have exactly the same

stable expansions as the corresponding set of premises without any weak-

S5 axioms.
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V CONCLUSION

McDermott and Doyle recognized that their original nonmonotonic

logic was too weak; when McDermott tried to strengthen it, however, he

misdiagnosed the problem. Because he was thinking of nonmonotonic logic

as a logic of provability rather than belief, he apparently thought the

problem was the lack of any connection between provability and truth.

At one point he says "Even though -M-P (abbreviated LP) might plausibly

be expected to mean 'P is provable,' there was not actually any relation

between the truth values of P and LP," [1982, p. 34], and later he

acknowledges the questionability of the schema LP -> P, but says that

"it is difficult to visualize any other way of relating provability and

truth," (1982, p. 35]. If one interprets nonmonotonic logic as a logic

of belief, however, there is no reason to expect any connection between

the truth of LP and the truth of P. And, as we have seen, the real

problem with the original nonmonotonic logic was that the "if" half of

the semantic definition of L--that LP is true if and only if P is

believed--was not expressed in the logic.

I-
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NOTES

1 In their informal exposition, McDermott and Doyle [1980, pp. 44-46]

emphasize that their notion of nonmonontonic inference is not to be

taken as a form of valid inference. If this is the case, their formal

, semantics cannot be regarded as the "real" semantics of their

nonmonotonic logic. At best, it would provide the conditions that would
have to hold for the inferences to be valid, but this leaves unanswered

the question of what formulas of nonmonotonic logic actually mean.

2 Of course, autoepistemic reasoning can be combined with default

reasoning; we might believe that we know about most of the birds that

cannot fly. This could lead to defeasible autoepistemic inferences, but

their defeasibility would be the result of their also being default

inferences.

Stalnaker's note, which to my knowledge remains unpublished, grew out

of his comments as a respondent to McDermott at a Conference on

Artificial Intelligence and Philosophy, held in March 1980 at the Center

for Advanced Study in the Behavioral Sciences. N.B., the term .,

"autoepistemic reasoning" is ours, not his.

Condition 4 will, of course, also be satisfied by an inconsistent

stable autoepistemic theory, since such a theory would include all

formulas of autoepistemic logic.

5 This theorem implies that our autoepistemic logic does not contain any

"nongrounded" self-referential formulas, such as one finds in what are

usually called "syntactical" treatments of belief. If, instead of a

belief operator, we had a belief predicate, Bel, there might be a term p

that denotes the formula Bel(p). Whether Bel(p) is believed or not is

clearly independent of any objective beliefs. The lack of such formulas

constitutes a characteristic difference between sentence-operator and

predicate treatments of propositional attitudes and modalities.
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6 McDermott and Doyle [1980, p. 51] present this example as {MC -> -D,

MD -> ~C}.

7 McDermott and Doyle [1980, p. 51] present this example as {MC -> -C}.

8 LP -> P would be an appropriate axiom schema if the interpretation of

LP were "P is known" rather than "P is believed," but that notion is not

nonmonotonic. An agent cannot, in general, know when he does not know

P, because he might believe P--leading him to believe that he knows P-

while P is in fact false. Since agents are unable to reflect directly

on what they do not know (only on what they do not believe), an

autoepistemic logic of knowledge would not be a nonmonotonic logic;

rather, the appropriate logic would seem to be monotonic S5.
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APPENDIX: PROOFS OF THEOREMS

Theorem I. If T is a stable autoepistemic theory, the.. ay
autoepistemic interpretation of T that is a propositional
model of the objective formulas of T is an autoepistemic model
of T.

Proof. Suppose that T is a stable autoepistemic theory and I is an

autoepistemic interpretation of T that is a propositional model of the

objective formulas of T. All the objective formulas of T are true in I.

T must be consistent because an inconsistent stable autoepistemic theory

would contain all formulas of the language, which would include many

objective formulas that are not true in I. Let P be an arbitrary

formula in T. Since stable autoepistemic theories are closed under

tautological consequence, T must also contain a set of formulas

P1,...,Pk that taken together entail P, where, for each i between 1 and

k, there exist n and m such that Pi is of the form

Pil \/ LPi,2 /''/LPi,n \/ -LPi,n+l k/"\ LPim

and Pij1 is an objective formula. (Any formula is interderivable with a

set of such formulas by propositional logic alone.) There are two cases

to be considered:

(1) Suppose at least one of LPi,2,...,LPi,n, -LPi,n+l,...,-LPi,m is

in T. By Conditions 4 and 5, we know that, if any such formula is in T,

it must be true in I, since T is consistent and I is an autoepistemic

interpretation of T. But, since each of these formulas entails Pi, it

follows that Pi is also true in I.

(2) Suppose the first case does not hold. Conditions 2 and 3

guarantee that in every stable autoepistemic theory, for every formula

.- P, either LP or -LP will be in the theory. Hence, if T does not contain

any of LPi2,...,LPin, -LPi ,n+ ,-LPi ,m it must contain all of

-LPi 2,",LPin, LPi,n+i ,LPi,m But Pi,l is a tautological

consequence of Pi and these formulas (imagine repeated applications of
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the resolution principle); so Pi,l must be in T. But PiI is objective,

and so, by hypothesis, must be true in I. Since Pi,1 entails Pi, it

must be the case that Pi is true in I.

In either case, Pi will be true in I. All the Pi taken together

entail P, so P must also be true in I. Since P was chosen arbitrarily,

every formula of T must be true in I; hence I is an autoepistemic model

of T.

Theorem 2. If two stable autoepistemic theories contain the
same objective formulas, then they contain exactly the same
formulas.

Proof. Suppose that TI and T2 contain the same objective formulas and

T I contains P. We prove by induction on the depth of nesting of

autoepistemic operators in P (the "L-depth" of P) that T 2 also contains

P. If the L-depth of P is 0, the theorem is trivially true, since P

will be an objective formula. Now suppose that P has an L-depth of d

greater than 0, and that, if two stable autoepistemic theories contain

the same objective formulas, then they contain exactly the same formulas

whose L-depth is less than d.

Since stable autoepistemic theories are closed under tautological

consequence, T, must also contain a set of formulas PI ,Pk that are

interderivable with P by propositional logic, where, for each i between

I and k, there exist n and m such that Pi is of the form

? Pil \ / LPi,2 \''/LPI,n \/LPi,n+l \/'\ LPim

and PiI is an objective formula. Note that, since propositional logic

will treat all the formulas of the form LPi,j as propositional

constants, it is impossible to increase the L-depth of a formula by

propositional inference, so each of these formulas will have an L-depth

of not more than d.

We can also assume that T 1 and T2 are consistent. If one of these

theories were inconsistent, it would contain all formulas of the

language. Since, by hypothesis, the two theories contain the same
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objective formulas, the other theory would contain all the objective

formulas of the language and, since these formulas are inconsistent, it

would also contain all the formulas of the language. For each Pi, there

are three cases to be considered:

(1) TI contains LPij for some j between 2 and n. Since TI is

consistent, by Condition 4 it must also contain Pi,j" Since the L-depth

of Pi,j is one less than that of LPij, it nust be less than d; so, by

hypothesis, T2 must contain Pi,j and, by Condition 2, it must contain

LPi,j. But Pi is a tautological consequence of LPi,j, so T2 contains

Pi*

(2) T1 contains -LPi,j for some J between n+l and m. Since T1 is

consistent, by Condition 5 it must not contain Pi,j" Since the L-depth

of Pi is one less than that of -LPi,j, it must be less than d;

therefore, by hypothesis, T2 must not contain Pi'j and, by Condition 3,

it must contain . But Pi is a tautological consequence of -LPij,

so T2 contains Pi.

(3) Suppose neither of the first two cases holds. Conditions 2 and

3 guarantee that in every stable autoepistemic theory, for every formula

P, either LP or -LP will be in the theory. Hence, if T1 does not

- . contain any of LPi 2,.,LPin, LPin+l,'',-LPi,m, it must contain all

'"of ,LPi,2,..,~LPin, LPi,n+l,'',LPi,m" But Pi'l is a tautological

consequence of Pi and these formulas; so Pi,l must be in T1 . Pi,l is

objective, however, so Pi,l must also be in T2 . Since Pi is a

tautological consequence of Pi,l, T2 contains Pi.

Thus, all of Pl,..,Pk are in T2. Since P is a tautological

consequence of these formulas, P is also in T2. Since P was chosen

arbitrarily, every formula in T1 is also in T2. The same argument can

be used to show that every formula in T2  is also in TI, so T, and T2

contain exactly the same formulas.

Theorem 3. An autoepistemic theory T is semantically complete
r. if and only if T is stable.

, 28
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Proof. "If" direction: we show that, if T is a stable autoepistemic

theory, then T contains every formula that is true in every

autoepistemic model of T. Let T be a stable autoepistemic theory and

let P be an arbitrary formula that is not in T. We show that there is

an autoepistemic model of T in which P is false.

We know from propositional logic that P is propositionally

equivalent to (i.e., true in the same propositional models as) the

conjunction of a set of formulas Pl,..*,pk, where, for each i between I

and k, there exist n and m such that Pi is of the form

Pil V/ LPi,2 /''/LPi,n \/ -LPi,n+l /-'/-LPi,m

and Pi,l is an objective formula. Since P will be a tautological

consequence of PI,...,Pk and T is stable, Condition I guarantees that,

if P is not in T, at least one of P1,.'.,pk must not be in T. Let Pi be

such a formula. Pi is a tautological consequence of each of its

disjuncts, so none of them can be in T. We show that there is an

autoepistemic model of T in which all of these disjuncts are false.

Since Pi,l is not in T, it must not be a tautological consequence

of the objective formulas of T. Given this and the fact that Pi l is

objective, it follows from the completeness theorem for propositional

logic that there must be a truth assignment to the propositional

constants of T in which Pi,l is false and all the objective formulas of

T are true. But, we can extend this truth assigment (or any truth

assignment to the propositional constants of T--see Section III) to an

autoepistemic interpretation of T. Call this interpretation I and note

that Pi,l is false in I. I will be a propositional model of the

objective formulas of T; so, by Theorem 1, 1 is an autoepistemic model

of T in which Pi, 1 is false.

Now consider the other disjuncts of Pi. Note that Conditions 2 and

3 require that a stable theory contain all the formulas of the form LP

or -LP that are true in the autoepistemic interpretations of the theory.

Since none of LPi2,..,LPin, -LPi,n+I...,-LPim are in T, none of

LPi,2,...,LPi,n, -LPin+I,,*p-LPi m are true in any autoepistemic

29



interpretation of T. In particular, none of LPi,2,...,LPi,n,

~LPi,n+,**.,-LPi,m are true in I. Therefore, I is an autoepistemic

model of T in which, since all of the disjuncts of Pi are false, Pi

itself is false. But P is propositionally equivalent to a conjunction

that includes Pi, so I is an autoepistemic model of T in which P is

false.

"Only if" direction: we show that, if T is semantically complete,

then T is stable. Suppose T is semantically complete. For any formula

*" P, if P is true in every autoepistemic model of T, then P is in T. Let

I be an arbitrary autoepistemic model of T. If we can show that some

formula P is true in I, P must be true in every autoepistemic model of T

(since I is arbitrarily chosen) and, thus, P must be in T. We now show

that T satisfies Conditions 1-3.

(1) Suppose Pl,...,pn are in T and Pl,.'*,Pn I- Q. Since I is a

4- model of T, PI,.'.,Pn will be true in I. Since P1,...,Pn will is true

in I and Q is a tautological consequence of Pl,...,Pn, Q will also be

true in I. Therefore, Q will be in T. (2) Suppose P is in T. Since I

is an autoepistemic model of T, LP will be true in I. Therefore, LP

will be in T. (3) Suppose P is not in T. Since I is an autoepistemic

model of T, -LP will be true in I. Therefore, -LP will be in T.

Conditions 1-3 are all satisfied, so T is stable.

Theorem 4. An autoepistemic theory T is sound with respect to
an initial set of premises A if and only if T is grounded in
A.

Proof. "If" direction: suppose T is grounded in A. Every formula of T

is therefore included in the tautological consequences of A U {LP I P is

in TI U {-LP I P is not in T1. We show that T is sound with respect to

A--i.e., that every autoepistemic interpretation of T in which all the

formulas of A are true is an autoepistemic model of T.

Let I be an autoepistemic interpretation of T in which all the

formulas in A are true. We show that I is an autoepistemic model of T.

If P is in A, then, trivially, P is true in I. If P is of the form LQ
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and Q is in T, or if P is of the form -LQ and Q is not in T, then P is

true in I because I is an autoepistemic interpretation of T. We have

now shown that all the formulas in A U {LP I P is in TI U {-LP I P is

not in T} are true in I, so all their tautological consequences are true

in I. But all the formulas of T are included in this set, so I is an

autoepistemic model of T. Since I was an arbitrarily chosen

autoepistemic interpretation of T in which all the formulas of A are

true, every autoepistemic interpretation of T in which all the formulas

of A are true is an autoepistemic model of T.

"Only if" direction: suppose T is sound with respect to A. Every

autoepistemic interpretation of T in which all the formulas of A are

true is therefore an autoepistemic model of T. We show that T is

grounded in A--i.e., every formula of T is a tautological consequence of

A U {LP I P is in TI U {LP I P is not in T1.

Let A' = A U {LP I P is in T} U {LP I P is not in TI. Note that,

for all P, if P is in T, LP will be in A', so LP will be true in every

propositional model of A'; however, if P is not in T, -LP will be in A'

and LP will not be true in any propositional model of A'. Therefore, in

every propositional model of A', LP is true if and only if P is in T, so

every propositional model of A' is an autoepistemic interpretation of T.

Since every autoepistemic interpretation of T in which all the formulas

of A are true is an autoepistemic model of T, every propositional model

of A' is an autoepistemic model of T. Since every formula in T is true

in in every autoepistemic model of T, every formula in T is true in

every propositional model of A'. By the completeness theorem for

propositional logic, every formula of T is therefore a tautological

consequence of A'. Hence T is grounded in A.

Theorem 5. If P is true in every autoepistemic interpretation
of T, then T is grounded in A U {P} if and only if T is
grounded in A.

[-.P Proof. Suppose that P is true in every autoepistemic interpretation of

T. For any set of premises A, the set of autoepistemic interpretations

of T in which every formula of A U {P} is true is therefore the same as
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the set of autoepistemic interpretations of T in which every formula of

A is true. Thus, every autoepistemic interpretation of T in which every

formula of A U {P} is true is an autoepistemic model of T if and only if

every autoepistemic interpretation of T in which every formula of A is

true is an autoepistemic model of T. Hence, T is sound with respect to

A U {P} if and only if T Is sound with respect to A. By Theorem 4,

therefore, T is grounded in A U {P} if and only if T is grounded in A.

i"
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Most work on planning and problem solving within the field ofI

artificial intelligence assumes that the agent has complete knowledge of

all relevant aspects of the problem domain and problem situation. In

the real world, however, planning and acting must frequently be

performed without complete knowledge. This imposes two additional

burdens on an intelligent agent trying to act effectively. First, when

the agent. entertains a plan for achieving some goal, he must consider

not only whether the physical prerequisites of the plan have been

satisfied, but also whether he has all the information necessary to

carry out the plan. Second, he must be able to reason about what he can

do to obtain necessary information that he lacks. In this paper, we

present a theory of action in which these problems are taken into

account, showing how to formalize both the knowledge prerequisites of

action and the effects of action on knowledge.

V, 1.
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I THE INTERPLAY OF KNOWLEDGE AND ACTION

Planning sequences of actions and reasoning about their effects is

one of the most thoroughly studied areas within artificial intelligence

(AI). Relatively little attention has been paid, however, to the

important role that an agent's knowledge plays in planning and acting to

achieve a goal. Virtually all Al planning systems are designed to

operate with complete knowledge of all relevant aspects of the problem

domain and problem situation. Often any statement that cannot be

inferred to be true is assumed to be false. In the real world, however,

planning and acting must frequently be performed without complete

knowledge of the situation.

This imposes two additional burdens on an intelligent agent trying

to act effectively. First, when the agent entertains a plan f(,r

achieving some goal, he must consider not only whether the physical

prerequisites of the plan have been satisfied, but. also whether he has

all the information necessary to carry out the plan. Second, he must be

able to reason about what he can do to obtain necessary information that

he lacks. AI planning systems are usually based on the assumption that,

if there is an action an agent is physically able to perform, and

carrying out that action would result in the achievement of a goal P,

then the agent can achieve P. With goals such as opening a safe,

1
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however, there are actions that any human agent of normal abilities is

physically capable of performing that would result in achievement of the

goal (in this case, dialing the combination of the safe), but it would

be highly misleading to claim that an agent could open a safe simply by

dialing the combination unless he actually knew that combination. On

the other hand, if the agent had a piece of paper on which the

combination of the safe was written, he could open the safe by reading

what was on the piece of paper and then dialing the combination, even if

he did not know it previously.

In this paper, we will describe a formal theory of knowledge and

action that is based on a general understanding of the relationship

" 1

between the two. The question of generality is somewhat problematical.

since different actions obviously have different prerequisites and

results that involve knowledge. What we will try to do is to set up a

formalism in which very general conclusions can be drawn, once a certain

minimum of information has been provided concerning the relation between

specific actions and the knowledge of agents.

To see what this amounts to, consider the notion of a test. The

essence of a test is that it is an action with a directly observable

result that depends conditionally on an unobservable precondition. In

the use of litmus paper to test the pH of a solution, the observable

result is whether the paper has turned red or blue, and the unobservable

precondition is whether the solution is acid or alkaline. What makes

2
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such a test useful for acquiring knowledge is that the agent can infer

whether the solution is acid or alkaline on the basis of his knowledge

of the behavior of litmus paper and the observed color of the paper.

When one is performing a test, it is this inferred knowledge. rather

than what is directly observed, that is of primary interest.

If we tried to formalize the results of such a test by making

simple assertions about what the agent knows subsequent to the action.

we would have to include the result that the agent knows whether the

solution is acid or alkaline as a separate assertion from the result

that he knows the color of the paper. If we did this, however, we Iould
completely miss the point that knowledge of the pH of the solution iz

inferred from other knowledge, rather than being a direct observation.

In effect, we would be stipqjating what actions can be used as tests,

-' rather than creating a formalism within which we can infer what actions

can be used as tests.

If we want a formal theory of how an agent's state of knowledge is

changed by his performing a test, we have to represent and be able to

draw inferences from the agent's having several independent pieces of

information Obviously, we have to represent that, after the test is

performed, the agent knows the observable result Furthermore, we

to represent the fact that he knows that the test has been performeJ

If he just walks into the room and sees the litmus paper on the table. 7.

he will know what color it is, but, unless he knows its recent history.

he will not have gained any knowledge about the acidity of the solution

3
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"- We also need to represent the fact that the agent understands how the

. test works; that is, he knows how the observable result of the action

depends on the unobservable precondition. Even if he sees the litmus

paper put into the solution and then sees the paper change color, he

still will not know whether the solution is acid or alkaline unless he

knows how the color of the paper is related to the acidity of the

solution. Finally, we must be able to infer that, if the agent knows

(i) that the test took place, (ii) the observable result of the test.,

and (iii) how the observable result depends on the unobservable

precondition, then he will know the unobservable precondition. Thus we

must know enough about knowledge to tell us when an agent's knowing a

certain collection of facts implies that he knows other facts as well.

e .,4 From the preceding discussion, we can conclude that any formalism

that enables us to draw inferences about tests at this level of detail

must be able to represent the following types of assertions:

(1) After A performs ACT, he knows whether Q is true.

(2) After A performs ACT, he knows that he has just performed
ACT.

(3) A knows that Q will be true after he performs ACT if and

only if P is true now.

Moreover, in order to infer what information an agent will gain as a

result of performing a test, the formalism must embody, or be able to

represent, general principles sufficient to conclude the following:

r
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(4) If (1), (2), and (3) are true, then, after performing ACT,

A will know whether P was true before he performed ACT.

It is important to emphasize that any work on these problems that

is to be of real value must seek to elicit general principles. For

instance, it would be possible to represent (1), (2), and (3) in an

arbitrary, ad hoc manner and to add an axiom that explicitly states (4),

thereby "capturing" the notion of a test. Such an approach, however.

would simply restate the superficial observations put forth in this

discussion. Our goal in this paper is to describe a formalism in which

specific facts like (4) follow from the most basic principles of

reasoning about knowledge and action.

.-
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II FORMAL THEORIES OF KNOWLEDGE

A. A Modal Logic of Knowledge

Since formalisms for reasoning about action have been studied

extensively in AI, while formalisms for reasoning about knowledge have

not, we will first address the problems of reasoning about knowledge.

In Section III we will see that the formalism that we are led to as a

solution to these problems turns out to be well suited to developing an

integrated theory of knowledge and action.

The first step in devising a formalism for reasoning about

knowledge is to decide what general properties of knowledge we want that

formalism to capture. The properties of knowledge in which we will be

most interested are those that are relevant to planning and acting. One

•..such property is that anything that is known by someone must be true.

If P is false, we would not want to say that anyone knows P. It might

be that someone believes P or that someone believes he knows P, but it

simply could not be the case that anyone knows P. This is, of course, a

major difference between knowledge and belief. If we say that someone

believes P, we are not committed to saying that P is either true or

false, but if we say that someone knows P, we are committed to the truthh. of P. The reason that this distinction is important for planning and

r\'. 6



acting is simply that, for an agent to achieve his goals, the beliefs on

which he bases his actions must generally be true. After all, merely

believing that performing a certain action will bring about a desired

goal is not sufficient for being able to achieve the goal; the action

must actually have the intended effect.

Another principle that turns out to be important for planning is

that, if someone knows something, he knows that he knows it. This

principle is often required for reasoning about plans consisting of

several steps. Suppose an agent plans to use ACT to achieve his goal,

but, in order to perform ACT he needs to know whether P is true and

1

whether Q is true. Suppose, further, that, he already knows that P is

true and that he can find out whether Q is true by performing ACT . The
2

agent needs to be able to reason that, after performing ACT , he will

2

know whether P is true and whether Q is true. He knows that he will

know whether Q is true because he understands the effects of ACT , but

how does he know that he will know whether P is true? Presumably it

works something like this: he knows that P is true, so he knows that he

knows that P is true. If he knows how ACT affects P, he knows that he

will know whether P is true after he performs ACT . The key step in

this argument is an instance of the principle that, if someone knows

something, he knows that he knows it.

7 -
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4

It might seem that we would also want to have the principle that,

if someone does not know something, he knows that he does not know it--

but this turns out to be false. Suppose that A believes that P, but P

is not true. Since P is false, A certainly does not know that P, but it

is highly unlikely that he knows that he does not know, since he thinks

that P is true.

Probably the most important fact about knowledge that we will want

to capture is that agents can reason on the basis of their knowledge.

All our examples depend on the assumption that, if an agent trying to

solve a problem has all the relevant information, he will apply his

knowledge to produce a solution. This creates a difficulty for us,

however, since agents (at least human ones) are not, in fact, aware of

all the logical consequences of their knowledge. The trouble is that we

can never be sure which of the inferences an agent could draw, he

actually will. The principle people normally use in reasoning about

what other people know seems to be something like this: if we can infer

that something is a consequence of what someone knows, then, lacking

information to the contrary, we will assume that the other person can

draw the same inference.

This suggests the adoption some sort of "default rule" (Reiter,

1980) for reasoning about what inferences agents actually draw, but, for

the purposes of this study, we will make the simplifying assumption that

agents actually do draw all logically valid inferences from their

knowledge. We can regard this as the epistemological version of the

8
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"frictionless case" in classical physics. For a more general framework

in which weaker assumptions about the deductive abilities of agents can

be expressed, see the work of Konolige (1984).

Finally, we will need to include the fact that these basic

properties of knowledge are themselves common knowledge. By this we

mean that everyone knows them, and everyone knows that everyone knows

them, and everyone knows that everyone knows that everyone knows them,

ad infinitum. This type of principle is obviously needed when reasoning

about what someone knows about what someone else knows, but it is also

important in planning, because an agent must be able to reason about

what he will know at various times in the future. In such a case, his

"future self" is analogous to another agent.

In his pioneering work on the logic of knowledge and belief,

Hintikka (1962) presents a formalism that captures all these properties.

We will define a formal logic based on Hintikka's ideas, but modified

somewhat to be more compatible with the additional ideas of this paper.

So, what follows is similar to the logic developed by Hintikka in

spirit, but not in detail.

The language we will use initially is that of propositional logic,

augmented by an operator KNOW and terms denoting agents. The formula

KNOW(A,P) is interpreted to mean that the agent denoted by the term A

knows the proposition expressed by the formula P. So, if JOHN denotes

John and LIKES(BILL,MARY) means that Bill likes Mary,

%'.



KNOW(JOHN,LIKES(BILL,MARY)) means that John knows that Bill likes Mary.

The axioms of the logic are inductively defined as all instances of the

following schemata:

MI. P, such that P is an axiom of ordinary propositional logic

M2. KNOW(A,P) 3 P

M3. KNOW(A,P) I KNOW(A,KNOW(A,P))

M4. KNOW(A,(P ) Q)) ) (KNOW(A,P)) KNOW(A,Q))

closed under the principle that

M5. If P is an axiom, then KNOW(A,P) is an axiom.

The closure of the axioms under the inference rule modus ponens

(from (P ) Q) and P, infer Q) defines the theorems of the system. This

system is very similar to those studied in modal logic. In fact, if A

is held fixed, the resulting system is isomorphic to the modal logic S4

(Hughes and Cresswell, 1968). We will refer to this system as the modal

logic of knowledge.

These axioms formalize in a straightforward way the principles for

reasoning about knowledge that we have discussed. M2 says that anything

that is known is true. M3 says that, if someone knows something, he

knows that he knows it. M4 says that, if someone knows a formula P aiid

a formula of the form (P ) Q), then he knows the corresponding formula

Q. That is, everyone can (and does) apply modus ponens. M5 guarantees

that the axioms are common knowledge. It first applies to MI-M4, which

10
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says that everyone knows the basic facts about knowledge; however, since

it also applies to its own output, we get axioms stating that everyone

knows that everyone knows, etc. Since M5 applies to the axioms of

propositional logic (Ml), we can infer that everyone knows the facts

they represent. Furthermore, because modus ponens is the only inference

rule needed in propositional logic, the presence of M4 will enable us to

infer that an agent knows any propositional consequence of his

knowledge.

B. A Possible-World Analysis of Knowledge

We could try to use the modal logic of knowledge directly in a

computational system for reasoning about knowledge and action, but, as

we have argued elsewhere (Moore, 1980), all the obvious ways of doing

this encounter difficulties. (Konolige's recent work (1984) suggests

some new, more promising possibilities, but some important questions

remain to be resolved.) There may well be solutions to these problems,

but it turns out that they can be circumvented entirely by changing the

language we use to describe what agents know. Instead of talking about

the individual propositions that an agent knows, we will talk about what

states of affairs are compatible with what. he knows. In philosophy,

these states of affairs are usually called "possible worlds," so we will

adopt that term here as well.

This shift to describing knowledge in terms of possible worlds is

based on a rich and elegant formal semantics for systems like our modal

11"'
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logic of knowledge, which was developed by Hintikka (1962, 1971) in his

work on knowledge and belief. The advantages of this approach are that

it can be formalized within ordinary first-order classical logic in a
Abi

* way that permits the use of standard automatic-deduction techniques in a

2
reasonably efficient manner and that, moreover, it generalizes nicely

to an integrated theory for describing the effects of actions on the

agent's knowledge.

Possible-world semantics was first developed for the logic of

necessity and possibility. From an intuitive standpoint, a possible

world may be thought of as a set of circumstances that might have been

true in the actual world. Kripke (1963) introduced the idea that a

world should be regarded as possible, not absolutely, but only relative

to other worlds. That is, the world W might be a possible alternative
1

to W , but not to W . The relation of one world's being a possible
2 3

alternative to i ither is called the accessibilitj relation. Kripke

then proved that the differences among some of the most important axiom

systems for modal logic corresponded exactly to certain restrictions on

the accessibility relation uf the possible-world models of those

systems. These results are reviewed in Kripke (1971). Concurrently

with these developments, Hintikka (1962) published the first of his

writings on the logic of knowledge and belief, which included a model

theory that resembled Kripke's possible-world semantics. Hintikka's

original semantics was done in terms of sets of sentences, which he

12
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called model sets, rather than possible worlds. Later (Hintikka, 1971),

however, he recast his semantics using Kripke's concepts, and it is that

formulation we will use here.

Kripke's semantics for necessity and possibility can be converted

into Hintikka's semantics for knowledge by changing the interpretation

of the accessibility relation. To analyze statements of the form

KNOW(A,P), we will introduce a relation K, such that K(A,W ,W ) means
1 2

that the possible world W is compatible or consistent with what A knows
2

in the possible world W . In other words, for all that A knows in W
1 i

he might just as well be in W . It is the set of worlds

2

{w I K(A,W ,w )} that we will use to characterize what A knows in W .

2 12 1

We will discuss A's knowledge in W in terms of this set, the set of
1 w

states of affairs that are consistent with his knowledge in W , rather

1

than in terms of the set of propositions he knows. For the present, let

us assume that the first argument position of K admits the same set of

terms as the first argument position of KNOW. When we consider

quantifiers and equality, we will have to modify this assumption, but it

will do for now.

Introducing K is the key move in our analysis of statements about

knowedge. so understanding what K means is particularly important. To

13



illustrate, suppose that in the actual world--call it W --A knows that
0

P, but does not know whether Q If W is a world where P is false, then

W is not compatible with what A knows in W ; hence we would have
1 0

nK(A,W ,W ). Suppose that W and W are compatible with everything A
0 1 2 3

knows, but that Q is true in W and false in W . Since A does not know
2 3

..4 whether Q is true, for all he knows, he might be in either W or W
2 3

instead of W Hence, we would have both K(AW W ) and K(A,W W )

0 0 2 0 3

This is depicted graphically in Figure 1.

Some of the properties of knowledge can be captured by putting

constraints on the accessibility relation K. For instance, requiring

that the actual world W be compatible with what each knower knows in

0

W1 i.e., Va (K(a ,W ,W )), is equivalent to saying that anything that

0 1 10 0

is known is true. That is, if the actual world is compatible with what

_. everyone (actually] knows, then no one has any false knowledge. This

corresponds to the modal axiom M2.

The definition of K implies that, if A knows that P in W then P

- s 0

must be true in every world W such that K(A,W ,W ).To capture the

0 01

fact that agents can reason with their knowledge, we will assume the

14- .
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converse is also true. That is, we assume that, if P is true in every

world W such that K(A,W ,W ), then A knows that P in W (See Figure
1 01 0

2.) This principle is the model-theoretic analogue of axiom M4 in the

modal logic of knowledge. To see that this is so, suppose that A knows

that P and that (P ) Q). Therefore, P and (P ) Q) are both true in

every world that is compatible with what A knows. If this is the case,

though, then Q must be true in every world that is compatible with what

A knows. By our assumption, therefore, we conclude that A knows that Q.

Since this assumption, like M4, is equivalent to saying that an

agent knows all the logical consequences of his knowledge, it should be

interpreted only as a default rule. In a particular instance, the fact

that P follows from A's knowledge would be a justification for

concluding that A knows P. However, we should be prepared to retract

the conclusion that A knows P in the face of stronger evidence to the

contrary.

With this assumption, we can get the effect of M3--the axiom

stating that, if someone knows something, he knows that he knows it--by

requiring that, for any W and W , if W is compatible with what A knows
1 2 1

in W and W is compatible with what A knows in W , then W is

0 21 2

compatible with what A knows in W . Formally expressed, this is
0

16



Va ,w w (K(a W w) ) (K(a ,w ,w) K(a ,W w
1 1 2 1 0 1 1 1 2 1 0 2

By our previous assumption, the facts that A knows are those that are

true in every world that is compatible with what A knows in the actual

world. Furthermore, the facts that A knows that he knows are those that

are true in every world that is compatible with what he knows in every

world that is compatible with what he knows in the actual world. By the

constraint we have just proposed, however, all these worlds must also be

compatible with what A knows in the actual world (see Figure 3), so, if

A knows that P, he knows that he knows that. P.

Finally, we can get the effect of MS, the principle that the basic

facts about knowledge are themselves common knowledge, by generalizing

these constraints so that they hold not only for the actual world, but

for all possible worlds. This follows from the fact that, if these

constraints hold for all worlds, they hold for all worlds that are

compatible with what anyone knows in the actual world; they also hold

for all worlds that are compatible with what anyone knows in all worlds

that are compatible with what anyone knows in the actual world, etc.

Therefore, everyone knows the facts about knowledge that are represented

by the constraints, and everyone knows that everyone knows, etc. Note

that this generalization has the effect that the constraint

corresponding to M2 becomes the requirement that, for a given knower, K

is reflexive, while the constraint corresponding to M3 becomes the

requirement that, for a given knower, K is transitive.

1

~17

I



I
nie teteto nw g a

KA

KKA

knoP 
Tn iKA

-: 
KA  A

0N 0

tBtKA

FIGURE 3 "IF A KNOWS THAT P, THEN HE KNOWS THAT HE KNOWS THAT r

Analyzing knowledge in terms of possible worlds gives us a very
nice treatment of knowledge about. knowledge. Suppose A knows that B

knows that P. Then, if the actual world is W, in any world W such
0 1

that K(A,W W ),B knows that P. We now continue the analysis relative
0 1

to W so that, in any world W such that K(B,W W )P is true.1 2 1 2

Putting both stages together, we obtain the analysis that, for any

worlds W and W such that K(A,W ,W ) and K(B,W ,W ), P is true in W
1 2 0 1 1 2 -

(See Figure 4.)

18



KA W1 KS i

<KC Ke

qK

FIGURE 4 "A KNOWS THAT B KNOWS THAT P"

Given these constraints and assumptions, whenever we want to assert

or deduce something that would be expressed in the modal logic of

knowledge by KNOW(A,P), we can instead assert or deduce that P is true

in every wo-C that is c.ompatible with what A knows. We can express

this in ordinary first-order logic, by treating possible worlds as

individuals (in the logical sense), so that K is just an ordinary

relation. We will therefore introduce an operator T such that T(W,P)

means that the formula P is true in the possible world W. If we let W
0

denote the actual worli, we can convert the assertion KNOW(A,P) into

19
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Vw (K(A,W ,w ) ) T(w ,P))
1 0 1 1

It may seem that we have not made any real progress, since,

although we have gotten rid of one nonstandard operator, KNOW, we have

introduced another one, T. However, T has an important property that

KNOW does not. Namely, T "distributes" over ordinary logical operators.

In other words, -P is true in W just in case P is not true in W, (P V Q)

is true in W just in case P is true in W or Q is true in W, and so on.

We might say that T is extensional, relative to a possible world. This

means that we can transform any formula so that T is applied only to

atomic formulas. We can then turn T into an ordinary first-order

relation by treating all the nonintensional atomic formulas as names of

atomic propositions, or we can get rid of T by replacing the atomic

formulas with predicates on possible worlds. This is no loss to the

expressive power of the language, since, where we would have previously

asserted P, we now simply assert T(W ,P) or P(W ) instead.

0 0

C. Knwlfedge,. Egquaity, and Quantification

The formalization of knowledge presented so far is purely

propositional; a number of additional problems arise when we attempt to

extend the theory to handle equality and quantification. For instance,

as Frege (1949) pointed out, attibutions of knowledge and belief lead to

violations of the principle of equality substitution. We are not.

. entitled to infer KNOW(AP(C)) from B = C and KNOW(A,P(B)) because A
B-f

might not know that the identity holds.

20



The possible-world analysis of knowledge provides a very neat

solution to this problem, once we realize that a term can denote

different objects in different possible worlds. For instance, if B is

the expression "the number of planets" and C is "nine," then, although

B = C is true in the actual world, it would be false in a world in which

there was a tenth planet. Thus, we will say that an equality statement

such as B = C is true in a possible world W just in case the denotation

of the term B in W is the same as the denotation of the term C in W.

This is a special case of the more general rule that a formula of the

form P(A ..... A ) is true in W just in case the tuple consisting of the

I n

denotations in W of the terms A ,...,A is in the extension in W of the
1 n

relation expressed by P, provided that we fix the interpretation of = in

all possible worlds to be the identity relation.

Given this interpretation, the inference of KNOW(A,P(C)) from B = C

and KNOW(AP(B)) will be blocked (as it should be). To infer

KNOW(A,P(C)) from KNOW(A,P(B)) by identity substitution, we would have

to know that B and C denote the same object in every world compatible

with what A knows, but the truth of B = C guarantees only that they

denote the same object in the actual world. On the other hand, if

KNCW(A.P(B)) and KNOW(A,(B'= C)) are both true, then in all worlds that

are compatible with what A knows, the denotation of B is in the

extension of P and is the same as the denotation of C; hence, the

denotation of C is in the extension of P. From this we can infer that

KNOW(A,P(C)) is true.

21
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The introduction of quantifiers also causes problems. To modify a

famous example from Quine (1971), consider the sentence "Ralph knows

that someone is a spy." This sentence has at least two interpretations.

One is that Ralph knows that there is at least one person who is a spy,

although he may have no idea who that person is. The other

interpretation is that there is a particular person whom Ralph knows to

be a spy. As Quine says (1971, p. 102), "The difference is vast;

indeed, if Ralph is like most of us, [the first] is true and (the

second] is false." This ambiguity was explained by Russell (1949) as a

difference of sco2e. The idea is that indefinite noun phrases such as

"someone" can be analyzed in context by paraphrasing sentences of the

form P("someone") as "There exists a person x such that P(x)," or, more

formally, 3x(PERSON(x) A P(x)). Russell goes on to point out that, in

sentences of the form "A knows that someone is a P," the rule for

eliminating "someone" can be applied to either the whole sentence or

only the subordinate clause, "someone is a P." Applying this

observation to "Ralph knows that someone is a spy," gives us the

following two formal representations:

(1) KNOW(RALPH,3x(PERSON(x) A SPY(x)))

(2) 3x(PERSON(x) A KNOW(RALPH,SPY(x)))

The most natural English paraphrases of these formulas are "Ralph

knows that there is a person who is a spy," and "There is a person who

22
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Ralph knows is a spy." These seem to correspond pretty well to the two

interpretations of the original sentence. So, the ambiguity in the

original sentence is mapped into an uncertainty as to the scope of the

operator KNOW relative to the existential quantifier introduced by the

indefinite description "someone."

Following a suggestion of Hintikka (1962), we can use a formula

similar to (2) to express the fact that someone knows who or what

something is. He points out that a sentence of the form "A knows who
. .

(or what) B is" intuitively seems to be equivalent to "there is someone

(or something) that A knows to be B. But this can be representeu

formally as 3x(KNOW(A,(x = B))). To take a specific example, "John

knows who the President is" can be paraphrased as "There is someone whom

John knows to be the President," which can be represented by

(3) 3x(KNOW(JOHN,(x = PRESIDENT)))

In (1), KNOW may still be regarded as a purely propositional

operator, although the proposition to which it is applied now has a

quantifier in t. Put another way, KNOW still is used simply to express

a relation between a knower and the proposition he knows. But (2) and

(3) are not so simple. In these formulas there is a quantified variable

that, although bound outside the scope of the operator KNOW, has an

occurrence inside; this is sometimes called "quantifying in."

, Quantifying into knowledge and belief contexts is frequently held to

pose serious problems of interpretation. Quine (1971), for instance,

23
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holds that it is unintelligible, because we have not specified what

proposition is known unless we say what description is used to fix the

value of the quantified variable.

The possible-world analysis, however, provides us with a very

natural interpretation of quantifying in. We keep the standard

interpretation that 3x(P(x)) is true just in case there is some value

for x that satisfies P. If P is KNOW(A,Q(x)), then a value for x

satisfies P(x) just in case that value satisfies Q(x) in every world

that is compatible with what A knows. So (2) is satisfied if there is a

particular person who is a spy in every world that is compatible with

what A knows. That is, in every such world the same person is a spy.

On the other hand, (1) is satisfied if, in every world compatible with

what A knows, there is some person who is a spy, but it does not have to

be the same one in each case.

Note that the difference between (1) and (2) aas been transformed

from a difference in the relative scopes of an existential quantifier

and the operator KNOW to a difference in the relative scopes of an

existential and a universal quantifier (the "every" in "every possible

world compatible with..."). Recall from ordinary first-order logic that

3x(Vy(P(x.y))) entails Vy(3x(P(x,y))), but not vice versa. The

possible-world analysis, then, implies that we :hould be able tn infer

"Ralph knows that there is a spy," from "There is someone Ralph knows to

be a spy," as indeed we can.

24
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When we look at how this analysis applies to our representation for

"knowing who," we get a particularly satisfying picture. We said that A

knows who B is means that there is someone whom A knows to be B. If we

analyze this, we conclude that there is a particular individual who is B

in every world that is compatible with what A knows. Suppose this were

not the case, and that, in some of the worlds compatible with what A

knows, one person is B, whereas in the other worlds, some other person

is B. In other words, for all that A knows, either of these two people

might be B. But this is exactly what we mean when we say that A does

not know who B is! Basically, the possible-world view gives us the very

natural picture that A knows who B is if A has narrowed the

possibilities for B down to a single individual.

Another consequence of this analysis worth noting is that, if A

knows who B is and A knows who C is, we can conclude that A knows

whether B = C. If A knows who B is and who C is, then B has the the

same denotation in all the worlds that are compatible with what A knows,

and this is also true for C. Since, in all these worlds, B and C each

have only one denotation, they either denote the same thing everywhere

or denote different things everywhere. Thus, either B = C is true in

every world compatible with what A knows or B C is. From this ve can

infer that either A knows that B and C are the same individual or that

they are not.

We now have a coherent account of quantifying in that is not framed

in terms of knowing particular propositicns. Still, in some cases

25
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knowing a certain proposition counts as knowing something that would be

expressed by quantifying in. For instance, the proposition that John

knows that 321-1234 is Bill's telephone number might be represented as

(4) KNOW(JOHN,(321-1234 = PHONE-NUM(BILL))),

which does not involve quantifying in. We would want to be able to

infer from this, however, that John knows what Bill's telephone number

is, which would be represented as

(5) 3x(KNOW(JOHN,(x = PHONE-NTM(BILL)))).

It might seem that (5) can be derived from (4) simply by the

logical principle of existential generalization, but that principle is

not always valid in knowledge contexts. Suppose that (4) were not true,

but that instead John simply knew that Mary and Bill had the same

telephone number. We could represent this as

(6) KNOW(JOHN,(PHONE-NUM(MARY) = PHONE-NUM(BILL))).

It is clear that we would not want to infer from (6) that John knows

what Bill's telephone number is--yet, if existential generalization were

universally valid in knowledge contexts, this inference would go

through.

It therefore seems that, in knowledge contexts, existential

generalization can be applied to some referring expressions ("321-

1234"), but not to others ("Mary's telephone number"). We will call the
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expressions to which existential generalization can be applied standard

identifiers, since they seem to be the ones an agent would use to

identify an object for another agent. That is, "321-1234" is the kind

of answer that would always be appropriate for telling someone what

John's telephone number is, whereas "Mary's telephone number," as a

" 3

general rule, would not.

In terms of possible worlds, standard identifiers have a very

straightforward interpretation. Standard identifiers are simply terms

that have the same denotation in every possible world. Following Kripke

(1972), we will call terms that have the same denotation in every

possible world rigid designators. The conclusion that standard

identifiers are rigid designators seems inescapable. If a particular

expression can always be used by an agent to identify its referent for

any other agent, then there must not be any possible circumstances under

which it could refer to something else. Otherwise, the first agent

could not be sure that the second was in a position to rule out those

other possibilities.

The validity of existential generalization for standard identifiers

follows immediately from their identification with rigid designators.

The possible-world analysis of KNOW(A,P(B)) is that, in every world

compatible with what A knows, the denotation of B in that world is in

the extension of P in that world. Existential generalization fails in

general because we are unable to conclude that there is any particular

27
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individual that is in the extension of P in all the relevant worlds. If

B is a rigid designator, however, the denotation of B is the samt- in

every world. Consequently, it is the same in every world compatible

with what A knows, and that denotation is an individual that is in the

extension of P in all those worlds.

There are a few more observations to be made about standard

identifiers and rigid designators. First, in describing standard

identifiers we assumed that everyone knew what they referred to.

Identifying them with rigid designators makes the stronger claim that

what they refer to is common knowledge. That is, not only does everyone

know what a particular standard identifier denotes, but everyone knows

that everyone knows, etc. Second, although it is natural to think of

any individual having a unique standard identifier, this is not required

by our theory. What the theory does require is that, if there are two

standard identifiers for the same individual, it should be common

knowledge that they denote the same individual.
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III FORMALIZING THE POSSIBLE-WORLD ANALYSIS OF KNOWLEDGE

A. Object Lan24gfe and Metalanue

As we indicated above, the analysis of knowledge in terms of

possible worlds can be formalized completely within first-order logic by

admitting possible worlds into the domain of quantification and making

the extension of every expression depend on the possible world in which

it is evaluated. For example, the possible-world analysis of "A knows

who B is" would be as follows: There is some individual x such that, in

every world w that is compatible with what the agent who is A in the
1

actual world knows in the actual world, x is B in w This means that

in our formal theory we translate the formula of the modal logic of

knowledge,

3x(KNOW(A,(x - B))),

into the first-order formula,

3x(Vw (K(A(W ),W ,w ) ) (x = B(w )))).

1 0 0 1

One convenient way of stating the translation rules precisely is to

axiomatize them in our first-order theory of knowledge. This cnn be

29
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done by introducing terms to denote formulas of the modal logic of

knowledge (which we will henceforth call the object languase) and

axiomatizing a truth definition for those formulas in a first-order

language that talks about possible worlds (the metalanguage) . This has

the advantage of letting us use either the modal language or the

possible-world language--whichever is more convenient for a particular

purpose--while rigorously defining the connection between the two.

The typical method of representing expressions of one formal

language in another is to use string operations like concatenation or

list operations like CONS in LISP, so that the conjunction of P and Q

might be represented by something like CONS(P,CONS('A,CONS(Q,NIL))),

which could be abbreviated LIST(P,'A,Q). This would be interpreted as a

list whose elements are P followed by the conjunction symbol followed by

Q. Thus, the metalanguage expression CONS(PCONS('A,CONS(QNIL))) would

denote the object language expression (P A Q). McCarthy (1962) has

devised a much more elegant way to do the encoding, however. For

purposes of semant.c interpretation of the object language, which is

what we want to do, the details of the syntax of that language are

largely irrelevant. In particular, the only thing we need to know about

the syntax of conjunctions is that there is some way of taking P and Q

and producing the conjunction of P and Q. We can represent this by

* ,having a function AND such that AND(P,Q) denotes the conjunction of P

and Q. To use McCarthy's term, AND(P,Q) is an abstract syntax for

representing the conjunction of P and Q.
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We will represent object language variables and constants by

metalanguage constants; we will use metalanguage functions in an

abstract syntax to represent object language predicates, functions, and

sentence operators. For example, we will represent the object lanaguage

formula KNOW(JOHN,3x(P(x))) by the metalanguage term

KNOW(JOHN,EXIST(X,P(X))), where JOHN and X are metalanguage constants,

and KNOW, EXIST, and P are metalanguage functions.

Since KNOW(JOHN,EXIST(X,P(X))) is a term, if we want to say that

the object language formula it denotes is true, we have to do so

explicitly by means of a metalanguage predicate TRUE:

TRLUE(KNOW(JOHN,F.XIST(X,P(X)))).

In the possible-world analysis of statements about knowledge, however.

an object language formula is not absolutely true, but only relative to

a possible world. Hence, TRUE expresses not absolute truth, but truth

in the actual world, which we will denote by W Thus, our first axiom
0

is

Li. Vp (TRUE(p B T(W ,p )).
1 1 0 1

where T(W.P) means that formula P is true in world W. To simplify the

axioms, we will let the metalanguage be a many-sorted logic, with

different sorts assigned to differents setF of variables. For instance,

the variables w , w .... will range over possible worlds; x , x ....

1 2 1 2
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will range over individuals in the domain of the object language; and

a a .... will range over agents. Because we are axiomatizing the
1 2

object language itself, we will need several sorts for different types

of object language expressions. The variables p p . will range
1 2

over object language formulas, and t ,t will range over object
1 2

language terms.

The recursive definition of T for the propositional part of the

object language is as follows:

L2. Vw ,p ,p (T(w ,AND(p ,p )) - (T(w ,p ) A T(w ,p )))
112 1 12 1 12

L3. Vw ,p ,p (T(w ,OR(p ,p )) - (T(w ,p ) V T(w ,p )))
1 1 2 1 1 2 1 1 1 2

L4. Vw ,p ,p (T(w ,IMP(p ,p )) (T(w ,p ) ) T(w ,p
1 1 2 1 1 2 1 1 1 2

L5. Vw p p (T(w ,IFF(p p a (T(w p ) - T(w p )))
1 1 2 1 1 2 1 12

L6. Vw ,p (T(w ,NOT(p )) - T(w ,p ))

Axioms LI-L6 merely translate the logical connectives from the

object language to the metalanguage, using an ordinary Tarskian truth

definition. For instance, according to L2. AND(PQ) is true in a world

if and only if P and Q are both true in the world. The other axioms

state that all the truth-functional connectives are "transparent" tc T

in exactly the same way.
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To represent quantified object language formulas in the

metalanguage, we will introduce additional functions into the abstract

syntax: EXIST and ALL. These functions will take two arguments--a term

denoting an object language variable and a term denoting an object

language formula. Axiomatizing the interpretation of quantified object

language formulas presents some minor technical problems, however. We

would like to say something like this: EXIST(X,P) is true in W if and

only if there is some individual such that the open formula P is true of

that individual in W. We do not have any way of saying that an open

formula is true of an individual in a world, however; we just have the

. predicate T, which simply says that a formula is true in a world. One

way of solving the problem would be to introduce a new predicate, or

perh'aps redefine T, to express the Tarskian notion of satisfaction

rather than truth. This approach is semantically clean but

syntactically clumsy, so we will instead follow the advice of Scott

(1970, p. 151) and define the truth of a quantified statement in terms

of substituting into the body of that statement a rigid designator for

the value of the quantified variable.

In order to formalize this substitutional approach to the

interpretation of object language quantification, we need a rigid

designator in the object language for every individual. Since oir

representation of the object language is in the form of an abstract

syntax, we can simply stipulate that there is a function 0 that maps any

individual in the object language's domain of discourse into an object

33
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IN

language rigid designator of that individual. The definition of T for

quantified statements is then given by the following axiom schemata:

~L7. Vw (T(w ,EXIST(X,P)) a 3x (T(w ,P[G(x )/X])))

1 1 1 1 1

L8. Vw (T(w ,ALL(X,P)) a Vx (T(w ,P[G(x )/X])))1 1 1 1 1

In these schemata, P may be any object language formula, X may be

any object language variable, and the notation P[§(x )/X] designates the
1

expression that results from substituting @(x ) for every free

occurrence of X in P.

L7 says that an existentially quantified formula is true in a world

W if and only if, for some individual, the result of substituting a

rigid designator of that individual for the bound variable in the body

"* of the formula is true in W. LS says that a universally quantified

formula is true in W if and only if, for everl individual, the result of

-, * substituting a rigid designator of th3t individual for the bound

variable in the body of the formula is true in W.

Except for the knowledge operator itself, the only part of the

truth definition of the object language that remains to be given is the

definition of T for atomic formulas. We remarked previously that a

formula of the form P(A .... ,A ) is true in a world W just in case the
n

tuple consisting of the denotations in W of the terms A .- A is in
1 n
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the extension in W of the relation P. To axiomatize this principle, we

need two additions to the metalanguage. First., we need a function D

that maps a possible world and an object language term into the

denotation of that term in that world. Second, for each n-place object

language predicate P, we need a corresponding n+1-place metalanguage

predicate (which, by convention, we will write :P) that takes as its

arguments the possible world in which the object language formula is to

be ev3luated and the denotations in that world of the arguments of the

object language predicate. The interpretation of an object language

atomic formula is then given by the axiom schema

L9. Vw t ..... t
11 n

(T(w ,P(t ..... t )) a :P(w, ,D(w ,t ),....D(w ,t )))=
1 1 n 1 1 In

To eliminate the function D, we need to introduce a metalanguage

expression corresponding to each object language constant or function.

In the general case, the new expression will be a function with an extra

argument position for the possible world of evaluation. The axiom

schemata for D are then

L10. Vw ,x (D(w ,Q(x )) = x )
-,1 1 1 1 1"-

L11. Vw (D(w C) :C(w ))
*1 1 1 "L

L12. Vw ,t ..... t
11 n

(D(w ,F(t ..... t )) = :F(w ,D(w ,t ) .... D(w ,t ))),
1 1 n 1 11 1 n3
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where C is an object language constant and F is an object langauage

function, and we use the ":" convention already introduced for their

metalanguage counterparts.

Since O(x ) is a rigid designator of x , its value is x in every

1 1 1

possible world. In the general case, an object language constant will

have a corresponding metalanguage function that picks out the denotation

of the constant in a particular world. Similarly, an object language

"* function will have a corresponding metalanguage function that maps a

possible world and the denotations of the arguments of the object

language function into the value of the object language function applied

to those arguments in that world.

It will be convenient to treat specially those object language

constants and functions that are (or can be used to construct) rigid

designators. We could introduce additional axioms asserting that such

expressions have the same value in every possible world, but we can

accomplish the same end simply by making the corresponding metalanguage

expressions independent of the possible world of evaluation. So. for

object language constants that are rigid designators, we will have a

variant of axiom Lll:

Llla. Vw (D(w ,C) = :C) if C is a rigid designator.

We will similarly treat rigid functions--those that always map a

particular tuple of arguments into the same value in all possible

worlds:
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L123a. Yw , ,...,t (D(w ,F(t -... ,t ) :F(D(w ,t ),.D(w ,t))

if F is a rigid function.

