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I OBJECTIVES COH U'EHE RESEARCH EFFORT

Central to almost all aspects and applications of artificial
intelligence are the representation and manipulation of large bodies of
knowledge about the world. When viewed from the perspective of their
ability to express facts about the external world, however, most
knowledge representation schemes currently used in artificial
intelligence are constrained by the limits of first-order logic. That
is, they provide terms for referring to individuals, predicates for
expressing properties and relations of individuals, and mechanisms that
achieve some of the effects of propositional connectives and
quantifiers. Much research effort has been expended on ways of
organizing knowledge bases and developing information retrieval
mechanisms; in terms of pure expressive power, however, existing

representation systems are rather limited.

This issue is brought into sharp focus when one seriously attempts
to analyze the semantic content of expressions in natural language,
since many types of linguistic expressions seem to require something
beyond first-order 1logic to represent their meaning perspicuously.
Specifically, natural languages have special features for dealing with a
variety of concepts that are central to our commonsense understanding of
the world. For 1instance, linguistic systems of tense and aspect are
intimately connected with commonsense conceptions of time. Adverbial
modification, nominalization phenomena, and categorical distinctions
among verb phrases appear to depend on such notions as state, event, and
process. Predicate complement constructions frequently involve concepts
of "propositional attitude” such as knowledge, belief, desire, and
intention. The linguistic features of singular/plural and mass/count
are used to sort out individuals, collective entities, and substances.

In all these cases, either it is not clear how to express these concepts
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N in first-order logic at all, or it is clear that they can be expressed

";{ in first-order logic only by very indirect means.

;.. This project bhas undertaken a program of basic research in
‘}3 knowledge representation, focusing on the representation of concepts
f: needed for the semantic analysis of natural language. The objectives of
)

K the project are to produce formalisms, suitable for manipulation by

computer, for the representation of specific concepts that are important

"¥: for natural-language semantics, and to give an independent account of
;&: the meaning of such representations using the tools of formal logic.
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II STATUS OF THE RFSEARCH EFFORT

A. Previous Results

1. Development of Autoepistemic Logic

The major technical achievement of the first year of the
project was the development of a logic that characterizes systems that
represent and reason with 1information about their own beliefs. We call
this 1logic "autoepistemic logic.” The problem of representing and
reasoning with information about knowledge or beliefs of other agents
has received much attention recently in artificial 1intelligence.
Designing a system that can represent and reason about its own beliefs,
however, poses some unique problems. The nature of the difficulties is
suggested by an old philosophical puzzle: Why are sentences of the form
"P is true, but I don"t believe P” extremely odd, although sentences of
the form "P is true, but he doesn”t believe P" are not? Using the first
person (making a statement about one”s own beliefs) makes nonsense out
of a sentence that is perfectly reasonable in the third person (making a

statement about someone else”s beliefs).

For a simple logical language for making statements about
one”s own beliefs, we were able to construct a very natural formal
semantics and define sets of beliefs that are both sound and complete
with respect to that semantics. (Roughly speaking, a set of beliefs is
sound if it contains only statements that must be true whenever the
premises of the set of beliefs are true, and it 1is complete if it
contains all the statements that must be true whenever the premises of

the set of beliefs are true.)

Autoepistemic 1logic turns out to be quite similar to logics

that have been proposed to model what 1s called “nonmonotonic

reasoning.” Commonsense reasoning is "nonmonotonic™ 1in the sense that
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we often draw, on the basis of partial information, conclusions that we

later retract when we are given more complete information. The
following example is frequently used to illustrate the point: If we know
that Tweety is a bird, we will normally assume, in the absence of
evidence to the contrary, that Tweety can fly. If, however, we later
learn that Tweety is a penguin, we will withdraw our prior assumption.
If we try to model this in a formal system, we seem to have a situation
in which a theorem P 1is derivable from a set of axioms A, but is not
derivable from some set A~ that 1s a superset of A. The set of
theorems, therefore, does not increase monotonically with the set of

axioms; hence this sort of reasoning is said to be "nonmonotonic.”

Some of the most interesting recent attempts to formalize
nommonotonic reasoning are the nonmonotonic logics developed by Drew
McDermott and Jon Doyle [1] [2]. These 1logics, however, all have
peculiarities that suggest they do not quite succeed 1in capturing the
intuitions that prompted their development. By comparing McDermott and
Doyle”s logics with autoepistemic logic, we have been able to diagnose

the reasons for their peculiarities and show how they can be eliminated.

Our work on autoepistemic logic 1is described more fully,
focusing on its relationship to nonmonotonic logic in an article we have

recently published [3], which is reproduced as Appendix A.

2. Representing the Dependence of Action on Knowledge

One of the representational problems we have studied is the
relationship between knowledge and action. Both knowledge and action
are among the basic concepts that underlie many different areas of
commonsense and expert knowledge, but the interaction between the two is
particularly important when applying artificial intelligence techniques
to planning.

Planning sequences of actions and reasoning about their
effects 1is one of the most thoroughly studied areas within artificial
intelligence, but relatively 1little attention has been paid to the
important role that an agent”s knowledge plays in planning and acting to
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5 achieve a goal. Virtually all planning systems in artificial
intelligence are designed to operate with complete knowledge of all

relevant aspects of the problem domain and problem situation. Often any

- 4

: statement that cannot be inferred to be true is assumed to be false. 1In

i: the real world, however, planning and acting must frequently be

‘2 performed without complete knowledge of the situation.
1 This constraint imposes two additional burdens on an

1 intelligent agent trying to act effectively. First, when the agent

?‘ entertains a plan for achieving some goal, he must consider not only

L whether the physical prerequisites of the plan have been satisfied, but

] also whether he has all the information necessary to carry out the plan.

_:} Second, he must be able to reason about what he can do to obtain

5: necessary information that he 1lacks. For example, to call someone on

? the telephone, just being physically able to dial a telephone is not

_L sufficient; one must also know the person”s telephone number. One can

;: plan to acquire this information, however, by looking up the number in a

:: telephone book.

o Under this project, we have refined and extended our previous

&) work on the dependence of action on knowledge [4]. Our main thesis is

1; that the knowledge required for an action can be analyzed as a matter of

:E knowing what action to take. An agent could know that to call Smith on

- the telephone he needs to dial Smith“s telephone number, but still not

Aty know what to do because he does not know precisely what action dialing

- Smith”s telc¢phone number is. That is, he might not know whether dialing

Smith“s telephone number is the action of dialing 221-1111, or dialing

;- 221-1112, or dialing 221-1113, and so on. We may assume he has a

- general procedure for dialing telephone numbers, but unless he knows -]
:f which number to apply it to, he does not, in the relevant sense, know ;
'; what to do. i
1 In our previous work, we successfully applied this analysis to ;;
. actions that are treated as nondecomposable wholes, but our treatment of ;&
- complex plans was less satisfactory. To represent complex plans, we )
- introduced concepts of sequential actions, conditional actions, and -]
8 5 §
~ .
: ]

TR PR T Tt a,
BRI, S A AN SRS
P ~ LR s AN B
v P . Y
*-;:V\ \3‘ ' \ P <




s iterated actions. Formalizing the knowledge prerequistes of these

complex actions was somewhat ad hoc, however. In particular, for
conditional actions ("if P 4is true, then do ACTIONl, otherwise do
ACTION2") we had to state independently the fact that, in order to carry

out a conditional action, an agent must know if the condition is true.

The work performed under this project remedies this and a
number of other deficiencies. The key change is to view a complex plan
as a description of a sequence of actions. Then the knowledge
prerequisites of complex plans can be given a treatment similar to that
for simple actions, so that the agent 1is assumed to have sufficient
knowledge to carry out a plan if he knows what sequence of actions the
plan describes. The problem of conditional actions is handled
automatically, because what action 1is described by a conditional action
description depends on whether the condition is true. Hence an agent

must know whether the condition is true to know what action this is.

rx= 7

t};j This work is presented in full in a paper by Moore [5], included as

i;t; Appendix B.

o

. 3. Semantic Analysis of Adverbial Modifiers and Event Sentences

:i‘ A good example of the way a careful analysis of the meaning of

;:5 natural-language expressions gives us insight into the representation of

_ commonsense knowledge 1is presented by our work on the adverbial
modification of event sentences. Whether or not there is a fundamental
semantic distinction between event sentences, such as "John went to New
York," and stative sentences, such as "John was in New York,” is one of
the more puzzling problems in representing the meaning of expressions in

A ordinary English. The latter sentence can be analyzed as saying simply

:Ej that a certain relation, that of location, held between John and New

%Qj York at some past time. This type of analysis seems less satisfactory,

i-: though, for the former sentence. "Went"” does not seem merely to express

a relation the way "is 1in" does. Rather, it appears to describe an

event, 1ndicated by the fact that 1t makes sense to ask "When did it

happen?” af er being told "John went to New York,” but not after being

told "John was in New York."”




One suggestion as to how event sentences might differ from

stative sentences 1s provided by Davidson {[6], who suggests that event
sentences be represented as explicitly asserting the existence of the
event being described. Roughly speaking, this amounts to treating “John
went to New York" as if it were "There was a going of John to New York."
Davidson”s suggestion is intriguing, but, heretofore, there has been
relatively 1little evidence to support 1it. The study of adverbial
modification of event sentences conducted under this project has
provided the most convincing support to date for the kind of
representation of event sentences given by Davidson and has cleared up
several related problems. This work 1is described more fully in a paper

by Croft [7], included as Appendix C.

To summarize this work briefly, we have developed a unified
analysis for most "-ly” adverbs and adjectives, namelv, as predicates.

A small class of adverbs, all indicating wmodalitv or uncertaintv

("possibly,” ‘“probably,” "allegedly,” etc.), must be treat-d as modal
operators over propositions, as their semantics implies: thus, “John
probably ate the cookie” would be represented as

PROBABLE[ EAT (JOHN, COOKIE)]. The corresponding adjectival forms are
interpreted, wusing restricted quantification notation, as modal
operators over the description; thus, "any possible solution” will be

(ANY X: POSSIBLE[SOLUTION(X)]).

All other adjectives and adverbs that have the property of
“"factivity” (viz., if the sentence with the adverb/adjective is true,
then the sentence without the adverb/adjective is also true), are

predicates. The presence of ~1ly" 1is syntactically determined: if the
predicate is modifying a verb or adjective instead of a noun, the "-1ly"
is added. The semantic difference between "adjectives” and "adverbs” ir
that the former are the properties of objects, the 1latter of events,
events being represented as event variables following Davidson [6].

Thus, "John slowly entered the room” is ENTER(E,JOHN,ROOM) & SLOW(E).

There are two unusual cases, which must be accounted for.

First, a sentence like "Maggle rudely spoke to the Queen” 1is ambiguous

PR
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between a manner reading ("The manner in which Maggie spoke to the Queen
was rude”) and a fact reading ("The fact that Maggie spoke to the Queen
was rude”). While the first reading 1s represented by modification of
the event variable, the second reading represents an assertion about a
state of affairs, the state of affairs of the proposition "Maggie spoke
to the Queen” being true, which we represent by the FACT operator. Thus
the two readings are SPEAK (E,MAGGIE,QUEEN) & RUDE(E) and
SPEAK(E ,MAGGIE,QUEEN) & RUDE(FACT[SPEAK(E,MAGGIE,QUEEN)]) respectively.
Second, adverbs of intention ("intentionally,” "willingly,” etc.), which
display referential opacity and other 1intensional behavior, must be
represented as predicates taking an agent and a proposition as ~ell as

an event.

All possible derivational patterns between adverbs and
adjectives are found. Adverbs like "bitterly,” which take an individual
and an event, are derived from adjectives that take an individual and
describe his emotional state. Adverbs like "slowly,” which take an
event only, have derived adjectives that take an individual and a role:
"John ran the mile fast”™ vs. "John is fast (at running the mile).”
Finally, for adverbs 1like "rudely” or “cleverly,” which take an
individual and an event (or FACT operator), the corresponding adjectives
are identical in semantic form: in the manner reading, "John cleverly
solved the problem” and "John was clever at solving the problem™ are

both represented as SOLVE(E, JOHN,PROBLEM) & CLEVER(E).

Adjectives and adverbs that are “gradable” (viz., can be
modified by degree terms or placed in comparative constructions) will
have additional arguments in the predicate structure, and that is being

investigated in other work on this project. The fact that gradability

f;¥ applies to both adjectives and adverbs, however, is another confirmation
Eﬁjz of their underlying semantic unity.
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Reasoning about the knowledge and beliefs of computer and

buman agents is assuming increasing 1importance in artificial
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intelligence systems for natural-language understanding, planning, and
knowledge representation. A natural model of belief for robot agents is
the deduction model: an agent is represented as having an initial set of
beliefs about the world in some internal language and a deduction
process for deriving some (but not necessarily all) logical consequences
of these beliefs. Because the deduction model is an explicitly
computational model, it is possible to take into account limitations of

an agent” s resources when reasoning.

This project has provided partial support for an investigation
of a Gentzen-type formalization of the deductive model of belief.
Several original results have been proven. Among these are soundness
and completeness theorems for a deductive belief logic, a correspondence
result that relates our deduction model to competing possible-world
models, and a modal analog to Herbrand”s Theorem for the belief logic.
Specialized techniques for automatic deduction based on resolution have

been developed using this theorem.

Several other topics of knowledge and belief have been
explored from the viewpoint of the deduction model, including a theory
of introspection about self-beliefs, and a theory of circumscriptive
ignorance, in which facts an agent doesn”t know are formalized by
limiting or circumscribing the information available to him. These
results are presented in the Ph.D. dissertation of Konolige [8] and are

summarized in a shorter paper [9], included as Appendix D.

B. Recent Results

1. Possible-World Semantics for Autoepistemic Logic

In our previous work [3] we developed a nonmonotonic logic
for modeling the beliefs of ideally rational agents who reflect on their
own beliefs. We called this system "autoepistemic logic.” We defined a
simple and intuitive semantics for autoepistemic logic, and we were able
to show that the logic was both sound and complete with respect to this

semantics. However, the nonconstructive character of both the logic and

its semantics made it difficult to prove the existence of sets of




beliefs satisfying all the constraints of autoepistemic logic. We have
recently developed an alternative, possible-world semantics for
autoepistemic logic that enables us to construct finite models for
autoepistemic theories and to demonstrate the existence of sound and
complete autoepistemic theories that are based on given sets of

premises.

The language of autoepistemic logic 1s that of ordinary
propositional logic, augmented by a modal operator L. Formulas of the
form LP are interpreted informally to mean "P is believed” or "I believe
P." For example, P -> LP could be interpreted as saying "If P is true,
then I believe that P is true.” If a set of formulas is to be
interpreted as a representation of the beliefs of a rational agent, then
a formula LP will be true with respect to a certain set of beliefs 1if
and only {if P is in the set. That is, the statement "I helieve P" is
true for a particular agent just 1in case he, in fact, believes P. 1In
the original semantics we developed for autoepistemic logic, we simply
stipulated that this constraint had to be met by models of autoepistemic
theories. This had the effect that the specification of a model had to
include a potentially infinite 1list of all the formulas of the form LP
that were to be taken as true. The resulting lack of structure in the
models made it extremely difficult to prove results concerning the

models of particular autoepistemic theories.

However, it turns out that, for autoepistemic theories
representing sets of beliefs satisfying certain stability conditions, we
can define models that have much more structure. The conditions of
interest are that (1) the set of beliefs 1is closed under ordinary
logical consequence, (2) whenever a formula P is believed, it 1is
believed that P is believed, and (3) whenever a formula P is not
believed, it is believed that P is not believed. We have been able to
show that a set of beliefs savisfying these conditions can be
characterized by a set of possible worlds such that a formula is
believed if it 1is true in every world in the set, and a formula of the
form LP is true in a particular world if P is true in every world in the

set.
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beliefs satisfying all the constraints of autoepistemic logic. We have
recently developed an alternative, possible-world semantics for
autoepistemic logic that enables us to construct finite models for
autoepistemic theories and to demonstra.e the existence of sound and

complete autoepistemic theories that are based on given sets of

premises.

The language of autoepistemic logic is that of ordinary
propositional logic, augmented by a modal operator L. Formulas of the
form LP are interpreted informally to mean "P is believed” or "I believe
P." For example, P -> LP could be interpreted as saying "If P is true,
then I believe that P is true.” If a set of formulas is to be
interpreted as a representation of the beliefs of a rational agent, then
a formula LP will be true with respect to a certain set of beliefs if
and only 1f P is in the set. That is, the statement "I believe P" is
true for a particular agent just 1in case he, in fact, believes P. 1In
the original semantics we developed for autoepistemic logic, we simply
stipulated that this constraint had to be met by models of autoepistemic
theories. This had the effect that the specification of a model had to
include a potentially infinite list of all the formulas of the form LP
that were to be taken as true. The resulting 1lack of structure in the
models made it extremely difficult to prove results concerning the

models of particular autoepistemic theories.

However, it turns out that, for autoepistemic theories
representing sets of beliefs satisfying certain stability conditions, we
can define models that have much more structure. The conditions of
interest are that (1) the set of beliefs 1is closed under ordinary

logical consequence, (2) whenever a formula P is believed, it {is

believed that P 1is believed, and (3) whenever a formula P is not
believed, it is believed that P is not believed. We have been able to
show that a set of beliefs satisfying these conditions can be
characterized by a set of possible worlds such that a formula is
believed if it 1s true in every world in the set, and a formula of the
form LP 1s true in a particular world if P is true in every world in the

set.
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The important consequence of this demonstration is that such a 4
set of beliefs can be characterized by a finite set of finite possible j

worlds whenever the number of atomic formulas in the language is finite.

" OO

N This in turn lets us define finite models under the same conditions,
~ whereas, under our first definition, the models are finite only if the

- entire set of beliefs is finite. ;

With finite models, we can explore certain questions that are

=
{ much harder to address with the infinite models of our original i
. approach. For instance, consider what beliefs would be justified on the F
- basis of the set of premises {"LP -> Q, “LQ -> P}. Informally speaking, '

these formulas say "If I don”t believe P then Q is true” and "If I don”t ;

believe Q then P is true.” Suppose these are an ideally rational
- agent”s only premises. If he does not believe P, he can reflect on the .
' fact that he does not believe P and he will conclude that Q is true. P
Conversely, if he does not believe 0, he can reflect on that and
conclude that P 1is true. Thus it seems that he has grounds for -
believing P only if he does not believe Q and vice versa. So there are '
{ apparently two possible stable belief states that can be based on these

premises. With the possible-world semantics for autoepistemic logic, we :
> can demonstrate such conclusions rigorously by examining all the

ol possible-world models of the premises. The details are presented in a s

recent paper [10], included as Appendix E.

2. A Weak Logic of Knowledge and Belief

? Beginning with the work of Jaako Hintikka in the early 1960°s :;
{11], a number of attempts have heen made to formulate and analyze
& varying conceptions of knowledge and belief by using the techniques of
modal logic. In such research, the relevant notions are symbolized by
R one place modal or intensional operators on sentences. Various axioms
governing these operators are then proposed. The important
y methodological conception 1s that one will be able to apply fairly .

standard techniques and results from the study of modal 1logic to the

- analysis of, and comparison between, such systems. Indeed, most o
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proposed systems have been exact analogues of one or another standard
modal 1logic; that 1is, one simply replaces the modal operator for
necessity with that for knowledge or belief. In the case of belief one
must drop the analogue of the basic modal principle that, 1f 1t”s

necessary that P, then P. There are, after all, false beliefs.

Though we cannot reasonably idealize away false beliefs, any
logic of knowledge and/or belief will have to embody some degree of
idealization. Still it has seemed to many that the commitment to fairly
standard modal systems has brought with it thoroughly inappropriate
idealizations. Two distinct dimensions of idealization have been noted,
and the locations of most proposed logics of knowledge and belief along

these two dimensions have been criticized.

All standard modal 1loglcs or 1logics of necessity have been
extensions of the system called K, which is the minimal modal logic.
When conceived of as a basis for logics of knowledge and belief, this
system vyields the result that the subjects or agents 1in the intended
domain of the theory know or believe all classical logical tautologies
and, further, know or believe all the classical tautological
consequences of anything they know or believe. With respect to the
logic of necessity, these results are widely accepted. Surely all
tautologies are necessarily true and, surely, if something is a logical
consequence of a necessary truth, then it is itself a necessary truth.
This has seemed to many to be a wildly inappropriate requirement on
knowledge and/or belief. Unfortunately, committing oneself to working
within modal logics weaker than K involves giving up some, perhaps much,
of the power of analysis yielded by standard techniques in the theory of

modal logics.

The other dimension of 1idealization has been that of
“introspective” (or reflective) competence. How much are our subjects
assumed to know or believe about their own knowledge and/or beliefs?
Here, too, there has been a good deal of disagreement. With regard to
knowledge, it has centered around the acceptability of the principle

that, if one knows that P, one knows that one knows that P. (The

12
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analogous principle 1n modal logic is that, if {it is necessary that P,
then it 1s necessary that it 1s necessary that P.) With regard to
belief, a further locus of controversy has been the negative counterpart
of the foregoing principle; namely that, if one doesn”t believe that P,
then one believes that one doesn”t believe that P. The analogous

principle about necessity is itself controversial.

Under this project, we have explored less drastic
idealizations along the dimension of introspective competence. The
considerations motivating commitment to the system K as a base are
largely purely technical or tactical--the main point being simply a
desire to separate problems that are separable in principle. With
respect to knowledge, we suggest that one should begin, at least, with
no more than the basic system K together with the principle that, if one
knows that P, then P. In the case of belief, more drastic deviations
from standard systems are proposed. In particular, a new axiom--called
Y--is suggested. In one formulation, the axiom amounts to the
following: 1f one believes that P, then one doesn”t believe that one
doesn“t believe that P. This formulation brings out an essential
feature of the proposed system: As an alternative to idealizing in such
a way as to guarantee great scope t% viridical introspection, the
suggestion 1s to idealize in such a way as to guarantee against false

introspective beliefs.

Considerations 1in favor of such an alternative idealization
come from a number of sources; two, in particular, are the Paradox of
the Preface and, most centrally, Moore” s Paradox. The principle
underlying the former is that we don“t believe that all of our beliefs
are true. Indeed, surely it”“s irrational for us to believe that we are
in no way mistaken in our beliefs. Then we must reject the following
principle: we believe that, if we believe that P, then P. (The
analogous principle for knowledge 1is obviously correct.) Moore”s
paradox consists in this: It is odd or self-defeating for someone to
assert both P and that he doesn”t believe that P. (That 1s, any

utterance of any instance of the sentence form "P; but I don”t believe

13
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that P." is, in some sense, self-denying.) The moral of Moore’s
paradox, at least with respect to the logic of belief, is that we do not
believe of any one of our beliefs that we don”"t believe 1it. This is
precisely the point of the axiom Y.

The full development of these ideas is presented in a paper by
Israel [12], included as Appendix F. 1Israel characterizes the axiom Y,
and the resulting system K + Y 1in terms of the now standard model-
theoretic techniques for modal 1logic. This yields both soundness and
completeness results. He shows in what ways the formalization is weaker
than standard logics of belief and sketches briefly some more general
considerations about the appropriateness, given varying conceptions of

the role of beliefs in action, of modal logics of knowledge and belief.

3. Plan Synthesis

Part of our work deals with techniques for automatic planning.
Previous work 1in this vein has been highly experimental in nature, the
standard methodology being to explore possible techniques by
constructing working programs. Because of the emphasis on
experimentation, very little has been done to analyze the techniques to
determine why they work, when they are applicable, and whether it is
possible to generalize them to solve larger classes of problems. Our
work provides at least part of the missing analysis and introduces new

techniques for plan synthesis.

We have approached the question of automatic planning from a
rigorous, mathematical standpoint. Our methodology has been to develop
a mathematical framework in which to study planning problems, to explore
this framework for theorems that can be used to constrain the search for
a solution, and then to construct planning techniques based on the
theorems that were found. By following this methodology, 1t has been
possible to develop techniques (a) that are capable of solving a much
broader class of problems than had previously been considered, and (b)
that are guaranteed to find a solution 1f one exists. Furthermore, it
has been possible to wunify many existing ideas in automatic planning,

showing how these ideas arise from first principles.

14




The mathematical framework that has been developed is very
much 1like that of first-order dynamic logic [13]. In this framework,
the world may be 1in any one of a possibly infinite number of states.
Performing an action causes the world to jump from one state to another.
A planning problem in this framework consists of a description of the
initial state, a description of the goal state, and a description of the
allowable actions. The problem is to find a sequence of actions that is
guaranteed to force the world into a state satisfying the goal
description, given that the world may initially be in any one of the
states satisfying the initial-state description. (State descriptions
may be incomplete; that is, there may be more than one state satisfying

a given description.)

Formally, a state description is a set of formulae in first-
order 1logic, and a state is a first-order model. Actions are binary
relations on states. For planning purposes, though, all that we need to
know about an action are its preconditions and its regression operator.
The preconditions of an action are a set of formulae defining the states
in which the action may be performed. A regression operator for an
action 1is a function mapping formulae to formulae such that the
regression of a formula 1is the weakest condition that must be true
before the action i1s performed in order for the formula to be true
afterward. One of the contributions of our work is a language for
describing the effects of an action and a way of computing regression
operators from action descriptions 1in this language. The language is
significant in that it combines the generality of the situation calculus
[14] with the notational convenience of STRIPS [15]. This allows the

frame problem of the situation calculus to be circumvented to the same

extent that it can be done in STRIPS.

The planning techniques are based primarily on two N
2]
observations. The first is that the world changes state only as the i

result of an action. Therefore, if a formula is false, it will become

true only if an action makes it true. The second observation is that a

plan must be finite since we would like our goals to be achieved at a
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:}: definite point in the future. Consequently, there will always be a last
o point in a plan when a formula becomes true if it becomes true at all.
"
> These observations 1lead us to the following theorem: a formula is true
A
Y at a point P in a plan if and only 1if (1) the formula is true in the
:2. initial state and remains true until at least point P, or (2) there is
:: an action prior to P that causes the formula to become true and the
. formula remains true thereafter until at least point P. This theorem
_{{ tells us that, to construct a plan to achieve some goal, either we must
:3 introduce an action that makes the goal true or we must prevent the goal j
;i: from becoming false if it 1is true initially. From this theorem it is
’ possible to derive a planning technique. The details are presented in a
. paper by Pednault [16], included as Appendix G.
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ABSTRACT

Commonsense reasoning is “nonmonotonic” 1in the sense that we often
draw, on the basis of partial information, conclusions that we later
retract when we are given more complete information. Some of the most
interesting products of recent attempts to formalize nonmonotonic
reasuning are the nonmonotonic 1logics of McDermott and Doyle [McDermott
and Doyle, 1980; McDermott, 1982]. These 1logics, however, all have
peculiarities that suggest they do not quite succeed 1in capturing the
intuitions that prompted their development. In this paper we
reconstruct nonmonotonic logic as a model of an ideally rational agent”s
reasoning about his own beliefs. For the resulting system, called

autoepistemic logic, we define an intuitively based semantics for which

we can show autoepistemic logic to be both sound and complete. We then

compare autoepistemic logic with the approach of McDermott and Doyle,

showing how it avoids the peculiarities of their nonmonotonic logic.
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I INTRODUCTION

It has been generally acknowledged in recent years that one
important feature of ordinary commonsense reasoning that standard logics

fail to capture is 1ts nonmonotonicity. An example frequently given to

illustrate the point 1is the following. If we know that Tweety is a
bird, we will normally assume, in the absence of evidence to the
contrary, that Tweety can fly. If, however, we later learn that Tweety
is a penguin, we will withdraw our prior assumption. If we try to model
this in a formal system, we seem to have a situation in which a theorem
P is derivable from a set of axioms S, but is not derivable from some
set S° that is a superset of S. The set of theorems, therefore, does
not increase monotonically with the set of axfoms; hence this sort of
reasoning 1is said to be "nonmonotonic.” As M.nsky [1974] has pointed
out, standard logics are always monotonic, because their inference rules
make every axiom permissive. That is, the inference rules are always of
the form "P is a theorem if Q,...,Q, are theorems,” so that new axioms

can only make more theorems derivable; they can never invalidate a S
previous theorem. ﬁ
“~

Recently there have been a number of attempts to formalize this
type of nonmonotonic reasoning. The general idea 1is to allow axioms to i~
be restrictive as well as permissive, by employing inference rules of &
the form "P is a theorem if Gj,...,Qy are not theorems.” The inference
that birds can fly 1is handled by having, in effect, a rule that says
that, for any X, "X can fly" 1s a theorem if "X is a bird"” is a theorem

and "X cannot fly"” 1s not a theorem. If all we are told about Tweety is j

that he 1is a bird, we will not be able to derive "Tweety cannot fly"; :;

consequently, "Tweety can fly” will be inferable. If we are told that b
. Tweety 1is a penguin and we already know that no penquin can fly, we will {a

be able to derive the fact that Tweety cannot fly, and so the inference

that Tweety can fly will be blocked.
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One of the wmost interesting embodiments of this approach to
nonmonotonic reasoning 1s McDermott and Doyle”s “nonmonotonic logic”
[McDermott and Doyle, 1980; McDermott, 1982]. McDermott and Doyle
modify a standard first-order logic by introducing a sentential operator
"M," whose informal interpretation is "is consistent.” Nonmonotonic
inferences about birds being able to fly would be sanctioned in their
system by the axiom [McDermott, 1982, p. 33]

(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)).

This formula can be read informally as “"for all X, if X 1s a bird and it
is consistent to assert that X can fly, then X can fly.” McDermott and
Doyle can then have a single general nonmonotonic inference rule, whose

intuitive content is "MP 1s derivable 1f P is not derivable.”

ricermott and Doyle”s approach to nonmomnotonic reasoning seems more
interesting and ambitious than some other approaches in two respects.
First, since the principles that 1lead to nonmonotonic inferences are
explicitly represented in the 1logic, those very principles can be
reasoned about. That 1is, if P is such a principle, we could start out
believing Q -> P or even MP -> P, and come to hold P by drawing
inferences, either monotonic or nonmonotonic. So, 1f we use McDermott
and Doyle”s representation of the belief that birds can fly, we could
also represent various inferences that would lead us to adopt that
belief. Second, since they use only general inference rules, they are
able to provide a formal semantic interpretation with soundness and
completeness proofs for each of the logics they define. In formalisms
that use content-specific nonmonotonic inference rules dealing with
contingent aspects of the world (i.e., it might have been the case that
birds could not fly), it is difficult to see how this could be done.
Tre effect 1s that nonmonotonic inferences 1in McDermott and Doyle”s

logics are justified by the meaning of the premises of the inferences.

There are a number of problems with McDermott and Doyle”s
nonmonotonic logics, however. The first logic they define [McDermott

and Doyle, 1980] gives such a weak notion of consistency that, as they
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point out, MP is not inconsistent with “P. That is, it is possible for
a theory to assert simultaneously that P is consistent with the theory
and that P {s false. McDermott subsequently [1982] tried basing
nonmonotonic 1logics on the standard modal logics T, S4, and S5. He
discovered, however, that the most plausible candidate for formalizing
the notion of consistency that he wanted, nonmonotonic S5, collapses to
ordinary S5 and is therefore monotonic. In the rest of this paper we
develop an alternative formalization of nonmonotonic logic that shows
why these problems arise in McDermott and Doyle”s logics and how they

can be avoided.
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II NONMONOTONIC LOGIC AND AUTOEPISTEMIC REASONING

The first step in analyzing nonmonotonic logic is to determine what
sort of nonmonotonic reasoning it 1is meant to wmodel. After all,
nonmonotonicity is a rather abstract syntactic property of an inference
system, and there is no a priori reason to believe that all forms of
nonmonotonic reasoning should have the same logical basis. In fact,
McDermott and Doyle seem to confuse two quite distinct forms of

nonmonotonic reasoning, which we will call default reasoning and

autoepistemic reasoning. They talk as though their systems were

intended to model the former, but they actually seem much better suited

to modeling the latter.

By default reasoning we mean the drawing of plausible inferences
from less—-than-conclusive evidence in the absence of information to the
contrary. The examples about birds being able to fly are of this type.
If we know that Tweety 1s a bird, that gives us some evidence that
Tweety can fly, but it is not conclusive. In the absence of information
to the contrary, however, we are willing to go ahead and tentatively
conclude that Tweety can fly. Now even before we do any detailed
analysis of nonmonotonic logic, we can see that there will be problems
in interpreting it as a model of default reasoning: In the formal
semantics McDermott and Doyle provide for nonmonotonic logic, all the
nonmonotonic inferences are valid. Default reasoning, however, is

clearly not a form of valid inference.l

Consider the belief that 1lies behind our willingness to infer that
Tweety can fly from the fact that Tweety is a bird. It is probably
something 1like most birds can fly, or almost all birds can fly, or a
typical bird can fly. To model this kind of reasoning, 1in a theory
whose only axioms are "Tweety is a bird” and "Most birds can fly,” we

ought to be able to infer (nonmonotonically) "Tweety can fly." Now 1if
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this were a form of valid inference, we would be guaranteed that the

conclusion is true if the premises are true. This is manifestly not the
case. The premises of this inference give us a good reason to draw the

conclusion, but not the ironclad guarantee that validity demands.

Now reconsider McDermott”s formula that yields nonmonotonic

inferences about birds being able to fly:
(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X))

McDermott suggests as a gloss of this formula "Most birds can fly,”
which would indicate that he thinks of the inferences it sanctions as
default inferences. But if we read M as "is consistent” as McDermott
and Doyle repeatedly tell us to do elsewhere, the formula actually says
something quite different: “For all X, 1f X is a bird and it 1is
consistent to assert that X can fly, then X can fly." Since the
inference rule for M is intended to convey "MP is derivable if P is not
derivable,” the notion of consistency McDermott and Doyle have in mind
seems to be that it is consistent to assert P if ~P is not derivable.
McDermott”s formula, then, says that the only birds that cannot fly are
the ones that can be inferred not to fly. If we have a theory whose
only axioms are this one and an assertion to the effect that Tweety is a
bird, then the conclusion that Tweety can fly would be a valid
inference. That 1is, if it is true that Tweety is a bird, and it is true
that only birds inferred not to fly are in fact unable to fly, and
Tweety is not inferred not to fly, then it must be true that Tweety can
fly.

This type of reasoning is not a form of default reasoning at all;
it rather seems to be more like reasoning about one”s own knowledge or

belief. Hence, we will refer to it as autoepistemic reasoning.

Autoepistemic reasoning, while different from default reasoning, is an
important form of commonsense reasoning in its own right. Consider my
reason for believing that T do not have an older brother. It 1is surely

not that one of my parents once casually remarked, "You know, you don”t

have any older brothers,” nor have I pleced it together by carefully




LR N i S A A I R PR P B e L A D O A NN R P NS A AN C- [ IR L S

2
P

o

N
¥
;i gifting other evidence. I simply belleve that if I did have an older
,*i brother I would know about 1it; therefore, since I don”t know of any
t{; older brothers, I must not have any. This is quite different from a
fﬂ: default inference based on the belief, say, that most MIT graduates are
igf eldest sons, and that, since I am an MIT graduate, I am probably an
W eldest son.

-}} Default reasoning and autoepistemic reasoning are both

:i nonmonotonic, but for different reasons. Default reasoning is
:;E nommonotonic because, to use a term from philosophy, it is defeasible:

- its conclusions are tentative, so, given better information, they may be
:k: withdrawn. Purely autoepistemic reasoning, however, is not defeasible.
;? If you really believe that you already know all the instances of birds
i“E that cannot fly, you cannot consistently hold to that belief and at the
e same time accept new instances of birds that cannot fly.2
3 As Stalnaker [1980] has observed, autoepistemic reasoning is
iﬁ_ nonmonotonic because the meaning of an autoepistemic statement is
'7i context-sensitive; 1t depends on the theory in which the statement is

embedded.3 If we have a theory whose only two axioms are

;3
=N BIRD(TWEETY)

= (ALL X)(BIRD(X) /\ M(CAN-FLY(X)) =-> CAN-FLY(X)),

;. then MP does not merely mean that P is consistent--it means that P is
i;: consistent with the nonmonotonic theory that contains only those two
;:?: axioms. We would expect CAN-FLY(TWEETY) to be a theorem of this theory.
:; 1f we change the theory by adding “CAN-FLY(TWEETY) as an axiom, we then
'?; change the meaning of MP to be that P 1is consistent with the
{' nonmonotonic theory that contains only the axioms
1
;%fi ~CAN-FLY(TWEETY)

;:{ BIRD(TWEETY)

(ALL X)(BIRD(X) /\ M(CAN-FLY(X)) -> CAN-FLY(X)),
:&f and we would not expect CAN-FLY(TWEETY) to be a theorem. The operator M
?fﬂ changes 1ts meaning with context just as do 1iIndexical words in natural
'}j language, such as "I," "here,” and "now.” The nonmonotonicity
6
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associated with autoepistemic statements should therefore be no more

puzzling than the fact that "I am hungry” can be true when uttered by a
particular speaker at a particular time, but false when uttered by a
different speaker at the same time or the same speaker at a different
time. So we might say that, whereas default reasoning is nonmonotonic
because 1t 1s defeasible, autocepistemic reasoning 1s nonmonotonic

because it is indexical.
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i;$£ ITI THE FORMALIZATION OF AUTOEPISTEMIC LOGIC
3
.' Rather than try directly to analyze McDermott and Doyle”s
t} nonmonotonic logic as a model of autoepistemic reasoning, we will first
‘;ﬁ define a logic that demonstrably does model <certain aspects of
:::: autoepistemic reasoning and then compare nonmonotonic logic with that.
. We will call our logic, naturally enough, autoepistemic logic. The
language will be much 1like McDermott and Doyle”s, an ordinary logical
language augmented by autoepistemic modal operators. McDermott and
o Doyle treat consistency as their fundamental notion, so they take M as
,;'7 the basic modal operator and define 1its dual L to be "M~. Our logic,
however, will be based on the notion of belief, so we will take L to
“:g ‘ mean "is believed,” treat it as primitive, and define M as "L~. In any
Zf? case, this gives us the same notion of consistency as theirs: a formula
I is consistent if its negation is not believed. Since there are some
R problems with regard to the meaning of quantifying into the scope of an
;f; autoepistemic operator that are not relevant to the main point of this
i:; A paper, we will limit our attention to propositional autoepistemic logic.
; Autoepistemic logic is intended to model the bellefs of an agent
'fij reflecting upon his own beliefs. The primary objects of interest are
~i?} sets of autoepistemic logic formulas that are interpreted as the total
:}if beliefs of such agents. We will call such a set of formulas an
= autoepistemic theory. The truth of an agent”s beliefs, expressed as a
‘iﬁ propositional autoepistemic theory, will be determined by (1) which
fiﬁ propositional constants are true in the external world and (2) which
:kt formulas the agent believes. A formula of the form LP will be true with
- respect to an agent if and only if P is in his set of beliefs. To
igf formalize this, we define notions of interpretation and model as
:;i; follows:
SR
:::: .
:::::'. 8
o




We proceed iIn two stages. First we define a propositional

interpretation of an autoepistemic theory T to be an assignment of

truth~-values to the formulas of the language of T that is consistent
with the wusual truth recursion for propositional logic and with any
arbitrary assignment of truth-values to propositional constants and

formulas of the form LP. A propositional model of an autoepistemic

theory T 1is a propositional interpretation of T in which all the
formulas of T are true. The propositional interpretations and models of
an autoepistemic theory are, therefore, precisely those we would get in
ordinary propositional logic by treating all formulas of the form LP as
propositional constants. We therefore 1nherit the soundness and
completeness theorems of propositional logic; i.e., a formula P is true
in all the propositional models of an autoepistemic theory T if and only
if it is a tautological consequence of T (i.e., derivable from T by the

usual rules of propositional logic).

Next we define an autoepistemic interpretation of an autoepistemic

theory T to be a propositional interpretation of T in which, for every
formula P, LP is true if and only 1f P is in T. It should be noted that
the theory T itself completely determines the truth of any formula of
the form LP in all the autoepistemic interpretations of T, independently
of the truth assignment to the propositional constants. Hence, for
every truth assigmment to the propositional constants of T, there is
exactly one corresponding autoepistemic interpretation of T. Finally,

an autoepistemic model of T is an autoepistemic 1interpretation of T in

which all the formulas of T are true. So the autoepistemic
interpretations and models of T are just the propositional
interpretations and models of T that conform to the intended meaning of

the modal operator L.

This gives us a formal semantics for autoepistemic logic that
matches 1its intuitive interpretation. Suppose that the beliefs of an
agent situated in a particular world are characterized by the

autoepistemic theory T. The world 1in question will provide an

assignment of truth-values for the propositional constants of T, and any
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formula of the form LP will be true relative to the agent just in case
he believes P. In this way, the agent and the world in which he is
situated directly determine an autoepistemic interpretation of T. That
interpretation will be an autoepistemic model of T, just in case all the

agent”s beliefs are true in his world.

Given this semantics for autoepistemic logic, what do we want from
a notion of inference for the logic? From an epistemological
perspective, the problem of inference 1is the problem of what set of
beliefs (theorems) an ideally rational agent would adopt on the basis of
his initial premises (axioms). Since we are trying to model the beliefs
of a rational agent, the beliefs should be sound with respect the
premises; we want a guarantee that the beliefs are true provided that
the premises are true. Moreover, since we assume that the agent is
ideally rational, the beliefs should be semantically complete; we want
them to contain everything that the agent would be semantically
justified 1in concluding from his beliefs and from the knowledge that
they are his beliefs. An autoepistemic 1logic that meets these
conditions can be viewed as a competence model of reflection upon one”s
own beliefs. Like competence models generally, 1t assumes unbounded
resources of time and memory, and is therefore not a plausible model of
any finite agent. 1t is, however, the model upon which the behavior of
rational agents ought to converge as theilr time and memory resources

increase.

Formally, we will say an autoepistemic theory T is sound with
respect to an initial set of premises A if and only if every
autoepistemic interpretation of T in which all the formulas of A are
true 1s an autoepistemic model of T. This notion of soundness is the
weakest condition that guarantees that all of the agent”s beliefs are
true whenever all his premises are true. Let I be the autoepistemic
interpretation of T that 1s determined by what is true in the actual
world (including what the agent actually believes). If all the formulas
of T are true in every autoepistemic interpretation of T in which all

the formulas of A are true, then all the formulas of T will be true in I

10
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if all the formulas of A are true in I; hence, all the agent”s beliefs
will be true in the world if all the agent”s premises are true in the
world. However, if there is an autoepistemic interpretation of T in
which all the formulas of A are true but some formulas of T are false,
then 1t is possible that I is that 1iInterpretation, and that all the
agent”s premises will be true in the world, but some of his beliefs will

not.

Nur formal notion of completeness is that an autocepistemic theory T

is semantically complete if and only if T contains every formula that is

true in every autoepistemic model of T. If a formula P is true in every
autoepistemic model of an agent”s beliefs, then it must be true if all
the agent”s beliefs are true, and an ideally rational agent should be
able to recognize that and infer P. On the other hand, if P is false in
some autoepistemic model of the agent”s beliefs, then that model, for
all he can tell, might be the way the world actually is; he is therefore

justified in not believing P.

The next problem 1is to give a syntactic characterization of the
autoepistemic theories that satisfy these conditions. With a monotonic
logic, the usual procedure is to define a collection of inference rules
to apply to the axioms. For a nonmonotonic logic this is a nontrivial
matter. Much of the technical ingenuity of McDermott and Doyle“s
systems 1lies simply 1in their formulation of a coherent notion of
nonmonotonic derivability. The problem is that nonmonotonic inference

rules do not yield a simple {iterative notion of derivability the way

monotonic inference rules do. We can view a monotonic inference process

- as applying the inference rules in all possible ways to the axioms,
< generating additional formulas to which the inference rules are applied
in all possible ways, and so forth. Since monotonic inference rules are

t} monotonic, once a formula has been generated at a given stage, it

remains in the generated set of . ormulas at every subsequent stage.
Thus the theorems of a theory in a monotonic system can be defined

simply as all the formulas that are generated at any stage. The problem

with attempting to follow this pattern with nonmonotonic inference rules

11
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is that we cannot draw nonmonotonic 1inferences reliably at any

particular stage, since something inferred at a later stage may
invalidate them. Lacking such an iterative structure, nonmonotonic
systems often use nonconstructive "fixed point” definitions, which do
not directly yield algorithms for enumerating the "derivable” formulas,
but do define sets of formulas that respect the intent of the
nonmonotonic 1inference rules (e.g., 1in McDermott and Doyle”s fixed

points, MP is included whenever P is not included.)

For our logic, it 1s easiest to proceed by first specifying the
closure conditions that we would expect the beliefs of an ideally
rational agent to possess. Viewed informally, the beliefs should
include whatever the agent could infer either by ordinary 1logic or by
reflecting on what he believes. Stalnaker [1980] has put this formally
by suggesting that a set of formulas T that represents the beliefs of an

ideally rational agent should satisfy the following conditions:
1. If Py, ...,P, are in T, and P1,...,P, |- Q, then Q is in T
(where "|-" means ordinary tautological consequence).

2. If P is in T, then LP is in T.

3. If P is not in T, then "LP is in T.

Stalknaker [1980, p. 6] describes the state of belief characterized by
such a theory as stable "in the sense that no further conclusions could
be drawn by an ideally rational agent in such a state.” We will

therefore describe the theories themselves as stable autoepistemic

theories.

There are a number of interesting observations we can make about
stable autoepistemic theories. First we note that, 1if a stable
autoepistemic theory T 1is congistent, it will satisfy two more

intuitively sound conditions:

4. If LP is in T, then P is in T.

5. If "LP i{s in T, then P is not in T.

12
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Condition 4 holds because, if LP were 1in T and P were not, ~LP would be
in T (by Condition 3) and T would be inconsistent.4 Condition 5 holds
because, if “LP and P were both in T, LP would be in T (by Condition 2)

and T would be inconsistent.

Conditions 2-5 imply that any consistent stable autoepistemic
theory will be both sound and semantically complete with respect to
formulas of the form LP and "LP: If T is such a theory, then LP will be
in T if and only if P is in T, and “LP will be in T if and only if P is
not in T. Thus, all the propositional models of a stable autoepistemic
theory are autoepistemic models. Stability implies a soundness result
even stronger than this, however. We can show that the truth of any
formula of a stable autoepistemic theory depends only on the truth of
the formulas of the theory that contain no autoepistemic operators. (We
will call these formulas "objective.”)

Theorem 1. If T 1is a stable autoepistemic theory, then any

autoepistemic interpretation of T that is a propositional

model of the objective formulas of T is an autoepistemic model
of T.

(The proofs of all theorems are given in the appendix.)

In other words, if all the objective formulas in an autoepistemic
theory are true, then all the formulas in that theory are true. Given
that the objective formulas of a stable autoepistemic theory determine
whether the theory 1is true, {it 1is not surprising that they also
determine what all the formulas of the theory are.

Theorem 2. If two stable autoepistemic theories contain the

same objective formulas, then they contain exactly the same

formulas.?

Finally, with these characterization theorems, we can prove that
the syntactic property of stability is equivalent the semantic property
of completeness.

Theorem 3. An autoepistemic theory T is semantically complete
if and only 1if T is stable.

13
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By Theorem 3, we know that stability of an agent”s belieis
guarantees that they are semantically complete, but stability alone does
not tell us whether they are sound with respect to his initial premises.
That 1is because the stability conditions say nothing about what an agent
should not believe. They leave open the possibility of an agent”s
believing propositions that are not in any way grounded in his initial
premises. What we need to add is a constraint specifying that the only
} propositions the agent believes are his 1nitial premises and those
required by the stability conditions. To satisfy the stability
il conditions and include a set of premises A, an autoepistemic theory T
- must include all the tautological consequences of AU {LP | P is in T} U
1 {Lp | P is not in T}. Conversely, we will say that an autoepistemic
theory T 1is grounded in a set of premises A if and only if every formula

of T is 1ncluded in the tautological consequences of A U {LP | P is in
T} U {"LP | P is not in T}. The following theorem shows that this
syntactic constraint on T and A captures the semantic notion of
soundness.

Theorem 4. An autoepistemic theory T is sound with respect to

an initial set of premises A if and only 1if T is grounded in

A.

From Theorems 3 and 4, we can see that the possible sets of beliefs
that an ideally rational agent might hold, given A as his premises,
ought to be just the extensions of A that are grounded in A and stable.

We will call these the stable expansions of A. Note that we say "sets"”,

because there may be more than one stable expansion of a given set of

premises. For example, consider {~LP =-> Q, “LQ => P} as an initial set

of premises.® The first formula asserts that, if P is not believed, then

Q 1is true; the second asserts that, if Q is not believed, then P is
true. In any stable autoepistemic theory that includes these premises,
if P 1is not in the theory, Q will be, and vice versa. But if the theory
is grounded 1in these premises, if P is in the theory there will be no
basis for including Q, and vice versa. Consequently, a stable expansion
of {"LP -> Q, "LQ => P} will contain either P or Q, but not both.

14
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It can also happen that there are no stable expansions of a given
set of premises. Consider, for instance, {"LP -> P}.7 If T is a stable
autoepistemic theory that contains “LP -> P, it must also contain P. If
P were not in T, “LP would have to be in the T, but then P would be in
T--a contradiction. On the other hand, if P is in T, then T 1is not
grounded in {"LP -=> P}. Therefore no stable autoepistemic theory can be
grounded in {“LP -> P}.

This seemingly strange behavior results from the indexicality of
the autoepistemic operator L. Since L 1is interpreted relative to an
entire set of beliefs, its interpretation will change with the various
ways of completing a set of beliefs. In each acceptable completion of a
set of beliefs, the interpretation of L will change to make that set
stable and grounded in the premises. Sometimes, though, no matter how
we try to form a complete a set of beliefs, the result never coincides
with the interpretation of L in a way that gives us a stable set of

beliefs grounded in the premises.

This raises the question of how to view autoepistemic 1logic as a
logic. If we consider a set of premises A as axioms, what do we
consider the theorems of A to be? If there is a unique stable expansion
of A, 1t seems clear that we want this expansion to be the set of
theorems of A. But what if there are several stable expansions of A--or
none at all? If we take the point of view of the agent, we have to say
that there can be alternative sets of theorems, or no set of theorems of
A. This may be a strange property for a logic to possess, but, given
our semantics, it is clear why this happens. An alternative (adopted by
McDermott and Doyle with regard to their fixed points) is to take the
theorems of A to be the intersection of the set of all formulas of the
language with all the stable expansions of A. This yields the formulas
that are in all stable expansions of A if there is more than one, and it
makes the theory inconsistent if there is no stable expansion of A.
This too 1is reasonable, but it has a different interpretation. It
represents what an outside observer would know, given only knowledge of

the agent”s premises and that he is ideally rational.
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IV ANALYSIS OF NONMONOTONIC LOGIC

Now we are in a position to provide an analysis of nonmonotonic
logic that will explain its peculiarities in terms of autoepistemic
logic. Briefly, our conclusions will be that the original nonmomnotonic
logic of McDermott and Doyle [1980] is simply too weak to capture the
notions they wanted, and that McDermott”s [1982] attempt to strengthen

the logic does so in the wrong way.

McDermott and Doyle”s first 1logic 1s very similar to our
autoepistemic 1logic with one glaring exception; 1ts specification

includes nothing corresponding to our Condition 2 (if P is in T, then LP

is in T). McDermott and Doyle define the nommonotonic fixed points of a

set of premises A, corresponding to our stable expansions of A. In the
propositional case, their definition is equivalent to the following:
T is a fixed point of A just in case T 1is the set of
tautological consequences of AU {"LP | P is not in T}.
Our definition of a stable expansion of A, on the other hand, could be
stated as
T 1is a stable expansion of A just in case T is the set of
tautological consequences of AU {LP | Pis 4in T} U {"LP | P
is not in T}.
In nonmonotonic logic, {LP [ P is in T} is missing from the "base” of
the fixed points. This makes it possible for there to be nonmonotonic
theories with fixed points that contain P but not LP. So, under an
autoepistemic interpretation of L, McDermott and Doyle”s agents are
omniscient as to what they do not belleve, but they may know nothing as

to what they do believe.

This explains essentially all the peculiarities of McDermott and
Doyle”s original logic. For instance, they note [1980, p. 69] that MC
does not follow from M(C /\ D). Changing the modality to L, this is
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?* equivalent to saying that ~LP does not follow from “L(P \/ Q). The
. problem is that, lacking the ability to infer LP from P, nonmonotonic
!‘ logic permits-interpretations of L that are more restricted than simple
}" belief. Suppose we interpret L as "inferable in n or fewer steps” for
A some particular n. P might be inferable in exactly n steps, and P \/ Q
in nt+l. According to this interpretation "L(P \/ Q) would be true and
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“LP would be false. Since this interpretation of L is consistent with

McDermott and Doyle”s definition of a fixed point, ~LP does not follow
from "L(P \/ Q). The other example of this kind noted by McDermott and

P Y

Doyle 1is that {MC, “C} has a consistent fixed point, which amounts to
saying simultaneously that P is consistent with everything asserted and
that P is falgse. But this set of premises is equivalent to {"LP, P},

. - 1

which would have no consistent fixed points if LP were forced to be in

every fixed point that contains P.

On the other hand, McDermott and Doyle consider it to be a problem
that {MC => D, ~D} has no consistent fixed point in their theory.
Restated in terms of L, this set of premises is equivalent to {P -> L~
P}. Since a stable autoepistemic theory containing these premises will
also contain LQ, it must also contain Q to be consistent. (Otherwise it
would contain "LQ.) But Q 1is not contained in any theory grounded in
the premises {P -> LQ, P}; it is possible for P => LQ and P both to be
true with respect to an agent while Q is false. So there 1is no
consistent stable expansion of {P -> LQ, P} in autoepistemic logic;
hence, this set of premises cannot be the foundation of an appropriate
set of beliefs for an ideally rational agent. Thus, our analysis
justifies nonmonotonic logic in this case, contrary to the intuition of

McDermott and Doyle.

McDermott and Doyle recognized the weakness of the original

formulation of nonmonotonic logic, and McDermott [1982] has gone on to

develop a group of theories that are stronger because they are based on

o modal rather than classical logic. McDermott”s nonmonotonic modal

theories alter the logic in two ways. First, the definition of fixed

K
point {s changed to be equivalent to }
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T 1is a fixed point of A just in case T is the set of modal
consequences of A U {"LP | P is not in T}, -
where "modal consequence” means that P |- LP is used as an additional
inference rule. Second, McDermott considers only theories that include
as premises the axioms of one of the standard modal logics "T,"” "S4,”

and "S5."

Merely changing the definition of fixed point brings McDermott”s
logic much closer to autoepistemic logic. 1In particular, adding P |- LP
as an inference rule means that all modal fixed points of A are stable
expansions of A. However, adding P |~ LP as an inference rule, rather
than adding {LP | P is in T} to the base of T, has as a consequence that
not all stable expansions of A are modal fixed points of A. The
difference is that, in autoepistemic logic, if P can be derived from LP,
then both can be 1in a stable expansion of the premises, whereas in
McDermott”s logic there must be a derivation of P that does not rely on
LP. Thus, although in autoepistemic logic there 1s a stable expansion
of {LP => P} that includes P, in McDermott”s logic there 1is no modal
fixed point of {LP => P} that includes P. It is as if, in autoepistemic
logic, one can acquire the belief that P and justify it later by the
premise that, if P 1s believed, then it is true. In nonmonotonic logic,
however, the justification of P has to precede belief in LP. This makes
the interpretation of L in nonmonotonic modal logic more like "justified
belief” than simple belief.

Since we have already shown that autoepistemic logic requires no
specific axioms to capture a competence model of autoepistemic
reasoning, we might wonder what purpose is served by McDermott”s second
modification of nonmonotonic logic, the addition of the axioms of
various modal logics. The most plausible answer 1is that, besides
behaving 1in accordance with the principles of autoepistemic logic, an
ideally rational agent might well be expected to know what some of those
principles are. For instance, the modal logic T has all instances of
the schema L(P -> Q) -> (LP -> LQ) as axioms. This says that the

agent”s beliefs are closed under modus ponens--which is true for an
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ideally rational agent, so he might as well believe it. S4 adds the

schema LP -> LLP, which means that, if the agent believes P, he believes
that he believes it (Condition 2). S5 adds the schema ~LP -> L"LP,
which means that, 1f the agent does not believe P, he believes that he
does not believe it (Condition 3). Since all these formulas are always
true with respect to any ideally rational agent, it seems plausible to
expect him to adopt them as premises. Thus, S5 seems to be the most
plausible candidate of the nonmonotonic logics as a model of

autoepistemic reasoning.

The problem is that all of these logics also contain the schema
LP -> P, which means that, if the agent believes P, then P is true--but
this is not generally true, even for ideally rational agents.8 It turns
out that LP -> P will always be contained in any stable autoepistemic
theory (that 1is, 1ideally rational agents always believe that their
beliefs are true), but making it a premise allows beliefs to be grounded
that otherwise would not be. As a premise the schema LP -> P can itself
be justification for believing P, while as a “theorem” it must be
derived from “LP, in which case P is not believed, or from P, in which
case P must be independently justified, or from some other grounded
formulas. In any case, as a premise schema, LP -> P can sanction any
belief whatsoever in autoepistemic logic. This is not generally true in
modal nonmonotonic 1logic, as we have also seen, but it is true in
nonmonotonic S5. The S5 axiom schema "LP -> L™LP embodies enough of the
model theory of autoepistemic logic to allow LP to be "self grounding”:
The schema "LP -> L"LP 1s equivalent to the schema “L~LP -> LP, which
allows LP to be justified by the fact that its negation is not believed.
This inference is never in danger of being falsified, but, from this and

LP -> P, we obtain an unwarranted justification for believing P.

The collapse of nonmonotonic S5 into monotonic S5 follows
immediately. Since LP =-> P can be used to justify belief in any formula
at all, there are no formulas that are absent from every fixed point of
theories based on nonmonotonic S5. It follows that there are no

formulas of the form "LP that are contained 1in every fixed point of

-
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theories based on nonmonotonic S5; hence there are no theorems of the
form "LP 1in any theory based on nonmonotonic S5. (Recall that the
theorems are the intersection of all the fixed points.) Since these
formulas are just the ones that would be produced by nonmonotonic
inference, nonmonotonic S5 collapses to monotonic S5. In more informal
terms, an agent who assumes that he is 1infallible is liable to believe
anything, so an outside observer can conclude nothing about what he does

not believe.

The real problem with nonmonotonic S5, then, is not the S5 schema;
therefore McDermott®s rather unmotivated suggestion to drop back to
nonmonotonic S4 [1982, p. 45] 1is not the answer. The S5 schema merely
makes explicit the consequences of adopting LP -> P as a premise schema
that are implicit in the logic”s natural semantics. If we want to base
nonmonotonic logic on a modal logic, the obvious solution 1is to drop
back, not to S4&, but to what Stalnaker [1980] calls “weak S$5"--S5
without LP -> P. It 1s much better motivated and, moreover, has the

advantage of actually being nonmonotonic.

In autoepistemic logic, however, even this much is unneccessary.
Adopting any of the axioms of weak S5 as premises makes no difference to
what can be derived. The key fact is the following theorem:

Theorem 5. If P is true in every autoepistemic interpretation

of T, then T 1is grounded in A U {P} if and only if T is

grounded in A.

An immediate corollary of this result is that, 1if P is true in every
autoepistemic interpretation of T, then T is a stable expansion of

AU {P} if and only 1f T is a stable expansion of A.

The modal axiom schemata of weak S5,

L(P => Q) -> (LP => LQ)
LP -> LLP
~LP -> L"LP,

simply state Conditions 1-3, so all their instances are true in every

autoepistemic interpretation of any stable autoepistemic theory. The
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nonmodal axioms of weak S5 are just the tautologies of propositional

logic, so they are true in every interpretation (autoepistemic or
otherwise) of any autoepistemic theory (stable or otherwise). It
immediately follows by Theorem 5, therefore, that a set of premises
containing any of the axioms of weak S5 will have exactly the same
stable expansions as the corresponding set of premises without any weak-

S5 axloms.
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V  CONCLUSION

McDermott and Doyle recognized that their original nonmonotonic
logic was too weak; when McDermott tried to strengthen it, however, he
misdiagnosed the problem. Because he was thinking of nonmonotonic logic
as a logic of provability rather than belief, he apparently thought the
problem was the lack of any connection between provability and truth.
At one point he says “Even though "M™P (abbreviated LP) might plausibly

-

be expected to mean “P is provable,” there was not actually any relation
between the truth values of P and LP," [1982, p. 34], and later he
acknowledges the questionability of the schema LP -> P, but says that
"it is difficult to visualize any other way of relating provability and
truth,” [1982, p. 35]. If one interprets nonmonotonic logic as a logic
of belief, however, there 1is no reason to expect any connection between
the truth of LP and the truth of P. And, as we have seen, the real
problem with the original nonmonotonic logic was that the "if" half of
the semantic definition of L--that LP 1is true 1if and only if P is

believed-—-was not expressed in the logic.

22
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NOTES

1 In their informal exposition, McDermott and Doyle [1980, pp. 44-46]
emphasize that their notion of nonmonontonic inference is not to be
taken as a form of valid inference. 1If this 1s the case, their formal

semantics cannot be regarded as the "real” semantics of their

nonmonotonic logic. At best, it would provide the conditions that would

have to hold for the inferences to be valid, but this leaves unanswered

the question of what formulas of nonmonotonic logic actually mean.