Finally, we introduce a special axiom for the equality predicate of

I the object language, fixing its interpretation in all possible worlds to

be the identity relation:

L13. Vw ,t ,t (T(w ,EQ(t ,t a) (D(w ,t )-D(w ,t))
1 2 1 1 2 1 1 1 2

-C

B. A First-Order Theorl 9f Knowledge

* The axioms given in the preceding section allow us to talk about a

formula of first-order logic being true relative to a possible world

rather than absolutely. This generalization would be pointless,

by our axioms for knowledge:

K.

L1. Vw K 1 .1..p V (D Vw (K(D(w t ),w w , )T(w .p D ,1

(Tw1KO~ 1 - 2 1 1 1 2 2 1

K2. Va w (K(a w fw

K3. Va w w (K(a w ,w t ) Vw (K(a w w ) ) K( w ,w
1 1 2 1 1 2 3 1 23 1 1 3

, 1 gives the possible-world analysis for object language formulas

of the form KNOW(AP). The interpretation is that KNOW(AP) is true in
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world W just in case P is true in every world that is compatible with

'K 1

*1.'what the agent denoted by A in W knows in W .Since an object language

1 1

term may denote different individuals in different possible worlds, we

I.

use D(W ,A) to identify the denotation of A in W . K represents the

accessibility relation associated with KNOW, so K(D(W ,A),W ,W ) is how

1 12

.v we reresent the fact W is compatible with what the agent denoted by A

in W knows in W .
-1 1

As we pointed out before, the principle embodied in K y is that an

agent knows everything entailed by his knowledge. Since this is too

.22. strong a generalization, in a more thorough analysis we would regard the

inference from the right side of KI to the left side as being a default

"'* inference. K2 and K3 state constraints on the accessibility relationK

that we use to capture other properties of knowledge. They require

* that, for a fixed agent :A. K(:A,w ,w ) be reflexive and transitive. We

. have already shown this entails that anything that anyone knows must be

t,. true, and that if someone knows something he knows that he knows it.

' '- Finally, the fact that K1-K3 are asserted to hold for all possible

- worlds implies that everyone knows the principles they embody, and

everyone knows that everyone knows, etc. In other words, these

* principles are common knowledge.
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To illustrate how our theory operates, we will show how to derive a

simple result in the logic of knowledge, that from the premises that A

knows that P(B) and A knows that B = C, we can conclude that A knows

that P(C). Our proofs will be in natural-deduction form. The axioms

and preceding lines that justify each step will be given to the right of

the step. Subordinate proofs will be indicated by indented sections,

and ASS will mark the assumptions on which these subordinate proofs are

based. DIS(N,M) will indicate the discharge of the assumption on line N

with respect to the conclusion on line M. The general pattern of proofs

in this system will be to assert the object language premises of the

problem, transform them into their metalanguage equivalents, using

axioms LI-LI3 and KI, then derive the metalanguage version of the

conclusion using first-order logic and axioms such as K2 and K3, and

finally transform the conclusion back into the object language, again

using L1-L13 and K1.

Given: TRLUE(KNOW(A,P(B)))
TRUE(KNOW(A,EQ(B,C)))

Prove: TRUE(KNOW(A,P(C)))

1. TRUE(KNOW(A,P(B))) Given

2. T(W ,KNOW(A,P(B))) L1,1
0

3. K(D(W .A),W ,w ) ) T(w ,P(B)) K1.2
4 0 0 1 1

4. K(:A(W ),W ,w ) ) T(w ,P(B)) L11,3
0 01 1

5. TRUE(KNOW(A.EQ(B,C))) Given

6. T(W ,KNOW(A,EQ(B,C))) L1,5
0

7. K(D(W ,A),W ,w ) ) T(w ,EQ(B,C)) K1,6
0 0 1 1
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8. K(:A(W ),W ,w ) T(w ,EQ(B,C)) Lli,7
0 0 1 1

9. K(:A(W ),W ,w )ASS
0 0 1

10. T(w ,P(B)) 4,9
1

11. :P(w ,D(w ,B)) L9, 10
11

12. :P(w ,:B(w )L11, 11

1

14. D(w ,B) =D(w ,C) L13,13

1s. :B(w )=:C(w )L11, 14

16. :P(w :C(w ))12,15

1(AW)Tw,() I(,8

17. :P(w ,D(w ,C)) L11,16

.)Ww18. T(w ,P(C)) L9,17
01 1

0 0 1 1

21. T(W ,KNOW(A,P(C))) K1 ,20
0

C2. TRU7E(KNOW(A,P(C))) Li1,21

A knows that P(B) (Line 1), so P(B) is true in every world

compatible with what A knows (Line 4). Similarly, since A knows that

B =C (Line 5), B -C is true in every world compatible with what A

knows (Line 8). Let w be one of these worlds (Line 9). P(B) and B =C

must be true in w (Lines 12- and 15) , hence P(C) must be true in w

(Line 16). Therefore, P(C) is true in every world compatible with what

A knows (Line 19), so A knows that P(C) (Line 22). If TRUE(EQ(B,C)) had

been given instead of TRUE(KNOW(A,EQ(B,C))), we would have had B =C

40
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true in W instead of w In that case, the substitution of C for B in

0 1

P(B) (Line 16) would not have been valid, and we could not have

concluded that A knows that P(C). This proof seems long because we have

made each routine step a separate line. This is worth doing once to

illustrate all the formal details, but in subsequent examples we will

combine some of the routine steps to shorten the derivation.
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IV A POSSIBLE-WORLD ANALYSIS OF ACTION

In the preceding sections, we have presented a framework for

describing what someone knows in terms of possible worlds. To

characterize the relation of knowledge to action, we need a theory of

action in these same terms. Fortunately, the standard way of looking at

actions in AI gives us just that sort of theory. Most AI programs that

reason about actions are based on a view of the world as a set of

possible states of affairs, with each action determining a binary

relation between states of affairs--one being the outcome of performing

the action in the other. We can integrate our analysis of knowledge

with this view of action by identifying the possible worlds used to

describe knowledge with the possible states of affairs used to describe

actions.

The identification of t possible world, as used in the analysis of

knowledge, with the state of affairs at a particular time does not

require any changes in the formalization already presented, but it does

require i reinterpretation of what the axioms mean. If the variables

w , w .... are reinterpreted as ranging over states of affairs, then "A
1 2

knows that P" will be anilyzed roughly as "P is true in every state of

affairs that is compatible with what A knows in the actual state of
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affairs." It might seem that taking possible worlds to be states of

affairs, and therefore not extended in time, might make it difficult to

talk about what someone knows regarding the past or future. That is not

the case, however. Knowledge about the past and future can be handled

by modal tense operators, with corresponding accessibility relations

between possible states-of-affairs/worlds. We could have a tense

operator FUTURE such that FUTURE(P) means that P will be true at some

time to come. If we let F be an accessibility relation such that

F(W ,W ) means that the state-of-affairs/world W lies in the future of
1 2 2

the state-of-affairs/world W , then we can define FUTURE(P) to be true
1

in W just in case there is some W such that F(W ,W ) holds and P is
1 2 1 2

true in W
2

This much is standard tense logic (e.g., Rescher and Urquhart,

1971). The interesting point is that statements about someone s

knowledge of the future work out correctly, even though such knowledge

is analyzed in terms of alternatives to a state of affairs, rather than

alternatives to a possible world containing an entire course of events.

The proposition that John knows that P will be true is represented

simply by KNOW(JOHN.F17URE(P)). The analysis ,of this is that FU7hREJPI

is true in every state of affairs that is compatible with what John

knows, from which it follows that, for each state of affairs that is

compatible with what John knows, P is true in some future alternative to
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that state of affairs. An important point to note here is that two

• states of affairs can be "internally" similar (that is, they coincide in

the truth-value assigned to any nonmodal statement), yet be distinct

because they differ in the accessibility relations they bear to other

possible states of affairs. Thus, although we treat a possible world as

a state of affairs rather than a course of events, it is a state of

affairs in the particular course of events defined by its relationships

to other states of affairs.

For planning and reasoning about future actions, instead of a tense

operator like FUTURE, which simply asserts what will be true, we need an

operator that describes what would be true if a certain event occurred.

Our approach will be to recast McCarthy's situation calculus (McCarthy,

1968) (McCarthy and Hayes, 1969) so that it meshes with our possible-

world characterization of knowledge. The situation calculus is a first-

- - order language in which predicates that can vary in truth-value over

time are given an extra argument to indicate what situations (i.e.

states of affairs) they hold in, with a function RESULT that maps an

agent, an action, and a situation into the situation that results from

the agent's performance of the action in the first situation.

Statements about the effects of actions are then expressed by formulas

like P(RESULT(AACTS)), which means that P is true in the situation

that results from A's performing ACT in situation S.

To integrate these ideas into our logic of knowledge, we will

K..'' reconstruct the situation calculus as a modal logic. In parallel to the
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operator KNOW for talking about knowledge, we introduce an object

language operator RES for talking about the results of events.

Situations will not be referred to explicitly in the object language,

but they will reappear in the possible-world semantics for RES in the

metalanguage. RES will be a two-place operator whose first arguments is

a term denoting an event, and whose second argument is a formula.

RES(E,P) will mean that it is possible for the event denoted by E to

occur and that, if it did, the formula P would then be true. The

possible-world semantics for RES will be specified in terms of an

accessiblity relation R, parallel to K, such that R(:E,W ,W ) means that
1 2

W is the situation/world that would result from the event :E happening
2

in W

We assume that, if it is impossible for :E to happen in W (i.e.,

if the prerequisites of :E are not satisfied), then there is no W such
2

that R(:E,W ,W ) holds. Otherwise we assume that there is exactly one
1 2

4
W such that (:E,W ,W ) holds:

1 2

R1. Vw ,w ,w ,e ((R(e ,w ,w) A R(e ,w ,w)) ) (w = w
[ 1231 112 113 2 3

(Variables e e .... range over events.) Given these assumptions,
1 2
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RES(E,P) will be true in a situation/world W just in case there is some
I

W that is the situation/world that results frum the event described by
2

VE happening in W and in which P is true:

R2. Vw ,t ,p (T(w ,RES(t ,p )) 3 Bw (R(D(w ,t ),w .w ) A T(w .p )))
111 1 11 2 11 12 21

The type of event we will normally be concerned with is the

performance of an action by an agent. We will let DO(A,ACT) be a

description of the event consisting of the agent denoted by A performing

5

the action denoted by ACT. (We will assume that the set of possible

agents is the same as the set of possible knowers.) We will want

DO(A,ACT) to be the standard way of referring to the event of A's

carrying out the action ACT, so DO will be a rigid function. Hence,

DO(A,ACT) will be a rigid designator of an event if A is a rigid

designator of an agent and ACT a rigid designator of an action.

Many actions can be thought of as general procedures applied to

particular objects. Such a general procedure will be represented by a

function that maps the objects to which the procedure is applied into

the action of applying the procedure to those objects. For instance, if

DIAL represents the general procedure of dialing combinations of safes,

SF a safe, and COMB(SF) the combination of SF, then DIAL(COMB(SF),SF)

represents the action of dialing the combination COMB(SF) on the safe

SF, and DO(A,DIAL(COMB(SF),SF)) represents the event of A's dialing the

combination COMB(SF) on the safe SF.
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This formalism gives us the ability describe an agent's knowledge

of the effects of carrying out an action. In the object language, we

can express the claim that A knows that P would result from A 's doing
1 2

ACT by saying that KNOW(A RES(DO(A ACT),P)) is true. The possible-

1 2

world analysis of this statement is that, for every world compatible

with what A knows in the actual world, there is a world that is the

result of A 's doing ACT and in which P is true (see Figure 5).
2

Formally, this is expressed by

Vw (K(:A ,W ,w ) ) 3w (R(:DO(:A ,:ACT),w ,w ) A T(w ,P))),
1 1 0 1 2 2 1 2 2

if we assume that A , A , and ACT are rigid designators.
1 2

In addition to simple, one-step actions, we will want to talk about

complex combinations of actions. We will therefore introduce

expressions into the object language for action sequences, conditionals,

and iteration. if P is a formula, and ACT and ACT are action
1 2

descriptions, then (ACT ACT ), IF(P,ACT ,ACT ), and WHILE(P,ACT ) will
1 2 1 2 1

also be action descriptions. Roughly speaking, (ACT ACT ) describes
1 2

the sequence of actions consisting of ACT followed by ACT

IF(PACT ,ACT ) describes the conditional action of doing ACT if P is
1 21
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RDO01A 2 :ACT)

R:0O(:A2 .:ACT)

FIGURE 5 TRUE(KNOW(A 1 , RES(DO(A 2 , ACT), PM M
Vw 1 (K(:A 1 , W0 . wl) 3w 2 (R(:DO(:A 2 ,:ACT), w 1, w 2 ) A T(w2 , PMl

true, otherwise doing ACT . WHILE(P,ACT ) describes the iterative
2

action of repeating ACT as long as P is true.1

Defining denotations for these complex action descriptions is

somewhat problematical. The difficulty comes from the fact that,

whenever we have an action described as a sequence of subactions, any

expression used in specifying one of the subactions needs to he

interpreted relative to the situation in which that subaction is carried

out. For instance, if PUTON(X,Y) denotes the action of putting X on Y

STACK denotes a stack of blocks, TABLE denotes a table, and TOP picks

out the top block of a stack, we would want the execution of
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(PUTON(TOP(STACK),TABLE); PUTON(TOP(STACK),TABLE))

to result in what were initially the top two blocks of the stack being

put on the table, rather than what was initially the top block being put

on the table twice. The second occurrence of TOP(STACK) should be

interpreted with respect to the situation in which the first block has

already been removed. The problem is that, in general, what situation

exists after one step of a sequence of actions has been excecuted

depends on who the agent is. If John picks up a certain block, he will

be holding the block; if, however, Mary performs the same action, she

will be holding the block. If an action description refers to "the

block Mary is holding," exactly which block it is may depend on which

agent is carrying out the action, but this is not specified by the

action description.

One way of getting around theN? lfficulties conceptually would be

to treat actions as functions from agents to events, but notational

problems would remain nevertheless. We will therefore choose a

different solution: treating complex actions as "virtual individuals"

(Scott, 1970), or pseudoentities. That is, complex action descriptions

will not be treated as referring expressions in themselves, but only as

component parts of more complex referring expressions. In particular.

if ACT is a complex action description (and A denotes an agent), we will

treat the event description DO(A,ACT), but not ACT itself, as having a

denotation. Complex action descriptions will be permitted to occur only

as part of such evcnt descriptions, and we will define the denotations
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of the event descriptions in a way that eliminates reference to complex

actions. We will, however, continue to treat actions as real entities

that can be quantified over, and simple action descriptions such as

DIAL(COMB(SF),SF) will still be considered to denote actions.

The denotations of event descriptions formed from conditional and

iterative action descriptions can be defined as follows in terms of the

denotations of event descriptions formed from action sequence

descriptions:

R3. Vw t ,t ,t p
r.-1 1 2 3 1

((T(w ,p ) ) (D(w ,DO(t ,IF(p ,t ,t ))) = D(w ,DO(t ,t )))) A
11 1 1 1 2 3 1 1 2

(-T(w ,p ) ) (D(w ,DO(t ,IF(p ,t t ))) = D(w ,DO(t ,t )))))
1 1 1 2 3 1 1 3

R4. Vw ,t ,t ,p
1'' 1 2 1

(D(w ,DO(t ,WHILE(p ,t )))
1 1 1 2

D(w ,DO(t ,IF(p ,(t ; WHILE(p ,t )),NIL)))
1 1 1 2 12

R3 says that performing the conditional action IF(P.ACT ,ACT ) results
1 2

in the same event as carrying out ACT in a situation where P is true or

carrying out ACT in a situation where P is false. R4 says that
L4. 2

performing WHILE(P,ACT) always results in the same event as

IF(P,(ACT; WHILE(P,ACT)),NIL), where NIL denotes the null action. In

other words, doing WHILE(P,ACT) is equivalent to doing ACT followed by

WHILE(P,ACT) if P is true, otherwise doing nothing--i.e., doing ACT as

long as P remains true.
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To define the denotation of events that consist of carrying out

action sequences, we need some notation for talking about sequences of

events. First, we will let ';" be a polymorphic operator in the object

language, creating descriptions of event sequences in addition to action

sequences. Speaking informally, if E and E are event descriptions,
1 2

then (E ; E ) names the event sequence consisting of E followed by E
1 2 1 2

just as (ACT ; ACT ) names the action sequence consisting of ACT
1 2 1

followed by ACT . In the metalanguage, event sequences will be
2

indicated with angle brackets, so that <:E ,:E > will mean :E followed
1 2 1

by :E The denotations of expressions involving action and event
2

sequences are then defined by the following axioms:

RS. Vw ,t *t ,t
1 1 2 3

(D(w ,DO(t ,(t ; t ))) = D(w ,(DO(t ,t ): DO(O(D(w ,t )),t ))))
1 1 2 3 1 1 2 1 1 3

R6. Vw ,w ,t ,t
1 2 1 2

(R(D(w ,t ),w ,w ) ) (D(w ,(t ; t )) = <D(w ,t ),D(w ,t )>))
1 1 1 2 1 1 2 1 1 22

R5 says that the event consisting of an agent A's performance of

the action sequence ACT followed by ACT is simply the event sequence
1 2

that consists of A's carrying out ACT followed by his carrying out
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ACT Note that, in the description of the second event, the agent is

picked out by the expression O(D(w ,A)), which guarantees that we get

the same agent as in the first event, in case the original term picking

out the agent changes its denotation after the first event has happened.

R6 then defines the denotation of an event sequence description (E ;E )I
1 2

as the sequence comprising the denotation of E in the original

situation followed by the denotation of E in the situation resulting
2

from the occurrence of E . If there is no situation that results from

the occurence of E , we leave the denotation of (E E ) undefined.
1 1 2

Finally, we need to define the accessibility relation R for event

sequences and for events in which the null action is carried out.

R7. Vw ,w ,e ,e" 1 2 1 2

(R(<e .e >,w ,w ) E 3w (R(e .w ,w ) A R(e .w ,w
1 2 1 2 3 1 1 3 2 3 2

R8. Vw ,a (R(:DO(a :NIL),w ,w

R7 says that a situation W is the result of the event sequence <E *E >

occurring in W if and only if there is a situation W such that W is

1 3 3

the result of E occurring in W , and W is the result of E occarring
1 1 2 2

52

.r7 .. -



6
in W . We will regard NIL as a rigid designator in the object language

3

for the null action, so :NIL will be its metalanguage counterpart. R8,

therefore, says that in any situation the result of doing nothing is the

same situation.
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V AN INTEGRATED THEORY OF KNOWLEDGE AND ACTION

A. The De2endence of Action on KnowledSe

As we pointed out in the introduction, knowledge and action

interact in two principal ways: (1) knowledge is often required prior to

taking action; (2) actions can change what is known. In regard to the

first, we need to consider knowledge prerequisites as well as physical

prerequisites for actions. Our main thesis is that the knowledge

prerequisites for an action can be analyzed as a matter of knowing what

action to take. Recall the example of trying to open a locked safe.

Why is it that, for an agent to achieve this goal by using the plan

"Dial the combination of the safe," he must know the combination? The

reason is that an agent could know that dialing the combination of the

- safe would result in the safe's being open, but still not know what to

do because he does not know what the combination of the safe is. A

similar analysis applies to knowing a telephone number in order to call

someone on the telephone or knowing a password in order to gain access

to a computer system.

It is important to realize that even mundane actions that are not

usually thought of as requiring any special knowledge are no different

from the examples just cited. For instance, none of the Al problem-
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solving systems that have dealt with the blocks world have tried to take

into account whether the robot possesses sufficient knowledge to be able
.to move block A to point B. Yet, if a command were phrased as "Move my

favorite block back to its original position," the system could be just

as much in the dark as with "Dial the combination of the safe." If the

system does not know what actions satisfy the description, it will not

be able to carry out the command. The only reason that the question of

knowledge seems more pertinent in the case of dialing combinations and

telephone numbers is that, in the contexts in which these actions

naturally arise, there is usually no presumption that the agent knows

what action fits the description. An important consequence of this view

is that the specification of an action will normally not need to include

anything about knowledge prerequisites. These will be supplied by a

general theory of using actions to achieve goals. What we will need to

specify are the conditions under which an agent knows what action is

referred to by an action description.

In our possible-world semantics for knowledge, the usual way of

knowing what entity is referred to by a description B is by having some

description C that is a rigid designator, and by knowing that B = C.

(Note, that if B itself is a rigid designator, it can be used for C.)

In particular, knowing what action is referred to by an action

description means having a rigid designator for the action described.

." . But, if this is all the knowledge that is required for carrying out the

action, then a rigid designator for an action must be an executable -,

UA
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Ed2£2 ption of the action--in the same sense that a computer program is

an executable description of a computation to an interpreter for the

language in which the program is written.

Often the actions we want to talk about are mundane general

procedures that we would be willing to assume everyone knows how to

perform. Dialing a telephone number or the combination of a safe is a

typical example. In many of these cases, if an agent knows the general

procedure and what objects the procedure is to be applied to, then he

knows everything that is relevant to the task. In such cases, the

function that represents the general procedure will be a rigid function,

so that, if the arguments of the function are rigid designators, the

term consisting of the function applied to the arguments will be a rigid

designator. Hence, knowing what objects the arguments denote will

amount to knowing what action the term refers to. We will treat dialing

the combination of a safe, or dialing a telephone number as being this

type of procedure. That is, we assume that anyone who knows what

combination he is to dial and what safe he is to dial it on thereby

knows what action he is to perform.

There are other procedures we might also wish to assume that anyone

could perform, but that cannot be represented as rigid functions.

Sup ,e that, in the blocks world, we let PUTON(BC) denote the actio'n

of putting B on C. Even though we would not want to question anyone's

ability to perform PUTON in general, knowing what objects B and C are

will not be sufficient to perform PUTON(B,C); knowing where they are is
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also necessary. We could have a special axiom stating that knowing what

action PUTON(BC) is requires knowing where B and C are, but this will

be superfluous if we simply assume that everyone knows the definition of

PUTON in terms of more primitive actions. If we define PUTON(X,Y) as

something like

(MOVEHIND(LOCATION(X));
GRASP;
MOVEILAND(LOCATION(TOP(Y)));
UNGRASP),

then we can treat MOVEHAND, GRASP, and UNGRASP as rigid functions, and

we can see that executing PUTON requires knowing where the two objects

are because their locations are mentioned in the definition. So,

although PUTON itself is not a rigid function, we can avoid having a

special axiom stating what the knowledge prerequisites of PUTON are by

defining PUTON as a sequence of actions represented by rigid functions.

To formalize this theory, we will introduce a new object language

operator CAN. CAN(A,ACTP) will mean that A can achieve P by performing

ACT, in the sense that A knows how to achieve P by performing ACT. We

will not give a possible-world semantics for CAN directly; instead we

will give a definition of CAN in terms of KNOW and RES, which we can use

in reasoning about CAN to transform a proble-m into terms of possible

worlds.

In the simplest case, an agent A can achieve P by performing ACT if

he knows what action ACT is, and he knows that P would be true as a
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result of his performing ACT. In the object language, we can express

this fact by

Va(x(KNOW(a,((x = ACT) A RES(DO(a,ACT),P)))) )
CAN (a, ACT ,P) ).

We cannot strengthen this assertion to a biconditional, however, because

that would be too stringent a definition of CAN for complex actions. It

would require the agent to know from the very beginning of his action

exactly what he is going to do at every step. In carrying out a complex

action, though, an agent may take some initial action that results in

his acquiring knowledge about what to do later.

* . For an agent to be able to achieve a goal by performing a complex

action, all that is really neccessary is that be know what to do first,

and that he know that he will know what to do at each subsequent step.

So, for any action descriptions ACT and ACT the following formula also

states a condition under which an agent can achieve P by performing ACT:

Va(3x(KNOW(a,((DO(a,(x; ACT )) = DO(aACT)) A
1

RES(DO(a,x),CAN(a,ACT ,P))))) )
1

CAN ( a, ACT, P) ).

This says that A can achieve P by doing ACT if there is an action X slch

that A knows that his execution of the sequence X followed by ACT wouldL1
be equivalent to his doing ACT, and that his doing X would result In his

being able to achieve P by doing ACT

1
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Finally, with the following metalanguage axiom we can state that

these are the only two conditions under which an agent can use a

particular action to achieve a goal:

Cl. Vw ,t ,t ,t ,p
1 1 2 3 1

((t = O(D(w ,t )))
2 1 1

(T(w ,CAN(t ,t ,p ))
1 1 3 1

(T(w EXIST(X,KNOW(t ,AND(EQ(X,t ),RES(DO(t t ),p ))))) V
1 1 3 2 3 1

3t (T(w ,EXIST(X,KNOW(t ,AND(EQ(DO(t. ,(X: t )),DO(t ,t )),
4 1 1 2 4 2 3

RES(DO(t ,X),

CAN(t ,t ,p
2 4 1

Letting t - A, t - A , and t - ACT, Cl says that, for any formula P,
1 2 1 3

if A is the standard identifier of the agent denoted by A, then A can
1

achieve P by doing ACT if 'and only if one of the following conditions is

met: (1) A knows what action ACT is and knows that P would be true as a

result of A 's (i.e., his) doing ACT, or (2) there is an action

1

description t = ACT such that, for some action X, A knows that A 's
4 1 1

doing X followed by ACT is the same event as his doing ACT and krinws
1

"M -

that A 's doing X would result his being ble to achieve P by doing

ACT.

59

n-'" :" " " . = ' -:.'." ", :='i'.. .. . . . . . . . . . . . . . . . . .
''

.. . . . .
, '

' '" ' ',' ''''- * '....."'""..- . "-'..'



As a simple illustration of these concepts, we will show how to

derive the fact that an agent can open a safe, given the premise that he

knows the combination. To do this, the only additional fact we need is

that, if an agent does dial the correct combination of a safe, the safe

* . will then be open:

D1. Vw ,a ,x

(:SAFE(x) j
:L 1

3w (R(:DO(a :DIAL(:COMB(w x ),x )),w w ) A
2 1 11 1 12

:OPEN(w ,x
2 1

Dl says that, for any possible world W, any agent :A, and any safe SF,
"'. 1

there is a world W that is the result of :A's dialing the combination
2

of :SF on :SF in W and in which :SF is open. The important point

about this axiom, is that the function :COMB (which picks out the

combination to a safe) depends on what possible world it is evaluated

in, while :DIAL (the function that maps a combination and a safe into

the action of dialing the combination on the safe) does not. Thus we

are implicitly assuming that, given a particular safe, there may be some

doubt as to what its combination is, but, given a combination and a

safe, there exists no possible doubt as to what action dialing the

combination am the sate is. (We also simplify matters by omitting the

possible world-argument to :SAFE, so as to avoid raising the question of

knowing whether something is a safe.) Since this axiom is asserted to
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hold for all possible worlds, we are in effect assuming that it is

common knowledge.

Now we show that, for any safe, if the agent A knows its

combination, he can open the safe by dialing that combination; or, more

9 precisely, for all X, if X is a safe and there is some Y, such that A

knows that Y is the combination of X, then A can open X by dialing the

combination of X on X:

N Prove: TRUE(ALL(X,IMIP(AND(SAFE(X),EXIST(Y,KNOW(A,EQ(Y,COMfB(X))))))
OAN(A,DIAL(COMB(X) ,X) ,OPEN(X))))

1. T(W, ASS
0

AND(SAFE(@(x )

EXIST(Y,KNOW(A,EQ(Y,COMB(O(x ))))

2. :SAFE(x ) ,L2,L9

3. Vw (K(:A(W ),W ,w ) ,L2,L7,Kl,Lll,
1 0 0 1

(:C - :COMB(w ,x ))Ll3,L1O,L12"

4. K(:A(W ),W ,w )ASS
0 0 1

5. :C :COMB(w ,x )3,4
11

6. :DIAL(:C,x )=:DIAL(:COMB(w ,x ),x ) 5
1 1 1

7. T(w ,LlO,L12,L12a,L13

EQ(O(:DIAL(:C,x))

DIAL(COMB(G(x )).(x ))
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L: 'w*7 L

8. 3w (R(:DO(:A(W ),2,D1
2 0

:DIAL(:COIAB(w ,x ),x),

w ,w ) A
1 2

:OPEN(w ,x
2 1

9 T(w ,Lii ,L1O,Li2a,Lg.R2

RES(DO(O(D(W ,A)),
0

DIAL(COMB(@D(x )),@D(x ))

OPEN(@(x ))

10. T(w 7,9,L2

AND(EQ(O(:DIAL(:C~x),

DIAL(COMB(O(x )),O(x ))

RES(DO(G(D(W ,A)),
0

* DIAL(COMB(O(x )),O(x M))
1

-~~ *. OPEN(@(x)))

0 0 1
* T(w,

AND(EQ(@(:DIAL(:C,x))

DIAL(COMB3(O(x )),O(x M),
1 1

RES(DO(G(D(W ,A)),
0

DIAL(CONiB(O(x )),O(x ))

OPEN(O(x)))
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12. T(W ,11 ,L1 ,K1
0

KNOW (A,
AND(EQ(O(:DIAL(:C,x))

DIAL(COMB(O(x )),@(x ))
11

RES(DO(O(D(W ,A)),
0

DIAL(COMB(O(x )),O(x ))

OPEN(O(x )))

13. T(W 12,L.7
0

EXIST(X,
KNOW (A,

AND(EQ(X,
DIAL(COMB(O(x),

O(x M),
1

RES(DO(O(D(W ,A)),
0

DIAL(COMB(@(x),

@(x M),

OPEN(O(x)))

14. T(W 13,C1
0

CAN(A,
DIAL(CONIB(G(x )),O(x))

11
OPEN(O(x ))

15. T(W DIS(1,14)
0

AND(SAFE(O(x )

T(WI

CAN(A.DIAL(COMB(O(x )).O(x )),OPEN(O(x ))
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16. TRUE(ALL(X, 15,L4,L8,Ll
IMP(AND(SAFE(X),

EXIST(Y,
KNOW(A,

EQ(Y,COMB(X))))))
CAN(A,DIAL(COMB(X),X),OPEN(X))))

Suppose that x is a safe and there is some C that A knows to be
1

the combination of x (Lines 1-3). Suppose w is a world that is
1 1

compatible with what A knows in the actual world, W (Line 4). Then C
0

is the combination of x in w (Line 5), so dialing C on x is the same
1 1 1

action as dialing the combination of x on x in w (Lines 6 and 7). By
1 1 1

axiom D1, A's dialing the combination of x on x in w will result in

x 's being open (Lines 8 and 9). Since w was an arbitrarily chosen
1 1

world compatible with what A knows in W , it follows that in W A knows
0 0

dialing C on x to be the act of dialing the combination of x on x and
1 1 1

that his dialing the combination of x on x will result in x 's being
1 1 1

open (Lines 10-12). Hence, A knows what action dialing the combination

of x on x is, and that his dialing the combination of x on x will

result in x 's being open (Line 13). Therefore A can open x by dialing
1 1

the combination of x on x provided that x is a safe and he knows the
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combination of x (Lines 14 and 15). Finally, since x was chosen
• .1 1

arbitrarily, we conclude that A can open any safe by dialing the

combination, provided he knows the combination (Line 16).

B. The Effects of Action on KnowledSe

In describing the effects of an action on what an agent knows, we

will distinguish actions that give the agent new information from those

that do not. Actions that provide an agent with new information will be

called informative actions. An action is informative if an agent would

know more about the situation resulting from his performing the action

after performing it than before performing it. In the blocks world,

looking inside a box could be an informative action, but moving a block

would probably not, because an agent would normally know no more after

moving the block than he would before moving it. In the real world

there are probably no actions that are never informative, because all

physical processes are subject to variation and error. Nevertheless, it

seems clear that we do and should treat many actions as noninformative

from the standpoint of planning.

Even if an action is not informative in the sense we have just

defined, performing the action will still alter the agent's state of

knowledge. If the agent is aware of his actiou, he will know that it

has been performed. As a result, the tense and modality of many of the

things he knows will change. For example, if before performing the
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action he knows that P is true, then after performing the action he will

know that P was true before he performed the action. Similarly, if

before performing the action he knows that P would be true after

performing the action, then afterwards he will know that P is true.

We can represent this very elegantly in terms of possible worlds.

Suppose :A is an agent and :E an event that consists in :A's performing

some noninformative action. For any possible worlds W and W such that
1 2

W is the result of :E 's happening in W the worlds that are

2 1 1

compatible with what :A knows in W are exactly the worlds that are the

22
result of :E 's happening in some world that is compatible with what :A

knows in W . In formal terms, this is

Vw ,w (R(:E,w ,w )
1 2 1 2

Vw (K(:A,w ,w ) 3 3w (K(:A,w ,w ) A R(:E.w ,w
3 2 3 4 1 4 4 3

which tells us exactly how what :A knows after :E happens is related to

what :A knows before :E happens.

We can try to get some insight into this analysis by studying

Figure 6. Sequences of possible situations connected by events can be

thought of as possible courses of events. If W is an actual situation

I.6
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FIGURE 6 THE EFFECT OF A NONINFORMATIVE ACTION ON THE AGENT'S KNOWLEDGE

in which :E occurs, thereby producing W ,then W and W comprise a

R 1 2. 1

subsequence of the actual course of events. Now we can ask what other

courses of events are compatible with what :A knows in W and in W

Suppose that W and W are connected by :E in a course of events that

r4 31

is compatible with what :A knows in W .Since :E is not informative

for :A, the only sense in which his knowledge is increased by :E is

that he knows that :E has occurred. Since :E occurs at the

: 7]

corresponding place in the course of events that includes W and W

4 3
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this course of events will still be compatible with everything :A knows

P.in W . However, the appropriate "tense shift" takes place. In W W
2 1 4

is a possible alternative present for :A, and W is a possible
3

alternative future. In W , W is a possible alternative present for A,
2 3

and W is a possible alternative past.
4

Next consider a different course of events that includes W and W
5 6

connected by a different event, :E This course of events might be
2

compatible with what :A knows in W if he is not certain what he will do

next, but, after :E has happened and be knows that it has bappened,
1

this course of events is no longer compatible with what he knows. Thus,

W is not compatible with what :A knows in W . We can see, then, that

6 2

even actions that provide the agent with no new information from the

,- outside world still filter out for him those courses of events in which

he would have performed actions other than those he actually did.

The idea of a filter on possible courses of events also provides a

good picture of informative actions. With these actions, though, the

*filter is even stronger, since they not only filter out courses of

events that differ from the actual course of events as to what event has

just occurred, but they also filter out courses of events that are

.N



incompatible with the information furnished by the action. Suppose :E

is an event that consists in :A's performing an informative action, such

that the information gained by the agent is whether the formula P is

true. For any possible worlds W and W such that W is the result of
I 2 2

:E's happening in W the worlds that are compatible with what :A knows
1

in W are exactly those worlds that are the result of :E's happening in
2

some world that is compatible with what :A knows in W and in which P

has the same truth-value as in W

2

Vw .w (R(:E.w ,w ) )-1 2 1 2"

Vw (K(:A,w ,w ) (3w (K(:A,w ,w ) A R(:E,w ,w )) A
3 2 3 4 1 4 4 3

(T(w ,P) a T(w ,P)))))
2 3

It is this final condition that distinguishes informative actions from

those that are not.

Figure 7 illustrates this analysis. Suppose W and W are1 2'

connected by :E and are part of the actual course of events. Suppose,

further, that P is true in W . Let W and W also be connected by :E,

2 4 3

and let them be part of a course of events that is compatible with what

:A knows in W . If P is true in W and the only thing :A learns about
1 3

the world from :E (other than that it has occurred) is whether P is
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FIGURE 7 THE EFFECT OF AN INFORMATIVE ACTION ON THE AGENT'S KNOWLEDGE

true, this course of events will then still be compatible with what :A

knows after :E has occurred. That is, W will be compatible with what
3

:A knows in W Suppose, on the other hand, that W and W form part of
2 5 6

a similar course of events, except that P is false in W If :A does
6

not know in W whether P would be true after the occurrence of :E, this
1

couirse of events will also be compatible with what he knows in W

1-'

After :E has occurred, however, he will know that P is true;

consequently, this course of events will no longer be compatible with
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what he knows. That is, W will not be compatible with what :A knows in

W6

2

It is an advantage of this approach to describing how an action

affects what an agent knows that not only do we specify what he learns

from the action, but also what he does not learn. Our analysis gives us

necessary, as well as sufficient, conditions for :A's knowing that P is

true after event :E. In the case of an action that is not informative,

we can infer that, unless :A knows before performing the action whether

P would be true, he will not know afterwards either. In the case of an

informative action such that what is learned is whether Q is true, he

will not know whether P is true unless he does already--or knows of some

dependence of P on Q.

Within the context. of this possible-world analysis of the effects

of action on knowledge, we can formalize the requirements for a test

that we presented in Section I. Suppose that TEST is the action of

testing the acidity of a particular solution with blue litmus paper, RED

is a propositional constant (a predicate of zero arguments) whose truth

depends on the color of the litmus paper, and ACID is a propositional
C.--

constant whose truth depends on whether the solution is acidic. The
U.',.

relevent fact about TEST is that the paper will be red after an agen:_ A

performs the test if and only if the solution is acidic at the time the

test is performed:
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(ACID ) RES(DO(A,TEST),RED)) A
(-ACID ) RES(DO(A,TEST),-RED))

In Section I we listed three conditions that ought to be sufficient

for an agent to determine, by observing the outcome of a test, whether

some unobservable precondition holds; in this case, for A to determine

whether ACID is true by observing whether RED is true after TEST is

- . performed:

(1) After A performs TEST. he knows whether RED is true.

(2) After A performs TEST, he knows that he has just performed
TEST.

(3) A knows that RED will be true after TEST is performed just
in case ACID was true before it was performed.

Conditions (1) and (2) will be satisfied if TEST is an informative

action, such that the knowledge provided is whether RED is true in the

resulting situation:

T1. Vw ,w ,a
121

,. ,. (R(:DO(a ,:TEST),w ,w ) )
.''.',1 1 2

Vw (K(a ,w ,w )
3 1 2 3

(3w (K(a ,w ,w ) A R(:DO(a ,:TEST),w ,w )) A
4 1 1 4 1 4 3

(:RED(w) :RED(w )))))
2 3

If :RED and :TEST are the metalanguage analogues of RED and TEST, T1

says that for any possible worlds W and W such that W is the result
1 2 2
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of an agent's performing TEST in W the worlds that are compatible with

what the agent knows in W are exactly those that are the result of his
2

performing TEST in some world that is compatible with what he knows in

W and in which RED has the same truth-value as in W . In other words,
2

after performing TEST, the agent knows that he has done so and he knows

whether RED is true in the resulting situation. As with our other

axioms, the fact that it holds for all possible worlds makes it common

knowledge.

Thus, A can use TEST to determine whether the solution is acid,

provided that (1) is also satisfied. We can state this very succinctly

if we make the further assumption that A knows that performing the test

7

does not affect the acidity of the solution. Given the axiom T1 for

test, it is possible to show that

ACID ) RES(DO(A,TEST),KNOW(A,ACID)) and
-ACID ) RES(DO(A,TEST),KNOW(A,-ACID))

are true, provided that

KNOW(A. (ACID ) RES(DO(A,TEST).(ACID A RED)))) and

KNOW(A,(-ACID 3 RES(DO(A,TEST),(-ACID A -RED))))

are both true and A is a rigid designator. We will carry out the proof

in one direction, showing that, if the solution is acidic, after the

4. test has been conducted the agent will know that it is acidic.
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Given: TRIE(KNOW(A,IMPf(ACID,RES(DQ(A,TEST),AND(ACIDRED)))))

TRUJE(KNOW(A,IMP(NOT(ACID) ,RES(DO(A,TEST),
AND(NUT(ACID) ,NOT(RED)))))) i

TRUE (ACID)

Prove. TRUE(RES(DO(A,TEST) ,KNOW(A,ACID)))

1. Vw (K(.A,W w ))Given ,LI ,L4 ,R2.

(:ACID(w L2,L9,Ll2,Llla

2 1 2
:ACID(w.) A :RED(w)))

2 2

2.Vw (K(:A.W ,w ) Given.L1 ,L4,R2,L2,

1 01
(-:ACID(w ))L6,Lg,L12.,Llla

1
3w (R(:DO(:A, :TEST),w ,w )A

-:ACID(w )A -:RED(w ))
2 2

3. :ACID(W )Li .L9
0

4. :ACID(W 1 ,K2
0

3w (R(:DO(:A. :TEST).W ,w )A
2 02

:ACID(w )A :RED(w )

5. R(:DO(:A. :TEST),W ,W )3,4
0 1

6. :RED(W )3,4
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7. Vw (K(:A,W ,w )5,T1
2 12

(3w (K(:A,W ,w )A
3 0 3
R(:DO(:A,:TEST),w ,w ))A

(:RED(W ) :RED(w 3
1 2

8. K(:A,W ,w )ASS
1 2.7

9. K(:A,W ,W )7,8
0 3

10. R(:DO(:A,:TEST),W ,w )7,8
3 2

11. :RED(W s :RED(w )7,8
1 2

12. :RED(w )6,11
2

13. -:ACID(W )J2,9

3w (R(:DO(:A,:TEST),W ,w )A

4 34

14. -:ACID(W )ASS

15. R(:DO(:A, :TEST),W ,W )13,14
3 4

16. -'RED(W )13,14
4

17. W 15,R1
2 4

18. -'.RED(w )16,17
2

19. FALSE 12,18

20. .ACID(W )DIS(14, 19)

3
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21. :ACID(W ) ) 1,9
L2" 3

3w (R(:DO(:A, :TEST),W W ) A
4 3 4

:ACID(* ) A :RED(w ))
4 4

22. R(:DO(:A,:TEST),W ,W ) 20,21
3 4

23. :ACID(W ) 20,21
4

24. w W 15,22
2 4

25. :ACID(w ) 23,24
2

26. K(:A,W ,w ) 3 :ACID(w ) DIS(8,25)
1 2 2

27. R(:DO(:A,:TEST),W ,W ) A 5,26
0 1

Vw (K(:A,W ,w ) I :ACID(w )
2 12 2

28. TRLUE(RES(DO(A,TEST),KNOW(A,ACID))) 27,L9,L11a,L12,
K2,R2,L1

The possible-world structure for this proof is depicted in Figure

8. Lines 1 and 2 translate the premises into the metalanguage. Since A

knows that, if the solution is acidic, performing the test will result

in the litmus paper's being red, it must be true in the actual world

(W that, if the solution is acidic, performing the test will result in

0I

the litmus paper's being red (Line 3). Suppose that, in fact, the

solution is acidic (Line 4). Then, if W is the result of performing
1

the test in W (Line 5), the paper will be red in W (Line 6).
0 1
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RED K:A RED
ACID ACID

WW

R:DO(:A:TEST) R:DO(:A,:TEST)

A ,:A

FIGURE 8 THE EFFECT OF A TEST ON THE AGENT'S KNOWLEDGE

Furthermore, the worlds that are compatible with what A knows in W are

1

those that are the result of his performing the test in some world that

is compatible with what he knows in W , and in which the paper is red if
1

and only if it is red in W (Line 7). Suppose that w is a world that
"/1 2

is compatible with what A knows in W (Line 8). Then there is a W that
1 3

is compatible with what A knows in W (Line 9), such that w is the
0 2

result. of A's performing the test in W (Line 10). The paper is red in
3

w , if and only if it is red in W (Line 11); therefore, it is red in w
1 2
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4 (Line 12). Since A knows how tbe test works, if the solution were not

acidic in W , it would not be acidic, and the paper would not be red, in
3

V (Line 13).

Now, suppose the solution were not acid in W (Line 14). If W is
3 4

the result of A's performing the test in W (Line 15), the paper would
3

not be red in W (Line 16). But w is the result of A's performing the
4n

testa in W (Line 17), so the paper would not be red in w (Line 18). We

know this is false (Line 19), however, so the solution must be acidic in

W (Line 20). IL the solution is acidic in W it must also be acidic

33

in the situation resulting from A's performing the test in W (Lines 21-
3

23), but this is w (Line 24). Therefore, the solution is acidic in w
2 2

(Line 25). Hence, in W A knows that the solution is acidic (Line 26).

so in the situation resulting from A's performing the test in W , he

0

knows that the solution is acidic (Line 27) In other words (Line 28)

*"A's performing the test would result in his knowing that the solution is

acidic.

By an exactly parallel argument, we could show that, if the

solution were not acidic, A could also find that out by carrying out the
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test, so our analysis captures the sort of reasoning about tests that we

described in Section 1, based on general principles that govern the

interaction of knowledge and action.

79



',,

NOTES

This paper presents the analysis of knowledge and action, and the

representation of that analysis in first-order logic, that were

developed in the author's doctoral thesis (Moore, 1980). The material

in Sections III-A and III-B, however, has been substantially revised.

Chapters 6 and 7 of (Moore, 1980) present a procedural

interpretation of the axioms for knowledge and action given in this

paper that seems to produce reasonably efficient. behavior in an

automatic deduction system.

3

"Mary's telephone number" would be an appropriate way of telling

someone what John's telephone number was if he already knew Mary's

telephone number, but this knowledge would consist in knowing what

expression of the type "321-1234" denoted Mary's telephone number,

Therefore, even in this case, using "Mary's telephone number" to

identify John's telephone number would just. be an indirect way of

getting to the standard indentifier.

4
This amounts to an assumption that all events are deterministic,

which might seem to be an unnecessary limitation. From a pragmatic
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standpoint, however, it doesn't matter whether we say that a given event

is nondeterministic, or we say that it is deterministic but no one knows

precisely what the outcome will be. If we treated events as being

nondeterministic, we could say that an agent knows exactly what

situation he is in, but, because :E is nondeterministic, he doesn't know

what situation would result if :E occurs. It would be completely

equivalent, however, to say that :E is deterministic, and that the agent

does not know exactly what situation he is in because he doesn't know

what the result of :E would be in that situation.

5
It would be more precise to say that DO(A,ACT) names a type of

event rather than an individual event, since an agent can perform the

same action on different occasions. We would then say that RES and R

apply to event types. We will let the present usage stand, however,

since we have no need to distinguish event types from individual events

in this paper.

6
R7 guarantees that the sequences <<E ,E >,E > and <E <E .E >>

1 2 3 1 2:3

always define the same accessibility relation on situations; so, just as

one would expect, we can regard sequence operators as being associative.

Thus, when we have a sequence of more than two events or actions, we

will not feel obliged to indicate a pairwise grouping.

We have to add this extra condition to be able to infer that the
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q.1

agent knows whether the solution is acidic, instead of merely that he
J.I.

knows whether it was acidic. The latter is a more general

characteristic of tests, since it covers destructive as well as

nondestructive tests. We have not, however, introduced any temporal

operators into the object language that would allow us to make such a

statement, although there would be no difficulty in stating the relevant

conditions in the object language. Indeed, this is precisely what is

done by axioms such as Tl.
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ABSTRACT

The representation of adjectives and their adverbial counterparts in logical form
raises a number of issues in the relation of (morpho)syntax to semantics, as well as
more specific problems of lexical and grammatical analysis. This paper addresses
those issues which have bearing on the relation of properties to events. It is argued
that attributes and context play only an indirect role in the relation between prop-
erties and events. The body of the paper addresses the criteria for relating surface
forms to logical form representations, and offers an unified analysis of adjectives and
their adverbial counterparts in logical form while maintaining a clear distinction
between operators and predicates; this requires the postulation of a factive senten-
tial operator and the relaxation of the one-to-one syntax-semantics correspondence
hypothesis. Criteria for determining the number of arguments for a predicate are
established and are used for the analyses of phenomena such as passive-sensitivity,

- lexical derivational patterns, and gradability.

1 Introduction

The lexical classes "adjective" and "adverb" are distinguished in the sur-
face structure of many natural languages, including English and the major
European languages. While a fair amount of attention has been paid to the
syntax and semantics of adjectives, only relatively recently have the syntax
and semantics of adverbs entered the limelight. The analyses proposed for
the representation of adverbs and adjectives in logical form have been quite
different-partly because of the dissimilar his'tory of such analyses in the
field, but largely because they have tended to be syntax-driven; distinctions
in the syntax of adjectives and adverbs have been reflected in distinctions
in the logical forms proposed for them. Thus, adjectives have tradition-
ally been analyzed as one-place predicates (or perhaps, for adjectives that
take complements, as two-place predicates), since they can be predicated of
noun phrases in predicative adjective constructions, and noun phrases yield
arguments. Adverbs, on the other hand, have been analyzed as predicate
operators, since they modify verbs or verb phrases, which are traditionally
analyzed as predicates. In addition, all sentential adverbs have been ana-
lyzed as propositional operators because of a syntactic distinction between
sentential and verbal adverbs.

In the past ten years or so, however, the semantics of natural language
expressions, as developed by both linguists and philosophers, has freed itself
more and more from a simple one-to-one correspondence with the surface
syntax of English. Indeed, the easing of that constraint has enabled us to
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explain some anomalous syntactic behavior. This paper will address recent
semantic research in the area of adjectives and adverbs, with emphasis on its
relation to the nature of events, and will argue for a more unified analysis
than has previously been provided. In particular, we will argue that (1)
the traditional analysis of a property as being a two-place attribute relation
between an object and a value (e.g., Color(Ford, red)), is incorrect; (2)
the proper semantic distinction is to be drawn between certain sentential
adverbs, which are operators, and all remaining adverbs and adjectives,

• which are predicates of various types; (3) all the adverbs that have both
sentential and verbal readings that are not clearly due to a lexical-semantic
ambiguity can be unified in logical form as predicates; (4) the delinking of
semantics from syntax extends, in the case of one subclass of adverbs, to
morphology as well, and (5) many of the adjective/adverb pairs actually
consist of an adjective derived from the adverb.

One of the more controversial issues in the representation of adverbs
and actions will be assumed here: the need for an event variable. First
proposed by Davidson [1967], this idea has been slowly but steadily growing
in popularity, particularly in philosophy and artificial intelligence research.
While this paper does not directly address the question of the validity of this
analysis, its widespread usefulness and the unified analysis of adjectives and
adverbs provided here should be taken as evidence for the analysis of events
as individuals. In particular, the existence of two-place predicate adverbs,
with one argument being the agent or subject of the sentence and the other
the action itself, causes difficult problems for the most plausible alternative
analysis of such adverbs, namely, as predicate operators.

2 Preliminaries

2.1 Lexical Semantics of Adverbs and Adjectives

Before analyzing the logical form of adjectives and adverbs, henceforth re-
ferred to as AA's, I shall list the major lexical semantic classes of adverbs
that are relevant to this study, and the names for these classes that have
been used in the literature. Besides serving to delimit the range of our study,
this classification will provide a basis for the semantic issues to be discussed
subsequently. This is not intended to be an exhaustive list of the lexical
semantic classes that fall under the logical forms to be presented here; it is,
however, a superset of the lexical classes of AA's whose semantic behavior
has been discussed in the literature. Terms used by other authors are shown
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in parentheses.

1. Operators

(a) Modal ([Bellert 1971]; Epistemic [Ernst 1984a]): possibly, proba-
bly, necessarily, not, etc.

(b) Evidential (Epistemic [Ernst 1984a]; Modal [Bellert 1971]): evi-
dently, obviously, allegedly, presumably, etc.

2. Predicates

(a) Two-place predicates [arguments for agent and event, proposi-
tion, etc.]

i. Behavior (Agent-Oriented [Ernst 1984a]; P,ubji, [Jackendoff
1972]): rudely, nicely, politely, etc.

ii. Ability (Agent-Oriented [Ernst 1984a]; Poubject [Jackendoff
1972]): cleverly, foolishly, stupidly, etc.

iii. Intentional (Volitional [Ernst 1984a]; Passive-sensitive [McCon-
nelI-Ginet 19811): intentionally, willingly, reluctantly, etc.

iv. Evaluative (also [Ernst 1984a], [Bellert 1977]; Pepeoket [Jack-
endoff 1972]): fortunately, surprisingly, luckily, oddly, etc.

v. Derived two-place Measure terms [see Section 3.4]

(b) One-place predicates

i. Emotional State (Mental State [Ernst 1984a]): bitterly, an-
grily, gloomily, furiously, etc.

ii. Measure
A. Normal: successful(ly), beauteful(ly), good/well, tall, thin,

short, slow, quick, etc.
B. Facility: easy, tough, simple, difficult, etc.

iii. Qualitative: red, black, dark, square, etc.

[Note: Measure terms and other gradable AA's also have arguments for the
reference set, as well as perhaps for the quantity or degree.1

There are a number of phenomena, labeled "adverbial" in the literature,
that will not be discussed here. Of these, the most important are words,
phrases, and clauses that refer to the time or location of an event. While
these are clearly sentential adverbs in their behavior, current proposed ex-
tensions or modifications of first-order logic have specific ways of accounting

3
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for time and location of events which are independent of the logical issues to
be examined in this paper. The other major class of "adverbs" that will not
be addressed comprises such verbal arguments as Instrument, Source and
Goal, which have been called adverbs in the linguistic literature presumably

because, unlike subject, object, and indirect object, they are syntactically
optional, but which are clearly arguments of the appropriate verbal predi-
cates.

There is a third class of adverbs that will also be disregarded in this
paper: those that are derived from nouns and mean (to use the classic dic-
tionary definition) "in some manner of, related, or pertaining to X", such
as electrically in electrically charged or electrically activated. These are in-
stances of the same kind of context-specific meaning relation as complex
nominals, i.e., such constructions as circuit board, syntax class, etc. It has
been demonstrated [Levi 19781 that adjectival forms derived from nouns that
mean "of, related, or pertaining to X" behave syntactically and semantically
like complex nominal constructions, and just happen to be syntactically ad-
jectivalized because they are functioning "like" adjectives. Likewise, the
denominal adverbs such as morphologically and electrically--like other ad-
verbs with adjectival counterparts-take the adverbial morphology because
they are functioning as modifiers of verbs or adjectives, a strictly syntactic
fact.

2.2 The Status of Attributes

There is a long-standing philosophical tradition stretching back to at least
Aristotle that treats properties (color, shape, size, etc.-the basic, "core"
adjective concepts) as values of an attribute of the object rather than as

directly predicated of objects themselves. Thus, The box is red would be
analyzed as something like Color(Box, Red)-or, more abstractly, At-
tribute(Box, Color, Red) rather than simply Red(Box). This analysis
of properties and attributes has also been used extensively by those artificial
intelligence traditions that employ "semantic nets" and "frames" [Woods
1975:50]. While this analysis is rather inelegant, it does appear to account
for two constraints on adjective behavior. Adjectives (and adverbs as well
[Bresnan 1982:164-65]) are usually considered to be recursive in the syntax;
an arbitrarily great number of them can appear as modifiers of a single noun.
There are two constraints on their (co)occurrence: they must be values of
an attribute that the object denoted by the head noun possesses (e.g., *a
red electron is unacceptable), and no more than one can occur modifying

4
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" the same attribute (e.g., *a purple magenta book, meaning a book that is
both purple and magenta, rather than one whose color is a cross between
purple and magenta, is unacceptable). The value-as-argument analysis of
properties allows one to capture these constraints quite easily, while the
value-as-predicate analysis does not seem to do so at all.

There is, however, an interpretation of attributes and values that allows
us to maintain a logical form that does not explicitly represent the attribute,
retain the value-as-predicate analysis, and nevertheless be able to account
for the aforementioned constraints. Various English constructions support
analysis of an attribute's values as belonging to a lower-level type, while
the attribute itself is a higher-level type subsuming the attribute's values.
Consider the following sentences:

(1) The book is red.
(2) Fido is a pug.
(3) Red is a color.
(4) The pug is a dog.
(5) My jacket is the same color as your book; it's maroon.
(6) That is the same dog as mine: it's a pug.

The adjective and attribute-name uses in the odd-numbered examples
above are parallel to the even-numbered noun uses just below them. Ex-
amples 1-4 all use the "be of predication", which takes an individual (1-2)
or a lower-level type (3-4) as the subject and an expression representing a
type or a kind higher than that of the subject as the predicate (supported
by the copula). Thus, in 1 red functions as a type, while in 3 color functions

N'. as a type higher than red.' The examples in 5-6 all use the "be of identity",
asserting the equivalence of a type lower than color or dog, since it is obvi-
ously not being asserted that the two individuals themselves are identical.
In 5, the lower level type is the value, maroon, which is exactly parallel to
the lower-level type pug in 6.

If we adopt the analysis implied in the examples, i.e. that attributes
constitute a higher-order type, then the two constraints discussed earlier
emerge automatically from the standard behavior of type hierarchies. An
individual cannot be a member of two disjoint sister sets at the same time;
thus *a purple magenta book is parallel to *a dog that is a cat. Likewise,

'Predicate adjectives are also subject to a syntactic constraint against taking articles
and plurals, thus resembling mass terms instead of count terms like pug or dog; a better
example than 4 would be Water is a liquid.
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an individual can be a member only of supersets of the basic set, so *a red
electron is parallel to *a dog that is a crime.

Another aspect of attributes that suggests they should be left out of the
logical form of AA's is their predictability. Unlike such phenomena as refer-
ence sets for measure terms, which have been shown to vary unpredictably
and require an additional argument position in the predicate type (see foot-
note 14), the attribute is predictable from the value provided. The only
exceptions to this rule are such value terms as green, which are ambiguous
across attribute values-in this example, color vs. ripeness vs. emotional
state vs. experience. In these cases, the ambiguity is always finite and lexi-
cally fixed, and so is of a completely different order of complexity from the
reference set example.

Everything that has been said above concerning adjectives can also be
stated mutatis mutandis with regard to verbal adverbs. These adverbs are
analyzed as modifying an event variable, which can be thought of as a vari-
able that describes an event or, more precisely, a process. Here again, [ver-

ball adverbs can be applied indefinitely to verbs, subject to the two con-
straints given above, and the attributes involved (result, direction, speed,

""'. etc. of the process) are actually higher-level types.
". There is, however, one feature of the adjective-noun relation that is a pri-

ori unpredictable and requires context or world knowledge to disambiguate;
this feature resembles that of complex nominal expressions such as book de-
partment or glare screen, in which the exact relation between the head and
the modifier is left unspecified until the context can make it more precise

-.: [Downing 1979]. If one compares the phrases a red apple and a mushy apple,
it is immediately evident what attribute is assumed in each case, i.e., color
and texture, respectively-but the first attribute pertains to the surface of
the apple, while the second pertains to its interior. In both cases, general
world knowledge about the structure of apples and about which attributes
of which parts of apples are most relevant to people determines that we
are not dealing with a red-fleshed apple or one whose skin resembles foam
rubber; on the contrary, this knowledge is both object- and context-specific.
This leads to ambiguities that are potentially indefinitely large, just as with
noun modifiers. Consider the following example (used by John McCardhy
in a seminar at Stanford to make a similar point): red in red pencil could
refer to the color of the pencil's surface, or to the color of the mark left
after the pencil has been used to write or draw, or (in theory) to any other
part or aspect of the pencil or its function which the speaker finds salient
enough to describe. The chief difference between adjectival modifiers and

6

&.'. .X .% 6'X-'6 * , . . - ..- " . - " . . . . . ,. . . ..



noun modifiers is that, in most cases, the part or aspect of the object that
is appropriately described by the adjective is almost always determined by
general knowledge about the object itself, the specific situational con ext
contributing relatively little; on the other hand, the precise relation be-
tween the noun modifier and its head is established at least as much by the
specific context of use as by our general knowledge. This aspect of adjecti-
val behavior must be treated the same way as the corresponding behavior of
noun modifiers. Thus, technically, any predication of a property should be
of the form Adj(F(x)), in which F is a context-determined function from
eteosithe entity x to the part or aspect of the entity that Adj is really a prop-,.erty of, just as a complex nominal form [,T YIN is really R(x,y), in whichR

is a context-determined relation that is the exact relation between the two
entities. This added notational necessity is acknowledged here, but will be
disregarded in the rest of this paper.2

3 Logical Types for Adverbs and Adjectives

3.1 Modal Adverbs: The Thomason and Stalnaker Tests

As stated above, the principal line to be drawn between classes of AA's at
the level of logical form is between operators and predicates. The classic
examples of operator adverbs are those that correspond to the modal oper-
ators: possibly, necessarily, and the sentence negator not. In addition, it is
incontrovertible that the evidential adverbs such as probably and evidently
are also sentence operators. The evidential adverbs all reflect different de-
grees of knowing something, in particular degrees of uncertainty of knowing
something; therefore, under the possible worlds interpretation of knowledge

21t seems that the irregular semantic behavior of nouns and adjectives is associated with
some characteristic of nouns themselves. All of those cases described in the literature
in which compositional and referential semantics must take world knowledge and/or
the specific context prominently into account have to do with nouns. In addition to
the irregular compositionality in the syntax of adjective-noun and noun-noun construc-
tions mentioned in the text, there is an irregular compositionality in the morphology
associated with denominal derivations that is not found with deverbal or deadjectival
derivations. Thus, for example, denominal verbs are highly irregular in their seman-
tics; what Clark and Clark 119791 show for zero derivation is also true for nonzero
derivation-compare colonize, alphabetize, atomize, or the innovation producti:e). The
same is true of denominal agentive nouns: compare scientist, machinist, violinist, com-
munist. Finally, as Geoffrey Nunberg has amply demonstrated [Nunberg 19791, simple
nominal reference per se is also highly sensitive to world knowledge and context of
situation.

7[]1
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and belief [Hintikka 1971], they are parallel to the modal operators.

00 Thomason and Stalnaker [1973] propose four criteria for deciding whether
an adverb is sentential or not. Although they consider each test to be a suf-
ficient condition in itself, a detailed study of individual adverbs indicated
that, in most cases, all four conditions applied if any one did. More impor-
tant to the current line of research is the fact that three of the four criteria
test specifically for behavior that characterizes modal operators, at least in
the possible worlds interpretation of modality. The first criterion is whether
or not the adverb induces referential opacity in the entire sentence. While
referential opacity is not unique to modal contexts and the like, it is char-
acteristic of all of them. The same is true for scope ambiguity, the property
used in the second criterion. Scope ambiguity is a feature of quantifiers
as well as modal operators; however, in the possible worlds interpretation
of modality, the basic modal operators behave like quantifiers over possi-
ble worlds. The third semantic criterion is whether or not the adverb is
semantically appropriate in the context It is Adv true that S. In the sense
that operators apply propositions to possible worlds and truth is defined
as the applicability of a proposition in a world (i.e., truth is relativized to
"truth in a world"), this criterion also is a criterion for operator status.~
The remaining criterion, namely, that an adverb is sentential if it outscopes
an adverb already proved to be a sentential modifier, is syntactic in nature
and appears to be inessential, since, in all of the cases considered, the other
criteria sufficed.4

2This test in closely related to a syntactic property of sen~tential adverbs, namely, that
they can be paraphrased with their adjectival counterparts in the construction It is Adi
that S. This fact places the adjective likely in the Evidential class-which its lexical
semantics would certainly indicate-although, apparently for phonological reasons, it
has no adverbial :ounterpart.

"There are some uses of Modal and Evidential AA's as adjectives modifying single nouns
or fragments of noun phrases: the alleged killer of the child, 4 Possible solution, etc. The
meaning of these phrases can be paraphrased as the person who is allegedly the killer
of the child and a thing that is possibly a solution; in logical form, this would simply
be represented as an operator having scope over the relevant conjunction of predicates
(represented here in a restricted quantification notation): [the x: Alleged(Kil1(x,
child))] and [an x: Possible(Solutlon(x))]. A similar analysis would be required
for another subclass of adverbs: hopefully, ideally, and desirably, first noted by Ernst
11984a:71-731; they would have to be modal operators over the entire sentence. Finally,
adjectives like fake, toy, and imitation seem to require analysis as true predicate op-
erators, since they alter the meaning of the predicate rather than the possible-worlds
(i.e. epistemological/mental) status of the proposition. However, all the proposed
operators-both sentential and predicate-have in common the fact that the truth of
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3.2 S/V Adverbs and the FACT Operator

The discussion concerning Thomason and Stalnaker's criteria and its refer-
ence to the nature of operators (or rather, the shared properties of concepts
that are represented as operators :n logical form) highlights the problem
of adverbs which appear to be ambiguous between sentential and verbal
readings (S/V adverbs). If we adopt the interpretation of events as an inde-
pendent argument of a predicate, as advocated by Davidson [19671, Moore
[1981] and others, and argued for extensively by McConnell-Ginet [1981],
then verbal adverbs will be predicates on that event variable. However, if
there are adverbs that have both a verbal and a sentential reading (the latter
proved by means of Thomason and Stalnaker's criteria), then we appear to
be faced with one of two unpleasant alternatives: either to say that there aretwo otherwise synonymous terms, one an operator and the other a predicate,

or that the single term is of one type, thereby forcing all verbal adverbs to
be operators. Fortunately, there is a solution to this problem that reveals
a "hidden" operator whose existence is supported by independent linguistic
evidence.

Let us consider the example of Behavior adverbs such as rudely and
politely and Ability adverbs such as cleverly and stupidly, etc. in which
the distinction between the sentential and verbal readings is clearest. The
following pairs of sentences, otherwise identical except for the position of
the adverb, mean distinct things:

(7) Maggie spoke rudely to the Queen.
(8) Rudely, Maggie spoke to the Queen.
(9) Jerry opened the window cleverly.

(10) Cleverly, Jerry opened the window.

In the first sentence of each pair, the action was performed in a manner that
is described by the adverb: it was perhaps Maggie's tone of voice or her
use of brusque language that made the event rude, while it was presumably
Jerry's technique in opening the window that was clever. This is clearly
a verbal reading, with the predicate modifying the event variable. In the
second sentence, it is the performance of the act itself (as opposed to it.,z
nonperformance) that is described by the adverb: Maggie was rude to speak
to the Queen, while Jerry was clever to open the window at that time.

P(x) does not immediately follow from OP[P(x)] or [OP(P)I(x). While this is a
* general property of operators, it is not, as we shall see, a necessary one.
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The readings in 8 and 10, generally called "sentential" readings due to
their syntactic behavior, pose difficulties in analysis because they do not
seem to fulfill Thomason and Stalnaker's semantic criteria for sentential
adverbs. The sentential readings do not induce opacity in the sentence, the
first criterion; in fact, unlike most other sentential adverbs, they are factive.
When Thomason and Stalnaker's second criterion is applied, as in 11 and

12 below, one finds distinct readings under an interpretation in which one
person speaking to the Queen is acceptable, but everyone speaking to the
Queen at once is not:

(11) Everyone rudely spoke to the Queen.

(12) Rudely, everyone spoke to the Queen.

However, the phenomenon in 11 and 12 has a different explanation that is
independent of the verbal vs. sentential adverb distinction. In another part
of their paper, Thomason and Stalnaker [1973:200] point out that sentences
like 13 and 14, with the adverb slowly-about as impeccable a verbal adverb
as one can find-also display "scope ambiguity":

(13) Slowly, everyone left.

(14) Everyone left slowly.

In this case, as in 11 and 12, the "adverb wide scope" reading is actually

a predication of the adverb over a distinct kind of event, i.e., the event
of a collective group doing X, which happens to look like an aggregate of
individual doing-X events. The property denoted by the adverb applies to
that collective event (the slowness of everyone viewed as a group to leave,
the rudeness of everyone viewed as a group to speak to the Queen). Thus,

the phenomenon in 11 and 12 do not qualify as support for Thorason and
Stalnaker's criterion.

Finally, the third criterion, acceptability in the frame It is Adj that S,
does not appear to apply; 15 and 16 are not especially good English:

(15) *?It was rudely true that Maggie spoke to the Queen.

(16) *?It was cleverly true that Jerry opened the window.

Thomason and Stalnaker themselves argue that locative and temporal ad-
verbs satisfy their third criterion, adducing 17 and 18 as evidence (Thomason

and Stainaker [1973:206]), but these examples are no more convincing than
15 or 16:

10

-j. 1i



! .
.  

- ; . - . . . ° - . . . . .. x . . o • . . . _ ° .. ' - D - ' .

(17) *?It is true in the morning that Mary beats her dog.
(18) *?It was true in the kitchen that Henri dropped the souffle.

The sentential readings in 8 and 10 are characterized in a number of
ways. First, unlike most sentential adverbs, they are factive. Second, it is
just this factivity that the truth conditions for the sentential adverb reading
are sensitive to: thus, it is the fact that the event in question falls under the
description of "Maggie speaking to the Queen" that makes it rude. Never-
theless, the meaning of the adverb rudely (as well as cleverly and the like)
is the same in both the verbal and sentential readings.

One must not confuse the meaning of utterances like 7-10 with expla-
nations as to why the action, or its execution, is rude, clever, etc. Earlier
proposals for analyzing 7 and 8 suggested that the difference between the
verbal and sentential reading was that in 8 it was the fact that the action fit-
ted the description provided by the proposition that made it rude, whereas in
7 it was some other description of the action (speaking loudly, using obscen-
ities, etc.) that made it rude. However, what made the action of Maggie's
speaking to the Queen rude in 8 may have to do with all sorts of things that
may be quite remotely linked to the description. First, it may be that only
part of the description is relevant to the reason for the action-e.g., the act
of speaking to the Queen, not that of Maggie's speaking to the Queen. Or,
conversely, it was only in the given context-not at all mentioned in the
proposition under the "scope" of the adverb-that Maggie's speaking to the
Queen was rude. The important point is that all sentence 8 asserts is that
the fact that that event happened under those circumstances, as opposed
to its not happening at all or to some other event's happening, was rude.
Any inference as to the reason the fact that that event occurred was rude
is not part of the semantics of 8. Likewise with 7: only some property of
the event rather than its existence is asserted to be rude; the question what
that property was or why it is considered to be rude is left open.

The verbal/factive-sentential ambiguity phenomenon appears to be present
in all of the two-argument (actor and event) adverb lexical classes except
for the Intentional class, and is usually the only reading available for the
Evaluative subclass. The Emotional State adverbs such as angrily, whose

angry", has two distinct readings:

(19) Sue shut the door angrily.
(20) Angrily, Sue shut the door.

1
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The preferred reading in 19 is that the manner in which Sue shut the door
implied anger on her part, while the preferred reading for 20 is that the fact
that Sue shut the door (say, the door to a dorm room during a hall party),
as opposed to not doing so, indicated that she was angry. Even though
both readings are possible in either position, the positional preferences for
English adverbs merely tend to suggest the sentential or verbal readings for
those adverbs that have both.'

Ernst [1984a] considers the possibility that Intention adverbs also display
both readings:

(21) Sue closed the door deliberately.

(22) Sue deliberately closed the door.

There may be a reading of 22 that means that the manner in which Sue
closed the door was deliberate on her part, while in 18 Sue's intention was
to close the door; in addition, the sentence indicates her successful accom-
plishment of the act (the more common reading). If 22 is indeed a verbal
adverb, it must be a derived one because it does not display the other be-
havior of Intentional adverbs, such as the opacity of the VP (see below).

Finally, with Evaluative adverbs like fortunately or luckily, as in 23, it is
clearly the fact of Sue's shutting the door that is fortunate or lucky, not the

- .manner in which she did it:

(23) Fortunately/Luckily, Sue shut the door.

However, some of the Evaluative adverbs do allow a verbal adverb reading,
as noted by Ernst (11984a:661, his examples 169 and 173):

(24) That performance turned out pretty luckily, considering all the
trouble we had beforehand.

(25) Joan thought Fenster would be elated, but he reacted very curi-
ously/strangely to the news.

Such examples are extremely rare, however.

'The fact vs. manner distinction may not be present in the semantic representation of
utterances with Emotional State adverbs; it may be only a part of the reason the agent
was angry, etc., and so the arguments in the preceding paragraph apply. The lexical
semantics of Emotional State adverbs appears to be vague rather than ambiguous with
respect to the fact/manner distinction. See also the discussion of Emotional States
AA's in Section 3.4.

'The factive readings of Evaluative adverbs, unlike those of other AA's, allow the para-
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The solution to the dilemma of how to represent the semantic unity of the
predicates that have both sentential and verbal adverb readings is to realize
that there are two different things being characterized in the members of
each pair.7 The first is an event in the world, which is represented by the
event variable. The second and more abstract one is the state of affairs of
that proposition's being true. This, like an event, is part of the world; but,
unlike events, it is something associated with every [true] proposition. This
corresponds to the paraphrase of sentence 8 as The fact that Maggie spoke
to the Queen was rude; the fact that Maggie spoke to the Queen is as much

* part of the world as the event that happened to be an instance of Maggie's
speaking to the Queen. Indeed, the best way to test for the the sentential
adverb reading of a predicate is to see whether the paraphrase The fact that
S is Adj makes sense. To put it in terms suggestive of situation semantics
[Barwise and Perry 1983], the state of affairs is the [factual] existence of
something subsumed under a complex event type, e.g., "Maggie speaking to
the Queen". No part of the description of the event is dispensable for the
factive reading; still, for the reasons indicated above, one cannot draw any
inference outside context as to what aspect or circumstance of the described
event furnishes a rationale for the event's being rude or the like.

There is further evidence that supports this hypothesis. Adverbs like
rudely or cleverly in their sentential readings (and also adverbs of the Eval-
uative class), can be applied to any sentence, including stative sentences. In
the latter, however, the second, verbal adverb reading is absent-precisely
because there is no event variable present. Thus, 26 has only one reading
(the sentential one) and 27 is unacceptable because the sentential reading

K) (the only possible one) is not possible with the adverb immediately following
the main verb:

(26) Rudely, Fred was late to the President Ial dinner.
(27) *Fred was late rudely to the Presidential dinner.

Another prediction that one would make from the hypothesi is that

phrase It is Adj that S, e.g. It isforlunatelueki, that Sue shtut the do '*It vis e t
that JerryI opened the window; the nearest acceptable paraphrase fr ! ''.

* requires the presence of the subject of the infinitive forrn in a PP' It u4. ~.~ 'Je-y

to open the window. The reason for this appears to let hat whereas a h ter A A
classes the second argument to the predicate must be a parii:v ait in !he .. r

semantic restriction does not apply to Evaiduative A A q see oseT~o .

'This analysis was proposed by Robert Moore. in the -- urie J 4 s

wit theautor
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the adverbs that are genuine operators, namely, the Modal and Evidential
adverbs would not have any sort of verbal adverb readings with the same
meanings. This prediction is also correct, as Ernst [1984b] has observed:
in the case of those Evidential adverbs that do appear to have verbal ad-
verb counterparts, the latter actually have meanings that differ from the
corresponding sentential readings:8

(28) Clearly, John is right.

(29) John spoke clearly.

Furthermore, these classes of adverbs are not the only linguistic phe-
*nomenon to exhibit this semantic ambiguity. Such factive predicates as 30,

first discussed by Kiparsky and Kiparsky [1970], also have two readings cor-
responding to those of rudely and cleverly, which are paraphrased in 31 and
32:

(30) Mary disapproves of John's drinking.

(31) Mary disapproves of the way John drinks.

(32) Mary disapproves of the fact that John drinks.

Finally, states of affairs, as well as events, enter into causal relations, so
that the situation in 33a is described by 33b; note that no event variable
could be involved, since the causal clause in 33a is stative. On the other
hand, 34a exhibits both the manner and fact readings:

(33a) The President's being late caused the banquet to be delayed for

two hours.

(33b) The fact that the President was late caused the banquet to be
delayed for two hours.

$The only possible exception to this rule seems to be obviously, which has a verbal

adverb counterpart with a lexical semantics that does not appear to be distinct from
the evidential form:

(a) Obviously, someone opened the door.

(b) Sandy opened the door obviously.

Sentence b means roughly "Sandy opened the door in a manner that made her action
obvious", in the evidential sense of obtous. This was first pointed out by Ernst: "While
a unified sense... works for obviously, it seems that no other Epistemic [Evidential] adverb
admits of such treatment" [Ernst 1984b:871. Unless a semantic difference between the
two readings of obviously is found, this adverb may be a counterexample to our proposal.
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(34a) John's drinking makes Mary upset.

(34b) The way John drinks makes Mary upset.

(34c) The fact that John drinks makes Mary upset.

Indeed, any natural language expression (nominalizations as well as com-
plements) that can be paraphrased with the fact that S without altering the
truth conditions of the utterance will be subject to the same kind of analysis
as the phenomena described above.

All of this evidence confirms that a general systematic phenomenon is
occurring here. The fact that the sentential readings exhibit the semantic
behavior tested by Thomason and Stalnaker suggests that the "fact" reading
should be characterized by an operator, which we will call FACT, which
has scope over the proposition, and which denotes a function from the latter

* . to a state of affairs. Hence, the two readings embodied in 7 and 8 would be
represented as follows (Rude is a two-place predicate):

- .(35) 3e[Speak(e, Maggie, Queen) & Rude(Maggie, e)]

(36) 3e[Speak(e, Maggie, Queen) & Rude(Maggie, FAGT(Speak(e, Mag-
gie, Queen)))].

3.3 Adverbs of Intention

There is one class of two-place predicate AAs, referring to mental states,
that behaves distinctly from all the other AA classes, namely, the Intentional
class. The adverbs of this class do not have the S/V distinction, they induce
opacity, and they display "passive-sensitivity" ([Mc~onnell-Ginet 1981:1451;
see below).

The distinctive behavior of the Intentional class of adverbs can be largely
explained by treating them in a manner parallel to that applied to the verbs
from which they are derived or to which they are related-i.e. verbs that
denote intention, desire and knowledge, that have a proposition as one of
the arguments of the predicate. Thus, just as with the Modal and Evidential
adverbs, the S/V distinction is not relevant to the Intentional class. Like
the lexically and semantically related verbs and adjectives of intention etc.,
the adverbs induce opacity:

(37) George intent ionally/w illingly attacked Ronald Reagan.
(38) George intended/was willing to attack Ronald Reagan.

(39) Ronald Reagan is the President of the United States.
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(40) I/George intentionally/willingly attacked the President of the United
States.

(41) I/George intended/was willing to attack the President of the United ,
States.

In a situation in which George did not know that Ronald Reagan was the
President of the United States, 40/41 do not follow from 37/38 and 39.

Unlike the Behavior and Ability adverbs, the corresponding verbal or
adjectival forms of Intentional adverbs are not factive:

(42) Harvey was willing to cut the roast V/ Harvey cut the roast.
(43) Harvey was stupid to cut the roast before cooking it t- Harvey cut

the roast before cooking it.

The Intentional adverb forms themselves are factive (e.g., 37), indicating
that (like all other adverbs, except the Modal and Evidential ones, and
like most adjectives as well) two assertions are involved. Finally, like the
corresponding verbal forms but unlike the Modal and Evidential adverbs, the
Intentional adverbs take a second argument: the participant who intended,
was willing, etc., to perform the action he has performed. Therefore, to
capture all of these semantic facts, a logical form for 37 would have to be
the one in 44; compare 45, which is the logical form of 38:

(44) 3e[Attack(e, George, RR) & Intend(George, Attack(e, George, RR))]

(45) Intend(George, 3e[Attack(e, George, RR)])

It is worth noting at this point that an anomaly in the interpretation of
intentionally provides an additional piece of evidence for the existence of an
event variable (as suggested by Robert Moore [personal communication]).
Let us consider the following situation, taken from Searle (1980:511; in turn
borrowed from Chisholm [1966]): John intends to kill his uncle, in order
to collect early on his inheritance. He gets into his car to drive to his
uncle's house, but in his haste to get there he runs over an old man-
who, unbeknownst to John, is his uncle. Question: did John intentionally
kill his uncle? If the standard notation without the event variable as in
46 is used, then the answer is yes, since there is no way to indicate that
the killing of his uncle in the first conjunct is the same action as in the
second conjunct, i.e., that John intended that very event to be the killing
of his uncle. John clearly did not intend the event of the car accident to be
the event of his killing his uncle-he had something completely different in

16



mind-and so the traditional representation makes an erroneous prediction.
However, the representation that includes the event variable in 47 does make
the correct prediction, because the identity of the event variable in the
second conjunct with the one in the first conjunct means that John intended
that very event to be the killing of his uncle; and since that assumption is
false, the proposition is, correctly, false.

(46) Kill(John, Uncle) & lntend(John, Kill(John, Uncle))
( . (47 ,e[Kill(e, John, Uncle) & Intend(John, Kill(e, John, Uncle))]

While the representation in 44 and 47 captures correctly the semantics
of the Intentional class of adverbs, there is another property of this class
that has generated considerable interest, having been discussed by Lakoff
119721, Thomason and Stainaker 119731, and McConnell-Ginet 11981): the
phenomenon of passive-sensitivity. 9 When certain semantic conditions ap-
ply, it is possible to have two readings for 48 (with the positional variants
favoring one reading over the other, but not always excluding the unfavored
reading), one corresponding to the situation in which Joan is reluctant and
one corresponding to the situation in which Fred is reluctant; these readings
are paraphrased in 49 and 50:

(48a) Reluctantly, Fred was taught by Joan.
(48b) Fred reluctantly was taught by Joan.
(48c) Fred was reluctantly taught by Joan.
(48d) Fred was taught reluctantly by Joan.
(48e) Fred was taught by Joan reluctantly.

,(49) Joan was reluctant to teach Fred.

(50) Fred was reluctant to be taught by Joan.

The possibility that either the subject or the agent (when the latter
is not the subject) is the reluctant participant in the event constitutes
the passive-sensitivity of the adverb. The semantic restriction governing
the phenomenon of passive-sensitivity a s the relevance of the potential of
control by the participant over the execution of the action; the adverbs

"Thi, term wan first used by MConnell-Ginet 11981:145.J
The potential for control, rather than control itself, is the correct way of stating the
condition because adverbs like unwiaingly or unwillingly indicate not that the participant
ha, control over the action, but only that the potential for control was, there, yet it wa
thwarted or not acted upon by virtue of ignorance, deceit, or some outright external
force.
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for which this is true are not just the Intentional adverbs but the Ability
adverbs as well:

(51) Stupidly, the assistant was caught by the police while she was leav-
ing the mayor's house.

(52) The assistant was stupid to be caught by the police while she was
leaving the mayor's house.

(53) The police were stupid to catch the assistant while she was leaving
the mayor's house.

While this ambiguity is a clear case for the necessity of another argu-
ment to the adverb besides the proposition, one still needs to explain how
the two readings are possible under the conditions specified above. Super-
ficially, the condition appears to be a disjunctive one: the other argument
to the adverb must be either the agent or the subject. In the case of active
sentences, agent and subject are the same, so only one reading is possible;
in the case of passive sentences, agent and subject are distinct roles in the
surface structure, so we have the ambiguity. McConnell-Ginet proposes that
in the subject reading the adverb is associated with the higher verb, that

L is, with the passive auxiliary be, while in the agent reading the adverb is
associated with the lower verb, the passive participle. While this solution
is in itself somewhat questionable-the by-phrase that contains the agent
argument in the passive construction is certainly outside of the VP imme-
diately dominating the passive participle, no matter what one's analysis of
auxiliaries may be-when one examines evidence from languages with mor-
phological passives instead of syntactic ones, McConnell-Ginet's analysis is
untenable. In such languages, her analysis would predict that there is only
one reading, i.e., the agent-oriented reading, since there is no higher verb
to attach the adverb to for the subject-oriented reading. However, in at
least one language with a morphological passive, Japanese, both readings
are possible. 1 Japanese has a passive suffix that occurs between the verb
root and the tense/aspect marker (cf. 54 and 55):

(54) John-wa Mary-o osie-ta.
John-SBJ Mary-OBJ teach-PAST
'John taught Mary'

"The following data for Japanese were provided to me by Akira lshikawa and Mariko
Saiki.
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(55) Mary-wa John-ni osie-rare-ta
Mary-SBJ John-AG teach- PASS- PAST
'Mary was taught by John'

When one inserts the adverb husyoobusyooni 'willingly' into 54, one gets
only one reading for the sentence, since the agent and the subject coin-
cide in surface structure; however, inserting it into 55 yields an ambiguous
sentence, with the subject-oriented reading preferred when the adverb im-
mediately follows the subject, and the agent-oriented reading preferred when
the adverb immediately follows the agent phrase:

(56) John-wa husyoobusyooni Mary-o osie-ta.
John-SBJ unwillingly Mary-OBJ teach-PAST.
'John unwillingly taught Mary.'

(57) Mary-wa husyoobusyooni John-ni osie-rare-ta.
Mary-SBJ unwillingly John-AG teach-PASS-PAST
'Mary unwillingly was taught by John.'

(58) Mary-wa John-ni husyoobusyooni osie-rare-ta.
Mary-SBJ John-AG unwillingly teach-PASS-PAST
'Mary was unwillingly taught by John.'

Thus, the distinct readings in both the English and the Japanese cases
are not dependent on the number of verbs in the clause, but instead on
some deeper semantic relationship that goes against both the syntax and
the morphology. The semantics of adverbs like reluctantly in 48-52 require
that its first argument be an argument in the proposition that makes up the
second argument of the adverb. Let us consider grammatical voice as an
operation on logical form which makes available one argument (call it the
"subject", reflecting its final surface-syntactic status) over the others, so that
the (unmarked) active voice yields Az.Teach(e, z, y) and the passive alters
the form to Ay.Teach(e, z, y). Then, in the agent-oriented reading preferred
in 48c-e and paraphrased in 49, the adverb was semantically composed with
the predicate before the passive operation was applied, yielding 59, while in
the subject-oriented reading preferred in 48a-b and paraphrased in 50, the
passive operation was performed before the adverb was composed with the
predicate, yielding 60.

"(59) 3eITeach(e, Joan, Fred) & Reluctant(Joan, Teach(e, Joan, Fred))

(60) 3e[Teach(e, Joan, Fred) & Reluctant(Fred, Teach(e, Joan, Fred))
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This allows us to reanalyze the condition as a "subject" condition rather
than as a disjoint subject-or-agent condition.

However, this means that one reading has to look "inside" the morpho-
logical structure of the passive form in order to combine it syntactically with
another elemen of the sentence. This is not a unique and insuperable prob-
lem created by our analysis; it is just another example of a fairly widespread
phenomenon, the best-known examples of which are given in 61 and 62:

(61) Morphological analysis: [un+[grammatical-ity]]
Semantic analysis: [[un grammatical] ity]

(62) Morphosyntactic analysis: [atomic [scient-ist]]
Semantic analysis: [[atomic scient] ist]

The more closely one analyzes linguistic constructions, the more ubiquitous
the mismatches between syntactic structure and logical form turn out to be.
For example, the entire analysis of adverbs argued for so far goes partially
"against" the syntax of adverbs, with the division between [syntactically]
sentential and verbal adverbs being different from the one between operators
and predicates. While a rough-hewn correspondence between morphosyn-
tactic structure and the structure of logical form is quite apparent, it is
clear that the simple rule-to-rule hypothesis of compositionality it suggests
must be refined considerably in order to account for the type of behavior
described here.

3.4 Some Arguments for Some Arguments

Having described the different logical forms found in the adjective and ad-
verb classes considered in this paper, it remains to examine the large number
of AA's that are predicates and to determine the number and type of argu-
ments the predicates of each class take.

There are three major criteria for establishing the need for an argu-
ment to a predicate. The first is that the concept denoted by the predicate

- necessarily implies the participation in some way of other entities-usually
objects and agents, but also events, propositions, and even more exotic en-
tities like the FACT(P) forms proposed earlier. The second is that the
identity of those entities is not automatically predictable from the informa-
tion already encoded in the predicate's semantics. The value-as-argument
analysis of properties discussed in Section 2.2 did not satisfy this criterion,
since in all cases the identity of the attribute is can be predicted from the
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semantics of the predicate (the "value"); this was accounted for by deter-
mining that attributes are actually higher-level types and do not participate
directly in the relation between the so-called "value" and the individual.
The third criterion is whether or not the putative argument can actually
appear in the utterance as a syntactic constituent dependent on the pred-
icate word. Its presence means that some intimate relation holds between
it and the predicate independent of contextual factors and the semantics
of the predicate. Let us now examine the adverbial predicates and their
adjectival counterparts in order to determine the relationship between them
from the standpoint of how many arguments they take, what type they are,
and which surface-syntactic form seems to be the basic one and which one,
derived.

We have already seen that the agent (or rather, "subject") argunment
for Intention and Ability adverbs is a necessary argument of the predicate
because it can vary in some circumstances, namely in passive constructions;
thus, its identity is not predictable from the adverb's semantics. The adjec-
tive has the same meaning, even though it can be found attributed to an
agent without the mention of an event:

(63) John is clever.
(64) John is clever at playing the dictionary game.
(65) John was clever to wait seven years before opening the 1974 Pom-

mard.

The reason for this is that 63 is actually ambiguous, depending on the con-
text: one could be uttering it in order to convey the idea expressed, for
example, in 64 or 65 when the additional information supplied by the com-
plements of the latter sentences is understood in the context. Out of context,
of course, the usual interpretation of 60 would be that John is typically or
generally clever in whatever he does-"generically" clever, so to speak (or,
to be more specific, the second variable of Clever(John, x) is bound by
a generalized quantifier G, as described by Farkas [1982]). Note that the
generic-event reading covers both events and the fact that S types: John's
general cleverness covers what he does as well as how he does it. This sup-
ports the generalized quantifier binding that the generic reading implies:
the domain of the variable is not restricted in any way. Finally, it is obvi-
ous that sentences with explicit complements such as 64 and 65 will require
a predicate with two arguments for the adjective, which strongly supports
treating 63 as taking two arguments as well.
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It turns out that, for almost all adverbs that are predicates on events and
that have adjective counterparts like clever or willing, such adjectives are
semantically identical to the adverbs. For example, with Behavior adverbs
such as rudely, the adjective costructions semantically require an event as
well as an agent, which is generic if unstated, as in 66, and which can be
explicitly mentioned, as in 67 and 68.12

(66) Thomas is rude.

(67) Thomas was rude in speaking to the teacher.

(68) Thomas was rude to pull his sister's hair.

The Evaluative adverbs such as fortunately and luckily also are two-
place predicates. In many cases the second argument is left to be implied
by contextual factors, but it can appear as a distinct constituent in either
the surface adjectival or adverbial form of the predicate:

(69) Fortunately for Tom, he left the house before the slide.
(70) John was lucky to get his application in before the deadline.

Unlike some of the other classes we have described, the second argument to
Evaluative class forms may be related very indirectly to the action or state
of affairs described in the first argument.

(71) Luckily for George, Harry threw the ball to Fred.

The Emotional State adverbs, on the other hand, seem to be one-place
predicates that are syntactically derived from but semantically identical to
their adjectival counterparts, which are one-place predicates on individuals,
but do not have a different semantic form. The sentential-adverb form that
bitter takes in 66 does not imply that the emotional state that Mary is in
is related directly to the event which forms the main predication of the
utterance. In fact, the form in 72 is a historical innovation based on the
sentence type found in 73 and 74:

"The form in 68, with a to + infinitive construction (called here to Vinfl, has only the
factive-sentential reading, while the form in 64, with the in + gerund construction
(called here the at/in Ving construction, since other variants take at instead of in),
exhibits either the verbal or the factive readings, though the verbal reading is preferred.
This distribution is a general fact about these nonfinite constructions: the at/in Ving
constructions are used for verbal readings, the to Vinf constructions for the factive-
sentential readings. The only exception to this rule is the use of a [gappedl for-to
complement with Facility adverbs (see below).
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(72) Bitterly, Mary left the apartment for the last time.
(73) Bitter, Mary left the apartment for the last time.

(74) Mary, bitter, left the apartment for the last time.

Further evidence supporting this argument is that when bitter is a predicate
adjective, it cannot take a complement:

(75) Mary was bitter *to leave/*?in leaving the apartment for the last
time.

The other one-place predicates are somewhat more complicated in their
derivational structure: in some cases, there are actually other arguments,
most of which are related to the phenomenon of gradability. The arguments
contributed by the semantics of gradability will be discussed briefly at the
end of this paper. We are primarily interested, however, in the relationship
of the argument structure to the representation of events that has been
proposed so far.

The Measure AA's actually have a very complicated semantics when
it comes to the number of arguments and the existence of derived forms,
although they are all verbal adverbs. Let us begin by considering those

* AA's that describe properties of processes or events. These include such
AA's as successfully and 8lowly. Their primary use is as modifiers of events:

(76) Gerald slowly picked himself up off the floor.
(77) Marcel successfully merged his company with Limelight Industries.

The adjectival counterparts that are identical in logical form modify action
nominalizations, since they are predicates on events:

(78) The destruction of the city by the Germans was rapid.

(79) The merger of the two chemical companies was successful.

However, there are adjectival forms of these AA's that take an individual as
% an argument, rather than an event:

(80) Muhammed is slow.
(81) Marcel is successful.

As has been pointed out by Uszkoreit (1980] and others, there is an under-
stood role in 80 or 81 in which Muhammed is slow or Marcel is successful;
this can be made explicit, as in 82 or 83:
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L (82) Muhammed is slow at learning languages (but fast at program-

ming).

(83) Marcel is successful in merging companies (but not at composing

operas).

It is also possible for 80 and 81 to be interpreted as meaning that, as a

rule, Muhammed is slow or Marcel is successful in any activity either might

undertake. Even 82 or 83 are generic as well, in that the role expressions

are generic.
Nevertheless, in the original or "basic" uses of the AA in reference to

an event, there is no need for an additional argument for, say, the subject:
success in merging the companies may or may not be attributable to Marcel

in 77 (cf. 79, which could be referring to the same event and does not refer

to Marcel at all). Examples 80-83, however, indicate that actions of some
* type associated with the individual about whom the AA is predicated are

generally slow, successful, etc. These adjectival uses are secondary applica-

tions that are derived from the primary one-place event predicate; they add

a second argument and thus have the form P(r,x), meaning roughly "x is
P at doing r". The variable r denotes a role, that is, a generic activity such
as running or learning languages, in which the individual mentioned in the
other argument of the predicate is interpreted as the agent.

The distinctions are more complicated when one has an AA like beau-
tifulfly) which, in addition to modifying events, can also directly modify

individuals-in this case, describing physical appearance. Thus, to borrow
some well-known examples from Siegel [19761, we have the following two sen-
tences and three logical forms, in which Beautiful' denotes the two-place
predicate derived from Beautiful:",'"

%(84) Marya dances beautifully.
3e[Dance( e,Marya) & Beautiful(e)]

"The interpretation of beautiful dancer in the first logical form listed under 85 is not

a result of the mismatch phenomenon such as in example 82 above. Uszkoreit 119801
pointed out that the role variable in the derived adjectival form does not necessarily
refer to the role denoted by the head noun in sentences like 85; his example is John is
a good ophomore where in the context John is good at playing football. Thus, the role
variable in the first logical form listed in 85 could theoretically refer to roles other than
dancing.

"'It is possible that the Beautiful predicate referring to physical appearance may be dis-

tinct (though obviously related) from the one-place predicate that characterizes events;
see Footnote 15.
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(85) Marya is a beautiful dancer.
Dancer(Marya) & 3r[Beautiful'(r,Marya)] or
Dancer(Marya) & Beautiful(Marya)

The same sort of argument applies mutatis mutandis to Facility AA's,
words expressing the facility of performing an action such as easy/easily,

and difficult/with difficulty-the class of so-called "Tough-Movement" ad-
jectives. They refer to actions as in 86; the adjectival use in 87 implies an
action in which the individual of whom the adjective is predicated is a par-
ticipant, e.g. the actions exemplified in the to Vinf complements in 88. The
uses in 87 and 88 represent a two-place predicate derived from the one-place
event predicate in 86, which does not specify any participant in the action
as rendering the action "easy":

(86) Yolanda easily shot the arrow into the bullseye.

(87) This exam is difficult.

(88) This exam is difficult to read/to understand/to pass.

The chief difference between this class and the other Measure AA's is that
-. the individuals of whom derived Facility adjectives are predicated must par-
4 ticipate in the relevant actions as direct objects or as other affected partici-

pants, whereas the thematic relation between participant and action for the
derived Measure adjectives is much freer (though it is usually the agent):

(89) *Daniel is easy to tease people. [=Daniel teases people easily]

(90) Daniel is successful at avoiding the draft.

(91) Daniel was successful in not being picked to head the commission.

Furthermore, the surface syntax for indicating the relevant role in a derived
Facility AA form is a (for-)to complement rather than the at/in Ving/Vnom

"* . expression used for the derived Measure AA's. 5

'The two derivational processes appear to be in complementary distribution. There is

one antonymic pair of AA's that seems to function both u Measure and as Facility
AA's: good/well and bad/badly; see examples a-e. However, the meaning of a is clearly
not related to the meaning of b in the way it is related to the meaning of c:

(a) John played the Hammerkiavier Sonata well.
(b) The Hammerklavier Sonata is good to play. [e.g. in order to get good reviews]

(e) John is good at playing Beethoven.

The predicate in b seems to be idiosyncratic and should be treated as distinct from the
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Measure AA's actually take one or perhaps two other arguments that are
related to their gradability rather than their applicability to both individuals
and events. One of the defining characteristic of Measure AA's is that they

* •are gradable-that is, the range of properties of a single attribute range over
.. a [usually unidimensionall continuum, or at least, in the case of subjective

measures like good, cute or ugly, are perceived to be ranked in such a way.
Many of these AA's (tall, little, shallow, etc.) apply only to individuals and
not events, and so do not share in the complications discussed above. In
addition, many of the two-place AA's discussed above, such as the Behavior

* .and Ability types (but not the Intentional AA's) are gradable, and so the
following remarks pertain to them as well. Since a great deal has been
written about gradability, and since gradability is somewhat peripheral to
the basic issues surrounding the logical form of adverbs, I will present a brief,
simplified discussion of the issues with respect to the predicate-argument
structure of AA's.

The first additional argument taken by gradable AA's, whose existence
is now relatively uncontested, is the "reference set" argument, denoting
the class of individuals from which is derived the "average" value of the
gradable property against which the AA in question is to be evaluated. To
take a simple spatial-dimension term as an example, not only is tall vague
as to what degree of height is intended, it is also indeterminate as to the
assumable neutral point or region above which someone is considered to
be tall and below which someone is to be considered short. Thus, in the
following sentences, John and Jim may be the same height, yet one is "tall"
and the other "short":

(92) John is tall for a fourteen-year-old.
(93) Jim is short for a professional basketball player.

Reference sets are relevant for "subjective" measure terms and other grad-
able terms, even though there is no universally agreed-upon metric that can

'*-. be imposed on the domain:

derivational pair in a and e. However, if this is true, then it is more difficult to argue
that the use of good in d, in which it is intended to refer to some inherent moral quality
of the individual, is the same predicate as the one in a rather than another distinct but
lexicosemantically related form:

(d) Sam is good.

Such a proliferation of semantically related but distinct predicates may lead to difficul-
ties later on.
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(94) Jim is a good dancer, for a wrestler.
(95) Freddy is awfully rude, even for an eight-year-old.

Since reference sets are essential for the correct semantic interpretation
of the AA, are not predictable from other information available in the utter-
ance, and can be introduced into the utterance as independent arguments,
one must include them as such. Thus, the use of good in an utterance like
96 actually has three arguments-individual, role, and reference set-that
can be specified independently. Although, taken out of context, 97 is the
usual interpretation of 96, the actual interpretation in a given context may
be, e.g. 98:

(96) The violinist is good.
(97) The violinist is good at playing the violin, for a violinist.
(98) The violinist is good at leading the musician's union, for a shy and

reclusive person.

A more controversial question is whether sentences like 99-101 have a
fourth argument that refers to the degree to which the individual possesses
the value denoted by the AA with respect to the appropriate reference set
(and role, in 101):

(99) Jim is six feet tall ('for a basketball player).

(100) Jim is pretty /very/extremely tall (for a basketball player).

(101) The violinist is pretty/very/extremely good.

While the specific value in 99 is most likely an argument-it is implied by the
semantics of gradability, it is not predictable, and it can be represented ex-
plicitly (albeit optionally) in the utterance-that value term is syntactically
parallel to the vaguer terms in 100 and 101, which are called "amplifiers" by
Quirk et al. [1972:246, 444-51] and which denote a vague value an the scale
represented by the AA. These latter forms have not been considered as argu-
ments in the past, but the evidence from more precise measure phrases such

'lf the adjective is attributive, it is extremely difficult though not impossible to obtain a
reading in which the intended role is different from the activity ussociated with the head
noun (usually an agentive nominal form). Moreover, the reference set is also usually
interpreted as the same set as the one referred to by the part of the NP that follows the

emeasure term in surface structure. For example, e.g. a good Baroque violin player would
normally be judged against the reference set of Baroque violin players, not violinists in
general or players in general.
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as sifx feet suggest that they might be. However, precise measure phrases do
not cooccur with phrases indicating the reference set, while amplifiers do;
this suggests that, whatever analysis is chosen, more subtle constraints are
required.

These brief comments on gradability are, of course, not conclusive. They
are intended only to indicate that other factors will contribute to the argu-
ment structure of certain adjectives and adverbs, and that such factors must
be distinguished from those that are consequences of the interactions of AA's
with events (for example, role arguments are derivative arguments from the

use of properties of events when predicated of individuals, while reference
* set arguments are part of the structure of gradability).

4 Conclusion

Our research on the semantics of adverbs and adjectives touches upon several
interesting issues of general concern. In particular, it has led to arguments
supporting the existence not only of an event variable for actions (but ex-
cluding states), but also for the state of affairs concept (represented by the
FACT operator) as a distinct phenomenon. It has also led to further evi-
dence for the separation of surface syntax from logical form. It is interesting
to note, however, that adverbs themselves comprise a relatively unified phe-
nomenon: a small class of operators on the one hand, a variety of predicates
on the other. The lexical-semantic concepts denoted by specific adverbs (as
represented in Section 2.1) are extremely diverse, belonging to domains such
as mental states that have been explored very little until recently. Our anal-
ysis has, we hope, clarified a number of issues raised by the logical forms of
most adverbs and adjectives, so that further research in these areas can be
done on a firmer logical basis than has been possible hitherto.
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1. Introduction

Two artificially intelligent (Al) computer agents begin to play a game of chess, and

the following conversation ensues:

* SI: Do you know the rules of chess?
S2: Yes.
SI: Then you know whether White has a forced initial win or not.

S- S2 : Upon reflection, I realize that I must.
Sl: Then there is no reason to play.
S2 : No.

Both agents are state-of-the-art constructions, incorporating the latest Al research

in chess playing, natural-language understanding, planning, etc. But because of the over-

whelming combinatorics of chess, neither they nor the fastest foreseeable computers would

be able to search the entire game tree to find out whether White has a forced win. Why

then do they come to such an odd conclusion about their own knowledge of the game?

The chess scenario is an anecdotal example of the way inaccurate cognitive models

can lead to behavior that is less than intelligent in artificial agents. In this case, the agents'

model of belief is not correct. They make the assumption that an agent actually knows

-. all the consequences of his beliefs. S1 knows that chess is a finite game, and thus reasons

that, in principle, knowing the rules of chess is all that is required to figure out whether

White has a forced initial win. After learning that S2 does indeed know the rules of chess,

he comes to the erroneous conclusion that S2 also knows this particular consequence of

the rules. And S2 himself, reflecting on his own knowledge in the same manner, arrives at

the same conclusion, even though in actual fact he could never carry out the computations

necessary to demonstrate it.
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We call the assumption that an agent knows all logical consequences of his beliefs

consequential closure. This assumption is clearly not warranted for either mechanical or

human agents, because some consequences, although they are logically correct, may not

be computationally feasible to derive. This is in fact illustrated by the chess scenario.

Unfortunately, the best current formal models of belief on which Al systems are based

have a possible-worlds semantics, and one of the inherent properties of these models is

consequential closure. While such models are good at predicting what consequences an

agent could possibly derive from his beliefs, they are not capable of predicting what an

agent actually believes, given that the agent may have resource limitations impeding the

derivation of the consequences of his beliefs.

The chess scenario illustrates one source of logical incompleteness in belief deriva-

tion, namely, an agent may not have enough computational resources to actually derive

some result. We will identify several others in Section 2, by presenting a problem in belief

representation that we have called the Not-So-Wise-Man Problem, a variation of the famil-

iar Wise Man Puzzle. Not surprisingly, this problem involves reasoning about beliefs an

agent does not have, even though they are logical consequences of his beliefs. The repre-

sentational problems posed by the chess scenario and the not-so-wise-man problem cannot

be solved within the framework of any model of belief that assumes consequential closure.

In this paper we introduce a new formal model of belief, called the deduction model,

for representing situations in which belief derivation is logically incomplete. Its main tea-

ture is that it is a symbol-processing model: beliefs are taken to be expressions in some

internal or "mental" language, and an agent reasons about his beliefs by manipulating these

syntactic objects. Because the derivation of consequences of beliefs is represented explicitly

as a syntactic process in this model, it is possible to take into account the fact that agents

can derive some of the logically possible consequences, but in many cases not all of them.

When the process of belief derivation is logically incomplete, the deduction model does not

have the property of consequential closure.

Symbol-processing models of belief in themselves are not new ksee, for example,

Fodor [101, Lycan (231, and Moore and Hendrix (311 for some philosophical underpinnings,

and McCarthy [261, Perlis (331, and Konolige (191 for Al approaches). The deduction model
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presented here differs significantly from previous approaches, however, in two respects.

First. it is a formal model: beliefs are represented in a mathematical framework called a

deduction structure. The properties of the deduction model can be examined with some

preciseness, and we do so in Section 3. Second, we have found sound and complete logics for

the deduction model. One of these, B, is presented in Section 4, and used in the solution

of the problems in Section 5. An important property of the deductive belief logic B is

that it can serve as a basis for building computer agents that reason about belief. We

have been able to find a number of interesting proof methods for B that have reasonable

computational properties. Although the exposition of these methods is beyond the scope of

this paper, at the appropriate points we will show iow the design of the logic was influenced

by computational considerations.

The nature of the deduction model and its logic B is further analyzed by comparing

B to modal logics based on a possible-worlds semantics in Section 6. An important result

is that the deduction model exhibits a correspondence property: in the limit of logically

complete deduction, B reduces to a modal logic with possible-worlds semantics. Thus the

deduction model dominates the possible-worlds model, while retracting the assumption of

consequential closure.

The material for this paper was abstracted from the author's dissertation work

(Konolige [21]). Because of the limited scope of this paper, we are not able to do more

than mention in passing several interesting topics that are a part of the deduction model and

its logics. Among these are efficient proof methods, the formal semantics and completeness

proofs, extensions to B that permit quantifying-in, and introspection properties (beliefs

about one's own beliefs). Interested readers can consult the dissertation itself for a fuller

exposition.

3
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2. Two Problems in the Representation of Belief

In this section we introduce three ways in which an agent may be incomplete in

reasoning from his beliefs: resource-limited incompleteness, fundamental logical incom-

pleteness, and relevance incompleteness. We argue that it is important for Al systems that

reason about belief to be able to represent each of these, and offer two anecdotal problems

to support this contention.

THE CHESS PROBLEM. Suppose an agent knows the rules of chess. It does

not necessarily follow that he knows whether White has a winning strategy

or not.