2 of course, autoepistemic reasoning can be combined with default
reasoning;' we might believe that we know about most of the birds that
cannot fly. This could lead to defeasible autoepistemic inferences, but
their defeasibility would be the result of their also being default

inferences.

3 Stalnaker”s note, which to my knowledge remains unpublished, grew out
of his comments as a respondent to McDermott at a Conference on
Artificial Intelligence and Philosophy, held in March 1980 at the Center
for Advanced Study in the Behavioral Sciences. N.B., the term

"autoeplstemic reasoning” is ours, not his.

4 Condition 4 will, of course, also be satisfied by an inconsistent
stable autoepistemic theory, since such a theory would include all

formulas of autoepistemic logic.

5 This theorem implies that our autoepistemic logic does not contain any
"nongrounded” self-referential formulas, such as one finds in what are
usually called "syntactical” treatments of belief. If, 1instead of a
belief operator, we had a belief predicate, Bel, there might be a term p
that denotes the formula Bel(p). Whether Bel(p) is believed or not is
clearly independent of any objective beliefs. The lack of such formulas
constitutes a characteristic difference between sentence-operator and

predicate treatments of propositional attitudes and modalities.
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6 McDermott and Doyle [1980, p. 51] present this example as {MC -> “D,
MD -> ~C}.

7 McDermott and Doyle (1980, p. 51)] present this example as {MC -> ~C}.

8 LP -> P would be an appropriate axiom schema if the interpretation of
LP were "P is known” rather than "P is believed,” but that notion is not
nonmonotonic. An agent cannot, in general, know when he does not know
P, because he might believe P--leading him to believe that he knows P—
while P is in fact false. Since agents are unable to reflect directly
on what they do not know (only on what they do not believe), an
autoepistemic logic of knowledge would not be a nonmonotonic logic;

rather, the appropriate logic would seem to be monotonic SS5.
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APPENDIX: PROOFS OF THEOREMS

Theorem 1. If T 1s a stable autoepistemic theory, the.. .y
autoepistemic interpretation of T that is a propositional
model of the objective formulas of T is an autoepistemic model
of T.

Proof. Suppose that T is a stable autoepistemic theory and I is an
autoepistemic interpretation of T that is a propositional model of the

objective formulas of T. All the objective formulas of T are true in I.

T must be consistent because an inconsistent stable autoepistemic theory
would contain all formulas of the language, which would include many
= objective formulas that are not true in I. Let P be an arbitrary
H formula in T. Since stable autoepistemic theories are closed under

{ tautological consequence, T wmust also contain a set of formulas

Py,...,P, that taken together entail P, where, for each i between 1 and
k, there exist n and m such that Py is of the form

b Pi,l \/ LPi,Z \/---\/ LPi’n \/ ~LPi,n+1 \/...\/ ~LPi,m L

p-
:t;_ and Pi,l is an objective formula. (Any formula is interderivable with a

set of such formulas by propositional logic alone.) There are two cases

u to be considered:
L

(1) Suppose at least one of LPi,Z»"'sLPi,na ~LP1,n+1""’~LPi,m is
in T. By Conditions 4 and 5, we know that, if any such formula is in T,
it must be true in I, since T is consistent and I is an autoepistemic

... interpretation of T. But, since each of these formulas entails Pi’ it

-}:f follows that P; {s also true in I.

(2) Suppose the first case does not hold. Conditions 2 and 3

guarantee that 1in every stable autoepistemic theory, for every formula
P, either LP or "LP will be in the theory. Hence, if T does not contain
any of LPi,Z""vLPi,n’ ~LPi,n+1-°"’~LPi,m’ it must contain all of
~LP1’2,...,”LP1’n, LP{ n4ls-++sLPy g- But Pj ; 1is a tautological

consequence of P; and these formulas (imagine repeated applications of
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the resolution principle); so Pi,l must be in T. But Py ; is objective,
and so, by hypothesis, must be true in I. Since Py 1 entails Py, it
’

must be the case that Pi is true in I.

In either case, P; will be true in I. All the P; taken together
entail P, so P must also be true in I. Since P was chosen arbitrarily,
every formula of T must be true in I; hence I is an autoepistemic model
of T.

Theorem 2. If two stable autoepistemic theories contain the

same objective formulas, then they contain exactly the same
formulas.

Proof. Suppose that T; and T, contain the same objective formulas and

Ty contains P. We prove by induction on the depth of nesting of
autoepistemic operators in P (the "L-depth” of P) that T, also contains
P. If the L-depth of P is O, the theorem is trivially true, since P
will be an objective formula. Now suppose that P has an L-depth of d
greater than O, and that, if two stable autoepistemic theories contain
the same objective formulas, then they contain exactly the same formulas

whose L-depth is less than d.

Since stable autoepistemic theories are closed under tautological
consequence, T; must also contain a set of formulas Py,...,P that are
interderivable with P by propositional logic, where, for each i between
1 and k, there exist n and m such that Py is of the form

Py,1 M LPg o \/eoo\/ LPy o \/ "LPy p41 \/.-.\/ LRy g

and Pi,l is an objective formula. Note that, since propositional logic
will treat all the formulas of the form LPi,j as propositional
constants, it is 1impossible to 1increase the L-depth of a formula by
propositional inference, so each of these formulas will have an L-depth

of not more than d.

We can also assume that T; and T, are consistent. If one of these

theories were inconsistent, it would contain all formulas of the

language. Since, by hypothesis, the two theories contain the same
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objective formulas, the other theory would contain all the objective
formulas of the language and, since these formulas are inconsistent, it
would also contain all the formulas of the language. For each Pi, there

are three cases to be considered:

(1) T) contains LP; 4 for some j between 2 and n. Since Tj is
consistent, by Condition 4 it must also contain Pi i Since the L-depth
H

of Pi,j is one less than that of LPi,j’ it must be less than d; so, by
hypothesis, T, must contain Py ,j and, by Condition 2, it must contain
Lpi,j' But Py 1s a tautological consequence of LPi,j’ so T, contains

AT i B A e M BBk B A et . s s

Pi‘

(2) Ty contains “LP; j for some j between n+l and m. Since Ty is
consistent, by Condition 5 it must not contain Pi,j“ Since the L-depth
of Pi,j is one 1less than that of ~LPi,j’ it must be less than d;
therefore, by hypothesis, T, must not contain Pi,j and, by Condition 3,

it must contain ~Lpi,j‘ But Py 1s a tautological consequence of “LPy  3»

so T, contains Py.

(3) Suppose neither of the first two cases holds. Conditions 2 and
3 guarantee that in every stable autoepistemic theory, for every formula l
P, either LP or “LP will be in the theory. Hence, if T, does not )
contain any of LPi,Z»""Lpi,n’ ~LPi,n+1""’~LPi,m’ it must contain all §
of “LPy 5,..4,"LPy n, LPy n+1s+-+sLPg po But Py ; is a tautological )
consequence of P, and these formulas; so Py | must be in T;. Pj ; is
’ ]
objective, however, so Pi,l must also be in Ty. Since Py is a

tautological consequence of Pi,l» Ty contains Py.

Thus, all of Ply...,Pp are 1in Tj. Since P is a tautological
consequence of these formulas, P 1is also in To. Since P was chosen

arbitrarily, every formula in Ty is also in Tj;. The same argument can !

be used to show that every formula in Ty 1is also in T;, so T; and T,

contain exactly the same formulas.

.I‘l
L

Theorem 3. An autoepistemic theory T is semantically complete
if and only {f T is stable.

e~y

LT -

28

r

ST
2
W

.

g

t

. ._.-._'.__‘.-'n.._‘_. N
LA x:,n{'x.ﬂ.'l WINPT




P
a's 2_a 22

Proof. "If" direction: we show that, if T is a stable autoepistemic ]
theory, then T contains every formula that is true in every
autoepistemic model of T. Let T be a stable autoepistemic theory and
:f‘ let P be an arbitrary formula that is not in T. We show that there is

an autoepistemic model of T in which P is false. 3

We know from propositional logic that P 1is propositionally
equivalent to (i.e., true 1in the same propositional models as) the

conjunction of a set of formulas Pl,...,Pk, where, for each i between 1

and k, there exist n and m such that Py is of the form

Py1 \/ LBy 5 \/eeu\/ LBy o \/ LBy 4 \/...\/ LBy o

and Pi,l is an objective formula. Since P will be a tautological
consequence of Py,++.,P and T is stable, Condition 1 guarantees that,
o if P 1s not in T, at least one of P1,++¢,P must not be in T. Let P; be

such a formula. P; 1s a tautological consequence of each of its
- disjuncts, so none of them can be in T. We show that there is an

autoepistemic model of T in which all of these disjuncts are false.

Since Pi,l is not in T, it must not be a tautological consequence
v, of the objective formulas of T. Given this and the fact that Pi 1 is

- objective, 1t follows from the completeness theorem for propositional

1 logic that there wmust be a truth assignment to the propositional
constants of T in which Pi,l is false and all the objective formulas of
" T are true. But, we can extend this truth assigment (or any truth
;' assignment to the propositional constants of T-—see Section III) to an
- autoepistemic interpretation of T. Call this inéerpretation I and note
that Pi,l is false in I. I will be a propositional model of the
objective formulas of T; so, by Theorem 1, I is an autoepistemic model

of T in which Pi 1 is false.
’

N Now consider the other disjuncts of Py. Note that Conditions 2 and

P - 3 require that a stable theory contain all the formulas of the form LP
or "LP that are true in the autoepistemic interpretations of the theory.
Since none of LPi,Z»"‘»Lpi,nn ~Lpi,n+l"°"~LPi,m are in T, none of

Ll Lpi,z.---,Lpi'n, "LPi’n+1,...,"LP1’m are true 1Iin any autoepistemic
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interpretation of T. In particular, none of LPy ,,...,LPy .,
? »
“LPy n+lsc++»"LPy 5 are true in I. Therefore, I 1is an autoepistemic p
model of T in which, since all of the disjuncts of Py are false, 1
itself 1is false. But P is propositionally equivalent to a conjunction
that includes Py, so I is an autoepistemic model of T in which P is

falge.

"Only if" direction: we show that, if T is semantically complete,
then T is stable. Suppose T is semantically complete. For any formula
P, if P is true in every autoepistemic model of T, then P is in T. Let \
I be an arbitrary autoepistemic model of T. If we can show that some =
formula P is true in I, P must be true in every autoepistemic model of T
(since I is arbitrarily chosen) and, thus, P must be in T. We now show
that T satisfies Conditions 1-3.

{
]
4
4
(1) Suppose Piye+e,P, are in T and P1,..4,P |- Q. Since I is a '
model of T, Py,...,P, will be true in I. Since Py,...,P, will is true {
in T and Q is a tautological consequence of Pi,eee,Pp, Qwill also be }

true in I. Therefore, Q will be in T. (2) Suppose P is in T. Since I
is an autoepistemic model of T, LP will be true {in I. Therefore, LP
will be in T. (3) Suppose P is not in T. Since I is an autoepistemic
model of T, "LP will be true in I. Therefore, “LP will be in T.

Conditions 1-3 are all satisfied, so T is stable.
Theorem 4. An autoepistemic theory T is sound with respect to
an initial set of premises A if and only if T is grounded in

A. .

Proof. "If" direction: suppose T 1s grounded in A. Every formula of T

is therefore included in the tautological consequences of A U {LP | P is

“~
t;; in T} U {"LP | P 1s not in T}. We show that T is sound with respect to
E:} A--i.e., that every autoepistemic interpretation of T in which all the
'i' formulas of A are true is an autoepistemic model of T.

~
&3;2 Let I be an autoepistemic interpretation of T in which all the
;;& formulas in A are true. We show that I is an autoepistemic model of T.
px} If P is in A, then, trivially, P is true in I. If P is of the form LQ

Ay - 2
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and Q is Iin T, or 1f P is of the form “LQ and Q 1is not in T, then P is
true in I because I 1s an autoepistemic interpretation of T. We have
now shown that all the formulas in A U {LP | P is in T} U {(~LP | P is
not in T} are true in I, so all their tautological consequences are true
in I. But all the formulas of T are included in this set, so I is an
autoepistemic model of T. Since I was an arbitrarily chosen
autoepistemic interpretation of T 1in which all the formulas of A are
true, every autoepistemic interpretation of T in which all the formulas

of A are true is an autoepistemic model of T.

"Only if" direction: suppose T is sound with respect to A. Every
autoepistemic interpretation of T in which all the formulas of A are
true is therefore an autoepistemic model of T. We show that T 1is
grounded in A--i.e., every formula of T is a tautological consequence of
AU{LP | Pis in T} U {"LP | P is not in T}.

Let A =AU {LP | P1is in T} U {"LP | P is not in T}. Note that,
for all P, if P is in T, LP will be in A", so LP will be true in every
propositional model of A“; however, if P is not in T, ~“LP will be in A~
and LP will not be true in any propositional model of A°. Therefore, in
every propositional model of A”, LP is true if and only if P is in T, so
every propositional model of A" is an autoepistemic interpretation of T.
Since every autoepistemic interpretation of T in which all the formulas
of A are true is an autoepistemic model of T, every propositional model
of A" 1s an autoepistemic model of T. Since every formula in T is true
in 1in every autoepistemic model of T, every formula in T 1is true in
every propositional model of A~. By the completeness theorem for
propositional logic, every formula of T 1is therefore a tautological

consequence of A°. Hence T 1is grounded in A.

Theorem 5. If P 1s true in every autoepistemic interpretation
of T, then T 1is grounded in A U {P} if and only if T {is
grounded in A.

Proof. Suppose that P is true in every autoepistemic interpretation of

T. For any set of premises A, the set of autoepistemic interpretations

of T in which every formula of A U {P} is true is therefore the same as
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the set of autoepistemic interpretations of T in which every formula of
A is true. Thus, every autoepistemic interpretation of T in which every
formula of A U {P} is true is an autoepistemic model of T if and only if
every autoepistemic interpretation of T in which every formula of A is
true is an autoepistemic model of T. Hence, T is sound with respect to
AU {P} 1if and only if T 1s sound with respect to A. By Theorem 4,
therefore, T is grounded in A U {P} if and only if T is grounded in A.

32




ML Mt e gt 0t i B S ek e el N TR M AR~ B o A Aok et e o e it

Appendix B

A FORMAL THEORY OF KNOWLEDGE AND ACTION
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ABSTRACT

Most work on planning and problem solving within the field of
artificial intelligence assumes that the agent has cowplete knowledge of
all relevant aspects of the problem domain and problem situation. In
the real world, however, planning and acting must frequently be
performed without complete knowledge. This imposes two additional
burdens on an intelligent agent trying to act effectively. First, when
the agent entertains a plan for achieving some goal, he must comsider
not only whether the physical prerequisites of the plan have been
satisfied, but also whether he has all the information necessary to
carry out the plan. Second, he must be able to reason about what he can
do to obtain necessary information that he lacks. In this paper, we
present a theory of action in which these problems are taken into

account, showing how to formalize both the knowledge prerequisites of

action and the effects of action on knowledge.
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I  THE INTERPLAY OF KNOWLEDGE AND ACTION

Planning sequences of actions and reasoning about their effects is
one of the most thoroughly studied areas within artificial intelligence
(AI). Relatively little attention has been paid, however, to the

important role that an agent’'s knowledge plays in planning and acting to b

achieve a goal. Virtually all Al planning systems are designed to

13

o

! A
Le 4
(i~ domain and problem situation. Often any statement that cannot be
Kf- inferred to be true is assumed to be false. In the real world, however,
planning and acting must frequently be performed without complete
knowledge of the situation.
This imposes two additional burdens on an intelligent agent trying
P
-i: to act effectively. First, when the agent entertains a plan for .
;Qn achieving some goal, he must consider not only whether the physical -
= prerequisites of the plan have been satisfied, but also whether he has
o all the information necessary to carry out the plan. Second. he must be
- able to reason about what he can do to obtain necessary information that :
. he lacks. Al planning systems are usually based on the assumption that, :
},. if there 1is an action an agent is physically able to perform, and ﬂ
o |
‘ .- -‘ s . . k §
0 carrying out that action would result in the achievement of a goal P, .
R
o then the agent can achieve P. With goals such as opening a safe,
b
A
\j': i
A 1 :
PO .
\;'

operate with complete knowledge of all relevant aspects of the problem

.
ot
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however, there are actions that any human agent of normal abilities is :}
physically capable of performing that would result in achievement of the ’;
.
4
goal (in this case, dialing the combination of the safe), but it would 4
be highly misleading to claim that an agent could open a safe simply by f%
-N

dialing the combination unless he actually knew that combination. On
the other hand, if the agent had a piece of paper on which the

combination of the safe was written, he could open the safe by reading

NI RS

what was on the piece of paper and then dialing the combination, even if

he did not kmow it previously.

In this paper, we will describe a formal theory of knowledge and
action that is based on a general understanding of the relationship

1
between the two. The question of gemerality is somewhat problematical,

since different actions obviously have different prerequisites and

results that involve knowledge. What we will try to do 1is to set up a

formalism in which very general conclusions can be drawn, once a certain
minimum of information has been provided concerning the relation between

specific actions and the knowledge of agents.

To see what this amounts to, consider the notion of a test. The
essence of a test is that it is an action with a directly observable
result that depends conditionally on an unobservable precondition. In
the use of litmus paper to test the pH of a solution, the observable

result is whether the paper has turned red or blue, and the unobservable

precondition is whether the solution is acid or alkaline. What makes
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such a test useful for acquiring knowledge is that the agent can infer
whether the solution is acid or alkaline on the basis of his knowledge
of the behavior of litmus paper and the observed color of the paper.
When one is performing a test, it is this inferred knowledge. rather

than what is directly observed., that is of primary interest.

If we tried to formalize the results of such a3 test by wmakinog
simple assertions about what the agent knows subsequent to the action.
we would have to include the result that the agent knows whether the
solution 1is acid or alkaline as a separate assertion from the resul:t
that he knows the color of the paper. If we did this., however., we would
completely miss the point that knowledge of the pH of the solution :x
inferred from other knowledge, rather than being a direct observation.
In effect, we would be stipulating what actions can be used as tests,

rather than creating a formalism within which we can infer what actions

can be used as tests.

If we want a formal theory of how an agent's state of knowledge 1
changed by his performing a test, we have to represent and be able to
draw inferences from the agent’'s having several independent pieces of
information Obviously, we have to represent that, after the test 1s
performed, the agent knows the observable result Furthermore. we have
to represent the fact that he knows that the test has been performed
If he just walks into the room and sees the litmus paper on the table.
he will know what color it is, but, unless he knows its recent history,. ;;

he will not have gained amy knowledge about the acidity of the solution




We also need to represent the fact that the agent understands how the
test works; that is, he knows how the observable result of the action
depends on the unobservable precondition. Even if he sees the litmus
paper put into the solution and then sees the paper change color, he
still will not know whether the solution is acid or alkaline unless he
knows how the color of the paper is related to the acidity of the
solution. Finally, we must be able to infer that, if the agent knows
(i) that the test took place, (ii) the observable result of the test,
and (iii) how the observable result depends on the unobservable
precondition, then he will know the unobservable precondition. Thus we
must know epough about knowledge to tell us when an agent’s knowing a

certain collection of facts implies that he knows other facts as well.

From the preceding discussion, we can conclude that any formalism
that enables us to draw inferences about tests at this level of detail

must be able to represent the following types of assertiomns:

(1) After A performs ACT, he knows whether Q is true.

(2) After A performs ACT, he knows that he has just performed
ACT.

(3) A knows that Q will be true after he performs ACT if and
only if P is true now.
Moreover, in order to 1infer what information an agent will gain as a
L result of performing a test, the formalism must embody, or be able to

represent, general principles sufficient to conclude the following:
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(4) If (1). (2)., and (3) are true, then, after performing ACT,
A will know whether P was true before he performed ACT.

It is important to emphasize that any work on these problems that

is to be of real value must seek to elicit general principles. For

RS o aAg oy v v r e
‘JL|-<l;l|l_- R

instance, it would be possible to represent (1), (2), and (3) in an

arbitrary, ad hoc mapner and to add an axiom that explicitly states (4).

s R X.'L.

o
Py

thereby "capturing” the notion of a test. Such an approach, however,

would simply restate the superficial observations put forth 1in this

discussion. Our goal in this paper is to describe a formalism in which
specific facts like (4) follow from the most basic principles of

reasoning about knowledge and action.
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II  FORMAL THEORIES OF KNOWLEDGE

A. A Modal Logic of Kpowledge

Since formalisms for reasoning about action have been studied

extensively in AI, while formalisms for reasoning about knowledge have

not, we will first address the problems of reasoning about knowledge.
In Section III we will see that the formalism that we are led to as a
solution to these problems turns out to be well suited to developing an

integrated theory of knowledge and action.

The first step in devising a formalism for reasoning about
knowledge is to decide what general properties of knowledge we want that
formalism to capture. The properties of knowledge in which we will be
most interested are those that are relevant to planning and acting. One
such property is that anything that is known by someone must be true.
If P is false, we would not want to say that anyone knows P. It might
be that someone believes P or that someone believes he knows P, but it
simply could not be the case that anyone knows P. This is, of course, a
major difference between knowledge and belief. If we say that someone
believes P, we are not committed to saying that P is either true or
false, but if we say that someone knows P, we are committed to the truth

of P. The reason that this distinction is important for planning and
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acting is simply that, for an agent to achieve his goals, the beliefs on
which he bases his actions must generally be true. After all, merely
believing that performing a certain action will bring about a desired
goal is not sufficient for being able to achieve the goal; the action

must actually have the intended effect.

Another principle that turns out to be important for plapning is
that., if someone knows something, he knows that he knows it. This
principle is often required for reasoning about plans consisting of

several steps. Suppose an agent plans to use ACT to achieve his goal,
1

but, 1in order to perform ACT he needs to know whether P is true and
1

whether @ is true. Suppose, further, that he already knows that P is

true and that he can find out whether Q is true by performing ACT . The
o)

-

agent needs to be able to reason that, after performing ACT , he will
2

know whether P is true and whether § 1is true. He knows that he will

know whether Q is true because he understands the effects of ACT , but
(o]

-

how does he know that he will know whether P is true? Presumably it
works something like this: he knows that P is true, so he knows that he

knows that P is true. If he knows how ACT affects P, he knows that he
Fa)

will know whether P 1is true after he performs ACT . The key step in
N

£
this argument is an instance of the principle that, if someone knows

something, he knows that he knows it.
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It might seem that we would also want to have the principle that,

if someone does not know something, he knows that he does pot know it--

but this turns out to be false. Suppose that A believes that P, but P
is not true. Since P is false, A certainly does not know that P, but it
is highly unlikely that he knows that he does not know, since he thinks

that P is true.

Probably the most iiporbant fact about knowledge that we will want ?
to capture is that agents can reason on the basis of their knowledge. E
All our examples depend on the assumption that, if an agent trying to ]
solve a problem has all the relevant information, he will apply his ’

knowledge to produce a solution. This creates a difficulty for us,

however, since agents (at least human ones) are not, in fact, aware of
all the logical consequences of their knowledge. The trouble is that we
can never be sure which of the inferences an agent could draw, he
actually will. The principle people normally use in reasoning about
what other people know seems to be something like this: ingg can infer
that something is a consequence of what someone knows, then, lacking

information to the contrary, we will assume that the other person can

draw the same inference.

This suggests the adoption some sort of "default rule"™ (Reiter,

1980) for reasoning about what inferences agents actually draw, but, for

the purposes of this study, we will make the simplifying assumption that

[ 5y B

LTy

agents actually do draw all logically valid inferences from their

R

T

«

v e e

knowledge. We can regard this as the epistemological version of the




"frictionless case” in classical physics. For a more general framework

in which weaker assumptions about the deductive abilities of ageants can

be expressed, see the work of Konolige (1984).

Finally, we will npeed to include the fact that these basic
properties of knowledge are themselves common knowledge. By this we
mean that everyone knows them, and everyone knows that everyone knows
them, and everyone knows that everyone knows that everyone knows them,
ad infinitum. This type of principle is obviously needed when reasoning
about what someone knows about what someone else knows, but it is also
important 1in planning, because an agent must be able to reasom about

what he will know at various times in the future. In such a case, his

"future self” is analogous to apnother agent.

In his pioneering work on the logic of knowledge and belief,
Hintikka (1962) presents a formalism that captures all these properties.
We will define a formal logic based on Hintikka's 1ideas, but modified
somewhat to be more compatible with the additional ideas of this paper.
So, what follows 1is similar to the lougic developed by Hintikka in

spirit, but not in detail.

The language we will wuse initially is that of propositicnal logic,
augmented by an operator KNOW and terms denoting agents. The formula
KNOW(A,P) 1is interpreted to mean that the agent denoted by the term A

knows the proposition expressed by the formula P. So, if JOHN denotes

John  and LIKES(BILL,MARY) means that Bill likes Mary,
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?: KNOW(JOHN,LIKES (BILL,MARY)) means that John knows that Bill likes Mary.
if The axioms of the logic are inductively defined as all instances of the
s following schemata:
.%: M1. P, such that P is an axiom of ordinary propositional logic
_f M2. KNOW(A,P) ) P
’ M3. KNOW(A,P) > KNOW(A,KNOW(A,P))
M4. KNOW(A, (P 3 Q)) D (KNOW(A,P) ) KNOW(A,Q))
'E closed under the principle that
; M5. If P is an axiom, then KNOW(A,P) is an axiom.
i The closure of the axioms under the inference rule modus ponesns
. {(from (P O Q) and P, infer Q) defines the theorems of the system. This
;? system is very similar to those studied in modal logic. In fact, if A
lk‘ is held fixed, the resulting system is isomorphic to the modal logic 34
»
i {Hughes and Cresswell, 1968). We will refer to this system as the modal
ii logic of knowledge.
_ '
:i These axioms formalize in a straightforward way the principles for
#. reasoning about knowledge that we have discussed. M2 says that anything
i; that is known is true. M3 says that, if someone knows something, he
:;E knows that he knows it. M4 says that, if someone knows a formula P and
;: a formula of the form (P ) Q), then he knows the corresponding formula
3 Q. That is, everyone can (and does) apply modus ponens. M5 guarantees
;; that the axioms are common knowledge. It first applies to M1-M4, which
"
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says that everyone knows the basic facts about knowledge; however, since
it also applies to its own output, we get axioms stating that everyone
knows that everyone knows, etc. Since M5 applies to the axioms of
propositional logic (M1), we can infer that everyone knows the facts
they represent. Furthermore, because modus ponens is the only inference
rule needed in propositional logic, the presence of M4 will enable us to
infer that an agent knows any propositional consequence of his

knowledge .

We could try to use the modal logic of knowledge directly in a
computational system for reasoning about knowledge and action, but, as
we have argued elsewhere (Moore, 1980), all the obvious ways of doing
this encounter difficulties. (Konolige’s recent work (1984) suggests
some new, more promising possibilities, but some important questions
remain to be resolved.) There may well be solutions to these problems,
but it turns out that they can be circumvented entirely by changing the
langnage we use to describe what agents know. Instead of talking about
the individual propositions that an agent knows, we will talk about what
states of affairs are compatible with what he knows. In philosophy,
these states of affairs are usually called "possible worlds," so we will

adopt that term here as well.

This shift to describing knowledge in terms of possible worlds is

based on a rich and elegant formal semantics for systems like our modal
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logic of knowledge, which was developed by Hintikka (1962, 1971) in his
work on knowledge and belief. The advantages of this approach are that
it can be formalized within ordinary first-order classical logic in a
way that permits the use of standard automatic-deduction techniques in a

2
reasonably efficient manner and that, moreover. it generalizes nicely

to an integrated theory for describing the effects of actions on the

agent's knowledge.

Possible-world semantics was first developed for the logic of
necessity and possibility. From an intuitive standpoint, a possible
world may be thought of as a set of circumstances that might have been
true in the actual world. Kripke (1963) introduced the idea that a
world should be regarded as possible, not absclutely, but only relative

to other worlds. That is, the worid W might be a possible alternative
1

to W , but not to W . The relation of one world's being a possible
2 3

alternative to :z »ther is called the accessibility relation. Kripke
then proved that the differences among some of the most important axiom
systems for modal logic corresponded exactly to certainm restrictions on
the accessibility relation of the possible-world models of those
systems. These results are reviewed in Kripke (1971). Concurrently
with these developments, Hintikka (1962) published the first of his
writings on the logic of knowledge and belief, yhich included a mode!

theory that resembled Kripke'’s possible-world semantics. Hintikka's

original semantics was doone in terms of sets of sentences, which Le
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called model sets, rather tham possible worlds. Later (Hintikka, 1971),
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however, he recast his semantics using Kripke's concepts, and it is that

formulation we will use here.

Kripke's semantics for necessity and possibility can be converted
into Hintikka's semantics for knowledge by changing the interpretation
of the accessibility relation. To analyze statements of the form

KNOW(A,P), we will introduce a relation K, such that K(A,W ,W ) measns

1 2
that the possible world W is compatible or consistent with what A knows
2
in the possible world W . In other words, for all that A knows in W ,
1 1
he might just as well be in W . It is the set of worlds

2

{w | K(A,W ,w )} that we will use to characterize what A knows in W .
2 1 2 1

We will discuss A's knowledge in W in terms of this set, the set of

1

states of affairs that are consistent with his knowledge in W , rather o

1
than in terms of the set of propositions he knows. For the present, let ;it
us assume that the first argument position of K admits the same set of Etf
terms as the first argument position of KNOW. When we consider %%E
quantifiers and equality, we will have to modify this assumption, but it ii}
will do for now. -

Introducing K is the key move in our analysis of statements about

knowedge., so understanding what K means is particularly important. To
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illustrate, suppose that in the actual world--call it W --A knows that

0
P, but does not know whether Q. If W is a world where P is false, then
1
¥ is not compatible with what A knows 1in W ; hence we would have
1 0
-K(A,W W ). Suppose that W and W are compatible with everything A
0 1 2 3
koows, but that Q is true in W and false in W . Since A does not know
2 3
whether Q is true, for all he knows, bhe might be in either W or W
2 3
instead of W . Hence, we would have both K(A,W W ) and K(A,W W ).
0 0o 2 0 3

This is depicted graphically in Figure 1.

Some of the properties of knowledge can be captured by putting
constraints on the accessibility relation K. For ipstapce, requiring

that the actual world ¥ be compatible with what each knower knows in
0

W, i.e., Va (K(a .W ,¥W)), is equivalent to saying that anything that
0 1 1 0 O

is known is truye. That is, if the actual world is compatible with what
everyone ([actually] knows, then po onme has any false knowledge. This
corresponds to the modal axiom M2.
The definition of K implies that, if A knows that P in W , then P
0

must be true in every world W such that K(A,W W ). To capture the
1 0o 1

fact that agents can reason with their knowledge, we will assume the
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FIGURE 1 A KNOWS THAT p~
“A DOESN'T KNOW WHETHER Q"

W

n

FIGURE 2 "“P IS TRUE IN EVERY WORLD THAT IS COMPATIBLE WITH WHAT A KNOWS"
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- converse is also true. That is, we assume that, if P is true in every

world W such that K(A,W ,W ), then A knows that P in W . (See Figure
1 0 1 0

2.) This principle is the model-theoretic analogue of axiom M4 in the
modal logic of knowledge. To see that this is so, suppose that A knows
that P and that (P D Q). Therefore, P and (P ) Q) are both true in
every world that is compatible with what A knows. If this is the case,
though, then § must be true in every world that is compatible with what

A knows. By our assumption, therefore, we conclude that A knows that Q.

Since this assumption, like M4, is equivalent to saying that an
agent knows all the logical consequences of his knowledge, it should be
interpreted only as a default rule. In a particular instance, the fact
that P follows from A's knowledge would be a justification for
concluding that A knows P. However, we should be prepared to retract
the conclusion that A knows P in the face of stronger evidence to the

contrary.

With this assumption, we can get the effect of M3--the axiom
stating that, if someone knows something, he knows that he knows it--by

requiring that, for any W and W , if W is compatible with what A knows
1 2 1

in W and W is compatible with what A knows in W , then W is
2]

0 2 \ o :
compatible with what A kpows in W . Formally expressed, this is X
: 1
>
16
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{: va ,w ,w (K(a ,W ,w) 23 (K(a ,w ,w) 2 K(a ,W ,w)))
oy 1 1 2 1 0 1 1 1 2 1 0 2
F? By our previous assumption, the facts that A knows are those that are
‘3: ° true in every world that is compatible with what A knows in the actual
.ig world. Furthermore, the facts that A knows that he knows are those that
:i; are true in every world that is compatible with what he knows in every
world that is compatible with what he knows in the actual world. By the
- constraint we have just proposed, however, all these worlds must also be
compatible with what A knows in the actual world (see Figure.S), so, if
;n A knows that P, he knows that he knows that P.
{; Finally, we can get the effect of M5, the principle that the basic
: facts about knowledge are themselves common knowledge, by genmeralizing
these constraints so that they hold not only for the actual world, but
for all possible worlds. This follows from the fact that, if these
constraints hold for all worlds, they bhold for all worlds that are
n{ compatible with what anyone knows in the actual world; they also hold
;f; . for all worlds that are compatible with what anyone knows in all worlds
‘}i that are compatible with what anyone knows in the actual world, etc.
;. Therefore, everyone knows the facts about knowledge that are represented
;2 by the constraints, and everyone knows that everyone knows, etc. Note
;; that this  generalization has the effect that the constraint ;
- corresponding to M2 becomes the requirement that, for a given knower, K .é
;;‘ is reflexive, while the constraint corresponding "to M3 becomes the i»
ii requirement that, for a given knower, K is transitive. ?:
g :
& ;
} 53 17 3
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FIGURE 3 “IF A KNOWS THAT P, THEN HE KNOWS THAT HE KNOWS THAT P~

Analyzing knowledge in terms of possible worlds gives us a very
nice treatment of knowledge about knowledge. Suppose A knows that B

knows that P. Then, if the actual world 1is W , in apny world W such

0 1

that K(A,W W ), B knows that P. We now continue the analysis relative
0 1

to W ., so that, in any world W such that K(B.,W W ), P is true.
1 2 1 2

Putting both stages together, we obtain the analysis that, for any

worlds W apnd W such that K(A,W ,W ) and K(B,W ,W ), P is true in W
1 2 0 1 1 2 2

(See Figure 4.)
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‘;:; ' Given these constraints and assumptions, whenever we want to assert ?
‘;i: or deduce something that would be expressed in the modal logic of i
) knowledge by KNOW(A,P), we can instead assert or deduce that P is true !
- i
in every wo 1 that is Ldmpatible with what A kpows. We can express ]
this in ordinary first-order logic, by treating possible worlds as i
: individuals (in the logical semse), so that K is just an ordinary ;
Eﬁ& relation. We will therefore introduce an operator T such that T(W,P) :
:, : means that the formula P is true in the pcssible world W. If we let W
2 0

denote the actual world, we cam convert the assertion KNOW(A,P) into
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vw (K(A,W ,w ) D T(w ,P)) |
1 0 1 1

It may seem that we have not made any real progress, since,

although we have gotten rid of one nonstandard operator, KNOW, we have

introduced another one, T. However, T has an important property that

KNOW does not. Namely, T "distributes” over ordinary logical operators.

In other words, =P is true in W just in case P is not true in W, (P v Q)

etaCtar MM K x X N N .8 N mmSmmak o~

is true in W just in case P is true in W or Q 1is true in W, and so on.

P o,

We might say that T 1is extensional, relative to a possible world. This
mears that we can transform apy formula so that T is applied only to
atomic formulas. We can then turn T 1into an ordinary first-order

relation by treating all the nonintensional atomic formulas as pames of

RN N

atomic propositions, or we can get rid of T by replacing the atomic
formulas with predicates on possible worlds. This is no loss to the
expressive power of the language, since, where we would have previously

asserted P, we now simply assert T(W ,P) or P(W ) ipstead.
) 0

PR gp - - - ————————

The forma]ization of knowledge presented so far is purely
propositional; a number of additional problems arise when we attempt to

extend the theory to handle equality and quantification. For instance,

?i; as Frege (1949) pointed out, attibutions of knowledge and belief lead to
fér violations of the principle of equality substitution. We are aot
:gi entitled to infer KNOW(A,P(C)) from B = C and KNOW(A,P(B)) because A
é? might not know that the identity holds.
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The possible-world analysis of knowledge provides a very neat
solution to this problem, once we realize that a term can denote
different objects in different possible worlds. For instance, if B is
the expression "the number of planets” and C is "nine," then, although
B = C is true in the actual world, it would be false in a world in which
there was a tenth planet. Thus, we will say that an equality statement
such as B = C is true in a possible world W just in case the denotation
of the term B in W is the same as the denotation of the term C in W.
This is a special case of the more general rule that a formula of the

form P(A ,...,A ) is true in W just in case the tuple consisting ot the
1 n

denotations in W of the terms A ,...,A 1is in the extension in W of the
1 n

relation expressed by P, provided that we fix the interpretation of = in

all possible worlds to be the identity relation.

Given this interpretation, the inference of KNOW(A,P(C)) from B = C

and KNOW(A.P(B)) will be ©blocked (as it should be). To infer

. KNOW(A,P(C)) from KNOW(A,P(B)) by identity substitution, we would have
to know that B and C denote the same object in every world compatible

with what A knows, but the truth of B = C guarantees only that they

denote the same object in the actual world. On the other hand, if
KNCW(A.P(B)) and KNOW(A,(B'= C)) are both true, then in all worlds that

are compatible with what A knows, the denotation of B is in the
extension.of P and is the same as the denotation of C; hence, the

denotation of C is in the extension of P. From this we can infer that

KNOW(A,P(C)) is true.
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The introduction of quantifiers also causes problems. To modify a
famous example from Quine (1971), consider the sentence "Ralph kpows
that someone is a spy."” This sentence has at least two interpretations.
One is that Ralph knows that there is at least one person who is a spy,

although he may have no idea who that person is. The other

interpretation is that there is a particular person whom Ralph knows to
be a spy. As Quine says (1971, p. 102), "The difference is vast; .
indeed, if Ralph is like most of us, [the first] is true and [the
second] is false." This ambiguity was explained by Russell (1949) as a
differencé of scope. The idea is that indefinite poun pbhrases such as
"someone” can be analyzed in context by paraphrasing sentences of the

form P("someone") as "There exists a persomn x such that P(x)," or, more

TP

formally, 3x(PERSON(x) A P(x)). Russell goes on to point out that, in
sentences of the form "A knows that someone is a P," the rule for
eliminating "someone” can be applied to either the whole sentence or
only the subordinate clause, "someone is a P." Applying this

observation to "Ralph knows that someone 1is a spy," gives us the

following two formal representations:

A "hﬁ; P

(1) KNOW(RALPH,3x (PERSON(x) A SPY(x)))

(2) 3x(PERSON(x) A KNOW(RALPH,SPY(x)))

The most natural English parapbrases of these formulas are "Ralph

PRSI ATl 7 SR

knows that there is a person who is a spy." and "There is a person who

PR LR

VIR R TR U AP SR S AR U WU P




LY
IL{A_}

N e S
VSN

I

Ralph knows is a spy." These seem to correspond pretty well to the two
interpretations of the original sentence. So, the ambiguity in the
original sentence is mapped into an uncertainty as to the scope of the
operator KNOW relative to the existential quantifier introduced by the

indefinite description "someomne."

Following a suggestion of Hintikka (1962), we can use a formula
similar to (2) to express the fact that someone knows who or what
something is. He points out that a sentence of the form "A knows who
(or what) B is" intuitively seems to be equivalent to "there is someone
(or something) that A knows to be B. But this can be represented
formally as 3x(KNOW(A,(x = B))). To take a specific example, "John
knows who the President is" can he paraphrased as "There is someone whon

John knows to be the President," which can be represented by

(3) 3Ix(KNOW(JOHN, (x = PRESIDENT)))

In (1), KNOW may still be regarded as a purely propositional
operator, although the proposition to which it 1is applied now has a
quantifier in :t. Put another way, KNOW still is used simply to express
a relation between a knower and the proposition he knows. But (2) and
(3) are not so simple. In these formulas there is a quantified variable
that, although bound outside the scope of the operator KNOW, has an
occurrence inside; this 1is sometimes called "quantifying in."”

Quantifying 1into knowledge and belief contexts is frequently held to

pose serious problems of interpretation. Quine (1971), for instance,



holds that it is wunintelligible, because we have npot specified what
proposition is known unless we say what descriptioon 1is used to fix the

value of the quantified variable.

The possible-world analysis, however, provides us with a very
natural interpretation of quantifying in. We keep the standard
interpretation that 3x(P(x)) is true just in case there is some value
for x that satisfies P. If P is KNOW(A,Q(x)), them a value for «x
satisfies P(x) just in case that value satisfies Q(x) in every world
that is compatible with what A knows. So (2) is satisfied if there is a
particular person who is a spy in every world that is compatible with
what A knows. That is, in every such world the same person is a spy.
On the other hand, (1) is satisfied if, in every world compatible with
what A kpnows, there is some person who is a2 spy, but it does not have to

be the same one in each case.

Note that the difference between (1) and (2) uas been transformed
from a difference in the relative scopes of an existential quantifier
and the operator KNOW to a difference in the relative scopes of an
existential and a universal quantifier (the "every" im "every possible
world compatible with..."). Recall from ordinary first-order logic that
Ix(vy(P(x.¥))) entails Vy(3x(P(x,y))), but not vice versa. The
possible-world analysis, thep, implies that we should be able to infer
"Ralph knows that there is a spy," from "There is someone Ralph knows to

be a spy," as indeed we can.
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When we loock at how this analysis applies to our representatiocn for
"knowing who," we get a particularly satisfying picture. We said that A
knows who B is means that there is someone whom A knows to be B. If we
analyze this, we conclude that there is a particular individual who is B
in every world that is compatible with what A knows. Suppose this were
not the case, and that, in some of the worlds compatible with what A
knows, one person is B, whereas in the other worlds, some other person
is B. In other words, for all that A knows, either of these two people
might be B. But this is exactly what we mean when we say that A does
not know who B is! Basically, the possible-worid view gives us the very
natural picture that A knows who B is if A has narrowed the

possibilities for B down to a single individual.

Another consequence of this analysis worth noting is that, if A
knows who B 1is and A knows who C 1is, we can conclude that A knows
whether B = C. If A knows who B is and who C is, then B has the the
same denotation in all the worlds that are compatible with what A knows,
and this is also true for C. Since, in all these worlds, B and C each
have only one denotation, they either denote the same thing everywhere
or denote different things everywhere. Thus, either B = C 1is true in
every world compatible with what A knows or B # C is. From this ve can
infer that either A knows that B and C are the same individual or that

they are not.

We now have a coherent account of quantifying in that is not framed

in terms of knowiang particular propositicas. Still, in some cases

25




knowing a certain proposition counts as knowing something that would be

expressed by quantifying in. For instance, the proposition that Jobn

knows that 321-1234 is Bill’'s telephone number might be represented as
(4) KNOW(JOHN, (321-1234 = PHONE-NUM(BILL))),

which does not involve quantifying in. We would want to be able to
infer from this, however, that John knows what Bill's telephone number

is, which would be represented as
(5) 3x(KNOW(JOHN, (x = PHONE-NUM(BILL)))).

It might seem that (5) can be derived from (4) simply by the
logical principle of existential generalization, but that principle is
not always valid in knowledge comtexts. Suppose that (4) were not true,
but that instead John simply knew that Mary and Bill had the same

telephone number. We could represent this as
(6) KNOW(JOHN, (PHONE-NUM(MARY) = PHONE-NUM(BILL))).

It is clear that we would not want to infer from (6) that John knows
what Bill's telephone number is--yet, if existential generalization were

universally valid 1in knowledge contexts, this inference would go

through.

It therefore seems that, in knowledge contexts, existential
generalization can be applied to some referring expressions ("321-

1234"), but not to others ("Mary's telephone number"™). We will call the

26
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v expressions to which existential generalization can be applied standard

identifiers., since they seem to be the ones an agent would use to
identify an object for another agent. That is, "321-1234" is the kind
of answer that would always be appropriate for telling someone what
John's telephone number is, whereas "Mary’s telephone aumber," as a
. 3
general rule, would not.

In terms of possible worlds, standard identifiers have a very
) straightforward interpretation. Standard identifiers are simply terms

that have the same denotation in every possible world. Following Kripke

(1972). we will call terms that have the same demotation in every

. possible world rigid designators. The conclusion that standard
identifiers are rigid designators seems inescapable. If a particular
> expression can always be used by an agent to identify its referent for

any other agent, then there must not be any possible circumstances under
which it could refer to something else. Otherwise, the first agent
could not be sure that the second was in a position to rule out those

- other possibilities.

The validity of existential generalization for standard identifiers

. follows immediately from their identification with rigid designators.
- The possible-world analysis of KNOW(A,P(B)) is that, in every world
compatible with what A knows, the denotation of B in that world is in

the extension of P in that world. Existential generalization fails in

general because we are unable to conclude that there is any particular
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individual that is in the extension of P in all the relevant worlids. If
B 1is a rigid designator, however, the denotation of B is the sam= in
every world. Consequently, it is the same in every world cowpatible
with what A knows, and that denotation is an individual that is in the

extension of P in all those worlds.

There are a few more observations to be made about standard
identifiers and rigid designators. First, in describing standard
identifiers we assumed that everyone knew what they referred to.
Identifying them with rigid designators makes the stronger claim that
what they refer to is common knowledge. That is, not only does everyone
know what a particular standard identifier denotes, but everyome knows
that everyone knows, etc. Second, although it is natural to think of
any individual having a unique standard identifier, this is not required
by our theory. What the theory does require is that, if there are two
standard identifiers for the same individual, it should be common

knowledge that they denote the same individual.
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II1 FORMALIZING THE POSSIBLE-WORLD ANALYSIS OF KNOWLEDGE

A. Object Language and Metalanguage

As we indicated above, the analysis of knowledge in terms of
possible worlds can be formalized completely within first-order logic by
admitting possible worlds into the domain of quantification and making
the extension of every expression depend on the possible world in which
it is evaluated. For example. the possible-world analysis of "A knows
who B is" would be as follows: There is some individual x such that, in

every world w that is compatible with what the agent who is A in the
1

actual world knows 1in the actual world, x is B in w . This means that
1

in our formal theory we translate the formula of the modal logic of

knowledge,

3x (KNOW(A, (x = B))),

into the first-order formula,

Ix(vw (K(A(W ), W ,w ) D (x = B(w )))).
1 0O 0 1 1

One convenient way of stating the translation rules precisely is to

axiomatize them in our first-order theory of knowledge. This can be

29
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done by introducing terms to denote formulas of the modal logic of
knowledge (which we will henceforth call the object language) and

axiomatizing a truth definition for those formulas in a first-order

language that talks about possible worlds (the metalanguage). This has

the advantage of letting us use either the modal language or the

possible~-world language--whichever is more convenient for a particular

F
s
:
:
1

purpose--while rigorously defining the comnection between the two.

B R

The typical method of representing expressions of one formal

language 1in another is to use string operations like concatenation or

" ‘v

y I

list operations like CONS in LISP, so that the conjunction of P and

v ou
-
1.
.

o]

might be represented by something 1like CONS(P,CONS('A,CONS(Q,NIL))),

which could be abbreviated LIST(P,'A.Q). This would be interpreted as a
list whose elements are P followed by the conjunction symbol followed by
Q. Thus, the metalanguage expression CONS(P,CONS('A,CONS(Q,NIL))) would
denote the object language expression (P A Q). McCarthy (1962) has
devised a much more elegant way to do the encoding, however. For
purposes of semant.c interpretation of the object language, which is

what we want to do, the details of the syntax of that language are

largely irrelevant. In particular, the only thing we need to know about

Y

the syntax of conjunctions is that there is some way of taking P and Q

and producing the conjunction of P and Q. We can represent this by

AT e i i s

having a function AND such that AND(P,Q) denotes the conjunction of P
and Q. To use McCarthy's term, AND(P,Q) is ap abstract syntax for

representing the conjunction of P and Q.

30




f;} We will represent object language variables and constants by
A metalanguage constants; we will wuse wmetalanguage functions in an

abstract syntax to represent object language predicates, functions, and

1f}u; sentence operators. For example, we will represent the object lanaguage
0™ formula KNOW(JOHN, 3x (P(x))) by the metalanguage term
sk KNOW (JOHN ,EXIST(X,P(X))), where JOHN and X are metalanguage comstants,

and KNOW, EXIST, and P are metalanguage functions.

Since KNOW(JOHN,EXIST(X,P(X))) is a term, if we want to say that
the object language formula it denotes is true, we have to do so

explicitly by means of a metalanguage predicate TRUE:
TRUE (KNOW ( JOHN ,EXIST(X.P(X)))).

" In the possible-world analysis of statements about knowledge, however.

an object language formula is not absolutely true, but omly relative to

a possible world. Hence, TRUE expresses not absolute truth, but truth
e in the actual world, which we will denote by W . Thus, our first axion
) .':,, -".‘ o
b » .
" is
o L1. vp (TRUE(p ) = T(W .p )).
WL 1 1 0 1
j}i: where T(W.P) means that formula P is true in world W. To simplify the
o _ _
axioms, we will 1let the metalanguage be a many-sorted logic, with
' different sorts assigned to differents sets of variables. For instance,
o the variables w , w , .. will range over possible worlds; x , x ,...
. 1 2 1 2
L
31
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will range over individuals in the domain of the object language; and

a, a,... will range over agents. Because we are axiomatizing the

i 2
object language 1itself, we will need several sorts for different types

of object language expressions. The variables p , p ,... will range
1 2

over object language formulas, and t ,t ,... will range over object
1 2

language terms.

The recursive definition of T for the propositional part of the

object language is as follows:

L2. vw ,p ,p (T(w ,AND(p .p )) = (T(w ,p ) A T(w
2 1 1 2 11

2 )))
11 2

1

L3. vw ,p ,p (T(w ,0R(p .p)) = (T(w ,p ) V T(w ,p )))
1 1 2 1 1 2 1 1 1 2

Li. vw ,p ,p (T(w ,IMP(p .p )) = (T(w ,p ) I T(w .p)))

1 1 2 1 1 2 11 1 2
L5. vw ,p ,p (T(w ,IFF(p ,p )) = (T(w ,p ) = T(w .p )))
1 1 2 1 1 2 11 1 2

L6. vw ,p (T(w ,NOT{(p )) = -~T(w ,p ))
1 1 1 1 1 1

Axioms L1-L6 merely translate the logical connectives from the

object language to the metalanguage, using an ordinary Tarskian truth

definition. For 1instance., according to L2, AND(P.Q) 1s true in 2 world

if and only if P and Q are both true in the world. The other axioms

state that all the truth-functional conmectives are "transparent” to T

in exactly the same way.

32
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To represent quantified object language formulas in  the
metalanguage, we will introduce additional functions into the abstract
syntax: EXIST and ALL. These functions will take two arguments--a term
denoting an object language variable and a term denoting an object
language formula. Axiomatizing the interpretation of quantified object
language formulas presents some minor technical problems, however. We
would like to say something like this: EXIST(X,P) is true 1in W if and
only if there is some individual such that the open formula P is true of
that individual in W. We do not have any way of saying that an open
forpula is true of an individual in a world, however; we just have the
predicate T, which simply says that a formula is true in a world. One
way of solving the problem would be to introduce a new predicate, or
perhaps redefine T, to express the Tarskian notion of satisfaction
rather than truth. This approach is semantically clean but
syntactically clumsy, so we will instead follow the advice of Scott
(1970, p. 151) and define the truth of a quantified statement in terms
of substituting into the body of that statement a rigid designator for

the value of the quantified variable.

In order to formalize this substitutional approach to the
interpretation of object language quantification, we need a rigid
designator in the object language for every individual. Since our
representation of the object language is in the form of an abstract

syntax, we can simply stipulate that there is a function @ that maps any

individual in the object language’'s domain of discourse into an object




language rigid designator of that individual. The definition of T for

; N quantified statements is then given by the following axiom schemata:
W
L7. vw (T(w ,EXIST(X,P)) = 3x (T(w ,P[@(x )/X])))
; 2 1 1 1 1 1
?.§ L8. vw (T(w .ALL(X.P)) = ¥x (T(w ,P[a(x )/X])))
‘” 1 1 1 1 1
- In these schemata, P may be any object language formula, X may be
ﬁf any object language variable, and the notation P[@(x )/X] designates the
R 1
T expression that results from substituting @(x ) for every free
A 1
. \
'* occurrence of X in P.
b "
:’ . L7 says that an existentially quantified formula is true in a world
4{?- W if and omnly if, for some individual, the result of substituting a
; rigid designator of that individual for the bound variable in the body
= of the formula 1is true in W. L8 says that a universally quantified
1
S formula is true in W if and only if, for every individual, the result of
‘{i' . substituting a rigid designator of that individual for the bound
::f variable in the body of the formula is true in W.
t:j: Except for the knowledge operator itself, the only part of the
}2{, truth definition of the object language that remains to be given is the
:;; definition of T for atomic formulas. We remarked previously that a
ES? formula of the form P(A ,...,A ) is true in a world W just in case the
::- 1 n
;3: tuple consisting of the denotations in W of the terms A ,...,A 1is in
“7- 1 n :
!-
o
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the extension in W of the relation P. To axiomatize this principle, we
need two additions to the metalanguage. First, we need a function D
that maps a possible world and an object language term into the
denotation of that term in that world. Second, for each n-place object
language predicate P, we need a corresponding n+l-place metalanguage
predicate (which, by convention, we will write :P) that takes as.its
arguments the possible world in which the object language formula is to
be evaluated and the denotations in that world of the arguments of the
object language predicate. The interpretation of an object language
atomic formula is then given by the axiom schema
L9. vw ,t ,...,t
1 1 n

(T(w ,P(t ,...,t )) = :P(w, ,D(w ,t },...,D(w
1 1 n 1 1 1

't )))
1 n

To eliminate the function D, we need to introduce a metalanguage
expression corresponding to each object language constant or function.
In the general case, the new expression will be a function with an extra
argument position for the possible world of evaluation. The axionm

schemata for D are then

Lio. wvw ,x (D(w ,8(x )) = x )
1 1 1 1 1

L11. vw (D(w ,C) = :C(w))
1 1 1

L12. vw ,t ,...,¢t
1 1 n
(D(w F(t ,...,t )) = :F(w ,D(w ,t),...,D(w ,t ))),
n 1 1 1 1 n
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a& where C is an object language constant and F is an object langauage
QJ function, and we wuse the ":" convention already introduced for their
' metalanguage counterparts.
A/
3
W Since @(x ) is a rigid designator of x , its value is x 1in every
.a 1 1 1
WY
: possible world. In the general case, an object languageé constant will
.. have a corresponding metalanguage function that picks out the denotation
;T of the constant in a particular world. Similarly, an object language
o function will have a corresponding metalanguage function that maps a
k= possible world and the denotations of the arguments of the object
'
0 language function into the value of the object language function applied
‘S
. -
aﬁ to those arguments in that world.
- It will be convenient to treat specially those object language
:: constants and functions that are (or can be used to comstruct) rigid
- designators. We could introduce additional axioms asserting that such
ot expressions have the same value in every possible world, but we can
fo accomplish the same end simply by making the corresponding metalanguage
. .
. expressions independent of the possible world of evaluation. So, for
- object language constants that are rigid designators, we will have a
:kk variant of axiom L11:
e Llla. ww (D(w ,C) = :C) if C is a rigid designator.
" 1 1
:}; We will similarly treat rigid functions--those that always map a
j:: particular tuple of arguments into the same value in all possible
O worlds:

36
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L12a. vw ,t ,...,t (D(w ,F(vt ,...,t )) = :F(D(w ,t ),...,D(w ,t )))
1 1 n 1 1 n 1 1 1 n
if F is a rigid function.
Finally, we introduce a special axiom for the equality predicate of
the object language, fixing its interpretation in all possible worlds to
be the identity relation:

L13. Ww ,t ,t (T(w ,EQ(t ,t )) = (D(w
1 2 1 1 2

vt ) =D(w v )))
1 1 1 2

1

The axioms given in the preceding section allow us to talk about a
formula of first-order logic being true relative to a possible world
rather than absolutely. This geperalization would be pointless,
however, if we never had occasion to mention any possible worlds other
than the actual one. References to other possible worlds are introduced
by our axioms for knowledge:

Kl. Yyw ,t ,p

1 1 1
(T(w ,KNOW(t ,p }) = vw (K(D(w ,t ),w ,w ) 2 T(w ,p )))
1 1 1 2 1 1 1 2 2 1

K2. va ,w (K(a .w ,w))
1 1 1 1 1

K3. va ,w ,w (K(a ,w ,w ) D VWw (K(a ,w w
(24 0 o

) I K(a ,w ,w)))
1 1 2 11 2 3 12 3 1 1 3

K1 gives the possible-world analysis for object language formulas

of the form KNOW(A,P). The interpretation is that KNOW(A,P) is true in

37
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:L world W just in case P is true in every world that is compatible with
1
2 \‘.

‘I¢ what the agent denoted by A in W knows in W . Since an object language

g 1 1
i;‘ term may denote different individuals in different possible worlds, we
‘%:- use D(W ,A) to identify the denotation of A in W . K represents the
) :-"': 1 1
. accessibility relation associated with KNOW, so K(D(W ,A) ,W W ) is how
. 1 1 2
>
e we represent the fact W is compatible with what the agent denoted by A
..‘;_: 2
&N .

R in W knows in W
sl
A 1 1
NS
ﬂi‘ As we pointed out before, the principle embodied in K1 is that an
e * ~
- agent knows everything entailed by his knowledge. Since this is too
't% strong a generalization, in a more thorough analysis we would regard the

- '\

o inference from the right side of Kl to the left side as being a default
> inference. K2 and K3 state constraints on the accessibility relation K

)
o> that we use to capture other properties of knowledge. They require
‘Lp . that, for a fixed agent :A. K(:A,w ,w ) be reflexive and transitive. We
e 1 2

W

&

e have already shown this entails that anything that anyone knows must be
':}, true, and that if someone knows something he knows that he knows it.
z
}? Finally, the fact that K1-K3 are asserted to hold for all possible
i worlds implies that everyone kmows the principles they embody, and
:;: everyone knows that everyone knows, etc. In other words, these
}i: principles are common knowledge.

.
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.
To illustrate how our theory operates, we will show how to derive a
}; simple result in the logic of knowledge, that from the premises that A
knows that P(B) and A knows that B = C, we can conclude that A knows
j: that P(C). Our proofs will be in natural-deduction form. The axioams
:; and preceding lines that iustify each step will be given to the right of
> the step. Subordinate proofs will be indicated by indented sections,
ay and ASS will mark the assumptions on which these subordinate proofs are
_f based. DIS(N,M) will indicate the discharge of the assumption on line N
)
’é with respect to the conclusion on line M. The general pattern of proofs
i. in this system will be to assert the object language premises of the
:j problem, transform them intc their metalanguage equivalents, wusing
axioms L1-L13 and K1, then derive the metalanguage version of the
conclusion using first-order logic and axioms such as K2 and K3, and
L3
: finally transform the conclusion back into the object language, again
1.
‘; using L1-L13 and K1.
e
. Given: TRUE(KNOW(A,P(B)))
.? ' TRUE (KNOW (A ,EQ(B,C)))
i: Prove: TRUE(KNOW(A,P(C)))
7 1. TRUE(KNOW(A,P(B))) Given
o 2. T(W ,KNOW(A,P(B))) L1,1
- 0
o 3. K(D(W .A),W ,w ) > T(w ,P(B)) K1,2
: 0 0 1 1
A 4. K(:A(W ),¥ ,w ) > T(w .P(B)) L11,3
0 0 1 1
. 5. TRUE(KNOW{A.EQ(B,C))) Given
..
6. T(W ,KNOW(A,EQ(B,C))) L1,5
-.. 0
b 7. K(D(W ,A),W ,w ) 3 T(w» ,EQ(B,C)) K1,6
* 0 o 1 1
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8. K(:A(W),W ,w) 3 T(w ,EQ(B,C)) L11,7 :
s s
- 0 0 1 1 :
"% 9. K(:A(W ), W ,w) ASS .
K 0 0 1 ;
¢ 10.  T(w ,P(B)) 4,9
\J 1
‘o 11. :P(w ,D(w ,B)) L9,10
) 11
i 12. :P(w ,:B(w)) L11,11
Nt -1 1
13.  T(w ,EQ(B,C)) 8,9
1
SR 14. D(w ,B) = D(w ,C) L13,13
- 1 1
(- 15. :B(w } = :C(w ) L11,14
1 1
o 16. P(w ,:C(w ) 12,15
7 1 1
T 17. :P(w ,D(w ,C)) L11,16
WL 1 1
N 18. T(w ,P(C)) L9,17
- 1
19. K(:A(W ),W ,w ) 3 T(w ,P(C)) DIS(9,18)
s 0 0 1 1
‘ 20. K(D(W ,4) W ,w ) 2 T(w ,P(C)) L11,19
o 0 o 1 1
21. T(W ,KNOW(A,P(C))) K1,20
'1,:"‘ 0
o 22. TRUE(KNOW(A,P(C))) L1,21
]
J )
- A knows that P(B) (Linme 1), so P(B) is true in every world
-j;j compatible with what A knows (Line 4). Similarly, since A knows that
e B=C (Line 3), B=C 1is true in every world compatible with what A
Por: knows (Line 8). Let w be one of these worlds (Line 9). P(B) and B = C

B 1

must be true in w (Lines 12 and 15), hence P(C) must be true in w
1 1

(Line 16). Therefore, P(C) is true in every world compatible with what
A knows (Line 19), so A knows that P(C) (Line 22). If TRUE(EQ(B,C)) had

been given instead of TRUE(KNOW(A,EQ(B.C))), we would have had B = C

- T T . . M PR Iy
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true in W instead of w . In that case, the substitution of C for B in
0 1

P(B) (Line 16) would not have been valid, and we could not have
concluded that A knows that P(C). This proof seems long because we have
made each routine step a separate line. This 1s worth doing once to
illustrate all the formal details, but in subsequent examples we will

combine some of the routine steps to shorten the derivation.
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IV A POSSIBLE-WORLD ANALYSIS OF ACTION

In the preceding sections, we have presented a framework for
describing what someone knows in terms of possible worlds. To
characterize the relation of knowledge to action, we need a theory of
action in these same terms. Fortunately, the standard way of looking at
actions in Al gives us just that sort of theory. Most Al programs that
reason about actions are based on a view of the world as a set of
possible states of affairs, with each action determining a binary
relation between states of affairs--ome being the outcome of nerforming
the acticn in the other. We can integrate our analysis of knowledge
with this view of action by identifying the possible worlds used to
describe knowledge with the possible states of affairs used to describe

actions.