The chess problem, on the face of it, seems hardly to be a representational problem

at all. Certainly its statement is true: no agent, human or otherwise, can possibly follow

out all the myriad lines of chess play allowed by the rules to determine whether White has

a strategy that will always win. What kind of model of belief would lead us to expect an

agent to know whether White has a winning strategy? As we stated in the introduction,

any model that does not take resource limitations into account in representing an agent's

reasoning about the consequences of his beliefs has this behavior. Within such a model, we

could establish the following line of argument.

Chess is a finite game,1 and so it is possible, in theory, to construct a complete, finite
game tree for chess, given the rules of the game. The question of White's having
a winning strategy is a property of this finite game tree. If for every counter
Black makes, White has a move that will lead to a win, then White has a winning
strategy. Thus, White's having a winning strategy is a consequence of the rules of

The finiteness of chess is assured by the rule that, if 50 moves occur without a pawn advance or piece

capture, the game is a draw.-e
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chess that can be derived in a finite number of simple steps. If an agent believes
all the logical consequences of his beliefs, then an agent who knows the rules of
chess will, by the reasoning just given, also know whether White has a winning
strategy or not.

The chess problem is thus a problem in representing reasoning about beliefs in the

face of resource limitations. The inference steps themselves are almost trivial; it is a simple

matter to show that a move is legal, and hence to construct any position that follows a leg'al

move from a given position. But while the individual inferences are easy, the number of

them required to figure out whether White has a forced win is astronomical and beyond the

computational abilities of any agent. We call this behavior resource-limited incompleteness.

A suitable model of belief must be able to represent situations in which an agent possesses

the inferential capability to derive some consequence of his beliefs, but simply does not

have the computational resources to do so.

'A'

THE NOT-SO-WISE-MAN PROBLEM. A king, wishing to know which of his

three advisors is the wisest, paints a whtite dot on each of their foreheads,

tells them there is at least one white dot, and asks them to tell him the color

of their own spots. After a while the first replies that he doesn't know; the

second, on hearing this, also says he doesn't know. The third then responds,

"I also don't know the color of my spot; but if the second of us were wiser,

would know it."

The not-so-wise-man problem is a variation of the classic WVise Man Puzzle, which

McCarthy (in [241 and (251) has used extensively as a test of models of knowledge. In the

classic version, the third wise man figures out from the replies of the other two that his

spot must be white. The 'puzzle" part is to generate the reasoning employed by the third

wise man. The reasoning involved is really quite complex and hinges on the ability of the "

wise men to reason about one another's beliefs. To convince themselves of this, readers

who have never tried before may be interested in attempting to solve it before reading the

solution below.
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Solution to the Wise Man Puzzle: the third wise man reasons: "Suppose my spot
were black. Then the second of us would know that his own spot was white, since
he would know that, if it were black, the first of us would have seen two black

spots and would have known his own spot's color. Since both answered that they
had no knowledge of their own spot's color, my spot must be white."

The difficulty behind this puzzle seems to lie in the nature of the third wise man's

reasoning about the first two's beliefs. Not only must he pose a hypothetical situation

(Suppose my spot were black), but he must then reason within that situation about what

conclusions the second wise man would come to after hearing the first wise man's response.

This in turn means that he must reason about the second wise man's reasoning about the

first wise man's beliefs, as revealed by his reply to the king. Reasoning about beliefs about

beliefs about beliefs.., we call reasoning about iterated or nested beliefs. It can quickly

become confusing, especially when there are conditions present concerning what an agent

does not believe.

In the Wise Man Puzzle, nested belief contributes to the complexity of the reasoning

involved. The third wise man must reason about what the second wise man does not know

(the color of his own spot); in doing this, he must also reason about the second wise man's

reasoning about what the third wise man does not know (the color of his own spot). It

is particularly annoying and troublesome to keep track of who believes what after several

occurrences of not-believing in a statement of nested belief. Because human agents find

it so difficult, the Wise Man Puzzle is thought to be a good test of the competence of

any model of belief. If one can state the solution to the puzzle within the framework of

Model X, so the rearning goes, then Model X is at least good enough to show what might

conceivably be concluded by agents in complicated situations involving nested beliefs.

It is possible to solve the Wise Man Puzzle within the confines of belief models that

assume consequential closure (see, e.g., McCarthy [24], [25] or Sato [38]). Such models

make the assumption that every agent believes other agents' beliefs are closed under logical

consequence, and so on to arbitrary depths of belief nesting. While this is an accurate

assumption if one is trying to model the competence of ideal agents (which is what the

Wise Man Puzzle seeks to verify), it cannot represent interesting ways in which reasoning

about complicated nested beliefs might fail for a less-than-ideal agent. This is the import

7



of the not-so-wise-man problem. From the reply of the third wise man, it appears that

the second wise man lacks the ability to deduce all the consequences of his beliefs. The

repreentational problem posed is to devise interesting ways in which the second wise man

fails to be an ideal agent, and then show how the third wise man can represent this failure

and reply as he does.

The not-so-wise-man problem does not seem to fall into the category of resource-

limited incompleteness mentioned in the chess problem, since the computational require-

ments of the inferences are not particularly acute. We can identify at least two other types

of incompleteness (there may certainly be more) that are interesting here and would be

useful to represent. In one of these, the second wise man may have incomplete inferential

procedures for reasoning about the other wise men's beliefs, especially if tricky combina-

tions of not.believing are present. Suppose, for instance, the second wise man were to see

a black spot on the third wise man, and a white spot on the first wise man (this is the

hypothetical situation set up by the third wise man in solving the classic puzzle). If he

were an ideal agent, he would conclude from the first wise man's reply that his own spot

must be white (by reasoning- it mine were not white, the first of us would have seen two

black spots and so claimed his own as white). But he may fail to do this because his rules

for reasoning about the beliefs of the first wise man simply are not powerful enough. For
*example, he might never consider the strategy of assuming that his spot was black, and

then asking himself what the first wise man would have said. In this case, the second wise

man's inferential process, even when given adequate resources, is just not powerful enough

in terms of its ability to arrive at simple logical conclusions. To apply an analogy from

high-school algebra: a student who is confronted with the equation z + a = b and asked

to solve for x won't be able to do so if he doesn't know the rule that subtracting equal.s

from each side leaves the equation valid. It is not that the student lacks sufficient mental
resources of time or memory to solve this problem; rather, his rules of inference for dealing

with equational theories are logically incomplete. To contrast this type of incompleteness

with the resource-limited incompleteness described in the chess prmblem, we call it funda-

mental logical incompleteness.

Another way in which the not-so-wise-man might fail to draw :onclusions is if he

were to make an erroneous decision as to what information might be -elevant to solving

8
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his problem. Although the Wise Man Puzzle has a fairly abstract setting, it is reasonable

to -uppose that actual agents confronted with this problem would have a fair number of

extraneous beliefs that they would exclude from consideration. For example. the not-so-

wise-man might be privy to the castle rumor mill, and therefore believe that the first wise

man was scheming to marry the king's daughter. A very large number of beliefs of this

sort have no bearing on the problem at hand, but would tend to use up valuable mental

* resources if they were given any serious consideration. One can imagine an unsure agent who

could never come to any negative conclusions at all, because he would keep on considering

more and more possibilities for solving a problem. This agent's reasoning might proceed

as follows: I can't tell the color of my spot by looking at the other wise men. But maybe

there's a mirror that shows my face. No, there's no mirror. But maybe my brother wrote

the color on a slip of paper and handed it to me. No, there's no slip of paper, and my

* brother's in Babylon. But maybe...

McCarthy (in [27]) first called attention to the problem of representing what is

not the case in solving puzzles. In the Missionaries and Cannibals Puzzle, why can't the

missionaries simply use the bridge downstream to get across? A straightforward logical

presentation of the puzzle doesn't explicitly exclude the existence of such a bridge. And,

if it did, we could always come up with other modes of transportation that had not been

considered beforehand and explicitly excluded. McCarthy called the general problem of

specifying what conditions do not hold in a puzzle the circumscription problem. By analogy,

we call the problem of specifying what beliefs an agent does not have, or does not use in

S"solving a given task, the problem of circumscriptive ignorance (see Konolige [20]). Without

a solution to this representational problem, all agents will be modeled as unsure agents -

never able to reach a conclusion about what they don't believe, even though it is obvious
when the set of relevant beliefs ;s circumscribed.

Of course, if an agent can circumscribe his beliefs, it is possible that he will choose

the wrong set of beliefs, and exclude some that actually are relevant. The not-so-wise-man

may decide that the beliefs of the first wise man are not germane to the problem of figuring

out his own spot's color. Thus, even though he has all the relevant information, and even

sufficiently powerful inference rules and adequate resources, he may fail to come to a correct

conclusion because he has circumscribed his beliefs in the wrong way. We cail this type of

incompleteness relevance incompleteness.

9 
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Within a model of belief that assumes consequential closure, it is possible to represent

circumscriptive ignorance, but only in a relatively limited fashion. If consequential closure

is assumed, one can state that an agent is ignorant of some fact which is not a logical

consequence of his beliefs (McCarthy (25] uses this technique in his solution to the Wise

Man Puzzle). But this clearly does not capture the complete conditions of circumscriptive

ignorance, since agents are often ignorant of some of the logical consequences of their beliefs,

as in the chess scenario.

Modeling relevance incompleteness (or having the third wise man do so) is impossible

if it is assumed that the beliefs of agents are consequentially complete. One simply cannot

partition the set of beliefs into those that are either relevant or not to a given problem;

all the consequences of beliefs are believed. If we try to state the conditions of relevance

incompleteness within such a model, we can arrive at a contradiction, where a proposition

is both believed (because of the assumption of consequential closure) and not believed

(because of the condition of relevance incompleteness).

10
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3. The Deduction Model of Belief

The two belief representation problems can be solved within the framework of a

formal model of belief that we call the deduction model. In this section we define the

model; in the next we introduce a logic family B as its axiomatization.

The strategy we pursue is to first examine the way typical Al robot planning systems

(STRIPS [9], NOAH [37], WARPLAN [42], KAMP [1], etc.) represent and reason about

the world. This leads to the identification of an abstract belief subsystem as the internal

structure responsible for the beliefs of these agents. The characteristics of belief subsystems

can be summarized briefly as follows.

1. A belief subsystem contains a list of sentences in some internal ("men-
tal") language, the base beliefs.

2. Agents can infer consequences of their beliefs by syntactic manipula-
tion of the sentences of the belief subsystem.

3. The derivation of consequences of beliefs is logically incomplete, be-
cause of limitations of the inferential process.

Having identified a belief subsystem as that part of an agent responsible for beliefs,

our next task is to define a formal mathematical structure that models it accurately. The

decisions to be made here involve particular choices for modeling the various components

of a belief subsystem: What does the internal language look like? What kind of inference

process derives consequences of the base beliefs? and so on. The formal mathematical

object we construct according to these criteria is called a deduction structure. Its main

components are a set of sentences in some logical language (corresponding to the base beliefs

of a belief subsystem) and a set of deduction rules (corresponding to the belief inference

rules) that may be logically incomplete. Because we choose to model belief subsystems

%2-.
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in terms of logical (but perhaps incomplete) deduction, we call it the deduction model of

belief

3.1. Planning and Beliefs: the Belief Subsystem Abstraction

A robot planning system, such as STRIPS, must represent knowledge about the

world in order to plan actions that affect the world. Of course it is not possible to represent

all the complexity of the real world, so the planning system uses some abstraction of

properties of the real world that are important for its task: e.g., it might assume that there

are objects that can be stacked in simple ways (the blocks world domain). The state of

the abstract world at any particular point in time has been called a situation in the Al

literature.

In general, the planning system will have only incomplete knowledge of a situation.

For instance, if it is equipped with visual sensors, it may be able to see only some of the

objects in the world. What this means is that the system has to be able to represent and

reason about partial descriptions of situations. The process of deriving beliefs is a symbol-

- . manipulating or syntactic operation that takes as input sentences of the formal language,

- and produces new sentences as output. Let us call any new sentences derived by inferences

the inferable sentences, and the process of deriving them belief inference.

It is helpful to view the representation and deduction of facts about the world as

a separate subsystem within the planning system; we call it the belief subsystem. In its

simplest, most abstract form, the belief subsystem comprises a list of sentences about a

situation, together with a process for deriving their consequences. It is integrated with other

processes in the planning system, especially the plan derivation process that searches for

sequences of actions to achieve a given goal. In a highly schematic form, Figure I sketches

the belief subsystem and its interaction with other processes ,f the planning system. The

*belief system is composed of the base beliefs, together with the belief inference process.

Belief inference itself can be decomposed into a set of inference rules and a control strategy

12
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Figure 1. Schematic of a Belief Subsystem

that determines how the rules are to be applied and where their outputs go when requests

are made to the belief subsystem.

A belief subsystem defines an agent's beliefs by the action of the inference rules on

the base beliefs, under the guidance of the control strategy. Some, but not necessarily all,

of the inferable sentences will be beliefs of the agent; which inferable sentences are actually

beliefs depends on the details of the control strategy and the resources available for belief

inference.

There are two types of requests that result in some action in the belief subsystem.

A process may request the subsystem to add or delete sentences in its base beliefs; this
happens, for example, when the plan derivation process decides which sentences hold in a

new situation. The problem of updating and revising beliefs in the face of new information
is a complicated research issue in its own right, and we do not address it here (see Doyle

[71 for some related Al research). The second type of request is a query as to whether a

sentence is a belief or not. This query causes the control strategy to try to infer, using
the its rules, that the sentence is follows from the base beliefs. It is this process of belief

querying that we model in this paper.

The above description of the operation of a belief subsystem is meant to convey
the idea that in most formal planning systems there is a tight interaction between belief

13



subsystems and planning. Different systems may deviate from the described pattern to a

greater or lesser extent. In some systems, the representation of facts may be so limited,

and that of actions so explicit, as to almost obviate the need for belief deduction per se

(as in some versions of STRIPS). In others, deduction may be used to calculate all the

effects of an action by expanding the representation to include situations as objects (as in

WARPLAN). Here it is hard to make a clean separation between deductions performed

for the purpose of deriving consequences of beliefs and those that establish the initial set

of facts about a new situation. However, it is still conceptually useful to regard the belief

subsystem as a separate structure and belief derivation as a separate process within the

planning system.

3.2. A Formal Model of Belief

The formal mathematical object we use to model belief subsystems is called a deduc-

tion structure. A deduction structure is a tuple consisting of two sets and will be written

as (B, A). The set B is a set of sentences in some language L; It corresponds to the base

beliefs of a belief subsystem and its members are referred to as the base sentences of the

deduction structure. R is a set of deduction rules for L; these corresp,,nd to the inference

rules of a belief subsystem. We demand that deduction structures satisfy the following four

conditions.

Language Property. The language of a deduction structure is a logical lan-
guage.

Deduction Property. The rules of a deduction structure are logical deduc-
tion rules. These rules are sound, effectively coin-
putable, and have bounded input.

Closure Property. The belief set of a deduction structure is the least set
that includes the base sentences and is closed under
derivations by the deduction rules.

Recursion Property. The intended model of deduction structure sentences
involving belief is the belief set of another deduction
structure.

We discuss each of these properties briefly below. For the interested reader, a more

thorough treatment of the mathematical properties of deduction structures is given in the

next subsection.

14



About the only condition we require of L is that it be a logical language. Logical

languages are distinguished by having a constructable set of syntactic objects, the sentences

of the language, together with an interpretation method (a means of assigning true or false

to every sentence with respect to a given state of affairs).

R is a set of deduction rules that operate on sentences of L. We will leave unspecified

the exact form of the deduction rules R, but we do insist that they operate in the normal

manner of deduction rules in some proof-theoretic framework. This means that there is the

concept of a derivation of a sentence, which is a structure built from effective applications

of the rules R. If p is derivable from the set of sentences r in this manner, we write r B- p,

where -p is a derivation operator for the rules R. For example, in terms of Hilbert systems

(as defined in Kleene [181), R would be a set of logical axioms (zero-premise rules) together

with modus ponens (a two-premise rule). A sentence p would be derivable from the premise

sentences B = {hb, b2,...} if there were a Hilbert proof of (bI A b2A .. ). p, using the logical

axioms and modus ponens.

A deduction structures models beliefs by its belief set, which we define as follows.

DEFINITION 3.1.
bel((B, R)) =df (plB 9,e p}

The belief set is composed of all sentences that are derivable from the base set B with

the rules 2. The derivation operator FR thus corresponds to the belief inference process of

belief subsystems.

For several technical reasons, we restrict the derivation operators allowed in deduc-

tion structures to those that satisfy a deductive closure condition. One consequence of this

assumption is that the belief set itself obeys a closure property- if the sentence p can be

derived from the sentences in a belief set, then it too must be present in the belief set. By

making the assumption of deductive closure, the task of formalizing and reasoning about

deduction structures is greatly simplified.

It is important to note that deductive closure does not entail consequential closure

"-. for belief derivation: a set of sentences closed under logically incomplete deduction rules
need not contain all logical consequences of the set. This is an important property of

15
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deduction structures, and it enables them to capture the behavior of belief subsystems

with resource-bounded control strategies.

Finally, we single out certain sentences of the deduction structure for special treat-

ment, namely the ones that themselves refer to the beliefs of agents. In discussing the

not-so-wise-man problem in the previous section, we mentioned that one of the key tests of

a belief model is its ability to handle nested beliefs by assuming that agents use the model in

- - representing other agents' beliefs; a belief model that has this characteristic is said to have

the recursion property. In terms of deduction structures, the recursion property implies

that the sentences of the internal language L that are about beliefs should have another

deduction structure as their intended interpretation.

3.3. Properties of Deduction Structures

In this subsection we treat the mathematical properties of deduction structures in

some detail, taking care to show how they can model the behavior of belief subsystems of

formal Al planning systems.

Language Property

One restriction we place on the language of deduction structures is that sentences

of the language have a well-defined (i.e., truth-theoretic) semantics. Such a requirement

seems absolutely necessary if we are going to talk about the beliefs of an agent being true

of the actual world, or, as we will want to do in discussing the rationality -f agents, judge

the soundness of belief deduction rules. Such concepts make no sense in the absence of an

interpretation method - a systematic way of assigning meanings to the constructions of the

language. As Moore and Hendrix ([311, parts IV and especially V) note, the interpretation

method is not something the agent carries around in his head; a belief subsystem is just a

collection of sentences, and computational processes manipulate the sentences themselves.

not their meanings. One simply cannot put the referent of "Cicero' into a robot's compu-

tation device, even if he (Cicero, of course) were alive. But the attribution of semantics to

sentences is necessary if an outside observer is to analyze the nature of an agent's beliefs.

4' .. -. '.".,16
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How well do actual robot belief subsystems fit in with the assumption of a logical

language of belief? Al systems use a variety of representational technologies; chief among

these are frames, scripts, semantic nets, and the many refinements of first-order logic (FOL),

including PROLOG and the "procedurally oriented" logics of p-PLANNER, CONNIVER.

QA4, and the like. The representations that fall into the latter category inherit their
"." semantics from FOL. despite many differences in the syntactic form of their expressions.

But what can we say about the first three? In surface form they certainly do not look

anything like conventional mathematical logics; furthermore, their designers often have

not provided anything but an informal idea of what the meanings of expressions in the

language are. When, after all, is a pair of nodes connected by a directed arc true of the

world? As Hayes [11] has forcefully argued, the lack of a formal semantics is a big drawback

for these languages. Fortunately, on further examination it is often possible to provide such

a semantics, usually by transliterating the representation into a first-order language (see

Woods [44] and Schubert (391 for a reconstruction of semantic nets in FOL terms, and

Brachman [4] for a similar analysis of frames).

In discussing human belief, several philosophers of mind have argued that internal

representations that count as beliefs must have a truth-value semantics (see Fodor [10],

Field [8], and Moore and Hendrix [311 for a discussion of the many intricate arguments on

this subject, especially pp. 48ff. of Field and part V of Moore and Hendrix). However,

there almost certainly is a lot more to human belief than can be handled adequately within

the framework of a logical language. For example, the question of membership in the belief

set of a deduction structure is strictly two-valued: a sentence is either a member of the

belief set of a deduction structure, or it is not. If it is, then the assumed interpretation is

that the agent believes that sentence to be true of the world. Deduction structures thus do

not support the notion of uncertain beliefs directly, as they might do if fuzzy or uncertain

membership in the belief set were an inherent part of their structure.1

One further requirement is that L contain expressions referring to the beliefs of

agents. Generally we will take this to be a belief operator whose argument is an expression

in L.
However, uncertain beliefs could always be introduced into deduction structures in an indirect manner by

letting L contain statements about uncertainty, e.g., statements of the form P is true with probability 1/2.

-4', 17

.-. % . - .". ... ,...-,,-..-.-... .... -.t. -. ...... . . . ... . --.. . . . . .. . . . .. ..." ' " -" "-"-. . . . '"" '" -" '''...""" 4'-: '



J

Finally, it is often the case that we will want to freeze the language of deduction

structures in order to study their properties at a finer level of detail, e.g., when looking at

* the behavior of nested beliefs in general or when giving the particulars of the solution to

a representational problem. It is convenient to think of the language as being a parameter

of the formal model. For every logical language L, there is a class of deduction structures

D(L, p) whose base sets are sentences of the language L (the parameter # will be explained

in discussing the recursion property below).

Deduction Property

Rules for deduction structures are rules of inference with the following restrictions:

1. The rule is an effectively computable function of sentences of L.
a' 2. The number of input sentences is boundedly finite.

3. The conclusion is sound with respect to the semantics of L.

These restrictions are those normally associated with deduction rules for classical logic,

although, strictly speaking, deduction rules need not be sound, if one is just interested in

proof-theoretic properties of a logic without regards to semantics.

The fact that belief deduction rules are effectively computable functions means that

they can be very complicated indeed. Mathematical logicians are interested in logics with

simple deduction rules (such as Hilbert systems) because it is easy to analyze the proof-

theoretic structure of such systems. However, for the purpose of deriving proof methods

for commonsense reasoning in Al, it is often better to sacrifice simplicity for computational

efficiency. For example, Robinson's resolution rule [36], which employs a matching process

called unification, is a complicated rule that has been widely employed in Al theorem-

proving. Another important technique is Weyhrauch's semantic attachment [43], a general

framework for viewing the results of computation as deductions. In this paper, we will

exploit complicated rules that perform deductions that are relatively "large' with respect

to the grain size of the predicates, particularly in solving the chess problem of Section 2.

Although these "large" deductions could be broken down into smaller steps, it is computa-

tionally and conceptually easier to view them as single deductions.

We call an inference rule provincial if the number of its input sentences is boundedly

finite; deduction rules are always provincial. We thus do not allow inferences about beliefs

.
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that take an infinite number of premises. For example, the following rule of Carnap's is not

a valid rule of belief deduction: if for every individual a: F(a) is a theorem, then VX.F(.r)

is a theorem.1 Provincial inference rules have the following interesting property: if a is

a consequence of a set of sentences S by the rule, then it is also a consequence of any

larger set S' : S. To see that this must be so, consider that, if a can be derived by the

application of provincial rules on the set of sentences S, and S' contains S, thern the same

derivation can be performed by using S'. Rules that adhere to this property are called

monotonic. Technically, monotonicity is convenient because it means we can reason about

what an agent believes on the basis of partial know'edge about his beliefs. A derivation

made using a subset of his beliefs cannot be retracted in the face of further information

about his beliefs.

Several types of nonmonotonic (and unsound) reasoning have been of interest to the

Al community, specifically

Belief revision: the beliefs of an agent are updated to be consis-
tent with new information (e.g., Doyle [7]).

Default reasoning: an agent "jumps to a conclusion' about the way
the world is (e.g., McCarthy [27], Reiter [35]).

Autoepistemic reasoning: an agent comes to a conclusion about the world
based on his knowledge of his own beliefs (e.g.,
Collins et al. [61, Moore 130]).

We are explicitly not trying to arrive at a theory of these forms of reasoning. Indeed,

it is helpful here to make the distinction that Israel (in [161) advocates between inference

or reasoning in general (which may have nonmonotonic properties) and the straightforward

deduction of logical consequences from a set of initial beliefs. It is the latter concept only

that is treated in this paper.

If we wish to accommodate some nonmonotonic theory formally within the frame-

work of the deduction model, then we can view its inferences as deduction rules operating

on deduction structure theories as a syntactic whole. McCarthy [27] exploits this approach

to formalize a certain type of useful default inference, which he calls circumscription (see

the description of the not-so-wise-man problem in Section 2). In defining the logic B, we

I am indebted to David Israel for pointing out this example.
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will show how to formalize circumscriptive ignorance, a type of nonmonotonic inference, in

this manner.

Deduction rules for belief subsystems must also be sound. A sound deduction rule

is one for which, if the premises are true in an interpretation, then the conclusion will be

also (see Kleene [181). Informally, one would say that sound deduction rules never deduce

false conclusions from true premises. Modus ponens is an example of such a rule: if p and

p q are true, then q must also be.

Soundness of inference is an important property for robot agents in deriving conse-

quences of their beliefs. We would not want a robot who believed the two sentences

All men are mortal.
Socrates is a man.

to then deduce (and hence believe) the sentence

(3.2) Socrates is not mortal.

Soundness is not a critical assumption for the deduction model, since none of the

major technical results depend on it. In some cases we may wish to relax it, for example, in

modeling the behavior of human syllogistic reasoning, which is often unsound (see Johnson-

Laird [17]).

To sum up: deduction structures are restricted to using inference rules which are

provincial, sound, and effectively computable. Several interesting types of reasoning, such

as reasoning about defaults or one's own beliefs, cannot be modeled directly as deduction

rules over sentences. However, they can be incorporated into the deduction model if the

input to the rules is taken to be the deduction structure as a whole.

Closure Property

The closure property states that the belief set of a deduction structure is closed

under derivations. Formally, this amounts to the following conditions on the belief set.

1 . B 9 ben((B, R)

2. If r 9 bel((B, 2)) and r p P, then p E bel((B, P)).

-.0
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Since we have defined the belief set in terms of the belief derivation operator B-;.
(Definition 3.1), we can reexpress these as conditions on belief derivation.

(Reflexivity) a B-P(i) a.

(Closure) if r B-o(i) f and , p Bci a, then r, E B-p(j) a.

Reflexivity guarantees that the base set will be included in bel, and the closure

condition establishes closure of bel under derivation.

The chief motivation for requiring derivational closure is that it simplifies the tech-
nical task of formalizing the deduction model. Consider the problem of formalizing a belief

subsystem that has a complex control strategy guiding its inferential process. To do this

* correctly, one must write axioms that not only describe the agendas, proof trees, and other

data structures used by the control strategy, but also describe how the control strategy

guides inference rules operating on these structures. Reasoning about the inference process

involves using these axioms to perform deductions that simulate the belief inference process,

a highly inefficient procedure. By contrast, the assumption of derivational closure leads to

a simple formalization of deduction structures in a logic B that incorporates the belief in-

ference process in a direct way. We need not differentiate between a belief as a member of

the base set, or as a derived sentence. A sentence that follows from any members of the

belief set is itself a belief. The axiomatization of B is simplified, since we need only have

an operator whose intended interpretation is membership in the belief set. In Section 4, we

exploit the properties of closed derivational systems to exhibit a complete axiomatization

of B, using techniques that are manner similar to the procedural attachment methods of

Weyhrauch [431.

The closure property is an extremely important one, and we should examine its :1
repercussions closely. A point that we have already made is that derivational closure is not

the same as consequential closure. The latter refers to a property of sets of sentences based

on their semantics: every logical consequence of the set is also a member of the set. The

former refers to the syntactic process of derivability; if the rules P are not logically complete,

then a set of sentences that is derivationally closed under R need not be consequentially ii
21"''I
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One of the key properties of belief subsystems that we wish to model is the incom-

pleteness of deriving the consequences of the base set of beliefs. We have identified three

sources of incompleteness in belief subsystems: an agent's belief inference rules may be too

weak from a logical standpoint, or he may decide that some beliefs are irrelevant to a query,

or his control strategy may perform only a subset of the inferences possible when confronted

with resource limitations. The assumption of derivational closure for deduction structures

* - affects their ability to model incomplete control strategies, since closure demands that all

possible deductions be performed in deriving the belief set.

For an important class of incomplete control strategies, however, there is a cor-

-. responding complete control strategy operating on a different set of inference rules that

produces the same beliefs on every base set. The criteria that defines this class is that the

control strategy use only a local cost bound in deciding to drop a particular line of infer-

ence. By "local" is meant that the control strategy will always pursue a line of inference

to a certain point, without regard to other lines of inference it may be pursuing in parallel.

Control strategies with a local cost bound are important because their inferential behavior

is predictable: all inferences of a certain sort are guaranteed to be made.

Deduction structures can accurately model the class of locally bounded incomplete

control strategies by using an appropriate set of logically incomplete deduction rules. A

good example is found in the solution to the chess problem in Section 5. The agent's control

strategy applies general rules about chess to search the game tree to only a limited depth;

this is modeled in a deduction structure by using deduction rules that work only above a

certain depth of the game tree, and applying them exhaustively.

In belief subsystems whose control strategies have a global cost bound, the concept

of belief itself is complicated, since one must differentiate between base beliefs and beliefs

inferred with some amount of effort. Deduction structures are only an approximate model

of these subsystems, and a language with a single belief operator is no longer sufficient for

tht-ir axiomatization.

Recursion Property

If belief subsystems adhere to the recursion property, then agents view other agents

as having belief subsystems similar to their own. This still leaves a considerable degree of

* 4- . . ) '" . .... . .. . . " " ... . . . . .. " "* .-. . . . - "
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flexibility in representing nested beliefs. For example, an agent John might believe that

Ste's internal language is LI and that she has a set of deduction rules 21, whereas Kim's

internal language is L2 and her deduction rules are 2 2 . In addition, John might believe

that Sue believes that Kim's internal language is L3 , and that her rules are R3. We call

the description of a belief subsystem at some level of nesting a view; formally. views are

sequences of agents' names, so that the view John, Sue is Sue's belief subsystem as John

sees it. We will often use the Greek letter L, to stand for an arbitrary view, and lowercase

Latin letters (i, j, etc.) for singleton views, which are agents' actual belief subsystems.

Since the formal objects of the deduction model are deduction structures, these will be

indexed by views when appropriate. For example, the djohnSue is a deduction structure

modeling the view John, Sue.

Obviously, some fairly complicated and confusing situations might be described, with

agents believing that other agents have belief subsystems of varying capabilities. Some of

these scenarios would be useful in representing situations that are of interest to AI systems;

e.g., an expert system tutoring a novice in some domain would need a representation of the

novice's deductive capabilities that would initially be less powerful and complete than its

own, and could be modified as the novice learned about the domain.

We model the recursion property of belief subsystems within the framework of de-

duction structures by allowing sentences of L to refer to the beliefs of agents. A standard

construct is to have a belief operator in L: an operator whose arguments are an agent S

• . and a sentence P, and whose intended meaning is that S believes P. According to the

recursion property, this means that the belief operator must have a deduction structure as

its interpretation. Deduction rules that apply to belief operators will be judged sound if

they respect this interpretation. For example, suppose a deduction structure d, has a rule
stating that the sentence "John believes q" can be concluded from the premise sentences

'John believes p' and "John believes p : q". This is a sound rule of d" if modus ponens

is believed to be a rule of John's belief subsystem as viewed from the view v, since the

presence of p and p n q in a deduction structure with modus ponens means that q will be

derived.

Several simplifying assumptions are implicit in the use of deduction structures to

model the nested views of belief subsystems. The language L contains a belief operator

23
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that denotes membership in a belief set (its intended interpretation), and so L can describe

what sentences are contained in an agent's belief set. However, there is no provision in L
for talking about the deduction rules an agent uses. Instead, these nested-belief rules are

implicitly specified by the rules that manipulate sentences with belief operators. Consider
the example from the previous paragraph. Let us suppose that we are modeling Sue's

belief subsystem with the deduction structure dsu.. Because Sue believes that John uses
modus ponens. a sound rule of inference for du..would be the one that was stated above, I
namely, the sentence "John believes q" could be concluded from the premise sentences

"John believes p' and "John believes p q." All of the rules that Sue believes John uses

are modeled in this way. Similarly, if, in Sue's opinion, John believes that Kim uses a

certain rule, this will be reflected in a rule of John's deduction structure as seen by Sue,

which in turn will be modeled by a rule in dsu.. The deduction model thus assumes that

the rules for each view, though they may be different, are a fixed parameter of the model.

We introduce the function p(&,) to specify deduction rule sets for each view Y; thus, for

each function p and each language L, there is a class of deduction structures D(L, p) that
formalize the deduction model. If the rules p are complete with respect to the semantics of

L, then the class is said to be saturated, and is written D,(L, p)

A final simplification that is not inherent in the deduction model, but which we

introduce here solely for technical convenience, is to assume that all deduction structures

in all views use the same language L. There are situations in which we might want to relax

this restriction, it makes the axiomatization less complex in dealing with the problems at
hand.

214

~,'!

, . ... . . -. ., .., ... ., .. . .. - . - . . .-. .% - . . .'- , . - .... ..- -.. -.....- .... .... .....- .-..-..-...-. ,-.......-..,- .- -



4. Th Logc Faily.

nael by/ an.m agns lagug L and an eneml of deuto stucur rule - P. . Each - - '

N'.°

,.

.%.

4. The Logic Family B

-, \%We now define a family of logics B(L, p) for stating facts and reasoning about de- .

a duction structures. This family is parameterized in the same way as deduction structures..

namely by an agents' language L, and an ensemble of deduction structure rules p. Each .

logic of the family is an axiomatization of the deduction structures D(L, p).

- The language of B includes operators for stating that sentences are beliefs of an

agent, but not for describing deduction rules of agents. Thus the deduction rules are a

parameter of the logic family, and are fixed once we decide to use a particular logic of the -

family. The ensemble function p picks out a set of rules for each agent. The reason we chose

to make the deduction rules a parameter of B is that it is then possible to find efficient

proof methods for B. One of the interesting features of B's axiomatization is that agents'

rules are actually present as a subset of the rules of B; proofs about deduction structures

in B use these rules directly in their derivation.

The logic of B is framed in terms of a modified form of Gentzen systems, the block

tableau systems of Hintikka. Although they may be unfamiliar to some readers, block

tableaux are easy to work with and possess some natural advantages when applied to

the formalization of deduction structures. Unlike Hilbert systems, which contain complex
logical axioms and a single rule of inference in the propositional case (modus ponens), block

tableau systems have simple axioms and a rich and flexible method of specifying deduction

rules. We exploit this capability when we incorporate deduction structure rules into B.

In this section we first present a brief overview of block tableaux. Then we give the

postulates of the family B, and a particularly simple subfamily called BK that will be used

in solving the problems. By way of example, we prove some theorems of BK.
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4.1. Block Tableaux

Most of this section will comprise a review for those readers who are already familiar

with tableaux systems.

The Base Language LO

The language of 8 is formed from a base language L0 that does not contain any

operators referring to beliefs. L0 is taken to be a first-order language with constant terms.

An interpretation of L0 is a truth-value assignment to all sentences (closed formulas) of
LO; this assignment must be a first-order valuation, that is, it must respect the standard

interpretation of the universal and existential quantifiers as well as the Boolean connectives.

We call Lo uninterpreted if every fist-order valuation is an interpretation of L0 ;
partially interpreted if some proper subset of the first-order valuations are interpretations

of Lo; and fully interpreted (or simply interpreted) if there is a singleton interpretation of

Lo. A sentence of Lo is valid if and only if it is true in every interpretation of L0.

'a, We use lowercase Latin or Greek letters (p, q, a, etc.) as metavariables that stand

for sentences of L0 . A formula of L0 that possibly contains the free variable z will be

indicated by ,(z); the formula derived by substituting the constant a everywhere for z is

denoted by o(z/a). Uppercase Greek letters (r 1 df 'l,'2,...., A d (61,62 .... }, etc.)

stand for finite sets of sentences of L0. By p, r we mean the set {p} U r. We also introduce

the abbreviation -,r df (-"1,'-r2,...).

Sequents

Sequents are the main formal object of block tableaux systems.

DEFINITION 4. 1. A sequent is an ordered pair of finite sets of sentences.
(r,.A). This sequent will also be written as r , A, and read as 'A follows
from r."

A sequent r z. A is true in an interpretation of its component sentences iff
one of -ti is false, or one of ii is true. A sequent is valid iff it is true under
all interpretations, and satisfiable iff it is true in at least one interpretation.

26.4,.
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From the definition of truth for a sequent, it should be clear that a sequent r A

is true in an interpretation just in case the sentence (" A ,'2 A...) (61 v 6,2 v...) is true in

that interpretation. Thus, in a given interpretation a true sequent can be taken as asserting

that the conjunction of -t's materially implies the disjunction of the 6's.

We allow the empty set 0 to appear on either side of a sequent, and abbreviate

o = A by r A r =. € by r =*, and =s- 4, by =*. By the above definition, =- A is true

(in an interpretation) if and only if one of 6i is true, r =* is true if and only if one of :ji is

false, and - is never true in any interpretation.

Block Tableaux for Lo

The proof method we adopt is similar to Gentzen's original sequent calculus, but

simpler in form. It is called the method of block tableaux, and was orginated by Hintikka

[13]. A useful reference is Smullyan [40], in which many results in block tableaux and

similar systems are presented in a unified form.

A block tableau system consists of axioms and rules (collectively, postulates) whose

formal objects are sequents. Block tableau rules are like upside-down inference rules: the

conclusion comes first, next a horizontal line, then the premises. Block tableaux themselves

are derivations whose root is the sequent derived, whose branches are given by the rules,

and whose leaves are axioms. Block tableaux look much like upside-down Gentzen system

trees. (A more formal definition of block tableaux is given below).

We consider a system To (see Smullyan [40], pp. 105-109) that is first-order sound

and complete: its consequences are precisely the sentences true in every first-order valua-

tion.

S,.DEFINITION 4.2. The system To has the following postulates.

Axioms. Fp 2* &,p
" r,p Aq =oA

Conjunction Rules. C 1 : "
T,p,q =s A

-'." :0, A, p A q.
C2 :

r A,p F= A,q

' -27
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r w A,pvq
Disjunction Rules. D1  .I~

r ,p vq=a, A
D2:~ s T Po.4 ,q A

r =:, A,p: q
Implication Rules. 11: A

r,p=iq~ ;oa
12: £ ap T, q A

Negation Rules. N1: r, _p

N: r,p a

N2 r,vzaz).A

Universal Rules. U1: , vzaVzt) a

r zo Vz-awx) a wher a o perdi
r12 Fw..(z/a), Vz.a(z4A' the tableau

Existential Rules. E1: r 3 za , A

:2E 2 : F,~~~ ~Awhere a has not appeared in
T, a(z/a), 3z.a(z), zo AL' the tableau

Remarks. Note the simple form of the axioms and the symmetric nature of the inference

rules (actually, each rule is a rule schema, since r, A, p, q, and a stand for formulas and

sets of formulas of LO). There is one rule that deletes each logical connective on either side

of the sequent. For example, the first conjunction rule deletes a conjunction on the left

% side of a sequent in favor of the two conjoined sentences; informally, it can be read as '

follows from r and p A q if it follows from r, p, and q." It is easily verified that each rule is

sound with respect to first-order valuations: if the premises are true in an interpretation.

then so is the conclusion.

DEFINITION 4.3. A block tableau for the sequent r =P % in a system 7 is a

tree whose nodes are sequents, defined inductively as follows.

I. r A is the root of the tree.
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2. If sequent s is the parent node of daughters 31 ... sn.
then is a rule of T.

1 .... 9n

A block tableau is closed if all its leaves are axioms. If there is a closed
block tableau for the sequent r = A, then this sequent is a theorem of the
system 7 and we write F-T r' a.

A system 7'" is called a subsystem of 7 if every rule of T is also a rule of
. If some subsystem T' of 7 has exactly the same theorems as 7, then the

rules of 7not appearing in 7' are said to be eliminable from , or admissible~to 7' .

Block tableaux are similar to the AND/OR trees commonly encountered in Al

theorem-proving systems (see Nilsson [32]). Rules C2 , D2 , and I2 cause AND-splitting,

while a choice of rules to apply at a tableau node is an OR-split.

Example. Here is a block tableau for the sequent 3z. Bz A Ax, Vx. Cz n -nBx 3x. Ax A

-Cz.

3z. BZ A Ax, Vx. Cz z -Br =. 3x.Ax A -XC
E Be A Ae, Vx. Cx : -,Br => 3x.Ax A -'CX

U Be A At, Ce -Be =' 3.X A ̂ -CZ
S Be A ACe -,Be =: At A -CC

"- C1  Ae, Be,Cc - Be = A A -CC
12  Ac, Be, Be =: Ac A -,CC Ae, B =: Cc,At A -Ce

NV2 Ae, Be Be, At A -CC C2 At, Be => Ce, -Cc Ac, Be =P Cc, Ae
x N Ae, Be, C Ce x

x

The sequent to be proved is inserted as the root of the tree. By a series of reductions

based on the rules of 70, the atoms of the sequent's sentences are extracted from the scope

of quantifiers and Boolean operators. Splitting of the tree occurs at the rules 12 and C2 ;

'I. otherwise the reduction produces just a single sequent below the line. If a tree is found

where the sequents at all the leaves are axioms, then the theorem is proved. Note that

the logical inferences are from the leaves to the root of the tree, even though we work

backwards in forming the tree. At each junction of the tree, the parent sequent is true in

an interpretation if all its daughters are true in that interpretation.

An important connection between theoremhood and logical consequence for sequent

systems is the following soundness theorem for tableaux.
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THEOREM 4. 1. if r p is a theorem of T (where p is a single sentence of
Lo). and all the rules of T are sound, then p is a logical consequence of F.

Proof. If the rules of T are sound, then every theorem of 7 is valid. By
Definition 4.1, this means that in every interpretation in which all of 1 are
true, p must be also.1

4.2. The Language of 8

The language of 8 is formed from a first-order base language L0 by adding modal

operators for belief and belief circumscription. We call this language LB. It is convenient

to use LB also as the agents' language L, since it provides a representation for nested beliefs

as required by the recursion property. With this assumption, we can parameterize 8 by

the base language L0 , and write B(Lo, p) for the logic family.

To form LB from a base language Lo, we require a countable set of agents (So, S1,

DEFINITION 4.4. A sentence of LB based on Lo is defined inductively by the

following rules.

I. All formation rules of Lo are also formation rules of LB.

2. If p is a sentence, then [Silp is a sentence for i 2: 0.
3. If p is a sentence and F is a finite set of sentences, then

(Si : r)p is a sentence for i k 1.

An ordinary atom of L1 is a ground atom of L0 ; a belief atom is a sentence of

the form (Si]p, and a circumscriptive atom is one of the form (Si : )p. In the belief

atom [Si]p, p is said to be in the context of the belief operator. Note that there is no

quantification into the contexts of belief atoms, since the argument of a belief operator is

always a closed sentence. L13 can be extended to include quantification into belief contexts:

such a language has greater representational power and its logic qB has a more complex

axiomatization. The interested reader is referred to Konolige [21] for a description of qB.

Here, the simpler B is sufficient for an analysis of the problems.

We will use the abbreviation [sir -df [S] 1, [S]-2,.
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Interpretations

Interpretations of the language of LB are formed from interpretations of its base.

language Lo, together with an interpretation of belief and circumscriptive atoms. The

intended meaning of the belief atom [Sip is that p is in the belief subsystem of agent Sj;

informally, we would say "Si believes p." Since we are formalizing belief subsystems by

means of deduction structures, an interpretation of the belief atoms [Si]p is given by a

deduction structure di. [Silp is true if p is in bel(d.), the belief set of di; otherwise it is

false.

In addition to representing beliefs of individuals, we use belief atoms to represent

common beliefs. A common belief is one that every agent believes, and every agent believes

every other agent believes, and so on to arbitrary depths of belief nesting. We reserve the

name So for a fictional agent whose beliefs are taken to be common among all agents. The

belief atom [So]p means that p is a common belief. In terms of deduction structures, its

intended interpretation is that p and [So]p are in the deduction structure di of every agent
S.,i>o. -

McCarthy (see, for example, [25]) was the first to recognize the common knowledge

could be represented by the use of a fictitious agent FOOL whose knowledge 'any fool"

would know. He used a possible-worlds semantics for knowledge, and so all consequences

of common knowledge were also known. The representation of common belief presented

here uses an obviously similar approach; it differs only in that common belief rather than

common knowledge is axiomatized (common beliefs need not be true), and in having a

deduction structure semantics, so that common beliefs need not be closed under logical

consequence.

The interpretation of circumscriptive atoms is also given by the deduction structure

representing an agent's beliefs. The intended meaning of (S i : )p is that p is derivable

from F in the deduction structure di, that is, r 9,-(j) p. The circumscription operator

elevates the belief derivation process to a first-class entity of the language (as opposed to

belief operators [Si], which simply state that certain sentences are in or not in the belief

set).
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While it may not be apparent at first glance, the circumscription operator is a

powerful tool for representing situations of delimited knowledge. For example, to formally

state the condition, "the only facts that agent S knows about proposition p are F," we
could use

(4.1) (S: F)p [Sip

This assertion states that S believing p is equivalent to S being able to derive p from F. The

forward implication is uninteresting, since it just says that p is derivable from F by agent

S, i.e., (SIF : (Sip. The reverse implication is more interesting, since it states p cannot be

a belief of S unless it is derivable from F. This reverse implication limits the information
S has available to derive p to the sentences F, and thus gives the circumscriptive content

of (4.1). Note that there is no way to formulate the reverse implication as a sentence of L8

using only belief operators.

The reader should note carefully that the semantics of L3 differs completely from
that of most modal languages, in which the argument to the modal operator is usually
taken to denote a proposition that can take on a truth-value in a possible world. By
contrast, arguments to modal operators in the language of B denote sentences of L, namely
themselves. It is important to keep this distinction in mind when interpreting the modal

operators of B.

4.3. A Sequent System for B

The deductive process that underlies the deduction model is characterized in very
general terms by deduction structures and their associated belief sets. Until now we have

been content with deliberate vagueness about the exact nature of deduction rules and the
derivation process. As stated in Section 3, there are five conditions that must be satisfied:

,, the deduction rules must be effective, provincial, and sound, and the derivations reflexive
and closed under deduction. Consider a deduction structure di = (B, p(i)) for agent Si.If
we let the process of belief derivation for d be symbolized by BP(j), these conditions are as

follows.

(Effectiveness) The deduction rules p(i) are effectively applicable.
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(Provinciality) The number of input sentences to each rule is finite and
bounded.

A (Soundness) If F 'p'() a, then a is a logical consequence of F.

(Reflexivity) a a(j) a.

(Closure) If F $ and $, E a, then F, r Bp(i) a.

Suppose we are given beforehand a derivation operator "-, satisfying the above

conditions, that models an agent Si's belief subsystem. The central problem in the for-

mulation of B is to find tableau rules that correctly implement the meaning of the belief
operator [Si] and the circumscription operator (Si : 1) under p(i).

. Consider first the sequent [s1 r * [sia. Its intended meaning is that, if all of F are

in S2's belief set, then so is a. The only possible way that we can guarantee this condition

is if a is derivable from r, i.e., F ,(0 a. If this were not the case, then we could always

construct the counterexample di =dr (r, p(i)) in which all of r are in di, but a is not. Thus

we can relate the truth of a sequent involving belief operators to derivability in an agent's

belief subsystem. This relation is captured by the inference rule

[slr [saaA:
r B-p()

A is called the attachment rule, because it derives results involving the belief op-

erator by attaching sentences about belief to the actual derivation process of an agent.

Remembering that the premise is the bottom sequent and the conclusion the top, we can

read A informally as follows: "If a is a deductive consequence of r in Si's belief subsystem,

then. whenever Si believes F, he also believes a."

To capture the notion of common belief, we need to make a modification to the

attachment rule. The intended meaning of the common belief atom [Soq is that both q

and [Sojq are in the belief subsystem of every agent. The sequent [SOIA, [Si]r -- [Sia will

be true if whenever [S0 IA, A, and r are in the belief set of di, a also is. By reasoning similar

to that used in deriving the rule A, we can rephrase this in terms of belief derivation. This

yields the revised attachment rule ACB.

iCB :I, [SoAslr =b. [sja,A
[SoIA, A, r Op(i a
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In AC B . both A and (SOJA can be used in the derivation of a. Note that this rule is applicable

to the fictional agent So. Because So's beliefs are intended to be common beliefs, and hence

derivable by any agent, it should be the case that the rules p(O) are used by every agent. '1

We thus demand that p(O) C p(i) for every i. I
We can find tableau rules for the circumscription operator in a similar manner. The

intended semantics of this operator relates directly to the belief derivation process: (S. :)p

means that p is derivable from r in Si's belief subsystem, i.e., r B*plj) P. In writing sequent

rules, there are two cases to consider, for a circumscriptive atom can appear on the right

or left side of the sequent arrow. We thus have the following two rules.

Cirel : E . (5, r)p, A
r igj)q p.-

E, (Si : p Pi a
Cite2 : r J.,y) p .

The second circumscription rule is the one that is used to show circumscriptive igno-

rance. It states that if p is not derivable from a set of sentences I, then the circumscriptive

atom (5i : r)p is false. Given a statement of the form 4.1, this in turn would imply that

Si was ignorant of p.

We can now give a full axiomatization of the logic family B.

DEFINITION 4.5. The system B(Lo, p) has the following postulates.

1. The first-order complete rules To.
2. The rules ACB , Cirel, and Circ2.
3. A closed derivation process o(j) for each agent Sj, such

that p(O) 9 p(i) for every i.

This axiomatization of B is both sound and complete with respect to its deduction

structure semantics, as proven in Konolige [211. It is a compact formalization of the de-

duction model and useful for theoretical investigations, but we do not use it very much as

a representational formalism because of the general nature of the belief deduction process

",tj), which is rather opaque to further analysis. For instance, we might wish to look at
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the subfamily of B in which the rules of p(i) that govern nested belief are as strong as

.4. In order to explore the fine structure of Si's belief deduction process, or to formalize

the problems, we need to fix the nature of 'p(i) more precisely. The rich set of rules, and

the flexibility of tableau derivations, make tableau systems a natural choice here. In the

next section we define a particularization of B, the logic family BK, whose belief derivation

process is defined in block tableaux terms.

4.4. The Nonintrospective Logic Family BK

In the logic family BK, the belief derivation operator 8- is defined as provability in a

tableau system.

DEFINITION 4.6. A sentence a is BK-derivable from premises r (F -7 a) if
and only if -r =:. a.

We need to show that tableau system derivability as just defined satisfies the flve

criteria of belief derivation: effectiveness, provinciality, soundness, reflexivity and closure.

Consider a sequent system Tmade up of sound tableau rules. According to Theorem 4.1,

the theorem -7 r =. p of Timplies that p is a logical consequence of r, so we are assured

that --satisfies the soundness criterion. Provinciality and effectiveness are also satisfied,

since the theorems of 7 are built by using effectively computable steps that operate on

a bounded number of sentences at each step. The observant reader might object at this

point that tableau rules may indeed refer to an unbounded number of premise sentences:

e.g.. any of the rules of 70 have this property, since r and A can stand for any set of

sentences. However, each rule of 70 is actually a rule schema: the capital Greek letters

are metavariables that are instantiated with a boundedly finite set of sentences to define a
rule.

The closure condition is fulfilled by a special subclass of sequent systems, namely

those for which the following rule, Cut*, is admissible:

Cut:

To see how this rule guarantees closure, suppose that r = 3 and , = a are both

theorems of a sequent system 7 for which Cut' is admissible. Because Cut' is admissible
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and both of its premises have closed tableaux, the conclusion F, T a must also be a

theorem.

Finally, the derivation process will be reflexive (a a-T a) if we include the following

axiom in the system 7.

Id: _,a=a,A

Thus we only allow a system 7 to appear in a deduction structure d(B. T) if the

system is sound, Cut* is an admissible rule of T, and Id is an axiom of T.

An interesting consequence of using tableau derivations in BK is that the attach-

ment rule A can now be expressed wholly in terms of sequents, eliminating the derivation

operator. To see how this comes about, consider first replacing the belief operator in rule

A by tableau provability, as given by Definition 4.6. This yields

AK': r., [s(r - [silo, A
-F,1""" r =o- '

where r(i) is the set of tableau rules used by agent Si.

Now F-) r up. a is true precisely if there is a closed tableau for r = a, using the

rules r(i). Hence we should be able to eliminate the provability symbol if we add the rules

r(i) to B for the purpose of constructing a tableau for r =1 a. In order to keep the agents'

rules r(i) from being confused with the rulev of B, we add an agent index to sequents to

indicate that the tableau rules to be use are for a particular agent. The final version of the

attachment rule is

AK: E, [siJr - [s 1ja, A

Agents' rules are expressed using the indexed sequent sign. e.g., if agent Si were to use C,.

the following rule would be added to B.

r ,i A,p A q

Taking the recursion property of belief subsystems seriously, we can iterate the

process just described for the attachment rule. Each agent treats other agents as having
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a set of tableau rules. In formulating BK, there will be a tableau rule set associated with

each view (views are discussed in relation to the recursion property in Section 3.3). Let us

symbolize the set of tableau rules representing the view v by r(v).

A sequent r = , A, with index v, is a statement about the belief subsystem of the

view v. For example, if v = Sue, Kim, the sequent r =' p states that p follows from r
in Sue's view of Kim's belief subsystem. The deduction rules r(v) always have sequents

indexed by v in their conclusions (above the line). This assures us that they will always be

used as rules of the belief subsystem v, and of no other.

The logic BK can thus be parameterized by a set of tableau rules for each view,

and we write BK(LO, r) to indicate this. If the sequent r =:. A is a theorem of the logic

BK(Lo. r), it asserts that the sequent r =* A is provable in the view v. We write this as

HBK(Lo,,) F ., A. If this sequent is a theorem for every parameterization of BK, we write

simply H r mL A. Note that the presence of the index on the sequent means that we do

not have to state explicitly that the set of rules used to derive the theorem were those of the

view v. Properties of the the actual belief subsystems are always stated using unindexed

sequent; for example, to show formally that if an agent believes p, then he believes q, we

would have to prove that the sequent [Si]p [Siq is a theorem of BK.

Postulates of BK(LO, r)

This family is parameterized by a base language Lo and tableau rules r(v) for each

view v.

DEFINITION 4.7. The system BK(LO, r) is given by the following postulates:

1. The first-order complete rules To.

2. The attachment rule

AKCB E,[So]A,s:jFr[si]ca
[SoJA, A, r 'i a

3. A set of sound sequent rules r(v) for each view v which
contains the axiom Id, and for which the rule Cut* is
admissible. Also, r(v, O) 9 r(v,i) for all views v and
agents Si.
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4. The circumscription rules

I."E moo = (si n ) ,a
CircKj: " (S. :)pA

and
CircK2.• .'" /-r =Pi p

Remarks. There are three parts to the system BK(LO, r). The first part is a set of rules

that perform first-order deductions about the real world. These rules incorporate the

nonsubscripted sequent sign (,).

The second part is the attachment rule AKCB, together with a set of rules formaliz-

ing the deductive system of each view. These rules involve the sequent sign = ,, since they
talk about agents' deductive systems. They can contain rules that havw a purely nonmodal

import (e.g., rules of 70), as well as rules that deal with belief opera.ors. The rule Cut',
which implements the closure property of belief sets, must be an admissible rule of r(m).

The rules r(v) of a view v can be incomplete in several ways. They may be first-order

incomplete, in which case they cannot be used to draw all the consequences of sentences

involving nonmodal operators that they otherwise might (to be first-order complete, it is

sufficient for the rules 70 to be admissible in a view). They may also be incomplete with
respect to the semantics of sentences involving belief operators. To be complete in this

respect, a sufficient rule would be AKCB. A view for which this rule is admissible is

called recursively complete. If every view of a logic BK(L 0 , r) is recursively and first-order

complete, the logic is called saturated. We will symbolize the subfamily of saturated logics

by BK,.

The rule AKCB is a weak version of the attachment rule AC 3 in that it makes no
assumptions about the beliefs an agent may have of his own beliefs. For example, we might

argue that, if an agent S believes a proposition P, then he believes that he believes it. All
he has to do to establish this is query his belief subsystem with the question, "Do I believe

P?" If the answer comes back "yes," then he should be able to infer that he does indeed

believe P, i.e., iS][SiP is true if [SIP is. However, as far as rule AK ¢-3 is concerned, an
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agent 's own belief subsystem has the same status for him as does that of any other agent.

In particular, AKCB allows an agent to have false and incomplete beliefs about his own

" beliefs. Other version of AKCB with stronger assumptions about self-belief are possible

(see Section 6).

The third part consists of the two circumscription rules. The provability operator

can be eliminated from CircKj, but not from CircK2 . In order to show that p does not

follow from r for Si, we must show that there is no closed tableau for r =:. p. One

technique that we use in solving the problems is the following. If there is no closed tableau

for a saturated logic of BK, there is no closed tableau for any logic of BK. Every theorem

of saturated BK is a theorem of the normal modal system K4 (see Section 6), which has a

decision procedure based on the methods of Sato (in [38]). Thus if a sequent is not provable

in K4, it is not provable in any logic of BK.

Some Theorems of BK

THEOREM 4.2. Let p be derivable from r in the view i of BK(Lo, r). Then .2

:'-.- sBK(L,,) Is, r [S, lp ,

Proof. In one step, using rule AKCB

CB [sjr =. [Sjip.; AK
r F* i p

x

THEOREM 4.3. Let v be a recursively complete view of BK(Lo, r), and let p
be derivable from r in the view v, i. Then

HaK(L0 ,,) [siJr ,[siip

Proof. In one step, using rule AKCB of r(m):

AKCB [sdir , [sJp
r = P,

x
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Remarks. These two theorems show that BK has a weakened analog of the necessitation

rule of modal logic (if a is provable, so is 0O). If a nonmodal sentence a is provable in the

view i (i.e., -BK(L,,=O)i a), then, by Theorem 4.2, [SiJa is provable in the empty view.

Since the theorems of r(i) are assumed to be sound, a is a tautology, and so must be provable

in the empty view. 1 Hence, for those tautologies provable in the view i, necessitation holds.

Theorem 4.3 establishes this result for an arbitrary view in which A is an admissible rule.

Depending on the exact nature of the rule sets r, necessitation will hold for some subset of

the provable sentences of a particular logic BK(Lo, r).

,,.. THEOREM 4.4. " [Sip=6p

Proof. If p is a primitive sentence, then there is no applicable tableaux rule,
and hence no closed tableaux for the sequent.1

Remarks. The familiar modal logic principle Op n p (if p is necessary, then p is true) is

not a theorem of BK, since beliefs need not be true.

THEOREM 4. 5. [S lp - (Sl[S, lp

Proof. The only applicable rule is AKC B

AKCB [sAIp s. [SI1[SilP
p 20i [St]p

According to the semantics of the deduction model. the sequent p =D, [Silp
is not valid: just because a sentence p is true does not mean that an agent
Si believes it. Hence, there cannot be any set of sound tableau rules for r(s)
that causes p =bi [Sj]p to close.1

Care must be taken in restricting a to nonmodal sentences, since the semantics of modal operators can
change from one view to another (see the discussion of the recursion property in Section 3.3). John may

, . believe perfectly well that Sue's belief subsystem can prove a certain fact, whereas in actuality her inference
rules are too weak.
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THEOREM 4.6. IL-(sup [SiJ-(SiJp

Proof. We can apply either N2 or AKO B .If we apply the latter, we obtainj

AK CB -SdPj ':'1J1J
m:O -[S1 ]p

deduction model, since it would require that no agent believe any sentence.

Hence there can be no set of sound tableau rules r(i) that derives it.

If we apply N2 first, we obtain

N2 -SJp SjiS]

There are now two ways to apply AKOB . In one application, we generate
the sequent m.i -[S,]p, which cannot close. In the other, we generate =*- p,
which again cannot be derived by any set of sound tableau rules.3I

Remarks. These theorems show that no logic of BK sanctions inferences about self-beliefs.

If an agent believes p, it does not follow that his model of his own beliefs includes p; this

is the import of Theorem 4.5. Similarly, it he does not believe p, he also may not have

knowledge of this fact, ais shown by Theorem 4.6.

THEOREM 4.7.
I[Solp m SoJ[Solp

Proof.
ACB [So]P IS fS 0 1P

[Sl p,p P [Solp

Remarks. We have proven a simple fact about common beliefs: if p is a common belief,

it is a common belief that this is SO.

For the circumscriptive ignorance part of BK, it is an interesting exercise to show

that

41



*~.y

(4.2) (Si o~p [s,]r n[silp

holds, but the converse doesn't. That is, if p follows from r for agent Si, it must be the
case that believing F entails believing p; on the other hand, it may be that every time an
agent has F in his base set he also has p, which would satisfy [silr = tSiJp without having

-. p derivable from F.

THEOREM 4.8. I- (Si : Fn p * [s~ir n__ _ _ _ _ _ _ _ _ _ _ Js l

* Proof. We have the following two tableaux for this sentence.

(si r)p -s. [silr [SiJ p

AKC B (~rpsj S

(si : Fnp i s~if [Silp
Circ2

Either p is derivable from r using the rules r(i), or it isn't. In either case
one of these tableaux closes.3

Evam pie. we give an example of the use of the circumscription rules to show ignorance.
* . Suppose the agent Sue believes only the sentences P and P = Q in a situation; we want to

show that she doesn't believe R. Thus we want to prove the sequent (Sue P, P Q)R
- .*[Sue] R z* -[Sue] R.

(Sue: P, P z Q)R a [Sue] R i- -[Sue] R

Ci2 e (Su: P,P =Q) R so-,Sue]R N1 s [Sue] R. -[Sue) R
Cie2  F P, P z Q 30Sue R [Sue]R [o SuejR

If the rules r(Sue) are sound, there is no closed tableau for P, P z Q =3. R, and so both
branches of the tableau close. Note that only the reverse implication half of the equivalence
w as needed. 4
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5. The Problems Revisited

Using the logic BK, we present formal solutions to the two representational problems

posed at the beginning of this section. In each case we have tried to avoid solutions that are

trivial in the sense that they solve the representational problem, but only at the expense

of excluding types of reasoning that might be expected to occur. For example, in the chess
problem it would be an adequate but unrealistic solution to credit each player with no

deduction rules at all. Instead, we try to find rules that allow a resource-limited amount

of reasoning about the game to take place.

The Chess Problem

To approach this problem, we need to represent the game in a first-order language.

Because the ontology of chess involves rather complicated objects (pieces, board positions,
moves, histories of moves) we will not give a complete formalization, but rather sketch in

outline how this might be done.

We use a multisorted first-order language L, for the base language LO. The key sorts
will be those for players (Sw or Sb), moves, and boards. The particular structure of the sort

terms is not important for the solution of this problem, but they should have the following

information. A board contains the position of all pieces, and a history of the moves that
were made to get to that position. This is important because we want to be able to find

all legal moves from a given position; to do this, we have to have the sequence of moves

leading up to the position, since legal moves can be defined only in terms of this sequence.
For example, castling can only occur once, even if a player returns to the position before

the castle; more importantly, there are no legal moves if 50 moves have been made without

a capture or pawn advancement (this is what makes chess a finite game). A move contains
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enough information so that it is possible to compute all successor boards, that is, those

resulting from legal moves.

The game tree is a useful concept in exploring game-playing strategies. This is a

finite tree (for finite games like chess) whose nodes are board positions, and whose branches

are all possible complete games. A terminal node of the tree ends in either a win for White

or Black, or a draw. The gametheoretic value of a node for a player is either I (a win),

0 (a draw), or .1 (a loss), based on whether that player can force a win or a draw, or

his opponent can force a win. We use the predicate M(p, b, k, 1, r) to mean that board b

has value k for player p. The argument I is a depth-of-search indicator, and shows the

maximum depth of the game tree that the value is based on. We include the argument r

so that AM can represent heuristic information about the value of a node; when r = f, k

is the player's subjective estimate of the value of the node, i.e., he has not searched to all

terminal nodes of the game tree. If r t, then k is the game-theoretic value of the board.

We take the formal interpretation of boards, players, and the M predicate to be

the game of chess, so that Le is a partially interpreted language. The rules of the came

of chess strictly specify what the game tree and its associated values will be; hence, each

predication M(p, b, k, 1, t) or its negation is a valid consequence of these interpretations.

Any agent who knows the rules of chess, and who has the concept of game trees, will

know the game-theoretic value of every node if his beliefs are consequentially closed. In

particular, he will believe either M(Sw, I, 1, k, t) or -M(S,, , 1, k, t), where I is the initial

board: and so he will know whether White has an initial forced win or not.

We represent agents' knowledge of chess by giving tableau rules for L,. The rules

"7, presented below are one possible choice.

Chi r M (p,b,k,1.r).A..
r M (p, b 1, k 1l, A  a r M (p, b,, k-), 1), rq),..A ... r A, M(p, b,,, k, ,, r,), A

where b6-bn are ail the legal successor boards to b
p's opponent is to move on &
k is the minimum of ki-kn
I is 1+ the maximum of 11-i1
r is t iff all of rl-rn are t
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|Ch,

r

F = Mp~bp~kbIk~rlAr),A ".2C/ F =* A(p, bi,k1,l1,r1),A r = A(p, b2 , k2 ,1'2,r2),A r -: AI(p, bn.kn,1n.rn)..A .

where bl-b, are all the legal successor boards to b
p is to move on b
k is the maximum of kl-k,
I is 1+ the maximum of It-In
r is t iff all of rl-rn are t

Ch3 : h r M(p, b, k, 0, t), A, where k = 1 if p has a checkmate on
his opponent on board b; k = 0 if
board b is a draw; and k = -1 if p's
opponent has a checkmate.

Ch4: r => M(p,b,k,O,f),A, where k is any number between -1
and 1

Ch, axiomatizes nodes in the game tree where p's opponent moves. The value of

such a node is the minimum of the values of its successor nodes. The argument I is the

maximum depth of the subtree searched. r will be t only if all the subtrees have been

searched to leaf nodes. Ch2 is similar to Chl, except p moves, and the maximum of the

successor values is chosen.

". Ch3 is the rule for terminal nodes of the tree. Ch4 is a rule for heuristic evaluation

of any node; note that the last argument to M is f, which indicates that a terminal node

has not been reached. Each agent may have his own particular heuristics for evaluating

nonterminal nodes; we can accommodate this by changing the values for k in Ch4.

As an example of the use of these rules, consider the following tableau proof.

," .. (5.1) .

Ch I  , M(s$, b, 1,2, t)
, . = At (S,,, bh1, 1, 0, t) h2  M (Sw, b2, 1, 1, t) Af (S., bs, 1, 0, t),.

x M M(Sw, b3, 0, 0,t0 => M (Sw,,b4, 1,0,t 0 ".

x x

This is a proof that the board b has a value I for White, searching to all terminal nodes.

Boards bl, b2, and b3 all have value 1, so an application of rule Ch yields that value 1 fur b

(it is Black's turn to move on 6). Boards b, and b5 are terminal nodes that are checkmates

for White. There are two legal moves from board b2 ; one ends in a draw (b3), the other in

a win (b4 ) for White. Since it is White's turn to move, rule Ch2 applies.
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The structure of this tableau proof mimics exactly the structure of the game tree

from the board 6. Indeed, for any subtree of the complete game tree of chess whose root

the board b with value k for player p, there is a corresponding proof of M(p, 6, k, I, t) using

the rules T. In particular, if one of M(Su,I,1,1,t), M(S,, I,O,1,t), or M(S ,l,-l,l,t)

is true, there is a proof of this fact. Hence the rules 7, are sufficient for a player to

reason whether White has a forced initial win or not, given an infinite resource bound for

derivations. If we model agents as having the rules 7,, so that T, 5 r(m) for every view

v, the conversation presented at the beginning of this paper would make sense: each agent

would believe that everyone knew whether White had a forced initial win.

A simple modification of the rules Chi and Ch 2 can restrict exploration of the entire

game tree, while still allowing agents to reason about game tree values using the heuristic

axioms Ch 4 , or the terminal node axioms Ch3 if the game subtree is small. All that is

necessary is to add the condition that no rule is applicable when the depth I is greater than

some constant N. S would still be able to reason about the game to depths less than

or equal to N, but he could go no further. In this way, a deductively closed system can

represent a resource-limited derivation process. The revised rules are

C h' Chi, with the condition that 1 : N.
Cht2 Ch2 , with the condition that 1 5 N.

With these rules, the proof of (5.1) would still go through for N 2> 2, but a proof of

M(SW, 1, k,1,t) could not be found if N were low enough to stop search at a reasonable

level of the game tree.

The solution to the chess problem illustrates the ability of the deduction model to

represent resource bounds by the imposition of constraints on deduction rules. The, ,re

other workable constraints for this problem besides depth cutoff: for example, the number
of nodes in the tree being searched could be kept below some minimum. Because the

structure of proofs mimics the game tree, any cutoff condition that is based on the -ame

tree could be represented by appropriate deduction rules.
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The Not-So- Wise-M,\an Problem

For this problem we use a base language L. containing only the three primitive

propositions P1, P2, and P3 . Pi expresses the proposition that wise man Si has a white

spot on his forehead.

In the initial situation, no one has spoken except the king, who has declared that at

least one spot is white. Axioms for this situation are

(WIl) PI AP2 A P3
(IV2) [Sol(Pj v P2 v P3 )

(V3) (Pi : [Sj]P-) A [SoI(P D [Sj]P), i $ ., . # 0

(W4) (-P, : [Sj]-P) A [So]('P : [Sj]'Pi), 1 1' 0

(C1) (Si W2-4,Pi, Pk)Pi =[ SijPi, ij,k

. 1 describes the actual placement of the dots. W2 is the result of the king's utterance: it

is a common belief that at least one spot is white. W3 and W4 are schemata expressing the

wise men's observational abilities, including the fact that everyone is aware of each other's

capabilit;es. Cl is the circumscriptive ignorance axiom: the only beliefs a wise man has

about the color of his own spot are the three axioms W2 -W 4 , plus his observation of the

other two wise men's spots.

As an exercise of the formalism, especially the circumscription rules, let us show

, that all agents are ignorant of the color of their own spot in the initial situation.

(5.2)

; c, =:- -[s,.]P.
C1

C1  [Si]P. : (Si : W2-4, Pj, Pk)Pi =. -[SP,.
'2.CircKj (S W2-4, P' PN 1 = Pi N, =  [ SdPi

IV 2 -, Pp P i Pi[SjPi [SdPi
x

We have omitted some irrelevant sentences from the left side of sequents in this tableau.

To show that it closes, we must be able to prove that there is no set of sound deduction

rules that will enable Si to deduce P from W2, W3, W4, Pj, and Pk. We can prove this
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for any set of sound tableau rules by showing that W2-4, Pj, Pk =i Pi is not provable in

the normal modal logic f4 (see Section 4.4). It is possible to find a K4-model in which

the sequent IV2-4, P, Pk =o Pi is false, using the methods of Sato [381; hence this sequent

is not provable in any logic of BK.

After the first wise man has spoken, it becomes a common belief that he does not

know his own spot is white. The appropriate axioms are

(ws) -,[S, PI A [So]-'SuP
• (C2) (si:wt1-5, Pip )Pi=[sjP, ioj,/k

, In this new situation, all the wise men are again ignorant of their own spot's color; we

could prove this fact, showing that }- C2 =, -[Si]P, in a manner similar to the proof in

(5.2). S2 relates his failure to the others, and the new situation has the additional axiom

(w6) -[S2]P2 A [So]-[S 21P 2

The third wise man at this point does have sufficient cause to claim his spot is white, but

only if the second wise man is indeed wise, and the third wise man believes he is. To see

how this comes about, let us prove it in the saturated form of BK. We will take the wise

men to be powerful reasoners, and set r(v) = To+AK C B +CircKl +CircK 2, for all views

v. The sequent we wish to prove is W1-6 = [S3]P.

(5.3)

WI-6 =S. P3W2-6, P1, P3=t- [531P 3
C, W2-4, P1, P2, P3, 3 =S:]P2 ' [S3]P3

"2 W2-6, PI1 , P2, P3 , [S3 ]P.2 S $P3
P. pP W2-6, P1, '2, P3, [531P2 , P1 ) [S3 Pi =S 3]P3

- 7 = P, ACB W2-6. P1, P3, P3, [S-]P., [S31PI = isl.iP
x W2-6, PI v P, v P3, P2, P =-3 P.3

This part of the proof is mostly bookkeeping. We have used some shortcuts in the

proof, omitting some obvious steps and dropping sentences from either side of the sequent

if they are not going to be used.
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We now must show that S3 s belief subsystem can prove P3 from the assumptions

I2-6 and from the belief that the other two wise men's dots are white (note that we are

now using S3 's sequent -3).

112-6, P1 v P, v P3, P26, P1 =* P3
WV2-6, PI, P'2, P1 :) [S2 JPI =::3 P3

'2W2-6, PI, P2-, [S2]P -3 P3

PI 2P W2-6, PI, P2, [S2]P1. -P3  [S2 -P3 -3 P3
x 3JP3,-3 N2  IV2--6, PI, P2,. [S-IP 1, IS2]-P!3 -3 P3

P3 -3 P3  NK 2 WV2-6, PI, P2., [IS12 PI, [S21-P 3 -3 3, [S2 P2
x W2-6, P v P2 vP 3 , PI,P 3 =:3 P2

Note the atom P3 on the right-hand side of the top sequent; it is equivalent to -P 3

on the left-hand side, i.e., the assumption that 53's spot is black. The sequent proof here

mimics the third wise man's reasoning, Suppose my spot were black ... Through the

observation axiom WV4, which is a common belief, this assumption means that S3 believes

that S,, believes -P 3 . At this point, S3 begins to reason about S2's beliefs. Since, by WV6,

the second wise man is unaware of the color of his own spot, a contradiction will be derived

if P,2 follows in S2 's belief subsystem.

(5.5)

14" W2-6, P, v v P3, P,P3 '32 P2

12W2--6, P1 , -P 3 , [S 1 ]-P 3 32 P2

-'P3 -32 -~P3  12W24, PI, -'P3 , [S 1 l-P 3. -P 2 z[SIh'P2  -32 P2I

3  32 P2,-'P2  WV2-6, P1 , -P 3 , [SIJ-I3. [SIJ-fP2 -32 P-1
P2~3 2 P2  N2P2K 0 -3 2 C 2-6, PI, _~P3, [SIJ-l3, fSu]-'P2 -32 P-2. [S1JP. [S1]-P1

xW 2-6, P1 v P2 v F3, -P 2, -P3  '321 PI

S,'- reasoning (in S3's view) takes the assumption that the third wise man's spot Is

black and asks what the effect would be on the first wise man SI. Since S1 is also ignorant

of the color of his own spot, a contradiction will ensue if the first wise man can prove that

his own spot is white, under the assumption -P 3 . The remainder of the proof is conducted

in the view 321.
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(5.6)

W2-6, Pi v P2 v P 3, -P 2 , -P 3 --:'321 P1IV2
W2-6, P vP2 v P3 , ='321 P, P, P3D2  P1 =321 P, P2 , P3  P2 ='321 P, P2 , P3  P3 =:'321 P1, P2, P3

X --X'

In pursuing this proof, we have assumed chat the second wise man is indeed wise.

There are several places in which, with slightly less powerful deduction rules for the view

.32. the proof would break down. Each of these corresponds to one of the two types of

incompleteness that we identified in the statement of the problem: relevance incompleteness

and fundamental logical incompleteness.

Consider first the notion that S2 is not particularly good at reasoning about what

other agents do not believe, a case of fundamental logical incompleteness. One way to

capture this would be to weaken the rule N2 in the following manner:

, p 32A
= pA where p contains no belief operators

The modified rule N would not allow deductions about what agents do not know. In

particular, it would not allow the transfer of the sentence -[SI]P to the left-hand side of

the sequent, a crucial step in the tableau (5.5) for the view =*32.

Note that the modified rule N2 still allows deductions about what other agents do

believe. For instance, if S2 were asked whether S's believing P followed from his believing

-,P2 and -P 3 , S2 would say 'yes,* even with the logically incomplete rule N, (as in tableau

(5.6) above).

A more drastic case of logical incompleteness would result if S, simply did not reason

about the beliefs of other agents at all. In that case, one would exclude the rule AK(78 from

S-'s deduction structure. Again, the proof would not go through, because the attachment

rule could not be applied in the tableau (5.5).

The notion of relevance incompleteness emerges if the not-so-wise-man S, does not

consider all the information he has available to answer the king. For example, he may
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own spot, since the results of those observations are not directly available to him. The I
observational axioms IV3 and W4 enter into the proof tableau (5.5) in two places. Both
times the raile f1i is used to break statements of the form p = [S]p into their component

atoms. Preventing the decomposition of WV3 and W4 effectively prevents S2 from reasoningf

about the observations of other agents. A weakened version of 12 for doing this is:

rP q =:32  ,where pand qare both modal or
P - 32 P, r, q =:32 A' both nonmodal.

This rule is actually weaker than required for the purpose we have in mind. Consider

the observation axiom -P 3 n [SI]-.P 3. There are two ways S2 could use this axiom. If S"

believes P'F3 , he could conclude that S1 does also. This is not the type of deduction we wish

to prevent, since it means that S2 attributes beliefs to other agents based on his own beliefs

about the world. On the other hand, the axiom P"' :) [S1]-,P 2 is used in a conceptually

different fashion. Here it is the contrapositive implication: if S, actually does not believeI

-R'2. then P-, must hold. The way this shows up in the proof tableau (5.5) is that -P 3

appears as an ini! l assumption on the sequent W2-5, P1 , -P 3 =032 P2, while P2 is a goal

to be proved.

* To capture the notion of using an implicational sentence in one direction only, we

would have to complicate the deduction rules by introducing asymmetry between the left
* . and right sides of the sequent. This is one of the major strategies used by commonsense

* theorem provers of the PLANNER tradition (Hewitt (12] originated this theorem-proving

- . method). Rather than having implicational rules of the form 12, typical PLANNER-type

systems use something like the following rule.

rp, p q A
P.:

r•~~ ° q A°

The implicational sentence is used in one direction only in P1. If it is desired to make

contrapositive inferences, then the contrapositive form of the implication must be included

explicitly. The construction of PLANNER-type deduction rules within the tableau frame-

work allows a much finer degree of control over the inference process. A full exposition

of such a system is beyond the scope of this paper; the interested reader is referred to

Konolige [211.
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In sum, we have shown that it is possible for the deduction model to represent the

situation in which not-so- wise- man has less than perfect reasoning ability, preventing the

third wise man from figuring out the color of his own spot. Both relevance incompletenes

and fundamental logical incompleteness can be captured by using appropriate rules for

r(32).
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8 6. Other Formal Approaches to Belief

How does the deduction model and its logic B compare to other formal models and

logics of belief? We examine two alternative approaches in this section: modal logics based

on a Hintikka/Kripke possible-worlds semantics, and several different first-order formaliza-

tions that treat beliefs as sentences in an internal language.

6.1. The Possible-Worlds Model

The possible-worlds model of belief was initially developed by Hintikka in terms of

sets of sentences he called model sets. Subsequent to Kripke's introduction of possible

worlds as a uniform semantics for various modal systems, Hintikka rephrased his work in

these terms (see Hintikka [14]). The basic idea behind this approach is that the beliefs of

an agent are modeled as a set of possible worlds, namely, those that are compatible with

his beliefs. For example, an agent who believes the sentences
1)..Some of the artists are beekeepers.

(6.1 All of the beekeepers are chemists.

would have his beliefs represented as the set of possible worlds in which some artists are

beekeepers and all beekeepers are chemists.

Representational Issues

In a possible world for which the sentences (6.1) are true, anything that is a valid

consequence of (6.1) must also be true. There can be no possible world in which some artists

are beekeepers, all beekeepers are chemists, and no artists are chemists; such a world is

a logical impossibility. If beliefs are compatible with a set of possible worlds (i.e., true of

each such possible world), then every valid consequence of those beliefs is also compatible
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with the set. Thus one of the properties of the possible-worlds model is that an agent

will believe all consequences of his beliefs - the model is consequentially closed. Hintikka,

recognizing this as a serious shortcoming of the model, claimed only that it represented an

idealized condition: an agent could justifiably believe ,'ny of the consequences of his beliefs.

although in any given situation he might have only enough cognitive resources to derive a

subset of them.

The assumption of consequential closure limits the ability of the possible-worlds

model to represent the cognitive state of agents. Consider, for example, the problem of

representing the mental state of agents as described by belief reports in a natural language.

Suppose the state of John's beliefs is at least partially given by the sentence

(6.2) John believes that given the rules of chess, White has a forced initial
win.

Since the statement, given the rules of chess, White has a forced initial win is either a

tautology or inconsistent, this would be equivalent in the possible-world model to one of

the following belief reports:

(6.3) a. John believes t.
b. John believes everything.

Clearly this is wrong; if it turns out that John's belief in White's forced initial win is

correct, John has a good deal of information about chess, and we would not want to equate

it to the tautology t. On the other hand, if John's belief is false and no such strategy for

White exists, it is not necessarily the case that all of his beliefs about other aspects of the

world are incoherent. Yet there are no possible worlds compatible with a false belief, and

so every proposition about the world must be a belief.

The representational problems of the possible-worlds approach stem from its treat-

ment of belief as a relation between an agent and a proposition (i.e., a set of possible worlds).

All logically equivalent ways of stating the same proposition. no matter how complicated.

count as a report of the same belief. By contrast, the deduction model treats belief as

a relation between an agent and the statement of a proposition, so that two functionally

different beliefs can have the same propositional content.

There is a large philosophical literature on the problems of representing propositional

attitudes using possible worlds. Perry (in [341) gives an account of some of the more subtle
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problems inherent in equating belief states with propositions; his analysis does not depend

on consequential closure. Barwise (in 12) critiques consequential closure in possible-worlds

models of perception. By comparison, a good account of the relative advantages of a

symbol-processing approach to representing belief can be found in Moore and Hendrix (in

[311).

The Correspondence Property

It is reasonable to ask how the deduction and possible-worlds models compare in

respects other than the assumption of consequential closure. That is, are the saturated

deduction models D,(L, p) (whose rules are consequentially complete) significantly different
from possible-worlds models for the purpose of representing belief?

The last phrase, "for the purpose of representing belief," is important. The two

models are composed of different entities (expressions vs. propositions), so we can always

use a language that distinguishes these entities, and has statements that are valid in one

model and not the other. So the answer to this question depends on the type of language

used to talk about the models. Fortunately, the language standardly used to axiomatize

possible-worlds models is the same as that of B: a modal calculus containing atoms of the

form [Sip, in which p refers to a proposition. 1 Thus it is possible to compare the possible-

worlds and deduction models by comparing their axiomatizations in modal logic. We have

proven the following general property about the two approaches.

Correspondence Property. For every modal logic of belief based on Kripke possible-

worlds models, there exists a corresponding deduction model logic family with an

eqaivalent saturated logic.

The correspondence property simply says that possible-worlds models are indistinguishable

from saturated deduction models from the point of view of modal logics of belief. To the ',

author's knowledge, this is the first time that the symbol-processing and possible-worlds

approaches to belief have been shown to be comparable, in that the possible-worlds model

- Historically, the axiomatization of modal systems preceded Kripke's introduction of a unifying possible-
worlds semantics.

5%

'S.

.--. . --.-.- .- .- " - .- . - -. ,- -..-. --..- , - .- ... . . . . . - .



-. . - - . .--- - - - - .

is equivalent to the limiting case of a symbol-processing model with logically complete

deduction.

Although space is too short here to give a full proof of this claim, we will give an
overview of the most important of the propositional modal logics with a possible-worlds 71

semantics, and their corresponding deductive belief logics (a full exposition and proofs of

results mentioned here are in Konolige [21]).

Modal calculi for the possible-worlds model differ, depending on the particulars of
their intended domains. For propositional modal calculi, these particulars center around

whether knowledge or belief is being axiomatized, and what assumptions are made about
self-beliefs or self-knowledge (a survey of these calculi may be found in Hughes and Cresswell

(151). The standard propositional modal calculi contain a single modal operator (which we
write here as [S) and are expressed as Hilbert systems. Their rules of inference are modus

ponens (from p and p : q, infer q) and necessitation (from p, infer [Sip). Axioms are taken

from the following schemata.

Mi. p, where p is a tautology

M2. (S](p D q) ([Sip [Slq)

A13. [Sip n p

M4. [Sip [SJ[Sip

,ll are the purely propositional axioms. M2, also called the distribution axioms, allow

modus ponens to operate under the scope of the modal operator. M3 are axioms for knowl-

edge: all knowledge is true. M4 and M5 are called the positive and negative introspection

axioms. respectively: if an agent believes p, then he believes that he believes it (M4); if he

doesn't believe p, then he believes that he doesn't believe it (,15).

Any moda' calculus that uses modus ponens and necessitation, and includes all

tautologies and the distribution axioms, is called a normal modal calculus. Normal modal

calculi have the following interesting property (see Boolos [31): if p n q is a theorem, then "

so is [Sip [SJq. Interpreting the modal operator [S] as belief, this asserts that whenever
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q is implied by p, an agent S who believes p will also believe q. As expected, normal modal

calculi assume consequential closure when the modal operator is interpreted as belief.

The simplest normal modal calculus is K, which contains just the schemata A I and

V 2. To axiomatize knowledge, M3 is included to form the calculus T. Assumptions about

self-knowledge lead to the calculi S4 (T + M4) and S5 (S4 + Af5). McCarthy (in [241 and

-" [251) was the first to recognize the utility of modal calculi for reasoning about knowledge in

Al systems, and defined three calculi that were extensions to T, S4, and S5, allowing belief

ooerators for multiple agents. Sato ([381) has a detailed analysis of these calculi as Gentzen

systems, and calls them K3, K4, and KS, respectively. He also gives decision procedures

for these logics. K4 is the calculus used by Moore in his dissertation on the interaction of

knowledge and action ([29]).

The so-called weak analogs to S4 and S5 are formed by omitting the knowledge

axiom X1 3 (this terminology is introduced by Stalnaker [41]). The weak versions are ap-

propriate for axiomatizing belief rather than knowledge, since beliefs can be false. Levesque

[221 has an interesting dissertation in which he explores the question of what knowledge

a data base can have about its own information. Because he makes the assumption that

a data base has complete and accurate knowledge of its own contents, the propositional

calculus he arrives at is weak S5, with the addition of a consistency schema [S]p -,[S-p.

How does the family of logics B compare with these propositional modal calculi?

As with the possible-worlds logics, the deductive belief logics formed from B will depend

on the assumptions that are made about self-beliefs. In this paper we have developed the

logic family BK, which assumes that an agent has no knowledge of his own beliefs. The

saturated logic BK., restricted to a single agent, is provably equivalent to K, the weakest

of the possible-worlds bclief calculi.

We have developed a theory of introspection within the deduction model framework

that accounts for varying degrees of self-knowledge about one's own beliefs. This theory

is based on the idea that an agent's belief subsystem can query a model of itself (an

introspective belief subsystem) to answer question of self-belief. Depending on constraints

placed on the introspective belief subsystem, it is possible to arrive at any one of eight

5.
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different logic families. Two of these, BS4 and BS5, have saturated logics that are equivalent

in the single-agent case to the modal systems weak S4 and weak S5.

While we have been interested in the concept of belief throughout this paper, it is

possible to define a deductive belief logic based on the related concept of knowledge. One

property that distinguishes knowledge from belief is that if something is known it must be

true, whereas beliefs can be false. The appropriate tableau axiom for knowledge is

r,[siJr = ,
K0 : sE, F, Ilr =a

Adding K0 to B forms the logic family K. Particularizations of K with varying degrees of

self-knowledge correspond to the propositional modal systems T, S4 and S5.

We summarize these results in the following table.

Normal Modal Deduction Model
Calculus Family

K BK -:'..,Belief
Belef weak S4 BS4 "

weak S5 BS5
T KT

Knowledge S4 KS4
55 KS5

8.2. Syntactic Logics for Belief

There are a number of first-order formalizations of belief or knowledge in the symbol-

processing tradition that have been proposed for Al systems. We have labeled these 'syn-

tactic' logics because their common characteristic is to have terms whose intended meaning % .

is an expression of some object language. The object language is either a formal language

(e.g., another first-order language) or an internal mental language. The logic B is also a
syntactic logic, although it uses a modal operator; the argument of the operator denotes a

sentence in the internal language. We have chosen to use a modal language for B because

5.8
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it has a relatively simple syntax compared to first-order formalizations. It is also less ex-

pressive, in that quantification over sentences of the object language is not allowed by the

modal syntax.

McCarthy [261 has presented some incomplete work in which individual concepts are

reified in a first-order logic. Exactly what these concepts are is left deliberately unclear,

but in one interpretation they can be taken for the internal mental language of a symbol-

processing cognitive framework. He shows how the use of such concepts can solve the

standard representational problems of knowledge and belief. e.g., distinguishing between

de dicto and de re references in belief sentences.

A system that takes seriously the idea that agent's beliefs can be modeled as the
theory of some first-order language is proposed by Konolige 119). A first-order metalanguage

is used to axiomatize the provability relation of the object language. To account for nested

beliefs, the agent's object language is itself viewed as a metalanguage for another object

language, and so on, thereby creating a hierarchy of metalanguage/object language pairs.

Perlis [33] presents a more psychologically oriented first-order theory that contains axioms

about long- and short-term memory. The ontology is that of an internal mental language.

These axiomatic approaches are marred by one or both of two defects - the lack

of a coherent formal model of belief, and computational inefficiency. Regarding the first

one: the vagueness of the intended model often makes it difficult to claim that the given

axioms are the correct ones, since there is no formal mathematical model that is being

axiomatized. In arriving at the deduction model of belief, we have tried to be very clear

about what assumptions were being made in abstracting the model, how the model could

fail to portray belief subsystems accurately, and so on. In contrast, the restrictions these

syntactic systems place on belief subsystems are often obscure. What type of reasoning

processes operate to produce consequences of beliefs? How are these processes invoked?

What is the interaction of the belief subsystem with other parts of the cognitive model?

These types of questions are begged when one simply writes first-order axioms and then

tries to convey an intuitive idea of their intended content. (To some extent this criticism is

not applicable to the formalism of Konolige in [191, because here the intended belief model

is explicitly stated to be a first-order theory).
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A second shortcoming is that efficient means of deduction for the syntactic axioma-

tizations are not provided. As we have mentioned, a system that is actually going to rea-

son about belief by manipulating some formalization can encounter severe computational

problems. Many of the assumptions incorporated into the deduction model, especially

the closure property, were made with ar eye towards deductive efficiency. The end result

is a simple rule of inference, the attachment rule A, that has computationally attractive

realizations. 1 On the other hand, formalizations that try to account for complex proce-

dural interactions (as in Perlis's theory of long- and short-term memory), or that use a

metalanguage to simulate a proof procedure at the object language level (as in Konolige

[191), have no obvious computationally efficient implementation.

'Several efficient proof methods are given in Konolige [211: a decision procedure for propositional BK

based on the Davis-Putnam procedure (see Chang and Lee [5), which is sufficient to solve the Wise Man
Puzzle automatically; a resolution method for the quntifying-in form of B; and a PLANNER-type deduction
system.
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7. Conclusion

We have explored a formalization of the symbol-processing paradigm of belief that

we call the deduction model. It is interesting that the methodology employed was to ex-

amine the cognitive structure of Al planning systems. This methodology, which we might

term experimental robot psychology, offers some distinct advantages over its human coun-

terpart. Because the abstract design of such systems is open and available, it is possible to

identify major cognitive structures, such as the belief subsystem, that influence behavior.

Moreover, these structures are likely to be of the simplest sort necessary to accomplish

some task, without the synergistic complexity so frequently encountered in studies of hu-

man intelligence. The design of a robot's belief subsystem is based on the minimum of

assumptions necessary to ensure its ability to reason about its environment in a productive

manner, namely, it incorporates a set of logical sentences about the world, and a theorem-
proving process for deriving consequences. The deduction model is derived directly from

these assumptions.

The deduction model falls within that finely bounded region between formally tract-

able but oversimplified models and more realistic but less easily axiomatized views. On
the one hand, it is a generalization of the formal possible-worlds model that does not make

.10
the assumption of consequential closure, and so embodies the notion that reasoning about

one's beliefs is resource-limited. On the other hand, it possesses a concise axiomatization

in which an agent's belief deduction process is incorporated in a direct manner, rather than

simulated indirectly. Thus, the deduction model and its associated logic B lend themselves

to implementation in mechanical theorem-proving processes as a means of giving Al systems

the capability of reasoning about beliefs.
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ABSTRACT

In a previous paper [Moore, 1983a, l983b], we presented a

nonmonotonic logic for modeling the beliefs of ideally rational agents

who reflect on their own beliefs, which we called "autoepistemic logic."

We defined a simple and intuitive semantics for autoepistemic logic and

proved the logic sound and complete with respect to that semantics.

However, the nonconstructive character of both the logic and its

semantics made it difficult to prove the existence of sets of beliefs

satisfying all the constraints of autoepistemic logic. This note

presents an alternative, possible-world semantics for autoepistemic

logic that enables us to construct finite models for autoepistemic

theories, as well as to demonstrate the existence of sound and complete

autoepistemic theories based on given sets of premises.
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I INTRODUCTION

In a previous paper [Moore, l983a, 1983b], we presented a

Y nonmonotonic logic for modeling the beliefs of ideally rational agents

who reflect on their own beliefs, which we called "autoepistemic logic."

We defined a simple and intuitive semantics for autoepistemic logic and

proved the logic sound and complete with respect to that semantics.

However, the nonconstructive character of both the logic and its

semantics made it difficult to prove the existence of sets of beliefs

satisfying all the constraints of autoepistemic logic. This note

presents an alternative, possible-world semantics for autoepistemic

logic that enables us to construct finite models for autoepistemic

theories, as well as to demonstrate the existence of sound and complete

autoepistemic theories based on given sets of premises.

Autoepistemic logic is nonmonotonic, because we can make statements

in the logic that allow an agent to draw conclusions about the world

from his own lack of information. For example, we can express the

belief that "If I do not believe P, then Q is true." If an agent adopts

this belief as a premise and he has no means of inferring P, he will be

able to derive Q. On the other hand, if we add P to his premises, Q

will no longer be derivable. Hence, the logic is nonmonotonic.

2-,
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Autoepistemic logic is closely related to the nonmonotonic logics

of McDermott and Doyle [1980; McDermott, 1982]. In fact, it was

designed to be a reconstruction of these logics that avoids some of

their peculiarities. This is discussed in detail in our earlier paper

[Moore, 1983a, 1983b]. This work is also closely related to that of

Halpern and Moses [1984], the chief difference being that theirs is a

logic of knowledge rather than belief. Finally, Levesque [1981] has

also developed a kind of autoepistemic logic, but in his system the

agent's premises are restricted to a sublanguage that makes no reference

to what he believes.

I
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II SUMMARY OF AUTOEPISTEMIC LOGIC

The language of autoepistemic logic is that of ordinary

p.4

propositional logic, augmented by a modal operator L. We want formulas

of the form LP to receive the intuitive interpretation "P is believed"

or "I believe P." For example, P ) LP could be interpreted as saying

"If P is true, then I believe that P is true."

The type of object that is of primary interest in autoepistemic

logic is a set of formulas that can be interpreted as a specification of

*p

the beliefs of an agent reflecting upon his own beliefs. We will call

such a set of formulas an autoepistemic thor. The truth of an agent's

.4.%

beliefs, expressed as an autoepistenic theory, is determined by (1)

which propositional constants are true in the external world and (2)

which formulas are believed by the agent. A formula of the form LP will

be true with respect to an agent if and only if P is in his set of

beliefs. To formalize this, we define the notions of autoepistemic
interpretation and autoepistemic model. An autoeptsteic i-nterprtaion

I of an autoepistemic theory T is a truth assignment to the formulas of

the language of T that satisfies the following conditions:

1. 1 conforms to the usual truth recursion for propositional
logic.

2b A formula LP is true in I if and only if P E T.

3
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An autoepistemic model of T is an autoepistemic interpretation of T in

which all the formulas of T are true. (Any truth assignment satisfying

Condition 1 in which all the formulas of T are true will be called

simply a model of T.)

We can readily define notions of soundness and completeness

relative to this semantics. Soundness of a theory must be defined with

respect to bome set of premises. Intuitively speaking, an autoepistemic

theory T, viewed as a set of beliefs, will be sound with respect to a

set of premises A, just in case every formula in T must be true, given

that all the formulas in A are true and given that T is, in fact, the -.

set of beliefs under consideration. This is expressed formally by the

following definition:

An autoepistemic theory T is sound with respect to a set of

premises A if and only if every autoepistemic interpretation
of T that is a model of A is also a model of T.

The definition of completeness is equally simple. A semantically

complete set of beliefs will be one that contains everything that must

be true, given that the entire set of beliefs is true and given that it

is the set of beliefs being reasoned about. Stated formally, this

becomes

An autoepistemic theory T is semantically complete if and only

if T contains every formula that is true in every
autoepistemic model of T.

4



Finally, we can give syntactic characterizations of the

autoepistemic theories that conform to these definitions of soundness

and completeness [Moore, 1983b, Theorems 3 and 4]. We say that an

autoepistemic theory T is stable if and only if (1) it is closed under

ordinary tautological consequence, (2) LP E T whenever P E T, and (3)

-LP E T whenever P F T.

Theorem: An autoepistemic theory T is semantically complete if
and only if T is stable.

We say that an autoepistemic theory T is grounded in a set of

premises A if and only if every formula in T is a tautological

consequence of A U {LP IP E T} U {-LP I P T}.

Theorem: An autoepistemic theory T is sound with respect to a
set of premises A if and only if T is grounded in A.

With these soundness and completeness theorems, we can see that the

possible sets of beliefs an ideally rational agent might hold, given A

as his premises, would be stable autoepistemic theories that contain A

and are grounded in A. We call these theories stable expansions of A.

5
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III AN ALTERNATIVE SEMANTICS FOR AUTOEPISTEMIC LOGIC

The semantics we have provided for autoepistemic logic is simple,

intuitive, and allows us to prove a number of important general results,

but it requires enumerating an infinite truth assignment if the theory

under consideration contains infinitely many formulas. This makes it

difficult to exhibit particular models and interpretations we may be

interested in. The problem is that, in the general case, there need be

no systematic connection between the truth of one formula of the form LP.

and any other. Autoepistemic logic is designed to characterize the

beliefs of ideally rational agents, but we want the semantics to be

broader than that. The semantics we have defined is intended to apply

to arbitrary sets of beliefs, with the beliefs of ideally rational

agents being a special case (just as model theory for standard logic

applies to arbitrary sets of formulas, not just to those that are closed

under logical consequence). Thus, our semantics makes no necessary

connection between the truth of L(P A Q) and LP or LQ, because it is at

least conceivable that an agent might be so logically deficient as to

believe P A Q without believing P or believing Q. In such a case, there

is little we can expect the truth definition for an autoepistemic theory

to do, other than to list the true formulas of the form LP by brute

stipulation.

6
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If we confine our attention to ideally rational agents, however,

much more structure emerges. In fact, we can show that stable

autoepistemic theories can be simply characterized by Kripke-style

possible-world models for modal logic (Kripke, 1971]. For our purposes,

what we need to recall about a Kripke structure is that it contains a

set of possible worlds and an accessibility relation between pairs of

worlds. The truth of a formula is defined relative to a world, and

conforms to the usual truth recursion for propositional logic. A

formula of the form LP is true in a world W just in case P is true in

every world accessible from W. Kripke structures in which the

accessibility relation is an equivalence relation are called S5

structures, and the S5 structures that will be of interest to us are

those in which every world is accessible from every world. We will call

these the compjete S5 structures. Our major result is that the sets of

formulas that are true in every world of some complete S5 structure are

exactly the stable autoepistemic theories. (This result has been

obtained independently by Halpern and Moses [1984] and by Melvin Fitting

[personal communication]).

Theorem: T. is the set of formulas that are true in every world

of some complete S5 structure if and only if T is a stable
autoepistemic theory.

Proof: Suppose T is the set of formulas true in every world of a

complete S5 structure. By the soundness of propositional logic, T is

closed under tautological consequence. By the truth rule for L, LP is

true in every world just in case P is true in every world; therefore

7
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LP E T if and only if P E T. Furthermore, by the truth rule for L, LP

is false in every world just in case P is false in some world; so

, LP E T if and only if P L T. Therefore T is stable. In the opposite

direction, suppose that T is stable. Let T' be the set of formulas of T

that contain no occurrences of L. We will call these the oblective

formulas of T. Since T is closed under tautological consequence, T'

will also be closed under tautological consequence. Consider the set of

all models of T' and the complete S5 structure in which each of these

models defines a possible world. T' will contain exactly the objective

formulas true in every world in this model; hence, T' will contain

precisely the objective formulas of the stable autoepistemic theory T''

defined by this S5 structure. But by a previous result [Moore 1983b,

Theorem 2], stable theories containing the same objective formulas are

identical, so T must be the same as T''. Hence, T is the set of

formulas true in every world of a complete S5 structure.

Given this result, we can characterize any autoepistemic

interpretati-n of any stable theory by an ordered pair consisting of a

complete S5 structure (to specify the agent's beliefs) and a

propositional truth assignment (to specify what is actually true in the

world). Such a structure (K, V) defines an autoepistemic interpretation

of the theory T consisting of all the formulas that are true in every

world in K. A formula of T is true in (K, V) if it is true according to

the standard truth recursion for propositional logic, where the

propositional constants are true in (K, V) if and only if they are true

-.. .. . * -.
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in V, and the formulas of the form LP are true in (K, V) if and only if

they are true in every world in K (using the truth rules for Kripke (
structures). We will say that (K, V) is a p9ssible-world interpret ation

of T and, if every formula of T is true in (K, V), we will say that

(K, V) is also a 2 s§sible-world model of T. In view of the preceding

theorem, it should be obvious that for every autoepistemic

interpretation or autoepistemic model of a stable theory there is a

corresponding possible-world interpretation or possible-world model, and

vice versa.

Theorem: If (K, V) is a possible-world interpretation of T,
then (K, V) will be a possible-world model of T if and only if
the truth assignment V is consistent with the truth assignment
provided by one of the possible worlds in K (i.e., if the
actual world is one of the worlds that are compatible with
what the agent believes).

Proof: If V is compatible with one of the worlds in K, then any

propositional constant that is true in all worlds in K will be true in

V. Therefore, any formula that comes out true in all worlds in K will

also come out true in (K, V), and (K, V) will be a possible-world model

of T. In the opposite direction, suppose that V is not compatible with

any of the worlds in K. Then, for each world W in K, there will be some

propositional constant that W and V disagree on. Take that constant or

its negation, whichever is true in W, plus the corresponding formulas

for all other worlds in K, and form their disjunction. (This will bo a

finite disjunction, provided there are only finitely many propositional

constants in the language.) This disjunction will be true in every

9
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world in K, so it will be a formula of T, but it will be false in V.

* Therefore, (K, V) will not be a possible-world model of T.
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IV APPLICATIONS OF POSSIBLE-WORLD SEMANTICS

One of the problems with our original presentation of autoepistemic

logic was that, since both the logic and its semantics were defined

nonconstructively, we were unable to easily prove the existence of

stable expansions of nontrivial sets of premises. With the finite

models provided by the possible-world semantics for autoepistemic logic,

this becomes quite straightforward. For instance, we claimed (Moore,

1983a, 1983b] that the set of premises {-LP ) Q, -LQ ) P} has two stable

expansions--one containing P but not Q, and the other containing Q but

not P--but we were unable to do more than give a plausibility argument

for that assertion. We can now demonstrate this fact quite rigorously.

Consider the stable theory T, generated by the complete S5

structure that contains exactly two worlds, {P, Q} and {P, -Q}. (We

will represent a possible world by the set of propositional constants

and negations of propositional constants that are true in it.) The

possible-world interpretations of T will be the ordered pairs consisting

of this S5 structure and any propositional truth assignment. Consider

all the possible-world interpretations of T in which -LP D Q and -LQ ) P

are both true. By exaustive enumeration, it is easy to see that these

are exactly

,1
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({{P, Q}, {P, -Q}}, (P. Q})({{P, Q,{p,-}, {p, Q}

Since, in each case, the actual world is one of the worlds that are

compatible with everything the agent believes, each of these is a

possible-world model of T. Therefore, T is sound with respect to

{-LP ) Q, -LQ ) P}. Since T is stable and includes {-LP D Q, -LQ ) P}

(note that both these formulas are true in all worlds in the S5

structure), T is a stable expansion of A. Moreover, it is easy to see

that T contains P but not Q. A similar construction yields a stable

expansion of T that contains Q but not P.

On. the other hand, if both P and Q are to be in a theory T, the

cor'psponding S5 structure contains only one world, {P, Q}. But then

{{{P, Q}}, {-P, -Q}} is a possible-world interpretation of T in which

-LP ) Q and -LQ ) P are both true, but some of the formulas of T are not

(P and Q, for instance). Hence, if T contains both P and Q, T is not a

stable expansion of {-'LP )Q -.LQ ) .
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1. INTRODUCTION
Modern modal logic begins with the work of C. I. Lewis early on in the present century [Lewis 181.

We can think of Lewis thinking to himself as follows: N"Well, I can't analyze the notions of metaphysical or

logical possibility and necessity, but I can sure formulate alternative axiomatizations of such notions. I

van then compare and contrast such axiomatic systems and see what I learn." Thus were born the Lewis

Systems, SI-S5, axiomatizing increasingly strong conceptions of necessity. 3

Another 40 or so years went by before the purely axiomatic approach was proper,. systematized and

rendered fit for human consumption. In current lore, a certain axiomatic system, K, is central. 4 The

standard presentation of K consists of infinitely many axioms plus one axiom scheme and two rules of

inference. In particular, with 'L' being read as onecessarily" or "it is necessary that"; 'M', as "possibly" or

"it is possible that", K is as follows:

I: all classical tautologies

II: L(p--> q)--> (Lp--> Lq)

-.5

I will now show off almost all the Greek I know: *epistemic" has to ,to with knowledge: "doxast.ir". with belier. So in
what follows we shall have to do with logics of knowledge and belief.

-This research was supported in part by the United States Air Force Offri, of S-ientfic,- Research under ('ntr e N.
Fhu IPG0-82-K-0031 and in part by a gift from the System Development Foundation.

• ' " 3T h t littl e story just tol ol i a fable. L e'w is w as really interested in iif erent conceptions ,f im plication or the on dti i nalo-

not in varying ron,.eptions of ne-esity and possibility. Of course, on to. view, implication imply is validlitv or eruesst,lt Jf

thc, material 'onlition al: o we 'an translate Lewis's writings on the variet,- of imp lieation into writings on varitti,.
necessity. This translation -heme is now almost universally applied. Note, if one does tiot apply this ,ere . and in,,'t l

• reads Lewis neat, he prope.r lin. of deseent from Lewis goes mainly throiigh .. ,-kermann', work on t reng, [tiltlikat on It
the work of Anderson-Pelnap on entailment See [Anderson and Belnap 7,J.

I The "K" is for Kripk,., although credit for focussing on a notion f normality under which K t thw. mtit.tttil trrtmi:

molal logic must be sharel with E.J. Lemmon [Lommon 771. See below on normality

..
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RI: If I-p and 1-(p -- > q), then I-q modu ponens

R2: If I-p, then l-Lp necessitation

The stand:ird practice is to take K as the base theory and consider extensions. Four such extensions

hai,' figured prominently in the literature.