The identification of 1 possible world, as used in the analysis of
knowledge, with the state of affairs at a particular time does not
require any changes in the formalizatiop already presented, but it does
require 1 reinterpretation of what the axioms mean. If the variables

, W
1 2

,... are reinterpreted as ranging over states of affairs, then "A

knows that P" will be a.alyzed roughly as "P is true in every state of

affairs that is compatible with what A knows in the actual state of




k 4
v
e

.

affairs.” It might seem that taking possible worlds to be states of
affairs, and therefore not extended in time, might make it difficult to
talk about what someone knows regarding the past or future. That is not
the case, bhowever. Knowledge about the past and future can be handled
by modal tense operators, with corresponding accessibility relations
between possible states-of-affairs/worlds. We could have a tense
operator FUTURE such that FUTURE(P) means that P will be true at some
time to come. If we let F be an accessibility relation such that

F(W W ) zneans that the state-of-affairs/world W lies in the future of

1 2 2
the state-of-affairs/world W , then we can define FUTURE(P) to be true
1
in W  just in case there is some W such that F(W ,W ) holds and P is
1 2 1 2
true in W
2

This much is standard tense logic (e.g., Rescher and Urquhart.
1971). The 1interesting point is that statements about somecne’s
knowledge of the future work out correctly, even though such knowledge
is analyzed in terms of alternatives to a state of affairs, rather than
alternatives to a possible world containing an entire course of events.
The proposition that John knows that P will be true 1is represented
simply by KNOW{JOHN FUTURE(P)). The amalysis of this is that FUTLRE(D)
is true in every state of affairs that 1is compatible with what John
knows, from which it follows that, for each state of affairs that is

compatible with what John knows, P is true in some future alternative to
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that state of affairs. An important point to note here 1is that two

states of affairs can be "internally"” similar (that is, they coincide in
the truth-value assigned to any nonmodal statement), yet be distinct
because they differ in the accessibility relations they bear to other
possible states of affairs. Thus, although we treat a possible world as
a state of affairs rather than a course of events, it is a state of
affairs in the particular course of events defined by its relationships

to other states of affairs.

For planning and reasoning about future actions, instead of a tense
operator like FUTURE, which simply asserts what will be true, we need an
operator that describes what would be trye if a certain event occurred.
Our approach will be to recast McCarthy's situation calculus (McCarthy,
1968) (McCarthy and Hayes, 1969) so that it meshes with our possible-
world characterization of knowledge. The situation calculus is a first-
order language in which predicates that «can vary in truth-value over
time are given an extra argument to indicate what situations (i.e..
states of affairs) they hold in, with a function RESULT that maps an
agent., an action, and a situation into the situation that results from
the agent's performance of the action in the first situaticn.
Statements about the effects of actions are then expressed by formulas
like P(RESULT(A,ACT,S)), which means that P is true 1n the situation

that results from A’s performing ACT in situation S.

To integrate these ideas 1into our logic of knowledge, we will

reconstruct the situation calculus as a modal logic. 1In parallel to the
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operator KNOW for talking about knowledge, we introduce an object
language operator RES for talking about the results of events.
Situations will not be referred to explicitly in the object languagec,
but they will reappear in the possible-world semantics for RES in the
metalanguage. RES will be a two-place operator whose first arguments is
a term denoting apn event, and whose second argument is a formula.
RES(E,P) will mean that it is possible for the event denoted by E to
occur and that, if it did, the formula P would then be true. The
possible-world semantics for RES will be specified in terms of an

accessiblity relation R, parallel to K, such that R(:E,¥ ,W ) means that
1 2

W 1s the situation/world that would result from the event :E happening
2

in W

1

We assume that, if it is impossible for :E to happen in W (i.e.,

1
if the prerequisites of :E are not satisfied), then there is no W such
2
that R(:E,W ,W ) holds. Otherwise we assume that there is exactly one
1 2
4
W such that (:E,W ,W ) bolds:
2 1 2

Rl1. vw ,w ,w ,e ((R(e ,w ,w ) AR(e ,w ,w)) D (w =w))
1 2 31 1 1 2 1 1 3 2 3

(Variables e , e ,... range over events.) Given these assumptions,
1 2
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RES(E.P) will be true in a situation/world W just in case there is some
1

PRI

W that is the situation/world that results from the event described by
P )

E bappening in W , and in which P is true:
1

Rt ol Kot

R2. Ww .t ,p (T(w ,RES(t ,p )) = 3w (R(D(w ,t ).w .w ) A T(w .p)))
1 1 1 1 1 1 2 1 1 1 2 2 1

The type of event we will normally be concerned with is the
performance of an action by an agent. We will let DO(A,ACT) be a
description of the event consisting of the agent demoted by A performing

5
the action denoted by ACT. (We will assume that the set of possible

agents is the same as the set of possible knowers.) We will want
DO(A,ACT) to be the standard way of referring to the event of A's
carrying out the action ACT, so DO will be a rigid function. Hence,
DO(A,ACT) will be a rigid designator of an event if A is a rigid

designator of an agent and ACT a rigid designator of an action.

Many actions can be thought of as general procedures applied to
particular objects. Such a general procedure will be represented by a
function that maps the objects to which the procedure is applied into
the action of applying the procedure to those objects. For instance, if
DIAL represents the general procedure of dialing combinations of safes,
SF a safe, and COMB(SF) the combination of SF, then DIAL(COMB(SF),SF)
represents the action of dialing the combination COMB(SF) on the safe
SF, and DO(A,DIAL(COMB(SF),SF)) represents the event of A's dialing the
combination COMB(SF) on the safe SF.
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This formalism gives us the ability describe an agent’s knowledge
of the effects of carrying out an action. In the object language, we

can express the claim that A  knows that P would result from A 's doing
1 2

ACT by saying that KNOW(A ,RES(DO(A ,ACT),P)) is true. The possible-
1 2

world analysis of this statement is that, for every world compatible

with what A knows in the actual world, there is a world that is the
1

result of A ’'s doing ACT and in which P is true (see Figure 5).
2

Formally, this is expressed by

vw (K(:A ,¥ ,w ) 3 3w (R(:DO(:A ,:ACT),w ,w ) A T(w ,P))),
1 1 0 1 2 2 1 2 2

if we assume that A , A , and ACT are rigid designators.
1 2
In addition to simple, one-step actions, we will want to talk about
complex combinations of actions. We will therefore introduce
expressions into the object language for action sequences, conditionals,

and 1iteration. If P is a formula, and ACT and ACT are action
1 2

descriptions, then (ACT ; ACT ), IF(P,ACT ,ACT ), and WHILE(P,ACT ) will
1 2 1 2 1

also be action descriptions. Roughly speaking, (ACT ; ACT ) describes

1 2
the sequence of actions consisting of ACT followed by ACT .
1 2
IF(P,ACT ,ACT ) describes the conditional action of doing ACT if P is
1 2 1
47
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- R.pot:A,, :ACT)

S

- R:DO(:A4. :ACT)

o - P

i FIGURE 5 TRUE(KNOW(A,, RES(DO(A;, ACT), P))) =

b Wwq(K(:Aq, W, wi) D 3wa(R(:DO(:Aq, :ACT), wy, wa) A Tiwg, P))
true, otherwise doing ACT . WHILE(P,ACT ) describes the iterative

v 2 1

::; action of repeating ACT as long as P is true.

T 1

N

Defining denotations for these complex action descriptions |is

somewhat problematical. The difficulty comes from the fact that,
By
2
;B& . whenever we have an action described as a sequence of subactions, any
K7
&
R0 . . . . .
expression used in specifying one of the subactions needs to be

interpreted relative to the situation in which that subaction is carried
out. For instance, if PUTON(X,Y) denotes the action of putting X on Y,
STACK denotes a stack of blocks, TABLE denotes a table, and TOP picks

out the top block of a stack, we would want the execution of
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(PUTON (TOP (STACK) , TABLE) ; PUTON(TOP(STACK) , TABLE))

to result in what were initially the top two blocks of the stack being
put on the table, rather than what was initially the top block being put
on the table twice. The second occurrence of TOP(STACK) should be
interpreted with respect to the situation in which the first block has
already been removed. The problem is that, in general, what situation
exists after one step of a sequence of actions has been excecuted
depends on who the agent is. If John picks up a certain block, he will
be holding the block; if, bowever, Mary performs the same action, she
will be holding the block. If an action description refers to "the
block Mary is holding," exactly which block it is may depend on which
agent is carrying out the action, but this 1is not specified by the

action description.

One way of getting around thes: 2ifficulties conceptually would be
to treat actions as functions from agents to events, but notational
problems would remain nevertheless. We will therefore choose a
different solution: treating complex actions as "virtual individuals"
(Scott, 1970), or pseudoentities. That is, complex action descriptions
will not be treated as referring expressions in themselves, but only as
component parts of more complex referring expressions. In particular.
if ACT is a complex action description (and A denotes an agent), we will
treat the event description DO(A,ACT), but not ACT itself, as having a
denotation. Complex action descriptions will be permitted to occur only

as part of such evcnt descriptions, and we will define the denotations
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of the event descriptions in a way that eliminates reference to complex
actions. We will, however, continue to treat actions as real entities
that can be quantified over, and simple action descriptions such as

DIAL (COMB(SF).SF) will still be considered to denote actionms.

The denotations of event descriptions formed from conditional aand
iterative action descriptions can be defined as follows in terms of the
denotations of event descriptions formed from action sequence
descriptions:

R3. ¥w ,t ,t ,t |p

1 1 2 3 1
((T(w ,p ) 3 (D(w ,DO(t ,IF(p ,t ,t ))) = D(w ,DO(t ,t )))) A
1 1 1 3 2

1 1 2 1 1
(=T(w .p ) > (D(w ,DO(t ,IF(p .t ,t ))) = D(w ,DO(t ,t )))))
1 1 1 1 1 2 3 1 1 3
R4. Yw ,t ,t ,p
1 1 2 1

(D(w ,DO(t ,WHILE(p ,t ))) =
1 1 1 2

D(w ,DO(t ,IF(p .,(t ; WHILE(p ,t )).NIL)))
1 1 1 2 1 2

R3 says that performing the conditional actioa IF(P,ACT ,ACT ) results
' 1 2

in the same event as carrying out ACT in a situation where P is true or
1

carrying out ACT in a situation where P is false. R4 says that
2

performing WHILE(P,ACT) always results in the same event as
IF(P, (ACT; WHILE(P,ACT)),NIL), where NIL denotes the null action. Iu
other words, doing WHILE(P,ACT) is equivalent to doing ACT followed by
WHILE(P,ACT) if P is true, otherwise doing nothing-~i.e., doing ACT as
long as P remains true.
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To define the denotation of events that consist of carrying out
action sequences, we need some notation for talking about sequences of
events. First, we will let ";" be a polymorphic operator in the object

language, creating descriptions of event sequences in addition to action

sequences. Speaking informally, if E and E are event descriptions,
1 2

then (E ; E ) names the event sequence consisting of E followed by E ,
1 2 1 2

just as (ACT ; ACT ) names the action sequence consisting of ACT
1 2 1

followed by ACT . In the metalanguage, event sequences will be

2
indicated with angle brackets, so that <:E ,:E > will mean :E followed
1 2 1
by :E . The denotations of expressions involving action and event

2

sequences are then defined by the following axioms:

R5. vw ,t .t ,t
1 1 2 3

(D(w ,DO(t .(t ; t ))) =D(w ,(DO(t ,t ): DO(@(D(w .t )).t ))))
1 1 2 3 1 1 2 1 1 3
R6. Vw ,w ,t .t
1 2 1 2
(R(D(w ,t ),w ,w ) 2 (D(w ,(t ; t )) =<D(w ,t ),D(w ,t )>))
1 1 1 2 1 1 2 1 1 2 2

R5 says that the event consisting of an agent A's performance of

the action sequence ACT followed by ACT is simply the event sequence
1 2

that consists of A’s carrying out ACT followed by his carrying out
1
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ACT . Note that, in the description of the second event, the agent is

n
-

picked out by the expression @(D(w ,A)), which guarantees that we get
1

the same agent as in the first event, in case the original term picking
out the agent changes its denotation after the first event has happened.

R6 then defines the demotation of an event sequence description (E ; E )
1 2

as the sequence comprising the denotation of E in the original

1
situation followed by the denotation of E in the situation resulting
2
from the occurrence of E . If there is no situation that results from
1
the occurence of E , we leave the denotation of (E ; E ) undefined.
1 1 2
-4
Finally, we need to define the accessibility relation R for event jf
sequences and for events in which the null action is carried out. i;
R7. Yw ,w ,e ,e ég
1 2 1 2 -
. (R(<e ,e >,w ,w ) = 3w (R(e .w ,w ) AR(e .w w))) 2
1 2 1 2 3 1 1 3 2 3 2 -
Sy
R8. ww ,a (R(:DO(a ,:NIL),w .w)) i
1

1 1 1 1

R7 says that a situation W is the result of the event sequence <E E
2 1 2

occurring in W if and only if there is a situation W such that W is
1 3 3

the result of E occurring in W , and W is the result of E occurring
1 1 2 2
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6
in W . We will regard NIL as a rigid designator in the object language
3
for the null action, so :NIL will be its metalanguage counterpart. RS,

therefore, says that in any situation the result of doing nothing is the

same situation.
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V AN INTEGRATED THEORY OF KNOWLEDGE AND ACTION

A. The Dependence of Action on Knowledge

Bl ot M Sl AN s Xy W_ o M s K2 F v -

As we pointed out in the introduction, knowledge and action

interact in two principal ways: (1) knowledge is often required prior to

taking action; (2) actions can change what is known. In regard to the

e

first, we need to consider knowledge prerequisites as well as physical

. Y

prerequisites for actions. Our main thesis is that the knowledge

P

prerequisites for an action can be analyzed as a matter of knowing what
action to take. Recall the example of ¢trying to opem a locked safe.
Why 1is it that, for an agent to achieve this goal by using the plan

"Dial the combination of the safe,"” he must know the combination? The .

reason is that an agent could know that dialing the combination of the
safe would result in the safe’'s being open, but still not know what to
do because he does not know what the combination of the safe is. A
similar analysis applies to knowing a telephone number in order to call

someone on the telephone or knowing a password in order to gain access

_i;l to a computer system.

o

!!! It is important to realize that even mundane actions that are not
E;E usually thought of as requiring any special knowledge are no different
;Eii from the examples just cited. For instance, none of the Al problem-
o

T4
<3
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e solving systems that have dealt with the blocks world have tried to take

o into account whether the robot possesses sufficient knowledge to be able )

to move block A to point B. Yet, if a command were phrased as "Move my
favorite block back to its original position," the system could be just
- as much in the dark as with "Dial the combination of the safe." If the

system does not know what actions satisfy the description, it will not
a5 be able to carry out the comnmand. The only reason that the question of

knowledge seems wmore pertinent in the case of dialing combinations and
. telephone numbers is that, in the contexts in which these actions
- naturally arise, there is usually no presumption that the agent knows
':a what action fits the description. An important consequence of this view

- is that the specification of an action will normally not need to include

- -

anything about knowledge prerequisites. These will be supplied by a

l' l'
o

general theory of using actions to achieve goals. What we will need to

P

specify are the conditions under which an agent knows what action is

r SN

referred to by an action description.

. : In our possible-world semantics for knowledge, the wusual way of

knowing what entity is ref:rred to by a description B is by having some

description C that is a rigid designator, and by knowing that B = C.

i

(Note, that if B itself is a rigid designator, it can be used for C.) .

e
j{ In particular, knowing what action is referred to by an action
'y
]

2T
m’a” 4’ a

description means having a rigid designator for the action described.
-7 But, if this is all the knowledge that is required for carrying out the

L action, then a rigid designator for an action must be an executable
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description of the action--in the same sense that a computer program is

;
:
:

an executable description of a computation to an interpreter for the

language in which the program is written.

Often the actions we want to talk about are w=mundane general
procedures that we would be willing to assume everyone knows how to
perform. Dialing a telephone number or the combination of a safe is a
typical example. In many of these cases, if an agent knows the general
procedure and what objects the procedure is to be applied to, then he
knows everything that is relevant to the task. In such cases, the
function that represents the general procedure will be a rigid function,
so that, if the arguments of the function are rigid designators, the
term consisting of the function applied to the arguments will be a rigid
designator. Hence, knowing what objects the arguments denote will
amount to knowing what action the term refers to. We will treat dialing
the combination of a safe, or dialing a telephone number as being this
type of procedure. That is, we assume that anyone who kuows what
combination he is to dial and what safe he is to dial it on thereby

knows what action he is to perform.

i
1

There are other procedures we might also wish to assume that anyone

could perform, but that cannot be represented as rigid functions.

——r——
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Sup; e that, in the blocks world, we let PUTON(B.C) denote the acticn

of putting B on C. Even though we would not want to question anyone's

r s
et
PP )

Ly
Tr s

ability to perform PUTON in general, knowing what objects B ana C are

]

Iy

¢
N

- -
.

o will not be sufficient to perform PUTON(B,C); knowing where they are is
:;Zjﬁ
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also necessary. We could have a special axiom stating that knowing what
action PUTON(B,C) 1is requires knowing where B and C are, but this will
be superflucus if we simply assume that everyonme knows the definition of
PUTON in terms of more primitive actions. If we define PUTON(X.Y) as
something like

(MOVEHAND (LOCATION(X)) ;

GRASP;

MOVEHAND (LOCATION(TOP(Y)));

UNGRASP) ,
then we can treat MOVEHAND, GRASP, and UNGRASP as rigid functions, and
we can see that executing PUTON requires knowing where the two objects
are because their locations are mentioned in the definition. So.
although PUTON itself is npot a rigid function, we can avoid having a
special axiom stating what the knowledge prerequisites of PUTON are by

defining PUTON as a sequence of actions represented by rigid functions.

To formalize this theory, we will introduce a new object language
operator CAN. CAN(A,ACT.P) will mean that A can achieve P by performing
ACT., in the sense that A knows how to achieve P by performing ACT. We
will not give a possible-world semantics for CAN directly; instead we
will give a definition of CAN in terms of KNOW and RES, which we can use
in reasoning about CAN to transform a problem into terms of possible

wor lds .

In the simplest case, an agent A can achieve P by performing ACT if

he knows what action ACT is, and he knows that P would be true as a
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result of his performing ACT. In the object language, we can express

this fact by

va(3x (KNOW(a, ((x = ACT) A RES(DO(a,ACT).P))))
CAN(a.ACT.P)).

CR A TABMMEEET. " o” 'k 2"« BA) W™ 4 & & N 2 & omm o s . o~ b

We cannot strengthen this assertion to a biconditional, however, because

;

that would be too stringent a definition of CAN for complex actioms. It
would require the agent to know from the very beginning of his action
exactly what he is going to do at every step. In carrying out a complex
action, though, an agent may take some initial action that results in

his acquiring knowledge about what to do later.

For an agent to be able to achieve a goal by performing a complex
action, all that is really neccessary 1is that he know what to do first
and that he know that he will know what to do at each subsequent step.

So, for any action descriptions ACT and ACT , the following formula also
1

states a condition under which an agent can achieve P by performing ACT:

Va (3x (KNOW(a, ((DO(a. (x; ACT )) = DO(a.ACT)) A
1
RES(DO(a,x),CAN(a,ACT .P))))) )
1

CAN(a.ACT.P)).

This says that A can achieve P by doing ACT if there 1s an action X =such

that A knows that his execution of the sequence X followed by ACT would
1

be equivalent to his‘doing ACT, and that his doing X would result in his

being able to achieve P by doing ACT .
1
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x:ﬂﬁ Finally, with the following wmetalanguage axiom we can state that
AN
”L’- these are the only two conditions under which an agent can wuse a
l: ~‘.\‘:‘n . . .
particular action to achieve a goal:
o
L ) Cl. Ww ,t ,t ,t ,p
e 1 1 2 3 1
((t = a(D(w ,t ))) 2
- 2 1 1
(T(w ,CAN(t ,t ,p)) =
1 1 3 1

(T(w ,EXIST(X,KNOW(t ,AND(EQ(X,t ),RES(DO(t .t ),p ))))) V
1 1 3 2 3 1

3t (T(w ,EXIST(X.KNOW(t ,AND(EQ(DO(t ,(X: t )).DO(t .t )).
2 4 2 3

i 4 1 1
s RES(DO(t ,X),
VPA 2
e CAN(t .t ,p ))))))))))
._ 2 4 1
Li”i Letting t = A t = A , and t = ACT, Cl1 says that, for any formula P,
1 2 1 3

h if A is the standard identifier of the agent denoted by A, then A can
r.- .- 1

!f"; achieve P by doing ACT if and only if one of the following conditions is
3~ﬂ met: (1) A knows what action ACT is and knows that P would be true as a
lf% result of A 's (i.e., bis) doing ACT, or (2) there is an action
.”_'::.‘ 1

- description t = ACT such that, for some action X, A knows that A 's
. 4 1 1

h “» . ‘:‘f

;a‘: doing X followed by ACT 1is the same event as his doing ACT and knows
o 1

A

e

el that A ’'s doing X would result his being able to achieve P by doing
Lo 1

KL

Lo ACT .
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As a simple illustration of these concepts, we will show how to
derive the fact that an agent can open a safe, given the premise that he
knows the combination. To do this, the only additional fact we need is
that, if an agent does dial the correct combination of a safe, the safe

will then be open:

i
]
p
!
4
:1

DI. vw ,a ,x
1 1 1
(:SAFE(x ) )
1
3w (R(:DO(a ,:DIAL(:COMB(w ,x ).x }),w ,w ) A
2 1 1 1 1 1 2
:0PEN(w ,x )))
2 1

D1 says that, for any possible world W , any agent :A, and any safe :SF,
1

there is a world W that is the result of :A's dialing the combinatiop
2

of :SFon :SF in W, and in which :SF is open. The important point
1

about this axiom, is that the function :COMB (which picks out the
combination to a safe) depends on what possible world it is evaluated
in, while :DIAL (the function that maps a combination and a safe into
the action of dialing the combination on the safe) does not. Thus we
are implicitly assuming that, given a particular safe, there may be some
doubt as to what its combination is, but, given a combination and a
safe, there exists no possible doubt as to what action dialing the
combination on the safe is. (We also simplify matters by omitting the
possible world-argument to :SAFE, so as to avoid raising the question of
something is a safe.) Since this axiom is asserted to

knowing whether
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ﬁ} hold for all possible worlds, we are in effect assuming that it |is
{ﬁ common knowledge.
v
Now we show that, for any safe, if the agent A knows its
3? combination, he can open the safe by dialing that combination; or, more
AR
ﬁ@ precisely, for all X, if X is a safe and there is some Y, such that A
» knows that Y 1is the combination of X, then A can open X by dialing the
;:: combination of X on X:
3% Prove: TRUE(ALL (X, IMP(AND(SAFE(X) ,EXIST(Y,KNOW(A,EQ(Y,COMB(X))))))
- CAN(A,DIAL(COMB(X) ,X),0PEN(X))))
T
o 1. T(W, ASS
‘..:_ O
- AND(SAFE(@(x ),
. 1
EXIST(Y,KNOW(A,EQ(Y,COMB(@(x }))))))))
K 1
- ) 2.  :SAFE(x ) 1,L2,L9
- 1
- 3. ww (KGA(W),W ,w) ) 1,L2,L7.K1,L11,
‘-.‘ 1 0 0 1
- (:C = :COMB(w ,x ))) L13,L10,L12
e 1 1
-
T 4. K(:A(W ), W w) ASS
2 o 0 1 .
. 5. :C = :COMB(w ,x ) 3,4
._:: 1 1
" 6. .DIAL(:C,x ) = :DIAL(:COMB(w ,x ).,x ) 5
i 1 1 1 1
- 7. T(w , L10,L12,L12a,L13
L™ 1
- EQ(Q(:DIAL(:C,x )),
<N 1
b-C- DIAL (COMB(8(x )).0(x ))))
h, 1 1
4
- 61
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3w (R(:DO(:A(W ),
2 0
:DIAL(:COMB(w ,x ),x )),
1 1 1
w w)A
1 2
:OPEN(w ,x )))
2 1
T(w ,
1
RES(DO(@(D(W ,A)),
0
DIAL (COMB(Q(x )).0(x ))).
1 1

OPEN(0(x ))))
1

T(w ,
1

AND(EQ(Q(:DIAL(:C.x )),

1
DIAL(COMB(Q(x )).,0(x ))),
1 1
RES(DO(Q(D(W ,A)),
0

DIAL(COMB(@(x )).0(x ))).
1 1

DPEN(O(xl)))))

K(:A(W),¥W ,w) D
0 0 1
T(w .,
1
AND(EQ(@(:DIAL(:C,x )),
1 .
DIAL (COMB(8(x )).0(x ))).
1

1
RES(DO(@(D(WO.A)).

DIAL (COMB(@(x )).0(x ))).
1 1

OPEN(°(xl)))))
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12, T(W, 11,L11,K1

KNOW (A,
AND(EQ(@(:DIAL(:C,x )),
1

DIAL(COMB(0(x )),9(x ))),
1 1
RES(DO(@(D(W ,A)),
0
DIAL (COMB(@(x )).8(x ))),
1 1

OPEN(@(xl))))))
13, T(W, 12,L7
0
EXIST(X,
KNOW (A,
AND (EQ(X,
DIAL (COMB(@(x )).
1
Q(Xl))),
RES(DO(@(D(W ,A)),
0
DIAL (COMB(@(x )).
1
Q(XI))).
UPEN(Q(XI)))))
14, T(W, 13,C1
0
CAN(A,
DIAL (COMB(@(x )).@(x )),
1 1
OPEN(@(x ))))
1
15. T(W , DIS(1,14)

0
AND (SAFE (@(x ).
1
EXIST(Y,KNOW(A,EQ(Y,COMB(a(x )))))))) 3
1

T(W ,
0
CAN(A,DIAL (COMB(8(x )).8(x )),0PEN(9(x ))))
1 1 1
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16. TRUE(ALL(X, 15,L4,L8,L1
IMP (AND (SAFE(X)
EXIST(Y,
KNOW(A,
EQ(Y,COMB(X))))))
CAN(A,DIAL (COMB(X) ,X) ,OPEN(X))))

Suppose that x 1is a safe and there is some C that A knows to be
1

the combination of x (Lines 1-3). Suppose w is a world that 1is
1 1

compatible with what A knows in the actual world, W (Line 4). Then C
4]

is the combination of x in w (Line 5), so dialing C on x is the same
1 1 1

action as dialing the combination of x on x in w (Lines 6 and 7). By
1 1 1

axiom D1, A's dialing the combination of x on x in w will result in
1 1 1

)

X 's being open (Lines 8 and 9). Since w was an arbitrarily chosen
1 1

world compatible with what A knows in W , it follows that in W A knows
0 0

dialing C on x to be the act of dialing the combination of x on x and
1 1 1

that his dialing the combination of x on x will result in x s being
1 1 1

open {(Lines 10-12). Hence, A kpows what action dialing the combination

of x on x 15, and that his dialing the combination of x on x will

1 1 1 1
result in x 's being open {Line 13). Therefore A can open x by dialing
1 1
the combination of x on x , provided that x is a safe and he knows the

1 1 1
64
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combination of x (Lines 14 and 15). Finally, since x was chosen
1 1

arbitrarily, we conclude that A can open any safe by dialing the

combination, provided he knows the combination (Line 16).

Th

In describing the effects of an action on what an agent knows, we
will distinguish actions that give the agent new information from those
that do not. Actions that provide an agent with pew information wil]l be
called informative actions. An action is informative if an agent would
know more about the situation resulting from his performing the action
after performing it than before performing it. In the blocks world,
looking inside a box could be an informative action, but moving a block

would probably not, because an agent would normally know no more after

moving the block than he would before moving it. In the real world

there are probably no actions that are never informative, because all
physical processes are subject to variation and error. Nevertheless, it
seems clear that we do and should treat many actions as noninformative

from the standpoint of planning.

Even if an action is not informative in the sense we have just
defined, performing the action will still alter the agent’'s state of
knowledge. If the agent is aware of his actiou, he will know that it

has been performed. As a result, the tense and modality of many of the

things he knows will change. For example, if before performing the
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action he knows that P is true, then after performing the action he will R
oA
know that P was true before he performed the action. Similarly, if :i
before performing the action he knows that P would be true after =
ad

performing the action, then afterwards he will know that P is true.

We can represent this very elegantly in terms of possible worlds.

Suppose :A is an agent and :E an event that consists in :A’'s performing
1

some noninformative action. For any possible worlds W and W such that
1 2

] is the result of :E 's happening in W , the worlds that are
2 1 1

compatible with what :A knows in W are exactly the worlds that are the
o

result of :E 's happening in some world that is compatible with what :A
1

knows in W . In formal terms, this is
1

% (RC:E,w ,w ) )
1 2 1 2
vw (K(:A,w ,w ) = 3w (K(:A,w ,w } ARCEw w)))),
3 2 3 4 1 4 4 3

-

which tells us exactly how what :A knows after :E happens is related to
1

what :A knows before :E happens.
1

We can try to get some insight into this analysis by studying

NDDDEIORN DD

.

Figure 6. Sequences of possible situations connected by events can be

thought of as possible courses of events. If W is an actual situation
1

'-‘, t
AN




W .y

FIGURE 6 THE EFFECT OF A NONINFORMATIVE ACTION ON THE AGENT'S KNOWLEDGE

in which :E occurs, thereby producing W, then W and W comprise a
1 2 1 2

subsequence of the actual course of events. Now we can ask what other

courses of events are compatible with what :A knows in W and in W
1 2

Suppose that W and W are connected by :E in a course of events that

4 3 1
is compatible with what :A knows in W . Since :E 1is not informative
1 1
for A, the only sense in which his knowledge is increased by :E is
1
that he knows that :E has occurred. Since :E occurs at the

1 1

corresponding place in the course of events that includes W and W ,
4 3
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this course of events will still be compatible with everything :A knows

in W . However, the appropriate "tense shift" takes place. In W , W
2 1 4

is a possible alternative present for :A, and W is a possible
3

alternative future. In W , W is a possible alternative present for .A,
2 3

and W is a possible alternative past.
4
Next consider a different course of events that includes W and W

5 6

connected by a different event, :E . This course of events might be
2

coppatible with what :A knows in W if he is not certain what he will do
1

next, but, after :E has happened and he knows that it bas bappened,
1

this course of events is no longer compatible with what he knows. Thus,

W is not compatible with what :A kpows in W . We can see, then, that
6 2

even actions that provide the agent with no new information from the
outside world still filter out for him those courses of events in which

bhe would have performed actions other than those he actually did.

The idea of a filter on possible courses of events also provides a
good picture of informative actions. With these actions, though, the
filter is even stronger, since they not only filter out courses of
events that differ from the actual course of events as to what event has

just occurred, but they also filter out courses of events that are

68
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incompatible with the information furnished by the action. Suppose :E
is an event that consists in :A's performing an informative action, such
that the information gained by the agent is whether the formula P is

true. For any possible worlds W and W such that W 1is the result of
1 2 2

:E’s happening in W , the worlds that are compatible with what :A knows
1

in W are exactly those worlds that are the result of :E’s happening in
2

some world that is compatible with what :A kmows in W , and in which P
1

vw (K(:A,w ,w ) = (3w (K(:A,w ,w ) AR(CE,w ,w )) A
4 4

1 4 3

(T(w ,P) = T(w ,P)))))
2 3

It is this final condition that distinguishes informative actiomns from

those that are not.

~

Figure 7 illustrates this analysis. Suppose W and W are
1 2

connected by :E and are part of the actual course of events. Suppose,

further, that P is true in W . Let W and W also be connected by :E,
2 4 3

and let them be part of a course of events that is compatible with what

:A knows in W . If P is true in W and the only thing :A learns about
1 3

the world from :E (other than that it has occurred) is whether P is
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FIGURE 7 THE EFFECT OF AN INFORMATIVE ACTION ON THE AGENT'S KNOWLEDGE

true, this course of events will thenm still be compatible with what :A

knows after :E has occurred. That is, W will be compatible with what
3

:A knows in W . Suppose, on the other hand, that W and W form part of
2 5 6

a similar course of events, except that P is false in W . If :A does
6

not know in W whether P would be true after the occurrence of :E, this
1

course of events will also be compatible with what he knows in W
1

After :E has occurred, however, he will know that P 1is true;

consequently, this course of events will no longer be compatible with
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what he knows. That is, W will not be compatible with what :A knows in
6

It is an advantage of this approach to describing how an action
affects what an agent knows that not only do we specify what he learns
from the action, but also what be does not learn. Our analysis gives us
necessary, as well as sufficient, conditions for :A’s knowing that P is
true after event :E. In the case of an action that is not informative,
we can infer that, unless :A knows before performing the action whether
P would be true, he will not know afterwards either. In the case of an
informative action such that what 1is learned is whether Q is true, he

will not know whether P is true unless he does already--or knows of some

dependence of P on Q.

Within the context of this possible-world analysis of the effects
of action on knowledge, we can formalize the requirements for a test
that we presented in Section 1I. Suppose that TEST is the action of
testing the acidity of a particular solution with blue litmus paper, RED
is a propositional constant (a predicate of zero arguments) whose truth
depends on the color of the litmus paper, and ACID is a propositional
constant whose truth depends on whether the solution is acidic. The
relevent fact about TEST is that the paper will be red after an agen: A
performs the test if and only 1if the solution is acidic at the time the

test is performed:




(ACID ) RES(DO(A,TEST),RED)) A
(=ACID ) RES(DO(A,TEST),-RED))

In Section I we listed three conditions that ought to be sufficient
for an agent to determine, by observing the outcome of a test, whether
some uncbservable precondition holds; in this case, for A to determine

whether ACID is true by observing whether RED 1is true after TEST is

performed:

(1) After A performs TEST. he knows whether RED is true.

(2) After A performs TEST, he knows that he has just performed
TEST.

(3) A knows that RED will be true after TEST is performed just
in case ACID was true before it was performed.

Conditions (1) and (2) will be satisfied if TEST is an informative
action, such that the knowledge provided is whether RED is true in the

resulting situation:

Tl. Yw ,w ,a
1 2 1

(R(:DO(a ,:TEST).w .w ) 3
1 1 2
vw (K(a ,w ,w ) =
3 1 2 3
(3w (K(a ,w ,w ) A R(:DO(a ,:TEST),w ,w )) A
4 1 1 4 1 4 3
(:RED(w ) = :RED(w )})))
2 3

If :RED and :TEST are the metalanguage analogues of RED and TEST, TIl

says that for any possible worlds W and W such that W 1is the result
1 2 2
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of an agent's performing TEST in W , the worlds that are compatible with
1

what the agent knows in W are exactly those that are the result of his
2

5= { &) ST

performing TEST in some world that is compatible with what he knows in

W , and in which RED has the same truth-value as in W . In other words,
1 2

after performing TEST, the agent knows that he has done so and he knows
whether RED 1is true in the resulting situation. As with our other
axioms, the fact that it holds for all possible worlds makes it common

knowledge.

Thus, A can use TEST to determine whether the solution is acid,
provided that (1) is also satisfied. We can state this very succinctly
if we make the further assumption that A knows that performing the test

-
does not affect the acidity of the solution. Given the axiom Tl for

test, it is possible to show that

ACID ) RES(DO(A,TEST),KNOW(A,ACID)) and
~ACID ) RES(DO(A,TEST),KNOW(A,~ACID))

are true, provided that

KNOW(A. (ACID D RES(DO(A,TEST).(ACID A RED)))) and

KNOW(A, (~ACID 3 RES(DO(A,TEST),(-~ACID A -RED))))
are both true and A is a rigid designator. We will carry out the proof ¥
in one direction, showing that, if the solution is acidic, after the

test has been conducted the agent will know that it is acidic.
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Given: TRUE(KNOW(A,IMP(ACID,RES(DO(A,TEST),AND(ACID,RED)))))
TRUE (KNOW (A, IMP (NOT (ACID) ,RES (DO (A, TEST),

AND (NOT (ACID) ,NOT(RED))))))
TRUE (ACID)

Prove: TRUE(RES(DO(A,TEST) KNOW(A,ACID)))

1. Ww (K(:A,W ,w ) D Given,Ll, L4 R2.
1 0o 1
(:ACID(w ) O L2,L9,L12,L11a
1
3w (R(:DO(:A,:TEST).w ,w ) A
2 1 2
:ACID(w. ) A :RED(w )))).
2 2
2. vw (K(:A W ,w ) D Given.L1,L4,R2,L2,
1 0 1
(~:ACID(w ) 3 L6,L9.L12.L11a
1
3w (R(:DO(:A,:TEST).w ,w ) A
2 , i 2
~:ACID(w ) A ~:RED(w ))))
2 2
3. :ACID(W ) L1.L9
0
4. :ACID(W ) D 1.K2
0
3w (R(:DO(:A,:TEST). W .w ) A
2 0o 2
.ACID(w ) A :RED(w ))
2 2
2 5. R(:DO(:A,:TEST).W W) 3.4
- 01
o
e 6. :RED(W ) 3.4
" 1
'-.’-'
y
)
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7. vw (K(:A,W ,w ) =
2 1 2
(3w (K(:A W ,w ) A
3 0 38
R(:DO(:A,:TEST) ,w ,w )) A
3 2

(:RED(W ) = :RED(w ))))
1 2

K(:A,W ,w)
1 2

K(:A W W)
0 3

R(:DO(:A, :TEST) ,W ,w )
3 2
:RED(W ) = :RED(w )
1 2

:RED(w )
2

-~:ACID(W ) 2
3
3w (R(:DO(:A,:TEST).W ,w ) A
4 3 4
~:ACID(w ) A -~:RED(w ))
4 4

~:ACID(W ) ASS
3

R(:DO(:A, :TEST), W W 13,14

)

3 4

~:RED(W ) 13,14

15,R1

~:RED(w ) 16,17
2

FALSE 12,18

:ACID(W ) DIS(14,19)
3
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21.  :ACID(W ) ) 1,9
3 .
3w (R(:DO(:A,:TEST),W .w ) A -
4 3 4 .
:ACID(w ) A :RED(w )) «
4 4 F
22, R(:DO(:A,:TEST).W .¥ ) 20,21 :
3 4
23. :ACID(W ) 20,21 -
4 oy
|
24. w =W 15,22 1
2 4 R
]
25. :ACID(w ) 23,24 :]
2
[
26. K(:A,W ,w ) ) :ACID(w ) DIS(8,25) :
1 2 2
27. R(:DO(:A,:TEST),W ,W ) A 5,26
0 1
vw (K(:A,W ,w ) 3 :ACID(w })
2 1 2 2
28. TRUE(RES(DO(A,TEST) ,KNOW(A,ACID))) 27,L9.L11a,Li2,
K2,R2,L1

The possible-world structure for this proof is depicted in Figure
8. Lines 1 and 2 translate the premises into the metalanguage. Since A
knows that, if the solution is acidic, performing the test will result
in the litmus paper’'s being red, it must be true in the actual world

(W ) that, if the solution is acidic, performing the test will result in
0

the litmus paper’s being red (Line 3). Suppose that, in fact, the

solution is acidic (Line 4). Then, if W is the result of performing
1

the test in W (Line 5), the paper will be red in W (Line 6).
0 1
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Suppose that w 1is a world that

N
<

3

(Line 9), such that w is the

n
-

(Line 10). The paper is red in

11); therefore, it is red in w
(]
£

= -\\\ K.a

- ACID

Wo
=

\ FIGURE 8 THE EFFECT OF A TEST ON THE AGENT'S KNOWLEDGE

:if Furthermore, the worlds that are compatible with what A knows in W are
;¥ those that are the result of his performing the test in some world that
, is compatible with what he knows in W , and in which the paper is red if
- 1

. and only if it is red in W (Line 7).

..:' 1

o .

is compatible with what A knows in W (Line 8). Then there is a W that

7 1

:; is compatible with what A knows in W

ey 0

3 result of A’'s performing the test in W

e 3

= w . if and only if it is red in W (Line

- pis 1

-

s
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(Line 12). Since A knows how the test works, if the solution were not

acidic in W , it would not be acidic, and the paper would not be red, in
3

w (Line 13).
[a]

4

Now, suppose the solution were not acid in W (Line 14). If W is
3 4

the result of A’s performing the test in W (Line 15), the paper would ;

3 .

1

not be red in W (Line 16). But w 1is the result of A’s performing the :ﬁ

4 2 .

test in W (Line 17), so the paper would not be red in w (Line 18). We i

3 2

know this is false (Line 19), however, so the solution must be acidic in g

W (Line 20). Ii the solution is acidic in W , it must also be acidic
3 3

in the situation resulting from A’'s performing the test in W (Lines 21-
3

23), but this is w (Line 24). Therefore, the solution is acidic in w
2 2

(Line 25). Hence, in W , A knows that the solution is acidic (Line 26).
1

so in the situation resulting from A's performing the test in W , he
0

knows that the solution 1is acidic (Line 27). In other words (Line 28),
A's performing the test would result in his knowing that the solution is

acidic.

By an exactly parallel argument, we could show that, if the

solution were not acidic, A could also find that out by carrying out the
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test, so our analysis captures the sort of reasoning about tests that we

described in Section I, based on general principles that govern the

interaction of knowledge and action.
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NOTES
i;j 1
o This paper presents the analysis of knowledge and action, and the
o representation of that analysis in first-order logic, that were
By .
'f? developed in the author’'s doctoral thesis (Moore, 1980). The material
3
. in Sections III-A and I1I-B, however, has been substantially revised.
v 2
‘kl Chapters 6 and 7 of (Moore, 1980) present a procedural
LN
1ql . . . . .
’¢% interpretation of the axioms for knowledge and action given in this
i ~
s
' paper that seems to produce reasonably efficient behavior 1in an
LY
) automatic deduction system.
3
, "Mary's telephone number” would be an appropriate way of telling
3
o someone what John's telephone number was if he already knew Mary's
1rw ' telephone number, but this knowledge would consist in knowing what
'i:; expression of the type "321-1234" denoted Mary's telephone bpumber.
i Therefore, even in this case, using "Mary's telephone number” to
:ﬂf identify John's telephone number would just be an indirect way of
iy getting to the standard indentifier.
(- 4
‘o This amounts to an assumption that all events are deterministic,
) -
. which might seem to be an unnecessary limitation. From a pragmatic
)
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standpoint, however, it doesn’'t matter whether we say that a given event
is nondeterministic, or we say that it is deterministic but no one knows
precisely what the outcome will be. If we treated events as being
nondeterministic, we could say that an agent knows exactly what
situation he is in, but, because :E is nondeterministic, he doesn’t know
what situation would result if :E occurs. It would be completely
equivalent, however, to say that :E is deterministic, and that the agent
oes not know exactly what situation he is in because he doesn’'t know
what the result of :E would be in that situation.
5

It would be more precise to say that DO(A ACT) pames a type of
event rather than an individual event, since an agent can perform the
same action on different occasions. We would then say that RES and R
apply to event types. We will let the present wusage stand, however,
since we have no need to distinguish event types from individual events

in this paper.

<E E »

RT guarantees that the sequences <<E ,E >,E > and <E
1 2 C 1 2 3

always define the same accessibility relation on situations; so, just as
one would expect, we can regard sequence operators as being associative.
Thus. when we have a sequence of more than two events or actions, we
will not feel obliged to indicate a pairwise grouping.

-
{

We have to add this extra condition to be able to infer that the
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knows  whether it was acidic.

operators into the object language

conditions in the object language. Indeed, this is
done by axioms such as TI1.
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characteristic of tests, since it

pondestructive tests. We have not,

The

that would allow us

agent knows whether the solution is acidic,

covers

however,

latter

instead of
is

destructive
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merely that he
more general

as well as

introduced any temporal

to make such a

statement, although there would be no difficulty in stating the relevant
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ABSTRACT

The representation of adjectives and their adverbial counterparts in logical form
raises a number of issues in the relation of (morpho)syntax to semantics, as well as
more specific problems of lexical and grammatical analysis. This paper addresses
those issues which have bearing on the relation of properties to events. It is argued
that attributes and context play only an indirect role in the relation between prop-
erties and events. The body of the paper addresses the criteria for relating surface
forms to logical form representations, and offers an unified analysis of adjectives and
their adverbial counterparts in logical form while maintaining a clear distinction
between operators and predicates; this requires the postulation of a factive senten-
tial operator and the relaxation of the one-to-one syntax-semantics correspondence
hypothesis. Criteria for determining the number of arguments for a predicate are
established and are used for the analyses of phenomena such as passive-sensitivity,
lexical derivational patterns, and gradability.

1 Introduction

The lexical classes “adjective” and “adverb” are distinguished in the sur-
face structure of many natural languages, including English and the major
European languages. While a fair amount of attention has been paid to the
syntax and semantics of adjectives, only relatively recently have the syntax
and semantics of adverbs entered the limelight. The analyses proposed for
the representation of adverbs and adjectives in logical form have been quite
different—partly because of the dissimilar history of such analyses in the
field, but largely because they have tended to be syntax-driven; distinctions
in the syntax of adjectives and adverbs have been reflected in distinctions
in the logical forms proposed for them. Thus, adjectives have tradition-
ally been analyzed as one-place predicates (or perhaps, for adjectives that
take complements, as two-place predicates), since they can be predicated of
noun phrases in predicative adjective constructions, and noun phrases yield
arguments. Adverbs, on the other hand, have been analyzed as predicate
operators, since they modify verbs or verb phrases, which are traditionally
analyzed as predicates. In addition, all sentential adverbs have been ana-
lyzed as propositional operators because of a syntactic distinction between
sentential and verbal adverbs.

In the past ten years or so, however, the semantics of natural language
expressions, as developed by both linguists and philosophers, has freed itself
more and more from a simple one-to-one correspondence with the surface
syntax of English. Indeed, the easing of that constraint has enabled us to
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explain some anomalous syntactic behavior. This paper will address recent
semantic research in the area of adjectives and adverbs, with emphasis on its
relation to the nature of events, and will argue for a more unified analysis
than has previously been provided. In particular, we will argue that (1)
the traditional analysis of a property as being a two-place attribute relation
between an object and a value (e.g., Color(Ford, red)), is incorrect; (2)
the proper semantic distinction is to be drawn between certain sentential
adverbs, which are operators, and all remaining adverbs and adjectives,
which are predicates of various types; (3) all the adverbs that have both
sentential and verbal readings that are not clearly due to a lexical-semantic
ambiguity can be unified in logical form as predicates; (4) the delinking of
semantics from syntax extends, in the case of one subclass of adverbs, to
morphology as well, and (5) many of the adjective/adverb pairs actually
consist of an adjective derived from the adverb.

One of the more controversial issues in the representation of adverbs
and actions will be assumed here: the need for an event variable. First
proposed by Davidson [1967], this idea has been slowly but steadily growing
in popularity, particularly in philosophy and artificial intelligence research.
While this paper does not directly address the question of the validity of this
analysis, its widespread usefulness and the unified analysis of adjectives and
adverbs provided here should be taken as evidence for the analysis of events
as individuals. In particular, the existence of two-place predicate adverbs,
with one argument being the agent or subject of the sentence and the other
the action itsell, causes difficult problems for the most plausible alternative
analysis of such adverbs, namely, as predicate operators.

2 Preliminaries

2.1 Lexical Semantics of Adverbs and Adjectives

Before analyzing the logical form of adjectives and adverbs, henceforth re-
ferred to as AA’s, I shall list the major lexical semantic classes of adverbs
that are relevant to this study, and the names for these classes that have
been used in the literature. Besides serving to delimit the range of our study,
this classification will provide a basis for the semantic issues to be discussed
subsequently. This is not intended to be an exhaustive list of the lexical
semantic classes that fall under the logical forms to be presented here; it is,
however, a superset of the lexical classes of AA’s whose semantic behavior
has been discussed in the literature. Terms used by other authors are shown




in parentheses.

1. Operators

(a) Modal ([Bellert 1971}; Epistemic [Ernst 1984a]): possibly, proba-
bly, necessarily, not, etc.

(b) Evidential (Epistemic [Ernst 1984a); Modal [Bellert 1971]): evs-
dently, obuviously, allegedly, presumably, etc.

2. Predicates

(a) Two-place predicates [arguments for agent and event, proposi-

tion, etc.|
i. Behavior (Agent-Oriented [Ernst 1984a]; P,ypjcct [Jackendoff

1972]): rudely, nicely, politely, etc.

ii. Ability (Agent-Oriented [Ernst 1984a); P,upjece [Jackendoff
1972]): cleverly, foolishly, stupidly, etc.

iii. Intentional (Volitional [Ernst 1984a]; Passive-sensitive [McCon-
nell-Ginet 1981)): intentionally, willingly, reluctantly, etc.

iv. Evaluative (also [Ernst 1984a], [Bellert 1977]; P,peaker [Jack-
endoff 1972]): fortunately, surprisingly, luckily, oddly, etc.
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v. Derived two-place Measure terms [see Section 3.4]
(b) One-place predicates
i. Emotional State (Mental State [Ernst 1984al): bitterly, an-
grily, gloomily, furiously, etc.
ii. Measure

A. Normal: successful(ly), beautiful(ly), good/well, tall, thin,
short, slow, quick, etc.

B. Facility: easy, tough, ssmple, difficult, etc.
iti. Qualitative: red, black, dark, square, etc.

[Note: Measure terms and other gradable AA’s also have arguments for the
reference set, as well as perhaps for the quantity or degree.]
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There are a number of phenomena, labeled “adverbial” in the literature,
that will not be discussed here. Of these, the most important are words, o
phrases, and clauses that refer to the time or location of an event. While
these are clearly sentential adverbs in their behavior, current proposed ex-
tensions or modifications of first-order logic have specific ways of accounting =
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for time and location of events which are independent of the logical issues to
be examined in this paper. The other major class of “adverbs” that will not
be addressed comprises such verbal arguments as Instrument, Source and
Goal, which have been called adverbs in the linguistic literature presumably
because, unlike subject, object, and indirect object, they are syntactically
optional, but which are clearly arguments of the appropriate verbal predi-
cates.

There is a third class of adverbs that will also be disregarded in this
paper: those that are derived from nouns and mean (to use the classic dic-
tionary definition) “in some manner of, related, or pertaining to X", such
as electrically in electrically charged or electrically activated. These are in-
stances of the same kind of context-specific meaning relation as complex
nominals, i.e., such constructions as circust board, syntaz class, etc. It has
been demonstrated [Levi 1978] that adjectival forms derived from nouns that
mean “of, related, or pertaining to X” behave syntactically and semantically
like complex nominal constructions, and just happen to be syntactically ad-
jectivalized because they are functioning “like” adjectives. Likewise, the
denominal adverbs such as morphologically and electrically—like other ad-
verbs with adjectival counterparts—take the adverbial morphology because
they are functioning as modifiers of verbs or adjectives, a strictly syntactic
fact.

2.2 The Status of Attributes

There is a long-standing philosophical tradition stretching back to at least
Aristotle that treats properties (color, shape, size, etc.—the basic, “core”
adjective concepts) as values of an attribute of the object rather than as
directly predicated of objects themselves. Thus, The boz is red would be
analyzed as something like Color(Box, Red)—or, more abstractly, At-
tribute(Box, Color, Red) rather than simply Red(Box). This analysis
of properties and attributes has also been used extensively by those artificial
intelligence traditions that employ “semantic nets” and “frames” [Woods
1975:50]. While this analysis is rather inelegant, it does appear to account
for two constraints on adjective behavior. Adjectives (and adverbs as well
[Bresnan 1982:164-65)) are usually considered to be recursive in the syntax;
an arbitrarily great number of them can appear as modifiers of a single noun.
There are two constraints on their (co)occurrence: they must be values of
an attribute that the object denoted by the head noun possesses (e.g., *a
red electron is unacceptable), and no more than one can occur modifying
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the same attribute (e.g., *a purple magenta book, meaning a book that is
both purple and magenta, rather than one whose color is a cross between
purple and magenta, is unacceptable). The value-as-argument analysis of
properties allows one to capture these constraints quite easily, while the
value-as-predicate analysis does not seem to do so at all.

There is, however, an interpretation of attributes and values that allows
us to maintain a logical form that does not explicitly represent the attribute,
retain the value-as-predicate analysis, and nevertheless be able to account
for the aforementioned constraints. Various English constructions support
analysis of an attribute’s values as belonging to a lower-level type, while
the attribute itself is a higher-level type subsuming the attribute’s values.
Consider the following sentences:

(1) The book is red.

(2) Fido is a pug.

(3) Red is a color.

(4) The pug is a dog.

(5) My jacket is the same color as your book; it’s maroon.
(6) That is the same dog as mine: it’s a pug.

The adjective and attribute-name uses in the odd-numbered examples
above are parallel to the even-numbered noun uses just below them. Ex-
amples 1-4 all use the “be of predication”, which takes an individual (1-2)
or a lower-level type (3-4) as the subject and an expression representing a
type or a kind higher than that of the subject as the predicate (supported
by the copula). Thus, in 1 red functions as a type, while in 3 color functions
as a type higher than red.! The examples in 5-6 all use the “be of identity”,
asserting the equivalence of a type lower than color or dog, since it is obvi-
ously not being asserted that the two individuals themselves are identical.
In 5, the lower level type is the value, maroon, which is exactly parallel to
the lower-level type pugin 6.

If we adopt the analysis implied in the examples, i.e. that attributes
constitute a higher-order type, then the two constraints discussed earlier
emerge automatically from the standard behavior of type hierarchies. An
individual cannot be a member of two disjoint sister sets at the same time;
thus *a purple magenta book is parallel to *a dog that ss a cat. Likewise,

'Predicate adjectives are also subject to a syntactic constraint against taking articles
and plurals, thus resembling mass terms instead of count terms like pug or dog; a better
example than 4 would be Water is a liquid.

S |

RSt SR I
A‘ o >

SRS <

s
14

¥
T

T
sty

2
»

T

L}

«
X
-

>

v o e

.
»

R

'-.
-.‘
.
-
e




M ACICA B i S A e el M A A U Ay AR I S et Sl et EMMEAVE of g VLR S e A el A A Aol

an individual can be a member only of supersets of the basic set, so *a red
electron is parallel to *a dog that 1s a crime.

Another aspect of attributes that suggests they should be left out of the
logical form of AA’s is their predictability. Unlike such phenomena as refer-
ence sets for measure terms, which have been shown to vary unpredictably
and require an additional argument position in the predicate type (see foot-
note 14), the attribute is predictable from the value provided. The only
exceptions to this rule are such value terms as green, which are ambiguous
across attribute values—in this example, color vs. ripeness vs. emotional
state vs. experience. In these cases, the ambiguity is always finite and lexi-
cally fixed, and so is of a completely different order of complexity from the
reference set example.

Everything that has been said above concerning adjectives can also be
stated mutatis mutandis with regard to verbal adverbs. These adverbs are
analyzed as modifying an event variable, which can be thought of as a vari-
able that describes an event or, more precisely, a process. Here again, [ver-
bal] adverbs can be applied indefinitely to verbs, subject to the two con-
straints given above, and the attributes involved (result, direction, speed,
etc. of the process) are actually higher-level types.

There is, however, one feature of the adjective-noun relatlon that is a pri-
ori unpredictable and requires context or world knowledge to disambiguate;
this feature resembles that of complex nominal expressions such as book de-
partment or glare screen, in which the exact relation between the head and
the modifier is left unspecified until the context can make it more precise
[Downing 1979]. If one compares the phrases a red apple and a mushy apple,
it is immediately evident what attribute is assumed in each case, i.e., color
and texture, respectively—but the first attribute pertains to the surface of
the apple, while the second pertains to its interior. In both cases, general
world knowledge about the structure of apples and about which attributes
of which parts of apples are most relevant to people determines that we
are not dealing with a red-fleshed apple or one whose skin resembles foam
rubber; on the contrary, this knowledge is both object- and context-specific.
This leads to ambiguities that are potentially indefinitely large, just as with
noun modifiers. Consider the following example (used by John McCarthy
in a seminar at Stanford to make a similar point): red in red pencil could
refer to the color of the pencil’s surface, or to the color of the mark left
after the pencil has been used to write or draw, or (in theory) to any other
part or aspect of the pencil or its function which the speaker finds salient
enough to describe. The chief difference between adjectival modifiers and
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noun modifiers is that, in most cases, the part or aspect of the object that
is appropriately described by the adjective is almost always determined by
general knowledge about the object itself, the specific situational con ext
contributing relatively little; on the other hand, the precise relation be-
tween the noun modifier and its head is established at least as much by the
specific context of use as by our general knowledge. This aspect of adjecti-
val behavior must be treated the same way as the corresponding behavior of
noun modifiers. Thus, technically, any predication of a property shouid be
of the form Adj(F(x)), in which F is a context-determined function from
the entity x to the part or aspect of the entity that Adj is really a prop-
erty of, just as a complex nominal form [z y|n is really R(x,y), in which R
is a context-determined relation that is the exact relation between the two
entities. This added notational necessity is acknowledged here, but will be
disregarded in the rest of this paper.?

3 Logical Types for Adverbs and Adjectives
3.1 Modal Adverbs: The Thomason and Stalnaker Tests

As stated above, the principal line to be drawn between classes of AA’s at
the level of logical form is between operators and predicates. The classic
examples of operator adverbs are those that correspond to the modal oper-
ators: possibly, necessarily, and the sentence negator not. In addition, it is
incontrovertible that the evidential adverbs such as probably and evidently
are also sentence operators. The evidential adverbs all reflect different de-
grees of knowing something, in particular degrees of uncertainty of knowing
something; therefore, under the possible worlds interpretation of knowledge

%It seems that the irregular semantic behavior of nouns and adjectives is associated with
some characteristic of nouns themselves. All of those cases described in the literature
in which compositional and referential semantics must take world knowledge and/or
the specific context prominently into account have to do with nouns. In addition to
the irregular compositionality in the syntax of adjective-noun and noun-noun construc-
tions mentioned in the text, there is an irregular compositionality in the morphology
associated with denominal derivations that is not found with deverbal or deadjectival
derivations. Thus, for example, denominal verbs are highly irregular in their seman-
tics; what Clark and Clark [1979) show for zero derivation is also true for nonzero
derivation—compare colonsze, alphabetize, atomaize, or the innovation productize). The
same is true of denominal agentive nouns: compare scientist, machinist, violinist, com-
munist. Finally, as Geoffrey Nunberg has amply demonstrated [Nunberg 1979|, simple
nominal reference per se is also highly sensitive to world knowledge and context of
situation.

T - . _'.:_‘.:_ T . _ e . '.""'_‘.'_ ‘-‘;\._
R e S T R PO TN
W3 PRI NI SIS A GICUR IR W VN

o Jo/de I

ﬁz!’ rﬁ"

2
r M
»

y SO

H 4H !

s e ey -

T P
PR l [ )
ST s
taal

he

L



LAy

‘. O e WL
S R
e -

' .‘.- 't'- U
*

and belief [Hintikka 1971}, they are parallel to the modal operators.

Thomason and Stalnaker [1973] propose four criteria for deciding whether
an adverb is sentential or not. Although they consider each test to be a suf-
ficient condition in itself, a detailed study of individual adverbs indicated
that, in most cases, all four conditions applied if any one did. More impor-
tant to the current line of research is the fact that three of the four criteria
test specifically for behavior that characterizes modal operators, at least in
the possible worlds interpretation of modality. The first criterion is whether
or not the adverb induces referential opacity in the entire sentence. While
referential opacity is not unique to modal contexts and the like, it is char-
acteristic of all of them. The same is true for scope ambiguity, the property
used in the second criterion. Scope ambiguity is a feature of quantifiers
as well as modal operators; however, in the possible worlds interpretation
of modality, the basic modal operators behave like quantifiers over possi-
ble worlds. The third semantic criterion is whether or not the adverb is
semantically appropriate in the context It is Adv true that S. In the sense
that operators apply propositions to possible worlds and truth is defined
as the applicability of a proposition in a world (i.e., truth is relativized to
“truth in a world”), this criterion also is a criterion for operator status.’
The remaining criterion, namely, that an adverb is sentential if it outscopes
an adverb already proved to be a sentential modifier, is syntactic in nature
and appears to be inessential, since, in all of the cases considered, the other
criteria sufficed.

3This test is closely related to a syntactic property of sentential adverbs, namely, that
they can be paraphrased with their adjectival counterparts in the construction It i Ady
that S. This fact places the adjective likely in the Evidential class—which its lexical
semantics would certainly indicate—although, apparently for phonological reasons, it
has no adverbial ~ounterpart.

“There are some uses of Modal and Evidential AA’s as adjectives modifying single nouns
or fragments of noun phrases: the alleged killer of the child, a posssble solution, etc. The
meaning of these phrases can be paraphrased as the pereon who ies allegedly the killer
of the child and a thing that is posssbly a eolution; in logical form, this would simply
be represented as an operator having scope over the relevant conjunction of predicates
(represented here in a restricted quantification notation): [the x: Alleged(Kill(x,
child))] and {an x: Possible(Solution(x))]. A similar analysis would be required
for another subclass of adverba: hopefully, ideally, and desirably, first noted by Ernst
[1984a:71-73|; they would have to be modal operators over the entire sentence. Finally,
adjectives like fake, toy, and imitation seem to require analysis as true predicate op-
erators, since they alter the meaning of the predicate rather than the possible-worlds
(i.e. epistemological/mental) status of the proposition. However, all the proposed
operators—both sentential and predicate—have in common the fact that the truth of
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3.2 S/V Adverbs and the FACT Operator

The discussion concerning Thomason and Stalnaker’s criteria and its refer-
ence to the nature of operators (or rather, the shared properties of concepts
that are represented as operators n logical form) highlights the problem
of adverbs which appear to be ambiguous between sentential and verbal
readings (S/V adverbs). If we adopt the interpretation of events as an inde-
pendent argument of a predicate, as advocated by Davidson [1967], Moore
[1981] and others, and argued for extensively by McConnell-Ginet [1981],
then verbal adverbs will be predicates on that event variable. However, if
there are adverbs that have both a verbal and a sentential reading (the latter
proved by means of Thomason and Stalnaker’s criteria), then we appear to
be faced with one of two unpleasant alternatives: either to say that there are
two otherwise synonymous terms, one an operator and the other a predicate,
or that the single term is of one type, thereby forcing all verbal adverbs to
be operators. Fortunately, there is a solution to this problem that reveals
a “hidden” operator whose existence is supported by independent linguistic
evidence.

Let us consider the example of Behavior adverbs such as rudely and
politely and Ability adverbs such as cleverly and stupidly, etc. in which
the distinction between the sentential and verbal readings is clearest. The
following pairs of sentences, otherwise identical except for the position of
the adverb, mean distinct things:

(7) Maggie spoke rudely to the Queen.

(8) Rudely, Maggie spoke to the Queen.

(9) Jerry opened the window cleverly.
(10) Cleverly, Jerry opened the window.

In the first sentence of each pair, the action was performed in a manner that
is described by the adverb: it was perhaps Maggie’s tone of voice or her
use of brusque language that made the event rude, while it was presumably
Jerry’s technique in opening the window that was clever. This is clearly
a verbal reading, with the predicate modifying the event variable. In the
second sentence, it is the performance of the act itself (as opposed to its
nonperformance) that is described by the adverb: Maggie was rude to speak
to the Queen, while Jerry was clever to open the window at that time.

P(x) does not immediately follow from OP[P(x)] or [OP(P)](x). While this is a
general property of operators, it is not, as we shall see, a necessary one.
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The readings in 8 and 10, generally called “sentential” readings due to
their syntactic behavior, pose difficulties in analysis because they do not
seem to fulfill Thomason and Stalnaker’s semantic criteria for sentential
adverbs. The sentential readings do not induce opacity in the sentence, the 1
first criterion; in fact, unlike most other sentential adverbs, they are factive. ]
When Thomason and Stalnaker’s second criterion is applied, as in 11 and
12 below, one finds distinct readings under an interpretation in which one
person speaking to the Queen is acceptable, but everyone speaking to the
Queen at once is not:

(11) Everyone rudely spoke to the Queen.
(12) Rudely, everyone spoke to the Queen.

However, the phenomenon in 11 and 12 has a different explanation that is
independent of the verbal vs. sentential adverb distinction. In another part
of their paper, Thomason and Stalnaker [1973:200] point out that sentences
like 13 and 14, with the adverb slowly—about as impeccable a verbal adverb
as one can find—also display “scope ambiguity”:

(13) Slowly, everyone left.
(14) Everyone left slowly.

In this case, as in 11 and 12, the “adverb wide scope” reading is actually
a predication of the adverb over a distinct kind of event, i.e., the event
of a collective group doing X, which happens to look like an aggregate of
individual doing-X events. The property denoted by the adverb applies to
that collective event (the slowness of everyone viewed as a group to leave,
the rudeness of everyone viewed as a group to speak to the Queen). Thus,
the phenomenon in 11 and 12 do not qualify as support for Thomason and
Stalnaker’s criterion.

Finally, the third criterion, acceptability in the frame It 1s Ady that S,
does not appear to apply: 15 and 16 are not especially good English:

et ML e ot

(15) *?It was rudely true that Maggie spoke to the Queen.
(16) *?7It was cleverly true that Jerry opened the window.

LTSy v ]

Thomason and Stalnaker themselves argue that locative and temporal ad-
verbs satisfy their third criterion, adducing 17 and 18 as evidence (Thomason
and Stalnaker [1973:206]), but these examples are no more convincing than
15 or 16:
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- (17) *?It is true in the morning that Mary beats her dog.
(18) *?It was true in the kitchen that Henri dropped the souffle.

ooy The sentential readings in 8 and 10 are characterized in a number of
- ways. First, unlike most sentential adverbs, they are factive. Second, it is
just this factivity that the truth conditions for the sentential adverb reading
are sensitive to: thus, it is the fact that the event in question falls under the
description of “Maggie speaking to the Queen” that makes it rude. Never-
theless, the meaning of the adverb rudely (as well as cleverly and the like)
is the same in both the verbal and sentential readings.
T One must not confuse the meaning of utterances like 7-10 with expla-
: nations as to why the action, or its execution, is rude, clever, etc. Earlier
proposals for analyzing 7 and 8 suggested that the difference between the
= verbal and sentential reading was that in 8 it was the fact that the action fit-
A ted the description provided by the proposition that made it rude, whereas in
: 7 it was some other description of the action (speaking loudly, using obscen-
- ities, etc.) that made it rude. However, what made the action of Maggie’s
speaking to the Queen rude in 8 may have to do with all sorts of things that
may be quite remotely linked to the description. First, it may be that only

- part of the description is relevant to the reason for the action—e.g., the act
.\3 of speaking to the Queen, not that of Maggie’s speaking to the Queen. Or,
¢! conversely, it was only in the given context—not at all mentioned in the
i proposition under the “scope” of the adverb—that Maggie’s speaking to the
e Queen was rude. The important point is that all sentence 8 asserts is that
e the fact that that event happened under those circumstances, as opposed
.( to its not happening at all or to some other event’s happening, was rude.
::l Any inference as to the reason the fact that that event occurred was rude
" is not part of the semantics of 8. Likewise with 7: only some property of
the event rather than its existence is asserted to be rude; the question what
. that property was or why it is considered to be rude is left open.
) The verbal/factive-sentential ambiguity phenomenon appears to be present

in all of the two-argument (actor and event) adverb lexical classes except
for the Intentional class, and is usually the only reading available for the
Evaluative subclass. The Emotional State adverbs such as angrily, whose
- semantics means roughly “x is such that one can infer that the agent was
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The preferred reading in 19 is that the manner in which Sue shut the door
implied anger on her part, while the preferred reading for 20 is that the fact
that Sue shut the door (say, the door to a dorm room during a hall party),
as opposed to not doing so, indicated that she was angry. Even though
both readings are possible in either position, the positional preferences for
English adverbs merely tend to suggest the sentential or verbal readings for
those adverbs that have both.’

Ernst [1984a] considers the possibility that Intention adverbs also display
both readings:

(21) Sue closed the door deliberately.
(22) Sue deliberately closed the door.

There may be a reading of 22 that means that the manner in which Sue
closed the door was deliberate on her part, while in 18 Sue’s intention was
to close the door; in addition, the sentence indicates her successful accom-
plishment of the act (the more common reading). If 22 is indeed a verbal
adverb, it must be a derived one because it does not display the other be-
havior of Intentional adverbs, such as the opacity of the VP (see below).

Finally, with Evaluative adverbs like fortunately or luckily, as in 23, it is
clearly the fact of Sue’s shutting the door that is fortunate or lucky, not the
manner in which she did it:

(23) Fortunately/Luckily, Sue shut the door.

However, some of the Evaluative adverbs do allow a verbal adverb reading,
as noted by Ernst ([1984a:66], his examples 169 and 173):

(24) That performance turned out pretty luckily, considering all the
trouble we had beforehand.

(25) Joan thought Fenster would be elated, but he reacted very curi-
ously/strangely to the news.

Such examples are extremely rare, however.®

®The fact vs. manner distinction may not be present in the semantic representation of
utterances with Emotional State adverbs; it may be only a part of the reason the agent
was angry, etc., and so the argumenta in the preceding paragraph apply. The lexical
semantics of Emotional State adverbs appears to be vague rather than ambiguous with
respect to the fact/manner distinction. See also the discussion of Emotional States
AA’s in Section 3.4.

“The factive readings of Evaluative adverbs, unlike those of other AA's, allow the para-
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The solution to the dilemma of how to represent the semantic unity of the
predicates that have both sentential and verbal adverb readings is to realize
that there are two different things being characterized in the members of
each pair.” The first is an event in the world, which is represented by the
event variable. The second and more abstract one is the state of affairs of
that proposition’s being true. This, like an event, is part of the world; but,
unlike events, it is something associated with every [true] proposition. This
corresponds to the paraphrase of sentence 8 as The fact that Maggie spoke
to the Queen was rude; the fact that Maggie spoke to the Queen is as much
part of the world as the event that happened to be an instance of Maggie’s
speaking to the Queen. Indeed, the best way to test for the the sentential
adverb reading of a predicate is to see whether the paraphrase The fact that
S 1s Ady makes sense. To put it in terms suggestive of situation semantics
[Barwise and Perry 1983], the state of affairs is the [factual] existence of
something subsumed under a complex event type, e.g., “Maggie speaking to
the Queen”. No part of the description of the event is dispensable for the
factive reading; still, for the reasons indicated above, one cannot draw any
inference outside context as to what aspect or circumstance of the described
event furnishes a rationale for the event’s being rude or the like.

There is further evidence that supports this hypothesis. Adverbs like
rudely or cleverly in their sentential readings (and also adverbs of the Eval-
uative class), can be applied to any sentence, including stative sentences. In
the latter, however, the second, verbal adverb reading is absent—precisely
because there is no event variable present. Thus, 26 has only one reading
(the sentential one) and 27 is unacceptable because the sentential reading
(the only possible one) is not possible with the adverb immediately following
the main verb:

(26) Rudely, Fred was late to the Presidential dinner.
(27) *Fred was late rudely to the Presidential dinner.

Another prediction that one would make from the hypothesis is that

phrase It is Adj that S, e.g. It 1 fortunateflucky that Sue shut the door -6 *It nwas ~leree

that Jerry opened the window; the nearest acceptable paraphrase r the ther - aues
requires the presence of the subject of the infinitive form in a PP It was rierer of Jeery
to open the window. The reason for this appears to be that whereas r a *=e ther AA
classes the second argument to the predicate must be a participant 'n the a t. n thie

semantic restriction does not apply to Evaluative AA s see se-tion 3 ¢

"This analysis was proposed by Robert Moore. in the ~curse f die yas re (60 o pag o
with the author.
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the adverbs that are genuine operators, namely, the Modal and Evidential
adverbs would not have any sort of verbal adverb readings with the same
meanings. This prediction is also correct, as Ernst [1984b| has observed:
in the case of those Evidential adverbs that do appear to have verbal ad-
verb counterparts, the latter actually have meanings that differ from the
corresponding sentential readings:3

(28) Clearly, John is right.
(29) John spoke clearly.

o R ettt

Furthermore, these classes of adverbs are not the only linguistic phe-
nomenon to exhibit this semantic ambiguity. Such factive predicates as 30,
first discussed by Kiparsky and Kiparsky [1970], also have two readings cor-
responding to those of rudely and cleverly, which are paraphrased in 31 and
32:

EE -

(30) Mary disapproves of John’s drinking.
(31) Mary disapproves of the way John drinks.
(32) Mary disapproves of the fact that John drinks.

Finally, states of aflairs, as well as events, enter into causal relations, so
that the situation in 33a is described by 33b; note that no event variable
could be involved, since the causal clause in 33a is stative. On the other
hand, 34a exhibits both the manner and fact readings:

(33a) The President’s being late caused the banquet to be delayed for
two hours.

(33b) The fact that the President was late caused the banquet to be
delayed for two hours.

$The only possible exception to this rule seems to be obuviously, which has a verbal
adverb counterpart with a lexical semantics that does not appear to be distinct from
the evidential form:

(8) Obviously, someone opened the door.
(%) Sandy opened the door obviously.

Sentence b means roughly “Sandy opened the door in a manner that made her action
cbvious”, in the evidential sense of obvious. This was first pointed out by Ernst: “While
a unified sense...works for obviously, it seems that no other Epistemic [Evidential] adverb
admits of such treatment” [Ernst 1984b:87]. Unless a semantic difference between the
two readings of obviouslyis found, this adverb may be a counterexample to our proposal.
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7 (34a) John’s drinking makes Mary upset.
) (34b) The way John drinks makes Mary upset.
o (34c) The fact that John drinks makes Mary upset.

Indeed, any natural language expression (nominalizations as well as com-
L plements) that can be paraphrased with the fact that S without altering the
truth conditions of the utterance will be subject to the same kind of analysis
as the phenomena described above.

All of this evidence confirms that a general systematic phenomenon is
occurring here. The fact that the sentential readings exhibit the semantic
behavior tested by Thomason and Stalnaker suggests that the “fact” reading
should be characterized by an operator, which we will call FACT, which
! has scope over the proposition, and which denotes a function from the latter
to a state of affairs. Hence, the two readings embodied in 7 and 8 would be
represented as follows (Rude is a two-place predicate):

(35) Je[Speak(e, Maggie, Queen) & Rude(Maggie, e))
(36) Je[Speak(e, Maggie, Queen) & Rude(Maggie, FACT(Speak(e, Mag-
gie, Queen}))]

= 3.3 Adverbs of Intention

There is one class of two-place predicate AAs, referring to mental states,
J that behaves distinctly from all the other AA classes, namely, the Intentional
class. The adverbs of this class do not have the S/V distinction, they induce

b~ - opacity, and they display “passive-sensitivity” ((McConnell-Ginet 1981:145];
5 see below).

The distinctive behavior of the Intentional class of adverbs can be largely
explained by treating them in a manner parallel to that applied to the verbs
from which they are derived or to which they are related—i.e. verbs that
denote intention, desire and knowledge, that have a proposition as one of
the arguments of the predicate. Thus, just as with the Modal and Evidential
adverbs, the S/V distinction is not relevant to the Intentional class. Like
the lexically and semantically related verbs and adjectives of intention etc.,
K the adverbs induce opacity:

(37) George intentionally/willingly attacked Ronald Reagan.
' (38) George intended/was willing to attack Ronald Reagan.
(39) Ronald Reagan is the President of the United States.
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(40) YGeorge intentionally /willingly attacked the President of the United

AR e s B

States.
(41) YGeorge intended/was willing to attack the President of the United -
States. -

In a situation in which George did not know that Ronald Reagan was the
President of the United States, 40/41 do not follow from 37/38 and 39.

Unlike the Behavior and Ability adverbs, the corresponding verbal or
adjectival forms of Intentional adverbs are not factive:

(42) Harvey was willing to cut the roast I/ Harvey cut the roast.
(43) Harvey was stupid to cut the roast before cooking it + Harvey cut
the roast before cooking it.

The Intentional adverb forms themselves are factive (e.g., 37), indicating
that (like all other adverbs, except the Modal and Evidential ones, and
like most adjectives as well) two assertions are involved. Finally, like the
corresponding verbal forms but unlike the Modal and Evidential adverbs, the
Intentional adverbs take a second argument: the participant who intended,
was willing, ete., to perform the action he has performed. Therefore, to
capture all of these semantic facts, a logical form for 37 would have to be
the one in 44; compare 45, which is the logical form of 38:

(44) 3Je[Attack(e, George, RR) & Intend(George, Attack(e, George, RR)))
(45) Intend(George, Je[Attack(e, George, RR)])

It is worth noting at this point that an anomaly in the interpretation of
intentionally provides an additional piece of evidence for the existence of an
event variable (as suggested by Robert Moore [personal communication]).
Let us consider the following situation, taken from Searle ([1980:51}; in turn
borrowed from Chisholm [1966]): John intends to kill his uncle, in order
to collect early on his inheritance. He gets into his car to drive to his
uncle’s house, but in his haste to get there he runs over an old man—
who, unbeknownst to John, is his uncle. Question: did John intentionally
kill his uncle? If the standard notation without the event variable as in
46 is used, then the answer is yes, since there is no way to indicate that
- the killing of his uncle in the first conjunct is the same action as in the
o second conjunct, i.e., that John intended that very event to be the killing
o of his uncle. John clearly did not intend the event of the car accident to be
the event of his killing his uncle—he had something completely different in
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mind—and so the traditional representation makes an erroneous prediction.
However, the representation that includes the event variable in 47 does make
the correct prediction, because the identity of the event variable in the
second conjunct with the one in the first conjunct means that John intended
that very event to be the killing of his uncle; and since that assumption is
false, the proposition is, correctly, false.

(46) Kill(John, Uncle) & Intend(John, Kill(John, Uncle))
(47) 3e[Kill(e, John, Uncle) & Intend(John, Kill(e, John, Uncle)))

While the representation in 44 and 47 captures correctly the semantics
of the Intentional class of adverbs, there is another property of this class
that has generated considerable interest, having been discussed by Lakoff
{1972}, Thomason and Stalnaker {1973}, and McConnell-Ginet [1981): the
phenomenon of passive-sensitivity.? When certain semantic conditions ap-
ply, it is possible to have two readings for 48 (with the positional variants
favoring one reading over the other, but not always excluding the unfavored
reading), one corresponding to the situation in which Joan is reluctant and
one corresponding to the situation in which Fred is reluctant; these readings
are paraphrased in 49 and 50:

(48a) Reluctantly, Fred was taught by Joan.
(48b) Fred reluctantly was taught by Joan.
(48¢) Fred was reluctantly taught by Joan.
(48d) Fred was taught reluctantly by Joan.
(48e) Fred was taught by Joan reluctantly.
(49) Joan was reluctant to teach Fred.
(50) Fred was reluctant to be taught by Joan.

The possibility that either the subject or the agent (when the latter
is not the subject) is the reluctant participant in the event constitutes
the passive-sensitivity of the adverb. The semantic restriction governing
the phenomenon of passive-sensitivity is the relevance of the potential of
control!® by the participant over the execution of the action; the adverbs

*This term was first used by McConnell-Ginet [1981:145).

®The potential for control, rather than control itself, is the correct way of stating the
condition because adverbs like unwittingly or unwillinglyindicate not that the participant
has control over the action, but only that the potential for control was there, yet it was
thwarted or not acted upon by virtue of ignorance, deceit, or some outright external
force.
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for which this is true are not just the Intentional adverbs but the Ability
adverbs as well:

(51) Stupidly, the assistant was caught by the police while she was leav-
ing the mayor’s house.

(52) The assistant was stupid to be caught by the police while she was
leaving the mayor’s house.

(53) The police were stupid to catch the assistant while she was leaving
the mayor’s house.

While this ambiguity is a clear case for the necessity of another argu-
ment to the adverb besides the proposition, one still needs to explain how
the two readings are possible under the conditions specified above. Super-
ficially, the condition appears to be a disjunctive one: the other argument
to the adverb must be either the agent or the subject. In the case of active
sentences, agent and subject are the same, so only one reading is possible;
in the case of passive sentences, agent and subject are distinct roles in the
surface structure, so we have the ambiguity. McConnell-Ginet proposes that
in the subject reading the adverb is associated with the higher verb, that
is, with the passive auxiliary be, while in the agent reading the adverb is
associated with the lower verb, the passive participle. While this solution
is in itself somewhat questionable—the by-phrase that contains the agent
argument in the passive construction is certainly outside of the VP imme-
diately dominating the passive participle, no matter what one’s analysis of
auxiliaries may be—when one examines evidence from languages with mor-
phological passives instead of syntactic ones, McConnell-Ginet’s analysis is
untenable. In such languages, her analysis would predict that there is only
one reading, i.e., the agent-oriented reading, since there is no higher verb
to attach the adverb to for the subject-oriented reading. However, in at
least one language with a morphological passive, Japanese, both readings
are possible.!! Japanese has a passive suffix that occurs between the verb
root and the tense/aspect marker (cf. 54 and 55):

(54) John-wa Mary-o osie-ta.
John-SBJ Mary-OBJ teach-PAST
‘John taught Mary’

'"The following data for Japanese were provided to me by Akira Ishikawa and Mariko
Saiki.
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(55) Mary-wa John-ni osie-rare-ta
Mary-SBJ John-AG teach-PASS-PAST
‘Mary was taught by John’

When one inserts the adverb husyoobusyoons ‘willingly’ into 54, one gets
only one reading for the sentence, since the agent and the subject coin-
cide in surface structure; however, inserting it into 55 yields an ambiguous
sentence, with the subject-oriented reading preferred when the adverb im-
mediately follows the subject, and the agent-oriented reading preferred when
the adverb immediately follows the agent phrase:

(56) John-wa husyoobusyooni Mary-o osie-ta.
John-SBJ unwillingly Mary-OBJ teach-PAST.
‘John unwillingly taught Mary.’

(57) Mary-wa husyoobusyooni John-ni osie-rare-ta.
Mary-SBJ unwillingly John-AG teach-PASS-PAST
‘Mary unwillingly was taught by John.’

(58) Mary-wa John-ni husyoobusyooni osie-rare-ta.
Mary-SBJ John-AG unwillingly teach-PASS-PAST
‘Mary was unwillingly taught by John.’

Thus, the distinct readings in both the English and the Japanese cases
are not dependent on the number of verbs in the clause, but instead on
some deeper semantic relationship that goes against both the syntax and
the morphology. The semantics of adverbs like reluctantly in 48-52 require
that its first argument be an argument in the proposition that makes up the
second argument of the adverb. Let us consider grammatical voice as an
operation on logical form which makes available one argument (call it the
“subject”, reflecting its final surface-syntactic status) over the others, so that
the (unmarked) active voice yields Az.Teach(e, z, y) and the passive alters
the form to Ay.Teach(e, 2, y). Then, in the agent-oriented reading preferred
in 48c-e and paraphrased in 49, the adverb was semantically composed with
the predicate before the passive operation was applied, yielding 59, while in
the subject-oriented reading preferred in 48a-b and paraphrased in 50, the
passive operation was performed before the adverb was composed with the
predicate, yielding 60.

(59) 3e[Teach(e, Joan, Fred) & Reluctant(Joan, Teach(e, Joan, Fred))
(60) Je[Teach(e, Joan, Fred) & Reluctant(Fred, Teach(e, Joan, Fred))
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This allows us to reanalyze the condition as a “subject” condition rather

. than as a disjoint subject-or-agent condition.

A However, this means that one reading has to look “inside” the morpho-

logical structure of the passive form in order to combine it syntactically with

. another elemen of the sentence. This is not a unique and insuperable prob-

. lem created by our analysis; it is just another example of a fairly widespread
phenomenon, the best-known examples of which are given in 61 and 62:

[ PN RS | NPENLIRF NG "S- | W 5 N

(61) Morphological analysis: [un+{grammatical-ity]|
Semantic analysis: [[un grammatical] ity]

(62) Morphosyntactic analysis: [atomic [scient-ist]]

Semantic analysis: [[atomic scient] ist]

.

The more closely one analyzes linguistic constructions, the more ubiquitous
the mismatches between syntactic structure and logical form turn out to be.
For example, the entire analysis of adverbs argued for so far goes partially
“against” the syntax of adverbs, with the division between [syntactically|
sentential and verbal adverbs being different from the one between operators
and predicates. While a rough-hewn correspondence between morphosyn-
tactic structure and the structure of logical form is quite apparent, it is
clear that the simple rule-to-rule hypothesis of compositionality it suggests
f:"_: must be refined considerably in order to account for the type of behavior
" described here.

3.4 Some Arguments for Some Arguments

Having described the different logical forms found in the adjective and ad-
verb classes considered in this paper, it remains to examine the large number
of AA’s that are predicates and to determine the number and type of argu-
ments the predicates of each class take.

There are three major criteria for establishing the need for an argu-
g ment to a predicate. The first is that the concept denoted by the predicate
o necessarily implies the participation in some way of other entities—usually
- - objects and agents, but also events, propositions, and even more exotic en-
o tities like the FACT(P) forms proposed earlier. The second is that the
identity of those entities is not automatically predictable from the informa-
e tion already encoded in the predicate’s semantics. The value-as-argument
e analysis of properties discussed in Section 2.2 did not satisfy this criterion,
AY since in all cases the identity of the attribute is can be predicted from the

SN WA Y —
."-rn..'l‘l"’

."; RN

20

[ A

B, ey

-




| e a2 aat nac gan e e v aa e e i eonar o —r— - e i e dhese Shed ekt Sing St Shat Jhati 4
’ - - Cill a i~ pi e i Aaradin it dir A acadcadiit gt Mt ol asin i SR DR S S AR A

semantics of the predicate (the “value”); this was accounted for by deter-
mining that attributes are actually higher-level types and do not participate
directly in the relation between the so-called “value” and the individual.
The third criterion is whether or not the putative argument can actually
appear in the utterance as a syntactic constituent dependent on the pred-
icate word. Its presence means that some intimate relation holds between
it and the predicate independent of contextual factors and the semantics
of the predicate. Let us now examine the adverbial predicates and their
adjectival counterparts in order to determine the relationship between them
from the standpoint of how many arguments they take, what type they are,
and which surface-syntactic form seems to be the basic one and which one,
derived.

We have already seen that the agent (or rather, “subject”) argument
for Intention and Ability adverbs is a necessary argument of the predicate
because it can vary in some circumstances, namely in passive constructions;
thus, its identity is not predictable from the adverb’s semantics. The adjec-
tive has the same meaning, even though it can be found attributed to an
agent without the mention of an event:

(63) John is clever.
(64) John is clever at playing the dictionary game.

(65) John was clever to wait seven years before opening the 1974 Pom-
mard.

The reason for this is that 63 is actually ambiguous, depending on the con-
text: one could be uttering it in order to convey the idea expressed, for
example, in 64 or 65 when the additional information supplied by the com-
plements of the latter sentences is understood in the context. Out of context,
of course, the usual interpretation of 60 would be that John is typically or
generally clever in whatever he does— “generically” clever, so to speak (or,
to be more specific, the second variable of Clever(John, x) is bound by
a generalized quantifier G, as described by Farkas [1082]). Note that the
generic-event reading covers both events and the fact that S types: John's
general cleverness covers what he does as well as how he does it. This sup-
ports the generalized quantifier binding that the generic reading implies:
the domain of the variable is not restricted in any way. Finally, it is obvi-
ous that sentences with explicit complements such as 64 and 65 will require
a predicate with two arguments for the adjective, which strongly supports
treating 63 as taking two arguments as well.
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It turns out that, for almost all adverbs that are predicates on events and
that have adjective counterparts like clever or willing, such adjectives are
semantically identical to the adverbs. For example, with Behavior adverbs
such as rudely, the adjective costructions semantically require an event as
well as an agent, which is generic if unstated, as in 66, and which can be
explicitly mentioned, as in 67 and 68.!2

(66) Thomas is rude. ,1
(67) Thomas was rude in speaking to the teacher. N
(68) Thomas was rude to pull his sister’s hair. ]

The Evaluative adverbs such as fortunately and luckily also are two- ]
place predicates. In many cases the second argument is left to be implied ﬁ
by contextual factors, but it can appear as a distinct constituent in either
the surface adjectival or adverbial form of the predicate:

4

(69) Fortunately for Tom, he left the house before the slide. ; :

(70) John was lucky to get his application in before the deadline. :.a

Unlike some of the other classes we have described, the second argument to ‘
Evaluative class forms may be related very indirectly to the action or state .

of affairs described in the first argument. ]

(71) Luckily for George, Harry threw the ball to Fred.

The Emotional State adverbs, on the other hand, seem to be one-place
predicates that are syntactically derived from but semantically identical to
their adjectival counterparts, which are one-place predicates on individuals,
but do not have a different semantic form. The sentential-adverb form that
bitter takes in 66 does not imply that the emotional state that Mary is in
is related directly to the event which forms the main predication of the
utterance. In fact, the form in 72 is a historical innovation based on the
sentence type found in 73 and 74:

'2The form in 68, with a to + infinitive construction (called here to Vin/), has only the

- factive-sentential reading, while the form in 64, with the in + gerund construction
o {called here the at/in Ving construction, since other variants take at instead of in),
t:‘. exhibits either the verbal or the factive readings, though the verbal reading is preferred.
- This distribution is a general fact about these nonfinite constructions: the at/in Ving
o constructions are used for verbal readings, the to Vinf constructions for the factive-
x sentential readings. The only exception to this rule is the use of a [gapped| for-to
F complement with Facility adverbs (see below).
>l
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(72) Bitterly, Mary left the apartment for the last time.
(73) Bitter, Mary left the apartment for the last time.
(74) Mary, bitter, left the apartment for the last time.

Further evidence supporting this argument is that when bitter is a predicate
adjective, it cannot take a complement:

(75) Mary was bitter *to leave/*?in leaving the apartment for the last
time.

The other one-place predicates are somewhat more complicated in their
derivational structure: in some cases, there are actually other arguments,
most of which are related to the phenomenon of gradability. The arguments
contributed by the semantics of gradability will be discussed briefly at the
end of this paper. We are primarily interested, however, in the relationship
of the argument structure to the representation of events that has been
proposed so far.

The Measure AA’s actually have a very complicated semantics when
it comes to the number of arguments and the existence of derived forms,
although they are all verbal adverbs. Let us begin by considering those
AA’s that describe properties of processes or events. These include such
AA’s as successfully and slowly. Their primary use is as modifiers of events:

(76) Gerald slowly picked himself up off the floor. .
(77) Marcel successfully merged his company with Limelight Industries.

The adjectival counterparts that are identical in logical form modily action
nominalizations, since they are predicates on events:

(78) The destruction of the city by the Germans was rapid.
(79) The merger of the two chemical companies was successful.

However, there are adjectival forms of these AA’s that take an individual as
an argument, rather than an event:

(80) Muhammed is slow.
(81) Marecel is successful.

As has been pointed out by Uszkoreit [1980] and others, there is an under-
stood role in 80 or 81 in which Muhammed is slow or Marcel is successful;
this can be made explicit, as in 82 or 83:
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(82) Muhammed is slow at learning languages (but fast at program-
ming).

(83) Marcel is successful in merging companies (but not at composing
operas).

It is also possible for 80 and 81 to be interpreted as meaning that, as a
rule, Muhammed is slow or Marcel is successful in any activity either might
undertake. Even 82 or 83 are generic as well, in that the role expressions
are generic.

Nevertheless, in the original or “basic” uses of the AA in reference to
an event, there is no need for an additional argument for, say, the subject:
success in merging the companies may or may not be attributable to Marcel
in 77 (cf. 79, which could be referring to the same event and does not refer
to Marcel at all). Examples 80-83, however, indicate that actions of some
type associated with the individual about whom the AA is predicated are
generally slow, successful, etc. These adjectival uses are secondary applica-
tions that are derived from the primary one-place event predicate; they add k
a second argument and thus have the form P(r,x), meaning roughly “xis i

~
S

P at doing r”. The variable r denotes a role, that is, a generic activity such
as running or learning languages, in which the individual mentioned in the
other argument of the predicate is interpreted as the agent.

The distinctions are more complicated when one has an AA like beau- by
tsfulfly) which, in addition to modifying events, can also directly modify
individuals—in this case, describing physical appearance. Thus, to borrow
some well-known examples from Siegel [1976], we have the following two sen-
tences and three logical forms, in which Beautiful’ denotes the two-place
predicate derived from Beautiful:!3:!4

(84) Marya dances beautifully.
Je[Dance(e,Marya) & Beautiful(e)]

13The interpretation of beautiful dancer in the first logical form listed under 85 is not
a result of the mismatch phenomenon such as in example 82 above. Uszkoreit [1980]
pointed out that the role variable in the derived adjectival form does not necessarily
refer to the role denoted by the head noun in sentences like 85; his example is John is
a good sophomore where in the context John is good at playing football. Thus, the role
variable in the first logical form listed in 85 could theoretically refer to roles other than
dancing.

'4I¢ is possible that the Beautiful predicate referring to physical appearance may be dis-
tinct (though obviously related) from the one-place predicate that characterizes events;
see Footnote 15.
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o (85) Marya is a beautiful dancer. b
Dancer(Marya) & 3r[Beautiful’(r,Marya)] or ?
< Dancer(Marya) & Beautiful(Marya) y
:;{ The same sort of argument applies mutatis mutandis to Facility AA’s, )
A words expressing the facility of performing an action such as easy/eassly, j
e and difficult/ with difficulty—the class of so-called “Tough-Movement” ad- 5
. jectives. They refer to actions as in 86; the adjectival use in 87 implies an
action in which the individual of whom the adjective is predicated is a par- N
;o ticipant, e.g. the actions exemplified in the to Vinfcomplements in 88. The N
- uses in 87 and 88 represent a two-place predicate derived from the one-place g
= event predicate in 86, which does not specify any participant in the action o
as rendering the action “easy”: i
R
(86) Yolanda easily shot the arrow into the bullseye.
- (87) This exam is difficult.
;--".f (88) This exam is difficult to read/to understand/to pass.

The chief difference between this class and the other Measure AA’s is that
the individuals of whom derived Facility adjectives are predicated must par-
- ticipate in the relevant actions as direct objects or as other affected partici-
i) pants, whereas the thematic relation between participant and action for the
derived Measure adjectives is much freer (though it is usually the agent):

(89) *Daniel is easy to tease people. [=Daniel teases people easily)
(90) Daniel is successful at avoiding the draft.
(91) Daniel was successful in not being picked to head the commission.

Furthermore, the surface syntax for indicating the relevant role in a derived
Facility AA form is a (for-)to complement rather than the at/in Ving/Vnom
expression used for the derived Measure AA’s.!®

15The two derivational processes appear to be in complementary distribution. There is
\ one antonymic pair of AA's that seems to function both as Measure and as Facility
= AA's: goodfwell and bad/badly; see examples a-c. However, the meaning of a is clearly
not related to the meaning of 4 in the way it is related to the meaning of ¢:

<1 .
\3’ (a) John played the Hammerkiavier Sonata well.
:4 () The Hammerklavier Sonata is good to play. [e.g. in order to get good reviews|
) (¢) John is good at playing Beethoven.
~
"" The predicate in § seems to be idiosyncratic and should be treated as distinct from the
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Measure AA’s actually take one or perhaps two other arguments that are
related to their gradability rather than their applicability to both individuals !
and events. One of the defining characteristic of Measure AA’s is that they
are gradable——that is, the range of properties of a single attribute range over

4
4
a {usually unidimensional] continuum, or at least, in the case of subjective A
measures like good, cute or ugly, are perceived to be ranked in such a way. E
Many of these AA’s (tall, little, shallow, etc.) apply only to individuals and
not events, and so do not share in the complications discussed above. In ﬂ

addition, many of the two-place AA’s discussed above, such as the Behavior
and Ability types (but not the Intentional AA’s) are gradable, and so the 5
following remarks pertain to them as well. Since a great deal has been |
written about gradability, and since gradability is somewhat peripheral to ]
the basic issues surrounding the logical form of adverbs, I will present a brief, ﬂ
simplified discussion of the issues with respect to the predicate-argument
structure of AA’s. 1
The first additional argument taken by gradable AA’s, whose existence
is now relatively uncontested, is the “reference set” argument, denoting
the class of individuals from which is derived the “average” value of the
gradable property against which the AA in question is to be evaluated. To
take a simple spatial-dimension term as an example, not only is tall vague
as to what degree of height is intended, it is also indeterminate as to the
assumable neutral point or region above which someone is considered to
be tall and below which someone is to be considered short. Thus, in the
following sentences, John and Jim may be the same height, yet one is “tall”
and the other “short™:

(92) John is tall for a fourteen-year-old.
(93) Jim is short for a professional basketball player.

Reference sets are relevant for “subjective” measure terms and other grad-
able terms, even though there is no universally agreed-upon metric that can
be imposed on the domain:

derivational pair in 4 and ¢. However, if this is true, then it is more difficult to argue
that the use of good in d, in which it is intended to refer to some inherent moral quality
of the individual, is the same predicate as the one in a rather than another distinct but
lexicosemantically related form:

(d) Sam is good.

Such a proliferation of semantically related but distinct predicates may lead to difficul-
ties later on.
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(94) Jim is a good dancer, for a wrestler.
(95) Freddy is awfully rude, even for an eight-year-old.

Since reference sets are essential for the correct semantic interpretation
of the AA, are not predictable from other information available in the utter-
ance, and can be introduced into the utterance as independent arguments,
one must include them as such. Thus, the use of good in an utterance like
96 actually has three arguments—individual, role, and reference set—that
can be specified independently. Although, taken out of context, 97 is the
usual interpretation of 96, the actual interpretation in a given context may
be, e.g. 98:!¢

(96) The violinist is good.
(97) The violinist is good at playing the violin, for a violinist.

(98) The violinist is good at leading the musician’s union, for a shy and
reclusive person.

A more controversial question is whether sentences like 99-101 have a
fourth argument that refers to the degree to which the individual possesses
the value denoted by the AA with respect to the appropriate reference set
(and role, in 101):

(99) Jim is six feet tall (*for a basketball player).
(100) Jim is pretty/very/extremely tall (for a basketball player).
(101) The violinist is pretty/very/extremely good.

While the specific value in 99 is most likely an argument—it is implied by the
semantics of gradability, it is not predictable, and it can be represented ex-
plicitly (albeit optionally) in the utterance—that value term is syntactically
parallel to the vaguer terms in 100 and 101, which are called “amplifiers” by
Quirk et al. [1972:246, 444-51] and which denote a vague value on the scale
represented by the AA. These latter forms have not been considered as argu-
ments in the past, but the evidence from more precise measure phrases such

'®If the adjective is attributive, it is extremely difficult though not impossible to obtain a
reading in which the intended role is different from the activity associated with the head
noun (usually an agentive nominal form). Moreover, the reference set is also usually
interpreted as the same set as the one referred to by the part of the NP that follows the
measure term in surface structure. For example, e.g. a good Barogque violin player would
normally be judged against the reference set of Baroque violin players, not violinists in
general or players in general.
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as 817 feet suggest that they might be. However, precise measure phrases do
not cooccur with phrases indicating the reference set, while amplifiers do;
this suggests that, whatever analysis is chosen, more subtle constraints are
required.

These brief comments on gradability are, of course, not conclusive. They
are intended only to indicate that other factors will contribute to the argu-
ment structure of certain adjectives and adverbs, and that such factors must
be distinguished from those that are consequences of the interactions of AA’s
with events (for example, role arguments are derivative arguments from the
use of properties of events when predicated of individuals, while reference
set arguments are part of the structure of gradability).

4 Conclusion

Our research on the semantics of adverbs and adjectives touches upon several
interesting issues of general concern. In particular, it has led to arguments
supporting the existence not only of an event variable for actions (but ex-
cluding states), but also for the state of affairs concept (represented by the
FACT operator) as a distinct phenomenon. It has also led to further evi-
dence for the separation of surface syntax from logical form. It is interesting
to note, however, that adverbs themselves comprise a relatively unified phe-
nomenon: a small class of operators on the one hand, a variety of predicates
on the other. The lexical-semantic concepts denoted by specific adverbs (as
represented in Section 2.1) are extremely diverse, belonging to domains such
as mental states that have been explored very little until recently. Our anal-
ysis has, we hope, clarified a number of issues raised by the logical forms of
most adverbs and adjectives, so that further research in these areas can be
done on a firmer logical basis than has been possible hitherto.
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BELIEF AND INCOMPLETENESS
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- 1. Introduction
‘_:: Two artificially intelligent (Al) computer agents begin to play a game of chess, and
0—“ . .
[ the following conversation ensues:
. S1: Do you know the rules of chess?
i Sg: Yes.
1 Si1: Then you know whether White has a forced initial win or not.
vl Sa: Upon reflection, I realize that [ must.
by S1:  Then there is no reason to play.
- S2: No.
g Both agents are state-of-the-art constructions, incorporating the latest Al research
:‘ in chess playing, natural-language understanding, planning, etc. But because of the over-
1 whelming combinatorics of chess, neither they nor the fastest foreseeable computers would
iA"
- be able to search the entire game tree to find out whether White has a forced win. Why
then do they come to such an odd conclusion about their own knowledge of the game?
r The chess scenario is an anecdotal example of the way inaccurate cognitive models
".'_-: can lead to behavior that is less than intelligent in artificial agents. In this case, the agents’
model of belief is not correct. They make the assumption that an agent actually knows
X all the consequences of his beliefs. S; knows that chess is a finite game, and thus reasons
o that, in principle, knowing the rules of chess is all that is required to figure out whether
N White has a forced initial win. After learning that S, does indeed know the rules of chess,
X
: he comes to the erroneous conclusion that S2 also knows this particular consequence of
Y . . . . .
= the rules. And S2 himself, reflecting on his own knowledge in the same manner, arrives at
LN . . .
N the same conclusion, even though in actual fact he could never carry out the computations
: -:j necessary to demonstrate it.
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We call the assumption that an agent knows all logical consequences of his beliefs
consequential closure. This assumption is clearly not warranted for either mechanical or
human agents, because some consequences, although they are logically correct, may not
be computationally feasible to derive. This is in fact illustrated by the chess scenario.
Unfortunately, the best current formal models of belief on which Al systems are based
have a possible-worlds semantics, and one of the inherent properties of these models is
consequential closure. While such models are good at predicting what consequences an
agent could possibly derive from his beliefs, they are not capable of predicting what an
agent actually believes, given that the agent may have resource limitations impeding the

derivation of the consequences of his beliefs.

The chess scenario illustrates one source of logical incompleteness in belief deriva-
tion, namely, an agent may not have enough computational resources to aﬁtually derive
some result. We will identify several others in Section 2, by presenting a problem in belief
representation that we have called the Not-So-Wise-Man Problem, a variation of the famil-
iar Wise Man Puzzle. Not surprisingly, this problem involves reasoning about beliefs an
agent does not have, even though they are logical consequences of his beliefs. The repre-
sentational problems posed by the chess scenario and the not-so-wise-man problem cannot

be solved within the framework of any model of belief that assumes consequential closure.

In this paper we introduce a new formal model of belief, called the deduction model,
for representing situations in which belief derivation is logically incomplete. [ts main fea-
ture is that it is a symbol-processing model: beliefs are taken to be expressions in some
internal or “mental” language, and an agent reasons about his beliefs by manipulating these
syntactic objects. Because the derivation of consequences of beliefs is represented explicitly
as a syntactic process in this model, it is possible to take into account the fact that agents
can derive some of the logically possible consequences, but in many cases not all of them.
When the process of belief derivation is logically incompiete, the deduction model does not

have the property of consequential closure.

Symbol-processing models of belief in themselves are not new (see, for example,
Fodor {10], Lycan {23], and Moore and Hendrix (31] for some philosophical underpinnings.
and McCarthy [26], Perlis [33], and Konolige [19] for Al approaches). The deduction model




ER )

presented here differs significantly from previous approaches, however, in two respects.
First. it is a formal model: beliefs are represented in a mathematical framework called a
deduction structure. The properties of the deduction model can be examined with some
preciseness, and we do so in Section 3. Second, we have found sound and complete logics for
the deduction model. One of these, B, is presented in Section 4, and used in the solution
of the problems in Section 5. An important property of the deductive belief logic B is
that it can serve as a basis for building computer agents that reason about belief. We
have been able to find a number of interesting proof methods for B that have reasonable
computational properties. Although the exposition of these methods is beyond the scope of
this paper, at the appropriate points we will show how the design of the logic was influenced

by computational considerations.

The nature of the deduction model and its logic B is further analyzed by comparing
B to modal logics based on a possible-worlds semantics in Section 6. An important result
is that the deduction model exhibits a correspondence property: in the limit of logically
complete deduction, B reduces to a modal logic with possible-worlds semantics. Thus the
deduction model dominates the possible-worlds model, while retracting the assumption of

consequential closure.

The material for this paper was abstracted from the author’s dissertation work
{Konolige [21]). Because of the limited scope of this paper, we are not able to do more
than mention in passing several interesting topics that are a part of the deduction model and
its logics. Among these are efficient proof methods, the formal semantics and completeness
proofs, extensions to B that permit quantifying-in, and introspection properties (beliefs
about one’s own beliefs). Interested readers can consult the dissertation itself for a fuller

exposition.
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2. Two Problems in the Representation of Belief

In this section we introduce three ways in which an agent may be incomplete in
reasoning from his beliefs: resource-limited incompleteness, fundamental logical incom-
pleteness, and relevance incompleteness. We argue that it is important for Al systems that

reason about belief to be able to represent each of these, and offer two anecdotal problems

to support this contention.

THE CHESS PROBLEM. Suppose an agent knows the rules of chess. It does
not necessarily follow that he knows whether White has a winning strategy

or not.

The chess problem, on the face of it, seems hardly to be a representational problem
at all. Certainly its statement is true: no agent, human or otherwise, can possibly follow
out all the myriad lines of chess play allowed by the rules to determine whether White has
a strategy that will always win. What kind of model of belief would lead us to expect an
agent to know whether White has a winning strategy? As we stated in the introduction,
any model that does not take resource limitations into account in representing an agent’s

reasoning about the consequences of his beliefs has this behavior. Within such a model, we

could establish the following line of argument.

Chess is a finite game,! and so it is possible, in theory, to construct a complete, finite
game tree for chess, given the rules of the game. The question of White’s having
a winning strategy is a property of this finite game tree. If for every counter
Black makes, White has a move that will lead to a win, then White has a winning
strategy. Thus, White's having a winning strategy is a consequence of the rules of

1 e

! The finiteness of chess is assured by the rule that, if 50 moves occur without a pawn advance or piece
capture, the game is a draw.
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chess that can be derived in a finite number of simple steps. If an agent believes
all the logical consequences of his beliefs, then an agent who knows the rules of
chess will, by the reasoning just given, also know whether White has a winning

strategy or not.

The chess problem is thus a problem in representing reasoning about beliefs in the
face of resource limitations. The inference steps themselves are almost trivial; it is a simple
matter to show that a move is legal, and hence to construct any position that follows a legal
move from a given position. But while the individual inferences are easy, the number of
them required to figure out whether White has a forced win is astronomical and beyond the
computational abilities of any agent. We call this behavior resource-limited incompleteness.
A suitable model of belief must be able to represent situations in which an agent possesses
the inferential capability to derive some consequence of his beliefs, but simply does not

have the computational resources to do so.

THE NOT-SO-WISE-MAN PROBLEM. A king, wishing to know which of his
three advisors is the wisest, paints a8 white dot on each of their foreheads,
tells them there is at least one white dot, and asks them to tell him the color
of their own spots. After a while the first replies that he doesn’t know; the
second, on hearing this, also says he doesn’t know. The third then responds,
“I also don’t know the color of my spot; but if the second of us were wiser, [

would know it.”

The not-so-wise-man problem is a variation of the classic Wise Man Puzzle, which
McCarthy (in {24] and [25]) has used extensively as a test of models of knowledge. In the
classic version, the third wise man figures out from the replies of the other two that his
spot must be white. The “puzzie” part is to generate the reasoning employed by the third
wise man. The reasoning involved is really quite complex and hinges on the ability of the
wise men to reason about one another’s beliefs. To convince themselves of this, readers
who have never tried before may be interested in attempting to solve it before reading the

solution below.
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Solution to the Wise Man Puzzle: the third wise man reasons: “Suppose my spot
were black. Then the second of us would know that his own spot was white, since
he would kpnow that, if it were black, the first of us would have seen two black
spots and would have known his own spot’s color. Since both answered that they
had no knowledge of their own spot’s color, my spot must be white.”

The difficulty behind this puzzie seems to lie in the nature of the third wise man's
reasoning about the first two’s beliefs. Not only must he pose a hypothetical situation
(Suppose my spot were black), but he must then reason within that situation about what
conclusions the second wise man would come to after hearing the first wise man’s response.
This in turn means that he must reason about the second wise man’s reasoning about the
first wise man’s beliefs, as revealed by his reply to the king. Reasoning about beliefs about
beliefs about beliefs... we call reasoning about iterated or nested beliefs. It can quickly
become confusing, especially when there are conditions present concerning what an agent

does not believe.

In the Wise Man Puzzle, nested belief contributes to the complexity of the reasoning
involved. The third wise man must reason about what the second wise man does not know
(the color of his own spot); in doing this, he must also reason about the second wise man's
reasoning about what the third wise man does not know (the color of his own spot). It
is particularly annoying and troublesome to keep track of who believes what after several
occurrences of not-believing in a statement of nested belief. Because human agents find
it so difficult, the Wise Man Puzzle is thought to be a good test of the competence of
any model of belief. If one can state the solution to the puzzle within the framework of
Model X, so the reac-ning goes, then Model X is at least good encugh to show what might

conceivably be concluded by agents in complicated situations involving nested teliefs.

It is possible to solve the Wise Man Puzzle within the confines of belief models that
assume consequential closure (see, e.g., McCarthy [24], [25] or Sato [38]). Such models
make the assumption that every agent believes other agents’ beliefs are closed under logical
consequence, and so on to arbitrary depths of belief nesting. While this is an accurate
assumption if one is trying to model the competence of ideal agents (which is what the

Wise Man Puzzle seeks to verify), it cannot represent interesting ways in which reasoning

about complicated nested beliefs might fail for a less-than-ideal agent. This is the import
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of the not-so-wise-man problem. From the reply of the third wise man, it appears that
the second wise man lacks the ability to deduce all the consequences of his beliefs. The
representational problem posed is to devise interesting ways in which the second wise man
fails to be an ideal agent, and then show how the third wise man can represent this failure

and reply as he does.

The not-so-wise-man problem does not seem to fall into the category of resource-
limited incompleteness mentioned in the chess problem, since the computational require-
ments of the inferences are not particularly acute. We can identify at least two other types
of incompleteness (there may certainly be more) that are interesting here and would be
useful to represent. In one of these, the second wise man may have incomplete inferential
procedures for reasoning about the other wise men'’s beliefs, especially if tricky combina-
tions of not-believing are present. Suppose, for instance, the second wise man were to see
a black spot on the third wise man, and a white spot on the first wise man (this is the
hypothetical situation set up by the third wise man in solving the classic puzzle). If he
were an ideal agent, he would conclude from the first wise man’s reply that his own spot
must be white {by reasoning: if mine were not white, the first of us would have seen two
black spots and so claimed his own as white). But he may fail to do this because his rules
for reasoning about the beliefs of the first wise man simply are not powerful enough. For
example, he might never consider the strategy of assuming that his spot was black, and
then asking himself what the first wise man would have said. In this case, the second wise
man’s inferential process, even when given adequate resources, is just not powerful enough
in terms of its ability to arrive at simple logical conclusions. To apply an analogy from
high-school algebra: a student who is confronted with the equation z + ¢ = b and asked
to solve for z won't be able to do so if he doesn’t know the rule that subtracting equals
from each side leaves the equation valid. It is not that the student lacks sufficient mental
resources of time or memory to solve this problem; rather. his rules of inference for dealing
with equational theories are logically incomplete. To contrast this tvpe of incompleteness
with the resource-limited incompletenesy described in the chess problem, we call it funda-

mental logical incompleteness.

Another way in which the not-so-wise-man might fail to draw :onclusions is if he

were to make an erroneous decision as to what information might be relevant to solving
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his problem. Although the Wise Man Puzzle has a fairly abstract setting, it is reasonable

to suppose that actual agents confronted with this problem would have a fair number of
extraneous beliefs that they would exclude from consideration. For example. the not-so-
wise-man might be privy to the castle rumor mill, and therefore believe that the first wise
man was scheming to marry the king’s daughter. A very large number of beliefs of this
sort llave no bearing on the problem at hand, but would tend to use up valuable mental
resources if they were given any serious consideration. One can imagine an unsure ageat who
could never come to any negative conclusions at all, because he would keep on considering
more and more possibilities for solving a problem. This agent’s reasoning might proceed
as follows: [ can't tell the color of my spot by looking at the other wise men. But mayvbe
there's a mirror that shows my face. No, there’s no mirror. But maybe my brother wrote
the color on a slip of paper and handed it to me. No, there’s no slip of paper, and my

brother’s in Babylon. But maybe ...

McCarthy (in [27]) first called attention to the problem of representing what is
not the case in solving puzzles. In the Missionaries and Cannibals Puzzle, why can’t the
missionaries simply use the bridge downstream to get across? A straightforward logical

presentation of the puzzle doesn’t explicitly exclude the existence of such a bridge. And,
if it did. we could always come up with other modes of transportation that had not been
considered beforehand and explicitly excluded. McCarthy called the general problem of
specifying what conditions do not hold in a puzzle the circumscription problem. By analogy,
we call the problem of specifying what beliefs an agent does not have, or does not use in
solving a given task, the problem of circumscriptive ignorance (see Konolige [20]). Without
a solution to this representational problem, all agents will be modeled as unsure agents -
never able to reach a conclusion about what they don't believe, even though it is obvious

L when the set of relevant beliefs is circumscribed.

Of course, if an agent can circumscribe his beliefs, it is possible that he will choose

the wrong set of beliefs, and exclude some that actually are relevant. The not-so-wise-man
oo may decide that the beliefs of the first wise man are not germane to the problem of figuring
- out his own spot’s color. Thus, even though he bas all the relevant information, and even

- sufficiently powerful inference rules and adequate resources, e may fail to come to a correct

.Y conclusion because he has circumscribed his beliefs in the wrong way. We cail this tvpe of
= incompleteness relevance incompleteness.
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Within a model of belief that assumes consequential closure, it is possible to represent

circumscriptive ignorance, but only in a relatively limited fashion. If consequential closure

is assumed, one can state that an agent is ignorant of some fact which is not a logical

consequence of his beliefs (McCarthy [25] uses this technique in his solution to the Wise

Man Puzzle). But this clearly does not capture the complete conditions of circumscriptive
ignorance, since agents are often ignorant of some of the logical consequences of their beliefs,

as in the chess scenario.

Modeling relevance incompleteness (or having the third wise man do so) is impossible
if it is assumed that the beliefs of agents are consequentially complete. One simply cannot
partition the set of beliefs into those that are either relevant or not to a given problem;
all the consequences of beliels are believed. If we try to state the conditions of relevance
incompleteness within such a model, we can arrive at a contradiction, where a proposition
is both believed (because of the assumption of consequential closure) and not believed

(because of the condition of relevance incompleteness).
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3. The Deduction Model of Belief

o The two belief representation problems can be solved within the framework of a
o formal model of belief that we call the deduction model. In this section we define the

model; in the next we introduce a logic family B as its axiomatization.

. The strategy we pursue is to first examine the way typical Al robot planning systems
(STRIPS [9], NOAH [37], WARPLAN [42], KAMP [1], etc.) represent and reason about
the world. This leads to the identification of an abstract belief subsystem as the internal
structure responsible for the beliefs of these agents. The characteristics of belief subsystems
can be summarized briefly as follows.

: 1. A belief subsystem contains a list of sentences in some internal (“men-

" tal”) language, the base beliefs.

. 2. Agents can infer consequences of their beliefs by syntactic manipula-
; tion of the sentences of the belief subsystem.

3. The derivation of consequences of beliefs is logically incomplete, be-
cause of limitations of the inferential process.

T e a4,

5 :
I

Having identified a belief subsystem as that part of an agent responsible for beliefs,

our next task is to define a formal mathematical structure that models it accurately. The

decisions to be made here involve particular choices for modeling the various components

LA
A

of a belief subsystem: What does the internal language look like? What kind of inference

Oh'se
v

process derives consequences of the base beliefs? and so on. The formal mathematical

"l fl ‘:-

object we construct according to these criteria is called a deduction structure. Its main

i L

components are a set of sentences in some logical language (corresponding to the base beliefs

3, ‘v::r' 5 "x' by

‘e

of a belief subsystem) and a set of deduction rules (corresponding to the belief inference

[

K rules) that may be logically incomplete. Because we choose to model belief subsystems o
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in terms of logical (but perhaps incomplete) deduction, we call it the deduction model of
belief.

3.1. Planning and Beliefs: the Belief Subsystem Abstraction

WOV .

A robot planning system, such as STRIPS, must represent knowledge about the
world in order to plan actions that affect the world. Of course it is not possible to represent
all the complexity of the real world, so the planning system uses some abstraction of

properties of the real world that are important for its task: e.g., it might assume that there

L
i
!
I

N

v

are objects that can be stacked in simple ways (the blocks world domain). The state of
the abstract world at any particular point in time has been called a situation in the Al

literature.

In general, the planning system will have only incomplete knowledge of a situation.
For instance, if it is equipped with visual sensors, it may be able to see only some of the
objects in the world. What this means is that the system has to be able to represent and
reason about partial descriptions of situations. The process of deriving beliefs is a symbol-
manipulating or syntactic operation that takes as input sentences of the formal language,
and produces new sentences as output. Let us call any new sentences derived by inferences

the inferable sentences, and the process of deriving them belief inference.

It is helpful to view the representation and deduction of facts about the world as
‘_ a separate subsystem within the planning system; we call it the belief subsystem. In its
::,,»,“ simplest, most abstract form, the belief subsystem comprises a list of sentences about a
ﬁ situation, together with a process for deriving their consequences. It is integrated with other
f-fj’ processes in the planning system, especially the plan derivation process that searches for
sequences of actions to achieve a given goal. In a highly schematic form, Figure 1 sketches
the belief subsystem and its interaction with other processes of the planning system. The

belief system is composed of the base beliefs, together with the belief inference process.

Belief inference itself can be decomposed into a set of inference rules and a control strategy
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Figure 1. Schematic of a Belief Subsystem -
_':”} that determines how the rules are to be applied and where their outputs go when requests .1
"‘I R
x are made to the belief subsystem.
. A belief subsystem defines an agent’s beliefs by the action of the inference rules on
the base beliefs, under the guidance of the control strategy. Some, but not necessarily all,
o of the inferable sentences will be beliefs of the agent; which inferable sentences are actually
i beliefs depends on the details of the control strategy and the resources available for belief
J inference.
™
"::L There are two types of requests that result in some action in the belief subsystem.
‘58
,,::- A process may request the subsystem to add or delete sentences in its base beliefs: this
o . . . .
= happens, for example, when the plan derivation process decides which sentences hold in a
; \ new situation. The problem of updating and revising beliefs in the face of new information
:'_:: is a complicated research issue in its own right, and we do not address it here (see Doyle
;::: [7] for some related Al research). The second type of request is a query as to whether a
- sentence is a belief or not. This query causes the control strategy to try to infer, using
. the its rules, that the sentence is follows from the base beliefs. [t is this process of belief
_;-: querying that we model in this paper.
:j:' The above description of the operation of a belief subsystem is meant to convey
| the idea that in most formal planning systems there is a tight interaction between belief
L
.- 13
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subsystems and planning. Different systems may deviate from the described pattern to a
greater or lesser extent. [n some systems, the representation of facts may be so limited,
and that of actions so explicit, as to almost obviate the need for belief deduction per se
(as in some versions of STRIPS). In others, deduction may be used to calculate all the
effects of an action by expanding the representation to include situations as objects (as in
WARPLAN). Here it is hard to make a clean separation between deductions performed
for the purpose of deriving consequences of beliefs and those that establish the initial set

of facts about a new situation. However, it is still conceptually useful to regard the belief
subsystem as a separate structure and belief derivation as a separate process within the

planning system.

3.2. A Formal Model of Belief

The formal mathematical object we use to mode] belief subsystems is called a deduc-
tion structure. A deduction structure is a tuple consisting of two sets and will be written
as (B, R). The set B is a set of sentences in some language L; It corresponds to the base
beliefs of a belief subsystem and its members are referred to as the base sentences of the
deduction structure. R is a set of deduction rules for L; these corresp«ind to the inference
rules of a belief subsystem. We demand that deduction structures satisfy the following four
conditions.

Language Property. The language of a deduction structure is a logical lan-

guage.
Deduction Property. The rules of a deduction structure are logical deduc-

tion rules. These rules are sound, effectively com-
putable, and have bounded input.

Closure Property. The belief set of a deduction structure is the least set
that includes the base sentences and is closed under
derivations by the deduction rules.

Recursion Property. The intended model of deduction structure sentences
involving belief is the belief set of another deduction
structure,

We discuss each of these properties briefly below. For the interested reader, a more
thorough treatment of the mathematical properties of deduction structures is given in the

next subsection.
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About the only condition we require of L is that it be a Jogical language. Logical

. languages are distinguished by baving a constructable set of syntactic objects, the sentences

-, of the language, together with an interpretation method (a means of assigning true or false

to every sentence with respect to a given state of affairs).

R is a set of deduction rules that operate on sentences of L. We will leave unspecified

the exact form of the deduction rules R, but we do insist that they operate in the normal

[ manner of deduction rules in some proof-theoretic framework. This means that there is the
concept of a derivation of a sentence, which is a structure built from effective applications

- of the rules R. If p is derivable from the set of sentences I in this manner, we write I' § > p.
-, where  » is a derivation operator for the rules R. For example, in terms of Hilbert systems
. (as defined in Kleene [18]), R would be a set of logical axioms (zero-premise rules) together
: with modus ponens (a two-premise rule). A sentence p would be derivable from the premise
:' sentences B = {by,bs,...} if there were a Hilbert proof of (5y Ab2A...) 2 p, using the logical

axioms and modus ponens.