T: K + Lp--> p

S4: T + Lp--> LLp

B: T + MLp -- >p

S5: T + MLp--> Lp

In all of these logics. possibility and necessity are duals; that is, in all of them *Lp* is provably

" ,slent to *-N-p" and "kip" to *-L-p*. Thus they can all be with only one primitive modal operator

M* or L)--its dual ('L' or "I', respectively) being introduced by definitional abbreviation.

lust to -infuse the reader, I shall spend a little time on alternative systems of nomenclature for

mod:l systems. First, and least annoying, T is also referred to as Af. Now then, look at the

,'h:racterization of, say, M. (Just testing.) At is presented as K plus one axiom schema. That schema is

:lo often referred to as T--though never, I think, as M. Thus T, the system, just is K + T, the schema.

l'his particular annoyance, or variants of it, recurs. The schema, which when added to K + T yields S..

i v:iled 4: that. which when added to K + T yields B, is B. Finally, the S5 schema is E. The scorecard'

looks likes this:

T K+ T

S4 K + T + 4

B = K T + B

S5= K + T + E

In the remainder of this paper, I shall adhere to the conventions manifested on the right hand side of

these equations: thus, I shall be looking at systems that are presented as Ix + X. X the unknown.

. .. v.. .. .
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2. ON AXIOMATIZING KNOWLEDGE AND BELIEF

To return to the main line: these four standard modal logics were meant to formalize dirferent

conceptions of necessity and possibility. They were not meant to cast any light on the notions of

knowledge or belief--or on different conceptions of knowledge or belief. Indeed, what a priori reason is

there to believe that any of these standard logics of necessity are appropriate logics of knowledge or

belief" Whatever the answer to that, Hintikka 1llintikka 621 gave people lots of reasons a postriori to

think that (1) K + 4 was an appropriate logic for knowledge and (2) K + E was an approriate logic for

belief. (Note: K + E = S5 - T. This is sometimes called "weak S5.-) 5

The response to Hintikka's work was quite stunning-as these things go; and as they went, no one

paid much mind to the logic or belief. The focus was squarely on knowledge-to philosophers, at any rate.

the more interesting and more discussed notion. Many attempts at conceptual analysis of the notion of

knowledge had been made; none had met with exactly universal acceptance. So why not go Lewis's route:

don't analyze, axiomatize? Especially now!!

NhY e'periallY now? Because in the interim (1918 to 1962), logicians had come up with model-

theoretic tools for a variety of modal logics-including our four standard ones. (It was a number of year-

before it. was clear how wide a variety this was.) Further on, we shall look at the main ingredients of the

now standard model theoretic treatment; for now, it suffices to note its very existence and to note that its

existence pltyved a large part in the excitement surrounding Ilintikka's work.8

Still, there was trouble in the new paradise. It came in two quite independent forms. First, there

wNa, the prhlem of logical ornniacience, so-called. Then, there were problems about introspection. \s for

the first prlltm; it is easy to prove that K by itself--with 'l\- substituted ror 'L', of course-guarantee-

both that esery classical tautology is known and that knowledge is closed under classical tautologic:il

consequence The latter means that if S' follows tautologoulsy from S and if it is known that S, then it is

'he ,harp-., .I a. r rmight have guesseA that there were more notational headaches ahead However it eamp to be
that L got asoiated t ith "it is necessary that" and 'N' with "it is possible that". it was only to be expec-ted that 'K'

would ie it l ('or "it is known that" and '' for "it is believed that". But now K' stands for both an axionoati,- %yiten and
a modal operator: 'I'. for a modal system, an axiom schema, and a modal operator. Context. toget her with 111Y onvontttit,
of italicizinig .1ter nam,- and boldfacing schema names, will disambiguate. By the way, I trust that it i. lih-ar that
knowledge 'K') and telier ('Bf ) are not duals. From "it is not believed hat it is not the ease that p". "it is known that p"
does not follow: nor vie,' versa. Nor should one inter from "it is not the ease that it is known that it is not the ,ase that p"
to "it is believed that p": or vice versa.

8 \tor f'ahilating: Ilintikka's original work was not done within the 'h,.n new moll theoretic iramework; tie " l.tanti"

ma,'hinerv wa. rather. syntastiw' and proor-theoretir. In later versions. Iinlikka liid adopt the new otanlard.

.................
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known that S'.' Idealization is fine, indeed necessary in any science; but surely this is going too far with a

fine thing.

The setcond set of problems had to with what one should add to K + T for knowledge or to plain

ol(1 N for i-eple. (Remember that, sad to say, we can't allow ourselves T for belief.) llintikka spends a -

good deal of time arguing for the inclusion of 4, at least for knowledge. Many thought that this was too

slIrong ai requirement. He also argued against the inclusion, again for knowledge, or B and E. Here the

coflS~flstt was with him. Questions were raised about belief as well. Could one believe that p without

believting thail one itelieved that p? That is, should one add 4 to K? Could one not believe that p without

ltelievittg lint one did not believe that p? That is. should one add E to K?8

Ismi'i ore r ss any theorem of K--it ne'-d not ho a (classical tautology-- then it is known that S. th '-
A.'haf 'tie- t'O, r i---tation yields. M!utatis mittittldis for closure tinder consequenh-e: think of it as closujre tin i-

k word in ex plan at ion if the grotesqtteries of logisiatts English. "Scott doecn't believe that p)" arsmb iguiou, !t rianhe
1,cr- .. 'Iiwa -th at si-ot t.for whonm, see below--telieves that not-p or to mean irtird *v that it is not ili,- -a- thtat Ii.-

ldi--th at I, i ,t tmight not have any flixed opinion as to) whet her p. In what fotlow . it ie rtu-jal thItat li-e two
r, -ing Iiing ngi ihh' the ugly way, deployitng negation oniY as a sentencep-level (iperator in the guise "it i, not the '-e

*that", i, the '%aY for M" To make mat ters worse, I refuse to countenance any natural dual fir eit her "konow- -or "wi
her e ' or All' It is nie that *necessarily" anti "possibly" are (arguably) lexicatized duat": thItus. we t& *'t ha\- to ke-ep

writ1ing 'twi thing. like "it is not the case that it is necessary that it is not the ease that.". We ran writs' in~tead "it i
p-~itlde that ." Bust not inly aren't "knows" and "believes" duals, neither his a natural. lexical dual. So there will be lot,
rf oi *tyhitng- like "it i, not the case that Scott believes that it is not the ease that Seot t believe., that Scott tisves that
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3. INTRODUCING SCOTT AND KIMBERLY

To fix ideas, let's imagine a subject. To fix our perhaps sexist imaginations, let's imagine two

subjects, Scott and Kimberly. So, in what follows 'K' is to be read as 'Scott (Kimberly) knows that..."

and 'B. as "Kimberly (Scott) believes that..." The formalisms I will be discussing are all or the single

'Uhjet variety. I shall have nothing to say about the multisubject versions being studied by researchers in

theoretical computer science interested in distributed systems [Halpern and Moses 8.].

Licott and IKimberly are, of course, terrifically bright; but are they logically omniscient? \\hy not

make their moniriies and daddies happy by assuming that they are. This decision also makes me happy:

for a mixture of tactical and technical reasons, I think it useful to retain K as our base theory. For

alternatives to this. see [Fagin and Halpern 851.

In in ease. unrestricted necessitation is out for any applied epistemic or doxastic logic. Imagine

",. that we are interested in some set of putative facts and in what Kimberly knows/believes about them.

(ne such f'a't might be that South San Francisco calls itself "The Industrial City." We add a sentence

expressing that fact as an axiom in an applied modal logic; but, we don't want to apply necessitation. 'Ve

don't want to infer, that is, that Kimberly knows/believes that south San Francisco calls itself "The

Industrial City" What does a classy kid like Kimberly care about a place like South San Francisco? We

shall have to simply add particular axioms about what Kimberly does (or does not) know/believe about

" "" the situation in question; or, better, those facts are part of the situation in question.

The \vorrie- about introspection are horses of another color. It is those that I am going to try to

honor rt crucial ,onsideration here is sociological. Yuppies simply are not very introspective; they're

nimuch t,, bu y networking and consuming to be self-reflecting. The pale cast of introsection surely gets in

the i\i:i of having good, trendy, expensive fun; one can't get all there is out of driving one's BMW if one

i PA.Vri, attention to one's own thought processes-as opposed to the impression one is making on others

of oitt's kind. etc . e. Another consideration is a fondness on my part for weak non(ommittal systems to

iiItt one. can add -trength--and bold committments-as one one wishes.

11ng" ihj..t pi.'iiie/.toxast ic logics will have two unary modal operators. 'K'. '13'. i'a'h with a subscript suppressed1
"u t,, h ixt and Iin l,-r,to&t. That. is, one is to fix a sutjet, say Seott, and reaI 'K* as "Scott knows hat.. Of 'o'rse. ir -

i,' a -i ,inrt -as I hall--that all Yuppies are in the rplevant respert . inditinguishable. one can niagin on .,[ir working wihi
a -'homatic' motal op,-rator. an operator whose -iuhseript- is a schematic letter who.' .uhstitulion instan','s are singular

'rm for Yuppi,-: ,eg nam. Ilk, "Scott," "Kimherly"--not e.g. "llarvey." "Aliep." -

":A - 1.



4. ON KNOWLEDGE.

As noted above. lintikka argued strenuously for the epistemic version of 4: the thesis that if one

knows, one knows that one knows. People attacked this position; Hintikka relented, as well he should

have. Most of the bad arguments for skepticism-that is, most of the arguments-have turned on tricking

the ingenuous into accepting the thesis that if one knows, one knows that one knows and then arguing

that one doesn't know that one knows. Let us suppose that knowledge requires either justification on the

knower's part or a "proper" etiology for the belief, e.g. a suitable placement on the knower's part with

respect to the fact, known (e.g., standing in the right kind of causal relation to it).1 ° Surely either of these

requirements can be met without the knower's knowing that they're met. Indeed, surely we might

som(timies be argued into accepting unreasonably high standards on knowing-so high that though we

know. we not only don't know that we know, we actually believe (falsely) that we don't know. Of course,

if we're stfficiently gullible, such arguments might even get in the way of the controverted belief (our

knoNledge of which was in question), so that we cease to know that p because we have (foolishly) ceased

to believe it.

For IHintikka's original epistemic logic we can prove that the addition of the axiom schemia 4 is

equipllnt with the addition of the following rule of inference:

RKK: If 1-(Kp -- > q), then i-(Kp -- > Kq)

L V,,lor one direction of the proof of equipollence; we have l-(Kp -- > p) (by T), whence by RKK, we

have l-I(Ip -- > Kp). whence, by RKK yet again, i-(Kp -> K11p). (The other direction is left as an

exf,rcise f,,r the reader.) Imagine that whether Scott knows that p is up for grabs, and let (I be any old

se-'ttent e the truth of which is stifficient for the falsity of the claim that Scott does know that p. Now

rea on contrapoitively and apply RKK. To wit;

(q--> -Kp) so (Kp -- >-q) so--by RKK-- (Kp -- > K-q)

M%

This may seem innocuous: but it isn't. In order to know that p, poor Scott must know the falsity of

:nmthing % hose truth rles out his knowing that p. This is precisely the sceptic's trick. Get someone to

:'cvept this requirement, and it won't be hard to get that same someone to doubt that anyone knows

aniything. For the requirement certainly seems to amount to this: if Scott does know that p. then he

10This ippIoir n -n rn passes the suppositiin that knowledge is not just true ,'eiir. Much or tht- rrcnt AI and

oln ,.fl r wn, lotprature ete'ma to suppose that 1.no)wle~ge is just true belier. But it ikn't.

+° %°. + , , .- • • % .. + • . + . + . . " , + •. .-.. +. .+*+. . -. . . ... .. - .- , . , . % . •



knows the falsity of anything whose truth would rule out his knowing that p. We might say, then, that

Scott, in knowing that p, must be in a position to disregard all further evidence with respect to-i.e., in a

position to rule out any and all counterpossibilities. But Scott is almost never in a position to disregard

all further evidence: so Scott almost never knows anything.

Now all this may be an abuse of the thesis that if one knows, one knows that one knows. (Though I

should note that the argument just given is used by Hintikka himself in his--somewhat reluctant--

recantation of the axiom. See [Hintikka 70.1 Still, I see no reason to accept the thesis. Indeed, I see no

reason to accept even the claim that if one knows one believes that one knows. If one does believe that

one knows that p, one might be said to be certain that p. At least, that is how the philosopher G. E.

Moore characterized certainty. Provisionally accepting this characterization, I want to say that one can

know that p without being certain that p.

llintikka also spent time arguing against the epistemic version of B:

(-K-Kp -- > p)

This says that if it is not the case that Kimberly knows that it is not the case that Kimberly knows

that p. then p. This is truly bizarre; a little 'introspective ignorance" on Kimberly's part about the scope

and limits of her knowledge is going an awful long way. (I suppose her parents--dabbling in epistemic

logic-might look favorably on this schema; but surely cooler heads would ultimately prevail.) Ruling out

B, while accepting K + T, as Hintikka does, provably rules out accepting the episternic version of E:

(-K-Kp -- > Kp)

That's no great price to pay since the epistemic version of E seems wildly too strong. (Thus, by

simple transformations, this yields that if one does not know that p, then one knows that one does not

k w)Nk that p. Would that life were so neat!)

One last word about knowledge and the so-called introspective axioms. I noted in passing that

7knomledge certainly seems to be more than just true belief. In particular, it seems to require that the

belief be justified or that it (and the believer?) stand in some special--perhaps causal--relation to the fact.

IEternally controversial issues in the philosophy of knowledge lurk. Let them lurk: it suffices for my

purposes to point out that if one buys some version of the second, "causal," account of knowledge-s I

am inclined to do--then the knowledge that one knows need not be, in any clear sense, introspective--

beyond the bare minimun of knowing that one believes that p, if one does. Rather what one tiu(t kno%

- '' L: """," - -,':-"-~ . . ;," K ". % . - -- - .' " K, . . . .A
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to know that one knows that p is that one (or one's mental state of believing that p) stands in the right

kind of caus'al relation to the fact that p. This might involve knowledge about one's sensory apparatus, as

well as knowledge about more fully external features of the situation. But this is surely not introspective

knowledge at all. (Indeed, there are, I think, similarly external or objective readings of some versions. at

least, of the justification story-readings which turn j us tification- based accounts into "causal" accounts.

In surn: with respect to the axioms governing the OKO operator, I opt for minimnality (modulo some

version--restricted or not-of logical omniscience"). That is, I opt for the epistemic version of K + T.

The modal core of our epistemic logic is just the modal core of K:

11': K (p--> q) -> (K p-> K q)

R2': If I-p, then I-Kp

.'- %
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5. ON BELIEF

's to belief: if no one else and if no one earlier, Freud should have taught us that we don't always

know our own minds. Indeed, we can't always believe our minds are as they, sad to say, are. \V' can

believe without believing that we believe; so much for the doxastic version of 4. Ve van also not Ilieve

that we do not believe that p and still not believe that p. That is to say, the doxastic version of E seems

false:

(-B-Bp -- > Bp)

-Likewise the (loxastic version of B, which like its epistemic counterpart seems crazed-only more so:

(-B-Bp--> p)

If l'imhrly doesn't believe that she doesn't believe that p, then p. This is megalomania, even in

someone as spoiled as Iimberly is likely to be.

, A last word on the standard "introspective" axioms for belief: it can seem as though one's beliefs

about one's own beliefs will typically be vouchsafed one by introspection. This seeming gets weaker when

one considers past--or future-beliefs of one's own. Certainly for the past, there's memory; but memory of

what? Of one's past mental states or of one's past actions? Thus, we often reason as follows: I must have

believed that p: for consider what I did. Independent of Freud, et al., I think there are good reasons for

doubting the extent of one's introspective access to one's own current beliefs. Some of these reasons have

*i: to do with the nature of the objects of belief; some, with the nature of believing as a state.'' I'm not

going to rehearse these here. Instead, I will simply present another scorecard;

AXIOMS RELATING BELIEF AND KNOWLEDGE THAT I ACCEPT

, 'JKp -- > Bp

AXIOMS RELATING BELIEF AND KNOWLEDGE THAT I DO NOT ACCEPT

% Bp -- > BBp

I will return to the question of the objects of belief, albeit briefly, below.

.t ,,, ,- ~ . ,€, .,t . - .. . . -- . . . - -. . . . . . . - . .- . ." ., - • .° v. . ° . , 6"



Bp -> KBp

Kp ->BKp

Kp ->KKp

k, E
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6. ON LIMITING INTROSPECTION FOR BELIEF

So. %%iat :1\ionis (it I want ror belief, at least for the beliefs of such as Scott and l\ malar1.NI- ljr~r -

let rne remiand the reader that, however taken we may he with t he-s# Younrg I pa r Nil

Prrcefe'icram, they are not infallible. We cannot allow themn the doxasti a ar,ionr of T 1I 1e -

iniAlif thaoigli. graint t hem a consistenlcy conahjtion--this comes in especilly haind.N fear tlifcv ha c-c

-ire clwaed under classical tautological consequence. The condition in question is that if lNiibilrl bweca

that p. then The does not believe that it is not the case that p. This is a doxastic version cf a cheuaa

- cal1led D,

(D): (Bp ->-B-p)

The 1) i~s for "aleontological" or "deontology.0 (.%ore Greek.) Decanfclecgy is the so ich% of' thcec

of claigar icer. The criwial operator there is wit is obligatory that ..... . It (loes have a duaal: "it is

perfn is -ille I hait...". .Note that just as wye cannot, alas, have a doxastic version of T for reasons of fallible

belief: sac taco (-,n wenot have a deontological version--for reasons of fallible mores. But we do have it

that if it is ccbligitccry that p. then it is permissible that p. That is, ir it is ob~ligato~ry that p, then it is ta

obligatocry that it noct be the case that p. This last is just D. So D is oft regarded as the characteristic

deccitcalagical axioan. It is, of course, obvious that D is a theorem of i,% + T. is T a theucrenm of K" + D'

We narast hccpec ncot, fcor then by granting consistency, we will let in the unacceptable infallibaility. HoIcw can

acne tell,

There is acne sure way to tell that something is~ a theorem of a given system--prove it within the

system. In general. oanly infinite patience will avail if one wants, obversely, to show of a sentence that is

not a theorenm of sodme system that it is not. Even for decidable systems-and all the logics I will be

discussing here are deridable-odirectO proofs of nontheor mhood are really out.

8.1. Model Theory of Intensional Logics

Model theory to the rescue! The modlel theory of modal loagics is goodce fear at least two t hings: (I I

proving in the semantic metatheory that such-and-such is a theorem eof so-and-so anal (2) parov~inig in the

metatheory that such-and-such other thing is not. Logicians, generally, aren't sufficiently silly as to want

to work withan a given formal system; they prefer to work on the outside, using whatever tocols are

appropriate, to prove things aibout the formal system. This is what IKripke et al. allowed logicians to (10

with respect to modual logics. The key to Kripke's analysis lies in the introductian of modal mocdels; triples

N <S. R, v> where S is any nonempty set, R is a relation on S, i.e. a subaset of s \ S, and v is a value

assignment meeting standard conditaons feor standard sentences and the followving conditioan for moadal

.4.



s~entences. Iusing ' now as the strong, necessity-style operator and, the redundant but useful, 'M' as its

dlual:

L: For any wff. p, and any s in S, v(Lp, s) T
if -i(p, s') = T for every s' in S st. sRs';

otherwise .-(Lp, s) =F.

M: For any wff. p and any s in S, v(Mp, s) T
if there is at least one s' in S such that sRs' and such that v(p, s')

otherwise v(Nip. s) F.

'I) the nvv-'itN operator is akin to the universal quantifier; its dual. thle po ibility (ipiriIr. :ik in t

In' e.\jt entild qIiimntil[r. It enters thle above as a parameter--as dioes S, for that matter. Whait 1\ rilpke. et

al. slii'~ d %w:i that one could ring changes in the nature of R and thereby y ield modlal miodl,

appIroprtte to different modal logics. One way to think about this is to ignore the v alue assignments and(

think of doiple- <S. R>, S and R as before. Call such things framnes, and go on like this: a formjula is

%Mlid on a frme just in case it is valid in every model based on that frame--letting v vary. Finally, say

that a modal Ystern is characterized by a class of frames if all and only its theorems are valid (on every

frame in t hait clhiss. Voila, different modal systems are characterized by different classes of frames, the

(difference reidling precisely in the conditions on R. 1

NoN%, as to whyN K is called the minimal normal modal logic. Simple. KC imposes no restric'tions on

I? at all--not even that it be nonempty. So much for minimality. As for normality; here, it's what's not

in S, as opposed to the nature of R, that counts. Call a subset Q of S nonnormal if for every q in Q,
every Nwff. p). and every v, v(Mp, q) = T and v(Lp, q) = F. If Q is empty, then S is normal. At

12ror ~t ing town to some cases, I shiould bring to the reader's attention my use of the letter 'S', in place of '%'. The
trergoing -t.,ry orten glossed as follows: lat S be a set of possible worlds, and R a relation of relative accessibility between
workk N,---tt is trutth in all accessible possihle worlds; possibility, truth in at at least one. Thbis gloss is just that: the
to'ouri~lw o.' h. irt~ing ort he members of S as possible worlds is, of course, no part of the formal .leseloprneut. Wsorse, it can
be seriously muisleading. Don't, dear reader, let it mislead you. In (almost) the immortal worlds of Ilrendlan tteban:

Don't muck about

Do'Vuc bu

Don't muck about

with

Possible worlds

For an alternative semantic picture, see [Fagin and Vardi 851. *
. . . . . . .
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nontioril *indJices" or "points or evaluation" (each much more appropriately neutral than "possible

world"), anything is possible and nothing is necessary. Sounds like fun.'13

Restricting ourselves to extensions of K, we can speak either of thse characteristic condition on P?

associated with a given schema X or of that associated with the system that consists of K + X. -hall

speak in the former mode. So here's another scorecard:

SCHEMA CONDITION ON R

T (s) (s R s)
reflexivity

4 (s, t, u) (s R t & t R u ->s R u)
transitivity

B (s,t) (s R t -- > t R s)
~symmetry

E Cs, t, u) (s R t ks R u --- > t R u)
Euclidean condition

D Cs) (Et) (s Ft 0)
,teriality

It is now obvious that if R is reflexive it is serial and just as obvious that R can be serial wit hott

being reflexive. So, K + T yields D; but K + D does not yield T. We're safe: Scott andI Mimberly vafl

be logicall% omniscient and consistent, at least with respect to their beliefs, without being inf:illihle.

5.2. Some Applications.

Now that we have some tools at our disposal, there are other conditions we might want to considler.

Sco~tt andI Kimberly, after all, think mighty highly of themselves; perhaps, although they are not infallible,

t hey think they are. One expression of this unseemly immodesty-nay, arrogance--is U:

U: (B(Bp -> p))

We shall reject U. To give it its model theoretic due; there corresponds the roliowiiig itamiees

characteristic condition on R:

13 Nonnornsal worlds--frames containing such--enter into the semantics of Lewis's S1 S3--the differences imong these
being oerrt-latpet with differences in the accessibilit- relationship. No one has ever taken these systems very serioulsy as

7logics or necessity and poolibility. Or course, if I may remind the reader of the fabulous nature of the fable with whichI
began. they were not meant to be such. I should also note that frames with "impossible* possible worlds have been looked
to for a way of handling, within modal logic, the problems of logical omniscience. I will have nothing to say about such
attempts in this essay. See [H-intikka 751.

4. . . . . . . . . . . . . . . . . . . . . . . .
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(s,t)(s R t -- > t R t)

One c-an show that D and U are independent. To show that D does not yield U. consider the

following frame:

S = (s, t} R {<s, t>, <t, s>}

Ivire R is .nal, but not U-ish. (Does it look U-ish?) To get a frame which satisfies U bit not D is

blut I iornent' work:

S = (s, t} R = (<ss>}

Note thot this frame is not rtflzt'e, that is, not T-ish. So, D and U are independent ;,l b1oth :tre

(%':tker than T Indeed, K + D + U is a system strictly weaker than IK + T. for note the following:

S = (s, t} R = {<s, t>, <t, t>}

6.3. A Few Doxastic Paradoxes

"efore l:ving U behind, I should note the connection between it and the so-called "Paradox of thet-

Prefao " U. as note(l, is too much; not even Scott and Kimberly believe they are infallible. So, both

Sco and Iirtit'rly believe that one of their beliefs is false. But then not all of their beliefs could be true.

lake S ,t. le's a reasonable fellow, as Yuppies go. fle believes that at least one of his beliefl' is

f:ile. "l'h:it is. not only does he not conform to the self-regarding standards of U; he positively repudiat ,s

ame. Ni, ,,iher this belief in his own fallibility--call it non-U--is false or not. If it is false, then at leait

one hi- ieiefs is false--viz. non-U; so non-U is true. And, of course, if non-U is true., then at least

1n4. -f ht (tthr) beliefs is false. So whether non-U is true or false; it is true. So Scott's belie f that at

least one hi- beliers is raise must be true: so at least one or his beliefs is raise. non-U is fated to be true.

Let's go more slowly here. Let's assume that the "range" of non-U does not include non-U itsell'.

*~ T 'it is, Scott believes that at least one of his beliefs other than non-U is false. Suppose, for simplicity's

sake, that Scott has finitely ma v other such beliefs: p, q, r,...Suppose, further, that Scotts's beliefs are

closed under (finite) adjunction. (This, by my lights, is likely to be a wild supposition; in general, the

supposition of unrestricted adjunction-for any attitude-is an extremely dubious one. This is one reason

for being dubious about K.) Scott, then, believes th, conjunction of p with q with r..But he also believes

- non-U: th. is to believe: either not-p or not-q or not-r or... But these two beliefs are inconsistent. Neither

Ail



14

011fe of them is non-U. at least one must be faise; so non-U is true. Of course, although the second f the

two beliefs--the dlisjuinction of the negations of the cc. ajuncts of the first-is not itself non-U, it records-in

the context oif the finitely many other beliefs conjoined in the first-the effect or believing non-U.' 4

The -ituwit ion is even more baroque if we put non-U back into the pot of Scott's beliefs. Indeed, it

is the sitoat ion as outlined two paragraphs ago. The supposition that non-U is not true leads

iminediateely lo the conclusion that it is true. But we needn't stop there. Ret urn to the t rouble otne case

"here a.ll of 'ott 's other beliefs are true. If non-U cannot but be true, then it is true. Bur then all

SO~ sbelief, are true, after all. But then non-U is false, after all. .Somethlong is wrong Nomiewhere.

What sveins to be wrong is that Scott, no matter how hard he tries, can't succesfully believe--either

ruly or f:dik'lv--that at least one of his beliefs is false unle. s one of his other beliefs is false. In which

casle, Of ('i'Ir, . no matter how hard he tries, Scott can't help hut believe truly that at 1least one of' his

l),'ii'fs is fake--if he believes it at all. Again if Scott were ever successfully to believ~e t lie fir- r-*,

vvrioni of the negation of non-U, then that belief would be guaran teed to be t rue. Thue lirsi -per'.uo

version of U is ai bit too.'h--even for Scott; the third person version, a bit much even for hi pa r,,w,. 'He

hird per,,,-\ 'tr'ou of non-U seemns just fine-surely it is not the case that Scott lwlievs ihii ii S I

b'lo've, t hat p). t henl 1) Finally , the( first-person version just cannot, be falsely believed.")

So tmch for U. There is another paradox about: to wit, Moore's parado\. (.\rgiriblY the fir~t

praigml:it ic piriox to he remarked upon.) Let's pick on Kimberly this timne- Kiberly, poor' lks. b :t,

false beliefs 'So we will have occasion to say such things as:

Kimberly believes that p,; but it is riot th- oase Nho p.

\l'reo~ cr. K'iberly is not omnidoxastic; there are truths she simply does not believe. (I will spc':k

ocf the t rat of believ-ing all the truths there are as ornnidoxasticity.) So wke will have occasioli to say such

thing, :is:

* -p; but Kimberly doesn 't b ltcie that p.

M~niberly moreover, believes that she has faLe beliefs--if you don't believe me, advert to the above

antd ask 'icott . But, not ice how odd it would be for her to sav:

I1 sh udder mwith this talk of ronjoining and dIisjoining beliefs; still, it's a convenient short hand -- but for wh it

"This lisrussion of ihp' Paradox of the Preface is just a retelling of a tale told, in Polish notation, by A.N. Prior. P1rior
71.1 The Paradox was first noticed by D.C. Niakinson.
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I believe that p; but it is not the case the p.

It i. p)erha)s odder even for her to come out with the first-person denial of omnidoxasticity:

p; but I don T believe that p.

(F. Moore first pointed out the paradoxical character of the first-person versions of what, in

third-perim folrm, are completely innocuous things to say. I have said that the schematic letter, that

c(mie Aih (,f mir 'H'i an 'N' operators were to have singular terms for subjects as substutition mintance.,

"I" is ijch a -ingiil:r term, but a very special one. Note that even if your name were lNimberly--and you

ore :nde in bing so named--it could be perfectly nonparadoxical for you to say:

p; but Kimberly doesn 't believe that p.

"i momhijit. after all, not know your own name, might not--in this sense--know Nmi nro r'

Xith,,u -,,m i iich nmore deeply into problems about indexicals and qiiasi-indexicals, we c:inii,t r,-:ill..

very depl.% ni Moor's Paradox; so, in what follows, I am going to b~e playing a little f:tt :iii I,- I

an going to assume ihat Scott knows who he is, at least in so far as lie k nows that ie is (tlie o' mid

onlY) -.5i i--the one and only person named 'Scott', mutatis mutandis for Kimberly. In this reslW't. I

follow I linikl;ki lead.

6.4. Moore's Paradox and the Schema Y

', ret orn to i he main line, the key here is the following schema:

(p & -Bp)

\, ,:innt rule it out by ruling in its denial:

-(p &-Bp)

for that is equivalent to the wholly unacceptable 0:

(p -- > Bp) or n idozat zcity I
2.~~..... "=
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Note that the negation of our version of "I believe that p; but it is not the casRe that p ". is the

equally unacceptable inrallibity axiom T: (Bp -- > p).

Whtivwatt ul ni

(-B(p & -Bp))

It is not the cas~e that Scott believes both that p and that it's not the case that he (Scott) believes.

(-B-(p ->Bp))

It is niit the raie that Scott believes that it is not the case that if p., then Scott believes that

To. oi, that I l 'iil cot t dloes not believe in his own omnidoxasticity, it is not the case that lie lo'lieves

tli:it !t i- not the case that he is omnnidoxastic. Another perspective on this (lark saying is vouchsafed us

by ih'.t nibuling "1 ie. en "k" in the earlier version:

(0'): (-(Bp & B-Bp))

11 1,int huth i t# roase that Scott believes that p and that lie believes that it is not tflit, ci t hat hr

heuleii t. II th p

Ti'ilat raise, tflie, qutestion o~f U -gain. I have simply assuimedl that Scot d(oe, wit lollimv hei,

ii il tie ~ u o it ccpt (U): (B(Bp > p)

N ~But we c-an deny that Scott believes the negation or the infallibility c henia. \%e cal . iii

(-B-(Bp ->p))

This is equiv alent to
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(-B(Bp & -p))

It is not the case that Scott believes both that he believes p and that it is not the case that p. Or

dist ribtting "BA" over -

(U'): (-(BBp & -Bp))

1t is not the c-ase both that Scott believes that he believes p and it is not the case that he believes

I'erlmp the ba'ici( drift is now clear. I do not want to buy the standard "axioms of introspection":

not even for belief. Rather, the logic of belier I am proposing is generated by the intuition thait what

* oto ')aot is I h:it one's subjects--Scott, Kimberly-not be stuck with certain kinds of false introspective

Ii'iifs o.I pr(po, e that they not make certain kinds of mistaken selr-acsriptions of belief: thus, that

ho' rint brt h elii've that p and believe that they do not believe that p. Again, they should not both not

h-- , it 1) id believe that they believe that p. To grant this freedom from error is already a generous

11-tilre of 'iulealitat ion on my part; but, of course anyone as blithely unconcerned with) "logical

(MI11 it'.ctvnci," as I cannot blanch at idealizing. Still, it is a much weaker form of idealization than

*gimrarltfi''ng iomies of true self-ascriptive beliefs. Yuppies, remember, don't introspect much.' 6

'I'he ke'v idea in the above might be put as follows: take a controversial schema and deny that Scott

r I\ jtnbvorlv believes its negation. This is exactly how we got 0' from the ominidoxastic scheitia 0. arnd

- U' I'roto h noxiousiv self-satisfied U. Let's apply this algorithm to the tloxastic versons of bot h 4 and

il ot~erv he uinnamed

(BBp -> Bp)

Lettime his C4, for the converse of I. This is not to be confused wit U. (ihotigh It is i'it iili',

iiit doeis ntit entail. U. )What we get, after the standard arnroriiair~ re 4' .tid C4,

(4'): (-B(Bp & -BBp))

11% W ,.our-. -mei I ri" ",if-a'crrptions refp in with the logic, with K it~'If. For in~i in-. by FZ2: 1 -(I pi, .. -rilij

> p. i, I- [Iit N I, > pr. %oua. intrcspertion' But nothing to write homeI about.
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(C4'): (-B(BBp & -Bp))

And, if one thought it more perspicuous:

(4'): (-(BBp & B-BBp))

(C4'): (-(BBBp & B-Bp))

",ppift may not be introspective; but they are confident--even about the rare introspective beliefs

they may entertain. Although it is not the case that if one believes that p, then one believes that one

believes that p, neither is it the case that one believes both that one believes that one believes that p and

vet doe,' not re:tl.v believe that p. (That was 4',in case you couldn't guess.) Moreover, it isn't even true

that if one believes that one believes that p, then one does believe that p. But it is true that one doesn't

believe both that one believes that one believes that p and yet that one doesn't believe that p. (That's

C4'

let's Ink back at 0', the one prize we captured from our perusal of Moore's Paradox:

(0'): (-(Bp & B-Bp)) 7

This is equivalent to

(-B(p & -Bp))

ihth t i-in turn. equivalent to

(Y): (Bp -- > -H-Hp)

Ir M fittlrI, believes that p. then it is not the case that she believes tht it is not the t'', t hat -li,

believes that p: more colloquially: if she believes that p. then she doesn't believe t hat she ,istt believe ,

that p.. ota bnt: no real introspection is required; rather, what is being ruled out is that Kinberv ha .

certain kind> of falke inlrospective beliefs17

4-'

17%

IThe on[rap,.)-itive .)r Y i (F-tip -- > -tip). If Kimberly ha, any ps)it iv intro-p,' iwe bi, f I i. i .f1w '< , at , 1 .

.,.- not blieve, that p. then she ioe not believe hat p. Note the aym netry here between n,gIv., Ind

tntro~p''wtiv, i'- \A \'i lies said to the Tortoise. "That's Classical Logic"

• - . . ' .- . ,. , .. ,- .- . . .. ". - . .- - . . . . - - . .- ,.- .-. :. - s. , .", -'. - . - - '-. - .. -- ,. . .
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~If we add this schema, which we have dubbed Y for the obvious reason, we have a modal system /

that %%ill ield all of D, U1, 4', CV, and none of 0, U, 4, or C4.1 s  .
q

8.5. More on Y

Y is, of course, the doxastic version of the nameless (Lp -- > MLp). This latter is just an instance

of (p -- > Mp), which is a fairly basic principle about possibility. Indeed it is just the other side of the

coin from T. But we don't have T for belief; nor do we have (p -- > -B-p). We have Y.

No doubt the reader is just dying to get a gander at the characterstic condition on R associated with

Y. Take a gander:

(Y): (s)(Et)(s R t & (u)(t R u -- > s P u))

-- That any frame which is Y-ish is eo ipso D-ish-that is, serial, is obvious. The converse does not

hold. Consider:

S {s,tu} Rf: {<s,t>, <t,u>,<u,s>}

This is serial but not Y-ish. Thus, s R t and t R u; but it is not the case that s R u. Moreover, Y

does not yield U. (Remember, we don't want it to.), thus:

S = {s,t,u} R = {<st>,<t,u>,<s,u>,<u,u>}

Note that though a R t, it is not the case that t R t. Indeed this shows that Y does not yield the

unwanted T.

-. NOTA III'NE: Craig Harrison, in a discussion of the paradox of the unanticipated examination, has argued for a
i '-' M011 oaltogi," of h-144,, much like the one proposed here. See [Hlarrison 601. Actually, his proffered alternative is weaker; it is•

-. ..... nisIb. + 1). But he, too, considers the schema I have called Y. Moreover, lie, too, allues Moore', i'aralox as, at
the very least, a consideration . The history here is complicated. The work on what is now l'uppiilogic began alttio' firteen

,ears ago. aft,r Harrison's paper appeared. When I began the work, I hadn't yet read Ilarrison's paper. Inhed, I wasn't
thinking about the paradox of the surprise exam at all. Then, as in the present essay, I ignored all issues of time anl its

passage; then, as in the present essay, the considerations for and against various principles had their source in Moore's
' Paradox, (to a lesser extent) the Paradox of the Preface, and general epistemological considerations. In fact. I think

Harrison's treatment of the unanticipated or suprise exam extremely interesting, but--in the end--inadequate, lie bases too

much on a rejection of the theses that if one knows/believes, one knows/believes that one does. I, too, reject those, though

r2'. not simply (or at all) because that decision allows one to hold that the set up in the surprise exam puzzle is a Coni.tent one.
Though Ilarrison treats of time indexed epistemic and doxastic operators, he doesn't do enough with them. ,loesn't say
enough about the principles that should govern them. In any event, I hope to address the is:sues raised by that paradox in

the future. Still, I don't want it thought that the idea of looking at intensional logics for belief and knowlhIg, %lih ,'xt,',rl
P.,. K but not as far as any of the standard logics of necessity do, is either unique with, or original to, me. ilarri-on, an, no

'doubt others, including Binkley [Binkley 881, got there first.

• -5
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As to (BBp -- > Bp): Its characteristic condition is as follows:

(BBp -- > Bp) (s,t)(s R t --> s R 2 t)

So consider the frame:

S = (s,t,,u) R = f<st>,<tu>,<s,u>,<u,u>}

F-ere, .4 R t; but it is not the case that s R- t. That is, there does not exist an s', s.t. 3 R ' &''Rt.

Finally, as to 4, (Bp --> BBp):

S {s,t,u} R = {<s.s>,<t,t>,<uu>,<s,t>,<tu>}

• R t and t R u: but it is not the case that s R u. (This particular frame is reflexive; but, of course,

not all Y-ish frames need be.)

I assume, by the way, that it's obvious that Y yields neither B nor E nor 0. The characterstic

condition of this last is: (st)( R t --> a = t).

So much for the crucial negative results. Let's think positively. We've already noted that Y--that

iK. h + Y--yields D. Y yields 0', because it is 0'. There are fairly straightforward direct proofs in K +

Y of U'. C4' and 4' t

The reader may well wonder about the results of applying the above treatment to B and E. That

is. "%hat. about the schemata that result by negating the believability-for such as Scott and Kimberly-of

their neg.ations" The resulting schemata are, in order, B':

(-B(-B-Bp & -p))

or:

(-(B-B-Bp & B-p))

1ORather than bore the reader to tears with such proofs, I'll give hints for their construction. To proe W'. siiplv
substitute 'B' for 'p' in Y; to get 4' from U' is the work of but a moment, making use of the same sukt iriiti, it Iar.rri a,
before--'Bp' for 'p'. Finally, to get C4': use axiom scheme ii of K on D, put the result of that together with Y. and Voila.

C4'.

". % - - - - - - -
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and E':

(-B(-B-Bp & -Bp))

-' or:

(-(B-B-Bp & B-Bp))

These are sufiiently opaque as to not be worth much worry; but, in fact, they are both theorem

schemata of K + y. 20

0Proors iaft a., nontrivial .'xercises for the reader.
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7. SUMMING UP

It is time both to sum up and attempt, at least, to see )UPPIELOGIC from a proper perspective.

Any Nlgi(.u of knowledge and belief will have to be based on idealizations. There are, at least, two

orthogonal dimensions along which to idealize. One dimension is that of the the logical competence of the

subject knowers/belicvers. The other is that of the degree to which the subjects have knowledge of or

belief. about. their own knowledge and beliefs. In this essay, I have decided to idealize quite recklessly

along the first dimension. I have, of course, allowed idealization along the second as well, but much less

than the norm. The guiding intuition all along has been that, with respect to their attributions to

themselves of knowledge and especially belief, the axiomatization should guarantee our subjects against

certain kinds of epistemic/doxastic grief-not that it should guarantee them all manner of

FpiztIni,'/ddo a.4ic equccess. Imagine a subject whose beliefs conform to our account. Such a subject will

be under no pressure to change her beliefs about her beliefs-no pressure, that is, steinming from

conflicts bft irf ( what she believes about what she believes and what she actually btlict,es. I assume, of

course, that falling ..-hort of "introspective omniscience" by Itself generates no pressure, and no such

conflicts.

Let's return once again to 0 and 0' ( Y). 0 is a completely general schema to the effect,

roughly, that our subject-Kimberly, say- believes every true proposition. This is obviously honkers. We

allowed, however, that Kimberly does not believe the negation of 0. This yielded 0', and 0' simply

denies that K[imberly believes things and also believes that she doesn't believe those things. It denies that

Kimberl is subject to a certain kind of error of self-attribution-one might say the baic kind of such

error. Note that by necessitation, Kimberly will of course believe that she is not thus subject to that kind

of error. That is. she will believe, not that she has any real talent for dexastic self-attribution or

introspection, but that she doesn't go around believing that she doesn't believe things she actually does

believe.

Another way to see what's going on is to go farther than I have so far in intermixing belief and

knocdge . At th, moment the only two-operator schema I allow is to the innocuous effect that

knowledge reqilires belief. In passing I mentioned Hintikka's argument against the epistemic version of B.

B is sufficiently bizarre that one should not require even Scott to believe it; but what if we try out our

trick on it? What about:
-N

(-B-(-K-Kp -- > p)) ?

What indeed' Let's transmogrify, using our recipe:

-------------------- f.

-. , .,,.-,, . - -,.. V.. .-...- ., ,.', .,,,.,, .,. . . .,-+ . . ,,-. . . ..,\,,,- -. , ,.-. +,....+ .-+. .-. ,, , . ..--
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(-B(-K-Kp & -p))

It is not the case that Scott believes both not-p and that he does not know that he doesn't know

that p. If he knew that p, he would not believe that not-p. (By D and the requirement that knowledge

involve" belief.) Of course, if he knew that he didn't know that p, he might very well believe that not-p.

(Or not: he might be open-minded, have no opinion, with resppect to the question.) If he doesn't know

that he doesn't know that p, he might still believe that not-p. After all, he just might not know that p, for

instance. because he doesn't believe that p, but not know that he doesn't know it--for instance because he

doesn't believe that he doesn't believe it. But if he were to believe that he doesn't know that he doesn't

know that p--say, because he doesn't know that he doesn't believe that p--and yet still believe that not-p,

then he would have reason for concern lest he be inconsistent, or of two minds about his attitude toward p

(or itq negation). And we have ruled out such worries.

Try another transform:

(-(B-K-Kp & B-p))

Either Scott doesn't believe not-p or he doesn't believe that "for all he knows", he knows that p-

where, a la flintikka, I'm reading '-K-q' as "for all Scott knows, q'. So, imagine Scott believes that not-p.

Then he had best not believe that for all he knows, he knows that p.

This trick works for the epistemic versions of 4 and E as well. No doubt looking at one or these will

suffice. Let's do 4, which-in its epistemic version, of course-was the most hotly contested of the

"introspectiwe axioms" originally proposed by Hintikka.

(-B(Kp & -KKp))

Scotty hoiddll not believe both he knows that p and that he doesn't know that he knows it. It is

quite possible that Scotty know that p without knowing that he knows it. Remember, we reject 4. But if

he -hould believe that he knows that p, then it will not do to believe that he doesn't know that he knows

it. Identifying Scott's being certain that p with his believing that he knows that p: if Scott is certain that

p. then lie doesn't believe that he doesn't know that he knows that p. (Although, again, he really might

not know that he knows it.) lie would not continue to be certain that p if he believed that he didn't know

that he knew that p. Put otherwise: being certain that p requires not believing that for all you know you

might not know that p.

pt'%t% -- . . . . ...". . . . . .. .
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8. SOME FINAL SCEPTICAL REMARKS.

Now to say a word about believing and knowing--in particular about believing. Believings and

beliefs come in a wide variety of 'modes'. One talks of explicit and implicit beliefs, of conscious and

unconscious beliefs, of occurrent ('active') and dispositional beliefs. These three dimensions/dichotomivs

are very likely independent, and there may be other such dimensions or dichotomies. To which of these, if

any. is our 'B' operator supposed to correspond? Hintikka, for instance, clearly intends his 'B' and '1K'

operators for what he calls 'active belief' and 'active knowledge." But he also seems to suppose that

being active involves being conscious; that is, being an active belief involves being a belief of which the

believer is conscious. Further, he argues-naturally enough-that it is only a certain mode for modes) of

believing for which various of his principles and rules are appropriate. Thus. for instance, the doxastic

version of 4. that if one believes that p, one believes that one believes that p, holds of active, conscious

beliefs, (lie thus rules out of court-he thinks-references to Freud, self-deception, and the like.)

8.1. On Belief States

I can be no more than brief here, but it seems to me that a much more important "dichotomy' is

that between two different conceptualizations of the role of belief. According to one conceptualization,

the main locus or arena of beliefs is in thinking that is aimed at truth, that is, in "theoretical reasoning,"

considered in abstraction from the creature's possibilities of and requirements for action. This

conceptualization leads quite naturally to focussing on conscious beliefs, consciously arrived at, and

thereby to focussing on language using creatures who can express their beliefs, including their beliefs about

their own mental states. The other conceptualization might be called "functional'; Robert Stalnaker has

called it "pragmatic-causal'[Stalnaker 851. Here the main arena is action; the fundamental role of beliefs

in the mental life of believers is as states that, together with desires and intentions, guide or direct or

.. determine behavior. Roughly, to say that a subject believes that p is to say that if the subject were to

desire that q, then he would be disposed to act in a way that would bring it about that q were it to be the

case that p. This conceptualization of beliefs is essentially dispositional; within it, being active means

playing the characteristic role of belief in an actual behavioral episode and has nothing whatmiever to (1

with being conscious-let alone with being linguistically expressible. Again, within this 'on,'eptuaizat ion.

neither language nor language users occupy any special privilged position of interest.

I take it that it is clear enough that a concern with 'introspection" goes most naturally with the

first of these two ways of thinking about belief. This is true even if one clearly (listinguilshv,%

"introspective beliefs' from a subject's beliefs about its own mental states. Let me now clearly dn,tnglio,h
these two. The second has solely to do with the content of beliefs; a rough and ready haracterialin 1,

simply this: the subject-matter of the creature's belief is about that creature's own meni ml .talt' ..

including its own prf.int mental states. Even here, and even in the case of beliefs about mnn,'

v..-..,.4, .................................................................................. ,
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present mental-states, one can distinguish beliefs about one's own mental states in the 'first-person mode'

and in the 'third-person' mode. So, for example, I might believe that the sixth oldest researcher in A\

believes that p, without realizing that I am the sixth oldest researcher in Al. If so, I might be said to have

a third-person belief about my own beliefs. In general, one can concoct examples in which a creature canl

have beliefs about itself without realizing that it is the very thing at which the beliefs in question are

directed.

"Intropsective beliefs" on the other hand are beliefs about one's own mental states that are cau-.ed

in a certain way (or ways), or which arise out of the functioning or one (or another) speciii--thbotgh

perhaps completely unspecified--cognitive mechanism called "introspectioti."" If' one is, thi kin, abgtit

beliefs from the 'pragmatic-causal' perspective, it's hard to get excited about "introspective l'licl'"

unles one simply assumes that all beliefs that arise out of introspection are 'in the first-per,o uotie".

But, then. what's crucial about them is that latter fact not their etiology.

7 Indeed, from within the 'causal-pragmatic' or "functionalist" tradition, it's hard to get excited
t"2

about eptstemic/doxastic logic.22

8.2. On the Contents of Beliefs

Let me now say a word about the objects or contents of believinigs: that is, alut llif I tt',

objects or contents of such mental states as believing and knowing are to be truth-valualile--:t- tlhi.y ir,

represented as being in all standard epistemic and doxastic logics, then they had best make or ,-,rre.ptl

to or just be determinate claims upon reality. Sentences--sentences types--of natural languag:,es lireci.vly

do not correspond to or make such claims. Sentences--better, well formed formulae--of 'I anilarI ,o-cd

languages, by tacit conventions of interpretation or of intended range of applicability. are -upm,el to

make ich determinate claims. That is, such sentences are supposed to be metrnal: any stat|c,1,111 -11:1k itl:

lutt"ractle 1of such a sentence yields the same propositional upshot. in:tke the same l'trllt I,, ,''

1451ti th ' world. ( f course, the worlds in (iestion are typically conceived of :t titathetiatc:t -Irt Ii'..

Iiat I, as consisting of eternal or timeless objects standing in cert:in timeless rl:lttBit, : tt In-Z

..-th ''I-.e' I So if we im ,gine a subject whose beliefs are mediatild (i:lrried) by, a,' N dl :1- I, v'lng

'.,\,r...slhe in. sentences of such a formal langai ge. that is. if we imagine the subjocf'; bolie. 1t11 h 1 lt :1,

f -I->r -- giveK n this 1'haracterization, it is really an open question whether there are any introspective beliefA. I think

a ' ar. liit that th,. members or only very rew species can have them. I used to think that only the m nilt,,r' or

in i.g- -ing p', ,'- ",,ld. I am now prepared to be more liberal and include those species which manife>t a ,eria kin I
!. I -. * .. - ,al -r gr up )cganizali n. t'nortunately. I can't characterize this kind or that degree; or dt I ba ,- any

i tT r iw , . .', '- ity o the alluded to condition. But then again no one ha, ever told me ofr wha! intro-,, ton

'"NitTA P1:NI" Cr, rt t A bihin the 'pragmati,-causal" world picture, what ' crucial seems to be the "rirst-.er ,i" nio ,.

i[ a ti.,it.n in that mode which guides action. Or, perhaps one should 'ay that what is crucial iV thi' rilation
", . . lie f,r'' 1'r-n anit the third-person modes of selt-attribution See, e.g.. [Perry 851.

".....
[--' - - . ' ' 5 ~ ' '' * ', " '
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involving the subject's saying-to himself, for example-a sentence of such a language, then we might have

no trouble convincing ourselves that the content of such a subject's beliefs are transparent, cottpletely

accessible, to that subject. This is again precisely what we cannot imagine even if we follow this

language-involving conception of belief but think instead of our subject thinking to itself in (ii-ing)

sentences of some natural language. (In all of this, I am assuming complete semantic competence--thougl.

of course, without having a complete theory of what constitutes such competence. At any rate, I am

assuming--for the sake of argument--that such competence consists, at least, in the subject's knowing %t hat

any sentence of his language "meanso: so, in the case of a language with only eternal sentences, in

knowing for every sentence, what claim is made by that sentence--what the world would haw, to be like

for thatr sentence to be true.) If we deny that believing is essentially language involving, it i, harder -till

to -;ee why or even how the content of a subject's beliefs should be transparcnt to ihat subject.

Moreover, if we are working within the functionalist paradigm. we will see that--in so Ir t , :i,

interested in generalizations across subjects or across time and changing circumstances--our primary

interest will be in a notion of content under which contents are not truth-valuable and do not crrespornd

to determinate claims upon reality. Note, well, that I speak of "content", not of "object: I dn't think

there is a useful sense in which the meanings of non-eternal sentences are objects of belief. \we hall. hat

is, be interested in a notion of content such that (e.g.) when both Scott and Kimberly say t, thim selv.

"There's no milk in the fridge," even if at different times and locations. and the like, the neiwttil -t:tr,.-

that such imagined sayings indicate have the same content. For if both d'-ire to drink some milk. or even

if both desire that there be some milk in the fridge, then they would be disposed to act in such a %\av :i

to bring it about that there would be milk in the fridge were it the case that there was as yet no ttilk in

the fridge. Just as the truth-valuable contents of their mental states are differeni. so too are the content,

(objects) of their desires, both their desires to (drink some milk) and their desires that (there be milk in

one's fridge). Note, too, the talk of "act in such a way." The way or ways in question can only be

characterized at a level of abstraction or generality that cuts across the differences in the acttal

circumstances of Scott and Kimberly and cuts across them in a way correlative to that in %which the

sameness of their mental states cuts across the differences in the truth-valuable contents/objects of their

Seli efs. Much mischief has been wrought by failure to distinguish these two different conceptioin- of

content FBarwise and Perry 831. Finally and to repeat: from within the functionalist perspective. it i' lie

second notion of content that is crucial, or--again--the relation between the two notions. ln e again.

what interest could there be, from within such a conceptualization, in standard epistemic/doxastic logics-

formalisms which, at least standardly, take it that the proper objects of belief, within the logic, are truth-

valuable and propositional?
23

231lere I should remind the reader that withim epistemic and doxastie logics. telief and knowledge don't really gs't tr,.atei
as relations to propositions: that is, such logics are to be contrasted with theories--say. first or higher order theories--of the
relations in question. In the context of these intensional logics, the relations are metatheoretic epiphenomena. arising out of
a particular heuristic ror understanding a particular model-theoretic treatment.
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It may be, then, that to take epistemic/doxastic logics seriously, one must both be working from

within that conceptualization or cognitive states according to which they are either essentially or

importantly language involving and, further, conceive of the language(s) in question on the model of

'2st-indard formal languages, as consisting, that is, of eternal sentences only. This could be taken as a

arguitent to the effect that the proper home of epistemic/doxastic logic is theoretical comp-.'er science--

previ elv the locus of its greatest current vitality.

F'%4
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Introduction

Classical planning problems have the following form: given a set of goals, a set of actions, and a

description of the initial state of the world, find a sequence of actions that will transform the world

from any state satisfying the initial-state description to one that satisfies the goal description. In

principle, a problem of this type may be solved by a very simple procedure: merely enumerate all

po0ssi1)le sequences of actions and test each until one is found that achieves the intended goals. By

this procedure, we will eventually find a solution if one exists. However, in practice, not only do

we want to find a solution, we want to do so expeditiously. Quick and efficient problem solving

is desirable primarily for reasons of economy: the less time it takes to solve a problem, the more

productive one can be. Furthermore, in some situations, the time it takes can mean the difference

he c'~een success and failure, as is the case when the problem is part of a scholastic exam or when

tlie problem is to preyent meltdown in a nuclear reactor.

Previous work aimed at developing efficient planning techniques has been highly experimental

in nature, the standard methodology being to explore ideas by constructing computer programs.

For the most part,' very little theoretical analysis has been done to determine why the programs

work, when they are applicable, and whether they can be generalized to solve larger classes of

problems.

In my thesis [8], 1 venture to the opposite extreme and examine the question of efficient planning

from a rigorous, mathematical standpoint. My analysis is based on the premise that one of the

main impediments to efficient planning is search, and that exhaustive search can be avoided only if

1 The exceptions to this are Warren's analysis or his WARPLAN program 1171 and, just recently, Chapman's logical
reconstruction or nonlinear planning 12, 31. Warren's analysis is primarily concerned with proving the crrectnes

-. or WARPLAN. Chapman, on the other hand, has analyzed previous work in nonlinear planning and, on the basis
ofr this analysis, has constructed a program called TWEAK that is provably correct.

...
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2 INTRODUCTION

the problem being solved has properties that can be exploited to constrain the search. Accordingly,

my methodology has been to construct a mathematical framework in which to study planning

problems, to explore this framework for theorems that can be used to constrain the search for a

solution, and then to construct planning techniques based on the theorems found. The techniques

are described in precise, mathematical terms and are capable of solving any problem that may be

expressed in the framework, provided a solution exists. While the techniques may be implemented

in a straightforward manner, there are a number of implementational issues identified, but not

addressed, in my thesis that need to be resolved before an efficient program can be obtained.

Although we have been working independently and in parallel, my work can be viewed as

a significant extension of work resently reported by Chapman [2, 3]. While our approaches

are similar, the framework I have developed encompasses a much broader class of problems

and addresses some of the representational issues that Chapman identifies. In addition, I have

been able to unify many more ideas in automatic planning and show how they arise from first

principles. These ideas include not only nonlinear planning [11, 12, 15, 19], means-ends analysis

[4], and opportunistic planning [6], which are incorporated into Chapman's technique, but also

goal protection [14, 16, 17], goal regression [9, 16], constraint formulation and propagation [12],

and hierarchical planning [10, 11, 12, 15, 19].

This report is intended to provide a glimpse of my thesis research. Only about a quarter of

the topics presented in my thesis, however, are covered here. It would therefore appear advisable

at this point to summarize the topics I have included and those I have not.

In the next chapter, an intuitive explanation of the mathematical framework i providcd and

a language introduced for describing the effects of an action. In the framework presented here,

actions are assumed to be deterministic-in the sense that performing an action transform.s the

world from its current state to a uniquely determined succedent state. The synthesis techniques.,

however, do not require determinism, and in my thesis I present a more general framework that

permits actions to be nondeterministic.

a* '- - ° ' ' - . - ' . . .
"
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INTRODUCTION 3

The language for describing actions is interesting in that it combines the generality of the

situation calculus [7] with the notational convenience of STRIPS [5]. This allows the frame problem

of the situation calculus to be circumvented to the same extent that it can be done in STRIPS.

As I show in my thesis, but not in this report, any problem that can be described in the situation

calculus has an equivalent formulation using this language, and vice versa-with the restriction

that the problem specification contain only a description of the initial state, a description of the

goal state, and a descritpion of the allowable actions. Also, in my thesis, I extend the syntax of

the language to enhance the parsimony of action descriptions. For example, the description of the

Put operator presented in Section 2.2 could be rewritten in the extended language as follows:

Put(p, q)

PRECOND: p - q, p = TABLE, Vz(-,On(z,p)), [q = TABLE VVz(-On(z,q))l

ADD: On(p,q)

DELETE: On(p, z) for all z such that z 7 q

Chapter 2 also shows how the correctness conditions for a plan may be expressed in terms of

regression operators, and how regression operators may be constructed from action descriptions.

The regression equations presented here, though, tend to produce rather long formulas that max

often be reduced to much simpler ones. In my thesis, I show how to add simplification rules to

the regression equations to overcome this problem. The thesis also presents a number of theorems

on regression operators that do not appear in this report, including a theorem that characterize,

the kinds of actions that may be described in the language in terms of the regression operators for

t ho.,e actions.

Chapter 3 of this report shows how a simple planning technique may be derived from a par-

Stiular theorem of the classical planning problems. The technique combines aspects of mean-end,
analysis, opportunistic planning, goal protection, goal regression, and con.traint formulation and

propagation (what Stefik called constraint formulation and propagation correspon(ls to secondary

preconditions and regression in my framework). In my thesis, I expand the technique by incor -

porating partially ordered (i.e., nonlinear) plans, instantiation variables (i.e., fornal objects), and %

%,,," ""4
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4 INTRODUCTION

a variant of hierarchical planning in which abstract operators are constructed dynamically. These

devices have the effect of introducing the principle of least-commitment, as they are used to defer

search as long as possible. In addition, in my thesis, I remove the various assumptions that are

incorporated into the technique presented here, such as the assumption that the initial state is

completely known.

.'' - .- l-2L-
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2

Formalization

In formalizing the classical planning problems, we shall draw a (list inction between a state of

the world and a description of a state. The state of the world is an abstract concept referring

to the totality of all that is true of the world and all that is false. To know the state is to be

omniscient. A description, on the other hand, is more concrete: it is a collection of facts about

the state expressed insome language. Furthermore, a description need not be complete: certain

de(tails might be left out, either because they are not known or because they are thought to be

unimportant. Hence, there can be more than one state satisfying a given (lescril)t ion.

The distinction between states and state descriptions is not new. For example, t lie (list ilct i0on

was made by McCarthy and H-ayes in developing their situation calculus [7]. The reason fr

eniphasizing it here is that it is crucial to the proper characterization of actions. Since actions are

assmed to alter the world in a det.erministic fashion, performing an action will transform t le world

from one state to a uniquely determined succedent state. Actions can therefore he characterized

as functions mapping states of the world into other states of thle world. This Is thle ti;mlit ion:1l

view of actions, yet, when implementing practical planning systems, many researchers have chosen

to characterize actions as functions that map a description of one state into a descripton or its

uceorstate. In Section 2.3. we will see that there appear to be actions for which the descript ionA

,, '.. %i

of the succedent, state would have to be infinite to reflect all of the state changes in their entirety.

This is unacceptable from a practical standpoint. Hence, systems that treat actions as functions

on state escript ions must necessarily limit the range of problems they can solve. None of this is

an issue, however, when actions are treated as functions on states.

th5,t xrse nsm agae utemre ecito edntb opee eti
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6 FORNLIZATION 2.1

2.1 FIRST-ORDER LOGIC FORMALIZATION

The formalization of states, state descriptions, and actions that will now be presented is based

on first-order logic. First-order logic was chosen because it provides a very general framework

for expressing and solving classical planning problems. In this formalization, states are identified

with algebraic structures, state descriptions with well-formed formulas, and actions with functions

on algebraic structures. An algebraic structure is a complete account of which relations hold

among which objects, and thus determines the truth value of every formula in the language.

\fn algebraic structure therefore corresponds to the notion of a state in that both represent the

totality of all that is true and all that is false. Well-formed formulas are used to describe facts

about algebraic structures: hence, the relationship between algebraic structures and well-formed
formulas is identical to the relationship between states and state descriptions. Consequently, it

seems natural to equate states with algebraic structures and state descriptions with well-formed

formuks. Actions become formally characterized as functions on structures as a consequence of

equating states with structures. In keeping with tradition, we will refer to actions in this framework

as operators so as to distinguish between the formal characterization of an action and the event

that act ally takes place in the "real world."

Let us consider how a planning problem would be stated, given the above formalization.

Initial-state and goal descriptions are both descriptions of states and, hence, are expressed as sets

of well-formed formulas. Tius, we will have a set of formulas I' describing the Initial state and

a set ( describing the goal state. Operators are described in two parts. The first part states

the precondition.s that riu,,t be met before the operator can be applied. For example. in many

block-stacking problems, a block can be moved only if no other block is on top of it. Preconditions

are just state descriptions and, hence, are expressed as a set of well-formed formulas ;r.

The second part of an operator description is a description of a function on algebraic struc-

tures. This function defines how the operator affects the state of the world when it is applied.

.nfortuniately, there is no standard way of expressing functions on structures, as they are not an

integral part or first-order logic. An appropriate language for specifying operators must therefore

," .- -.' .. ,.. .. . .. . . ..4. . . . . . .,.. . , , .. . . . .- , . . -, . . . :
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2.1 FIRST-ORDER LOGIC FORMALIZATION 7

be developed. Before considering how to construct such a language, we need to examine the notion

or a structure more closely. An algebraic structure consists of the following elements:

(1) A nonempty set (class) of objects D called the domain of the structure.

(2) An n-ary relation r on D (i.e., a set-theoretic relation with n arguments whose componentl.

are elements of D) for every n-ary relation symbol R.

(3) An n-ary function f on D for every n-ary function symbol F.

(4) A distinguished object c in D for every constant symbol C.

The relation/function/object associated with symbol RIFIC is called the interpretation or I/i/ '.

ks an example, suppose that we have a blocks world consisting of a TABL3 and three blocks 9.

3. and C, where blocks A and B are resting on the TA.BL& and block C is stacked on top of block

A. Suppose, further, that our language for talking about this world has four constant symbols,

A. B, C, and TABLE, corresponding to the objects in the world, and one relation symbol On,

where On(z, y) means that x is on top of y. Then the structure representing this world would have

!", B,{C, TABL&} as its domain, A as the interpretation of A, B as the interpretation of B, . as the

interpretation of C, T ABL 6 as the interpretation of TABLE, and {(A, 7ABLE), (B, T.BL),(C, .A))

as the interpretation of On. Viewed semantically, x is on top of y if and only if the ordered pair

(x. y) appears in the interpretation of On.

To arrive at a practical way of specifying functions on structures, we shall place a number

of restrictions on the kinds on functions that may be defined. The first, restriction is that a

function may not alter the domain of a structure. That is, if M is a structure and f is a function

on structures, then the domain of f(M) is identical to the domain of M. This restriction is of

concern only when we wish to describe the effects of an action that creates or destroys objects

in the world. An example of such an action would be the GENSYM function in LISP, which

creates new LISP atoms. The difficulty here is that the restriction prevents us from modeling the

creation and destruction of objects by adding and deleting elements of the domain. However, we
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S.-I

5- I
can obtain the same effect by introducing a unary relation, say 1T, where 17(x) is true if and only

if x -actually" exists. The domain of the structure would include all objects that could possibly

exist, objects would be "created" and "destroyed" by modifying the interpretation of U. Note that

this is precisely how GENSYM is implemented in a real computer: GENSYM does not create LISP

"'- atoms "out of thin air," but rather it locates an area of unused memory and claims it for use as a

- new atom. Clearly, the restriction that an operator must preserve the domain of a structure does
S.-

*ln not affect the kinds of behavior that may be considered; it only influences the way in which the

behavior is simulated.

The second restriction is that a function on structures may not alter the language used to

describe the world. That is, relation, function, and constant symbols may neither be introduced nor

eliminated by an operator. This restriction is implicit in all work done in planning to date. It has

never been stated explicitly, since it is hard to imagine a situation it which altering the language

would make any sense. Yet, if one really wanted to, one could obtain the effect of modifying the

language by introducing relations, functions and constants as objects in the domain (axiomatic set

theory [13] provides a convenient way of doing this) and then "creating" and "destroying" them

in a manner similar to that described in the preceding paragraph.

The motivation for this second restriction is that it allows a function on structures to be

decomposed into a collection of functions-one function for each relation symbol, function symbol,

and constant symbol. Each function in the collection defines the interpretation of the corresponding

symbol, in the succedent state, in terms of the state of the world that existed prior to the application
7-

of the operator. In other words, if fs is the function corresponding to symbol S and if .M is the

structure defining the current state of the world, then the interpretation of S in the succedent

state is given by fs(.M).

To provide a way of specifying these functions, let us introduce our third and final restric-

tion: each function must be representable as a well-formed formula. That is, each function fs

corresponding to symbol S is defined by a well-formed formula Ps such that

(I) For each n-ary relation symbol R, R(z .  x,) is true in the succedent state if and only

if :R(ZI, .,) was true previously (where z,. . . , z, are the free variables of :R)

.. -
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(2) For each n-ary function symbol F, F(x, .... , zn) = w is true in the succedent state if and

only if x(x, ... , xn, w) was true previously.

(3) For each constant symbol C, C - w is true in the succedent state if and only if :c.(u')

was true previously.

For example. suppose we have an operator that places block B on top of block C. After this

operator is applied, B becomes situated on top of C and every block except B remains where it

wa,. Therefore. On(x, y) is true after the application of the operator if and only if (x = B A y =

(') V (x 3 B A On(x, y)) was true previously. In other words, the interpretation of On in the

succedent state is the set of ordered pairs (x, y) such that (x = BAy = C)V(x 7 B A On(x, y)) i s

true in the current state. If this operator were applied to the blocks world described earlier, where

the interpretation of On was {(.A, TBLE),(B, TABL),(C, A)}, the resulting interpretation of On

would then be {(A, 7'BLE), (C, .4), (B, C)}.

With the planning technique discussed later in this paper, it is important to know exactly what

modifications an operator makes in a structure to select the appropriate operators for achieving the

intended goals. Therefore, we shall express the OR'S, (F'S and pc's defined above in terms of other

formulas that make the modifications explicit and then deal exclusively with these other formulas.

For relation symbols, this means expressing each PR associated with an operator a in terms of two

other formulas, a1R and bR, which, respectively, describe the additions to and the deletions from

the interpretation of R: if aR(z,. .. ,zn) is true when operator a is applied, the tuple (x.. x)

Is added to the interpretation of R, and if 6 IR(zx,... , ,) is true then (xl,.... x,,) is deleted from

the interpretation of R. For this to make sense, aR(zt, ... z,) and n(x, X,) cannot be true

simultaneously, as we are not requiring that the additions and deletions be performed in any

-articular order. Given an and bR, R(xz,.. . ,x) is true after operator a is applied if and only if

a(X,.x,) V - (X,...,x.) A R(xi,... x,,)) (2.1)

was true beforehand. In other words, (xl,. . . x,,) is in the interpretation of R after applying a if

and only if it was added or it was in the interpretation of R beforehand and not deleted. Formula

- . - )
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4 (2.1) is therefore equivalent to n. Note that appropriate aR's and 6 R's can be found to make

(2.1) equivalent to -R for any arbitrary PR. For example, we can let aR(ZI ... , x,) be the formula

r R(ZrI ...... r) and 6 R(XI.t .- z,) be - pR(xi,... ,x.). For efficient problem solving, though, OR
%1

and 6 R should be chosen to reflect the actual additions to and deletions from the interpretation of

R. For example, for the block-stacking operator described previeusly, a suitable aon(x, y) would

be (x = BAy = C) and a suitable 6on(x, y) would be (x = BAy 3 C). Note that 6on(x, y)

cannot be (x = B), since aon(x, y) and 6on(x, y) are not allowed to be true simultaneously.

'/ 4:. The formulas defining the interpretations of the function symbols in the succedent state can be

restructured in much the same way as the formulas for relation symbols. In the case of functions,

though, we can take advantage of the fact that a function must be defined everywhere, as required

by the definition of an algebraic structure. Consequently, F(xl,... x,,) = w is true after an

operator has been applied if and only if the operator changed the value of F(zI ..... x,) to w

or the operator preserved the value of F(x,. , z,) and F(xl,. .. , x,,) = w was true previously.

These changes can be described by a single formula PF, where PF(Zi, .Xn,w) is true if and

only if the value of F(z 1 ,... ,x,,) is to be updated to w when the operator is applied. Since

' functions have unique values, PF must have the property that either there is a unique w for which

I F(Zr i. ., w)is true or there are no w's for which AF(XI,... , ,,) is true. Given such a I',

P( x,,) = wv is true after the operator is applied if and only if

us r(X I z,W) V (-23v[PF(x1, - n,v)] A F(x 1, . ) . =u') (2.2a)

N was true previously: that, is, F(x 1 , ... ,,) = ow is true after the operator is applied if and only

;, either if the value of F(X, . z) was updated to w, or F(xl,... , ) t w was true beforehand

and the operator preserved the value of F(x 1, xn). Formula (2.2a) is therefore equivalent to

:F- \s with OR and bR. an appropriate IF can be found to make (2.2a) equivalent to ;F- for

any arbitrary ,:F (e.g.. let PF(xi, .. X, w) be F(Z,,..., z0 , t)). However, for efficient, problem

--.oling, lit- should be chosen to reflect the actual updates of the interpretation of P. ..\s an

eXamph, suppose we wished to model the assignment statement 11 - V, where U and V are
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program variables. To do so, we could have a function Val mapping program variables to their

values, plus an operator that updates Val(U) to be the value of Val(V). An appropriate update

condit ion p\'al(x, w) for this operator would then be (z = U A w = VaI(V)).

('onstant symbols are handled in exactly the same way as function symbols, since constants

are sinpy functions without arguments. Therefore, C - w is true in the succedent state if and

only if

pc(w) V 3v[ipc(v)] A C =w) (2.2b)

was true previously. Note that Formula (2.2b) is simply a special case of Formula (2.2a).

\\hen dealing with several operators, we will need to distinguish the add, delete, and update

conditions of one operator from those of another. This we will do by using superscripts: we will

write o', and b' to mean, respectively, the add and delete conditions defining the interpretation of

relation symbol R after operator a is applied, and we will write Ja to mean the update condition

(efining the interpretation of function symbol F after the application of operator a (likewise for

constant symbols). We will also use superscripts to distinguish the preconditions of one operator

* from those of another. Thus, ir is the set of preconditions of operator a.

2.2 OPERATOR SCHEMATA

- \'When formulating a planning problem, one quite often encounters groups of operators whose

;:i(Id. (elete. and update conditi, -s would be identical given an appropriate substitution of terms.

:or ex:ample. the operator described earlier for stacking block B atop block C' has as its add and

"lelete conditions for On(x,y) the formulas (z = B A y = C) and (z = Ii A y - (), respectively.

,imilarlv. an operator for stacking block A on top of block C would have as its add and delete

conditions (z = 1 A y = C') and (x = A A y 4 C). These formulas are identical except that.

v. herever I? appears in one pair of formulas. A appears in the other. Instead of requiring that each

and every operator in such a group be defined separately, we will introduce operator schernata so

that the group may be defined collectively. Schemata allow one to define parametric classes of

, . . . . . .

. '. *"
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operators by introducing parameters as placeholders for terms in the various formulas that make

iup an operator definition. A schema is then specialized to a particular operator by substituting

t the appropriate terms for the parameters. For example, we could define a block-stacking schema

with parameters p and q, where p is to be stacked on top of q. The add and delete conditions for

. Oni.r. y) in the Schema definition would then be (x = pAy = q) and (x pAy R q), respectively.

Substitiiting 11 for p and C" for q yields an operator that stacks block B on top of block C'.

It would be useful at this point to introduce a standard notation for defining operators and

ope':itor schemata. This notation is illustrated below. A schema definition consists of the name

or Oe -chema, a parameter list, and four groups of formulas labeled PRECOND, ADD, DELETE

and 1i'l):'E. If the parameter list is empty, the schema defines a single operator

ne(p .  Pn)

I'll ECOND: irl(Pl. Pr),. rn(pl . ,Pm)

ADD: I(Xl, . .Jx) for all x.1 ... , x, such that OR,(Zi... xnl, Pi . Pro)

R(... ..... z, 2 ) for all x . .  z such that &R,(ZX .. X,,,. pt)

DI*:IIIt !(.r . .. rt) for all x . ,z, such that 6 R,(XI , X...P . . P,,)

(x ...... rn,) for all xi. x,, such that 6R,(XI ...- Xn2, P . P,,)

for all r),. .. V' /esuch that 11F 1(XI.r W.P.. . Pm)
'-,~~~~~~~~.............................. .~ - ,, t uhta ~ z ... z,,,p .. ,,

for all x .  x, . it, such that Fr(.r n. 2 U,Pip m)

•* "'h I'lF.( )NI) 1,roly 'lCh - lprifies the precondition of the schema, consists of a set of well-

forn, I form,,IlA - ,p . p ,(p,. p,,, hose free variables are the schenia parameters.

The \ 1) , group ,jwc fif tw ot ld ctoluro l n, k for eacth relat ion symbol h. The conldit ions are

[ i*z%
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.pciied bN a set of statements of the form

add) I . . .. x,) for all i,. ix, such that OR(XI, X,, Pi. ..Y

where tho r are dlistinct variables and are different from the parameters Pi,. .pm-, The xjs,

together with the parameters, constitute the free variables Of rR. The format of the DELETE

group Is idlentical to that of the ADD group. The DELETE group, however, specifies the delete

and p(-. for eaich function symbol F and each constant symbol C respectively. These conditions

are expre,,ed by a set of statements each of which is of the formI

(update) ...... r,) - w for all xl, . .rx,,w such that PF(Xi- . iX,t!,P1 .- pr

for function symbols or, alternatively,I

"(update) C - u, for all w such that pc(w, p 1.Pm)

for constaint sYmbols. As with the ADD and DELETE groups, w and the xrjs are distinct variables

andl ire (lilTerent from the parameters.

As an example of what an actual schema might look like, consider the following schema, which

defines aclas, of operators Put(p, q) for stacking block p on top of q, where q may he another block

or the table:

Pi it (1) q)

PlPI;FCOND: p q, p =,l TAB1I.IC. W(-'On(z, p)), [q =TAUBLE V V:(- On(z,.q))]

ADD: On(x, y) for all x, y such that ( = pAy q)

DLT:On(x, y) for all x, y such that (x = p A y $A q)

VPDATE: A4 - u, for all u, such that F-ILSE

B - w for all it such that, VILSE

C - a,' for all it such that FAL.SE

TX IBL a, for -all t, such that FAXLSE



14 FORMALIZATION 2.3

The preconditian states that p and q must be distinct, that p cannot be the table, that no object

may be on top of p, and that either q must be the table or no object may be atop q. These are the

usual constraints one finds in block-stacking problems.

Since it. is often not the case that an operator will modify the interpretation of every symbol

in the language, we will introduce the following notational convention: if any aR, 6R, JIF or PC

is not specified, then we shall take it to be the formula FALSE. For example, Put(p, q), as defined

above, does not. modify the interpretations of either A, B, C, or TABLE. Therefore, we could

define Put(p. q) more succinctly as follows:

Put (p, q)

PRECOND: p 4 q, p 4 TABLE, Vz( On(z,p)), [q = TABLE VVz(-On(z,q))]

\DD: On(x, y) for all z, y such that (x = pAy = q)

DELETE: On(z, y) for all x, y such that (x = p A y q)

In essence, the convention is to presume that the interpretation of a symbol is not modified unless

specified otherwise. This convention has all the benefits of the "STRIPS assumption" [5]; however,

because it is mereiy a notational convention and we are dealing with functions on states and not.

function.- on state dlescriptions, it has none of the drawbacks of the STRIPS assumption [16].

We will also adopt as a notational convention that, if no preconditions are given for an operator,

then the precondition is taken to be the formula TRUE. In other words, we will assume that the

operator may be aipplied in any state.
*' V

2.3 VALID PLANS

9- The statement of a planning problem consists of a set of well-formed formullas I' describing

the initial state of the world, a set of formulas 6' describing the goals to be achieved, and :a et of

', operator schemata. The object is to find an appropriate sequence of operators (i.e.. inI :uiu;I I:te(d

" schemata) that will transform any structure satisfying I" into a structure that satisfies (. \Ve ,hdl

call such a sequence of operators a valid plan for achieving G. given I', or simply a ralid plan for

-,; • ..
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achierin G when the intended F is understood. This section examines the validity conditions in

detail and explores ways of testing a plan for validity.

Two conditions must hold for a plan to be valid: first, the preconditions of an operator must

be satisfied i hen that operator is applied; second, the goals must be satisfied after the entire

plan has been executed. To state these conditions more precisely, we shall introduce the following

definitions . Let. denote the empty sequence-that is, the sequence containing no operators. Let

the sequence c be called a prefiz of a sequence 0 if and only if there exists a sequence -1 such

that 0 = -1 (i.e.. 0 is equal to the concatenation of a followed by -t). For example, the prefixes

of the se(jllence a1la2 'a n are f, a1, a10a, aa. aa 3, . .. Iaa2 "an. Finally, let us write F{}10 to

mean that. if every formula in the set F is true before the sequence of operators 0 is applied, then

the formula ; will be true after 0 is applied. More formally, if we let a(.M) denote the structure

obt:ine(l when operator a is applied to structure M, then

() FI holds if and only if every structure satisfying F satisfies p, and

(2) l'{eIa2.. a)p holds if and only if an o a- o 1. 0 a 1(M) satisfies ; for every structure

M. satisfying F,

%%-here "o'" denotes function composition. Given the above definitions, the validity conditions may

be stated as follows: 0 is a valid plan for achieving G given F if and only if

() I 0 holds for all formulas g E G, and

%'.. (2) I'or ever. prefix e~a of o, Fo' }ri holds for every formula 7ri E 7', where ( is an operator

and ,7" is the set of preconditions of a.

,I cfort un;telv. it is usually not possible to apply the definition of i'{o,: (ilirectlv wiin ,sting a

plan for validity, as F may have an infinite number of models. What we need to (1o. therefore. i ,

rest ate the definit ion of I'f{ O }, in terms of theorem proving, so that we may then prove the valilit

of a plan withont having to consider the models of F.

%I
'°....

"G'g-
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Progression Operators

We will consider two possible ways in which the definition of F{O}; might be restated in terms

of theorem proving. The first approach is to find a progreaaion operator [9] for each operator a.

Progression operators map the conditions that exist before an action is performed into those that

exist after its performance. Thus, if a+' is the progression operator for a, then r{G}; holds if and

only if , is a theorem of a+l(F). If progression operators can be found for each operator a, then

the definition of F{O), could be restated as follows:

(I) I'Ff(p if and only if ; is a theorem of F, and

(2) F{oja 2 --. (, 1, if and only if p is a theorem of a+ o ... o a+'(F).

Unfortunately, progression operators have a major problem: while it is possible to define an

appropriate t+' for any operator a, there appear to be operators and finite F's for which a+l(F)

is neces%,arilh infinite. By definition, a+l(F) must be an axiomatization of the set of postconditions
'. *,

of F: that k. a+'([') must. axiomatize {, [ F{a},}. We could simply define a+l(F) to be this set,

"*' but this definition is not practical, as the set of postconditions of F is infinite: for computational

reasons, we would much prefer a finite axiomatization of the postconditions. Unfortunately, there

appear to be cases in which the postconditions cannot be axiomatized finitely, even though PF may

be finite. For example. let F be the set of formulas

Q 1I: VX (S(X) O )

Q2: Vxy(s() .(y) -z y)

Q3: Vz(z = 0 V 3y(s(y) =x))

Q4: VX(z + 0 = X)

QS: VzY(z +s(y) = s(z + Y))

Q6: VX(X 00O)

Q7: Vty (x s()=(x'y)+ z)

HI1: V (II(x) -p A(x))

-'---' . '.1".-'- -'- -.,: -? .-- .i-.: --1 . " . , - . .- -.. • .. . . . . . " -. .. ' . " ' -- --. --
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where .4(x) is a formula that does not contain the symbol H, and let a be the operator whose

schema is
UPDATE: x + y -w tar all x, y, w such that w =0

x y - w for all x, y, w such that w= 0

Formulas QI through Q7 are essentially the axioms at Peano arithmetic without the induction

ax Ioms. Formula HI defines the unary relation symbol H1 in terms of 0, S, + and by means of

the formula P'(x), which will be described below. Operator a leaves the interpretations of 0, S, and

11 unaltered, hut redefines + and -to be zero everywhere after a is applied (i.e., X + Y = X -Y= 0

for all xr and y in the succedent state). Since + and would no longer correspond to addition and

ni tlt Iplica iori after a is applied, it seems plausible that, if .A(x) made heavy use of addition and

mu tlt Iplicat ion. it. might not be possible to finitely axiomatize the post condit ions involving 11. WVe

will now construct an A(x) that appears to have just this property.

Let uis write s'(0) as shorthand tar the nth successor of 0 (i.e., s'(0) -0, 11(0) = (0),

8()= '.(,~(0))' 83(0) = s(s(s(0))), etc). Then it can be shown [1] that, for any partial recusive

fuinction 1).Ak N an the natural numbers, there exists a formuila .4,(.r1 . .k, Y) involving

onlY 0. s .and - such that p(n, . nk) -mr it and only if A4P(Sn,(0)...flk,(o), ."(0)) is a1

licoren of' formulas Q 1-Q7. The formula Ap is said to repreaent the funct ion p). [inl lerinore. it

cart be shiown that , if T1 , T2,. .. is a recursive enumeration of Turing miachinies. thlen tihere cx i't

a ariil ice ursive indicator function h : N -N such that Ji(ni) = 0 if and uiilY iT, event tial Iv

hialts when started on a blank tape. Let T17~,,. . be a recursive eilinieratilon of niri ng iniili ne

and let b(r e the formula .4h(X, 0), where h is the partial recursive indicator function decfinedl

w~e have as a result thatr !I( s(0)) is a theorem of F' if and only if 'r, hialts on a blank tape.

Fuirt hermore. since a dloes not affrect the interpretations of 0, s, or 11. II) s (0)) i,, a 1)051 (-oili ion

ofFi and only ifH(.s'(0)) is a theorem of P. Let F' be an axiomatizat ion of the postcondil n-

of F'. Then II(.s"(O)) is a theorem of F' if and only if T,, halts on a blank tape. Since + and -are

zero everywhere after operator a is applied, we can decompose r' into an equivalent set, of formulas
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F 1 U I,. w here 1', 1, 1he set

{VX y z + y = 0) Vxy (x = 0))

and [' , is 1s obtained front F' by substituting 0 for all terms of the form t, + t-2 or t, t2 in every

formula of I". Thu,..s and H do not appear in F', and + and • do not appear in F'. Furthermore.
'p.

the cardinalitv of l'1, is less than or equal to the cardinality of F'. Since F' U ' is equivalent to

F". it follo%% that II(s"(0)) is a theorem of F if and only if lt(s'(0)) is a theorem of F', U F. But

. and 11 do not appear in F'l. Therefore, the formula H(.s(0)) is true in all structures satisfying

II" U i', if and only if it is true in all structures satisfying r'. Hence, H(s"(0)) is a theorem of F' if

and only if H1.,"[0))is a theorem of K. Hence, T, halts on a blank tape if and only if 11(sn(0)) is

a theorem of Fr. Noit + and • do not appear in any formula of 1K. Therefore, r, must axioniatize

II bN using only 0 and the successor function s. This seems too weak a language, however, for

(lefining the set of Turing machines that halt on blank tapes without effectively enumerating all

such Turing machines. Thus, we make the following conjecture:

Conjecture. I" is infinite.

If this conjecture is true. F' must be infinite since the c-,rdinality of F' is greater than or equal to

the cardinality of F',. Therefore, all axiomatizations of the postconditions of I" inut he inuiiite: in

particular a+ '(1.) niit he infinite. Alt hough it appears unlikely that the conject ure is false, it has

not yet been formally proved.

Regression Operators

The second approach to restating the definition of F (}p is essentially the opposite of the first:

instead of advancing F forward through the plan using progression operators, we will move ;

backwards using regre..ion operators [9. 16]. This involves finding for each operator a a functioti

a - mapping formulas into formulas such that jo is true after applying a if and only if C-(,) was

true beforehand, that is, for every structure , MA satisfies a-() if and only if a(.M) satisfies ; .

If such functions exist then the definition of F{(}), could be restated as follows:

" °-"."N.N
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(1) F t I,; if and only if po is a theorem of r, and

(2) r(a 1 2 - -an)} if and only if at 10... 0 an '(,p) is a theorem of P.

In general. a regression operator maps a postcondition into the weakest suifficient precondition that

mutst exist b~efore an operator is applied in order for the postcondlition is true afterwardl. In the

case of Ihe if- t s though, we are insisting that the weakest sufficient precondit ion must also be a

nrieeNarY precondit ion.

t'nlake progression, there are no difficulties in computing regressions To see whyi~ this Is so.

* coriler the following construction. First, let us augment our language with an additional set

of relkitiori. function, and constant symbols. i.e., one new symbol for each existing symbol. \\e

are r hereb.N adding a new relation symbol Ri' for each existing relation sYmbol R?. a new fmItcI on1

symbol , ~ for each existing function symbol F, and a new constant SV mbIol C'~ for eaCh eXist iii-

constant s in 1)0 C. The new symbols we will call primedI, the old1 one, non riilnied. TFie pi nIie

symbols will be used to (describe the state of the world that exists after operaltor (I Is app;lied. while

the nonprinied symbols will dlescribe the state of the world before a Is applied. To ;Iimo~ti e b

relationship between the primed and nonprimed symbols, we can mnake ite of l'orninjlhis (2.) 11(

(2.2) discussed in Section 2.1. These formulas define the interpret ation of ei sYinbol ;if; er anu

act ion has been applied in terms of the previous state of the world. Thus, wke hlave thle l'ollowing

axiomns for each primed symbol:

Vt, x[R'(xz,.x.) -a(zl.) V(- (xi, x,)A fl(xi.' x,, (2.3az)

* . Vt *j if' [([ (, x..) u w) it' (.ri,.x, u,) V( 30j' (.r ., rxnr)) (2-3b)

A F(z, ... r,, ) = nI

VIe, [(C' aw) -IIu1V (-' ,[jp'-(I)j A C=u) (2.3c)

T1he reason this construction is valid is that operators preserve the domains of the struct ures to

which they are applied: if .M is a structure, then the domain of a( M) is precisely the domain of

Y. Therefore, we can construct a composite structure whose (domain is the domain shared by V,

a nd( a( Y), and w hose relat ions, funct ions, and distinguished elements are the combined relations,
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functions, and distinguished elements of JA and a(M). To construct a language for this composite

structure, we need only add a new set of symbols to the existing language-one new symbol for

each existing symbol, just as was done above.

Now suppose : is a formula that contains only primed symbols and, hence, describes some

condition that might hold after operator a has been applied. Using the axioms given above, we can

transform c into an equivalent formula 0, containing only nonprimed symbols. Since q, is equivalent

to : and contains only nonprimed symbols, it expresses the necessary and sutfficient conditions that

must exist before a is applied so that p will be true afterward. Thus, r, corresponds to a-1(,:).

The transformation of o into an equivalent nonprimed formula can be (lone in two steps. The

first step is to trinsform : into an equivalent canonical form in which every atomic subrormula

of the canonical 1: is either of the form R'(x ... xn), F'(x, . ..,x) = U, or C' = t, for

soire collection of variables xi, x,,, w,. Once in canonical form, p can be transformed into its

nonprimed equivalent by replacing the atomic subformulas of p with their equivalent nonprimed

formulas, as defined in the axioms (2.3). In other words, we replace all occ-urrences of

R'(x .... x,,) with aR(z ... ,) V (-' ( .... z,) A R(xi ..... r,,

F'f.r .... r,,) = , with IF(XI . .. - ,,, W) V ( - ,F(X1, X,,, i)

A 'zt1, .... , X,) = U')

-." w with pc(u,-)V (C = it, AV - pc(v))

These substitutions are justified, since we may always substitute a formula for one that is equivalent.

To transform p into its canonical form, we make use of the following theorem of first-order logic:

ir X(r) is a forminla containing the term r. and if x is neither a free variable of X(r) nor a bound

variable in the scope of r, then X(r) is logically equivalent to 3x(X(z)A r x). Therefore, we can

replace any occurrence of
i-..' = ' R' R ....,r,....) with 3xr(R( .... z ...)A r x )

P"( .... r . ) with lz(F(. .. =z - A r z)
t "-' ~F '(. .. r w ith 3x (F ( ...) z A r = x ) .

C'-= r with 3x(C' = A r ),

where 7 is an arbitrary term, r is a term that is not a variable, and x is a variable that appears

in neither R( .... r .... ), F'( .... r .. . .) = , E ... ) nor C = r. To put : in canonical form, we

merely apply these substitutions 'repeatedly until no further substitutions are posible.

. ,"
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As an example of how a primed formula is transformed into Its nonprimed equivalent. suppose,

we have the Pul( B, C') operator discussed in Section 2.2 and thatp is Vu - On'(u. A). To transform

nto its canoniaf form, we merely need to replace On'(u, A') with 1. On(,i)A' ).1hIs

Vu - 3v[On'(u. v0 A A' = v].

W\ith In its canonical form, all that remains is to replace the atomic subf'ormulas of with theirI

nonprimed eq1uivalents. Recall from the definition of Put(B, C') that ao n(zr, y) is (x =B Ay C ()

'1nd( 6o n(i.. y) is (x =B A y A C'). Therefore, all occurrences of On'(x.r y) are replaced bY

(x B BAy =C) V [(x ?4 B V y =C) A On(.r, y)].

Ako. since Put(B, C) does not affect the interpretation of A, A.A is the formula FALS E. Hlence, all

occurrences of A4' = w are replaced by A = w. These substitutions produceI

V11 - 'Bv[((u B Ayv = C')V [(u =/ B Vv = C) A On(u, ')]) A .A I].

-which simpl!lifies to

A =,R C A Vu( B V -On(u, A)).

Thus, no block is on top of A after Put(B,C) has been applied if and only if A4 and C are distinct

blocks. ,ind t here were no blocks on top of A before the application of Put(B, C), except possibly

llock P.

The -ibove method for transforming nonprimed formulas into their primed equivalents leadsi

* to the following recursive definition for a. In the ground case, we obtain

-'Rx,.. x.) ir'(xi, . x,)V (- '(xi, .z) A R(x, . x.)) (2.4au)

a [Fx,. ,) = wt] = pz( , u?) V 3v' v(j4(x, . ,x,, t')) (2.4b)

u') -U) ( V [Ell, ~')A C = w], (2.4r)

where .ri . .x,, and u) are variables. These eqjuations correspoiad to replacing atomic subformulas

with their nonprimed equivalents. The following equations transform atomic formuilas into their
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canonical forms:

e [ r,..)] = x (a-[R(. .x .... A a 1 (r =x)) (2.l1d)
av. ' [ (...,r .... 1= l 1 3x (a- 1 F(..., x .... = 1 A a-'(r = x)) (2.4e)

a-[F(...= r] .(a-'[F(...) = X1 A a-(r = x)) (2.4f)

a-' = r) = 3x(a-'C = x] A a-'ir = x)), (2.49)

where - is an arbitrary term, r is a term that is not a variable, and x is a variable that does not

appear in R( .... r .... ). F( .... r . ) = :, F(..) = r, or C = r. Finally, we have the following

equations., which allow (2.4a-g) to be applied to all atomic subformulas in a formula:

a-'(-, AO a-'(;) Aa'(V') (2.-i)

a-( V V,) =-a-n() V a-'(!) (2.4ij)

-(a- ) (2.4k)
=-~#"+V a-'(p) -"a-(t*') (2..1!

a-'(Vx p) Vx a-'(p) (2.4ti)

a-1 (3x p) =3x a-(;) (2.4n)

i

- ;--2
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Plan Synthesis

This chapter presents a technique for solving a subclass of the classical pl;n ini rig lrolci,, 'ill"

tirst section establishes the fundamental concepts upon which the technique is based \ ptriul.r

property of the classical planning problems is identified and an example given ilustiratin- Ill. n,'

might exploit this property when synthesizing a plan. Section 3.2 shows how a simple plhinn1,

technique can be derived from the property, and, in Section 3.3, a detailed example is provided io

demonstrate the technique.

3.1 BASIC CONCEPTS

There are two basic assumptions built into the classical planning problems that can be

exploited when a plan is synthesized. The first is t1hat the world can change only as the result of an

action. This assumption permits actions to be modeled as state transformat ions. Furthermore, it

forces all plans to have the following property: if some condition is true at one point in a plan but

not at, an earlier point, then at some point in between there is an operator that causes the condition

to become true. This is an important consequence from the point of view of plan synthesis, as it

allows one to postulate the existence of operators that cause certain goals to become true. The

.3econd assumption is that we are capable of performing only a finite number of actions in a finite

amount of time. Consequently, any plan for achieving a particular goal must be finite, as the goal

must become true at a definite point in time for it to be achieved. Taken together, these two

assumptions imply the following:

.. . ... '. .

". "-.. '-.-. " .' . " . -.".--. - ",. -.- . ". ." " - .' ' . .%. . -" . "." - "-,'.,
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Property 3.1. If a condition V is true at a point p in a sequence of operators but not at. an

earlier point, then at some point in between there exists an operator that causes 4 to become

true and ,' remains true thereafter until at least point p.

In other words, if some condition is true at, one point in a plan but not at an earlier point, then not

onlY must there be an operator somewhere i, between that causes the condition to become true,

but there must be a final such operator since the number of intervening operators is finite. This

combined property t urns out to be quite useful during plan synt hesis. as we will now demonstrate.

A more formal treatment of Property 3.1 appears at the end of this section.

To illustrate how Property 3.1 may be exploited when a plan is being synthesized, let us

consider a typical block-stacking problem. Suppose we have the blocks world described in Chapter

2. in which blocks A and B are initially on the TAHLE and block C is atop block A. Suppose.

further, that our goal is to have A on top of B and B on top of C, and that the only operators

available are those defined by the Put schema of Section 2.2. The diagram below depicts the initial

state and the goal. "bristles" on top of a block signifies that the block is known to be clear (i.e.,

-" no other block is on top of it), while a block "floating" above the table signifies that the object

supporting the block is not known. The arc from the initial state to the goal signifies that, the

initial state precedes the goal state in time.

,' -'.Inif ial G oal .

Stal, State

Neither of our goals is satisfied in the initial state; therefore, by Property 3.1 there must be

a final point in our plan at which A becomes situated on top of B, a:-ri a final point at which

B becomes situated on top of C. The only operators available for moving A onto B and B onto

C are Put(A, B) and Put(B, C), respectively. Hence, there must exist a point, at which we apply

Put(A. P), after which A remains on top of B, plus another point at which we apply | ut(?, (),

after which B remains on top of C. This is depicted in the (1agram lelow The conditions that
I' a ga eo. h odt
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must remain true during particular intervals are identified by labeling the appropriate arcs.

On(.4,B) A

Initial Goal
St t -ate State

Put(I .('1 (JnIIl,C)

In the final plan, Put(A, B) will come either before Put(,C') or after Put(B,C). The former

case can be ruled out, however, since, with this ordering, the requirement that A remain on top

of B after Put(A. B) has been executed contradicts one of the preconditions of Put(BC'). which

is thatr no block be on top of B when Put(B, C) is applied. Therefore, we must perform Put(A, B)

after performing Put(B, C).

Initial Pu)!) (13 ) P u t(A, B) Goal
State State

On)!) C) On(A,B)
On(B,C)

Examining the plan in its current state of development, we find that the goals are now satisfied

but that one of the preconditions of Put(A, B) has not been. In particular. C' is on top of A in

the initial state, which contradicts the requirement that no block be on top of A when Put(A, B)

.', is performed. Therefore, by Property 3.1, there must, exist an operator preceding Put)A. B) that

causes (' to be removed from A and C remains off .. thereafter until we perform Put(A. B). The

only operators available for removing C from A are those of the form Put(( '. V). Ilence, there must

exist a point preceding Put(.4, B) at which we perform Put(C. X) and C' remains off A thereafter

until we perform PutIA, B). For the moment, let us defer the choice of a particular value for .V.

'U7,
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0(11. (C)

Initi:, Put(A B) Goal
-tate State

_ _ A On(AB)

"lu ( .) - OrnC',.4) On(B,C)

-'" In the final plan. Put(C.,X) will come either before Put(B,C) or after Put(B,C). The latter

" case can be ruled out, however, since, with this ordering, the requirement that B remain on lop

of (' after Put(B,C() has been executed contradicts one of the preconditions of Put(C, X), which

is that no block be on top of C when Put(C, X) is applied. Therefore, Put(C,X) must be applied

before Ptit(B, C).

Initial Put( (C. X) Put(B, C) Put(A, B) Goal
State State

- On(C.A) On(BC) On(.4,B)
-'On(CA) On(B,C)

"- If we now examine the plan, we find that every goal and precondition would be satisfied if we

were to let X be the TAfIE. Therefore, let it be so. This gives us the following plan for stacking,

.1 atop B and B? ato) C: put C on the TABLE, then put R? on top of C and, finally, put A on top

of B.

Initial Pt(C. TAIIIJ') Put(B, C) Put(A, B) Goal
State State

*t .-As the foregoing example illustrates. Property 3.1 contributes to the planning proce,,, in

two ways. First, it establishes a causal connection between the operators in a plan and the

i. ,.... ... , -. " .. .. .. .... . .*- .. .-....- - --.. . -.' - . "- - -- - . .- , --,
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conditions we wish to bring about. This causal linkage permits us to build plans Incrementally,

introducing operators as needed to satisfy our goals as well as the preconditions of operators

previoulsly introduced. The choice of operators is governed by the changes that must be mnade in

the world to bring about the desired conditions; operators that are not essential to cons"tructing, a

valid plan are not even considered. The result is a tremendous reduction in search compared wit h

hat required bY an exhaustive search strategy. F'urthermore, Property 3.1 does not re-.trict uis to

building plans in any particular order, as do forward-chaining and backward-chiaining st (rat 'gies.

Instead,. operators are InsertedI as needed andi where needled in an opportunistic fashion (f.[~)

The second way in which Property 3.1 contributes to the planning process is by, constraining

thIe plaCcment of operators in a plan. When we insert an operator at some point p in a p~lan so

hat a particul ar condition will he true at some later point q, we are considering the last point /)

precedling q at which that condition becomes true. WVe can bhus protect the condIition fromn point J)

t o po it q. t hat is, we can assert that the condition must remain true in the Interval betNween p and

q. The adl~ant age of protection is that it enables us to detect, impossible orderings of operators: if

anl operator has thte precondition ~,it cannot possily apera on ntepa igwIc

-- mist renaln itruie Protection therefore cont ri httes to the minimization of search bN allowing"

nis to elimi)nate impossible orderings from consideration. In fact., in the bloc k-st ac k Ing examiple.

protection was so effective that search was avoidled altogrether.

Protection Through the Ages

* I Inst oric al lv thle idaof protecting goals and precondit ions was first, inro'ice yS ) *tn i[

* - ~~and it er rcfi edl b). \Vdinger [161 W-] . rren [17, 181, and( others. Su-ssmian deveoe oa rtc

Ai, a [net hod for den ect iiig faklty plans. .\s lie explains,, using a programming miet aphor.

:a jrgrain ' 'porartjln,- rec lrv, in that it acc ura tel retflect.s thie Initent of t he pr g!,rain nier.

* . 'ln tInI~ ,:Ich .4ep) :ch v'.ws those goals that (ho progranimer Intended it to. and] each of '':e

ro.~r'in.i true at Iea.t until the ,tvps tich depend tupon It5s being truce run Pll (or rho

erl (if th Ii' fc'r:imn Ijlm-k If thl., stop Is a cont rihwuhr to the purpose of the Jprograini).
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Therefore, if, in the course of plan execution, a goal is violated that was intended to remain true,

that plan is then faulty and must be "debugged." It is apparent from the foregoing quote that

Sussman had in mind something very much like Property 3.1 when he developed his protection

mechanism. However, Sussman viewed protection as being intimately tied to the intent of the

programmer, whereas here it is seen as arising from a fundamental principle that is independent of

intent (of course, in its use, protection does tend to reflect intent). Furthermore, Sussman employed

protection only as a means of detecting faulty plans, not as a guide to ordering operators as done

here. Had he recognized this use of protection, he probably would not have had to treat the block-

stacking problem presented above as an "anomalous situation" requiring special consideration.

I tUlike Sussman, Waldinger did employ protection as a guide to ordering operators. lowever,

Waldinger was somewhat overzealous in its application. If a goal or precondition were true in the

initial state and not made false by any of the operators currently in the plan, Waldinger's scheme

would call for that, goal or precondition to be protected without considering the possibility that the

goal or precondition might have to be violated and then reestablished in order to solve the overall

problem An example of a problem in which this possibility would have to be consi(lered is the

Towers of Hanoi. in which the goal of having the smallest ring on top of the second smallest ring is

true in the initial state, but the first ring must be removed from the second so that the other gowls

can be realized. \Valdinger acknowledged that his protection mechanism had drawbacks,. but he

(lid not recognize their source. Instead, he proposed a scheme that circumvented the hidden d(.fct

by consid, ring goals in various sequences until a solution was obtained. Although t lie schen (I()c,

work, it is terribly inefficient. Furthermore, as Warren points out [18], reodering is unnecessiary if

we sire p.v avoid protect iig goals that are already satisfied.

Like \Valdinger, Warren also used protection as a guide to ordering operators. in W\'rrcln\

approach. though, a goal is protected only when an operator is inserted that inakes the goal t,,

Warren's scheme therefore operates in accordance with Propertv 3.1.

- . ... _.
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Strengthening Property 3.1

It turns out that Property 3.1 is too weak for solving arbitrary planning problems. While it works

fine for problems in which the effects of an action are independent of the state in which the action

was performed, as in the blocks world, it neglects an important case that must be considered when

the effects of an action depend on the state of the world at the time the action was performed.

Taking this second case into account, we obtain the theorem stated below. This theorem says

that a condition is true after a sequence of operators has been executed if and only if (I) there

exists an operator at some point in the sequence that causes the condition to become true, and

the condition remains true thereafter, or (2) the condition is true initially and never becomes

false. Therefore, during plan synthesis, not only must we consider incorporating operators to

cause a goal or precondition to become true (Clause 1), but we must also consider the possibility of

incorporating operators to prevent a goal or precondition from becoming false if it is true initially

(Clause 2). Property 3.1 merely provides a set of suffcient conditions for Clause (I) to hold. The
theorem further tells us that a planning technique is fully general if and only if it t:kes these two

possibilities into account, as a goal or precondition cannot be satisfied otherwise.

Theorem 3.2. Let be a formula, r be a set of formulas, and 0 be a sequence of operators.

Then F{0} if and only if one of the following is true:

(1) There exists a prefix au of 0, where a is an operitor, suich that F {r }: is false but IF rra.

is true for all sequences -y such that ora- is a prefix of 0.

(2) Fc}c for all prefixes a of 0.

1'roof. First we will show that, if either Clause (I) or Clause (2) holds, then I'10}, must hold

as well. If era is a prefix of 0, there exists a -, such t hat e -- 0. Therefore, ('lause (I) implies

("0 }{,:. If ('lause (2) holds, 1' 0}, follows immediately. sirice 0 Is a prefix of itself.

To complete the proof we need to show that, if [0 ho ls, then either ( lau-e (I ) or ( 1:u-'c

(2) holds. This we will do by induct ion on the lengt i of 0. In (he base cate. 0 V; IIe cmpi 1 e(Iieck

i"1-".

...................... °-. .
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t. The only prefix of ( is itself; therefore, if F{0}p holds for 0 f, then Clause (2) must hold.

For the induction step. let us assume that, for all 0 of length less than or equal to n, F{0} implies

(I) or (2). Let 0' be a sequence of operators of length n + 1, and suppose that F{0'}p¢ holds. Let

a be an operator and 0" be a sequence of length n such that 0' = 8"a. Consider F{0"};. Either

F{0"}, is true or it is false. If it is false, Clause (1) must hold for 8 = 0' (i.e., consider the case

when a = 0"). If I'{0"),' is true, then, by the induction hypothesis, either Clause (1) or Clause

(2) holds for 0 = 0". If (2) holds for 0 = 0" then (2) must also hold for 0 = 0', since we have

assumed that. F (0', : holds. Likewise, if (1) holds for 0 = ", (1) must also hold for 0 = 8', since,

if rrae-}j is true for all -y such that aay is a prefix of 0", then F{aa-j)} must be true for all

such that eaa-y is a prefix of 0'. Therefore, if F{0"}p holds, either Clause (1) or Clause (2) holds for

0 = 0'. But, as shown previously, if F{p"}p does not hold, then Clause (1) must hold for 0 = 0'.

Therefore. either Clause (1) or Clause (2) holds for 8 = 0'. Since the choice of 0' was arbitrary, it

* follows that F{B}j implies (1) or (2) for all 8 of length n + 1. Hence, by induction, F{0}; implies

(1) or (2) for all 0. E

Property 3.1 follows as a corollary to Theorem 3.2. Property 3.1 can be stated and proved

formally aLs follows.

Corollary (Property 3.1). Let be a formula, F a set of formulas, 0 a sequence of operators,

and r a prefix of P. Then the following holds: if F{0} is true but P(r}O is false, then there

exists a prefix e7a of 0 such that r is a prefix of a, a is an operator, and F{a} is false, but

F "In }¢ ~ is true for all sequences -1 such that rra, is a prefix of 0.