A deduction structures models beliefs by its belief set, which we define as follows.

DEFINITION 3.1.
- bel((B, R)) =4t {p|B Bz p}

The belief set is composed of all sentences that are derivable from the base set B with
the rules 2. The derivation operator }p thus corresponds to the belief inference process of

- belief subsystems.

<. For several technical reasons, we restrict the derivation operators allowed in deduc-
tion structures to those that satisfy a deductive closure condition. One consequence of this
assumption is that the belief set itself obeys a closure property: if the sentence p can be
derived from the sentences in a belief set, then it too must be present in the belief set. By
making the assumption of deductive closure, the task of formalizing and reasoning about

deduction structures is greatly simplified.

. It is important to note that deductive closure does not entail consequential closure
for belief derivation: a set of sentences closed under logically incomplete deduction rules

need not contain all logical consequences of the set. This is an important property of
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deduction structures, and it enables them to capture the behavior of belief subsystems

with resource-bounded control strategies.

Finally, we single out certain sentences of the deduction structure for special treat-
ment, namely the ones that themselves refer to the beliefs of agents. In discussing the
not-so-wise-man problem in the previous section, we mentioned that one of the key tests of
a belief model is its ability to handle nested beliefs by assuming that agents use the model in
representing other agents’ beliefs; a belief model that has this characteristic is said to have
the recursion property. In terms of deduction structures, the recursion property implies
that the sentences of the internal language L that are about beliefs should have another

deduction structure as their intended interpretation.

3.3. Properties of Deduction Structures

In this subsection we treat the mathematical properties of deduction structures in
some detail, taking care to show how they can model the behavior of belief subsystems of

formal Al planning systems.

Language Property

One restriction we place on the language of deduction structures is that sentences
of the language have a well-defined (i.e., truth-theoretic) semantics. Such a requirement
seems absolutely necessary if we are going to talk about the beliefs of an agent being true
of the actual world, or, as we will want to do in discussing the rationality ~f agents, judge
the soundness of belief deduction rules. Such concepts make no sense in the absence of an
interpretation method - a systematic way of assigning meanings to the constructions of the
language. As Moore and Hendrix ([31], parts IV and especially V) note, the interpretation
method is not something the agent carries around in his head; a belief subsystem is just a
collection of sentences, and computational processes manipulate the sentences themselves.
not their meanings. One simply cannot put the referent of “Cicero” into a robot’s compu-
tation device, even if he {Cicero, of course) were alive. But the attribution of semantics to

sentences is necessary if an outside observer is to analyze the nature of an agent’s beliefs.
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How well do actual robot belief subsystems fit in with the assumption of a logical

language of belief? Al systems use a variety of representational technologies; chief among
these are [rames, scripts, semantic nets, and the many refinements of first-order logie (FOL),
including PROLOG and the “procedurally oriented” logics of p-PLANNER, CONNIVER,
QAd, and the like. The representations that fall into the latter category inherit their
semantics from FOL, despite many differences in the syntactic form of their expressions.
But what can we say about the first three? In surface form they certainly do not look
anvthing like conventional mathematical logics; furthermore, their designers often have
not provided anything but an informal idea of what the meanings of expressions in the
lanzuage are. When, after all, is a pair of nodes connected by a directed arc true of the
world? As Hayes [11] has forcefully argued, the lack of a formal semantics is a big drawback
for these languages. Fortunately, on further examination it is often possible to provide such
a semantics, usually by transliterating the representation into a first-order language (see
Woods [44] and Schubert [39] for a reconstruction of semantic nets in FOL terms, and

Brachman (4] for a similar analysis of frames).

In discussing human belief, several philosophers of mind have argued that internal
representations that count as beliefs must have a truth-value semantics (see Fodor [10],
Field {8}, and Moore and Hendrix [31] for a discussion of the many intricate arguments on
this subject, especially pp. 4éﬁ. of Field and part V of Moore and Hendrix). However,
there almost certainly is a lot more to human belief than can be handled adequately within
the framework of a logical language. For example, the question of membership in the belief
set of a deduction structure is strictly two-valued: a sentence is either a member of the
belief set of a deduction structure, or it is not. If it is, then the assumed interpretation is
that the agent believes that sentence to be true of the world. Deduction structures thus do
not support the notion of uncertain beliefs directly, as they might do if fuzzy or uncertain

membership in the belief set were an inherent part of their structure.!

One further requirement is that L contain expressions referring to the beliefs of

agents. Generally we will take this to be a belief operator whose argument is an expression
in L.

! However, uncertain beliefs could always be introduced into deduction structures in an indirect manner by
letting L contain statements about uncertainty, e.g., statements of the form P is true with probability 1/2.
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Finally, it is often the case that we will want to freeze the language of deduction
structures in order to study their properties at a finer level of detail, e.g., when looking at
the behavior of nested beliefs in general or when giving the particulars of the solution to
a representational problem. It is convenient to think of the language as being a parameter
of the formal model. For every logical language L, there is a class of deduction structures
D(L. p) whose base sets are sentences of the language L (the parameter p will be explained

in discussing the recursion property below).

Deduction Property

Rules for deduction structures are rules of inference with the following restrictions:

1. The rule is an effectively computable function of sentences of L.
2. The number of input sentences is boundedly finite.
3. The conclusion is sound with respect to the semantics of L.

These restrictions are those normally associated with deduction rules for classical logic,
although, strictly speaking, deduction rules need not be sound, if one is just interested in

proof-theoretic properties of a logic without regards to semantics.

The fact that belief deduction rules are effectively computable functions means that
they can be very complicated indeed. Mathematical logicians are interested in logics with
simple deduction rules (such as Hilbert systems) because it is easy to analyze the proof-
theoretic structure of such systems. However, for the purpose of deriving proof methods
for commonsense reasoning in Al, it is often better to sacrifice simplicity for computational
efficiency. For example, Robinson’s resolution rule {36}, which employs a matching process
called unification, is a complicated rule that has been widely employed in Al theorem-
proving. Another important technique is Weyhrauch’s semantic attachment (43, a general
framework for viewing the results of computation as deductions. In this paper, we will
exploit complicated rules that perform deductions that are relatively “large” with respect
to the grain size of the predicates, particularly in solving the chess problem of Section 2.
Although these “large” deductions could be broken down into smaller steps, it is computa-

tionally and conceptually easier to view them as single deductions.

We call an infereace rule provincial if the oumber of its input sentences is boundedly

finite; deduction rules are always provincial. We thus do not allow inferences about beliefs
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that take an infinite number of premises. For example, the following rule of Carnap’s is not
a valid rule of belief deduction: if for every individual a: F(a) is a theorem, then Vz.F(x)

is a theorem.!

Provincial inference rules have the following interesting property: if a is
a consequence of a set of sentences S by the rule, then it is also a consequence of any
larger set S’ D S. To see that this must be so, consider that, if a can be derived by the
application of provincial rules on the set of sentences S, and S’ contains S, then the same
derivation can be performed by using S’. Rules that adhere to this property are called
monotonic. Technically, monotonicity is convenient because it means we can reason about
what an agent believes on the basis of partial know'edge about his beliefs. A derivation
made using a subset of his beliefs cannot be retracted in the face of further information

about his beliefs.

Several types of nonmonotonic {and unsound) reasoning have been of interest to the

Al community, specifically

Belief revision: the beliefs of an agent are updated to be consis-
tent with new information (e.g., Doyle [7]).

Default reasoning: an agent “jumps to a conclusion” about the way
the world is (e.g., McCarthy [27], Reiter [35]).

Autoepistemic reasoning: an agent comes to a conclusion about the world
based on bis knowledge of his own beliefs (e.g.,
Collins et al. (6], Moore [30]).

We are explicitly not trying to arrive at a theory of these forms of reasoning. Indeed,
it 1s helpful here to make the distinction that Israel (in [16]) advocates between inference
or reascning in general (which may have nonmonotonic properties) and the straightforward
deduction of logical consequences from a set of initial beliefs. It is the latter concept only

that is treated in this paper.

If we wish to accommodate some nonmonotonic theorv formally within the frame-
work of the deduction model, then we can view its inferences as deduction rules operating
on deduction structure theories as a syntactic whole. McCarthy [27] exploits this approach
to formalize a certain type of useful default inference, which he calls circumscription (see

the description of the not-so-wise-man problem in Section 2). In defining the logic B. we

' I am indebted to David Israel for pointing out this example.
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will show how to formalize circumscriptive ignorance, a type of nonmonotonic inference, in

this manner.

Deduction rules for belief subsystems must also be sound. A sound deduction rule
is one for which, if the premises are true in an interpretation, then the conclusion will be
also (see Kleene [18]). Informally, one would say that sound deduction rules never deduce
false conclusions from true premises. Modus ponens is an example of such a rule: il p and

p > q are true, then ¢ must also be.

Soundness of inference is an important property for robot agents in deriving conse-

quences of their beliefs. We would not want a robot who believed the two sentences

All men are mortal.

(3.1) Socrates is a man.

to then deduce (and hence believe) the sentence

(3-2) Socrates is not mortal.

Soundness is not a critical assumption for the deduction model, since none of the

major technical results depend on it. In some cases we may wish to relax it, for example, in

modeling the behavior of human syllogistic reasoning, which is often unsound (see Johnson-
Laird {17]).

To sum up: deduction structures are restricted to using inference rules which are
provincial, sound, and effectively computable. Several interesting types of reasoning, such
as reasoning about defaults or one’s own beliefs, cannot be modeled directly as deduction
rules over sentences. However, they can be incorporated into the deduction model if the

input to the rules is taken to be the deduction structure as a whole.

Closure Property

The closure property states that the belief set of a deduction structure is closed

under derivations. Formally, this amounts to the following conditions on the belief set.

1. B Cbel({B,R)).
2. T Cbel({B,R)) and [ §p p, then p € bel((B. R}).

20




e o T T TN TR TR T TN T L el i R R N N

Since we have defined the belief set in terms of the belief derivation operator §:
{Definition 3.1), we can reexpress these as conditions on belief derivation.

{Reflexivity) a B @

(Closure) If T §,4) A and B,E ) a, then T, e

Reflexivity guarantees that the base set will be included in bel, and the closure

condition establishes closure of bel under derivation.

The chief motivation for requiring derivational closure is that it simplifies the tech-
nical task of formalizing the deduction model. Consider the problem of formalizing a belief
subsystem that has a complex control strategy guiding its inferential process. To do this
correctly, one must write axioms that not only describe the agendas, proof trees, and other
data structures used by the control strategy, but also describe how the control strategy
guides inference rules operating on these structures. Reasoning about the inference process

involves using these axioms to perform deductions that simulate the belief inference process,

a highly inefficient procedure. By contrast, the assumption of derivational closure leads to
a simple formalization of deduction structures in a logic B that incorporates the belief in-
ference process in a direct way. We need not differentiate between a belief as a member of
the base set, or as a derived sentence. A sentence that follows from any members of the
belief set is itself a belief. The axiomatization of B is simplified, since we need only have
an operator whose intended interpretation is membership in the belief set. In Section 4, we
exploit the properties of closed derivational systems to exhibit a complete axiomatization
of B, using techniques that are manner similar to the procedural attachment methods of
Weyhrauch [43].

The closure property is an extremely important one, and we should examine its
repercussions closely. A point that we have already made is that derivational closure is not
the same as consequential closure. The latter refers to a property of sets of sentences based
on their semaantics: every logical consequence of the set is also a member of the set. The
former refers to the syntactic process of derivability; if the rules R are not logically complete,
then a set of sentences that is derivationally closed under R need not be consequentially

closed.
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One of the key properties of belief subsystems that we wish to model is the incom-
pleteness of deriving the consequences of the base set of beliefs. We have identified three
sources of incompleteness in belief subsystems: an agent’s belief inference rules may be too
weak from a logical standpoint, or he may decide that some beliefs are irrelevant to a query,
or his control strategy may perform only a subset of the inferences possible when confronted
with resource limitations. The assumption of derivational closure for deduction structures
affects their ability to model incomplete control strategies, since closure demands that all

possible deductions be performed in deriving the belief set.

For an important class of incomplete control strategies, however, there is a cor-
responding complete control strategy operating on a different set of inference rules that
produces the same beliefs on every base set. The criteria that defines this class is that the
control strategy use only a local cost bound in deciding to drop a particular line of infer-
ence. By “local” is meant that the control strategy will always pursue a line of inference
to a certain point, without regard to other lines of inference it may be pursuing in parallel.
Control strategies with a local cost bound are important because their inferential behavior

is predictable: all inferences of a certain sort are guaranteed to be made.

Deduction structures can accurately model the class of locally bounded incomplete
control strategies by using an appropriate set of logically incomplete deduction rules. A
good example is found in the solution to the chess problem in Section 5. The agent’s control
strategy applies general rules about chess to search the game tree to only a limited depth;
this is modeled in a deduction structure by using deduction rules that work only above a

certain depth of the game tree, and applying them exhaustively.

In belief subsystems whose control strategies have a global cost bound, the concept
of belief itself is complicated, since one must differentiate between base beliefs and beliefs
inferred with some amount of effort. Deduction structures are only an approximate model
of these subsystems, and a language with a single belief operator is no longer sufficient for

th=ir axiomatization.

Recursion Property

If belief subsystems adhere to the recursion property, then agents view other agents

as having belief subsystems similar to their own. This still leaves a considerable degree of
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flexibility in representing nested beliefs. For example, an agent John might believe that
Sue's internal language is L; and that she has a set of deduction rules R, whereas Kim's
internal language is L» and her deduction rules are R». In addition, John might believe
that Sue believes that Kim’s internal language is L3, and that her rules are 23. We call
the description of a belief subsystem at some level of nesting a view; formally. views are
sequences of agents’ names, so that the view John, Sue is Sue’s belief subsystem as John
sees it. We will often use the Greek letter v to stand for an arbitrary view, and lowercase
Latin letters {1, 7, etc.) for singleton views, which are agents’ actual belief subsystems.

Since the formal objects of the deduction model are deduction structures, these will bhe

indexed by views when appropriate. For example, the djop, sye is a deduction structure

modeling the view John, Sue.

Obviously, some fairly complicated and confusing situations might be described, with
agents believing that other agents have belief subsystems of varying capabilities. Some of
these scenarios would be useful in representing situations that are of interest to Al systems;
e.g., an expert system tutoring a novice in some domain would need a representation of the
novice’s deductive capabilities that would initially be less powerful and complete than its

own, and could be modified as the novice learned about the domain.

We model the recursion property of beliel subsystems within the framework of de-
duction structures by allowing sentences of L to refer to the beliefs of agents. A standard
construct is to have a belief operator in L: an operator whose arguments are an agent S
and a sentence P, and whose intended meaning is that S believes P. According to the
recursion property, this means that the belief operator must have a deduction structure as
its interpretation. Deduction rules that apply to belief operators will be judged sound if
they respect this interpretation. For example, suppose a deduction structure d, has a rule
stating that the sentence “John believes ¢ can be concluded from the premise sentences
“John believes p” and “John believes p > ¢”. This is a sound rule of d, if modus ponens
is believed to be a rule of John’s belief subsystem as viewed from the view v. since the
presence of p and p > q in a deduction structure with modus ponens means that ¢ will be

derived.

Several simplifying assumptions are implicit in the use of deduction structures to

model the nested views of belief subsystems. The language L contains a belief operator
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that denotes membership in a belief set (its intended interpretation), and so L can describe
what sentences are contained in an agent’s belief set. However, there is no provision in L
for talking about the deduction rules an agent uses. Instead, these nested-belief rules are
implicitly specified by the rules that manipulate sentences with belief operators. Consider
the example {rom the previous paragraph. Let us suppose that we are modeling Sue’s
belief subsystem with the deduction structure dg,,. Because Sue believes that John uses
modus ponens, a sound rule of inference for dg,, Would be the one that was stated above,
namely, the sentence “John believes ¢” could be concluded from the premise sentences
“John believes p” and “John believes p > ¢.” All of the rules that Sue believes John uses
are modeled in this way. Similarly, if, in Sue’s opinion, John believes that Kim uses a
certain rule, this will be reflected in a rule of John’s deduction structure as seen by Sue,
which in turn will be modeled by a rule in dg,,- The deduction model thus assumes that
the rules for each view, though they may be different, are a fixed parameter of the model.
We introduce the function p(v) to specify deduction rule sets for each view v; thus, for
each function g and each language L, there is a class of deduction structures D(L, p) that
formalize the deduction model. If the rules p are complete with respect to the semantics of
L, then the class is said to be saturated, and is written D,(L, p)

A final simplification that is not inherent in the deduction model, but which we
introduce here solely for technical convenience, is to assume that all deduction structures
in all views use the same language L. There are situations in which we might want to relax
this restriction, it makes the axiomatization less complex in dealing with the problems at
hand.

4.;2.]!'4 Oy BN




4. The Logic Family B

We now define a family of logics B(L, p) for stating facts and reasoning about de-
duction structures. This family is parameterized in the same way as deduction structures,
namely by an agents’ language L and an ensemble of deduction structure rules p. Each

logic of the family is an axiomatization of the deduction structures D(L, p).

The language of B includes operators for stating that sentences are beliefs of an ]
agent, but not for describing deduction rules of agents. Thus the deduction rules are a é

parameter of the logic family, and are fixed once we decide to use a particular logic of the

-
g

family. The ensemble function p picks out a set of rules for each agent. The reason we chose

(.

(.

to make the deduction rules a parameter of B is that it is then possible to find efficient ({{
proof methods for B. One of the interesting features of B’s axiomatization is that agents’ f:_é

rules are actually present as a subset of the rules of B; proofs about deduction structures

in B use these rules directly in their derivation.

The logic of B is framed in terms of a modified form of Gentzen systems, the block
tableau systems of Hintikka. Although they may be unfamiliar to some readers, block
tableaux are easy to work with and possess some natural advantages when applied to
the formalization of deduction structures. Unlike Hilbert systems, which contain complex
logical axioms and a single rule of inference in the propositional case (modus ponens), block
tableau systems have simple axioms and a rich and flexible method of specifying deduction

rules. We exploit this capability when we incorporate deduction structure rules into B.

In this section we first present a brief overview of block tableaux. Then we give the
postulates of the family B, and a particularly simple subfamily called BK that will be used

in solving the problems. By way of example, we prove some theorems of BK.

25
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4.1. Block Tableaux

Most of this section will comprise a review for those readers who are already familiar

with tableaux systems.

The Base Language Lg

The language of B is formed from a base language L that does not contain any
operators referring to beliefs. L is taken to be a first-order language with constant terms.

An interpretation of Lg is a truth-value assignment to all sentences (closed formulas) of

Lg; this assignment must be a first-order valuation, that is, it must respect the standard

interpretation of the universal and existential quantifiers as well as the Boolean connectives.

We call Lo uninterpreted if every first-order valuation is an interpretation of Lg;

partially interpreted if some proper subset of the first-order valuations are interpretations
of Lo; and fully interpreted (or simply interpreted) if there is a singleton interpretation of
Lo. A sentence of Lo is valid if and only if it is true in every interpretation of L.

We use lowercase Latin or Greek letters (p, q, @, etc.) as metavariables that stand
for sentences of Ly. A formula of Ly that possibly contains the free variable z will be
indicated by a{z); the formula derived by substituting the constant a everywhere for z is
denoted by a(z/a). Uppercase Greek letters (T =4¢ {71,72,...}, A =4¢ {61,62,...}, etc.)
stand for finite sets of sentences of Lg. By p,I' we mean the set {p} |JI'. We also introduce

the abbreviation =I" =4¢ {-~v1, ~2,...}.

Sequents

Sequents are the main formal object of block tableaux systems. A3

PO

DEFINITION 4.1. A sequent is an ordered pair of finite sets of sentences.
([,Q). This sequent will also be written as [ = A, and read as “A follows
from ['.”

. g . .
4 -'E.t,‘.' A Y

. v
e T
PR AR R
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A sequent [ = A is true in an interpretation of its component sentences iff
oae of v; is false, or one of 6; is true. A sequent is valid iff it is true under
all interpretations, and satisfiable iff it is true in at least one interpretation.
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[ From the definition of truth for a sequent, it should be clear that a sequent [ = A :
};: is true in an interpretation just in case the sentence (yjA=<2a...) D (§yvéav...})is true in h
:\0 that interpretation. Thus, in a given interpretation a true sequent can be taken as asserting
that the conjunction of 4's materially implies the disjunction of the §’s.
:';:t We allow the empty set ¢ to appear on either side of a sequent, and abbreviate :
jj', 0=>Aby= A T=¢byl =, and ¢ = ¢ by =. By the above definition, = A is true g
o (in an interpretation) if and only if one of §; is true, I' = is true if and only if one of ~; is
i false. and = is never true in any interpretation. .
1N .
o .
: Block Tableaux for Ly 5
S .
The proof method we adopt is similar to Gentzen’s original sequent calculus, but ”
simpler in form. It is called the method of block tableaux, and was orginated by Hintikka X
(13]. A useful reference is Smullyan [40], in which many results in block tableaux and b
. similar systems are presented in a unified form. :
A block tableau system consists of axioms and rules (collectively, postulates) whose
:'_-,: formal objects are sequents. Block tableau rules are like upside-down inference rules: the
conclusion comes first, next a horizontal line, then the premises. Block tableaux themselves
: are derivations whose root is the sequent derived, whose branches are given by the rules, .
! and whose leaves are axioms. Block tableaux look much like upside-down Gentzen system 3
. N'
-:::- trees. (A more formal definition of block tableaux is given below). C
4 ;“
59 We consider a system Tj (see Smullyan [40], pp. 105-109) that is first-order sound L
RS and complete: its consequences are precisely the sentences true in every first-order valua- -
- tion. "
._:f: DEFINITION 4.2. The system Tg has the following postulates. <
e Axioms. Fp=>4,p _
o i T,pag= A
Conjunction Rules. Cj: —Prg=2 N
g ': Prp!q= A '.~
[=A4pAg ;
e Cz M X
) F=Ap > A,q -
B
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['=A,pvg
= A4,p.q
F,pvg= A

Disjunction Rules. Dy:

Dr: 358 Ta=a
r )
Implication Rules. L: ﬁ%’;—:q—q
In: Fpog=>A
2 T=>aAp Tlg=A
r , =
Negation Rules. Ny: —r-?:;zg
F,b~p=>A
R F=A,p
. [,Vz.a(z) = A
Universal Rules. Up: T.a(z/a) \jz.)a(z) —
Ug: [ = Vz.a(z), 4 where a has not appeared in

= a(z/a),¥z.a(2), 8" 4. tobleau

= 3z.a(z), A

[ = a(z/a), 3z.a(z), A
[,3z.a(z) > A

T, a(z/a), 3z.a(z), > A’

Existential Rules. Ey:

where a has not appeared in
the tableau

Remarks. Note the simple form of the axioms and the symmetric nature of the inference
rules (actually, each rule is a rule schema, since T, &, p, ¢, and a stand for formulas and
sets of formulas of Lg). There is one rule that deletes each logical connective on either side
of the sequent. For example, the first conjunction rule deletes a conjunction on the left
side of a sequent in favor of the two conjoined sentences; informally, it can be read as “J
follows from I and p A q if it follows from [, p, and q.” It is easily verified that each rule is
sound with respect to first-order valuations: if the premises are true in an interpretation.

then so is the conclusion.

DEFINITION 4.3. A block tableau for the sequent I' = A in a system T is a
tree whose nodes are sequents, defined inductively as follows.

1. T = A is the root of the tree.
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2. If sequent s is the parent node of daughters s;...sy.

3 .
then ———— isaruleof T.
81 ...8n

A block tableau is closed if all its leaves are axioms. If there is a closed
block tableau for the sequent ' = A, then this sequent is a theorem of the
svstem T and we write 7 [ = A.

A system T' is called a subsystem of T if every rule of T' is also a rule of
7. If some subsystem T' of T has exactly the same theorems as T, then the

rules of T not appearing in T' are said to be eliminable from T, or admissible
-1

to L
Block tableaux are similar to the AND/OR trees commonly encountered in Al
theorem-proving systems (see Nilsson [32]). Rules Ca, D2, and I> cause AND-splitting,

while a choice of rules to apply at a tableau node is an OR-split.

Example. Here is a block tableau for the sequent 3z. Bz A Az, V2.Cz > =Bz = 3z. Az A

-Cz.
3z. Bz A Az, V2.Cz > ~Br = 3z. AzA -Cz

Ezu BeA Ae,¥V2.Cz 2> ~Bz = Jr. AzA=Cz

1 Bea Ae,Ce > ~Be= 3. Az A~Cz

E!C Be A Ae,Ce > wBe = Aean-Ce
I ! Ae, Be,Ce > ~Be = Aen-~Ce
2 v Ae, Be,~Be = Ae A -Ce c Ae,Bé = Ce,Aen=Ce

2 Ae,Be = Be,Ae A ~Ce 2 N Ae,Be = Ce,~Ce Ae, Be = Ce, Ae
x 1 "A¢ Be,Ce= Ce x
X

The sequent to be proved is inserted as the root of the tree. By a series of reductions
based on the rules of Ty, the atoms of the sequent’s sentences are extracted from the scope
of quantifiers and Boolean operators. Splitting of the tree occurs at the rules [ and C»;
otherwise the reduction produces just a single sequent below the line. If a tree is found
where the sequents at all the leaves are axioms, then the theorem is proved. Note that
the logical inferences are from the leaves to the root of the tree, even though we work
backwards in forming the tree. At each junction of the tree, the parent sequent is true in

an interpretation if all its daughters are true in that interpretation.

An important connection between theoremhood and logical consequence for sequent

systems is the following soundness theorem for tableaux.
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',{-;{ TOEOREM 4.1. [fT = p is a theorem of T (where p is a single seatence of
[ Lo). and all the rules of T are sound, then p is a logical consequence of T.
A .
-4"::‘ Proof. If the rules of T are sound, then every theorem of T is valid. By
Definition 4.1, this means that in every interpretation in which all of I are
: % true, p must be also.ll
N
<
o 4.2. The Language of B
3 The language of B is formed from a first-order base language Lg by adding modal
operators for belief and belief circumscription. We call this language LB. It is convenient
\ to use LB also as the agents’ language L, since it provides a representation for nested beliefs
P ' as required by the recursion property. With this assumption, we can parameterize B by
o the base language Lg, and write B(Lg, ) for the logic family.
! 'j-',.-' To form LB from a base language Lg, we require a countable set of agents (Sp, Sy,

e DEFINITION 4.4. A sentence of LB based on Ly is defined inductively by the
S following rules.

1. All formation rules of Lq are also formation rules of LB.

2. If p is a sentence, then [S;]p is a sentence for i 2 0.

3 3. Ifpis a sentence and I' is a finite set of sentences, then
(S; : T')p is a sentence fors 2 1.

i el
- . R L -t e - SN L.

B R P S I - [
B e o B e S 3 At e Al B A o B B A A A A -

N
::‘_'_-:f, An ordinary atom of LB is a ground atom of Ly; a belief atom is a sentence of
o the form (S;|p, and a circumscriptive atom is one of the form (S; : ')p. In the belief
R atom [S;|p. p is said to be in the context of the belief operator. Note that there is no
t::j-f:' quaatification into the contexts of belief atoms, since the argument of a belief operator is
R always a closed sentence. L2 can be extended to include quantification into belief contexts:
YR such a language has greater representational power and its logic qB has a more complex
e axiomatization. The interested reader is referred to Konolige [21] for a description of gB.
- R Here, the simpler B is sufficient for an analysis of the problems.
) We will use the abbreviation [S|I' =4¢ [S]1,[S]~2, .. ..

"
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Interpretations

Interpretations of the language of LB are formed from interpretations of its base
language Ly, together with an interpretation of belief and circumscriptive atoms. The =
intended meaning of the belief atom (S;]p is that p is in the belief subsystem of agent S;; =
informally, we would say “S; believes p.” Since we are formalizing belief subsystems by
means of deduction structures, an interpretation of the belief atoms [S;]p is given by a
deduction structure d;. [S;]p is true if p is in bel(d;). the belief set of d;; otherwise it is

false.

In addition to representing beliefs of individuals, we use belief atoms to represent o8
common beliefs. A common belief is one that every agent believes, and every agent believes

every other agent believes, and so on to arbitrary depths of belief nesting. We reserve the

name Sy for a fictional agent whose beliefs are taken to be common among all agents. The NG

belief atom [Sp]p means that p is a common belief. In terms of deduction structures, its
intended interpretation is that p and [Splp are in the deduction structure d; of every agent
S;,120. STy

McCarthy (see, for example, [25]) was the first to recognize the common knowledge L

could be represented by the use of a fictitious agent FOOL whose knowledge “any fool”

would know. He used a possible-worlds semantics for knowledge, and so all consequences o

of common knowledge were also known. The representation of common belief presented
here uses an obviously similar approach; it differs only in that common belief rather than
common knowledge is axiomatized (common beliefs need not be true), and in having a
deduction structure semantics, so that common beliefs need not be closed under logical

consequence.

The interpretation of circumscriptive atoms is also given by the deduction structure el
representing an agent’s beliefs. The intended meaning of (S; : [')p is that p is derivable >
from I in the deduction structure d;, that is, I B',(,-) p. The circumscription operator
elevates the belief derivation process to a first-class entity of the language (as opposed to
belief operators [S;|, which simply state that certain sentences are in or not in the belief ‘:.-:.

set).
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While it may not be apparent at first glance, the circumscription operator is a
powerful tool for representing situations of delimited knowledge. For example, to formally
state the condition, “the only facts that agent S knows about proposition p are F,” we

could use

(4.1) (S:F)p=[Slp

This assertion states that S believing p is equivalent to S being able to derive p from F. The
forward implication is uninteresting, since it just says that p is derivable from F by agent

S, i.e., [S]F > [S]p. The reverse implication is more interesting, since it states p cannot be

a belief of S unless it is derivable from F. This reverse implication limits the information
S has available to derive p to the sentences F, and thus gives the circumscriptive content
of (4.1). Note that there is no way to formulate the reverse implication as a sentence of LB 1

;

using only belief operators.

The reader should note carefully that the semantics of LB differs completely from
that of most modal languages, in which the argument to the modal operator is usually
taken to denote a proposition that can take on a truth-value in a possible world. By
contrast, arguments to modal operators in the language of B denote sentences of L, namely

themselves. It is important to keep this distinction in mind when interpreting the modal

operators of B.

4.3. A Sequent System for B

The deductive process that underlies the deduction model is characterized in very
general terms by deduction structures and their associated belief sets. Until now we have
been content with deliberate vagueness about the exact nature of deduction rules and the
derivation process. As stated in Section 3, there are five conditions that must be satisfied:
the deduction rules must be effective, provincial, and sound, and the derivations reflexive
and closed under deduction. Consider a deduction structure d; = (B, p(s)) for agent S;. Iif
we let the process of belief derivation for d be symbolized by § p(s)+ these conditions are as

follows.

(Effectiveness) The deduction rules p(s) are eflectively applicable.
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{Provinciality)

(Soundness)
(Reflexivity)
(Closure)

Suppose we are given beforehand a derivation operator B ,;), satisfying the above
conditions, that models an agent S;’s belief subsystem. The central problem in the for-
mulation of B is to find tableau rules that correctly implement the meaning of the belief

operator [S;] and the circumscription operator (S; : I') under § ;).

Consider first the sequent [S;]' = [S;]a. Its intended meaning is that, if all of T are
in S;’s belief set, then so is a. The only possible way that we can guarantee this condition
is if & is derivable from T, i.e, T' B, a. If this were not the case, then we could always
construct the counterexample d; =4¢ (I, p(s)) in which all of T are in d;, but a is not. Thus
we can relate the truth of a sequent involving belief operators to derivability in an agent’s

belief subsystem. This relation is captured by the inference rule

A:

S [SIF = [Si]a, &

The number of input sentences to each rule is finite and

bounded.
IfT B, @ thenaisa logical consequence of T'.
2] B-p(’-) a.
Hr B'p(") g and 3,T E'p(,;) a, then ', E B'p(") a.

A is called the attachment rule, because it derives results involving the belief op-
erator by attaching sentences about belief to the actual derivation process of an agent.
Remembering that the premise is the bottom sequent and the conclusion the top, we can
read A informally as follows: “If a is a deductive consequence of ' in S;’s belief subsystem,

then. whenever S; believes ', he also believes a.”

To capture the notion of common belief, we need to make a modification to the
attachment rule. The intended meaning of the common belief atom [Spq is that both ¢
and (Sp|g are in the belief subsystem of every agent. The sequent [Sp]A, [S;]T = [S;]a will
be true if whenever [Sg]A, A, and T are in the belief set of d;, a also is. By reasoning similar
to that used in deriving the rule A, we can rephrase this in terms of belief derivation. This

vields the revised attachment rule ACB, =

[Bos) @

4CB . SuSoJA (ST = [Si]a, A
[SO]A, A, r &P(‘) a vd
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In ACB, both A and [Sp)\ can be used in the derivation of a. Note that this rule is applicable
to the fictional agent Sg. Because Sg’s beliefs are intended to be common beliefs, and hence
derivable by any agent, it should be the case that the rules p(0) are used by every agent.

We thus demand that p(0) € p(1) for every s.

\

We can find tableau rules for the circumscription operator in a similar manner. The

intended semantics of this operator relates directly to the belief derivation process: (S; : ')p

|
:'1

means that p is derivable from [ in S;’s belief subsystem, i.e, [ §,(;) p. [n writing sequent
rules, there are two cases to consider, for a circumscriptive atom can appear on the right

or left side of the sequent arrow. We thus have the following two rules.

L= (S;:p,A
By p

Circy :

L | DR

T,(S;:Tp=>A )
TRy p X

Circa :

The second circumscription rule is the one that is used to show circumscriptive igno-
rance; [t states that if p is not derivable from a set of sentences [, then the circumseriptive
atom (S; : [')p is false. Given a statement of the form 4.1, this in turn would imply that

S; was ignorant of p.

We can now give a full axiomatization of the logic family B.

DEFINITION 4.5. The system B(Lg, p) has the following postulates.

1. The first-order complete rules Ty.
2. The rules ACB, Cireq, and Cireo.

3. A closed derivation process } ;) for each agent S;, such
that p(0) € p(s) for every 1.

This axiomatization of B is both sound and complete with respect to its deduction

structure semantics, as proven in Konolige [21]. It is a compact formalization of the de-
duction model and useful for theoretical investigations, but we do not use it very much as
a representational formalism because of the general nature of the belief deduction process

§,(i). which is rather opaque to further analysis. For instance, we might wish to look at

B *{ SR
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the subfamily of B in which the rules of p(t) that govern nested belief are as strong as

A. In order to explore the fine structure of S;’s belief deduction process, or to formalize

the problems, we need to fix the nature of § ;) more precisely. The rich set of rules, and

the flexibility of tableau derivations, make tableau svstems a natural choice here. In the
next section we define a particularization of B, the logic family BK, whose belief derivation

process is defined in block tableaux terms.

4.4. The Nonintrospective Logic Family BK

In the logic family BK, the belief derivation operator } is defined as provability in a
tableau svstem.

DEFINITION 4.6. A sentence a is BK-derivable from premises T (' § 7 a) if
andonly if 7 T = a.

We need to show that tableau system derivability as just defined satisfies the five
criteria of helief derivation: effectiveness, provinciality, soundness, reflexivity and closure.
Consider a sequent system T made up of sound tableau rules. According to Theorem 4.1,
the theorem |+ ' = p of Timplies that p is a logical consequence of ', so we are assured
that | r satisfies the soundness criterion. Provinciality and effectiveness are also satisfied,
since the theorems of T are built by using effectively computable steps that operate on
a bounded number of sentences at each step. The observant reader might object at this
point that tableau rules may indeed refer to an unbounded number of premise sentences:;
e.g.. any of the rules of Ty have this property, since I' and A can stand for any set of
sentences. However, each rule of Ty is actually a rule schema: the capital Greek letters
are metavariables that are instantiated with a boundedly finite set of sentences to define a

rule.

The closure condition is fulfilled by a special subclass of sequent systems, namely
those for which the following rule, Cut?, is admissible:

[[E=>a

Cut® : Y] Y

To see how this rule guarantees closure, suppose that ' == 3 and 8, = a are both

theorems of a sequent system T for which Cut® is admissible. Because Cut* is admissible
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and both of its premises have closed tableaux, the conclusion I',T = a must also be a

theorem.

Finally, the derivation process will be reflexive (a |7 a) if we include the following

axiom in the system T:
Id: L,a=>aA

Thus we only allow a system T to appear in a deduction structure d(B.T) if the

system is sound, Cut® is an admissible rule of T, and /d is an axiom of T.

An interesting consequence of using tableau derivations in BK is that the attach-
ment rule A can now be expressed wholly in terms of sequents, eliminating the derivation
operator. To see how this comes about, consider first replacing the belief operator in rule
A by tableau provability, as given by Definition 4.6. This yields

L, (ST = [Si]a, &

AK' .
I-,(") I's>a

where (1) is the set of tableau rules used by agent S;.

Now |, (;) [ = a is true precisely if there is a closed tableau for I' = a, using the
rules r(1). Hence we should be able to eliminate the provability symbol if we add the rules
r(¢) to B for the purpose of constructing a tableau for I' = a. In order to keep the agents’
rules () from being confused with the rules of B, we add an agent index to sequents to
indicate that the tableau rules to be use are for a particular agent. The final version of the
attachment rule is

L[Sl = [Sile, &
[=>;a

AK

Agents’ rules are expressed using the indexed sequent sign. e.g.. if agent S; were to use C»,
the following rule would be added to B.

[=;48,pAq
C=;4,p [=;4,q

Ci.:

Taking the recursion property of belief subsvstems seriously, we can iterate the

process just described for the attachment rule. Each agent treats other agents as having
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a set of tableau rules. In formulating BK, there will be a tableau rule set associated with
each view (views are discussed in relation to the recursion property in Section 3.3). Let us

symbolize the set of tableau rules representing the view v by r(v).

A sequent [ =, A, with index v, is a statement about the belief subsystem of the
view v. For example, if v = Sue, Kim, the sequent [' =, p states that p follows from T
in Sue’s view of Kim’s belief subsystem. The deduction rules r{v) always have sequents
indexed by v in their conclusions (above the line). This assures us that they will always be

used as rules of the belief subsystem v, and of no other.

The logic BK can thus be parameterized by a set of tableau rules for each view,
and we write BK(Lg, 7) to indicate this. If the sequent I' =, A is a theorem of the logic
BK(Lg.7), it asserts that the sequent ' = A is provable in the view v. We write this as
Fk(Lo.r) T =» A. If this sequent is a theorem for every parameterization of BK, we write
simply " =, A. Note that the presence of the index on the sequent means that we do
not have to state explicitly that the set of rules used to derive the theorem were those of the
view v. Properties of the the actual belief subsystems are always stated using unindexed
sequent; for example, to show formally that if an agent believes p, then he believes g, we

would have to prove that the sequent [S;]p = [S;]q is a theorem of BK.

Postulates of BK(Log, )

This family is parameterized by a base language Lo and tableau rules r{v) for each
view v.
DEFINITION 4.7. The system BK(Lg, r) is given by the following postulates:

1. The first-order complete rules T.

2.  The attachment rule

L, [So]A, [Si]T = [Si]a, A
[So]A VA, T =5 a

AKCB .

3. A set of sound sequent rules r(v) for each view v which
contains the axiom Id, and for which the rule Cut® is
admissible. Also, r{v,0) € r(v.1) for all views v and
agents S;.
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4. The circumscription rules

CircK, : E=(5:Npa
F=;p
and
CircKs : E(S;:Np =4

FT=;p

Remarks. There are three parts to the system BK(Lg, r). The first part is a set of rules
that perform first-order deductions about the real world. These rules incorporate the
nonsubscripted sequent sign (=).

The second part is the attachment rule AKCB, together with a set of rules formaliz-
ing the deductive system of each view. These rules involve the sequent sign =, since they
talk about agents’ deductive systems. They can contain rules that have a purely nonmodal
import (e.g., rules of Tp), as well as rules that deal with belief opera.ors. The rule Cut®,

which implements the closure property of belief sets, must be an admissible rule of r(v).

The rules r(v) of a view v can be incomplete in several ways. They may be first-order
incomplete, in which case they cannot be used to draw all the consequences of sentences
involving nonmodal operatars that they otherwise might (to be first-order complete, it is
sufficient for the rules Ty to be admissible in a view). They may also be incomplete with
respect to the semantics of sentences involving belief operators. To be complete in this
respect, a sufficient rule would be AKCB, A view for which this rule is admissible is
called recursively complete. If every view of a logic BK(Lg, r) is recursively and first-order
complete, the logic is called saturated. We will symbolize the subfamily of saturated logics
by BK,.

The rule AKCB is a weak version of the attachment rule ACB in that it makes no
assumptions about the beliefs an agent may have of his own beliefs. For example, we might

argue that, if an agent S believes a proposition P, then he believes that he believes it. All

he has to do to establish this is query his belief subsystem with the question, “Do I believe
P?” If the answer comes back “yes,” then he should be able to infer that he does indeed

believe P, i.e., [S|[S]P is true if [S]P is. However, as far as rule AKCB is concerned, an
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agent’s own belief subsystem has the same status for him as does that of any other agent.
In particular, AKCB allows an agent to have false and incomplete beliefs about his own
beliefs. Other version of AKCB with stronger assumptions about self-belief are possible

{see Section 6).

The third part consists of the two circumscription rules. The provability operator
can be eliminated from CircKj, but not from CircK>. In order to show that p does not
follow from [ for S;, we must show that there is no closed tableau for I' =; p. One
technique that we use in solving the problems is the following. If there is no closed tableau
for a saturated logic of BK, there is no closed tableau for any logic of BK. Every theorem
of saturated BK is a theorem of the normal modal system K4 (see Section 6), which has a
decision procedure based on the methods of Sato (in {38]). Thus if a sequent is not provable

in K4, it is not provable in any logic of BK.

Some Theorems of BK

THEOREM 4.2. Let p be derivable from T in the view s of BK(Lg, 7). Then

FBK(Lo,r) [SiT = [Silp

Proof. In one step, using rule AKCB :
[S:IC = [Silp
F=;p
x

AKCB

THEOREM 4.3. Let v be a recursively complete view of BK(Lg, ), and let p
be derivable from T in the view v,s. Then

Fek(Lor) [SiIT =4 [Silp

Proof. In ope step, using rule AKCB of r(v):
[SiT = [Silp

r =ui P

AKCB

x
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Remarks. These two theorems show that BK has a weakened analog of the necessitation
rule of modal logic (if a is provable, so is Oa). If a nonmodal sentence a is provable in the
view i (i.e., FeK(Lo,r)=i @) then, by Theorem 4.2, [Si]a is provable in the empty view.
Since the theorems of r(f) are assumed to be sound, a is a tautology, and so must be provable
in the empty view.! Hence, for those tautologies provable in the view i, necessitation holds.
Theorem 4.3 establishes this result for an arbitrary view in which A is an admissible rule.
Depending on the exact nature of the rule sets r, necessitation will hold for some subset of

the provable sentences of a particular logic BK(Lo, r).

THEOREM 4.4. ¥ [S;ip» P

Proof. If p is a primitive sentence, then there is no applicable tableaux rule,
and hence no closed tableaux for the sequent.ll

Remarks. The familiar modal logic principle Op o p (if p is necessary, then p is true) is
not a theorem of BK, since beliefs need not be true.

THEOREM 4.5. F [Silp = [S;][S:]p

Proof. The only applicable rule is AKCB :

AKCB Istlp = [SJ[S‘]P

p=;[Sip

According to the semantics of the deduction model. the sequent p =, [S;i]p
is not valid: just because a sentence p is true does not mean that an agent
S; believes it. Hence, there cannot be any set of sound tableau rules for r(s)
that causes p =; [S;]p to close.}

} Care must be taken in restricting a to nonmodal sentences, since the semantics of modal operatory can
change from one view to another (see the discussion of the recursion property in Section 3.3). John may
believe perfectly weil that Sue's belief subsystem can prove a certain fact, whereas in actuality her inference
rules are too weak.
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THEOREM 4.6. £ -[Si]p = [Si]-(Silp

Proof. We can apply either N3 or AKCB _ If we apply the latter, we obtain

S[S;lp = [Si]-(Sile

AKCB
=; ={S]p

deduction model, since it would require that no agent believe any sentence.
Hence there can be no set of sound tableau rules r(¢) that derives it.

If we apply No first, we obtain
~[Silp = [Si-[Silp
= [Silp.[Si]-[Silp
There are now two ways to apply AKCB . In one application, we generate

the sequent =; =[S;]p, which cannot close. In the other, we generate =; p,
which again cannot be derived by any set of sound tableau rules. §

Remarks. These theorems show that no logic of BK sanctions inferences about self-beliefs.
If an agent believes p, it does not follow that his model of his own beliefs includes p: this
is the import of Theorem 4.5. Similarly, if he does not believe p, he also may not have

knowledge of this fact, as shown by Theorem 4.6.

THEOREM 4.7.

F [Solp = [Sol{Solp
Proof.
o o
: x

Remarks. We have proven a simple fact about common beliefs: if p is a common belief,

it is a common belief that this is so.

For the circumscriptive ignorance part of BK, it is an interesting exercise to show

that
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(42)  (5;::Dp = [S]T > [Si]p

holds, but the converse doesn’t. That is, if p follows from I for agent S;, it must be the
case that believing [ entails believing p; on the other hand, it may be that every time an
agent has ' in his base set he also has p, which would satisfy [S;]l" > [S;]p without having

p derivable {rom T.

Bk L L 2l SMMA v a8y A mmm m = o ——— -1

THEOREM 4.8. | (S;:T)p = [S;]T = [Silp
Proof. We have the following two tableaux for this sentence.

(S; : D)p = [S;]T o [S;lp
B (Si: DSl = [Silp
F=;p

Iy
AKC

(S;:T)p = [S;]F > [S;p
(Si : DplSi]T = [Si]p
kFl=;p

Either p is derivable from T using the rules r(¢), or it isn’t. In either case
one of these tableaux closes. §

I
Cireg

Example. we give an example of the use of the circumscription rules to show ignorance.
Suppose the agent Sue believes anly the sentences P and P > Q in a situation; we want to
show that she doesn’t believe R. Thus we want to prove the sequent (Sue : P, P> Q)R =
[Sue]R = ~[Sue]R.

c (Sue: P,P > Q)R = [Sue]R = ~(Sue|R
! ue:P,P5Q)R> [Sue|R , [Sue]R > (Sue: P, P > Q)R = ~[Sue|R

L T | O

B SueiP.P> Q)R = SFuclR v, = [SuelR ~[Sue]R
2 FP P>5Qmg, R 2 TSuelR = [Sue]R
X

If the rules r(Sue) are sound, there is no closed tableau for P, P o Q@ =; R, and so both
branches of the tableau close. Note that only the reverse implication balf of the equivalence

was needed.
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5. The Problems Revisited

Using the logic BK, we present formal solutions to the two representational problems
posed at the beginning of this section. In each case we have tried to avoid solutions that are
trivial in the sense that they solve the representational problem, but only at the expense
of excluding types of reasoning that might be expected to occur. For example, in the chess
problem it would be an adequate but unrealistic solution to credit each player with no
deduction rules at all. Instead, we try to find rules that allow a resource-limited amount

of reasoning about the game to take place.

The Chess Problem

To approach this problem, we need to represent the game in a first-order language.
Because the ontology of chess involves rather complicated objects (pieces, board positions,
moves, histories of moves) we will not give a complete formalization, but rather sketch in

outline how this might be done.

We use a multisorted first-order language L. for the base language Ly. The key sorts
will be those for players (Sy or S), moves, and boards. The particular structure of the sort
terms is not important for the solution of this problem, but they should have the following
information. A board contains the position of all pieces, and a history of the moves that
were made to get to that position. This is important because we want to be able to find
all legal moves from a given position; to do this, we have to have the sequence of moves
leading up to the position, since legal moves can be defined only in terms of this sequence.
For example, castling can only occur once, even if a player returns to the position before
the castle: more importantly, there are no legal moves if 50 moves have been made without

a capture or pawn advancement (this is what makes chess a finite game). A move contains
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enough information so that it is possible to compute all successor boards, that is, those

resulting from legal moves.

r
1
S L,

The game tree is a useful concept in exploring game-playing strategies. This is a

finite tree (for finite games like chess) whose nodes are board positions, and whose branches &

are all possible complete games. A terminal node of the tree ends in either a win for White \3

or Black, or a draw. The game-theoretic value of a node for a player is either 1 (a win), \1

0 (a draw), or -1 (a loss), based on whether that player can force a win or a draw, or }}

‘ his opponent can force a win. We use the predicate M(p,b,k,l,r) to mean that board b tJ

: has value k for player p. The argument { is a depth-of-search indicator, and shows the 11’1

L maximum depth of the game tree that the value is based on. We include the argument r : :
B so that M can represent heuristic information about the value of a node; when r = f, &
3 is the player’s subjective estimate of the value of the node, i.c., he has not searched to all

:-: terminal nodes of the game tree. If r = t, then k is the game-theoretic value of the board.
b
b

We take the formal interpretation of boards, players, and the M predicate to be

the game of chess, so that L. is a partially interpreted language. The rules of the game
of chess strictly specify what the game tree and its associated values will be; hence, each
predication M(p,b,k,l,t) or its negation is a valid consequence of these interpretations.
Any agent who knows the rules of chess, and who has the concept of game trees, will
know the game-theoretic value of every node if his beliefs are consequentially closed. In
particular, he will believe either M(Sy, I,1, k,t) or ~M(Sy, I, 1,k,t), where I is the initial

board: and so he will know whether White has an initial forced win or not.

We represent agents’ knowledge of chess by giving tableau rules for L.. The rules '
T. presented below are one possible choice. ::_::
o L= M(p.bkl.r). 3 -
{- I‘SJV(p,b!,kl,ll,rl),A r:M(p,bz,kg,lZ'r:))'A ra‘\'l(p'bnvkn.ln.rn).A. :....:
where  by-b, are all the legal successor boards to b :
p’s opponent is to move on b .
k is the minimum of ky-k, -
{is 1+ the maximum of {y~/,
ristiffall of ri-r, aret ~
44 L:;'.:
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Chs : I'=> M(p,bklr)d

where  b;-b, are all the legal successor boards to b
pis to move on b
k is the maximum of k)-k,
{is 14 the maximum of I{-l,
ristiffall of ry-r, are t

Chy: = M(p,b,k,0,t),A, where k =1 if p has a checkmate on
his opponent on board 4; k = 0 if
board b is a draw; and k£ = -1 if p's
opponent has a checkmate.
Chy: I'=> M(p,b,£,0,f),A, where k£ is any number between -1
and 1
Chy axiomatizes nodes in the game tree where p’s opponent moves. The value of
such a node is the minimum of the values of its successor nodes. The argument [ is the
maximum depth of the subtree searched. r will be t only if all the subtrees have been
searched to leaf nodes. Chsy is similar to Ch), except p moves, and the maximum of the

successor values is chosen.

Chj is the rule for terminal nodes of the tree. Chy is a rule for heuristic evaluation
of any node; note that the last argument to M is f, which indicates that a terminal node
has not been reached. Each agent may have his own particular heuristics for evaluating

nonterminal nodes; we can accommodate this by changing the values for k in Chy.

As an example of the use of these rules, consider the following tableau proof.
(5.1)

= M(Sw,bsly2vt)

IF'=> M(p,by,k1,l1,r1), & T = M(p,bo,ko,la,r0). A -+ T = M(p,bn.kn,n.rn). N

Ch SRy

x

= M(Sy,b2,1,1,t) = M(Sy,bs5,1,0,t)
= M(Sw,ba,0,0,t) = 4M(S|p.b4,l,0,t) X
x X

Che

This is a proof that the board 4 has a value 1 for White, searching to all terminal nodes.
Boards by, b2, and b3 all have value 1, so an application of rule Chy yields that value 1 for b
(it is Black’s turn to move on ). Boards b and b5 are terminal nodes that are checkmates
for White. There are two legal moves from board ba; one ends in a draw (b3), the other in

a win (44) for White. Since it is White’s turn to move, rule Chs applies.
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The structure of this tableau proof mimics exactly the structure of the game tree
from the board §. Indeed, for any subtree of the complete game tree of chess whose root
the board b with value k for player p, there is a corresponding proof of M(p, b, &,(,t) using
the rules T.. In particular, if one of M(Sy, I,1,{,t), M(Sy,1,0,{,t), or M(Sy,I,—1,1.t)
is true, there is a proof of this fact. Hence the rules T, are sufficient for a player to
reason whether White has a forced initial win or not, given an infinite resource bound for
derivations. If we model agents as having the rules T, so that T, C r(v) for every view

v, the conversation presented at the beginning of this paper would make sense: each agent

would believe that everyone knew whether White had a forced initial win.

A simple modification of the rules Chy and Cho can restrict exploration of the entire

game tree, while still allowing agents to reason about game tree values using the heuristic

axioms Chy, or the terminal node axioms Chj if the game subtree is small. All that is
necessary is to add the condition that no rule is applicable when the depth [ is greater than
some constant V. Sy would still be able to reason about the game to depths less than .
or equal to N, but he could go no further. In this way, a deductively closed system can .

represent a resource-limited derivation process. The revised rules are

.’_‘1
Chy Ch,, with the condition that I < N. T
Chl Chq, with the condition that ! < N.

With these rules, the proof of (5.1) would still go through for ¥ > 2, but a proof of
M(Sw, I, k,1,t) could not be found if N were low enough to stop search at a reasonable

oy

P

level of the game tree,

L

o
STl i DS

{l

Pl
‘a
2

The solution to the chess problem illustrates the ability of the deduction model to ;;
represent resource bounds by the imposition of constraints on deduction rules. The.: are
other workable constraints for this problem besides depth cutofl: for example, the number

of nodes in the tree being searched could be kept below some minimum. Because the

structure of proofs mimics the game tree, any cutoff condition that is based on the game

tree could be represented by appropriate deduction rules.
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The Not-So-1Vise-Man Problem

i A e S

For this problem we use a base language L, containing only the three primitive

propositions Pj, P2, and P3. P; expresses the proposition that wise man S; has a white

spot on his forehead.

In the initial situation, no one has spoken except the king, who has declared that at

least one spot is white. Axioms for this situation are

(1) PyAP:aAPy
(W2)  (Sol(Piv P2v P3)

(W3) (P, > [S,]B) A 1Sol( P = [S;]R), %4, J#O
(V1) (<P 2 [S;]~P) a[Sol(=P; 2 [S;]-F).  i#j.j#0
(Cl)  (S;:W2-4,P;, P} P = [Si}P, i # gk

W1 describes the actual placement of the dots. V2 is the result of the king's utterance: it

is a common belief that at least one spot is white. W3 and 1V 4 are schemata expressing the

wise men’s observational abilities, including the fact that everyone is aware of each other’s
capabilities. C1 is the circumseriptive ignorance axiom: the only beliefs a wise man has
about the color of his own spot are the three axioms Ws-W,, plus his observation of the

other two wise men’s spots.

T Kbttt

As an exercise of the formalism, especially the circumscription rules, let us show

that all agents are ignorant of the color of their own spot in the initial situation. ::
(5.2) é
o C1 = -[S,]P; q
; | ISP > (5 W2, P, P P = SR,
2

(S; : W2, P, P) P, = S[Si] P,
EFW23,F, Py =, P,

= [5;]P;, -[Si]P;
(Si]P; = [Si| P
x

CircKl Nl

We have omitted some irrelevant sentences from the left side of sequents in this tableau.
To show that it closes, we must be able to prove that there is no set of sound deduction
rules that will enable S; to deduce P; from W2, W3, W4, Pj, and P,. We can prove this
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for any set of sound tableau rules by showing that W2-4, P;, P, = P, is not provable in

the normal modal logic K4 (see Section 4.4). It is possible to find a K'4-model in which

the sequent W2-4, P;, P, =; F; is false, using the methods of Sato [38]; hence this sequent

is not provable in any logic of BK.

After the first wise man has spoken, it becomes a common belief that he does not

know his own spot is white. The appropriate axioms are

(W3)  =[S1]P A [So]-[S1]P
(C2) (S;:W1-5, PJ', P.)P: = [S,-]P", t# 7.k

In this new situation, all the wise men are again ignorant of their own spot’s color; we
could prove this fact, showing that | C2 = =[S;]P;, in a manner similar to the proof in

(5.2). So relates his failure to the others, and the new situation has the additional axiom
(W6)  =[S2]P2 A [So]-[S2] P

The third wise man at this point does have sufficient cause to claim his spot is white, but
only if the second wise man is indeed wise, and the third wise man believes he is. To see
how this comes about, let us prove it in the saturated form of BK. We will take the wise
men to be powerful reasoners, and set r(v) = Ty+AKCB + Circ Ky + Circ Ky, for all views
v. The sequent we wish to prove is W1-6 = [S3|P3.

(5.3)
a W1-6 = [S3]P;
o W2-6, P, P, Py = [S3]P3
12 W2'6v Pl' PZ) P30 1‘2 o {53]& = [83]P3
C W2-61 Plr P2r P3v IS3IP3 = [53]P3
Py = P, ! W26, P, Py, Py, [S3]P2, P o [S3]P = [S3]Ps

x POR=P cs W2 PP B (SR [S3]P = (5[
X W26, Pyv Pov P Pr, Pp =3 P

This part of the proof is mostly bookkeepiog. We have used some shortcuts in the
proof, omitting some obvious steps and dropping sentences from either side of the sequent

if they are not going to be used.
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We now must show that S3's belief subsystem can prove P from the assumptions
11'2-6 and from the belief that the other two wise men's dots are white (note that we are

now using S3’s sequent =3).

(5.4)
c W2-6, PAvPov B, Py, Pp =3 P
In ! W26, P|, P, Py o [S2]P) =3 P3
- c W26, Py, P, [52]P| =3 P
PL=3P ' W26, P, B [S2]Pi. <P 2 [Sa]=Ps =3 Py
x v, =3 PP X W26, P, P2, [S2] P, [So]-P3 =3 P3
AL ey ) AgCB W2-6 P Py [Sa]Py, [S2]-P3 =3 P3, [S2) P2
x VV?-G, Pl v P2 v P3, P], qP;; =32 Pg

Note the atom Pj on the right-hand side of the top sequent; it is equivalent to = F3
on the left-hand side, i.e., the assumption that S3’s spot is black. The sequent proof here
mimics the third wise man's reasoning, Suppose my spot were black .... Through the
observation axiom W4, which is a common belief, this assumption means that S3 believes
that So believes ~P3. At this point, S3 begins to reason about Sj’s beliefs. Since, by V6,
the second wise man is unaware of the color of his own spot, a contradiction will be derived

if P» follows in Sa's belief subsystem.
(5.5)

W2-6, PLvPv Py P, Py =30 P

1 Was, PP ~P 5 [S-P =3 P
c W2-6, P, =P, [S1]-P3 =23 P
“P:; =32 ﬁPs I 1 W2—6, P], "P3, [Sllﬂp;;. 'ﬂPg = [S ]“Pg =32 P'_v
X N21 =32 Pg,"Pg ”/2-6, P], "P;;. [S] -'P3, [51 “P'_v =32 Pg

AKCB

W2—6, Pl v Pg v P3, “Pg, "Ps =321 Pl

Sa's reasoning {in S3's view) takes the assumption that the third wise man’s spot is
biack and asks what the effect would be on the first wise man S). Since S is also ignorant
of the color of his own spot, a contradiction will ensue if the first wise man can prove that
his own spot is white, under the assumption - P3. The remainder of the proof is conducted

in the view 321.
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(5.6)

W2-6, PLvPyv P, =Py, ~P3 =391 P,

. W26, PpvPrv P, =3m P, Po, P

* P =3 P,P, P Py =32, P, P, P3 Py =301 P, P, B3
X p 4 X

" N2
D

In pursuing this proof, we have assumed that the second wise man is indeed wise.

There are several places in which, with slightly less powerful deduction rules for the view

y 32, the proof would break down. Each of these corresponds to one of the two types of
incompleteness that we identified in the statement of the problem: relevance incompleteness

- and fundamental logical incompleteness.

Consider first the notion that Sz is not particularly good at reasoning about what
other agents do not believe, a case of fundamental logical incompleteness. One way to
capture this would be to weaken the rule N3 in the following manner:

[,~p =32 A

V3 -
2 [ =32 p,A

, where p contains no belief operators

The modified rule N3 would not allow deductions about what agents do not know. In
- particular, it would not allow the transfer of the sentence =[S{]P; to the left-hand side of

the sequent, a crucial step in the tableau (5.5) for the view =3;.

Note that the modified rule N still allows deductions about what other agents do
E believe. For instance, if So were asked whether S;’s believing P, followed from his believing
-P> and ~P;, Sy would say “yes,” even with the logically incomplete rule V3 (as in tableau

(5.6) above).

j: A more drastic case of logical incompleteness would result if S» simply did not reason '.:;::
N about the heliefs of other agents at all. In that case, one would exclude the rule A4 CB from ‘__':;‘_'
) Sa's deduction structure. Again, the proof would not go through, because the attachment "*J
- rule could not be applied in the tableau (5.5). h‘ﬂ
: 3
hg -+
v '.1
. The notion of relevance incompleteness emerges if the not-so-wise-man S» does not )

consider all the information he has available to answer the king. For example. he may
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think that the observations of other agents are not relevant to the determination of his
own spot, since the results of those observations are not directly available to him. The
observational axioms 3 and W4 enter into the proof tableau (5.5) in two places. Both
times the rule /- is used to break statements of the form p o [S|p into their component
atoms. Preventing the decomposition of IV 3 and 1V 4 effectively prevents Sa {rom reasoning

about the observations of other agents. A weakened version of /> for doing this is:

- F.p:q=>32..§

¥ FSppaA  T.qona “herepandgare both modal or

both nonmodal.

This rule is actually weaker than required for the purpose we have in mind. Consider
the observation axiom —P3 > [S|]=P;. There are two ways S2 could use this axiom. If S,
believes = P;, he could conclude that S| does also. This is not the type of deduction we wish
to prevent, since it means that Sp attributes beliefs to other agents based on his own beliefs
about the world. On the other hand, the axiom -~P» > [S|]=P; is used in a conceptually
different fashion. Here it is the contrapositive implication: if S; actually does not believe
—-P,, then P> must hold. The way this shows up in the proof tableau (5.5) is that = P4
appears as an init‘al assumption on the sequent W2-5, P, -P; =32 P», while Ps is a goal

to be proved.

To capture the notion of using an implicational sentence in one direction only, we
would have to complicate the deduction rules by introducing asymmetry between the left
and right sides of the sequent. This is one of the major strategies used by commonsense
theorem provers of the PLANNER tradition (Hewitt [12] originated this theorem-proving
method). Rather than having implicational rules of the form I3, typical PLANNER-type
systems use something like the following rule.

lppog=4
Fpgpag=24

PI:

The implicational sentence is used in one direction only in PI. If it is desired to make
contrapositive inferences, then the contrapositive form of the implication must be included
explicitly. The construction of PLANNER-type deduction rules within the tableau frame-
work allows a much finer degree of control over the inference process. A full exposition

of such a system is beyond the scope of this paper; the interested reader is referred to

Konolige [21].
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In sum, we have shown that it is possible for the deduction model to represent the
situation in which not-so-wise-man has less than perfect reasoning ability, preventing the
third wise man from figuring out the color of his own spot. Both relevance incompleteness

and fundamental logical incompleteness can be captured by using appropriate rules for

r(32).
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8. Other Formal Approaches to Belief

How does the deduction model and its logic B compare to other formal models and
logics of belief? We examine two alternative approaches in this section: modal logics based
on a Hintikka/Kripke possible-worlds semantics, and several different first-order formaliza-

tions that treat beliefs as sentences in an internal language.

8.1. The Possible-Worlds Model

The possible-worlds model of belief was initially developed by Hintikka in terms of
sets of sentences he called model sets. Subsequent to Kripke’'s introduction of possible
worlds as a uniform semantics for various modal systems, Hintikka rephrased his work in
these terms (see Hintikka [14]). The basic idea behind this approach is that the beliefs of
an agent are modeled as a set of possible worlds, namely, those that are compatible with

his beliefs. For example, an agent who believes the sentences

Some of the artists are beekeepers.

(6.1) All of the beekeepers are chemists.

would have his beliefs represented as the set of possible worlds in which some artists are

beekeepers and all beekeepers are chemists.

Representational Issues

In a possible world for which the sentences (6.1) are true, anything that is a valid
consequence of (6.1) must also be true. There can be no possible world in which some artists
are beekeepers, all beekeepers are chemists, and no artists are chemists; such a world is
a logical impossibility. If beliefs are compatible with a set of possible worlds (i.e., true of

each such possible world), then every valid consequence of those beliefs is also compatible
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with the set. Thus one of the properties of the possible-worlds model is that an agent
will believe all consequences of his beliefs - the model is consequentially closed. Hintikka,
recognizing this as a serious shortcoming of the model, claimed only that it represented an
idealized condition: an agent could justifiably believe any of the consequences of his beliefs.
although in any given situation he might have only enough cognitive resources to derive a

subset of them.

The assumption of consequential closure limits the ability of the possible-worlds

model to represent the cognitive state of agents. Consider, for example, the problem of

representing the mental state of agents as described by belief reports in a natural language.

Suppose the state of John's beliefs is at least partially given by the sentence

John believes that given the rules of chess, White has a forced initial

(6.2) win.

Since the statement, given the rules of chess, White has a forced initial win is either a
tautology or inconsistent, this would be equivalent in the possible-world model to one of

the following belief reports:

a. John believes t.

(6.3) b. John believes everything.

Clearly this is wrong; if it turns out that John’s belief in White's forced initial win is
correct, John has a good deal of information about chess, and we would not want to equate
it to the tautology t. On the other hand, if John's belief is false and no such strategy for
White exists, it is not necessarily the case that all of his beliefs about other aspects of the
world are incoherent. Yet there are no possible worlds compatible with a false belief, and

30 every proposition about the world must be a belief.

The representational problems of the possible-worlds approach stem from its treat-
ment of belief as a relation between an agent and a proposition (i.e.. a set of possible worlds).
All logically equivalent ways of stating the same proposition, no matter how complicated.
count as a report of the same belief. By contrast, the deduction model treats belief as
a relation between an agent and the statement of a proposition, so that two functionally

different beliefs can have the same propositional content.

There is a large philosophical literature on the problems of representing propositional

attitudes using possible worlds. Perry (in (34]) gives an account of some of the more subtle
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:_ problems inhereat in equating belief states with propositions; his analysis does not depend R
-

.,-_‘ on consequential closure. Barwise (in [2]) critiques consequential closure in possible-worlds

o . .

-" models of perception. By comparison, a good account of the relative advantages of a )
symbol-processing approach to representing belief can be found in Moore and Hendrix (in p

) (31]). :
X
T 2

"'_'; The Correspondence Property ::

. It is reasonable to ask how the deduction and possible-worlds models compare in -

o] . . . '
N respects other than the assumption of consequential closure. That is, are the saturated ‘

o) .
A deduction models Dq4(L, p) (whose rules are consequentially complete) significantly different
\'\' . . 4

o from possible-worlds models for the purpose of representing belief? 5

w.:' The last phrase, “for the purpose of representing belief,” is important. The two A

"._‘-j models are composed of different entities (expressions vs. propositions), so we can always .
{:: use a language that distinguishes these entities, and has statements that are valid in one
- model and not the other. So the answer to this question depends on the type of language ’

- used to talk about the models. Fortunately, the language standardly used to axiomatize -

= possible-worlds models is the same as that of B: a modal calculus containing atoms of the -

form [S]p, in which p refers to a proposition.! Thus it is possible to compare the possible- -

worlds and deduction models by comparing their axiomatizations in modal logic. We have .
) .

-— proven the following general property about the two approaches.

o Correspondence Property. For every modal logic of belief based on Kripke possible-

.-'_'_'. worlds models, there exists a corresponding deduction model logic family with an ).

equivalent saturated logic.

_:::- The correspondence property simply says that possible-worlds models are indistinguishable ':j
L from saturated deduction models from the point of view of modal logies of belief. To the -
- author’s knowledge, this is the first time that the symbol-processing and possible-worlds y

- . . .

iy approaches to belief have been shown to be comparable, in that the possible-worlds model

::"' ! Historically, the axiomatization of modal systems preceded Kripke's introduction of a unifying possible-

- worlds semantics.
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is equivalent to the limiting case of a symbol-processing model with logically complete . :
deduction. D
Although space is too short here to give a full proof of this claim, we will give an I,

. . - . . . d

overview of the most important of the propositional modal logics with a possible-worlds o

semantics, and their corresponding deductive belief logics (a full exposition and proofs of

results mentioued bere are in Konolige [21]).

Modal calculi for the possible-worlds model differ, depending on the particulars of
their intended domains. For propositional modal calculi, these particulars center arcund
whether knowledge or belief is being axiomatized, and what assumptions are made about
self-beliefs or self-knowledge (a survey of these calculi may be found in Hughes and Cresswell
(15]). The standard propositional modal calculi contain a single modal operator (which we
write here as [S]) and are expressed as Hilbert systems. Their rules of inference are modus
ponens (from p and p > g, infer q) and necessitation (from p, infer [S|p). Axioms are taken

from the following schemata.

M1. p, where pis a tautology
M2. (S](p>4q) > ([Slp > [Slq)
M3. [Slpop

M4, (Slp = [S][Slp

Ms5. =[S]p > [S]-[S]p

M1 are the purely propositional axioms. M2, also called the distribution axioms, allow
modus ponens to operate under the scope of the modal operator. M3 are axioms for knowl-
edge: all knowledge is true. Af4 and M5 are called the positive and negative introspection
axioms, respectively: if an agent believes p, then he believes that he believes it (M 4); if he

doesn’t believe p, then he believes that he doesn't believe it (A 5).

Any moda' calculus that uses modus ponens and necessitation, and includes all
tautologies and the distribution axioms, is called a normal modal calculus. Normal modal
calculi have the following interesting property (see Boolos [3]): if p o ¢ is a theorem. then

s0 is [S]p o [S]q. Interpreting the modal operator [S] as belief, this asserts that whenever
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q is implied by p, an agent S who believes p will also believe g. As expected, normal modal

calculi assume consequential closure when the modal operator is interpreted as belief. .

b The simplest normal modal calculus is K, which contains just the schemata A1 and :
M2, To axiomatize knowledge, M3 is included to form the calculus T. Assumptions about ’
. self-knowledge lead to the calculi $4 (T + M4) and S5 (S4 + A5). McCarthy (in [24] and A
L [25]) was the first to recognize the utility of modal calculi for reasoning about knowledge in .
Al systems, and defined three calculi that were extensions to T', S4, and S5, allowing belief
operators for multiple agents. Sato ([38]) has a detailed analysis of these calculi as Gentzen
svstems, and calls them K3, K4, and K5, respectively. He also gives decision procedures
for these logics. A4 is the calculus used by Moore in his dissertation on the interaction of

knowledge and action ([29]).

The so-called weak analogs to S4 and S5 are formed by omitting the knowledge -
axiom A3 (this terminology is introduced by Stalnaker [41]). The weak versions are ap- ‘
propriate for axiomatizing belief rather than knowledge, since beliefs can be false. Levesque -
{22} has an interesting dissertation in which he explores the question of what knowledge
a data base can have about its own information. Because he makes the assumption that
f-_' a data base has complete and accurate knowledge of its own contents, the propositional

calculus he arrives at is weak S5, with the addition of a consistency schema [S]p > ~[S]-p. \

How does the family of logics B compare with these propositional modal calculi? ::‘
As with the possible-worlds logics, the deductive belief logics formed from B will depend
on the assumptions that are made about self-beliefs. In this paper we have developed the
logic family BK, which assumes that an agent has no knowledge of his own beliefs. The
saturated logic BK,, restricted to a single agent, is provably equivalent to K, the weakest

-:j:'_ of the possible-worlds bclief calculi.

We have developed a theory of introspection within the deduction model framework 2
e that accounts for varying degrees of self-knowledge about one’s own beliefs. This theory
o is based on the idea that an agent’s belief subsystem can query a model of itself (an

introspective belief subsystem) to answer question of self-belief. Depending on constraints Ny

placed on the introspective belief subsystem, it is possible to arrive at any one of eight A
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different logic families. Two of these, BS4 and BS5, have saturated logics that are equivalent

in the single-agent case to the modal systems weak S4 and weak S5.

While we have been interested in the concept of belief throughout this paper, it is
possible to define a deductive belief logic based on the related concept of knowledge. One
property that distinguishes knowledge from belief is that if something is known it must be
true, whereas beliefs can be false. The appropriate tableau axiom for knowledge is

T(sr=> A

Ko:  grisr=a

Adding Ky to B forms the logic family K. Particularizations of K with varying degrees of
self-knowledge correspond to the propositional modal systems T, S4 and S35.

We summarize these results in the following table.

Normal Modal Deduction Model

~ .vt.,':;
L] L o )

Calculus Family
. K BK
Beliel weak S4 BS4 =
weak S5 BS3 2
T KT
Knowledge S4 KS4 =
S5 KS3

8.2. Syntactic Logics for Belief

There are a number of first-order formalizations of belief or knowledge in the symbol-

processing tradition that have been proposed for Al systems. We have labeled these “syn-

tactic” logics because their common characteristic is to have terms whose intended meaning

is an expression of some object language. The object language is either a formal language

(e.8., another first-order language) or an internal mental language. The logic B is also a

syntactic logic, although it uses a modal operator; the argument of the operator denotes a

sentence in the internal language. We have chosen to use a modal language for B because




4
]

B

badndhe) Cac

it has a relatively simple syntax compared to first-order formalizations. It is also less ex-
pressive, in that quantification over sentences of the object language is not allowed by the

modal syntax.

T T AR

McCarthy [26] has presented some incomplete work in which individual concepts are

reified in a first-order logic. Exactly what these concepts are is left deliberately unclear,

but in one interpretation they can be taken for the internal mental language of a symbol-

processing cognitive framework. He shows how the use of such concepts can solve the

'm"-l L1

standard representational problems of knowledge and belief. e.g.. distinguishing between

de dicto and de re references in belief sentences.

Low e -
PRI S}

A system that takes seriously the idea that agent’s beliefs can be modeled as the
theory of some first-order language is proposed by Konolige [19]. A first-order metalanguage
is used to axiomatize the provability relation of the object language. To account for nested
beliefs, the agent’s object language is itself viewed as a metalanguage for another object
language, and so om, thereby creating a hierarchy of metalanguage/object language pairs.
Perlis [33] presents a more psychologically oriented first-order theory that contains axioms

about long- and short-term memory. The ontology is that of an internal mental language.

These axiomatic approaches are marred by one or both of two defects - the lack
of a coherent formal model of belief, and computational inefficiency. Regarding the first
one: the vagueness of the intended model often makes it dificult to claim that the given
axioms are the correct ones, since there is no formal mathematical model that is being
axiomatized. In arriving at the deduction model of belief, we have tried to be very clear
about what assumptions were being made in abstracting the model, how the model could
fail to portray belief subsystems accurately, and so on. In contrast, the restrictions these
syntactic systems place on belief subsystems are often obscure. What type of reasoning
processes operate to produce consequences of beliefs? How are these processes invoked?
What is the interaction of the belief subsystem with other parts of the cognitive modei?
These types of questions are begged when one simply writes first-order axioms and then
tries to convey an intuitive idea of their intended content. {To some extent this criticism is
not applicable to the formalism of Konolige in [19], because here the intended belief model

18 explicitly stated to be a first-order theory).
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A second shortcoming is that efficient means of deduction for the syntactic axioma-

tizations are not provided. As we have mentioned, a system that is actually going to rea-

- ——

son about belief by manipulating some formalization can encounter severe computational
problems. Many of the assumptions incorporated into the deduction model, especially
the closure property, were made with an eye towards deductive efficiency. The end result
is a simple rule of inference, the attachment rule A, that has computationally attractive

.. ]
! On the other hand, formalizations that try to account for complex proce-

realizations.
dural interactions (as in Perlis’s theory of long- and short-term memory), or that use a
metalanguage to simulate a proof procedure at the object language level (as in Konolige

[19]), have no obvious computationally efficient implementation.

! Several efficient proof methods are given in Konolige [21]: a decision procedure for propositional BK
based on the Davis-Putnam procedure (see Chang and Lee [5]), which is sufficient to solve the Wise Man
Puzzle automatically; a resolution method for the quantifying-in form of B; and a PLANNER-type deduction
system.
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7. Conclusion

We have explored a formalization of the symbol-processing paradigm of belief that
we call the deduction model. It is interesting that the methodology employed was to ex-
amine the cognitive structure of Al planning systems. This methodology, which we might
term experimental robot psychology, offers some distinct advantages over its human coun-
terpart. Because the abstract design of such systems is open and available, it is possible to
identify major cognitive structures, such as the belief subsystem, that influence behavior.
Moreover, these structures are likely to be of the simplest sort necessary to accomplish

some task, without the synergistic complexity so frequently encountered in studies of hu-

man intelligence. The design of a robot’s belief subsystem is based on the minimum of
o8 assumptions necessary to ensure its ability to reason about its environment in a productive

manner, namely, it incorporates a set of logical sentences about the world, and a theorem-

proving process for deriving consequences. The deduction model is derived directly from

these assumptions.

The deduction model falls within that finely bounded region between formally tract-

able but oversimplified models and more realistic but less easily axiomatized views. On
the one hand, it is a generalization of the formal possible-worlds model that does not make
the assumption of consequential closure, and so embodies the notion that reasoning about
one’s beliefs is resource-limited. On the other hand, it possesses a concise axiomatization
in which an agent’s belief deduction process is incorporated in a direct manner. rather than
simulated indirectly. Thus, the deduction model and its associated logic B lend themselves
to implementation in mechanical theorem-proving processes as a means of giving Al systems

the capability of reasoning about beliefs.
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In a previous paper [Moore, 1983a, 1983b], we presented a
nonmonotonic logic for modeling the beliefs of ideally rational agents
who reflect on their own beliefs, which we called "autoepistemic logic."
We defined a simple and intuitive semantics for autoepistemic logic and
proved the logic sound and complete with respect to that semantics.
However, the nonconstructive character of both the logic and its
semantics made it difficult to prove the existence of sets of beliefs
satisfying all the constraints of autoepistemic logic. This note
presents an alternative, possible-world semantics for autoepistemic
logic that enables us to construct finite models for autoepistemic
theories, as well as to demonstrate the existence of sound and complete

autoepistemic theories based on given sets of premises.
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I  INTRODUCTION

In a previous paper [Moore, 1983a, 1983b], we presented a
nonmonotonic logic for modeling the beliefs of ideally rational agents
who reflect on their own beliefs, which we called "autoepistemic logic."
We defined a simple and intuitive semantics for autoepistemic logic and
proved the 1logic sound and complete with respect to that semantics.

However, the nonconstructive character of both the logic and its

semantics made it difficult to prove the existence of sets of beliefs .
satisfying all the constraints of autoepistemic logic. This note

presents an alternative, possible-world semantics for autoepistemic

RN

logic that enables us to construct {finite models for autoepistemic

theories, as well as to demonstrate the existence of sound and complete

autoepistemic theories based on given sets of premises.

Autoepistemic logic is nonmonotonic, because we can make statements
in the logic that allow an agent to draw conclusions about the world

from his own lack of information. For example, we can express the
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belief that "If I do not believe P, then § is true."” If an agent adopts
this belief as a premise and he has no means of inferring P, he will be

able to derive Q. On the other haﬁd, if we add P to his premises, Q

RRA AR MR

will no longer be derivable. Hence, the logic is noomonotonic. e
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Autoepistemic logic is closely related to the nonmonotonic logics
of McDermott and Doyle [1980; McDermott, 1982]. In fact, it was
designed to be a reconstruction of these logics that avoids some of
their peculiarities. This is discussed in detail in our earlier paper
[Moore, 1983a, 1983b]. This work is also closely related to that of
Halpern and Moses [1984], the chief difference being that theirs is a
logic of knowledge rather than belief. Finally, Levesque [1981] has
also developed a kind of autoepistemic logic, but in his system the
agent's premises are restricted to a sublanguage that makes no reference

to what he believes.
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IT  SUMMARY OF AUTOEPISTEMIC LOGIC

The language of autoepistemic logic is that of ordinary
propositional logic, augmented by a modal operator L. We want formulas
of the form LP to receive the intuitive interpretation "P is believed"
or "I believe P." For example, P D) LP could be interpreted as saying

"If P is true, then I believe that P is true."

The type of object that is of primary interest in autoepistemic
logic is a set of formulas that can be interpreted as a specification of
the beliefs of an agent reflecting upon his own beliefs. We will call
such a set of formulas an autoepistemic theory. The truth of an agent'’s
beliefs, expressed as an autoepistemic theory, is determined by (1)
which propositional constants are true in the external world and (2)
which formulas are believed by the agent. A formula of the form LP will
be true with respect to an agent if and only if P is in his set of
beliefs. To formalize this, we define the notions of autoepistemic
I of an autoepistemic theory T is a truth assignment to the formulas of
the language of T that satisfies the following conditions:

1. I conforms to the usual truth recursion for propositional

logic.

2 A formula LP is true in I if and only if P € T.
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An autoepistemic model of T is an autoepistemic interpretation of T in

which all the formulas of T are true. (Any truth assignment satisfying

Condition 1 in which all the formulas of T are true will be called

22—

We can readily define notions of soundness and completeness
relative to this semantics. Soundness of a theory must be defined with
respect to some set of premises. Intuitively speaking, an autoepistemic
theory T, viewed as a set of beliefs, will be sound with respect to a
set of premises A, just in case every formula in T must be true, given
that all the formulas in A are true and given that T 1is, in fact, the
set of beliefs under consideration. This is expressed formally by the

following definition:

An autoepistemic theory T is sound with respect to a set of

premises A if and only if every autoepistemic interpretation

of T that is a model of A is also 2 model of T.

The definition of completeness is equally simple. A semantically
complete set of beliefs will be one that contains everything that must
be true, given that the entire set of beliefs is true and given that it
is the set of beliefs being reasoned about. Stated formally, this
becomes

if T contains every formula that is true in every
autoepistemic model of T.

%R

a

1

l' ): /‘f‘ !“ ( 2

LS

T L
Y g g

]

AR at'e
1 a

+

i

2}

v a0

o r e e,
AL
AR A

DIHG



Finally, we can give syntactic characterizations of the
autoepistemic theories that conform to these definitions of soundness
and completeness [Moore, 1983b, Theorems 3 and 4]. We say that an
autoepistemic theory T 1is stable if and only if (1) it is closed under
ordinary tautological consequence, (2) LP € T whenever P € T, and (3)
-LP € T whenever P g T.

Theorem: An autoepistemic theory T is semantically complete if
and only if T is stable.

We say that an autoepistemic theory T is grounded in a set of
premises A if and only if every formula in T is a tautological
consequence of AU {LP | P € T} U {-LP | P & T}.

Theorem: An autoepistemic theory T is sound with respect to a

set of premises A if and only if T is grounded in A.

With these soundness and completeness theorems, we can see that the
possible sets of beliefs an ideally rational agent might hold, given A

as his premises, would be stable autoepistemic theories that contain A

and are grounded in A. We call these theories stable expansions of A.
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III AN ALTERNATIVE SEMANTICS FOR AUTOEPISTEMIC LOGIC

The semantics we have provided for autoepistemic logic is simple,
intuitive, and allows us to prove a number of important general results,
but it requires enumerating an infinite truth assignment if the theory
under consideration contains infinitely many formulas. This makes it
difficult to exhibit particular models and interpretations we may be

interested in. The problem is that, in the general case, there need be

no systematic connection between the truth of one formula of the form LP

and any other. Autoepistemic logic is designed to characterize the
beliefs of ideally rational agents, but we want the semantics to be
broader than that. The semantics we have defined 1is intended to apply
to arbitrary sets of beliefs, with the beliefs of ideally rational
agents being a special case (just as model theory for standard logic
applies to arbitrary sets of formulas, not just to those that are closed
under logical consequence). Thus, our semantics makes no necessary
connection between the truth of L(P A Q) and LP or LQ, because it is at
least conceivable that an agent might be so logically deficient as to
believe P A Q without believing P or believing §. In such a case, there
is little we can expect the truth definition for an autoepistemic theory

to do, other than to list the true formulas of the form LP by brute

stipulation.
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If we confine our attention to ideally rational agents, however,
much wmore structure emerges. In fact, we can show that stable
autoepistemic theories can be simply characterized by Kripke-style
possible-world models for modal logic [Kripke, 1971]. For our purposes,
what we need to recall about a Kripke structure is that it contains a
set of possible worlds and an accessibility relation between pairs of
worlds. The truth of a formula is defined relative to a world, and
conforms to the wusual truth recursion for propositional logic. A
formula of the form LP is true in a world W just in case P is true in
every world accessible from W. Kripke structures in which the
accessibility relation is an equivalence relation are called S5
structures, and the S5 structures that will be of interest to us are
those in which every world is accessible from every world. We will call
these the complete S5 structures. Our major result is that the sets of
formulas that are true in every world of some complete S5 structure are
exactly the stable autoepistemic theories. (This result has been
obtained independently by Halpern and Moses [1984] and by Melvin Fitting
[personal communication]).

Theorem: T, is the set of formulas that are true in every world

of some complete S5 structure if and only if T is a stable

autoepistemic theory.

Proof: Suppose T is the set of formulas ¢true in every world of a
complete S5 structure. By the soundness of propositional logic, T is
closed under tautological consequence. By the truth rule for L, LP is

true in every world just in case P is true in every world; therefore
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LP € T if and only if P € T. Furthermore, by the truth rule for L, LP
is false in every world just 1in case P is false in some world; so
-LP € T if and only if P ¢ T. Therefore T is stable. In the opposite
direction, suppose that T is stable. Let T’ be the set of formulas of T
that contain no occurrences of L. We will call these the objective

formulas of T. Since T is closed under tautological consequence, T’

will also be closed under tautological consequence. Consider the set of
all models of T’ and the complete S5 structure in which each of these
models defines a possible world. T’ will contain exactly the objective

formulas true in every world in this model; hence, T' will contain

precisely the objective formulas of the stable autoepistemic theory T'’
defined by this S5 structure. But by a previousl result [Moore 1983b,

Theoren 2], stable theories containing the same objective formulas are

identical, so T must be the same as T'’. Hence, T 1is the set of

formulas true in every world of a complete S5 structure.

Given this result, we can characterize any autoepistemic
interpretati-n of any stable theory by an ordered pair consisting of a
complete S5 structure (to specify the agent’s beliefs) and a
propositional truth assignment (to specify what is actually true in the
world). Such a structure (K, V) defines an autoepistemic interpretation
of the theory T consisting of all the formulas that are true in every
world in K. A formula of T is true in (K, V) if it is true according to S
the standard truth recursion for propositional logic, where the

propositicnal constants are true in (K, V) if and only if they are true L
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in V, and the formulas of the form LP are true in (K, V) if and only if
they are true in every world in K (using the truth rules for Kripke
structures). We will say that (K, V) is a possiblecworld interpretation
of T and, if every formula of T is true in (K, V), we will say that
(K, V) 1is also a possible-world model of T. In view of the preceding
theorenm, it should be obvious that for every autoepistemic
interpretation or autoepistemic model of a stable theory there is a
corresponding possible-world interpretation or possible-world model, and
vice versa.

Theorem: If (K, V) is a possible~world interpretation of T,

then (K, V) will be a possible-world model of T if and only if

the truth assignment V is consistent with the truth assignment

provided by one of the possible worlds inm K (i.e., if the

actual world is one of the worlds that are compatible with

what the agent believes).
Proof: If V 1is compatible with one of the worlds in K, then any
propositional constanblthat is true in all worlds in K will be true in
V. Therefore, any formula that comes out true in all worlds in K will
also come out true in (K, V), and (K, V) will be a possible-world model
of T. In the opposite direction, suppose that V is not compatible with
any of the worlds in K. Then, for each world W in K, there will be some
propositional constant that W and V disagree on. Take that constant or
its negation, whichever is true in W, plus the corresponding formulas
for all other worlds in K, and form their disjunction. (This will be a

finite disjunction, provided there are only finitely many propositional

constants in the language.) This disjunction will be true in every
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‘ world in K, so it will be a formula of T, but it will be false in V.

Therefore, (K, V) will not be a possible-world model of T.
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IV APPLICATIONS OF POSSIBLE-WORLD SEMANTICS

One of the problems with our original presentation of autoepistemic
logic was that, since both the logic and its semantics were defined
nonconstructively, we were unable to easily prove the existence of
stable expansions of nontrivial sets of premises. With the finite
models provided by the possible-world semantics for autoepistemic logic,

this becomes quite straightforward. For instance, we claimed [Moore,

1983a, 1983b] that the set of premises {-LP ) Q, -LQ J P} has two stable
expansions--one containing P but not (, and the other containing Q but )
not P--but we were unable to do more than give a plausibility argument i

for that assertion. We can now demonstrate this fact quite rigorously.

Consider the stable theory T, generated by the complete S5
structure that contains exactly two worlds, {P, Q} and {P, -Q}. (We
! will represent a possible world by the set of propositional constants
and negations of propositional constants that are true inm it.) The

possible-world interpretations of T will be the ordered pairs consisting

of this S5 structure and any propositional truth assigmnment. Consider

’
.
'
.

all the possible-world interpretations of T in which -LP D> Q and -LQ 2 P

are both true. By exaustive enumeration, it is easy to see that these

A

are exactly
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Since, in each case, the actual world is one of the worlds that are
compatible with everything the agent believes, each of these is a
possible-world model of T. Therefore, T is sound with respect to
{-LP > Q, -LQ ) P}. Since T is stable and includes {-LP ) Q, -LQ ) P}
(note that both these formulas are true in all worlds in the S5
structure), T is a stable expansion of A. Moreover, it is easy to see
that T contains P but not Q. A similar construction yields a stable

expansion of T that contains Q but not P.

On. the other hand, if both P and Q are to be in a theory T, the
cor~esponding S5 structure contains only one world, {P, Q}. But then
{{{P, Q}}, {-P, -Q}} is a possible-world interpretation of T in which
sLP ) Q and -LQ ) P are both true, but some of the formulas of T are not
(P and Q, for instance). Hence, if T contains both P and Q, T is not a

stable expansion of {-LP ) Q, -~LQ ) P}.
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A WEAK LOGIC FOR KNOWLEDGE AND BELIEF
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3 A WEAK LOGIC OF KNOWLEDGE AND BELIEF:

Epistemic and Doxastic Logic for the Yuppie Generation®

David Israel
Artificial Intelligence Center
SRI International®

1. INTRODUCTION

Modern modal logic begins with the work of C. 1. Lewis early on in the present century [Lews 18]
\We can think of Lewis thinking to himself as follows: *Well, [ can’t analyze the notions of metaphysical or
logical possibility and necessity, but I can sure formulate alternative axiomatizations of such notions. |
can then compare and contrast such axiomatic systems and see what [ learn.” Thus were born the Lewis

Systems, S1-S5, axiomatizing increasingly strong conceptions of nvcessity.3

Another 40 or so years went by before the purely axiomatic approach was proper!, systematized and
rendered fit for human consumption. In current lore. a certain axiomatic system. A, is central.! The

standard presentation of K consists of infinitely many axioms plus one axiom scheme and two rules of

: infereace. [n particular, with 'L’ being read as "necessarily™ or "it is necessary that®; 'M’', as "possibly® or
::.‘-_ *it is possible that® K is as follows:
b -
b <~
I: all classical tautologies
=
o
v Ik L(p-->q)--> (Lp--> Lq)
o
-~“
v
ll will now show off almost all the Greek | know: ®epistemic® has to Jo with knowledge: "doxastic®, with heliel. So in
W what follows we shall have to do with logics of knowledge and belief.
-
.. 9
. “This research was supported in part by the United States Air Foree Office of Scientific Research under Conteart N
-
% F 1¢620-82-K-0031 and in part by a gift from the System Development Foundation.
S
" 3Ths- little story just toll is a fable. Lewis was really interested in different conceptions of implication or the conditional--
" not in varying conceptions of necessity and possibility. Of course, on one view, implication <imply /s validity or necesaity of
. the material ronditional: <o we can translate Lewis's writings on the varieties of implication into writings on varieties . [
N necessity.  This translation ~cheme is now almost universally applied. Note, if one does not apply this scheme, and insteal
reads Lewis neat, the proper line of descent from Lewis goes mainly through Ackermann’s work on ‘strenge Implikation” 1.
e the work of Anderson-Belnap on entailment. See [Anderson and Belnap 75].

] C - .. . . . . . .
The “K* is for Kripke. although credit for focussing on a notion of normality under which A s the mumimal normal
modal logic must be shared with E.J. Lemmon [Lemmon 77]. See below on normality
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R1: If l-p and I-{(p --> q), then l-q modug ponens

R2: If l-p, then l-Lp necessitation

The standard practice is to take K as the base theory and consider extensions. Four such extensions

have figured prominently in the literature.

T: K+ Lp-->p
S54: T+ Lp--> LLp
B: T+ MLp-->p

§55: T+ MLp-->Lp

in all of these logics, possibility and necessity are duals; that is, in all of them *Lp" is provably
equivalent to "-M-p* and *Mp*® to "-L-p®. Thus they can all be with only one primitive modal operator

{ "M or L7)--1ts dual ('L or "M, respectively) being introduced by definitional abbreviation.

Just to confuse the reader, I shall spend a little time on alternative systems of nomenclature for
maodal systems.  Fiest, and least annoying, T is also referred to as Af  Now then, look at the
characterization of, say, M. (Just testing.) Afis presented as K plus one axiom schema. That schema is
also often referred to as T--though never, I think, as M. Thus T, the system, just is K + T. the schema.
This particular annoyance, or variants of it, recurs. The schema, which when added to K + T yields 5.
i~ called 4: that. which when added to K + T yields B, is B. Finally, the S5 schema is E. The scorecard
looks likes this:

T = K+T

3 S{= K+T+ 4
'3.:.
- B =K+T+B
F
i §5= KN +T+E

N

b7 In the remainder of this paper. | shall adhere to the conventions manifested on the right hand side of
- these equations; thus, [ shall be looking at systems that are presented as i + X. X the unknown.
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To return to the main line: these four standard modal logics were meant to formalize different
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2. ON A XIOMATIZING KNOWLEDGE AND BELIEF >

conceptions of necessity and possibility. They were not meant to cast any light on the notions of

)

knowledge or belief--or on different conceptions of knowledge or belief. Indeed, what a priori reason is

there to believe that any of these standard logics of necessity are appropriate logics of knowledge or
belief” Whatever the answer to that, Hintikka [Hintikka 62| gave people lots of reasons a posteriori to

think that (1) A + 4 was an appropriate logic for knowledge and (2) K + E was an approriate logic for

ORI | T)

belief. (Note: K + E = S5- T. This is sometimes called *weak S5.7)°

The response to Hintikka's work was quite stunning-as these things go; and as they went, no one
paid much mind to the logic of belief. The focus was squarely on knowledge~to philosophers, at any rate,
the more interesting and more discussed notion. Many attempts at conceptual analysis of the notion of
knowledge had been made: none had met with exactly universal acceptance. So why not go Lewis's route:

don’t analyze, axiomatize’? Especially now!!

Why especially now?? Because in the interim (1918 to 1962}, logicians had come up with model-
theoretic taols for a variety of modal logics—-including our four standard ones. (It was a number of years
before it was clear how wide a variety this was.) Further on, we shall ook at the main ingredients of the
now standard model theoretic treatment; for now, it suffices to note its very existence and to note that its

existence plaved a large part in the excitement surrounding Hintikka's work.®

Stil. there was trouble in the new paradise. It came in two quite independent forms. First, there
was the problem of logical omniscience, so-called. Then, there were problems about introspection. As for
the first prohlem: it is easy to prove that K by itself--with 'K" substituted for 'L’, of course--guarantees
both that every eclassical tautology is known and that knowledge is closed under classical tautologic:l

consequence. The latter means that if S' follows tautologoulsy from S and if it is known that S, then it is

“The sharp-vj -1 rador naght have guessed that there were more notational headaches ahead However it rame to be
that 'L’ got associated with "it is necessary that® and 'M’ with "it is possible that". it was only to be expected that 'K’
would be u-ed for *it s known that® and ‘B’ for “it is believed that®. But now "K' stands for both an axiomatic <ystem and
a modal operator: "B, for a modal system, an axiom schema, and a modal operator. Context, together with my convention
of ttalicizing =y.tem names and boldfacing schema names, will disambiguate. By the way, I trust that it is clear that
knowledge ('K’) and beliel ('B’) are not duals. From *it is not believed that it is not the case that p". "it is known that p*

Joes not follow: nor vice versa. Nor should one infer from "it is not the rase that it is known that it is not the rase that p"
to "it is believed that p*; or vice versa.

More fabulating: Hintikka's original work was not done within the 'hen new model thearetic framework; the <o nantic®

machinery wa~. rather. syntactic and proofl-theoretic. In later versions, Hintikka did adopt the new <tandard.




it
e R

st

PR R TR I

known that 5°.7 Idealization is fine, indeed necessary in any science; but surely this is going too far with a

fine thing.

The second set of problems had to with what one should add to K + T for knowledge or to plain
old A" for behel. (Remember that, sad to say, we can’t allow curselves T for belief.) Hintikka spends a
good deal of time arguing for the inclusion of 4, at least for knowledge. Many thought that this was too
strong a requirement. He also argued against the inclusion, again for knowledge, of B and E. Here the
consensus was with him. Questions were raised about belief as well. Could one believe that p without
believing that one believed that p? That is, should one add 4 to K? Could one not believe that p without

believing that one did not believe that p? That is. should one add E to K?°

"R oguarantee:s mores of S is any theorem of K--it nend not he a classical tautology-- then it is known that S: thi- st

what he rale of nececcration yields.  Mutatis mutandis for closure under consequence; think of it as closure under
Novopew piencee

A werd in explanation of the grotesqueries of logician's English. "Scott doesn’t helieve that p* 15 ambignous. !t car he
anderstood 1o mean that Scott--for whom, see below--helieves that not-p or to mean simply that it is not the cawe that b
believes that pooseort might not have any fixed opinion as to whether p. In what follows, it is crucial that theee two
readings be Jdi-tinguished: the ugly way, deploying negation only as a sentence-level operator in the guise it is not the case
that®, is the way for me. To make matters worse, 1 refuse to countenance any natural dual for either “knows" ar “belicves".
stther "R or "M It is nice that "necessarily® and "possibly® are (arguably) lexicalized duals: thus, we den't have to keep
writing down things like "it is not the case that it is necessary that it is not the case that.®. We can write instead "it i«
pussible that.® But not only aren’t "knows® and "believes® duals, neither has a natural, lexical dual. So there will be lots
f ugly things like it 1x not the case that Scott belirves that it is not the case that Scott believes that Scott believes that
B oSorry




3. INTRODUCING SCOTT AND KIMBERLY

To fix ideas, let's imagine a subject. To fix our perhaps sexist imaginations, let's imagine two )
subjects, Scott and Nimberly. So, in what follows 'K’ is to be read as "Scott (Kimberly) knows that. .* ;
and 'B’, as "Kimberly (Scott) believes that...®* The formalisms | will be discussing are all of the single
subject variety. | shall have nothing to say about the multisubject versions being studied by researchers in
theoretical computer science interested in distributed systems [Halpern and Moses 84].g ,ﬁ

i
:q
Scott and Nunberly are, of course, terrifically bright; but are they logically omniscient? Why not "
4

make their mommies and daddies happy by assuming that they are. This decision also makes me happy:
for a mixture of tactical and technical reasons, I think it useful to retain K as our base theory. For

alternatives to this. see [Fagin and Halpern 85).

In any case. unrestricted necessitation is out for any applied epistemic or doxastic logic. Imagine
that we are interested in some set of putative facts and in what Kimberly knows/believes about them.
One such fact might be that South San Francisco calls itself "The Industrial City." We add a sentence
exptessing that fact as an axiom in an applied modal logic; but, we don't want to apply necessitation. We
don't want to infer, that is, that Kimberly knows/believes that south San Francisco calls itself *The
Industriaf City * MWhat does a classy kid like Kimberly care about a place like South San Francisco? We
shall have to simply add particular axioms about what Kimberly does (or does not) know/believe about

the sttuation in question; or, better, those facts are part of the situation in question.

The worries about introspection are horses of another color. It is those that [ am going to try to
honor  One erucial consideration here is sociological. Yuppies simply are not very introspective; they're
much too busy networking and consuming to be self-reflecting. The pale cast of introsection surely gets in
the way of having good, trendy, expensive fun; one can’t get all there is out of driving one's BMW if one

i< paying attention to one’s own thought processes--as opposed to the impression one is making on others

of one’s Kind, ete  ete. Another consideration is a fondness on my part for weak noncommittal systems to

"
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which one ean add strength--and bold committments—-as one one wishes.
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single ubjeet apistemic/doxastic logies will have two unary modal operatars, ‘"K', 'B', each with a subseript suppressed
but beth fixed and nnderstood. That is, one is to fix a subject, say Seott, and read 'K™ as "Seott knows that..® Of course, if

- .
P

sne assumes--as |shall--that all Yuppies are in the relevant respects indistinguishahle, ane can imagine onesell working with
a - hematic modal operator, an operator whose subseript is a schematic letter whose ubstitution instances are singular
terms for Yappie<: e.g. names like "Scott,® "Kimberly*--not e.g., *Harvey * *Alice "
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= 4. ON KNOWLEDGE.
: As noted above, Hintikka argued strenuously for the epistemic version of 4: the thesis that if one
:t::" knows. one knows that one knows. People attacked this position; Hintikka relented, as well he should
have. Most of the bad arguments for skepticism—that is, most of the arguments--have turned on tricking
o the ingenuous into accepting the thesis that if one knows, one knows that one knows and then arguing
\“ that one doesn’t know that one knows. Let us suppose that knowledge requires either justification on the
:_‘:E knower's part or a "proper" etiology for the belief, e.g. a suitable placement on the knower’s part with
':.! respect to the fact known (e.g., standing in the right kind of causal relation to it).lo Surely either of these
requirements can be met without the knower's knowing that they're met. Indeed, surely we might
_' sometimes be argued into accepting unreasonably high standards on knowing--so high that though we
‘ know. we not nnly don’t know that we know, we actually believe (falsely) that we don't know. Of course,
:, if we're sufficiently gullible, such arguments might even get in the way of the controverted heliefl (our
v knowledge of which was in question), so that we cease to know that p because we have (foolishly) ceased
:—. to believe it.
N For Hintikka's original epistemic logic we can prove that the addition of the axiom schema 4 is
b equipollent with the addition of the following rule of inference:
-
: RKK: If I-(Kp --> q), then 1-(Kp --> Kq)
2 .
L . For one direction of the proof of equipollence; we have 1-(KKp --> p) (by T), whence by RKK., we
- have 1-(INp --> Kp). whence, by RKK yet again, I-{(Kp ~> KKp). (The other direction is left as an
exercise for the reader.) Imagine that whether Scott knows that p is up for grabs, and let q be any old
sentence the truth of which is sufficient for the falsity of the claim that Scott does know that p. Now
reason contrapositively and apply RKK. To wit;
-':;_'_- (q --> -Kp); so (Kp --> -q), so--by RKK--(Kp --> K-q)
"- This may seemn innocuous: but it isn't. In order to know that p, poor Scott must know the falsity of
N anything whose truth rules out his knowing that p. This is precisely the sceptic’s trick. Get someone to
' aceept this requirement, and it won't be hard to get that same someone to doubt that anvone knows
"“' anything.  For the requirement certainly seems to amount to this: if Scott does know that p. then he
3

10... . . . . .
This supposition encompasses the supposition that knowledge is not just true belief. Much of the recent Al and
somputer seiencee literature secms to suppose that wnowledge is just true beliel. But it isn't.

P e B I
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knows the falsity of anything whose truth would rule out his knowing that p. We might say, then, that
Scott, in knowing that p, must be in a position to disregard all further evidence with respect to--ie., in a
position to rule out any and all counterpossibilities. But Scott is almost never in a position to disregard

all further evidence: so Scott almost never knows anything.

Now all this may be an abuse of the thesis that if one knows, one knows that one knows. (Though |
should note that the argument just given is used by Hintikka himself in his--somewhat reluctant--
recantation of the axiom. See [Hintikka 70| Still, I see no reason to accept the thesis. Indeed, | see no
reason to accept even the claim that if one knows one believes that one knows. If one does believe that
one knows that p, one might be said to be certain that p. At least, that is how the philosopher G. E.
Moore characterized certainty. Provisionally accepting this characterization, [ want to say that one can

know that p without being certain that p.

Hintikka also spent time arguing against the epistemic version of B:

(-K-Kp --> p)

This says that if it is not the case that Kimberly knows that it is not the case that Kimberly knows
that p. then p. This is truly bizarre; a little "introspective ignorance* on Kimberly's part about the scope
and limits of her knowledge is going an awful long way. (I suppose her parents--dabbling in epistemic
logic--might look favorably on this schema; but surely cooler heads would ultimately prevail.) Ruling out

B. while accepting K + T, as Hintikka does, provably rules out accepting the epistemic version of E:

(-K-Kp --> Kp)

That's no great price to pay since the epistemic version of E seems wildly too strong. (Thus, by
stmple transformations, this yields that if one does not know that p, then one knows that one does not

know that p. Would that life were so neat!)

One last word about knowledge and the so-called introspective axioms. [ noted in passing that
knowledge certainly seems to be more than just true belief. In particular, it seems to require that the
belief be justified or that it (and the believer?) stand in some special--perhaps causal--relation to the fact.
Eternally controversial issues in the philosophy of knowledge lurk. Let them lurk; it suffices for my
purposes to point out that if one buys some version of the second, “causal,* account of knowledge--as |
am inchined to do--then the knowledge that one knows need not be, in any clear sense, introspective--

heyvond the bare minimum of knowing that one believes that p. if one does. Rather what one must know




to know that one knows that p is that one (or one’s mental state of believing that p) stands in the right

kind of causal relation to the fact that p. This might involve knowledge about one’s sensory apparatus, as
well as knowledge about more fully external features of the situation. But this is surely not introspective
knowledge at all. (Indeed, there are, I think, similarly external or objective readings of some versions, at

least. of the justilication story--readings which turn justification-based accounts into "causal® accounts. )

In sum: with respect to the axioms governing the *K* operator, | opt for minimality (modulo some
version--restricted or not--of “logical omniscience®). That is, [ opt for the epistemic version of A’ + T.

The modal core of our epistemic logic is just the modal core of K:

I: K(p--> q) --> (Kp --> Kq)

R2': If l-p, then I-Kp

'An;.'_‘“‘,g acc tabl KA,
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5. ON BELIEF

As to beliel: if no one else and if no one earlier, Freud should have taught us that we don’t always
know our own minds. Indeed, we can't always believe our minds are as they, sad to say. are. We can
believe without believing that we believe; so much for the doxastic version of 4. We can also not believe
that we do not believe that p and still not believe that p. That is to say, the doxastic version of E seems

fulse:

(-B-Bp --> Bp)

Likewize the doxastic version of B, which like its epistemic counterpart seems crazed--only more so:

(-B-Bp --> p)

If Kimberly doesn’t believe that she doesn’t believe that p, then p. This is megalomania, even in

someone as spoiled as Kimberly is likely to be.

A last word on the standard “introspective® axioms for belief: it can seem as though one's beliefs
about one's own beliefs will typically be vouchsafed one by introspection. This seeming gets weaker when
one considers past--or future--beliefs of one's own. Certainly for the past, there's memory; but memory of
what? Of one’s past mental states or of one’s past actions? Thus, we often reason as follows: | must have
believed that p: for consider what I did. Independent of Freud, et al., I think there are good reasons for
doubting the extent of one’s introspective access to one's own current beliefs. Some of these reasons have
to do with the nature of the objects of belief; some, with the nature of believing as a state.!! I'm not

going to rehearse these here. Instead, | will simply present another scorecard:

AXIOMS RELATING BELIEF AND KNOWLEDGE THAT I ACCEPT
Kp --> Bp
AXIOMS RELATING BELIEF AND KNOWLEDGE THAT I DO NOT ACCEPT

Bp --> BBp

“l will return to the question of the objects of belief, albeit briefly, below.




Bp --> KBp

Kp --> BKp

Kp --> KKp
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6. ON LIMITING INTROSPECTION FOR BELIEF

So. what axioms do [ want for belief, at least for the beliefs of such as Scott and Kuuberly  Fiest,
fet me renund the reader that, however taken we may be with these Young Upwardly  Mobile
Professionals, they are not infallible. We cannot allow them the doxastic vervon of T Dp --> p We
might thongh. grant them a consistency condition--this comes in especially handy for those whose heliels
are closed under classical tautological consequence. The condition in question s that f Kunbetly believes
that p. then she does not believe that it is not the case that p. This is a doxastic version of a «chema

called D.

(D): (Bp --> -B-p)

The D" is for *deontological® or *deontology.® (More Greek.) Deontology is the study of the logic
of obhgation.  The crucial operator there is "it is obligatory that..®. [t does have a dual;  “it is
permissible that...®. Note that just as we cannot, alas, have a doxastic version of T for reasons of fallible
beliel: <0 too can we not have a deontological version--for reasons of fallible mores. But we do have it
that if it is obligatory that p, then it is permissible that p. That is, if it is obligatory that p, then it is not
obligatory that it not be the case that p. This last is just D. So D is oft regarded as the characteristic
deontological axiom. It is, of course, obvious that D is a theorem of ¥ + T. is T a theorem of A + D?
We must hope not, for then by granting consistency, we will let in the unacceptable infallibility. How can

one tell?

There is one sure way to tell that something 13 a theorem of a given system--prove it within the
system. In general. only infinite patience will avail if one wants, obversely, to show of a sentence that is
not a theotem of some system that it is not. Even for decidable systems--and all the logics 1 will be

discussing here are decidable—"direct® proofs of nontheoremhood are really out.

8.1. Model Theory of Intensional Logics

Model theory to the rescue! The model theory of modal logies is good for at least two things: (1)
proving in the semantic metatheory that such-and-such is a theorem of so-and-so and (2) proving in the
metatheory that such-and-such other thing is not. Logicians, generally, aren’t sufficiently silly as to want
to work within a given formal system; they prefer to work on the outside, using whatever tools are
appropriate, to prove things about the formal system. This is what Kripke et al. allowed logicians to do
with respect to modal logics. The key to Kripke's analysis lies in the introduction of modal models; triples
<S, R, v> where S is any nonempty set, R is a relation on S, i.e. a subset of S X S, and v is a value

assignment meeting standard conditions for standard sentences and the following condition for modal
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-‘ sentences. Using 'L’ now as the strong, necessity-style operator and, the redundant but useful, "M’ as its -
3 dual:

N

::«‘: L: For any #ff. p, and any s in S, v(Lp, s} =T

o if v(p, s') =T for every s’ in S s.t. sRs’;

n othervise v(Lp, s} = F.

‘f M: For any wff. p and any s in S, v(Mp, s) =T

e if there is at least one s’ in S such that sRs’ and such that v(p, s')

= T;

othervise v(Mp, s) = F.

- So the necessity operator is akin to the universal quantifier; its dual, the possibility operator. akin to

the existential quantilier. R enters the above as a parameter--as does S, for that matter. What INripke, et

.N
+ "
L

al.  showed was that one could ring changes in the nature of R and thereby yield maodal models -4
K- appropriate to different modal logics. One way to think about this is to ignore the value assignments and
N . . . . . . . .
e think of doples: €S, R>. S and R as before. Call such things frames, and go on like this: a formula is

valid on a frame just in case it is valid in every model based on that frame--letting v vary. Finally, say

o - 1} NN

that a madal system is characterized by a class of frames if all and only its theorems are valid on every
frame in that class. Voila, different modal systems are characterized by different classes of frames, the

difference residing precisely in the conditions on R

J
o Now. as to why K is called the minimal normal modal logic. Simple, A imposes no restrictions on
A
- R at all--not even that it be nonempty. So much for minimality. As for normality; here, it's what's not
L) R . .
s in S, as opposed to the nature of R, that counts. Call a subset Q of S nonnormal if for every q in Q,
", every wif. p. and every v, v(Mp, q) = T and v(Lp, q) = F.If Q is empty, then S is normal. At
. .
S 28, fore getting down to some cases, I should bring to the reader's attention my use of the letter 'S’, in place of 'W', The ‘}
foregoing <tory is often glossed as follows: let S be a set of possible worlds, and It a relation of relative accessibility between 1
. worlds  Neeessity s truth in all accessible possible worlds; possibility, truth in at at least one. This gloss is just that: the -4
o heuristic of thinking of the members of S as possible worlds is, of course, no part of the formal development. Worse, it can _,1
' be seriously misleading. Don't, dear reader, let it mislead you. In (almost) the immortal worlds of Brendan Behan: i
A Don’t muck about 3
SR
. Don't muck about
(L
s Don't muck about
K-
"%
R with
e
'/:' Pogsible worlda
o
. For an alternative semantic picture, see [Fagin and Vardi 85].
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nonnornal *indices® or "points of evaluation® (each much more appropriately neutral than "possible
y S . L .
. world"). anything is possible and nothing is necessary. Sounds like fun.'®
Restricting ourselves to extensions of K, we can speak either of the characteristic condition on R
associated with a given schema X or of that associated with the system that consists of ' + X. ! +hull

speak in the former mode. So here's another scorecard:

I Y SISO RORTTRge

s SCHEMA CONDITION ON R p
o T (s)(s R s) )
reflezivity !
T 1 (s.t, W(SRt&tRu-->sRu R
- transitivity i
o ,-.1
B (s.t)(sRt --> t R s) 1
" symmetry
3 E (s, t, W(sRt&sRu--->tRu

Euclidean condition

o x -
PR A Y
P

FaN

o

(s)(Et) (s R t)
seriality

It is now obvious that if R is reflexive it is serial and just as obvious that R can be serial without
being reflexive. So, K + T yields D; but A + D does not yield T. We're safe; Scott and Kimberly can

be logieally omniscient and consistent, at least with respect to their beliefs, without being infallible.

4

N

68.2. Some Applications.

3 Now that we have some tools at our disposal, there are other conditions we might want to consider.
"._" Scott and Kimberly, after all, think mighty highly of themselves; perhaps, although they are not infallible,
- they think they are. One expression of this unseemly immodesty--nay, arrogance--is U:

o U:  (B(Bp --> p))

o

~T We shall reject U. To give it its model theoretic due; there corresponds the following nameless

- characteristic condition on R:

";- lsNonnormai worlds--frames containing such--enter into the semantics of Lewis's St - S&-the differences among these

being correlated with differences in the accessibilit: relationship. No one has ever taken these systems very serioulsy as
-2 logics of necessity and possibility. Of course, if | may remind the reader of the fabulous nature of the fable with which 1

.:4" began. thev were not meant to be such. I should also note that frames with *impossible® possible worlds have been looked
'.j to for a way of handling, within modal logic. the problems of logical omniscience. 1 will have nothing to say about such

. attempts in this essay. See [Hintikka 75].

k.-
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(s,t)(sRt-->tRt)

One can show that D and U are independent. To show that D does not yield U. consider the

following frame:

S = (s, t} R = {<s, t>, <, s>}

Here R s <erial, but not U-ish. (Does it look U-ish?) To get a frame which satisfies U but not D s

but a moment’s work:

S = {s, t} R = {<s,s>}

Note that this frame is not reflerive, that is, not T-ish. So, D and U are independent and both are

weaher than T. Indeed, N + D + U is a system strictly weaker than iK' + T, for note the following:

S = {s, t} R = {<s, t>, <t, t>}

8.3. A Few Dozastic Paradozes

Before leaving U behind, | should note the connection between it and the so-called *Puradox of the '-f‘
Preface ® U, as noted, is too much; not even Scott and Kimberly believe they are infallible. So, both )
Scott and Kimberly believe that one of their beliefs is false. But then not all of their beliefs could he true. a

o
-

Tuke Seott. He's a reasonable fellow, as Yuppies go. lle believes that at least one of his beliefs is -
fal<e. That 1. not only does he not conform to the self-regarding standards of U; he positively repudiates :j:
<ame. Now etther this belief in his own fallibility--call it non-U--is false or not. If it is falze, then at least .
one of i~ betiefs 15 false--viz. non-U; so non-U is true. And, of course, il non-U is true, then at least '4;

one of his {other) beliefs s false. So whether non-U is true or false; it is true. So Scott’s belief that at

least one his beliefs is false must be true; so at least one of his beliefs is false. non-U is fated to be true.

Let's go more slowly here. Let's assume that the “range* of non-U does not include non-U itself.
Tt is, Scott believes that at least one of his beliefs other than non-U is false. Suppose, lor simplicity's
sake, that Scott has finitely ma-v other such beliefs: p. q, r....Suppose, further, that Scotts’s beliels are
closed under (finite) adjunction. (This, by my lights, is likely to be a wild supposition; in general, the
supposition of unrestricted adjunction—~for any attitude—is an extremely dubious one. This is one reason
for being dubious about K.) Scott, then, believes the conjunction of p with q with r...But he also believes

non-U; th'«< is to believe: either not-p or not-q or not-r or... But these two beliefs are inconsistent. Neither
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(, . one of them is non-U: at least one must be false; so non-U is true. Of course, although the second [ the
™ two beliels--the disjunction of the negations of the ccujuncts of the first-—-is not itself non-U, it records—in
N the context of the finitely many other beliefs conjoined in the first—the effect of believing non-U.!*
-
Sy
.‘.N
X The ~ituation is even more baroque if we put non-U back into the pot of Scott’s beliefs. Indeed, it
. is the situation as outlined two paragraphs ago. The supposition that non-U is not true leads
%
_‘.. immediately to the conclusion that it is true. But we needn’t stop there. Return to the troublesome case
where all of Scott’s other beliefs are true. If non-U cannot but be true, then it is true. But then all
Co . . - . ! . . |
o Seott’s beliels are true, after all. But then non-U is faise, alter all. Something is wrong somewhere.
L
1S Whit seems to be wrong is that Scott, no matter how hard he tries, can’t successfully believe-either !

truly or falsely--that at least one of his beliefs is false unless one of his other beliefs is false.  In which

case. of course. no matter how hard he tries, Scott can't help but believe truly that at least one of his

beliefs is False--if he believes it at all.  Again if Scott were ever successfully to believe the firsf-prreon

version of the negation of non-U, then that belief would be guaranteed to be true. The first-person

version of U is a bit much--even for Scott; the third person version, a bit much even for his parents. The
third percon-ver-ion of non-U seems just fine--surely it is not the case that Scott helieves it if Scont

. believes that p. then p. Finally, the first-person version just cannot be falsely believed.'”

So much for U, There is another paradox about: to wit, Moore's paradox. {Arguably the first

:, - pragmatic puradox to be remarked upon.} Let’s pick on Kimberly this time. Kimberly. poor lass, has
-‘.;‘
o false beliefs. <o we will have occasion to say such things as:

Wimberly believes that p; but it s not the case the p.

Moreover. Kimberly is not omnidoxastic; there are truths she simply does not believe. (I will speak
of the trait of believing all the truths there are as omnidorasticity.) So we will have occasion to say such

things as:

p: but Kimberly doesn 't belicve that p.

Kimberly, moreover, believes that she has false beliefs--if you don’t believe me, advert to the above

and ask Seott. But, notice how odd it would be for her to say:

M chudder with this talk of conjoining and disjoining beliefs; still, it’s a convenient shorthand -- but for what?

12This discussion of the Paradox of the Preface is just a retelling of a tale told, in Polish notation, by A.N. Prior. [Prior :
71.] The Paradox was first noticed by D.C. Makinson.
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I believe that p; but it 3 not the case the p.

[t is perhaps odder even for her to come out with the first-person denial of omnidoxasticity:

p, but I don't believe that p.

(i E. Moaore first pointed out the paradoxical character of the first-person versions of what, in

B e

third-person forms. are completely innocuous things to say. [ have said that the schematic letters that

e vy

come with of our ‘B and 'K’ operators were to have singular terms for subjects as substutition instances.

"1* is such a <ingular term, but a very special one. Note that even if your name were Kimberly--and you

were alone in being so named--it could be perfectly nonparadoxical for you to say: .

p, but Kimberly doesn't believe that p.

You mught. after all, not know your own name, might not--in this sense--know who vou are
Without goimng much more deeply into problems about indexicals and guasi-indexicals, we cannot really wo
very deeply into Moore's Paradox; so, in what follows, [ am going to be playing a little fust and loose. |
am zoing to assume that Scott knows who he is, at least in so far as he knows that he is (the one and
only) scoit--the one and only person named 'Scott’, mutatis mutandis for Kimberly. [In this respect, |

follow Hintikka's lead.

8.4. Moore’s Paradox and the Schema Y

To return to the main line, the key here is the following schema:

(p & -Bp)

\We cannot rule it out by ruling in its denial:

-(p & -Bp)

foe that 1s equivalent to the wholly unacceptable O:

(p --> Bp) omnidorasticity
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-3 Note that the negation of our version of "I believe that p; but it is not the case that p”. is the
x N
b equally unacceptable infallibity axiom T: (Bp -~> p).

"t 4

What we want to rule in is

o
L

(A
hee (-B(p & -Bp))
S5
28
B0y

)

- It is not the ease that Scott believes both that p and that it's not the case that he {Scott) believes
.. that p. This s equivalent to:

v

% (-B-(p --> Bp))

[t is not the ease that Scott believes that it is not the case that if p, then Scott believes that
. p. That i~ thongh Seott does not believe in his own omnidoxasticity, it is not the case that he believes
- that it s not the case that he is omnidoxastic. Another perspective on this dark saying is vouchsafed us
AL by distributing *B* over *&" in the earlier version:

ok (0" (-(Bp & B-Bp))

J
= froi< not hoth the ease that Scott believes that p and that he believes that it is not the case that he
) belteves that p

This Iast raises the question of U ~gain. [ have simply assumed that Scott does not believe he s
‘.' mfallible. So we do not aceept

b (U): (B(Bp --> p))
DBut we can deny that Scott helieves the negation of the infallibility schema. We ean allow

T (-B-(Bp --> p))

« ¥

i

This 15 equivalent to

l“,.
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(-B(Bp & -p)) ™
[t is not the case that Scott believes both that he believes p and that it is not the case that p. Or "
-
distrnibuting "B" over "&*: s
-
(U):  (-(BBp & -Bp)) 1
-
It 15 not the case both that Scott believes that he believes p and it is not the case that he believes ;—4
p. .