Proof. Suppose tha-t F{B}; holds but that, Fr})p does not. Then either Clause (1) or Clause (2)

of Theorem 3.2 holds. But Clause (2) cannot hold, since F(r},: is false. Therefore, only Clause (1)

holds: that is, there exists a prefix ca of 8, where a is an operator, such that Fra}. is false but

F~aaz-,kr is true for all sequences -y such that aa'y is a prefix of 0. It remains only to show that r

must be a prefix of a. Suppose that r is not a prefix of a. Since r and aa are both prefixes of 0.

this implies that eaa mu: be a prefix of r. Therefore, there exists a sequence such that r = Ga-.

RL
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Therefore, F(r),: must be true, since F(oa'}p is true for all sequences -y such that aa-y is a prefix

of 0. But, by hypothesis, F(r}p is false. Contradiction! Therefore, r must be a prefix of or. Z

3.2 A SIMPLE PLANNING TECHNIQUE

Let us now consider a technique for constructing plans that is based on Theorem 3.2. With

this technique, plans are synthesized in much the same way as in the preceding example: we begin

with the empty plan (i.e., containing no operators) and add operators until a valid plan is obtained.

At each stage in the process, we will have some current plan. This plan is analyzed to identify those

goals and preconditions not yet satisfied and to determine what additional operators are needed

to bring them about. The appropriate operators are then inserted, producing a new current plan

and initiating a new cycle of analysis and modification. This process of repeatedly analyzing and

modifying the current plan continues until all goals and preconditions have been satisfied. In

situations where there are multiple ways of causing a particular goal or precondition to become

true, the analysis produces a set of alternative modifications of the current plan. In this case,

one of the alternatives must be selected before the plan is modified. Hlowever, not all alternatives

necessarily lead to solutions, since some ways of effecting one goal or precondition may make it,

impossible to achieve another. It may thus be necessary to explore a number of alternatives before

-' '"a valid plain i-s found.
The technique we shall consider incorporates a number of simplifying a.ssumptions. These

assumptions are not essential and, in my thesis [8], 1 show how they can be lifted to obtain a

completely general synthesis technique. The first assumption is that the initial state is completely

"known. This makes the validity conditions for a plan decidable (in general, they are undecidable).

The second assumption is that function symbols and constant symbols do not change interpretation

when an operator is applied (i.e., p.' is false for every operator a and every function symbol or

constant symbol S). This makes it easier to decompose a complex goal into simpler subgoals.

The last assumption is that, for each object x in the world, there is a constant symbol ,. called

. . . . . ...
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the standard name of . that denotes z in the initial state. Given the preceding assumption, the

standard name of xr will also denote x at every point in a plan. The reason for this last assumption

is that it, simplifies the handling of quantifiers.

Representing Plans, Goals, and Protections

To begin, we must establish a representation for plans, goals, and protected conditions. As

suggested by the block-stacking example of the previous section, we will represent a plan as a

directed acyclic graph, called a plan graph, with a single root vertex and a single leaf vertex. The

root vertex of a plan graph represents the initial state, while the leaf vertex represents the goal

state. The intermediate vertices represent operators. The edges of a plan graph are directed

and define a partial ordering of the vertices. From a semantic standpoint, a plan graph asserts

that certain operators must appear in the final solution in a certain relative order. Although the

representation permits arbitrary partial orders to be specified, we will for the sake of simplicity

consider only linear (i.e.. totally ordered) plan graphs. An example of a linear plan graph appears

-" . below. The dieigram uses boxes and circles to distinguish between the root and leaf vertices, on

-" the one hand, and the intermediate vertices on the other.

In ouir distjnion of plan graphs we will adopt, the following conventions. We will write 1,1,

to denote the root vertex of a plan graph and VG to denote the leaf vertex, where F is the set of

formulas describing the initial state and G is the set of formulas defining our goals. If I', and "2 .

are vertices, we will write Itv I v2 to indicate that there is an edge from vi to V2. The plan graph

illustrated above can then be written as t'r I vi I " y, t'G . 'We will say that a vertex I,

precedes a vertex V2, written v, v- , to mean that there is a path from vj to 1,. and we will

write 1 2 e, as shorthand for t, - '2 or 'i = t 2. Finally, we will say that a fornula is true

at a vertex I, to mean either (1) that ; is true in the initial state, if I, I[', or (2) that , is true

X .
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after execution of the plan, if v vG, or (3) that p is true when the operator associated with v is

applied, if v is an intermediate vertex. In other words, if our plan graph is vr w v1 ... m Vn s VG

and a2 is the operator associated with vertex vi, then (1) p is true at vr if and only if p is a

theorem of F, (2) is true at vi if and only if a.- , and (3) p is true at vG if and only

if r{(ai...a, ..

Protected conditions will be represented as a set P of ordered triples of the form (, ",

Where : is :I formula and tI and V2 are vertices such that v, -< V2. P will be referred to as the

protection set. In semantic terms, each triple in the protection set is an assertion that a particular

formula must remain true over some interval in the final solution. More precisely, if (P, VI, v ) E P,

then - most be true at every vertex v in the final plan such that v, -< v -< v.. In particular,

,. must. be true at vertex v2. It will be necessary during plan synthesis to consider all protected

formulas that must be true at a particular vertex v. Therefore, let us define p, to be this set; that

is,

:.= I ( 1 ,V 2 ) E P and v, -< v _ v2 } (3.1)

.Goakl and preconditions will be represented as a set A of ordered pairs of the form (v. t),

where 7 1s a rorriula and v is a vertex. We will refer to this set as the agenda. From a semantic

standpoint, eatch ordered pair on the agenda is an assertion that a particular formula must be true

at a parircul:r vertex in the final plan. In other words, if (s, tvr E A, then ; must be true in the

initial state, aid, if (:, 0, E A, where v 3 tr, then one of our goals is to achieve p at vertex e.

The set of :,il conditions we wish to achieve at a particular vertex v is given by

Toget her. a plan graph, a protect ion set, and an agenda define a set of constraints that a plan

must satisfy to be considered a solution. To synthesize a plan, we take an initial set of constraints

defined by an initial plan graph, protection set, and agenda; then, Ilirough an appropriate process.

we add further constraints until we obtain a complete specification of a plan. At the beginning

of the process,. our only constraint is for the final plan to achieve every formula g in the goal set
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Ggiven that the initial state is described by the set of formulas P. Therefore, the initial planI

graph is the graph u1 s- r;, the initial protection set Is empty, and the initial agenda is the set

. '- I. gt " G. The problem is then to augment each of the three components-the plan graph, .

the protection set, an(1 the agenda-until the sequence of operators defined by the plan graph

satisfies all of the assertions listed in the protection set and the agenda. For convenience, let us

refer to the comnbinattion of a plan graph, a protection set, and an agenda as a parti'al plan.

The Technique

The synthesis techinique we shiall considler Is an Iterative process by which the initial partial plan Is

% incrementally modified mitil a solution is obtained. The basic loop involves finding a goal on the

agenda that would not be satisfied, given the current partial plan, and then modifying thle p~lan

so that the goal wIll he achieved. This process continues until all goals on the agend~a have been

satisfied. A.t each step,. thle ctirrent partial plan is modified in such a way that, if all of the goals

*on t he agenda are ,at isfied, t hen all of t he assert ions In t he protection set will likeise be sa;t isfied.

T'his guarantees tivat, once all of the goals have been attained, we will have Const ructed a valid

plan consist ent withi the protections.

T he modificat ions nmde of the current partial plan are governed by a set of rules. For everY

* goal ttilat ma) be v~pres~cd inI the logic. there is a corresponding rule. Each rule defines, a set of

alternative modilfic;it oils for realizinrg the correspondhing goal at the desired poinit in I lie Iiil plan.

FIic h set of alt em yelvs covers all possible soltit ions, so that, if a rule is applicable andl if ;i so!lit ion

v~.!

cabie obt ained fromn III cuirrent part',i' plan, at least one of the altrernatives definted byv 11ha1 rullev

- .!

'.A is guaranteedl to lead to a solution. Consequently, the rules may be applied in any, order witbout

-

backtracking and witbout affecting the final solution. Of course, search .i required to explore tle

alternatives expressed by a rule As search is fairly well understood, this report will foc s on the

mo teification rules and leave open the issue of an appropriate search strategy

The rules for i.oifviag plans are based in part on Theorem 3.2 According to is thecorem,

a goal Is satisfied at sonic point p in the final solution if and only if t here is an operator t hat

1.0
o e w e i T p s to n g e be



.4.A

:3.2 A SIMPLE PLANNING TECHNIQUE 35

causes the goal to become true and the goal remains true thereafter until at least point p, or (2) the

goal is true initi:llv and never becomes false before point p. This suggests two ways of modifying a

partial plan in order to achieve a goal: one is to insert an operator that causes the goal to become

true, the other is to prevent the goal from becoming false. There is, however, a third option: since

plans are built incrementally, the operator that causes a goal to become true in the final solution

may already appeir in the current, partial plan; therefore, another way of achieving a goal would

be to est,,blih the appropriate enabling conditions to allow an existing operator in the plan to

cause the goal to become true. These three alternatives are illustrated by the following example.

Suppose we have a world consisting of a briefcase, a dictionary, and a paycheck, each of which

n:1' be sit Iiated in one of two locations: the home or the office. Operators are available for putting

he dict iouirv and the paycheck into the briefcase and for taking them out, as well ats for carrying

the briefcase betNween the two locations. Initially, the briefcase, the dictionkry. and ihe p;Iycheck

are at horne. and the paycheck is in the briefcase but the dictionary i-s not. The goal i. to have

the briefcase and the dictionary at the office, but the paycheck at home. \We begin the synthe i;

process with the empty plan. Let us first consider the goal of having tie briefcase at work. Since

this goal is not true initially, we must have an operator in our final plan that causes the goal to

become true. As the current, plan is empty, the only option is to insert the operator tlit causes

the briefcase to be brought to work. Let, us next consider the goal of having the (ict io Fia at

work. "l'hi, goal is not satisfied, given the current plan of bringing tie briefcase to work. Ilowever.

if we Acre to put the (dictionary into the briefcase before leaving home, the dictionary would be

brought to the office ns a side effect. In this case, the operator that causes the dictionarv to be

at the office (i.e.. bringing the briefcase to work) already appears in the plan and an additional

operator is inserted to establish the appropriate enabling condition (i.e., having the dictionary in

the briefcase). After making these modifications, we are left with only one more goal to consider.

ivhich is to have the paycheck remain at home. Unfortunately, the current plan of putting the

dictionary in the briefcase and then bringing the briefcase to the office causes the paycheck to %

be brought to the office as a side effect. lowever, if we were to remove the paycheck from the



36 PILAN SYNTHESIS 3.2

briefcase before leaving home, we would prevent the paycheck from changing locations. Our goal

would then be achieved by virtue of the fact that it would never become false. If we choose to

remove the paycheck from the briefcase before we put in the dictionary, then our final plan will

be to remove the paycheck from the briefcase, put the dictionary in the briefcase, and bring the

briefcase to tI e office.

The three ways of modifying a partial plan illustrated above cover all possible solution paths.

This fact is expressed by the theorem that appears below. This theorem may be paraphrased as

follows: a condition j, is true at a point p in the final plan if and only if one of the following

conditions holds: (1) there exists an operator in the final plan that already appears in the current

plan that causes : to become true. and : remains true thereafter until at least point p. (2) there

exists an operator in the final plan that. does not appear in the current plan that 'ti e' , to

become true, and : remains true thereafter until at least point p, or (3) € is true in the initial

i state. and remains true until at. least point p.

Theorem 3.3. Let 0 be a sequence of operators and 0' an expansion of 0. That is, for an

appropriate set of operator sequences {,)I 32... }, if 0 - aIa 2 ... an, th- 01 = /11ai3

-ina,, 3 +i, and. if 0 = f. then 0' = 31. Let or = 31 and Oi =di a, ".3 i-1ai- ii for i > 1.

Then ['(0' 1z holds if and only if one of the following is true:

(1) There exists a a, such that. F{aei) is false, but, F(7iai-}p is true for all sequences such

that erai- is a prefix of 0'.

12) There exi.,ts a prefix aa of 0' such that a is not a ?Ti and F(a} is false, but F{(-a-j}. is

true for all sequences -' such that cra is a prefix of 0'.

(3) i'{e},: holds for all prefixes (Y of 0'.

Proof The above theorem follows directly from Theorem 3.2, as Clauses (1) and (2) together are

equivalent to Clause (I) of Tlhorem 3.2 and ('lause (3) is equivalent to Cl-tuse (2) of Theorem 3,2

*"1"

.4..-
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To modify a part'al plan to achieve some goal, we merely have to choose one of the three cases

described Theorem 3.3 and assert that it holds with respect to the current partial plan and the

final solution. In other words, if (,,v) is a goal on the agenda and if : is not true at vertex c in

the current partial plan, then we can (1) assert that the operator associated with some existing

vertex t -< r, causes : to become true, and protect ; from v' to v, (2) insert an operator that

causes : to become true, and protect ,. up to vertex v, or (3) protect ; from the initial state to

vertex I,

To make these assertions, we need to introduce the notion of a secondary precondiion. A,

secondary precondition for an operator is a condition that must be true at the time the oper~itor

is ap)lied for the operator to have the desired effect. Py imposing the appropriate econ(lary

precon(dition on an operator, we can force that operator to preserve some condition or to ca-i('

some condition to become true. For example, in the briefcase example discussed earlier, the act

of bringing the briefcase to work causes the dictionary to be brought to work as a side effect on.\

if the dictionary happens to be in the briefcase at the time. Therefore, we can achieve the goal

of having the (lictionary at the office by requiring that the dictionary be in the briefcase when

the briefca-e is moved. Similarly, to prevent the paycheck from changing locations, we need oiJy

require that, the paycheck not be in the briefcase at the time the briefcase is moved. To determine

which secondary preconditions are appropriate in any given situation, we need to examine more

closely the circumstances under which a condition is preserved or is made true by an operator.

For a condition : to remain true between two points in a plan, all of the intervening operators

must prcserve the t rut h of :; that is, if : is true when each such operator is applied, then :' must

be true afterward. In Section 2.3 we saw that p is true after an operator a is applied if and only if

was true just. prior to the application. Therefore, a will preserve the truth of if and only

if - a :() is true when a is applied. Given that, in the final plan, : will be true when a is

applied, any formula 9)", such that ; -. (11 - a-()) is an appropriate secondary precondition

to impose on a to ensure that a will preserve in the final plan. This is justified by the following

lemma:

-? 4.
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Lemina 3.4. Let IP' be a formula such that p -- (1P - a-li)). Then the following holds:

if p is true before a is applied, p will be true after a is applied if and only if P is true

beforehand.

Proof. By hypothesis, if ; is true before a is applied, then lPa is true before a is applied if and

only if a-(;) is true before a is applied. But : will be true after a is applied if and only if a -( )

is true beforehand. Therefore, if I, is true before a is applied, then p will be true after a is applied

if and only if IP% is true beforehand. L_

Let us now conider the conditions that must hold for an operator t~o cause a formula to become

true. Given that, the ini ial state is known completely,' ain operator a causes a closed formula : to

become true if and only if p is false before a is applied and true afterward. In Section 2.3 it was

shown t'at p will be true after applying a if and only if a 1( ) is true beforehand. Therefore, a

causes p to become true if and only if -, p A a-(;p) is true when a is applied. Although we would

guarantee , to be true after a is applied and false beforehand if we were to impose -, p A a-'(,)

as a secondary precondition for a, it is sufficient to impose a weaker precondition where E'

is any formula such that ",, A a-(,p) -- ' and Ea - a-(p). E' has the property that. if p

is false when a is applied, then a will cause p to become true if and only if E' is true when a is

applied; if both ; and are true when a is applied, then a will preserve the truth of p. Imposing

E' as a secondary precondition therefore guarantees that p will become true if it is false. E' .

weaker than -, A a-i(p), as it allows the possibility that p will be true when a is applied. The

reason we would want to impose t-a instead of -, pAa-(j) is that we can often find a formula E

that is much simpler than "A a-'(,p) and, consequently, is easier to deal with. The justification

for using E instead of - A a-(;) is provided by the following theorem, which is analogous to

Theorem 3.2 except that it is stated in terms of S' and P,

I If the initial state were not completely known, it would be possible for p to be false before a is applied for some
of the worlds satisfying the initial state description and true for others Therefore, the modifications described
here apply only when the initial state is known completely When the initial state is only partially known, a ' )
must be asserted as the -,nlary precondition.

* . ",
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Theorem 3.5. Let ; be a formula not containing free variables, let F be a complete

description of the initial state of the world, and let 0 be a sequence of operators. Then F{O},

holds if and only if one of the following holds:

(1) There exists a prefix aa of 0, where a is an operator, such that l' a}E' holds and

F(aa7}I-Pb holds for all sequences -y and all operators b such that oa-,b is a prefix of

0.

(2) , is a theorem of F and F{aIP" holds for all prefixes ora of 0.

Proof. If Clause (1) holds, then F~ua}p holds for an appropriate prefix va of 0. Furthermore. by

induction and by using Lemma 3..1, F{aa,b} must hold for all sequences -, and all operators b such

that rra-b is a prefix of 0. Therefore, (1) implies F{O}0-. If Clause (2) holds, then, by induction.

F{cr ,: holds for all prefixes a of 0. Therefore, (2) implies F{0};. lence, if either (lare (1) or

Clause 12 holds. or if both hold, then ['(0},: must hold as well.

For the converse, suppose that F{70} holds. Then, by Theorem 3.2, one of the following

hold,:i

(i) There exists a prefix aa of 0, where a is an operator, such that ({a},: is false but F(Ja'}

is true for all sequences -1 such that aa-y is a prefix of 0.

-(-11i) '{ ,: for all prefixes a of 0.

Suppose hat. (i) holds for a suitable prefix (7a of 0. Then Fa'}; is false and F{aao : is true. But

F{aa',;- is true if and only if F(a}a(- ) is true. Furthermore, since F is a complete description of

the initial state of the world and since j does not contain free variables, I'{a'} is false if and only

if 11(7) - is true. Therefore, FAaa}(- -%A:a'()) holds. Hence, F~ra}' ' ) holds. Furthermore. (i)

implies that both V'{ear}p and F{aarb}p: hold for all sequences r and all operators b such that

aarb is a prefix of 0. Therefore, F a'arj(.p A a-()) holds for all r and b such that aarb is a prefix

of 0. Hence, IF{ , rt7(p, holds for all r and b such that aarb is a prefix of 0. 1lence, Clause (I) of

the theorem holds.

", ,%-: - - - .
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Suppose that (ii) holds. Then ;is a theorem of r, since F{ [po holds. Furthermore, both

or,)1  andl Fjaa p hold for all cr and a such that ora Is a prefix of 0. Therefore, FJ(i)l holds

K:for all a and a such that (7a is a prefix of 0. Hence, C'lause (2) or the theorem holds.

T1hese two cases gfive us the following: if Fj 0 p holds, then eit her Clause (1) holds or Clause(

-(2) holds, or hot li. i ~ut, rrom before, If (1I) or (2) hold. F( 0) must hold as well Therefore, 1' 0)p

*holds If and ouly If cit her (I holds or (2) holds or hot h.

A\s with rheorem 3.2, CIlause (1) of Theorem 3.5 can be broken down into two subcases: one

in w~hich the operator that makes ,: true If it Is false must be added to the current partial plan;

the 01 her in w hich the operator that make" true If It is false already appears in the plan. Thus.

xe h ave the following corollary to Theorem 3.5:

Corollary 3.6. Let 0 be a sequence of operators and 0' an expansion of 0. That Is.

* . for an appropri~~~~~~~ate sect of operator sequences ~~ .~ } f0=a04 a, hn0

3j 1 22 *ha3+.and, if 0 t. then 0' 111. Let at =Aiand ta, 3 ja I .. 3-1(-I3

for I > I.Let F' be a coinplet e descri ptiton of thle initial state and let j; be a formula containing,

no free ThiLhe. fin FJ' (0' holds if and only if one of the following is true

I)There exists a 7, stich that F~a, ('- holds and rf acyj-tff holds for all sequences and~

all operators b such t hat aiaj- b Is a prefix of 0'.

(2) There exists a prefix (TO of 0 such t hat (Y is not a eaj. , aZ holds, andl holds

for all sequence.s - and all operators 6 such that a-b is a prefix of 0.

pIs a t lieorern of F aind F {a ff holds for amll prefixes ca of 0.

Proof. The aboN e theorem follows directly from Theorem :3.5, as Clauses (I aind (2) t oget her are

* equiv~alent to Cl1ause (I of Theorem 3.5. and C latise (3) Is eqlti '.alent to Clause (2) of Theorem 3.5.

let 'is now consider the precise modifications that must be mnade in lie plan gra[phi thle agenlda.

andl the protectiton ,et to protect pfrom thle Ii tial st ate, to force an exist i ig operator to make

rive if it is fakeV and to in-rt a new operator that makes t rue if it Is false.
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According to Clause (3) of Corollary 3.6, if o is to remain true from the iiti al state to verr'\
v in the final plan. then p must be true in the initial state, and IP' must be true when operator

a is appl'ied for every operator a prior to vertex v. Therefore, the following modifications rnu-t be

made to protect p from the initial state to vertex v:

(1 (,) . i- must be added to the agenda to require that j be true in the initial state.

(2) (P ,') rmust be added to the protection set for each vertex t,1 such that Ir - ' -< ,

to guarantee that every operator preceding vertex v will preserve the truth of j.

(3) (,:. v'r. r) must. be added to the protection set to assert that p is protected from the initial

* . state to vertex t,.

If anv of the foregoing additions contradict existing goals and preconditions, no amount of

further modification will lead to a solution. This is because it is impossible to simultaneously

achieve cortradictory goals and protections. Therefore, we can rule out the option of protecting

* - p from the initial state to vertex I' if p is not true in the initial state or if requiring that the

intervening operators preserve the truth of pc contradicts existing goals and protections. Stated

more precisely. c cannot be protected from the initial state to vertex v if

I p U F" is inconsistent, or

(2) { l I H U 9,, U p,,, is inconsistent for any vertex v' such that V - i - v,

where p,,, is the current set, of protected conditions that must be true at t", as defined in Equation

3.1. and 1 ,, is the set of goals currently on the agenda that must be achieved at vertex I,'. ;i,

S(hefild in Equation :3.2. Note that there is no danger in not detecting these inconsistencies if they

Lre present. as it is impossible to obtain a plan that satisfies inconsistent goals and protections.

The only reason for the test is to reduce the search space by elininatirig impossible solution paths I
from consideration. This is fortunate, as the test itself is only partially decidable; that is, while

it, is always possible to detect inconsistencies if they are present, it is not. generally possible to

confirm their absence if they are not present. Consequently, detecting an inconsistency requires

.... .



12 PLAN SYNTHESIS :3.2

an unbounded amount of computation. As the only reason for the test is to prune the search

space, spending too much time on it can be worse than not performing the test at all. The

compromise is to balance amount of computation spent eliminating alternatives against the amount

of computation saved in searching a smaller space, in effect limiting the range of inconsistencies

that can be detected. The optimum balance, though, is highly dependent on the problem being

considered, so it is hard to make any general statements about where the optimum lies.

Let us next consider how to force an existing operator in the plan to cause (p to become true if

it, is false, and how then to protect p up to vertex v. If the existing operator av, is associated with

vertex v', then . by Clause (I) of Corollary 3.6. Ea,, must be true when a,, is applied, and Pa must

be true when operator a is applied for every operator between t, and v. Therefore, the following

modifications have to be made to force the operator associated with vertex v' to guarantee that '

will be true and to protect 'p up to vertex v:

(I) , t,) must be added to the agenda guarantee that p, will be true after applying av,.

(2) (.." I,") must be added to the agenda for each vertex v such that v' v - v to

guarantee that every operator between u' and v will preserve the truth of p.

(3) (. ,'. i) must be added to the protection set to assert that p is protected between vertices

v/ and t.

If these new goals and protections contradict their existing counterparts, it will be impossible

to obtain a solution if the modifications are made. Therefore, we can rule out the possibility of

forcing a ,, to make p true if it is false, and then protecting p up to vertex v, if

(1) } U g,,, U pv, is inconsistent., or

(2) {,f, I" } U p,, U g1, is inconsistent for any v such that v -< v t - t.

As before, these conditions are only partially decidable, so we must balance the amount of com-

putation spent pruning the search space against the amount saved in searching a smaller space.

V '-
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The third and final way of modifying a partial plan to achieve a goal is to insert a new operator

that causes the goal to become true if it is false and then to protect the goal up to the point we

wish it to be true. Since we are considering only linear plan graphs, the insertion must preserve

linearity. Therefore, the new operator must be inserted between two consecutive vertices t, and

t 2 in the current plan graph (i.e., there must be an edge from v, to v2 in the current plan graph).

This is (lone by creating a new vertex v'. removing the edge from v, to t,2, and adding two new

edges, one from v, to t' and the other from vt to t 2 . The new operator a,,, is then associated

w ,'. The tmodifications of the agenda and the protection set are then very much like those for

forcing an existing operator to make j true if it is false. As with forcing, we must guarantee that

[' will cause to become true if it is false and that, all of the operators between vertices tW and 1,

will preserve , and we must assert that is protected between v' and v. However, we must also

guarantee that ttie preconditions of the new operator a,, will be true when the operator is applied.

and we miust. gua.-rantee thbat a,, will preserve all of the conditions protected between vertices v',

and v . The former is accomplished by adding the preconditions of a,, to the agenda. For the

latter, the set of conditions protected between vI and v2 is given by

'0 (b, v3 , .) E P and 13 -< vI and v2 -< v4}
= { ((, V3, v4 ) E P and t 3 -< V2 -< v4}

Therefore. a,,, mist preserve every formula in p,,,. Thus, the complete set of modifications of the

agenda and the protection set are as follows: if operator av, is being inserted at a new vertex ,"

between vertices i and 2 so that j' will be true at. vertex v, then

(1) r, v') must be added to the agenda for every iri in the set 7r'-' of preconditions of a,,, to

guarantee that the preconditions will be satisfied when a,,, is applied.

%. ./

(2) (I ", r') must, be added to the agenda guarantee that o will be true after a,., is applied.

(3 l'' " utbe added to the agenda for every formula v' E p,., to ensuire that a,,, will

preserve all conditions protected between vertices v, and t'2 .
"-KV'- (3) : lIjjv", i, jf mus be .de toteaed o vr oml ., p,,t nueta.aw

i; i . i i .ii :: i i i ! :i i •!i i~i :!' ! . i: i : .-. ". -. .. . - . . .." " "* .... --' "... .. --..- --... ... -" . ....- "..
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(4) a, must be added to the agenda for each vertex v" such that u- f v" t , to

guarantee that every operator between the new vertex v' and vertex v will preserve the

truth of ,.

(5) (;, t' , r) must be added to the protection set to assert that (p is protected between vertices

V' and v,.

If these new goals and protections contradict, their existing counterparts, it will be impossible

to obtain a solution if the modifications are made. Therefore, we can rule out the possibility of

inserting av, between vertices vl and v2 if

(1) P, I ' E P,2 ) U (-' o, P } U r a., U Pv2 is inconsistent, or

(2) ( o. IP,"} U p,,, U gt," is inconsistent for any v0 such that v2 < v2 t "< v.

As before, these conditions are only partially decidable, so we must balance the amount of com-

o-. putation spent pruning the search space against the amount saved in searching a smaller space.

The Rules

While the three ways of modifying a partial plan, as described above, are valid far any formula p.

we will perform these modifications only for formulas of the forms R(tj,....t, ) and - R(t1 ..... t.1,

where I is a relation symbol and the ti's are ground terms (i.e., terms without variable symbols).

L-. Goals containing connectives and/or quantifiers will be decomposed into simpler formulas and,

- ."ultimately. into one of the two forms above. The reason for doing this is that it leads to a more

S.efficient planning technique, primarily because it is easier to identify operators that cause atomic

* formulas to become true or false than it is to identify the appropriate operators for arbitrary

-. formulas.

To construct modification rules for atomic formulas and their negations, we can take advantage

of our earlier assumption that we will be dealing only with problems in which constant and function

symbols cannot change interpretation. This assumption gives rise to the following secondary

% % S-.-.. . . . .
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preconditions for atomic formulas and their negations:

P0

P-R~t, ...... t.I a-a (t ..W .

"" R(tl ...... I,) 6'R tl W..,n

In other words, a preserves the truth of R(tn ..... t,) if and only if a does not delete (t'. t,)

from the interpretation of R, a preserves the truth of - R(t, ... , t,) if and only if a does not add

(ti ... t,) to the interpretation of R, a causes R(t, ..... t,) to become true if it is false if and only

if a adds (ti ..... t.) to the interpretation of I?, and a causes - R(tI ..... tn) to become true if it is

false if and only if a deletes (ti, . . . , t,) from the interpretation of R.

In stating the modification rules for R(ti,.... ,t) and -R(t . ... tn), we will treat the case

in which R is the symbol '-' separately from the general case. Since we have assumed that no

operator can change the interpretation of any constant symbol or function symbol, and since by

definition no operator can change the interpretation of '=', a,(t 1 ,12 ) and b=(t 1 ,t2) are both

l- -FALSE. Therefore, it is impossible to make a goal of the form t t or tn =4 to true if it is not,

-. already true. This gives us the following rule:

Rule 1. If (ti = t2,v) or (t, : t2 , v) is an unsatisfied goal on the agenda, no further

modilication of the current partial plan will lead to a solution. Therefore, a different solution

path must be considered.

This rule tells us to abandon the current, branch in the search space if a goal of the form

tl = t. or t i 1 12 is found to be unsatisfied. If all branches are found to lead to dead ends, a

solution does not exist.

h \V1e ? is not the symbol =', the following two rules apply. Each of the modifications

described in these rules is carried out as discussed previously.

Rule 2. If (R(t .... tn), v) is an unsatisfied goal on the agenda and R is not the symbol "-'.

remove (R(t .. t)., V) from the agenda and effect one of the following modifications:

." . . ..." ". ' . . .. . . . . . . . . . . ."... . .. . . . . . .

'" ... ... -," .. ".,....... . . ......."............... ".".... "..... ".... . . . ............... ".".."..."."...... "".". "".. 
"."..".
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1) Protect R1(t .  tn) from the initial state to vertex v, if R(tI,. ..,t,) is true in the initial

4, state and protecting R(ti,. t.) does not contradict existing goals and protections.

(2) For some vertex t' such that vr -( v -< t,, force the operator associated with vertex v' to

cause R(t, ,) to become true if it is false, and then protect R(t 1, . ,t)up to vertex

'V t,, provided neither modification introduces an inconsistency.

(3) Insert a new operator that causes R(t.. t,) to become true if it is false, at a point

preceding vertex t' that does not contradict existing goals and protections, and then protect

R(t1 ....t,) up to vertex v.

* Rule 3. If (-tU,... tn), v) is an unsatisfied goal on the agenda and R is not the symbol

remove (- Rt .  ), v) from the agenda and effect, one of the following modifications:

(1) Protect -'R(t .... t) from the initial state to vertex v, if -"R(tl,. .. t) is true in

the initial state and protecting -R(tI- .  tn) does not contradict existing goals and

protect ions.

(21 For some vertex v' such that vr < t' v, force the operator associated with vertex V to

cause - R(1,.... t,) to become true if it is false, and then protect -"R(tl .  tn) up to

vertex I', provided neither modification introduces an inconsistency.

(3) Insert a new operator that causes -' R?(t t,,) to become true if it is false, at a point

pr-ceding vertex t, that (toes not contradict existing goals and protections, and then protec,

"t .....t,) up to vertex t,.

Note that it is possible for a situation to arise in which none of the modifications described

" in Rule 2 is consistent with the existing goals and protections. When this happens, no further

modification of the partial plan will lead to a solution, since, in virtue of Corollary 3.6, RltI.1)

can be achieved if and orly if one of the modifications described in Rule 2 is consistent with existing

goals and preconditions. Tierefore, when such an inconsistency is detected, we must abandon the

-* current partial plan and try an alternative solution path. This also applies to Rule 3.

9%
h2

. .
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Note also that, Rules 2 and 3 call for the unsatisfied goal to be removed from the agenda. This

is permitted, as the goal will be satisfied in the final plan if the new assertions are satisfied. The

rules that follow also call for the removal of unsatisfied goals, for precisely the same reason, once

the appropriate modifications have been made.

The remaining rules are used to decompose complex formulas into simpler ones. To decompose

a goal of the form p- A t', we make use of the fact that p A V is true at some point in a plan if and

only if p: and ' are both true at that point. This leads to the following rule for conjunctive goals:

Rule 4. If (p A 0, v) is a goal on the agenda, remove (V A ¢,v) from the agenda and insert

(j, I) and (ui, v).

It is recommended that this rule be applied regardless of whether p A V) is satisfied or not, as .

and 0, may then be considered separately at later stages in the synthesis process.

For disjunctive goals, we can make use of the assumption that the initial state is completely

known. As a result, , V .' is true at some point in a plan if and only if either po or , is true at that

point., or both are (note that this does not necessarily hold when the initial state is not completely

knowzt as '{O}(,: V t') can be true without either I'(O}, or F{O}4, being true). This gives us our

fiftrh rule:

Rule 5. If ( V t', e) is an unsatisfied goad on the agenda, remove (p V v', t,) from the agenda

. and insert F.ITI IIFI (p, t;) or (v. I,).

, The rule for goals involving Implication Is merely a special case of the preceding rul'. 1ince

-- is equivalent to -p V '.

Rule 6. If (, --.. v) is an unsatisfied goal on the agenda. remove (v - , v) from tile

agenda and insert 'ITlER ( I .,) or (v,, v).

The rule for goals involving the equivalence connective is obtained from P ule, I and 5 hy

making use of the fact that p - u' is equivalent to (pA L,) V I- A - 0.'.

% ,.
%-. .-.. , -', ,'.,', -,, ., .. ", ,'. ...' ..". : ,.. , .- .- ., - .-, .;. -.. ..' .- .'. ._.. ... ... . .. -... ...,.. ...... ... -. -,- .. . .. .... .- ..' ... , .
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Rule 7. If r).. t, ' is an unsatisfied goal on the agenda then remove ( -. 1p, v) from the

agenda and insert EITHER (p, v) and ('v) or (.,v) and (-0g, v).

For quantified1 goals, we can make use of the assumption that every object in the world has

a standard name (i.e., there is a constant symbol denoting that object at every point in a plan).

Because of this assumption, If lei_, c,,} is the set of standard names of all objects, then Vx ;:(x)

is true if and only if :(ej) is true for all ei E {et, . e~ and 3x ;(x) is true if and only if jc(ei)

-s tru!- for some ei E lei, _e,0. Unsatisfied goals of the form Vxp(x) are handled by separating

the cases for which *(e) is false from those for which p(ej) is true in a manner that permits each

false case to be considered individually:

Rule 8. If (Vx, ;(x), t') is an unsatisfied goal on the agenda and jo(ei) is false at vertex t, for

*each standard name ei E lei 1 . ... ,ei,, then remove (Vx :x), v) from the agenda and insert,

v)~~1 , ,.. ;e,) v) and (Vx (x e ei V.. V x ej,, V ic(x)), v).

An example or thei use of Ruile 8 may be found in the block-stacking example appearing in Section

3.1 In tha ,t ex.,mp le, n o i)l1oe k may be on to p o f bl ock .A whe n PutI(A, B) is performed. Howeve r, t his

requirement is not, satisfied, given the plan of placing B on top of C and then A on top of B. This is

because (C Is on top of A both in the initial state and after Put.(l, C). Therefore, we would use Pule

9 8to decompose Vz;-On(.-,A) int~o-On(C,A) -ndV-(z =CV-On(z,A)). The suhgoal -On(C'.A)

would t hen be achieved hy inserting a new operator Put.(Ci. V) and protecting -On(C,.A) in thle

interval between (lie Piit(( ,) and the Put(A, R) operators. The subgoal Vz (z C (V - On(:..A))

is serendipitously true and no further action need be taken to achieve it.

For an unsat isfied goal of the form 3x ;(x), we must make A(ci) true for some st andard name

ei. From the standpoint, of minimizing the search space, it would be preferable to (defer tile choice ."

of ei by introduc~ing a variable as a placeholder for the appropriate ei and then instantiatilng

this variable at some later point in the synthesis process. The mechanisms needed to harnilo

instantiation variables, however, are beyond the scope of this report, and are covered in mnY ties

% ~-
5.Lw , \.X
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[8]. To keep our planning technique simple, we will explicitly consider each and every choice for

Rule 9. If (3x c'(x),v) is an unsatisfied goal on the agenda and {e,. e}is the set of

standard names of all objects in the world, then remove (3xjo(x),v) from the ag-enda and

insert (,AeJ). t') for some ei E {ei,.. - en).

The remaining rules deal with negated goals. They are obtained from the previous rules inI

ani obvious fashion by) making use of De Morgan's laws andl similar theorems of first-order logic.

Rule 10. If -( A 0'), v) is an unsatisfied goal on the agenda, remove (-( p A V,), v) from thle

agenl:ld :tndl insert FLITtlER ('p. I)or v L' ).

Rule 11. if v pv ), v') is a goal on t he agendal (be It, satisfied or not), remove ((pV v~), I)

from the agenda and insert (-p.,) andl ( v ,).

Rule 12. If (r( I ).) is a goal on the agenda (be it, satisfied or not), remove (-( v- .. I')

from t Ite agendla and insert . I') and 0~, v').

* ~~~Rule 13. If ((p v'.v) is an unsatisfied goal o~n the agenda, remove (Ip- ) ) from

thfe a gend It ( id 1 11n sert EI T I I ER (- .v) and (0 1', t) o r (-' ,) a and (v',t).

* - Rule 14. If (-iVx ( ).t.) is an unsatisfied goal on thle agenda and If (el_.,.....is thle set of

,tandl~ardl names of all objects in the world, remove (-(Vx p:(x)), tv) from the agenda and~ inMcrt

:- (ej. v') for some i, 1 < i <_n

Rule 15. If (-'(3x :(z)), v) is an unsatisfied goal on the agenda and :(ei) is false at vertex I,

for each standard name ei E (e ... e4, eoe(. c (.),)fo thle agenda atlil inseCrt

(- ; ,),) . - ;(ei_ ),ty) and (Vxr(x ei, V .. V x = ej- V 4:(x)), t').

%... . . . .. . . . . . . . . . . . . .

Vp *...-.-
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3.3 AN EXt" PLE

To illustrate how a plan would be synthesized by applying the rules just introduced, let us

formulate and solve the briefcase problem discussed earlier. The reader will recall that there are

three objects, a briefcase, a dictionary and a paycheck, and two locations, the home and the office.

Each object is at one of the two locations; furthermore, the dictionary and the paycheck may be

in or out of the briefcase. In our formulation, we will have five constant symbols, B, D, P, 11 and

0, corresponding, respectively, to the briefcase, dictionary, paycheck, home, and office. 'We will

alo have two relation symbols, 'At' and 'In". 'At' is a binary relation such that At(z,y) is true

if and only if object x is at location y, and 'In' is a unary relation such that In(x) is true if and

only if object x is in the briefcase. Initially, the three objects are at home; tbe paycheck is in the

briefcase but the dictionary is not. Therefore. the initial state description F contains the following

formulas:

(1) el e.2 for all ete 2 E {B,D, P.H, O such that el and en are diqtinct

(2) Vx(x=PVx =DV =f'Vx=f1V x O)

(3) Vxy(At(x, y) -[(x =B V x= D V x= P) A Y= H])

(4) Vx(ln(.) x-.r = 1').

The forL'ulas defined in Item (I) assert that B. I). P, 11 and 0 represent distinct entities, and the

formula in Item (2) asserts that these are the only entities in existence. Formula (3) asserts that

the only entities that have locations are B?, D and P, and they are all at H. Finally, (4) asserts

that the only entity in the briefcase is P.

Our objective is to have the briefcase and the dictionary at the office, and tile paycheck at

home. Therefore. the goal description consists of the formulas At(B,O), At(D, 0) and AI(I'. /1).

To achieve these goals, we may put objects into the briefcase, remove objects fronm the briefca.'.

and move the briefcase between the two locations. We will therefore have three operator schemata.

Putln(.), TakeOut(:) and MovB(l), corresponding to the three allowable actions. These schemata

op .

% %' 4 %. %..".. "".L"e" "  , """""" . , . " . ,. .' :. , . .,""" . " k '' '"  '". . x ., ,....,. ". "
'" ",'~ e -." . '€ .- ,¢' .e r ... ,'.: . '-:-"'''" .'t.' " " ." - ) , ' "," "-" , ,', h" ,\'-\r
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are dlefined as follows:

Putln(z)

PRECOND: 3x (At(z, x) A At(B, x))

ADD: ln(p) for all p such that p z

.ake()ut( z)

PRECOND: 3x (.t(z, x) A At(B, x))

DELETE: In(p) for all p such that p z

\IovB(l)

ADD: At(p,q) ror all p,q such that q = IA (p =B VIn(p))

'1LETE: At(p.q) for all p,q such that q =,P IA (p =B V fn(q))

fPutln( z) caiuses lIn(z) to become trite and requires as a precondition that zand B be at (tie same

location. 1':ik(-Owi( z) cause,, hI(z) to b)ecome false an(I also requires as a precondlit ion that : and P

be at the same net on. \tovB3(l) cauises the briefcase and everyt hing in it to be moved to locationl

1. 1 ulke 14 , (s)and TatkeOut(.-), XlovB( I) has no precondition and may be applied III :11nY state.

If the briefcase and it-, contents are already at location 1. NMovB(I) has no effect.

The In itijal pat iail plan Is Illust rated below. The init ial state is depicted graphicail I and1( lhe

goal1s aire ~I TOII hlsl.t(ed ab1ove tile goal vertex. In general, goals on the agenda will be listed a h~ove I hrc

* appropriate vertices andI entries in the protection set. will be Indicated by labeling t(lie appropriait.

edIges.

IA \t((B. 0)
D~ ~ A(l1)

In1itial (a
St ate St ate

In this partial plan. At(P, II) is satisfied but At(il, 0) and At(D,O) are not; in other word,,

r{ }At(P. II) holds, but F( At(B, 0) and F( At(D, 0) do not. Rule 2 can therefore be applied to
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* either At(B,O) or At(D,O). It does not matter which we choo:se to work on first; therefore, let

us arbitrarily choose At(i?, 0). Since At(B, 0) is false in the initial state and we are starting with

* the empty plan, we can rule out protecting At(1B, 0) from the initial state or forcing an existinig

operator to make .- t(B,0) true. Therefore, we have no choice but to insert an operator to make

e. *-Xi~) a nd i: Taeut are botn FALSE since both a ui~)and a Take(p ) are.- t(B, 0 true 'S. P..)(p, q) aAt(p.q) tpq

FALSE. H-ence, neither 1'utln(z) nor TakeOut(.-) can make At(B. 0) true. However,

,,NfovB(L) NtOVDl (q)= A( BVI p))
-.A~tp,q) &t (~) [ A(

* Thererore,

~-AMovB) [0 1 A (B =By Vln(B))]

~(O=1).

Hence, the only operator that can make At(B, 0) true is NMovB3(0). Inserting MovB(0) into the

* plan produces t he following plan:

At(D, 0)
D__ ___ At(P, H)

Initial Mov B(O) Goal
State State

Note that no additions were made to the agenda, -since the precondition for NtovB(O) is TI?07%,
and~ !:N(B.O) -(0 =0) =TRU E (TI), 'ICs always true and thus need not be plauced on tIw

* agendla). At( B. 0). however, was removed from the agendla. This is reflected in the diagramn by

removing At(R. C)) from the goal vertex.

In the above plan, both At(D.O0) and At(P, H1) are unsatisfied. Choosing to work on At(D, 0)

* ~first and applying Rule 2, we find that At(D, 0) is not true in the Initial state; consequently, we

* must either insert. a new operator to make tAt(D,0) true or force an existing operator to make

At(D, 0) true. ADOand E~~~~ z are both FALSE, but

~-MOVB)1) - 0
EM~(D,O) 10 1A(D BvI()j
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Since L) y B in the initial state and none of the operators changes the interpretations of either D
o ;MvB(t) simplifies to

or B3, EA t D ,O ) ""nP fi S t

-AM(, 0) (0 1O =A In(D))
AAtDOO)

Hence, the only operator that, can make At(D, O) true is Movl3(O). Therefore, we must eit hr ineert
•4

a new %IovB(O) operator or force the existing MovB(O) operator to cause At(D.0) to become trit.

('ioo-ing to do the latter, and being prepared to backtrack if this does not work out, we obtai'

the following partial plan. Note that In(D) is added as a secondary precondition to lovl3(O). since"

'MovB(O) simplifies to In(D).

B

IL.J D In) ) At(P. 1)

Init ial \lvI,( 0) Goal
State State

.. t( D.O0)
At()) 0)

h I this partial plan, both In(D) and At(P, II) are unsatisfied. Choosing to work on In{I)) fir t

and ipplying Pu tle '2, we find halt In([)) is not true in the initial state and there are no op('r;t;or-.

preceding %ovB(O) in the partial plan. Therefore. our only option is to insert, a new oper:itor to

make In(D) true. TakeOut(z) and l) are both FALSE, but : Pu I I n(z)" ,(o 1 d!:\ ( - (D =).Therefore, '-

Putln(D) is the only operator that can make In(D) true. Inserting Putln(1)) gives us the following -

. partial plan. Note that xr (At(D, .) A .\t(I?, x)) placed on the agenda, as it is a precondition for ""

,* Putin(D).

[ ~~~~. J- -).---------

A .\lIM , .r)] At(P. fl)

lnitial PIt InI!)) \ MovB(0) Goal
tatStale State

In(D) At(B,O)
At(D,O)

-. . . . .. - .. - . . . . . . , .--. ' '. . ..- " -' . , .- .,-' - '-," ." ." - .- .'" -, .. ' .' .'. -'-. , i -. .":-'. - :. .' ",,'.-i • -' , " ,- -. ,..'., -'" .' -' . .'- - ' " .
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In this plan. 3r ( Art 1).r) A \t(B, z)) Is satisfied but At( P.t ) is not. Applying P ule 2 to

.\t(iP, I), we find that. elt her we can protect At( P, P ) from tlhe initial state, since it is true init jll3.

or we can insert a new operator MovB( F) with secondary preconditions Intl), since -=At(P.t1)

(1 - !AIn(P)) and pPtin(z) pTakeOut(z) - FALSE. Choosing to do the former, and preparing

to backtrack if necessary, we obtain the following partial plan:

II
B 3.r [t lD, x)

II] D A At(tl.)] -, In(P)

Init iail PutlIn(D) INOVB(0) Goal
State State

At(P,HI) In(D) At(B,O)
At(P,H) At(D,O)

At(P,H)

Note that. in protecting At(P, HI) from the initial state, -Jn(') is added as a serondary precon-

dition for Mov ,((0), since

1pMovB(O) - N,6N1ov ( ) P )

At(P,1) - At t , ,

-- [ -[ 0 A (P = 3 V ln(P))]

I -ln(P)
--A(Pt IPutln( D)

No other preconditions are imposed on Putln(D), since lPut.n(D) TRUTE.

At this point, only - In(P) is unsatisfied. Applying Rule 3, we find that our only option is to

insert a new operator TakeOut(P) either before Putln(D) or after Putln(D). Choosing to do the

latter, and preparing to backtrack if necessary, we obtain the following partial plan:

• ,,

3 [At(D, r) 3x [At(P, z)

FU D A At(f,. r)l A At(B, x)1,___,

Initial Putln(D) TakeOut(P) MovB(O) Goal
State State

A t(P. 11) In(D) In(D) At(B,O)
- At(P,H) ht(P,H) At(D,O)

-. In(P) At(P,H)

All outstanding goals on the agenda are now svtisfied. Therefore, the plan just, explicated,

which consists of putting the dictionary into the briefcase, removing the paycheck from the

'.. .......... . . . ..---.-. )~r,.,. , . .. . . . • . .- . . • . - . .
.,.. ..... .%,, . •.. . .. . .. ... 4.. . . .

I [ I I - -| | I ' l i -' w.- - - . ..
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briefcase, and then bringing the briefcase to the office, satisfies all of our goals. preconlwI-

and protections.



AcknowledgmentsI

would like to thank my advisors, Bob Moore and (iio Wiederholci, for thle man": Iont j
discuijIons that helped me crystallize my ideas, and for creating an environment that. rn-ide Ithis

research possible. I am especially indIebted to Bob Moore for keepiug eme on track and for provi(Iing

criticrny when needed. Certainly, without Bob's influence, the natrurc of my work would have

been q1 ite different. I have also benefited from discussions with Alfre(d Aho. David Chapman,

Peter Cheeseman, Tom Dean, Mike Georgeff, Amy Lansky, Vladimir Lirstaitz, Mike Lowry, John

Mohammed, Nils Nilsson, Stan Rosenschein, Marcel Schoppers, Yoav Shobiam, Reid Simm-ons.

Albert Visser. Pichard Waldinger, and Dave Wilkins.

The research reported herein was supported by the Air Force Office of' Sc P kfesetrcm

* under Contract. No. F49620-82--K-0031, by the Office of INaval Pe'se-rch utnder Contract Nos.

NOO1.-80-C>02915 and NOOOII1-8d--C-0251, and through scholarships, from the Natural Scicn~es

* and Engineering Research Council Canada and le Fonds F.C.A.C. pour l'aide et Ie soittien . 1:1

& recherche. Quebec, Canada. The views and conclusions expressed in this dlocument. are

of the auithor and should not be interpreted1 as necessarily representing the official policies (rI-

endorsements, eit her expressed or implied, of the Air Force Office of S-,ieiit ific Research. the Officie

of Naval Research, the Natural Sciences and Engineering Research Comincii Canada. le Fondk,

F.C.A.C., the U.S. Government, the Quebec Government, or the Canadian Government.



* References

[1] Boolos, G.S. and R.C. Jeffrey, Comiputability and Logic, 2nd edition (Cambridge University

Press, Cambridge, England, 1980).

[21 Chapman, D., "'Nonlinear Planning: A Logical Reconstruction," Proc. 1.1(11 9, Uiversity of

California at Los Angeles, Los Angeles, California, pp 1022 102.1 (August 1985).

[3] ChIiapman, D)., "Planning for Conjunctive Goals,' Tech. Report AI TR-802, Artificial

Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts

(fort licoming).

[4] Ernst, G.\V. andl A-. Newell, (,TS: . C'ase Study in Generality anid Problemn Solri'ng (Academic

Press, New York, New York. 1969)).

[5] Fikes, R.E. and N.J. Nilsson, "STRIPS: A New Approach to the Application of Theorem

Proving to Problem Solving," Artificial Intelfigence, Vol 2. pp 189-208 (1971).

[6] Haves-Roth. BI., F. Ilayes-Rothi S. Rosenschein and S. Cam marata, "Modleling Plan ling av;

an Incremental Opportunistic Process," Proc. IJCAI 6, Tokyo, Japan, pp 3j5-383 (August

1979).

[71 McCarthy, J. and P. Hayes, "Some Philosophical Problems from the Standpoint of A\rtificial

Intelligence," in Mfachine Intelligence 4, Meltzer, B. and D Nlichic eds., pp -163-502 (Edinburgh

University Press, Edinburgh, Scotland, 1969).



-- 7.

*58 REFERENCES

* [81 Pcdnault, E.P.D., Toward a Mlath ernatical Theory of Plan Synthesis, Ph.D. thesis, Depart nent.

* of Electrical Engineering, Stanford University, Stanford, California (forthcoming).

* [9] Rosenschein, SiJ., "Plan Synthesis: A Logical Perspective," Proc. IJC41 7, UniversitY of

British Columbia, Vancouver, Canada, pp 331-337 (August 1981).

[101 Sacerdoti, E.D., "Planning in a Hierarchy of Abstraction Spaces." Artificial Intelltigence. Vol.

5. No. 2, pp 115-135 (Summer 197 1).

1][ Sacerdloti. E.D. .4A Structure for Plana and Reha,',oT (Elseyier. New York, New York, !977).

* [121 Stefik, NI., "Planning With Constraints (MOLGEN: part 1)," Artificial Inteffigenre, Vol. 1f*)

*No. 2, pp I1 110 (May 1981).

- [13] Suppes. P.. Axiomatic Set Theory (D~over, New York, New York, 1972).

[14] Sussman, G.J., "A Comnputat ional Model of Skill Acquisition," Tech. Report Al 'Ib'

-. 197, Artificial Intelligence Laboratory, Niassachusetts Institute of Technology. ('amhrdg,'.

\laisachiiserts (Auigust 1973). .

j151 Tate, A., "Project. Planning Using a hilerarchic Non-Linetr IPlanrvr," PResearch Report No 2-5

* ~Depart ment of Art ificial Intelligence, University of Edinburgh. EdAinburgh, Scot laLnd. (1976).

- ' [11(]i\Waldi oger. P.. "Ac hievinrg S-everal Coals Si mtilt arveowlly" in, Isahhe In eiliutJrcl'( X, h.lco('!;

F.,. andl I). NMic bie eds. , pp 9-1-136 (E'llis I lorwood , [Elinburgh . Scotland, 1977).

* ~[171 Warren, D.I I.D., "W\HP LA N: A System for Generating Plans." Miemo No. 76, Depart ineut

- of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland (June 197-1).

1181 Warren, D.1I.D., "Generating Conditional Plans and Programs," Proc. AISL? Summer

K Conference, University of Edinburgh, Edinburgh, Scotland, pp 3.11 351 (July 1076).

[19] V'ilkins. D.E., "Domain-Independent Planning: Pepresent at ion atid 1PI;.ii Generat-ion."

Artificial Intelligenre, Vol. 22, 'No. 3. pp 209-301(18)



FILMED

- DTIC
., .. .,. "C• .rf. ... ,':; '' .... \ .,. ' 'w,, ' ',., -

LJ I 

)