Perhaps the basic drift is now clear. I do not want to buy the standard "axioms of introspection®;

not even for belief. Rather, the logic of belief I am proposing is generated by the intuition that what

one wants s that one’s subjects--Scott, Kimberly--not be stuck with certain kinds of false introspective
beliefs. So. 1 propose that they not make certain kinds of mistaken self-acsriptions of belief; thus, that
they not both helieve that p and believe that they do not believe that p. Again, they should not both not
believe that p and believe that they believe that p. To grant this freedom from error is already a generous
gesture of <dealization on my part; but, of course anyone as blithely unconcerned with “logical
omniscience” as | cannot blanch at idealizing. Still, it is 2 much weaker form of idealization than

guarantecing oodles of true self-ascriptive beliefs. Yuppies, remember, don't introspect much.'®

The key idea in the above might be put as follows: take a controversial schema and deny that Scott
ot Nimberly believes its negation. This is exactly how we got O' from the omnidoxastic schema O: and
U’ lrom the obnoxiously self-satisfied U. Let's apply this algorithm to the doxastic versons of both 4 and

1< converse the unnamed

(BBp --> Bp)

Let < name this C4, for the converse of 4. This is not to be confused with U, (Though it i~ entaded

by 1t does not entail. U, ) What we get, after the standard transmognilications, are 4' and C4'
> g g

(4'): (-B(Bp & -BBp)) oy
‘ m()f course. <cmie true <elf-ascriptions creep in with the logic, with A itself. For instance, by R2: I-{p > pi, <o 1 Bip .
*. > poo BtBp --> prlo Vuila, intrespection! But nothing to write home about, -




i
18 -
b (C4e'): (-B(BBp & -Bp))
L ,
~ And. if one thought it more perspicuous: 2
~ \
A \
. (4): (-(BBp & B-BBp)) '
(C4): (-(BBBp & B-Bp)) -
- Yuppies may not be introspective; but they are confident--even about the rare introspective beliefs
- they may entertain.  Although it is not the case that if one believes that p, then one believes that one
helieves that p, neither is it the case that one believes both that one believes that one believes that p and
yet does not real.v believe that p. (That was 4°,in case you couldn’t guess.) Moreover, it isn't even true
that if one believes that one believes that p, then one does believe that p. But it is true that one doesn’t
believe hoth that one believes that one believes that p and yet that one doesn’t believe that p. (That's
4 Cc4)
) Let’s look back at Q°, the one prize we captured from our perusal of Moore's Paradox:
(0): (-(Bp & B-Bp))
- This is equivalent to
(-B(p & -Bp))
s which 1~ in turn, equivalent to
1y
- (Y): (Bp --> -B-Bp)
- Il Kitmberly believes that p. then it is not the case that she believes that it is not the ease that she
believes that p; more colloquially: if she believes that p, then she doesn’t believe that she doesn’t helieve
) that p. Nota bene: no real introspection is required; rather, what is being ruled out is that Kimberly have
) certain kinds of False introspective beliefs 17
. ~
, K
":: lTThf‘ contrapo~itive of Y iz (B-Bp --> -Bp). If Kimberly has any positive introspective belief to the offet thar -4 .
:_' dees not believe that p. then she does not believe that p. Note the asymmetry here between negative and po-cin.
-:‘ introspective helief<. Az Achilles zaid to the Tartoize, *That's Classical Logic”.
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If we add this schema, which we have dubbed Y for the obvious reason, we have a modal system

that will yield all of D, U’, 4°, C4’, and none of O, U, 4, or C4.'8

8.5. More on Y

Y is, of course, the doxastic version of the nameless (Lp --> MLp). This latter is just an instance
of (p --> Mp), which is a fairly basic principle about possibility. Indeed it is just the other side of the
coin from T. But we don’t have T for belief; nor do we have (p --> -B-p). We have Y.

No doubt the reader is just dying to get a gander at the characterstic condition on R associated with

Y. Take a gander:

(Y): (s)Et)s Rt & fu)t Ru--> s Ruj)

That any frame which is Y-ish is eo ipso D-ish—that is, serial, is obvious. The converse does not

hold. Consider:

S = {s,t,u} R = {¢s,t>, <t,u>,<u,s>}

This is serial but not Y-ish. Thus, s R ¢ and ¢t R u; but it is not the case that s R u. Moreover, Y

does not yield U. (Remember, we don’t want it to.), thus:

S = {s,t,u} R = {<s,t>,<t,u>,<8,u>,<u,u>}

Note that though s R ¢, it is not the case that ¢ R ¢. [ndeed this shows that Y does not yield the

unwanted T.

"!NOTA BLNE: Craig Harrison, in a discussion of the paradox of the unanticipated examination, has argued for a
mordal logir of brlief much like the one proposed here. See [Harrison 80]. Actually, his proffered alternative is weaker; it is
esentially K+ 1), But he, too, considers the schema I have called Y. Moreover, he, too, adduces Moore's Paradox as, at
the very least, a consideration . The history here is complicated. The work on what is now Yuppiclogic began almost fifteen
vears ago. after llarrison’s paper appeared. When | began the work, ! hadn't yet read Harrison'’s paper. Indecd, | wasn't
thinking about the paradox of the surprise exam at all. Then, as in the present essay, | ignored all issues of time anid its
passage; then, as in the present essay, the considerations for and against various principles had their source in Moore's
Paradox, (to a lesser extent) the Paradox of the Preface, and general epistemological considerations. In fact, 1 think
Harrison's treatment of the unanticipated or suprise exam extremely interesting, but--in the end--inadequate. He bases too
much on a rejection of the theses that if one knows/believes, one knows/believes that one daes. I, too, reject those. though
not simply (or at all) because that decision allows one to hold that the set up in the surprise exam puzzle is a consistent one.
Though Harrison treats of time indexed epistemic and doxastic operators, he doesn't do enough with them. Joersn't say
enough ahour the principles that should govern them. lIn any event, | hope to address the ixsues raised by that paradox in
the future. Still, | don't want it thought that the idea of looking at intensional logics for helief and knowledge which extend
K but not as far as any of the standard logics of necessity do, is either unique with, or original to, me. Harri-on. and no
doubt others, including Binkley [Binkley 68]. got there first.
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v As to (BBp --> Bp): Its characteristic condition is as follows:

oy (BBp --> Bp) (st)fs Rt -> 3 R%t)
':';:

o

So consider the frame:

st S = (s,t,u} R = {«s,t>,<t,u>,<s,u>,<u,u>}

Here, = R t; but it is not the case that 3 R%t. That is, there does not exist ans', s.t. s Rs' & s'R ¢t.

- Finally, as to 4, (Bp --> BBp):

S = {s,t,u} R = {<s,s>,<t,t>,<u,u>,<s,t>,<t,ud>}
Y
-'.:’_ 2 Rt and t R u: but it is not the case that 3 R u. (This particular frame is reflexive; but, of course,
' . not all Y-ish frames nced be.)
_"\-::" [ assume. by the way, that it's obvious that Y yields neither B nor E nor O. The characterstic
'. condition of this last is: (s,t)fs Rt --> 3 =)
¥ So much for the crucial negative results. Let's think positively. We've already noted that Y--that
) . . . . . . -
P is. ' + Y--vields D. Y yields O', because it is O'. There are fairly straightforward direct proofs in K +
-. "
I Y of U’. C4' and 4''*
p "
ﬂ::: The reader may well wonder about the results of applying the above treatment to B and E. That
is. what about the schemata that result by negating the believability--for such as Scott and Kimberly—of
oy _ . : .
™~ their negations? The resulting schemata are, in order, B":

(-B(-B-Bp & -p))

(-(B-B-Bp & B-p))

mRaLher than bore the reader to tears with such proofs, I'll give hints for their construction. To prove U’ simply
substitute "‘Bp’ for 'p' in Y; to get 4’ from U’ is the work of but a moment, making use of the same substitution pattern as
hefore--'Bp’ for 'p’. Finally. to get C4": use axiom scheme Il of K on D, put the result of that together with Y. and Voula.
C4'.
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and E":

or:

These are sufficiently opaque as to not be worth much worry; but, in fact, they are both theorem

schemata of K + Y.%°

21

(-B(-B-Bp & -Bp))

(-(B-B-Bp & B-Bp))

20 .. .
Proofs left as nontrivial exercises for the reader.
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7. SUMMING UP

It is time both to sum up and attempt, at least, to see YUPPIELOGIC from a proper perspective.
Any “*logic* of knowledge and belief will have to be based on idealizations. There are, at least, two
orthogonal dimensions along which to idealize. One dimension is that of the the logical competence of the
subject knowers/believers. The other is that of the degree to which the subjects have knowledge of or
beliefs about their own knowledge and beliefs. In this essay, I have decided to idealize quite recklessly
along the first ditnension. | have, of course, allowed idealization along the second as well, but much less
than the norm. The guiding intuition all along has been that, with respect to their attributions to
themselves of knowledge and especially belief, the axiomatization should guarantee our subjects against
certain kinds of epistemic/doxastic grief—-not that it should guarantee them all manner of
epistemic/dorastic success. Imagine a subject whose beliefs conform to our account. Such a subject will
be under no pressure to change her beliefs about her beliefs-—-no pressure, that is, stemming from
conflicts Ortiwren what she believes about what she believes and what she actually belicves. 1 assume, of
course, that falling short of "introspective omniscience” by ltself generates no pressure, and no such

conflicts.

Let's return once again to O and O' (= Y). O is a completely gencral schema to the effect,

roughly. that our subject--Kimberly, say— believes every true proposition. This is obviously bonkers. We
allowed, however, that Kimberly does not believe the negation of O. This yielded O', and O’ simply
denies that Kimberly believes things and also believes that she doesn’t belicve those things. [t denies that
Kimberly is subject to a certain kind of error of self-attribution--one might say the basic kind of such
error. Note that by necessitation, Kimberly will of course believe that she is not thus subject to that kind
of error.  That is. she will believe, not that she has any real talent for dexastic self-attribution or
introspection. but that she doesn't go around believing that she doesn't believe things she actually does

believe.

Another way to see what’s going on is to go farther than I have so far in intermixing belief and
knowledge. At the moment the only two-operator schema I allow is to the innocuous effect that
knowledge requires belief. In passing I mentioned Hintikka's argument against the epistemic version of B.
B is sufficiently bizarre that one should not require even Scott to believe it; but what if we try out our

trick on it? What about:

(-B-(-K-Kp --> p)) 7

What indeed? Let's transmogrily, using our recipe:
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(-B(-K-Kp & -p))

It is not the case that Scott believes both not-p and that he does not know that he doesn't know
that p. If he knew that p, he would not believe that not-p. (By D and the requirement that knowledge
involves belief.) Of course, if he knew that he didn’t know that p, he might very well believe that not-p.
(Or not: he might be open-minded, have no opinion, with resppect to the question.) If he doesn’t know
that he doesn’t know that p, he might still believe that not-p. After all, he just might not know that p, for
instance. because he doesn't believe that p, but not know that he doesn't know it--for instance because he
doesn’t believe that he doesn't believe it. But if he were to believe that he doesn't know that he doesn’t
know that p--say, because he doesn’t know that he doesn’t believe that p--and yet still believe that not-p,
then he would have reason for concern lest he be inconsistent, or of two minds about his attitude toward p

(or its negation). And we have ruled out such worries.

Try another transform:

(-(B-K-Kp & B-p))

Either Scott doesn't believe not-p or he doesn't believe that "for all he knows®, he knows that p--
where, a la [lintikka, I'm reading '-K-q' as "for all Scott knows, q*. So, imagine Scott believes that not-p.

Then he had best not believe that for all he knows, he knows that p.

This trick works for the epistemic versions of 4 and E as well. No doubt looking at one of these will
suffice.  Let's do 4, which—in its epistemic version, of course--was the most hotly contested of the

"introspective axioms® originally proposed by Hintikka.

‘l

(-B(Kp & -KKp))

.
W h % h

Seotty <hontd not believe both he knows that p and that he doesn't know that he knows it. It is

AR

quite possible that Scotty know that p without knowing that he knows it. Remember, we reject 4. But if
he should believe that he knows that p, then it will not do to believe that he doesn't know that he knows
it. Identifying Scott’s being certain that p with his believing that he knows that p: if Scott is certain that
p. then he doesn’t believe that he doesn’t know that he knows that p. (Although, again, he really might
not know that he knows it.) He would not continye to be certain that p if he believed that he didn't know
that he knew that p. Put otherwise: being certain that p requires not believing that for all you know you

might not know that p.

4
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8. SOME FINAL SCEPTICAL REMARKS.

Now to say a word about believing and knowing--in particular about believing. Believings and
beliefs come in a wide variety of "modes*. One talks of explicit and implicit beliefs, of conscious and
unconscious beliefs, of occurrent (*active®) and dispositional beliefs. These three dimensions/dichotomies
are very likely independent, and there may be other such dimensions or dichotomies. To which of these, if
any, is our ‘B’ operator supposed to correspond? Hintikka, for instance, clearly intends his 'B' and W’
operators for what he calls "active beliel* and "active knowledge.® But he also seems to suppose that
being active involves being conscious; that is, being an active belief involves being a belief of which the
believer is conscious. Further, he argues--naturally enough--that it is only a certain mode {or modes) of
believing for which various of his principles and rules are appropriate. Thus, for instance, the doxastic
version of 4. that if one believes that p, one believes that one believes that p, holds of active, conscious

beliefs. (He thus rules out of court--he thinks--references to Freud, self-deception, and the like.)

8.1. On Belief States

I can be no more than brief here, but it seems to me that a2 much more important "dichotomy® is
that between two different conceptualizations of the role of belief. According to one conceptualization,
the main locus or arena of beliefs is in thinking that is aimed at truth, that is, in *theoretical reasoning,*
considered in abstraction from the creature's possibilities of and requirements for action.  This
conceptualization leads quite naturally to focussing on conscious beliefs, consciously arrived at, and
thereby to focussing on language using creatures who can express their belicfs, including their beliefs about
their own mental states. The other conceptualization might be called *functional*; Robert Stalnaker has
called it "pragmatic-causal*[Stalnaker 85]. Here the main arena is action; the fundamental role of beliefs
in the mental life of believers is as states that, together with desires and intentions, guide or direct or
determine behavior. Roughly, to say that a subject believes that p is to say that if the subject were to
desire that q, then he would be disposed to act in a way that would bring it about that q were it to be the
case that p. This conceptualization of beliefs is essentially dispositional; within it, being active means
playing the characteristic role of belief in an actual behavioral episode and has nothing whatsoever to do
with being conscious--let alone with being linguistically expressible. Again, within this conceptualization,

neither langnage nor language users occupy any special privilged position of interest.

[ take it that it is clear enough that a concern with *introspection® goes most naturally with the
first of these two ways of thinking about belief. This is true even if one clearly distinguishes
*introspective beliefs" from a subject’s beliefs about its own mental states. Let me now clearly distinguich
these two. The second has solely to do with the content of beliefs; a rough and ready charactenzation i~
simply this: the subject-matter of the creature's belief is about that creature’s own mental states--

including its own prescnt mental states. Even here, and even in the case of belicfs about one's awn




present mental-states, one can distinguish beliefs about one's own mental states in the "first-person mode®

and in the "third-person" mode. So, for example, I might believe that the sixth oldest researcher in .\l
believes that p, without realizing that 1 am the sixth oldest researcher in AL If so, I might be said to have
a third-person beliel about my own beliefs. In general, one can concoct examples in which a creature can
have beliefs about itself without realizing that it is the very thing at which the beliefs in question are

directed.

*Intropsective beliefs* on the other hand are beliefs about one's own mental states thal are caused
in a certain way (or ways), or which arise out of the functioning of one (or another) specific--thoazh
perhaps completely unspecified--cognitive mechanism called "inlru.\pm'(inn.“?' I one 15 thinking about
beliefs from the 'prngmatié-causnl" perspective, it's hard to get excited about “introspective belicfs®
unless one simply assumes that all beliefs that arise out of introspection are *in the first-person mode".

But, then. what's crucial about them is that latter fact not their etinlogy.

Indeed, from within the “causal-pragmatic® or "functionalist® tradition, it’'s hard to get excited

. . . 29
about epistemic/doxastic logic.””

8.2. On the Contents of Beliefs

[.et me now say a word about the objects or contents of believings: that s, about helicf~ I the
objects or contents of such mental states as believing and knowing are to be truth-valuahle--as they are
represented as being in all standard epistemic and doxastic logics, then they had best make or correspond
to or just be determinate claims upon reality. Sentences--sentences types-—-of natural languagzes precisely
do not correspond to or make such claims. Sentences--better, well formed formulae--of standard logical
languages, by tacit conventions of interpretation or of intended range of applicability. are <upposed 1o
make such determinate claims. That is, such sentences are supposed to be eternal: any statement-making
utterance of such a sentence yields the same propositional upshot, makes the same determn e clam
upon the world. (Of course, the worlds in question are typically conceived of as mathematical <tructyres,
that 1~ as consisting of eternal or timeless objects standing in cettain timeless relations amonsg
themselves ) So if we imuagine a subject whase beliefs are mediated (earried) by, as well ac being

expicessihle (n seatences of such a formal langnage, that is, if we imagine the subject’s believing that poas

21 . . o . . . . .
OF -auree given this characterization, it is really an open question whether there are any introspective belief<. 1 think

tat there are hut that the members of only very few species can have them. [ used to think that only the members of

angage u-ing  pecies could, | am now prepared to be more liberal and include those species which manifest a certain hin!
At tegeew £ ocesal op grenp organization. Unfortunately, | can’t characterize this kind or that degree; nor do 1 have any
4 Uargament as Uy the ueeessity of the alluded to condition. But then again no one has ever told me of wha! introspection
O YIRS st

TINOTA BENE from within the *pragmatic-causal® world picture, what's crucial seems to be the ®*first.per on® mode
o wif attnibation in that mode which guides action. Or, perhaps one should say that what is erucial is the relation
% the fieer person and the third-person modes of self-attribution See, ».g.. [Perry 85].
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involving the subject’s saying--to himselfl, for example—a sentence of such a language, then we might have
no trouble convincing ourselves that the content of such a subject’s beliefs are transparent, completely
accessible, to that subject. This is again precisely what we cannot imagine even if we follow this
language-involving conception of belief but think instead of our subject thinking to itsell in (u~ing)
sentences of some natural language. (In all of this, [ am assuming complete semantic competence--though.
of course, without having a complete theory of what constitutes such competence. At any rate, | am
assuming--for the sake of argument--that such competence consists, at least, in the subject’s knowing what
any sentence of his language "means®; so, in the case of a language with only eternal sentences, in
knowing for every sentence, what claim is made by that sentence--what the world would have to be like
for that sentence to be true.) If we deny that believing is essentially language involving, it i< harder <tilt

to <ce why or even how the content of a subject’s beliefs should be transparent to that subject.

Moreover, if we are working within the functionalist paradigm. we will see that--in <o far o< we ure
interested in generalizations across subjects or across time and changing circumstances--our primary
interest will be in a notion of content under which contents are not truth-valuable and do not correspond
to determinate claims upon reality. Note, well, that [ speak of "content®, not of "object: | don't think
there is a useful sense in which the meanings of non-eternal sentences are objects of belief. \We <hall. that
is, be interested in a notion of content such that (e.g.) when both Scott and Kimberly say to themselves,
*There's no milk in the fridge,* even if at different times and locations. and the [ike, the mental <tates
that such imagined sayings indicate have the same content. For if both desire to drink some milk. or even
if both desire that there be some milk in the fridge, then they would be disposed to act in such a way as
to bring it about that there would be milk in the fridge were it the case that there was as vet no milk in
the fridge. Just as the truth-valuable contents of their mental states are different, so too are the contents
{objects) of their desires, both their desires to (drink some milk) and their desires that (there be milk in
one’s fridge). Note, too, the talk of "act in such a way.®* The way or ways in question can only be
characterized at a level of abstraction or generality that cuts across the differences in the actual
circumstances of Scott and Kimberly and cuts across them in a way correlative to that in which the
sameness of their mental states cuts across the differences in the truth-valuable contents/objects of their
beliefs. Much mischief has been wrought by failure to distinguish these two different conceptions of
content [Barwise and Perry 83]. Finally and to repeat: from within the functionalist perspective. it is the
second notion of content that is crucial, or--again--the relation between the two notions. llence asain.
what interest could there be, from within such a conceptualization, in standard epistemic/doxastic logics—
formalisms which, at least standardly, take it that the proper objects of belief, within the logic, are truth-

o 2
valuable and prnposntmnal?'3

23}IPre I should remind the reader that withiu epistemic and doxastic logics. belief and knowledge don't really get teeated
as relations to propositions: that is, such logics are to be contrasted with theories--say. first or higher order theories--of the
relations in question. In the context of these intensinnal lagics, the relations are metatheoretic epiphenomena, arising out of
a particular heuristic for understanding a particular model-theoretic treatment.




27

It may be, then, that to take epistemic/doxastic logics seriously, one must both be working from
within that conceptualization of cognitive states according to which they are either essentially or
importantly language involving and, further, conceive of the language(s) in question on the model of
standard formal languages, as consisting, that is, of eternal sentences only. This could be taken as an
argument to the effect that the proper home of epistemic/doxastic logic is theoretical compu.er science--

precisely the locus of its greatest current vitality.
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Introduction

Classical planning problems have the following form: given a set of goals, a set of actions, and a
description of the initial state of the world, find a sequence of actions that will transform the world
from any state satisfying the initial-state description to one that satisfies the goal description. In
principle, a problem of this type may be solved by a very simple procedure: merely enumerate all
possible sequences of actions and test each until one is found that achieves the intended goals. By
this procedure, we will eventually find a solution if one exists. However, in practice, not only do
we want to find a solution, we wani to do so expeditiously. Quick and efficient problem solving
is desirable primarily for reasons of economy: the less time it takes to solve a problem, the more
productive one can be. Furthermore, in some situations, the time it takes can mean the difference
hetween success and failure, as is the case when the problem is part of a scholastic exam or when
the problem is to prevent meltdown in a nuclear reactor.

Previous work aimed at developing efficient planning techniques has been highly experimental
in nature, the standard methodology being to explore ideas by constructing computer programs.
For the most part,' very little theoretical analysis has been done to determine why the programs
work. when they are applicable, and whether they can be generalized to solve larger classes of
problems.

[n my thesis (8], I venture to the opposite extreme and examine the question of efficient planning
‘rom a rigorous, mathematical standpoint. My analysis is based on the premise that one of the

main impediments to efficient planning is search, and that exhaustive search can be avoided only if

1 The exceptions to this are Warren's analysis of his WARPLAN program [17] and, just recently, Chapman’s logical
reconstruction of nonlinear planning (2, 3|. Warren’s analysis is primarily concerned with proving the correctness
of WARPLAN. Chapman, on the other hand, has analyzed previous work in nonlinear planning and, on the basis
of this analysis, has constructed a program called TWEAK that is provably correct.
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2 INTRODUCTION

the problem being solved has properties that can be exploited to constrain the search. Accordingly,
my methodology has been to construct a mathematical framework in which to study planning
problems, to explore this framework for theorems that can be used to constrain the search for a
solution, and then to construct planning techniques based on the theorems found. The techniques
are described in precise, mathematical terms and are capable of solving any problem that may be
expressed in the framework, provided a solution exists. While the techniques may be implemented
in a straightforward manner, there are a number of implementational issues identified, but not
addressed, in my thesis that need to be resolved before an efficient program can be obtained.
Although we have been working independently and in parallel, my work can be viewed as
a significant extension of work resently reported by Chapman (2, 3]. While our approaches
are similar, the framework I have developed encompasses a much broader class of problems
and addresses some of the representational issues that Chapman identifies. In addition, 1 have
been able to unify many more ideas in automatic planning and show how they arise from first
principles. These ideas include not only nonlinear planning [11, 12, 15, 19], means-ends analysis
[4], and opportunistic planning [8], which are incorporated into Chapman's technique, but also
goal protection [14, 16, 17], goal regression [9, 16], constraint formulation and propagation [12],

and hierarchical planning (10, 11, 12, 15, 19).

This report is intended to provide a glimpse of my thesis research. Only about a quarter of
the topics presented in my thesis, however, are covered here. It would therefore appear advisable
at this point to summarize the topics 1 have included and those I have not.

In the next chapter, an intuitive explanation of the mathematical framework is provided and
a language introduced for describing the effects of an action. In the framework presented here,
actions are assumed to be deterministic—in the sense that performing an action transforms the
world from its current state to a uniquely determined succedent state. The synthesis techniques,

however, do not require determinism, and in my thesis | present a more general framework that

permits actions to be nondeterministic.
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; The language for describing actions is interesting in that it combines the generality of the
’.: situation calculus [7] with the notational convenience of STRIPS [5]. This allows the frame problem
:E of the situation calculus to be circumvented to the same extent that it can be done in STRIPS.
As | show in my thesis, but not in this report, any problem that can be described in the situation
”- calculus has an equivalent formulation using this language, and vice versa—with the restriction
.._‘ that the problem specification contain only a description of the initial state, a description of the

goal state, and a descritpion of the allowable actions. Also, in my thesis, I extend the syntax of

the language to enhance the parsimony of action descriptions. For example, the description of the

L i
el

|

¥. Put operator presented in Section 2.2 could be rewritten in the extended language as follows:

f? Put(p, q)

’ X PRECOND: p 5 g, p % TABLE, ¥z (=On(z.p)), [ = TABLE v Vz (- On(z, q)}]

_’ ADD: On(p,q)

- DELETE: On(p, z) for all z such that z 4 q

Chapter 2 also shows how the correctness conditions for a plan may be expressed in terms of

- regression operators, and how regression operators may be constructed from action descriptions.

: ‘ The regression equations presented here, though, tend to produce rather long formulas that may

x, often be reduced to much simpler ones. In my thesis, | show how to add simplification rules to

i

-:;: the regression equations to overcome this problem. The thesis also presents a number of theorems

o on regression operators that do not appear in this report, including a theorem that characterize~

:t;_: the Kinds of actions that may be described in the language in terms of the regression operators for
X-.
?:i those actions.

kS Chapter 3 of this report shows how a simple planning technique may be derived from a pur- o
‘?-( ticular theorem of the classical planning problems. The technique combines aspects of means-ends :1
{ .
;-S analysis, opportunistic planning, goal protection, goal regression, and constraint formulation and ‘_:3
& N
b propagation (what Stefik called constraint formulation and propagation corresponds to secondary i-
i)

-;j:'. preconditions and regression in my framework). [n my thesis, I expand the technique by incor-

f\ porating partially ordered (i.e., nonlinear) plans, instantiation variables (i.c., formal objects), and
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4 INTRODUCTION

. a variant of hierarchical plapnning in which abstract operators are constructed dynamically. These
A
Ch devices have the effect of introducing the principle of least-commitment, as they are used to defer
-.‘}' g y

..
sl . .. . . . .
R search as long as possible. In addition, in my thesis, | remove the various assumptions that are
e

incorporated into the technique presented here, such as the assumption that the initial state is

completely known.

DRI T
EEP

R
RPN
viete & & e

Ll

N

(3
PR
etea
P
v ata

>

ol
] . A
[

.
- :

L]
o

Felate
2




N

4

”~

A PESEL

v

: Ly
SRR

¥

2

Formalization

In formalizing the classical planning problems, we shall draw a distinction between a state of
the world and a description of a state. The state of the world is an abstract concept referring
to the totality of all that is true of the world and all that is false. To know the state is to be
omuiscient. A description, on the other hand, is more concrete: it is a collection of facts about
the state expressed in some language. Furthermore, a description need not be complete: certain
details might be left out, either because they are not known or because they are thought to be
unimportant. Hence, there can be more than one state satisfying a given description.

The distinction between states and state descriptions is not new. For example, the distinetion
was made by McCarthy and Hayes in developing their situation calculus {7]. The reason for
emphasizing it here is that it is crucial to the proper characterization of actions. Since actions are
assnmed to alter the world in a deterministic fashion, performing an action will transform the workl
from one state to a uniquely determined succedent state. Actions can therefore be characterized
as functions mapping states of the world into other states of the world. This is the traditional
view of actious, yet, when implementing practical planning systems, many researchers have chosen
to characterize actions as functions that map a description of one state into a description of its
successor state. In Section 2.3. we will see that there appear to be actions for which the description
of the succedent state would have to be infinite to reflect all of the state changes in their entirety.
This is unacceptable from a practical standpoint. Hence, systems that treat actions as functions
on state descriptions must necessarily limit the range of problems they can solve. None of this is

an issue, however, when actions are treated as functions on states.
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6 FORMALIZATION 2.1

2.1 FIRST-ORDER LOGIC FORMALIZATION

The formalization of states, state descriptions, and actions that will now be presented is based
on first-order logic. First-order logic was chosen because it provides a very general framework
for expressing and solving classical planning problems. In this formalization, states are identified
with algebraic structures, state descriptions with well-formed formulas, and actions with functions
on algebraic structures. An algebraic structure is a complete account of which relations hold
among which objects, and thus determines the truth value of every formula in the language.
An algebraic structure therefore corresponds to the notion of a state in that both represent the
totality of all that is true and all that is false. Well-formed formulas are used to describe facts
about algebraic structures; hence, the relationship between algebraic structures and well-formed
formulas is identical to the relationship between states and state descriptions. Consequently, it
seems natural to equate states with algebraie structures and state descriptions with well-formed
formulas. Actions become formally characterized as functions on structures as a consequence of
equating states with structures. In keeping with tradition, we will refer to actions in this framework
as operators so as to distinguish between the formal characterization of an action and the event
that actnally takes place in the “real world.”

et us consider how a planning problem would be stated, given the above formalization.
Initial-state and goal descriptions are both descriptions of states and, hence, are expressed as sets
of well-formed formulas. Thus, we will have a set of formulas I' describing the imitial state and
a set ¢/ describing the goal state. Operators are described in two parts. The first part states
the preconditions thut must be met before the operator can be applied. For example, in many
block-stacking problems, a Llock can be moved only if no other block is on top of it. Preconditions
are just state descriptions and, hence, are expressed as a set of well-formed formulas .

The second part of an operator description is a deseription of a function on algebraic struc-
tures. This function defines how the operator affects the state of the world when it is applied.
Unfortunately, there is no standard way of expressing functions on structures, as they are not an

integral part of first-order logic. An appropriate language for specifying operators must therefore




2.1 FIRST-ORDER LOGIC FORMALIZATION 7

be developed. Before considering how to construct such a language, we need to examine the notion

of a structure more closely. An algebraic structure consists of the following elements:
(1) A nonempty set {class) of objects D called the domain of the structure.

(2) An n-ary relation r on D (i.e., a set-theoretic relation with n arguments whose components

are elements of D) for every n-ary relation symbol R.
(3) An n-ary function f on D for every n-ary function symbol F.
(4) A distinguished object ¢ in D for every constant symbol C'.

The relation/function/object associated with symbol R/F /C is called the tnterpretationof R/F'[C .
As an example, suppose that we have a blocks world consisting of a TABL¢E and three blocks 4.
2. and £, where blocks A and B are resting on the TABLE and block C is stacked on top of block
A. Suppose, further, that our language for talking about this world has four constant symbols,
A, B, C, and TABLE, corresponding to the objects in the world, and one relation symbol On,
where On(z, y) means that z is on top of y. Then the structure representing this world would have
{A4,8,C, TABLEY as its domain, A as the interpretation of A, B as the interpretation of B, C as the
interpretation of C', TABLE as the interpretation of TABLE, and {(A, TABLE), (B, TABLE).(C, A)}
as the interpretation of On. Viewed semantically, z is on top of y if and only if the ordered pair
(z.y) appears in the interpretation of On.

To arrive at a practical way of specifying functions on structures, we shall place a number
of restrictions on the kinds on functions that may be defined. The first restriction is that a
function may not alter the domain of a structure. That is, if M is a structure and f is a function
on structures, then the domain of f(M) is identical to the domain of M. This restriction is of
concern only when we wish to describe the effects of an action that creates or destroys objects
in the world. An example of such an action would be the GENSYM function in LISP, which
creates new LISP atoms. The difficulty here is that the restriction prevents us from modeling the

creation and destruction of objects by adding and deleting elements of the domain. However, we
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2 FORMALIZATION 2.1

L.

can obtain the same eflect by introducing a unary relation, say U, where U/{z) is true if and only
if r “actually” exists. The domain of the structure would include all objects that could possibly R

exist; objects would be “created” and “destroyed” by modifying the interpretation of {". Note that

this is precisely how GENSYM is implemented in a real computer: GENSYM does not create LISP
atoms “out of thin air,” but rather it locates an area of unused memory and claims it for use as a
new atom. Clearly, the restriction that an operator must preserve the domain of a structure does
not affect the kinds of bchavior that may be considered; it only influences the way in which the

behavior is simulated.

The second restriction is that a function on structures may not alter the language used to .
describe the world. That is, relation, function, and constant symbols may neither be introduced nor R
eliminated by an operator. This restriction is implicit in all work done in planning to date. It has
never been stated explicitly, since it is hard to imagine a situation it which altering the language :

would make any sense. Yet, if one really wanted to, one could obtain the effect of modifying the

language by introducing relations, functions and constants as objects in the domain (axiomatic sct
theory [13] provides a convenient way of doing this) and then “creating” and “destroying” them
in a manner similar to that described in the preceding paragraph.

The motivation for this second restriction is that it allows a function on structures to be
decomposed into a collection of functions—one function for each relation symbol, function symbol,
and constant symbol. Each function in the collection defines the interpretation of the corresponding
symbol, in the succedent state, in terms of the state of the world that existed prior to the application
of the operator. In other words, if fs is the function corresponding to symbol S and if M is the

structure defining the current state of the world, then the interpretation of S in the succedent

state Is given by fs(M).
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To provide a way of specifying these functions, let us introduce our third and final restric-

:

tion: each function must be representable as a well-formed formula. That is, each function fs

corresponding to symbol S is defined by a well-formed formula g5 such that

'. - . » . .

t:--_‘ (1) For each n-ary relation symbol R. R(xy,...,z,) is true in the succedent state if and only
~.

~. if grlxzy,....1,) was true previously (where zy,...,z, are the free variables of cr)

.I




FIRST-ORDER LOGIC FORMALIZATION

(2) For each n-ary function symbol F, F(z,,...,z,) = w is true in the succedent state if and

only if zg(xy,...,2,, w) was true previously.

(3) For each constant symbol C', C = w is true in the succedent state if and only if z¢(w)

was true previously.

For example. suppose we have an operator that places block B on top of block ('. After this
operator is applied, B becomes situated on top of C and every block except B remains where it
was. Therefore, On(z, y) is true after the application of the operator if and only if (r = BAy = 3
(') V (r % B A On(z,y)) was true previously. In other words, the interpretation of On in the .3
succedent state is the set of ordered pairs (z, y) such that (z = BAy = C)V(z £ B A On{z.y)) is 1
true in the current state. If this operator were applied to the blocks world described earlier, where g
the interpretation of On was {(4, TABLE), (B, TABLE),(C, A}}, the resulting interpretation of On
would then be {{4, TABLE), (C, 4),(8, C}}. h

With the planning technique discussed later in this paper, it is important to know exactly what a
modifications an operator makes in a structure to select the appropriate operators for achieving the

intended goals. Therefore, we shall express the pgr's, @r's and p¢’s defined above in terms of other
Y 12

formulas that make the modifications explicit and then deal exclusively with these other formulas.
For relation symbols, this means expressing each g associated with an operator a in terms of two

other formulas, ag and ég, which, respectively, describe the additions to and the deletions from

the interpretation of R: if ag(2y,...,2,) is true when operator a is applied, the tuple {x,..., z,)
is added to the interpretation of R, and if ég(z,,...,z,) is true then {x,,...,z,) is deleted from
the interpretation of R. For this to make sense, ag(zy,...,2,) and ép(zy,...,z,) cannot be true

simultaneously, as we are not requiring that the additions and deletions be performed in any

particular order. Given ag and ég, R(z,,...,z,) is true after operator a is applied if and only if

ar(zy,....2a) V(- br(z1,...,2a) A R(zy,.... 23)) (2.1)

was true beforechand. In other words, {zy,...,x,) is in the interpretation of R after applying a if

i
s ).“

0
s

P
#ff_."

and only if it was added or it was in the interpretation of R beforehand and not deleted. Formula

".;

S
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2
;, - (2.1) is therefore equivalent to pr. Note that appropriate ag's and ég's can be found to make
,{-.'; (2.1) equivalent to 2g for any arbitrary ¢r. For example, we can let ag(zy, ..., z,) be the formula
g

"-;:« Frlry.....x,) and Sglxy,...,2,) be ~pR(1y,...,2,). For efficient problem solving, though, ap
S

‘J‘ -« . . . .

<y and ér should be chosen to reflect the actual additions to and deletions from the interpretation of
"‘ 4 »

. :' R. For example, for the block-stacking operator described previcusly, a suitable agn(z, y} would
RS
::{:: be (r = B Ay = (') and a suitable don(z,y) would be (z = B Ay 5 C). Note that éon(z,y)
e

cannot be (x = B), since apon{z, ¥y} and éon(z, y) are not allowed to be true simultaneously.
The formulas defining the interpretations of the function symbols in the succedent state can be

restructured in much the same way as the formulas for relation symbols. In the case of functions,

though, we can take advantage of the fact that a function must be defined everywhere, as required
by the definition of an algebraic structure. Consequently, F(zy,...,z,) = w is true after an
operator has been applied if and only if the operator changed the value of F(z,,...,z,) to w
or the operator preserved the value of F(zy,...,z,) and F(z,,...,2z,) = w was true previously.
These changes can be described by a single formula pp, where pg(z,y,...,2,, w) is true if and
only if the value of F(z;,...,z,) is to be updated to w when the operator is applied. Since

functions have unique values, pr must have the property that either there is a unique w for which

pr(ry....,rn, w)is true or there are no w's for which pp(zy,...,2,, w) is true. Given such a pur,
Flry..... r,) = w is true after the operator is applied if and only if
nelzy, oz, w) V(- 3v[pr(zh,. . 26, V)| A Flzy, ..., 20) = w) (2.2a)

was true previously: that is, F(z,,...,z,) = w is true after the operator is applied if and only

either if the value of F(z,...,z,) was updated to w, or F(z,,...,7p) = w was true beforehand
"T:: and the operator preserved the value of F(z,,...,z,). Formula (2.2a) is therefore equivalent to
A
::E:: Fr. As with ag and ég. an appropriate sip can be found to make (2.2a) equivalent to 2of for
'(: any arbitrary g (e.g.. let pp(zy,..., 20, w) be op(zy,...,2q,w)). However. for eflicient problem
"f solving. pig should be chosen to reflect the actual updates of the interpretation of F. As an
:" example, suppose we wished to model the assignment statement UU «— V', where {7 and 17 are

et



jaf el Ras 4

ol et i Antolas sas ANE Aatofiunaatol oY e o ity et Bt tan (i shas il last Sl ullarilier oo sar e siar e e e Mt uslan ety H e e e Y N T T R

2.2 OPERATOR SCHEMATA i

program variables. To do so, we could have a function Val mapping program variables to their
values, plus an operator that updates Val(l') to be the value of Val(V'). An appropriate update
condition gy al(z, w) for this operator would then be (z = U A w = Val(V')).

Constant symbols are handled in exactly the same way as function symbols, since constants
are simply functions without arguments. Therefore, C' = w is true in the succedent state if and
only if

polw)V (= 3v[pc(v)] AC = w) (2.26)

was true previously. Note that Formula (2.2b) is simply a special case of Formula (2.2a}.

When dealing with several operators, we will need to distinguish the add, delete, and update
conditions of one operator from those of another. This we will do by using superscripts: we will
write of and 6% to mean, respectively, the add and delete conditions defining the interpretation of
relation symbol R after operator a is applied, and we will write % to mean the update condition
defining the interpretation of function symbol F after the application of operator a (likewise for
constant symbols). We will also use superseripts to distinguish the preconditions »f one operator

from those of another. Thus, 7% is the set of preconditions of operator a.

2.2 OPERATOR SCHEMATA

When formulating a planning problem, one quite often encounters groups of operators whose
add. delete, and update conditic s would be identical given an appropriate substitution of terms.
For example. the operator described earlier for stacking block B atop block ¢ has as its add and
delete conditions for On(z, y) the formulas (z = BAy = (") and (z = B Ay 5% ('), respectively.
Similarly. an operator for stacking block A on top of block ¢ would have as its add and delete
conditions (r = YAy = C)and (r = AAy # C). These formulas are identical except that,
wherever /2 appears in one pair of formulas. A appears in the other. Instead of requiring that each
and every operator in such a group be defined separately, we will introduce operator schemata so

that the group may be defined collectively. Schemata allow ome to define parametric classes of
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operators by introducing parameters as placeholders for terms in the various formulas that make
up an operator definition. A schema is then specialized to a particular operator by substituting
the appropriate terms for the parameters. For example. we could define a block-stacking schema
with parameters p and g, where p is to be stacked on top of q. The add and delete conditions for
Onir.y) in the schema definition would then be (r = pAy = g) and (z = pA y 5 q). respectively.
substituting B for p and C for q yields an operator that stacks block B on top of block C".

It would be useful at this point to introduce a standard notation for defining operators and
operator schemata. This notation is illustrated below. A schema definition consists of the name
of tlie schema, a parameter list, and four groups of formulas labeled PRECOND, ADD. DELETE

and UPDATE. If the parameter list is empty, the schema defines a single operator

Name(py,....Pm)

PRECOND: my(py..... P Talpeo i Pm)
ADD: rg(ry, .. cxp ) forall 2y, ..., z,, such that ag (z\,.. .24,.p1. - .pPm)
Ralxy..... Ip,)forall xy.. .., zn, such that ag,(zy,.... 70, p1 o Pm)
DELETE Ryfary... .. rn,)forall xy, ..., 24, such that dg (zy,... . 2a,.p1. . . Pwm)
Rolry. ... .. rn,) for all zy, ..., 2, such that dp,(z1.... . 25, p1.. .. Pmn)
UPDATE: Fylry.. ... rp)e—w

for all xy,...,xn, @ such that pp(zy,... 20, w.p1.....pm)

The PRECOND croup which specifies the precondition of the schema, counsists of a set of well-
formed formulas =,(p,. Do) Talpy. po) whose free varnables are the schema parameters.

The ADD group specifies the add conditions ag for each relation symbol I7. The conditions are

1
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AR 2.2 OPERATOR SCHEMATA 13
‘ specified by a set of statements of the form

4

4

[y At ]

X “ladd) Rlry, ..., r,) forall oy, ..., I, such that aglxy, ..., 2,0, p1.. ... Po)

b

where the r;’s are distinct variables and are different from the parameters py,....p,,. The r;'s.
together with the parameters, constitute the free variables of ag. The format of the DELETE
group is identical to that of the ADD group. The DELETE group, however. specifies the delete
conditions ég for each relation symbol R. The UPDATE group specifies the update conditions pp
and ¢ for each function symbol F and each constant symbol (' respectively. These conditions

are expressed by a set of statements each of which is of the form

“(update) Flry...., r,)—wforall ry,..., x,, wsuch that pp(z,,... 2,0, w,py.....pm)"

for function symbols or, alternatively,

“(update) C «— w for all w such that pc(w,py,....pm)"

A A

for constant symbols. As with the ADD and DELETE groups, w and the z;'s are distinct variables
and are different from the parameters.
As an example of what an actual schema might look like, consider the following schema, which

defines a cluss of operators Put(p, q) for stacking block p on top of q, where g may be another block

or the table:
Put(p.q)
PRECOND: p 5 q, p % TABLE. V(= On(z,p)), [7 = TABLE \V Vz (- On(z.q))
ADD: On{x,y) for all 2.y such that (z =p Ay = q)
DELETE: On(z,y) for all z.y such that (z =p Ay 5# q)

UPDATE: A — w for all w such that FALSE

B e N WiAUR RN .| SN

B — w for all w such that FALSE

(' — w for all w such that FALSE

N R X IO A MR

TABLE — w for all w such that FALSE

»

N

22 x 3 vemme s

. FEE R JEETENR T, . . I A e e T T,
B T B A WL e

- N R TR LTl . B e . e Al . W e e Y
- “ . = - ".. '.> ", '<- - C . - '-- . . = .t -~ ‘- '_. ": ".- -,‘ - B '_ .,' “. ". '-. .. . < K N K -'.. w t oA .-— ‘N - ‘.~ ‘- ~ b ’. -~ ‘( "h -.n .t - . -~ o ‘ -l ..
L Te N . . N NN RN - NN N BEISERAY g% -
Ol \}.L&'_l\ DU IR S

RN . . .
T TN e T T T T T e e T e e e T e T T A T UL e R A N
S SN e T e e e e e e e e T A PSP S, P S SRS T AHPAINI AU, W SN,




PR R

»
P
PP

-

- 3%

i3
»

AL

-

".,’
'y

!. ’r
Py

I',’m" -
DTy,
2

14 FORMALIZATION 2.3

The precondition states that p and q must be distinct, that p cannot be the table, that no object
may be on top of p, and that either ¢ must be the table or no object may be atop gq. These are the
usual constraiuts one finds in block-stacking problems.

Since it is often not the case that an operator will modify the interpretation of every symbol
in the language, we will introduce the following notational convention: if any ag, 6r, pr or pc
is noi specified, then we shall take it to be the formula FALSE. For example, Put(p, q), as defined
above. does not modify the interpretations of either A, B, C, or TABLE. Therefore, we could
define Put(p.q) more succinctly as follows:

Put{p,q)
PRECOND: p £ q, p 5% TABLE, Vz(~On(z,p)). [¢ = TABLE v Vz(-On(z,q))]
ADD: On(z, y) for all z,y such that (z=pAy=4q)

DELETE: On(z,y) for all z,y such that (z =p Ay 5 q)

In essence, the convention is to presume that the interpretation of a symbol is not modified unless
specified otherwise. This convention has all the benefits of the “STRIPS assumption” [5]; however,
because it is mercly a notational convention and we are dealing with functions on states and not
functions on state descriptions, it has none of the drawbacks of the STRIPS assumption {16].

We will also adopt as a notational convention that, if no preconditions are given for an operator,
then the precondition is taken to be the formula TRUE. In other words, we will assume that the

operator may be applied in any state.

2.3 VALID PLANS

The statement of a planning problem consists of a set of well-formed formulus I' deseribing
the initial state of the world, a set of formulas ¢ describing the goals to be achieved, and a <ct of
operator schemata. The object is to find an appropriate sequence of operators (i.e.. instantiated
schemata) that will transform any structure satisfying I' into a structure that satisfies (/. We shall

call such a sequence of operators a valid plan for achieving (/. given I', or simply a valid plan for
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achiering (; when the intended I is understood. This section examines the validity conditions in

detail and explores ways of testing a plan for validity.

Two conditions must hold for a plan to be valid: first, the preconditions of an operator must
be satisfied when that operator is applied; second, the goals must be satisfied after the entire
plan has been executed. To state these conditions more precisely, we shall introduce the following
definitions. Let ¢ denote the empty sequence—that is, the sequence containing no operators. Lct
the sequence o be called a prefiz of a sequence 6 if and only if there exists a sequence ~ such
that 8 = o~ (i.e.. 8 is equal to the concatenation of ¢ followed by v). For example, the prefixes
of the sequence ayag---a, are €, ay, 6,82, @1@2a3,...,a,82--d,. Finally, let us write I'{#}¢ to
mean that. if every formula in the set I' is true before the sequence of operators 4 is applied, then
the formuli ¢ will be true after 8 is applied. More formally, if we let a(M) denote the structure

obtained when operator a is applied to structure M, then
(1) Tie) e holds if and only if every structure satisfying I satisfies o, and

{2) I'{ayaz--an}e holds if and only if @an 0 an—yo---0a;(M)satisfies ¢ for every structure

M satisfying T,

where "o” denotes function composition. Given the above definitions, the validity conditions may

be stated as follows: @ is a valid plan for achieving G given T if and only if
(1) I'{0}g holds for all formulas ¢ € . and

(2) For every prefix oa of 8, I'{o}n; holds for every formula m; € 7 where « i~ an operator

and 7% is the set of preconditions of a.

Unfortunately, it is usually not possible to apply the definition of I'{0} = dircctly when testing o
plan for validity. as [' may have an infinite number of models. What we nced to do. therefore. s

restate the definition of I'{#} £ in terms of theorem proving, so that we may then prove the validity

of a plan without having to consider the models of T'.
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16 FORMALIZATION 2.3

Progression Operators

We will consider two possible ways in which the definition of I'{#}» might be restated in terms
of theorem proving. The first approach is to find a progression operator [9] for each operator a.
Progression operators map the conditions that exist before an action is performed into those that
exist after its performance. Thus, if a*! is the progression operator for a, then I'{8}¢ bolds if and
only if 2 is a theorem of a*!(T'). If progression operators can be found for each operator a, then

the definition of I'{0} £ could be restated as follows:

{1) I'{e}e if and only if ¢ is a theorem of I', and

(2) '{ajaz---an}¢ if and only if ¢ is a theorem of a}!o-- 0 a}!(I).

Unfortunately, progression operators have a major problem: while it is possible to define an
appropriate a*! for any operator a, there appear to be operators and finite I''s for which a*(I')
is necessarily infinite. By definition, a*!(I') must be an axiomatization of the set of postconditions
of T': that is. a*YT') must axiomatize {¢ | [{a}p}. We could simply define at!(I') to be this set,
but this definition is not practical, as the set of postconditions of T is infinite: for computational
reasons, we would much prefer a finite axiomatization of the postconditions. Unfortunately, there
appear to be cases in which the postconditions cannot be axiomatized finitely, even though I' may
be finite. For example. let T’ be the set of formulas

Ql: Vr(s(z) # 0)

Q2: Vzy(s(z)=sly)—z=y)
Q3 Vz(z=0V3y(sly) = 1))
Q1 Vr(zx+0=7z)

Q5: Vzy(z +sly)=s(z+y))
Q8: Vr(r 0=0)

Q7: Vayl(r sly)=(z-y)+1)
Hl: Vz(H(z)~ A(x))
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where A(r) is a formula that does not contain the symbol H, and let a be the operator whose

schema is
UPDATE: z + y «— w for all z,y, w such that w =0

z-y— w for all z,y, w such that w =0

Formulas Q! through Q7 are essentially the axioms of Peano arithmetic without the induction
axioms. Formula H1 defines the unary relation symbol H in terms of 0, s, +, and - by means of
the formula #(x), which will be described below. Operator a leaves the interpretations of 0, s, and
H unaltered. but redefines + and - to be zero everywhere after a is applied (ie., x+y =2y =10
for all r and y in the succedent state). Since + and - would no longer correspond to addition and
multiplication after a is applied, it seems plausible that, if A(z) made heavy use of addition and
multiplication, it might not be possible to finitely axiomatize the postconditions involving f{. We
will now construct an A(z) that appears to have just this property.

Let us write 5™(0) as shorthand for the nth successor of 0 (i.e., s°(0) = 0, s1(0) = s{0).
57(0) = s(+{0)). s*(0) = s(s(s(0))), etc). Then it can be shown [1] that, for any partial recursive
function p : N¥ — N on the natural numbers, there exists a formula Aplxy, ..., xr, y) involving
only 0. s. +. and - such that p(ny,...,n¢) = m if and only if 4,(s"(0),....: s"E(0), s™{0)) is a
theorem of formulas Q1-Q7. The formula A, is said to represent the function p. Furthermore. it
can be shown that if Ty, Te, ... is a recursive enumeration of Turing machines. then there exists
a partial recursive indicator function A : N — N such that A(n) = 0 if and only il T, eventually
halts when started on a blank tape. Let Ty, T2,... be a recursive enumeration of Turing machines
and let A(r) be the formula An(z,0), where A is the partial recursive indicator function defined
above und Agx(r.y) is a formula representing h. Having defined A(r) to be the formula .1,(r.0).
we have as a result that H(s"(0)) is a theorem of T if and only if T, halts on a blank tape.
Furthermore. since a does not affect the interpretations of 0, s, or £I, [[{s"(0)) i~ a postcondition
of I' if and ouly if H(s"(0)) is a theorem of I'. Let I be an axiomatization of the postconditions

of I'. Then fI(s"(0)) is a theorem of [ if and only if T, halts on a blank tape. Since + and - are

zero everywhere after operator a is applied, we can decompose I' into an equivalent set of formulas
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r’, U I'_, where l"l 15 the set
{(Vzy(r+y=0)AVzy(z y=0)}

and [ is is obtained from [’ by substituting O for all terms of the form ¢, + ¢ or ¢, - ta in every
formula of I, Thus, 5 and H do not appear in [}, and + and - do not appear in I';. Furthermore.
the cardinality of [} is less than or equal to the cardinality of I''. Since T, UT% is equivalent to
[, it follows that F{{s"(0)) is a theorem of I if and only if /{(s"(0)) is a theorem of ', UT,. But
s and H do not appear in [}, Therefore, the formula H(s"(0)) is true in all structures satisfying
Y UTS il and ounly if it is true in all structures satisfying I',. Hence, H(s"(0)) is a theorem of I if
and only if H(s"(0))is a theorem of I',. Hence, T, halts on a blank tape if and only if F/(s"(0)) is
a theorem of I',. But + and - do not appear in any formula of ['s. Therefore, 'y must axiomatize
{1 by using only 0 and the successor function s. This seems too weak a language. however, for
defining the set of Turing machines that halt on blank tapes without effectively enumerating all

such Turing machines. Thus, we make the following conjecture:
Conjecture. [ is infinite.

If this conjecture is true, IV must be infinite since the cardinality of I is greater than or equal to
the cardinality of I',. Therefore, all axiomatizations of the postconditions of I' must be infinite; in
particular a*!(I') must be infinite. Although it appears unlikely that the conjecture is false, it has

not yet heen formally proved.

Regression Operators

The sccond approach to restating the definition of {8}y is essentially the opposite of the first:
instead of advancing I' forward through the plan using progression operators, we will move 2

backwards using regresston operators {9, 16]. This involves finding for each operator a a function

a~! mapping formulas into formulas such that ¢ is true after applying a if and only if a='(,2) was

true beforehand; that is, for every structure M, M satisfies a=!() if and only if a( M) satisfies 2.

If such functions exist then the definition of I'{#} ¢ could be restated as follows:

sl .\.~_..'._. ) .

e

- 4'_1 '.-_-—_ e b.. -‘ "-. - .‘_.. ‘. .
c J-.'\"-.~._:_‘.:Aj.\(m:)_.".g‘_.'. oAl a

Al SSOOODE

- »
U]
o o a s




U i)

«

b iy A S,
t
.
.
.
.
B
1
.
.
.
s
«
.
.
.
’
'
r
'
*
.

.
., Y
e .
R 2.3 VALID PLANS 19 d
:‘: "
..-‘- i
’ (1) T'{e}p if and only if ¢ is a theorem of I', and
L}
- (2) T{ajaz2---a,}p if and only if a7'o---0a;}(¢)is a theorem of I'. .
In general. a regression operator maps a postcondition into the weakest sufficient precondition that
must exist before an operator is applied in order for the postcondition is true afterward. In the
e case of the a~™ s, though, we are insisting that the weakest sufficient precondition must also be a
..‘: | ‘
-0 necessary precondition. :
Unlike progression, there are no difficulties in computing regressions  To see why this is so.
LU .
. consider the following construction. First, let us augment our language with an additional set ;
! .
L of relation. function, and constant symbols, i.e., one new symbol for ciach existing symbol. We
a are thereby adding a new relation symbol R’ for each existing relation symbol 2. a new function
‘ ~ly 'l
, ‘)
symbol F’ for each existing function symbol F, and a new constant symbol (7 for each existinz ‘
AR :
Piv constant symbol . The new symbols we will call primed, the old ones nonprimed. The primed N
o symbols will be used to describe the state of the world that exists after operator a is applied, while .
Al .
N .
A the nonprimed symbols will describe the state of the world before a is applicd. To axiomatize the :
- :
L\
)

relationship between the primed and nonprimed symbols, we can make use of Formulas (2.1} and ¥

x

(2.2) discussed in Section 2.1. These formulas define the interpretation of cach symbol after an

:’.,: action has been applied in terms of the previous state of the world. Thus, we have the following :
L) . .
-.'j: axioms for each primed symbol: .
b~ o 4
Vfl"'ln[R,(I|'-~-.In)“‘0';3(1;,...,1,.)V(-v6‘,‘{(.rl,,...r,,)/\Ia’(.rl.”.,J"))] (2.3a) )
Yoy orn II'{(["l(.tl,....In)=w)H;l(;-(ll,....ln,‘u')\/(“3!‘(;[2(I|.....1,,.l')) (2.36) :
2 AF(zi. ) = )] f
Te’
“ et Yu [(C" = w) = pl V(- Je(ple)|AC = u')] (2.3¢) y
: The reason this construction is valid is that operators preserve the domuins of the structures to 1
::- which they are applied: if M is a structure, then the domain of a( M) is precisely the domain of 2
;' 3 M. Therefore, we can construct a composite structure whose domain is the domain shared by M A
o
::." and a( M), and whose relations, functions, and distinguished elements are the combined relations, i
-\.": 4




I 20  FORMALIZATION 2.3
X
LS
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e functions, and distinguished elements of M and a{ M). To construct a language for this composite d
9
i structure, we nced only add a new set of symbols to the existing language—one new symbol for
,':\
-y each existing symbol, just as was done above. y
b Now suppose ¢ is a formula that contains only primed symbols and, hence, describes some
< condition that might hold after operator a has been applied. Using the axioms given above, we can Kk
c“ -
- transform ¢ into an equivalent formula ¢’ containing only nonprimed symbols. Since y is equivalent :
» to 2 and contains only nonprimed symbols, it expresses the necessary and sufficient conditions that
must exist before a s applied so that ¢ will be true afterward. Thus, ¥ corresponds to a™(z).
The transformation of © into an equivalent nonprimed formula can be done in two steps. The
N first step is to transform 2 into an equivalent canonical form in which every atomic subformula
a
et of the canonical ¢ is either of the form R/(zy,....zn), F'{zy,...,20) = w or (! = w for
some collection of variables x,, ..., z,,w. Once in canonical form, ¢ can be transformed into its
o . : : : : N .
bt nonprimed equivalent by replacing the atomic subformulas of ¢ with their equivalent nonprimed
formulas, as defined i the axioms (2.3). In other words, we replace all occurrences of
‘N i
- R'(xy.. .. .x,) with ag(ry.....2n)V(~6g(zy,...,2x) AR(2y,....2,))
-:;.
o , .
o Fllry. ... Ip)=w with prlr... .2, w)V (- 3v(uplzy, ..., Ia, 1))
) AF(I11'~'vzﬂ)=w)
s ("= w with pe(w) V(€ = w AVv = pc(v))
*-." ~ . . . . . . . .
o These substitutions are justified, since we may always substitute a formula for one that is equivalent.
:: To transform ¢ into its canonical form, we make use of the following theorem of first-order logic:
o if M7)is a formula containing the term r. and if r is neither a free variable of A7) nor a bound
L5
e variable in the scope of r, then \(7) is logically equivalent to 3z (A(z) A r == r). Therefore, we can
.\‘.
W
N replace any occurrence of
.

R(..,r,..)with3Jz(R(....z...)AT=1)
F'(....r,..)=wmwithJz(F(....2.. )= AT =1)
F'(..)=rwith3z(F(..)=2Ar=1)

C' =rwith32(C =t Ar=r1)

where = is an arbitrary term, 7 is a term that is not a variable, and r is a variable that appears
in neither R(....r, . ) F'(...,r,..) ==, F'{...)nor C = r. To put ¢ in canonical form, we

merely apply these substitutions repeatedly until no further substitutions arc possible.
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2.3 VALID PLANS 2] i
As an example of how a primed formula is transformed into its nonprimed equivalent. suppose ,
we have the Put(B, (") operator discussed in Section 2.2 and that p is Vu =~ On’(u. V). To transform
£ into its canonical form, we merely need to replace On'(u, A’) with 3¢ (On’(u, v) A A" = v). This
produces i

Vu = 3v[On'(u. v) A A = v].

With 2 in its canonical form, all that remainos is to replace the atomic subformulas of 2 with their
nouprimed equivalents. Recall from the definition of Put(B, C') that agn{r. y)is{r=BAy = (')

and dpn(r.y)is (r = B Ay 5% C'). Therefore, all occurrences of On’(.r.y) are replaced by
(x=BAy=C)V|t5# BVy=C)AOn(r,y)].

Also, since Put( B, (') does not affect the interpretation of A, p4 is the formula FALSE. Hence, all

occurrences of ./ = w are replaced by A = w. These substitutions produce
Yu —'Hv[((u =BAv=C)V[(uz# BVv=C)AOn(u,v)])A A= v].

which simplifies to

A 5 C AVu{u = BV - On(u, A)).

Thus, no block is on top of A after Put(B,C) has been applied if and only if .4 and C are distinct
blocks. and there were no blocks on top of A before the application of Put(B, ('}, except possibly
block B.

The nbove method for transforming nonprimed formulas into their primed equivalents leads

to the following recursive definition for a=!. In the ground case, we obtain

a" Y R(zy,....z)] = aflxr,....2a) V(= 8%(z1, ..., 2a) AR(z1, ..., Z0)) (2.1a)

a”[Flag. ... o) =w] = pp(zr... . 20 w)V [~ v (pi(xy, ... L0 v)) (2.16)
AF(I],...,I,,)= ll']

a” N C=w)= pe(w)V [=3e(pclv) A C = w], (2.4¢)

where . ..., r, and w are variables. These equations correspoud to replacing atomic subformulas

with their nonprimed equivalents. The following equations transform atomic formulas into their
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= canonical forms:

a”'R(....r,..) | =3x(a"R(...,1,.. ) Aa" Y1 =1)) (2.4d)
- a"[F(...,r....)=:17]E31(0"[F(...,z,...)=w]/\a"(r=z)) (2.4€)
= a”YF(..)=r]=3z(a”[F(...)=z]Aa"}(r =2)) (2.4f)
o a”C=r=3(a'[C=12|Aa"}r=1)), (2.49)

- where = is an arbitrary term, r is a term that is not a variable, and x is a variable that does not
e appear in R(....7....), F(...,r,...) =, F(...) = 1, or (. = r. Finally, we have the following

equations, which allow (2.4a-g) to be applied to all atomic subformulas in a formula:

o a7l (-~p)=-a"l(p) (2.4h)
' a” o Av)=a""(p)Aa" (¥) (2.40)
a"Hevy)=alp)VaT(¥) (2.4))
et a” o —yp)=a""(p)—a"'(¥) (2.4k)
i a"Hp —y)=a"'(p) = a7 '(¥) (2.40)
o a"!(Vzp)=Vra ) (2.4m)
a3z ) =3za"!(p) (2.4n)
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3

Plan Synthesis

This chapter presents a technique for solving a subclass of the classical plinning problems The
first section establishes the fundamental concepts upon which the technique is based. \ particular
property of the classical planning problems is identified and an example given illustrating how  ne
might exploit this property when synthesizing a plan. Section 3.2 shows how a simple plunning
technique can be derived from the property. and, in Section 3.3, a detailed example is provided to

demonstrate the technique.

3.1 BASIC CONCEPTS

There are two basic assumptions built into the classical planning problems that can be
exploited when a plan is synthesized. The first is that the world can change only as the result of an
action. This assumption permits actions to be modeled as state transformations. Furthermore, it
forces all plans to have the following property: if some condition is true at one point in a plan but
not at an earlier point, then at some point in between there is an operator that causes the condition
to become true. This is an important consequence from the point of view of plan synthesis, as it
allows one to postulate the existence of operators that cause certain goals to become true. The
second assumption is that we are capable of performing only a finite number of actions in a finite
amount of time. Consequently, any plan for achieving a particular goal must be finite, as the goal

must become true at a definite point in time for it to be achieved. Taken together. these two

assumptions imply the following:
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> Property 3.1. If a condition ¢ is true at a point p in a sequence of operators but not at an

earlier point, then at some point in between there exists an operator that causes ¢ to become

true and 2 remains true thereafter until at least point p.

In other words, if some condition is true at one point in a plan but not at an earlicer point, then not
only must there be an operator somewhere ir between that causes the condition to become true.

but there must be a final such operator since the number of intervening operators is finite. This

combined property turns out to be quite useful during plan synthesis, as we will now demonstrate.
A more formal treatruent of Property 3.1 appears at the end of this section.

To illustrate how Property 3.1 may be exploited when a plan is being synthesized, let us
consider a typical block-stacking problem. Suppose we have the blocks world described in Chapter
2. in which blocks .1 and B are initially on the TABLE and block C is atop block A. Suppose,
further. that our goal is to have A on top of B and B on top of C, and that the only operators
available are those defined by the Put schema of Section 2.2. The diagram below depicts the initial
state and the goal. “bristles” on top of a block signifies that the block is known to be clear (i.e.,
no other block is on top of it), while a block “floating” above the table signifies that the object
supporting the block is not known. The arc from the initial state to the goal signifies that the

initial state precedes the goal state in time.

i

Initial Goal
State State

.
.

Ll

Neither of our goals is satisfied in the initial state; therefore, by Property 3.1 there must be

.L.

a final point in our plan at which A becomes situated on top of B, a4 a final point at which

B becomes situated on top of C. The only operators available for moving 1 onto B and B onto

“r w.F e
N

3

(" are Put(A, B) and Put(B, (), respectively. Hence, there must exist a point at which we apply o
: A

Put(A, B), after which .\ remains on top of B. plus another point at which we apply Put(£. ). 3
:'J

after which B remains on top of C". This is depicted in the diagram below. The conditions that X
:'4

4
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3.1 BASIC CONCEPTS 25

must remain true during particular intervals are identified by labeling the appropriate arcs.

On(A.B)

h/““””\?\
00 g

Goal
State

Initial
State

Pur(lf,() On(B.C)

In the final plan, Put(A, B) will come either before Put(B, (') or after Put(B, (*). The former
case can be ruled out, however, since, with this ordering. the requirement that A remain on top
of B after Put(.4, B) has been executed contradicts one of the preconditions of Put{B.('). which
is that no block be on top of B when Put(/3,(") is applied. Therefore, we must perform Put(.1, B)

after performing Put(B, C).

Hm -

Initial Pud(f3. ) Put(A, B) Goal
State State

On(B.C) On(A.B)
On(B.C)

Examining the plan in its current state of development, we find that the goals are now satisfied
but that one of the preconditions of Put{.1, ) has not been. In particular. C is on top of 4 in
the ivitial state, which contradicts the requirement that no block be on top of 4 when Put({.A, B3)
is performed. Therefore. by Property 3.1, there must exist an operator preceding Put{.. I3) that
causes (' to be removed from A and € remains off .1 thereafter until we perform Put(.\. B). The
only operators available for removing C from A are those of the form Put(¢", X). Hence, there must
exist a point preceding Put(4, B) at which we perform Put{C', X') and " remains off A therealter

until we perform Put(A, B). For the moment, let us defer the choice of a particular value for \'.
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On(B.C)

Put{i3. ()
Imitial L iy Put(A, B) Goal
State \ X State

On(A,B)
Pll((('. \) -\()n((",‘\) On(B,C)

In the final plan. Put(C', X') will come either before Put(f2, C') or after Put(B, C'). The latter
case can be ruled out, however, since. with this ordering, the requirement that B remain on top i
of €' after Put(£,C’) has been executed contradicts one of the preconditions of Put(C.,\), which i

is that no block be on top of " when Put(C', \') is applied. Therefore, Put(C, X') must be applied

E
Initial Put(C. X) j Put(B, C) ‘ Put(A, B) i Gioal
State State

- On(C.A) On(B.C) On(A,B)
~On(C.A) On(B.C)

before Put{B. ().

If we now exitmine the plan, we find that every goal and precondition would be satisfied if we
were to let X' be the TABLE. Therefore, let it be so. This gives us the following plan for stacking

Aatop B and B atop (": put C on the TABLE, then put /3 on top of C and, finally, put A on top

of B.
r.H_‘ B]
Inttial Put{C'. TABLE) Put(B, C) Put(A, B) Goal
State State

As the foregoing example illustrates, Property 3.1 contributes to the planning process in

two ways.  First, it establishes a causal connection between the operators in a plan and the




3.1 BASIC CONCLPTS 27

conditions we wish to bring about. This causal linkage permits us to build plans incrementally,
introducing operators as needed to satisfy our goals as well as the preconditions of operators
previously introduced. The choice of operators is governed by the changes that must be made in
the world to bring about the desired conditions; operators that are not essential to constructing a
valid plan are not even considered. The result is a tremendous reduction in search compared with
that required by an exhaustive search strategy. Furthermore, Property 3.1 does not restrict us to
building plans in any particular order, as do forward-chaining and backward-chaining strategies.
Instead. operators are inserted as needed and where needed in an opportunistic fashion (c.f.. [6]).

The second way in which Property 3.1 contributes to the planning process is by constraining
the placement of operators in a plan. When we insert an operator at some point p in a plan so
that a particular condition will be true at some later point g, we are considering the last point p
preceding 4 at which that condition becomes true. We can thus protect the condition from point p
o point 4. that is, we can assert tnat the condition must remain true in the interval between p and
q. The advantage of protection is that it enables us to detect impossible orderings of operators: if
an operator has the precondition p, it cannot possibly appear at a point in the plan daring which
—~ ¢ must remain true. Protection thercfore contributes to the minimization of search by ullowing
ns to eliminate impossible orderings from consideration. In fact, in the block-stacking example.

protection was xo cffective that search was avoided altogether.

Protection Through the Ages

Historically. the idea of protecting goals and preconditions was first introduced by Snseman [11]
and later refined by Waldinger [16]. Warren [17, 18], and others. Sussman developed goal protection

as amethod for detecting faulty plans. As he explains, using a programming metaphor,

aprogram is operating correctly, in that it accurately reflects the intent of the programunier.
onlyv when cach step achieves those goals that the programmer intended it to, and cach of those
goals remains true at least until the steps which depend npon its being true are run {or the

end of the program bloek if this step is a contributor to the purpose of the program).

2
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28 PLAN SYNTHESIS 3.1

Therefore, if, in the course of plan execution, a goal is violated that was intended to remain true,
that plan is then faulty and must be “debugged.” It is apparent from the foregoing quote that
Sussman had in mind something very much like Property 3.1 when he developed his protection
mechanism. However, Sussman viewed protection as being intimately tied to the intent of the
programmer, whereas here it is seen as arising from a fundamental principle that is independeut of
intent {of course, in its use, protection does tend to reflect intent). Furthermore, Sussman employed
protection only as a means of detecting faulty plans, not as a guide to ordering operators as done
here. Had he recognized this use of protection, he probably would not have had to treat the block-

stacking problem presented above as an “anomalous situation” requiring special consideration.

Unlike Sussman, Waldinger did employ protection as a guide to ordering operators. However,
Waldinger was somewhat overzealous in its application. If a goal or precondition were true in the
initial state and not made false by any of the operators currently in the plan, Waldinger's scheme
would call for that goal or precondition to be protected without considering the possibility that the
goal or precondition might have to be violated and then reestablished in order to solve the overall
problem An example of a problem in which this possibility would have to be considered is the
Towers of Hanoi. in which the goal of having the smallest ring on top of the second smallest ring is
true in the initial state, but the first ring must be removed from the second so that the other goals
can be realized. \Waldinger acknowledged that his protection mechanism had drawbacks. but he
did not recognize their source. [nstead, he proposed a scheme that circumvented the hidden defeet
by consid.ring goals in various sequences until a solution was obtained. Although the scheme does
work, it is terribly ineflicient. Furthermore, as Warren points out [18], reodering is unnecessary if
we simply avoid protecting goals that are already satisfied.

Like Waldinger, Warren also used protection as a guide to ordering operators. In Warren's
approach, though, i goal is protected only when an operator is inserted that makes the goal trne.

Warren's scheme therefore operates in accordance with Property 3.1,
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Strengthening Property 3.1

It turns out that Property 3.1 is too weak for solving arbitrary planning problems. While it works
fine for problems in which the effects of an action are independent of the state in which the action
was performed, as in the blocks world, it neglects an important case that must be considered when
the effects of an action depend on the state of the world at the time the action was performed.
Taking this second case into account, we obtain the theorem stated below. This theorem says
that a condition is true after a sequence of operators has been executed if and only ¢f (1) there
exists an operator at some point in the sequence that causes the condition to become true, and
the condition remains true thereafter, or (2) the condition is true initially and never becomes
false. Therefore, during plan synthesis, not only must we consider incorporating operators to
cause a goal or precondition to become true (Clause 1), but we must also consider the possibility of
incorporating operators to prevent a goal or precondition from becoming false if it is true initially
(Clause 2). Property 3.1 merely provides a set of suficicnt conditions for Clause (1) to hold. The
theorem further tells us that a planning technique is fully general if and only if it takes these two

possibilities into account, as a goal or precondition cannot be satisfied otherwise.

Theorem 3.2. Let v be a formula, T be a set of formulas, and § be a sequence of operators.

Then I'{#}¢ if and only if one of the following is true:

(1) There exists a prefix oa of 8, where a is an operator, such that ['{a} 2 is fulse but I'{ma~) 2

1s true for all sequences v such that oa~ is a prefix of 6.
(2) T{o}e for all prefixes o of 0.

I’roof. First we will show that, if either Clause (1) or Clause (2) holds, then I'{#},> must hol!
as well. If #a is a prefix of 0, there exists a v such that @ay = 0. Therefore, Clause (1) implics
{0} ¢. If Clause (2) holds. I'{0} 2 follows immediately, since @ is a prefix of itself.

To complete the proof we need to show that, if ['{8) 2 holds. then either Clause (1) or Clanse

(2) holds. This we will do by induction on the length of 8. i the base case, 8 is the cmpty ~sequence
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30 PLAN SYNTHESIS 3.1

¢. The only prefix of ¢ is ¢ itself; therefore, if I'{#} holds for 0 = ¢, then Clause (2) must hold.
For the induction step. let us assume that, for all 8 of length less than or equal to n, ['{#}, implies
(1) or (2). Let & be a sequence of operators of length n + 1, and suppose that I'{0'}, holds. Let
a be an operator and 6” be a sequence of length n such that & = 6”a. Consider I'{#"}p. Either
[{0"”} ¢z is true or it is false. If it is false, Clause (1) must hold for # = & (i.e., consider the case
when o = 8”). If '{8”} ;- is true, then, by the induction hypothesis, either Clause (1) or Clause
(2) bolds for 8 = 0”. 1f (2) holds for & = 6” then (2) must also hold for § = ¢, since we have
assumed that T{#'} ¢ holds. Likewise, if (1) holds for § = 6”, (1) must also hold for & = ¢, since,
if [{oav} e is true for all ¥y such that ga~ is a prefix of 6”7, then I'{ocay}o must be true for all 4
such that may is a prefix of 8’. Therefore, if [{0”}¢ holds, either Clause (1) or Clause (2) holds for
g = ¢’. But, as shown previously, if ['{6”}¢ does not hold, then Clause (1) must hold for § = ¢'.
Therefore. either Clause (1) or Clause (2) holds for # = ¢. Since the choice of ¢ was arbitrary. it
follows that T'{#}¢ implies (1) or (2) for all 4 of length n + 1. Hence, by induction, I'{8}y implies

(1) or {2) for all 8. T

Property 3.1 follows as a corollary to Theorem 3.2. Property 3.1 can be stated and proved

formally as follows.

Corollary (Property 3.1). Let ¢ be a formula, ' a set of formulas, 4 a sequence of operators,
and r a prefix of . Then the following holds: if I'{0}¢ is true but I'{r}p is false, then there
exists a prefix oa of § such that r is a prefix of &, a is an operator, and '{o}y is false, but

I'{ma~s} g is true for all sequences v such that may is a prefix of 0.

Proof. Suppose that I'{0}¢ holds but that I'{r}p does not. Then either Clause (1) or Clause (2)
of Theorem 3.2 holds. But Clause (2) cannot hold, since ['{r}¢ is false. Therefore, only Clause (1)
holds; that is, there exists a prefix oa of 8, where a is an operator, such that ['{o}, is false but
['{ou~} 2 is true for all sequences ~ such that oa~ is a prefix of 4. It remains only to show that r
must be a prefix of 0. Suppose that r is not a prefix of o. Since r and oa are both prefixes of 8.

this implies that @a mus* be a prefix of 7. Therefore, there exists a sequence ~ such that r = a#a-.
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Therefore, I'{r}, must be true, since ['{oav}w is true for all sequences -y such that ga~ is a prefix

of 8. But. by hypothesis, ['{r}y is false. Contradiction! Therefore, r must be a prefix of 0. [

3.2 A SIMPLE PLANNING TECHNIQUE

Let us now consider a technique for constructing plans that is based on Theorem 3.2. With
this technique, plans are synthesized in much the same way as in the preceding example: we begin
with the empty plan (i.e., containing no operators) and add operators until a valid plan is obtained.
At each stage in the process, we will have some current plan. This plan is analyzed to identify those
goals and preconditions not yet satisfied and to determine what additional operators are necded
to bring them about. The appropriate operators are then inserted, producing a new current plan
and initiating a new cycle of analysis and modification. This process of repeatedly analyzing and
modifying the current plan continues until all goals and preconditions have been satisfied. In
situations where there are multiple ways of causing a particular goal or precondition to become
true, the analysis produces a set of alternative modifications of the current plan. In this case,
one of the alternatives must be selected before the plan is modified. However, not all alternatives
necessarily lead to solutions, since some ways of eflecting one goal or precondition may make it
impossible to achieve another. It may thus be necessary to explore a number of alternatives before
a valid plan is found.

The technique we shall consider incorporates a number of simplifying assumptions. These
assumptions are not essential and, in my thesis [&], [ show how they can be lifted to obtain a
completely seneral synthesis technique. The first assumption is that the initial state is completely
known. This makes the validity conditions for a plan decidable (in general, they are undecidable).
The second assumption is that function symbols and constant symbols do not chinge interpretation
when an operator is applied (i.e., p% is false for every operator a and every function symbol or
constant symbol $). This makes it easier to decompose a complex goal into simpler subgoals.

The last assumption is that, for each object £ in the world, there is a constant symbol e, called
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the standard name of r. that denotes z in the initial state. Given the preceding assumption, the
standard name of r will also denote z at every point in a plan. The reason for this last assumption

is that it simplifies the handling of quantifiers.

Representing Plans, Goals, and Protections

To begin, we must establish a representation for plans, goals, and protected conditions. As
suggested by the block-stacking example of the previous section, we will represent a plan as a
directed acyclic graph, called a plan graph, with a single root vertex and a single leaf vertex. The
root vertex of a plan graph represents the initial state, while the leaf vertex represents the goal
state. The intermediate vertices represent operators. The edges of a plan graph are directed
and define a partial ordering of the vertices. From a semantic standpoint, a plan graph asserts
that certain operators must appear in the final solution in a certain relative order. Although the
representation permits arbitrary partial orders to be specified, we will for the sake of simplicity
consider only linear (i.e., totally ordered) plan graphs. An example of a linear plan graph appears
below. The dingram nses boxes and circles to distinguish between the root and leaf vertices, on

the one hand. and the intermediate vertices on the other.

In onr discussion of plan graphs we will adopt the following conventions. We will write ¢
to denote the root vertex of a plan graph and vg to denote the leaf vertex, where I' is the set of
formulas describing the initial state and G is the set of formulas defining our goals. If v; and vo
are vertices, we will write vy » vo to indicate that there is an edge from vy to va. The plan graph
illustrated above can then be written as vp » vy » -+ » v, » vg. We will say that a vertex v,
precedes a vertex va, written v; < vg, to mean that there is a path from v, to v2, and we will
write 1} < vo as shorthand for vy < v or vy = vo. Finally, we will say that a formula 2 is true

at a vertex v to wmean either (1) that 2 is true in the initial state, if v = v, or {2) that 2 is true




el A~ 8~ St AN S A VLA i A SR “uaea e Al S Rl He =2 i ¢ ol Ao I Uhde G e B o NP B 4 1 S B0 SN AL i IO A A e AR A S ~ it B o S TS Y,

3.2 A SIMPLE PLANNING TECHNIQUE 33

after execution of the plan, if v = vg, or (3) that ¢ is true when the operator associated with v is

applied, if v is an intermediate vertex. In other words, if our plan graphis vp s v; » -+ » vy » v

T A

and a; is the operator associated with vertex v;, then (1) ¢ is true at v if and only if p is a

theorem of ', (2) g is true at v; if and only if I'{a;---a;—}p, and (3) ¢ is true at v if and only

if T{ay---an}e.

eI L

PRI I)

Protected conditions will be represented as a set P of ordered triples of the form (. vy, v2).

3

where £ is a formula and v, and vg are vertices such that vy < va. P will be referred to as the
protection set. In semantic terms, each triple in the protection set is an assertion that a particular
formula must remain true over some interval in the final solution. More precisely, if (o, vy, v2} € P,

then ¢ must be true at every vertex v in the final plan such that vy < v < vs. In particular,

£ must be true at vertex ve. It will be necessary during plan synthesis to consider all protected
formulas that must be true at a particular vertex v. Therefore, let us define p, to be this set; that
Is

pv ={p | (p,v1,v2) € P and v; < v X va} (3.1)

Goals and preconditions will be represented as a set A of ordered pairs of the form (.2, v),

where £ is a formula and v is a vertex. We will refer to this set as the agenda. From a semantic
standpoint, cach ordered pair on the agenda is an assertion that a particular formula must be true
at a particular vertex in the final plan. In other words, if {p,vr) € A, then » must be true in the
initial state. and, if {p, v) € A, where v 3 v, then one of our goals is to achieve 2 at vertex r.

The set of all conditions we wish to achieve at a particular vertex v is given by

9o = {w | (p.v) € A} (3.2)

Together. a plan graph. a protection set, and an agenda define a set of constraints that a plan
must satisfy to be considered a solution. To synthesize a plan, we take an imitial set of constraints
defined by an initial plan graph. protection set, and agenda; then. through an appropriate process.

we add further constraints until we obtain a complete specification of a plan. At the beginning

- of the process. our only constraint is for the final plan to achieve every formula g in the goal set
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(i, given that the initial state is described by the set of formulas I'. Therefore, the initial plan
graph is the graph v » v, the initial protection set i1s empty, and the initial agenda is the set
{{g.vG) | g € ). The problem is then to augment each of the three components—the plan graph.
the protection set, and the agenda—until the sequence of operators defined by the plan graph
satisfies all of the assertions listed in the protection set and the agenda. For convenience, let us

refer to the combination of a plan graph, a protection set, and an agenda as a partial plan.

The Technique

The synthesis technique we shall consider is an iterative process by which the initial partial plan is
incrementally modified until a solution is obtained. The basic loop involves finding a goul on the
agenda that would not be satisfied, given the current partial plan, and then modifying the plan
so that the goal will be achieved. This process continues until all goals on the agenda have been
satisfied. At each step. the current partial plan s modified in such a way that, if all of the goals
on the agenda are <atisfied, then all of the assertions in the protection set will likewise be satisfied.

r This guarantees that, once all of the goals have been attained, we will have constructed a valid

h plan consistent with the protections.

The modifications made of the current partial plan are governed by a set of rules. For every

goal that may be expressed in the logic, there is a corresponding rule. Each rule defines a set of

alternative modifications for realizing the corresponding goal at the desired point in the final plan.
Fach set of alternatives covers all possible solutions, so that, if a rule is applicable and if a <olution
can be obtained from the current partia’ plan, at least one of the alternatives defined by that rule
is guaranteed to lead to a solution. Consequently, the rules may be applicd in any order without
backtrackiug and without affecting the final solution. Of course, search is required to explore the
alternatives expressed by a rule. As search is fairly well understood. this report will focus on the

modification rules and leave open the issue of an appropriate search strategy

The rules for u.odifving plans are based in part on Theorem 3.2 According to this theorem,

a goal is satisfied at some point p in the final solution if and only if (1) there is an operator that
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causes the goal to become true and the goal remains true thereafter until at least point p, or (2) the
goal is true initially and never becomes false before point p. This suggests two ways of modifying :
partial plun in order to achieve a goal: one is to insert an operator that causes the goal to become
true, the other is to prevent the goal from becoming false. There is, however, a third option: since
plans are built incrementally, the operator that causes a goal to become true in the final solution
may already appear in the current partial plan; therefore, another way of achieving a goal would
be to establish the appropriate enabling conditions to allow an existing operator in the plan to
cause the goal to become true. These three alternatives are illustrated by the following example.

Suppose we have a world consisting of a briefcase, a dictionary, and a paycheck, each of which
may be situated in one of two locations: the home or the office. Operators are availuble for putting
the dictionary and the paycheck into the briefcase and for taking them out, as well as for carrying
the briefease between the two locations. Initially, the briefease, the dictionary. and the paveheck
are at home. and the paycheck is in the briefcase but the dictionary is not. The goal is to have
the bricfease and the dictionary at the office, but the paycheck at home. We begin the synthesis
process with the empty plan. Let us {irst consider the goal of having the bricfease at work. Since
this goal is not true initially, we must have an operator in our final plan that causes the goal to
become true. As the current plan is empty, the only option is to insert the operator that causes
the briefcase to be brought to work. Let us next consider the goal of having the dictionary
work. This goal is not satisfied, given the current plan of bringing the briefcase to work. However,
if we were to put the dictionary into the briefcase before leaving home, the dictionary would be
bronght to the office as a side effect. In this case, the operator that causes the dictionary to be
at the office (i.e.. bringing the bricfcase to work) already appears in the plan and an additional
onerator is inserted to establish the appropriate enabling condition (i.e., having the dictionary in
the briefease). After making these modifications, we are left with only one more goal to consider.
which is to have the paycheck remain at home. Unfortunately, the current plan of putting the
dictionary in the briefcase and then bringing the briefcase to the office causes the paycheck to

be brought to the office as a side effect. However, if we were to remove the paycheck from the
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36 PLAN SYNTHESIS 3.2

bricfcase before leuving home, we would prevent the paycheck from changing locations. Our goal
would then be achieved by virtue of the fact that it would never become false. If we choose to

remove the paycheck from the briefcase before we put in the dictionary, then our final plan will

be to remove the pavcheck from the briefcase, put the dictionary in the bricfcase, and bring the
briefcase to the office.

The three ways of modifying a partial plan illustrated above cover all possible solution paths.
This fact is expressed by the theorem that appears below. This theorem may be puraphrased as

follows: a condition ¢ is true at a point p in the final plan if and only if one of the following

. % ens g~

conditions holds: (1) there exists an operator in the final plan that already appears in the current
plan that causes £ to become true, and 2 remains true thereafter until at least point p. (2) there
exists an operator in the final plan that does not appear in the current plan that causes 2 to

become true, and 2 remains true thereafter until at least point p, or (3) 2 is truc in the initial

e

state, and remains true until at least point p.

Theorem 3.3. Let 0 be a sequence of operators and ¢ an expansion of §. That is, for an

appropriate sct of operator sequences {J;.d2....}, il § = ajaz- - -an, then ¢ = Jiayidoas- -

Inan 3y, and, if # = ¢ then 6 = J,. Let oy = Jy and 0; = Fray- - Ji—1ai=1J; for i > 1.

Then {8’} 2 holds if and only if one of the following is true:

(1} There exists a o; such that T'{o;} ¢ is false, but ['{o;a;v}¢ is true for all sequences ~ such

that @;a;~ is a prefix of ¢’

{2) There exists a prefix ma of 8 such that o is not a #; and T{o}p is false, but ['{ma~}y is

true for all sequences v such that ogav is a prefix of ¢,

(3) T'{e} g holds for all prefixes o of 8.

Proof The above theorem follows directly from Theorem 3.2, as Clauses (1) and (2) together are

equivalent to C'lause (1} of Theorem 3.2 and Clause (3) 13 equivalent to Cluruse (2) of Theorem 3.2
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o {
: To modify a part'al plan to achieve some goal, we merely have to choose one of the three cases
described Theorem 3.3 and assert that it holds with respect to the current partial plan and the -
o final solution. [ other words, if {7, v) is a goal on the agenda and if 2 is not true at vertex ¢ in
o »
Y . . . -
the current partial plan, then we can (1) assert that the operator associated with some existing :
vertex t/ < v causes ¢ to become true, and protect ¢ from v/ to v, (2) insert an operator that -
causes £ to become true, and protect £ up to vertex v, or (3) protect o from the initial state to .
vertex v s
To make these assertions, we need to introduce the notion of a secondary precondition. A N
v secondary precondition for an operator is a condition that must be true at the time the operator .
; is applied for the operator to have the desired effect. By imposing the appropriate secondary
1 X
55 precondition on an operator, we can force that operator to preserve some condition or to canse
4 some condition to become true. For example, in the briefcase example discussed earlier, the act ’
>, P P
\' -
of bringing the briefcase to work causes the dictionary to be brought to work as a side effect ouly ’
e if the dictionary happens to be in the briefcase at the time. Therefore, we can achieve the gonl -
- of having the dictionary at the office by requiring that the dictionary be in the briefcase when
) the bricfease is moved. Similarly, to prevent the paycheck from changing locations, we need only ;
! require that the paycheck not be in the briefcase at the time the briefcase is moved. To determine "
S , . o , - : N
" which secondary preconditions are appropriate in any given situation, we need to examine more -
e closely the circumstances under which a condition is preserved or is made true by an operator.
5 For a condition £ to remain true between two points in a plan, all of the intervening operators .
e must presceve the teath of ;) that is,if ;2 is true when each such operator is applied, then » must g
{7 U . : o : .
. be true afterward. In Section 2.3 we saw that o is true after an operator a is applied if and only if i
N ~ " 7) was true just prior to the application. Therefore, a will preserve the truth of ¢ if and only ..
o if ¢ — a~!(g) is true when a is applied. Given that, in the final plan, o will be true when a is -
!'.' N
\ M . ~ —a ya -1¢ M N - " P
" applied. any formula P4 such that £ — (P4 «~ a7'()) is an appropriate secondary precondition
'-*_.'- -
" to impose on a to ensure that a will preserve ¢ in the final plan. This is justified by the following -
- g
i lemma: K
-":‘n .
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Lemma 3.4. Let P% be a formula such that ¢ — (]P‘:, — a~Yp)). Then the following holds:
if = is true before a is applied, p will be true after a is applied if and only if P, is true

beforehand.

Proof. By hypothesis, if o is true before a is applied, then IPS is true before a is applied if and
only if a= () is true before a is applied. But 2 will be true after a is applied if and only if a='(7)
is true beforehand. Therefore, if > is true before a is applied, then @ will be true after a is applied

if and only if [P4 is true beforehand. U]

Let us now consider the conditions that must hold for an operator to cause a formula to become
true. Given that the ini ial state 1s known completely.! an operator a causes a closed formula 2 to
become true if and only if ¢ is false before a is applied and true afterward. In Section 2.3 it was
shown tuat ¢ will be true after applying a if and only if @ () is true beforehand. Therefore. a
causes ¢ to become true if and only if ~ Aa” () is true when a is applied. Although we would
guarantee = to be true after a is applied and false beforehand if we were to impose = 2 A a™ ()

as a secondary precondition for a, it is sufficient to impose a weaker precondition L%, where £%

is any formula such that -2 Aa~Y(g) — L% and T% — a7 Y(p). L% has the property that, if
is false when a 1s applied, then a will cause p to become true if and only if L% is true when a is
applied; if both £ and U7 are true when a is applied, then a will preserve the truth of p. Imposing

L% as a secondary precondition therefore guarantees that o will become true if it is false. L% s

weaker than — 2 A a™'(¢). as it allows the possibility that » will be true when a is applied. The

e

reason we would want to impose £f instead of ~ p Aa~"'(p)is that we can often find a formula ©

\J

that is much simpler than = > A a~!(y) and, consequently, is easier to deal with. The justification
for using T instead of — 2 A a™!(p) is provided by the following theorem, which is analogous to

Theorem 3.2 except that it is stated in terms of L% and PS,.

L If the initial state were not completely known, it would be possible for o to be false before a is applied for some
of the worlds satisfying the initial state description and true for others. Therefore, the modifications described
here apply only when the initial state is known completely When the initial state is only partially known. a ()
must be asserted as the secondary precondition.

st it i NI bt it et
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Theorem 3.5. Let ¢ be a formula not containing free variables. let T be a complete
description of the initial state of the world, and let 8 be a sequence of operators. Then I'{8} -

kolds if and only if one of the following holds:

(1} There exists a prefix oca of 8, where a is an operator, such that I‘{a}Sf:, holds and

[‘{aa*,v}lP"V. holds for all sequences v and all operators b such that oa~b is a prefix of

.
{2) £ is a theorem of [' and ['{o}IP% holds for all prefixes oa of 0.

Proof. If Clause (1) holds, then T{oa}y holds for an appropriate prefix oa of 6. Furthermore. by
induction and by using Lemma 3.4, T'{oa~b} must hold for all sequences ~ and all operators b such
that mavb is a prefix of 8. Therefore, (1) implies T{#},. If Clause {2) holds, then, by induction.
[{o} s holds for all prefixes o of 8. Therefore, (2) implies ['{#}2. Hence. if either Clavse (1) or
(Clause [2) holds. or if both hold, then I'{#} > must hold as well.

For the converse, suppose that I'{#} holds. Then, by Theorem 3.2, one of the following

holds:

(1) There exists a prefix oa of 4, where a is an operator, such that I'{o} 2 is false but T'{oav} 2

is true for all sequences < such that oay is a prefix of 4.
{(it) I'{a} 2 for all prefixes o of 4.

Suppose that (i} holds for a suitable prefix @a of 8. Then I'{o )¢ is false and I'{oa} 2 is true. But
[{ra} ¢ is trueif and only if I'{o}a™'(¢)is true. Furthermore, since I' is 4 complete description of
the initial state of the world and since ¢ does not contain free variables, I'{o} is false if and only
if I'{e} ~ ¢ is true. Therefore, '{o}(= ¢ A a™!(¢)) bolds. Hence, T{s}L% holds. Furthermore. (i)
implies that both I'{ear}e and ['{earb}¢ hold for all sequences r and all operators b such that
oarb is a prefix of 8. Therefore, '{oar}(+ Aa~!(¢)) holds for all r and b such that oarb is a prefix

of 8. Hence, F{cmr}le’3 holds for all 7 and b such that oarb is a prefix of 0. Ience, Clause (1) of

the theorem holds.
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Suppose that (ii) holds. Then » is a theorem of I', since ['{}» holds. Furthermore, both
o} - and I'{oa} s hold for all o and a such that oa is a prefix of §. Therefore, '{a}IP% holds
for all @ and a such that oa 1s a prefix of 4. Hence, Clause {2) of the theorem holds.

These two cases give us the Tollowing: if I'{#} 2 holds. then either Clause (1) holds or Cluuse
(2} holds or both. But. from before, if {1) or (2) hold. I'{#} » must hold as well. Therefore, ['{8} -

holds if and oniy if either (1) holds or (2) holds or both. ~

As with Theorem 3.2, Clause (1) of Theorem 3.5 can be broken down into two subcases: one
in which the operator that makes o true if it is false must be added to the current partial plan;
the other 1n which the operator that makes £ true if it is false already appears in the plan. Thus.

we have the following corollary to Theorem 3.5:

Corollary 3.8. let 8 be a sequence of operators and 8 an expansion of 8. That is.
for an appropriate sct of operator sequences {3y,J2,...}, if 8 = ajas---a,. then & =
Jraydonn- - Ipan Iy, and, if 8 = ¢ then ¢ = ;. Let 0y = 8, and 0; = Jya, - -Ji_1ai-13:
for¢ > 1. Let I' be a complete description of the initial state and let ¢ be a formula containing

no free variables. Then I'{0’} £ holds if and only if one of the following is true

(1) There exists a g, such that T'{e;}E% holds and F{a,-a,-“f}lpfa holds for all sequences 4 and

all operators b such that o;a;vb is a prefix of ¢,

{2) There exists a prefix #a of § such that o is not a o, ['{#}E% holds, and I'{oa~y} P2, holds

for all sequences ~ and all operators b such that oa~b is a prefix of 0.

(3) ¢ s atheorem of I' and '{a}P L holds for all prefixes oa of 6.

Proof. The above theorem follows directly from Theorem 3.5, as Clauses (1) and (2) together are

equivalent to Clause (1) of Theorem 3.5, and Clause (3) is equivalent to Clause (2) of Theorem 3.5.

et us now consider the precise modifications that must be made in the plan graph. the agenda.
and the protection et to protect ¢ from the initial state, to force an existing operator to make 2

tene if (e s faive, and to insert o new aperator rthat makes = true if it is false.
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3.2 A SIMPLE PLANNING TECHNIQUE 1 )

According to Clause (3) of Corollary 3.6, if ¢ is to remain true from the initial state to verres

v in the final plan. then ¢ must be true in the initial state, and PZ must be true when operutor g

a is applicd for every operator a prior to vertex v. Therefore, the following modifications must be

made to protect o from the initial state to vertex v:

” -

gy

(1) {g£.vr) must be added to the agenda to require that ¢ be true in the initial state.

.
PR )

’
Pl

(2) {IP%.¢') must be added to the protection set for each vertex v’ such that vp < ¢/ < v

to guarantee that every opcrator preceding vertex v will preserve the truth of 2.

(3} {#.vr.v) must be added to the protection set to assert that ¢ is protected from the initial

state to vertex t.

-

If any of the foregoing additions contradict existing goals and preconditions, no amount of

a0

further modification will lead to a solution. This is because it is impossible to simultaneously

. . . . . P
achieve contradictory goals and protections. Therefore, we can rule out the option of protecting !
£ from the initial state to vertex v if o is not true in the initial state or if requiring that the

intervening operators preserve the truth of  contradicts existing goals and protections. Stated M

more precisely, ¢ cannot be protected from the initial state to vertex v if
(1) {£}UT is inconsistent, or
(2) {2 "1 U gw U pur is inconsistent for any vertex v/ such that vp < o/ < v,

where p.r s the current set of protected conditions that must be true at «’, as defined in Equation

3.1, uand g, is the set of goals currently on the agenda that must be achieved at vertex /. us

defined in Equation 3.2, Note that there is no danger in not detecting these inconsistencies if they
are present. as it is impossible to obtain a plan that satisfies inconsistent goals and protections.
The only reason for the test is to reduce the search space by eliminating impossible solution paths

from consideration. This is fortunate, as the test itsell is only partially decidable; that is, while

it 1s always possible to detect inconsistencies if they are present, it is not generally possible to .

confirm their absence if they are not present. Consequently, detecting an inconsistency requires
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an unbounded amount of computation. As the only reason for the test is to prune the search
space, spending too much time on it can be worse than not performing the test at all. The
compromise is to balance amount of computation spent eliminating alternatives against the amount
of computation saved in searching a smaller space, in effect limiting the range of inconsistencies
that can be detected. The optimum balance, though, is highly dependent on the problem being

considered, so it is hard to make any general statements about where the optimum lies.

L.et us next consider how to force an existing operator in the plan to cause » to become true if
it is false, and how then to protect o up to vertex v. If the existing operator a, is associated with
vertex v/, then. by Clause (1) of Corollary 3.6, L%’ must be true when a, is applied, and IP% must
be true when operator a is applied for every operator between v/ and v. Therefore, the following
modifications have to be made to force the operator associated with vertex v/ to guarantee that ¢

will be true and to protect p up to vertex v:
(1) (E%'.¢') must be added to the agenda guarantee that w will be true after applying a,.

(2) (P v”) must be added to the agenda for each vertex v” such that v/ < v < v to

guarantee that every operator between v/ and v will preserve the truth of .

(3} {#.v". ¢) must be added to the protection set to assert that ¢ is protected between vertices

v and v.

If these new goals and protections contradict their existing counterparts, it will be impossible
to obtain a solution if the modifications are made. Therefore, we can rule out the possibility of

forcing a,s to make ¢ true if it is false, and then protecting ¢ up to vertex v, if
(1) {-¢. S?;'} U gw U pw 15 inconsistent, or
(2) {# P%"}Upym Ugyn is inconsistent for any v” such that v/ < v < v.

As before, these conditions are only partially decidable, so we must balance the amount of com-

putation spent pruning the search space against the amount saved in searching a smaller space.
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The third and final way of modifying a partial plan to achieve a goal is to insert a new operator
that causes the goal to become true if it is false and then to protect the goal up to the point we
wish it to be true. Since we are considering only linear plan graphs, the insertion must preserve
linearity. Therefore, the new operator must be inserted between two consecutive vertices 1; and
vo in the current plan graph (i.e., there must be an edge from vy to ve in the current plan graph).
This is done by creating a new vertex v/, removing the edge from v, to v, and adding two new

edges, one from v to v/ and the other from v/ to vo. The new operator a,r is then associated

with +". The modifications of the agenda and the protection set are then very much like those for
forcing an existing operator to make ¢ true if it is false. As with forcing, we must guarantee that
ay will cause ¢ to become true if it is false and that all of the operators between vertices v/ and v
will preserve 2, and we must assert that ¢ is protected between v’ and v. However, we must also {

guarantee that the preconditions of the new operator ay will be true when the operator is applied.

and we must guarantce that a, will preserve all of the conditions protected between vertices vy
and va. The former is accomplished by adding the preconditions of a, to the agenda. For the

latter, the set of conditions protected between v, and v, is given by

(¢ ] ($,vs,v4) € P and v3 < vy and v < vy}
= {¢ | (¢, v3,v4) € P and v3 < vo < vy}

= pV2
Therefore, a,» must preserve every formula in p.,. Thus, the complete set of modifications of the
agenda and the protection set are as follows: if operator a, is being inserted at a new vertex

between vertices vy and t2 so that ¢ will be true at vertex v, then

(1) (m;, v') must be added to the agenda for every m; in the set 7% of preconditions of a, to

guarantee that the preconditions will be satisfied when a,s is applied.
(2) (£%’.¢') must be added to the agenda guarantee that ¢ will be true after a. is applied.

(3) (H’Z,"', v') must be added to the agenda for every formula ¢ € p., to ensure that a, will

preserve all conditions protected between vertices vy and va,
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(4) (P%", ") must be added to the agenda for each vertex v” such that va < v < v to
guarantee that every operator between the new vertex v/ and vertex v will preserve the

truth of £.

(5) {¢.v’,v) must be added to the protection set to assert that ¢ is protected between vertices

v’/ and v.

If these new goals and protections contradict their existing counterparts, it will be impossible
to obtain a solution if the modifications are made. Therefore, we can rule out the possibility of

inserting a,+ between vertices vy and vg if

(1) {Py" | v € pu,} U (-9, E%'} U r® U py, is inconsistent, or

(2) {¢.IP%"} Upur Ugyn is inconsistent for any v” such that vz < v" < v.
As before, these conditions are only partially decidable, so we must balance the amount of com-
putation spent pruning the search space against the amount saved in searching a smaller space.
The Rules

\While the three ways of modifying a partial plan, as described above, are valid for any formula ¢.
we will perform these modifications only for formulas of the forms R(¢ty,...,ts)and = R(ty,... ta).
where R is a relation symbol and the ¢;'s are ground terms (i.e., terms without variable symbols).

Goals containing connectives and/or quantifiers will be decomposed into simpler formulas and,

|~

5 ultimately, into one of the two forms above. The reason for doing this is that it leads to a more
p

t‘_- ,:j efficient planning technique, primarily because it is easier to identify operators that cause atomic
- formulas to become true or false than it is to identify the appropriate operators for arbitrary

S formulas.

To construct modification rules for atomic formulas and their negations, we can take advantage
of our earlier assumption that we will be dealing only with problems in which constant and function

s symbols cannot change interpretation. This assumption gives rise to the following secondary
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preconditions for atomic formulas and their negations:

IP??(!;....,!..) = “6?3(11,...,t,,)
o ln)

P Ritytn) =gy, .t
??(llv---"n) = a??(tl' . 'vtﬂ)

2 R(thntn) = 8R(0, tn)
In other words, a preserves the truth of R(t,,...,t,) if and only if a does not delete {t,,..., t,)
from the interpretation of R, a preserves the truth of -~ R(¢,,...,t,) if and only if a does not add
(t;,....tn) to the interpretation of R, a causes R({;,....t,) to become true if it is false if and only
if a adds (t{,....t,) to the interpretation of R, and a causes = R(ty,...,{s) to become true if it is
false if and only if a deletes (t;,...,t,) from the interpretation of R.
In stating the modification rules for R(ty,...,t,) and =~ R(t;,...,¢t,), we will treat the case

1

in which R is the symbol ‘="' separately from the general case. Since we have assumed that no
operator can change the interpretation of any constant symbol or function symbol, and since by
definition no operator can change the interpretation of ‘=", a2 (t;,1s) and 6% (¢,,ts) are both

FALSE. Thercfore, it is impossible to make a goal of the form t; = ¢, or t; 5 tp true if it is not

already true. This gives us the following rule:

Rule 1. If (t;, = ta,v) or (t; ¥ ta,v) is an unsatisfied goal on the agenda, no further
modification of the current partial plan will lead to a solution. Therefore, a different solution

path must be considered.

This rule tells us to abandon the current branch in the search space if a goal of the form
t, = l2 or t; 7% (; is found to be unsatisfied. If all branches are found to lead to dead ends. a

solution does not exist.

When R is not the symbol ‘=", the following two rules apply. Each of the modifications

described in these rules is carried out as discussed previously.

Rule 2. If (R(t;.....t,), v) is an unsatisfied goal on the agenda and R is not the symbol ‘=",

remove (R(ly,....ly).v) from the agenda and effect one of the following modifications:
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(1) Protect R(ty,....t;) from the initial state to vertex v, if R(¢;,...,t,)is true in the initial

state and protecting R(t;,...,t,) does not contradict existing goals and protections.

{2} For some vertex v’ such that vp < v’ < v, force the operator associated with vertex ¢’ to
cause R(ty,...,t;) to become true il it is false, and then protect R(t;,...,t,) up to vertex

v, provided neither modification introduces an inconsistency.

(3) lnsert a new operator that causes R(¢....,tn) to become true if it is false, at a point
preceding vertex v that does not contradict existing goals and protections, and then protect

Rity, ..., t,) up to vertex v.

Rule 3. If (- R(t;....,t,), v) is an unsatisfied goal on the agenda and R is not the symbol

i

=", remove {~ R(t;,....t,),v) from the agenda and effect one of the following modifications:

(1) Protect =~ R(¢t,,....t,;) from the initial state to vertex v, if ~R(t;,...,¢,) is true in
the initial state and protecting - R(t;,...,t,) does not contradict existing goals and

protections.

(2) For some vertex v’ such that vpr < v/ < v, force the operator associated with vertex v’ to
cause =~ R(ty,....t,) to become true if it is false, and then protect = R(ty,...,t,) up to

vertex v, provided neither modification introduces an inconsistency.

(3) Insert a new operator that causes ~2(t;.....t,) to become true if it is false, at a point
preceding vertex v that does not contradict existing goals and protections, and then protect

SRt {n) up to vertex v.

Note that it is possible for a situation to arise in which none of the modifications described
in Rule 2 is consistent with the existing goals and protections. When this happens, no further
modification of the partial plan will lead to a solution. since, in virtue of Corollary 3.6, R(t,.....t,)
can be achieved if and only 1f one of the modifications described in Rule 2 is consistent with existing
goals and precouditions. “herefore, when such an inconsistency is detected, we must abandon the

current partial plan and try an alternative solution path. This also applies to Rule 3.
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4
-
. Note also that Rules 2 and 3 call for the unsatisfied goal to be removed from the agenda. This
P . i . . . . . . -
i ,':; is permitted, as the goal will be satisfied in the final plan if the new assertions are satisfied. The
B2
"-b
] rules that follow also call for the removal of unsatisfied goals, for precisely the same reason, once
55
1
* the appropriate modifications have been made.
. The remaining rules are used to decompose complex formulas into simpler ones. To decompose
< a goal of the form ¢ A v, we make use of the fact that o A ¢ is true at some point in a plan if and
- only if £ and ¢ are both true at that point. This leads to the following rule for conjunctive goals:
Rule 4. If (¢ A ¥, v) is a goal on the agenda, remove {p A ¥,v) from the agenda and insert
(p.v) and (¢ v).
s
-:: It is recommended that this rule be applied regardless of whether ¢ A ¢ is satisfied or not, as 2
.. '\ and ¥ may then be considered separately at later stages in the synthesis process.
- For disjunctive goals, we can make use of the assumption that the initial state is completely
- 1
;"?‘ known. As aresult, 2V ¢ is true at some point in a plan if and only if either ¢ or 7 is true at that )
:: point, or both are (note that this does not necessarily hold when the initial state is not completely y
g n j
) knowi as I'{#}(= V v') can be true without either ['{0} 2 or ['{#}4y being true). This gives us our .
xg .
.- fifth rule: .
Sy :
‘\-(
0 Rule 5. If (¢ V v, v) is an unsatisfied goal on the agenda, remove (o V 4, v) from the agenda
e and insert EITHER (g, ¢) or (v, v).
0 . o y
- The rule for goals involving implication is merely a special case of the preceding rule. since p
b £ — v is equivalent to ~ o V .
j::-;. Rule 8. If ( — v.v) is an unsatisfied goal on the agenda. remove (z — . ¢) from the

agenda and insert EITHER (- 2.v) or (¢, v).

The rule for goals involving the equivalence connective is obtained from Rules 1 and 5 by

making use of the fact that g — v is equivalent to (2 A V) V(=2 A - ).
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48 PLAN SYNTHESIS 3.2

Rule 7. If (¢ — ¢, v) is an unsatisfied goal on the agenda then remove (¢ «— ¥,v) from the

R 2R~ st

agenda and insert EITHER (g, v) and (¢, v) or (-~ p,v) and (-9, v).

e
e

For quantified goals, we can make use of the assumption that every object in the world has
a standard name (i.e., there is a constant symbol denoting that object at every point in a plan).

Because of this assumption, if {e1,...,en} is the set of standard names of all objects, then Vz ¢(x)

p:.

is true if and only if 2(e;) is true for all e; € {e1,....€a}, and Iz ¢(z) is true if and only if ¢(e;)
is true for some ¢; € {£),....en}. Unsatisfied goals of the form Vz p(z) are handled by separating

the cases for which 2(e;) is false from those for which ¢(e;) is true in a manner that permits each

false case to be considered individually:

Rule 8. If (Vr ¢(r) v)is an unsatisfied goal on the agenda and ¢(e;) is false at vertex v for
each standard name e; € {¢;,...,e; }. then remove (Vz ¢(z), v) from the agenda and insert

(ple ) e), . {elei, ) vy and (Vz(z =¢; V- VI =r¢; V¢(z))v)

An example of the use of Rule & may be found in the block-stacking example appearing in Section
3.1. In that example, no block may be on top of block A when Put(A, B)is performed. However, this
requirement is not satisfied, given the plan of placing B on top of C and then A on top of B. This is
because (" is on top of .4 both in the initial state and after Put(FB, ). Therefore, we would use Rule
& to decompose Vz - On{z, A)into = On(C, A) and Vz (2 = ("V-0n(z, A)). The subgoal ~On{C'. )
would then be achieved by inserting a new operator Put{C'. \') and protecting = On{C, A) in the
interval between the Put(¢', \') and the Put(.1, 1?) operators. The subgoal Vz(z = 'V -~ On(z..1))

is serendipitously truc and no further action need be taken to achieve it.

For an unsatisfied goal of the form 3z ¢(z), we must make £(¢;) true for some standard name
e;. From the standpoint of minimizing the search space, it would be preferable to defer the choice
of e; by introducing a variable as a placeholder for the appropriate e; and then instantinting
this variable at some later point in the synthesis process. The mechanisms needed to handle

instantiation variables, however, are beyond the scope of this report and are covered in my thesis
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:j s
b [8]. To keep our planning technique simple, we will explicitly consider each and every choice for
‘ .
...' €;. .
54 ;
; | . . '
A Rule 9. If (3z ¢(z),v) is an unsatisfied goal on the agenda and {e;,...,e,} is the sct of :
standard names of all objects in the world, then remove (3x ¢(z),v) from the agenda and "
. 3
- insert {2(e;). v) for some ¢; € {ey,..., e} 3
The remaining rules deal with negated goals. They are obtained from the previous rules in '
an obvious fashion by making use of De Morgan’s laws and similar theorems of first-order logic.
Rule 10. If {(-(2 A ¥), v) is an unsatisfied goal on the agenda, remove (—(p A ¢'),v) from the
. agenda and insert EITHER (= g.¢) or (= ¢, v).
= Rule 11. If {~(,-V '), v) is a goal on the agenda {be it satisfied or not), remove {(—{2 V '), v}
. from the agenda and insert {= ¢.v) and {- ¢, v).
jj::_‘ Rule 12. If (~( 2 — ). v) is a goal on the agenda (be it satisfied or not), remove {(—~{;> — ¢*). v)
) from the agenda and insert (¢, v) and (=¥, v).
o Rule 13. If (=(2 < v'),v) is an unsatisfied goal nn the agenda, remove (—(p « ¢').v) from
N the agenda and insert EITHER (- ¢, v) and (¢, v) or {(~¢,v) and (¢, v).
-’-.';;f Rule 14. If (=(Vr £(r)). v) is an unsatisfied goal on the agenda and if {e;...., e, } is the set of
b o — i
- standard names of all objects in the world, remove (—~(Vz ¢(z)), v} from the agenda and insert
oA
o = gcleg).v) for some ¢, | <71 < n.
:'.j;: Rule 15. If {(~(3x g{r)), v} is an unsatisfied goal on the agenda and - z(e;) is false at vertex v
aie for each standard name e; € {e;,,...,¢€;}, remove (~(Jz ¢(x)), v) from the agenda and insert
SRS 2
' (= 2leq v (= e e) and (Va(z = eq, VooV = e, V= glx)) o). :

&
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. bome. Therefore. the goal description consists of the formulas At(B,0), At(D,0O) and AP, ).
N
';f To achieve these goals, we may put objects into the briefcase, remove objects from the bricfcasc,
e and move the briefcase between the two locations. We will therefore have three operator schemata.
%{ Putln(z), TakeOut(z) and MovB({), corresponding to the three allowable actions. These schemata
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3.3 AN EX¥" PLE

To illustrate how a plan would be synthesized by applying the rules just introduced, let us
formulate and solve the bricfcase problem discussed earlier. The reader will recall that there are
three objects, a briefcase, a dictionary and a paycheck, and two locations, the home and the office.
Each object is at one of the two locations; furthermore, the dictionary and the paycheck may be
in or out of the briefcase. In our formulation, we will have five constant symbols, B, D, P, H and
(). corresponding. respectively, to the briefcase. dictionary, paycheck, home, and office. We will
also have two relation symbols, ‘At’ and ‘In". ‘At is a binary relation such that At(z,y) is true
if and only if object r is at location y, and ‘In’ is a unary relation such that In{(z) is true if and
only if object xis in the briefcase. Initially, the three objects are at home; the paycheck is in the
briefcase but the dictionary is not. Therefore. the initial state description I' contains the following

formulas:
(1) ey #Zexforall ej.ea € {B,D,P.H, O} such that e; and e are distinct
(2) Vz(zr=BVr=DVr=FPVxr=HVxr=0)
(3) Vzy(At{z.y) = [(r=BVr=DVr=P)Ay=H|
(4} Vr(In(x) — z = I).

The forrrulas defined in ltem (1) assert that B. D, P, H and O represent distinet entities, and the
formula in Item {2) asserts that these are the only entities in existence. Formula (3) asserts that
the only entities that have locations are 13, D and P. and they are all at H. Finally, (4) asserts
that the only entity in the briefcase is P.

Our objective is to have the briefcase and the dictionary at the office. and the paycheck at
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they are defined as follows:
Y
:\:: Putin(z)
o PRECOND: 3z(At(z. 1) A AYB, z))
- ADD: In(p) for all p such that p = =
- TakeOut(z) 3
T <
P 1
> PRECOND: Jr{At(z, z) A AUB, z)) 1
- DELETE: In{p) for all p such that p =z 5
B . *
B, 3
‘ - )
MovB(!) j
ADD: At(p,q) for all p,q such that g = A(p = BV In(p))
:'.‘ . "LETE: At(p.q) for all p,q such that g # {A(p = BV In(q)) ::
. :.
. Putln(:) causes In{z) to become true and requires as a precondition that z and B be at the same i
) location. TakeOnt(:) causes In(z) to become false and also requires as a precondition that = and B3 J
('-‘ ' be at the ~ame location. MovB({) canses the briefcase and everything in it to be moved to location :,
[. Unlike Putln(z) and TakeOut(z), MovB{{) has no precondition and may be applied in any state. ;
‘?: If the briefease and its contents are already at location [, MovB(!) has no effect.
‘_::‘.'_: The initial partial plan is illustrated below. The initial state is depicted graphically and the
[ -
7 goals are simply listed above the goal vertex. In general, goals on the agenda will be listed above the
- appropriate vertices and entries in the protection set will be indicated by labeling the appropriat,
;__:::: edges.
.‘:\‘
S H
r—T AYB.0)
riiel 4\t‘l) ()) o
- D )
SN AUl .
Y Initial Goal 9
S State State
-':'-:r'_: In this partial plan, At(P, H) is satisfied but At(£3,0) and At(D, ) are not; in other words,
s F{}At(P.H) bolds but T'{}At(B,0) and T'{}At(D, ) do not. Rule 2 can therefore be applicd to
o~
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either At(B,0) or At(D,0). 1t does not matter which we choose to work on first; therefore, let
us arbitrarily choose At(/3, O). Since At(B,0) is fulse in the initial state and we are starting with
the empty plan. we can rule out protecting At(3,0) from the initial state or forcing an existing
operator to make At{B,0) true. Therefore, we have no choice but to insert an operator to make
At(B.O) true. SK:’;:’;,” and .‘_‘,I:(k;?)"'( *) are both FALSE since both ai‘:(";:;)z) and aI?(k;?)u”:) are

FALSE. tlence, neither PPutln(z) nor TakeOut{z) can make At(3,O) true. However,

Sl = an " pa) =g =1Alp =B VIa(p)).

Therefore,

«MovB(i)
~At(B.0)

I

[0 =IA(B=BVInB))
= (0 =1).

Hence, the only operator that can make At(B,0) true is MovB(O). Inserting MovB(O) into the

plan produces the following plan:

H
B
At(D, O)
[] D AP, H)
[nitial MovB(O) Goal
State State

At(B,0)

Note that no additions were made to the agenda, since the precondition for MovB{O) is TRUT.
and NP — (0 = 0) = TRUE (TRUE is always truc and thus need not be pliced on the
and Ly, g o) = == = E 2 is always true and thus need not be pliced on th

agenda). At{B.0). however, was removed from the agenda. This is reflected in the diagram by

removing At{/3,0) from the goal vertex.

In the above plan, both At(D.O) and At(P, H) are unsatisfied. Choosing to work on At(D.0)
first and applying Rule 2, we find that At(D,O) is not true in the initial state; consequently. we
must either insert a new operator to make At(D,O) true or force an existing operator to make

At(D, O) true. _,r;':(',',"(oz,) and E:f(k,;%";(:) are both FALSE, but

Sravoffg)) = [0 =IA(D = BVIn(D)).
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Since [) 5% B in the ipitial state and none of the operators changes the interpretations of either DD
A . .
or B, L:\i,f;vD?g)) simplifies to

Fiibo) =(0 = ATbID)

Hence. the only operator that can make At(D, O) true is MovB(O). Therefore, we must either insert
a new MovB(O) operator or force the existing MovB(O) operator to cause At{([D, O) to become true.
Choosing to do the latter, and being prepared to backtrack if this does not work out. we obtain
the following partial plan. Note that In(D)is added as a secondary precondition to NovB(O). since

c\po, simplifies to In(D),

H
)
[°] D ~ In(D) AY(P.H)
[nitial MovDD(O) Goal
State State
A .0)
AD.0)

In this partial plan, both In(D) and At(P, H) are unsatisfied. Choosing to work on In{/?) first
and applying Rule 2, we find that In(/)) is not true in the initial state and there are no operitior-
preceding MovB(()) in the partial plan. Therefore. our only option is to insert a new operater to
make In( D) true. S;rn'}kbe)ou”:) anc S?;i’g;m are both FALSE, but S::\U('LI,T‘Z) = (D = :). Therclore.

Putin( D)) 1s the only operator that can make In(D) true. Inserting Putin(/)) gives us the following

partial plan. Note that 3r(At(D, x) A At{B.r)) is placed on the agenda, as it is a precoundition for

Putln(D).
1i
| — |
B Ir{Ai(. s
] o A AUB. 1] AUP.H)
Initial Putin({/) MovB(O) Goal
State State
In(D) At(B.0)
At(D,0)
\" . -, .\ - . . . - . ..' .-‘ ." n.‘ - . =
T e e N e e e L e e
L a  a e A A e R ‘j
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54 PLAN SYNTHESIS 33

In this plan. Jr(AUD. r) A At{B. x)) is satisfed but At/ f) is not. Applying Rule 2 to

At( P, ). we find that either we can protect At{F, !}) from the initisl state, since it is true witially .

MovBit
or we can insert a new operator MovB(H ) with secoudary preconditions In(/f’), since _,A:(,) o=

(H = IAln(P)) and SK':(I},H(H; = ._,’{f(k;(;,")t(z) = [ALSE. Choosing to do the former, and preparing

to backtrack if necessary, we obtain the following partial plan:

H
~—_

B 3r[AYD. r)

b AAUD. ) ~In(P)

Initial 1 " Putln(D) i MovB(0) Goal

State State
At(P,H) In(D) At{B,0)
At(P.H) At(D,0)
At(P,H)

Note that, in protecting At{P, H ) from the initial state, =In({’} is added as a secondary precon-

dition for MovDB({(), since

P;{;;;BLO)) = _|6MovB(O)(P ]1)
= -[{l 5% O A(P =BV In(P))
= ~In{P)

No other preconditions are imposed on Putln(D), since le.::”;.nhl.))) = TRUE.

At this point. only = In{Ff} is unsatisfied. Applying Rule 3, we find that our only option is to
insert a new operator TakeOut(F’) either before Putln{D) or after Putln(D). Choosing to do the

latter, and preparing to backtrack if necessary, we obtain the following partial plan:

1
3r [AHD. 1) 3z [AYP, z)
D A AU 1) A At(B, z)]
Initial ; Putln({D) i TakeOut(P) ; MovB(0) Goal
State State
At(P.H) In(D) In(D) At(B,0)
At(P.H) AP H) At(D,0)

~In(P) AY(P,H)

All outstanding goa!s on the agenda are now sautisfied. Therefore, the plan just explicated,

which consists of putting the dictionary into the Lriefcase, removing the paycheck from the
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briefcase, and then bringing the briefcase to the office, satisfies all of our goals. precondiiions

and protections.
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