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ABSTRACT

Local and global bifurcation studies of nonlinear systems

subject to linear and nonlinear feedback forces have been completed

which have application to robotic devices or controlled elastic

structures. Related to these studies has been the application of

mathematical knot theory to trace certain bifurcation sequences for

A% two-dimensional maps. This work has led to the conclusion that many

other routes to chaos in dynamical systems exist besides period

.2 doubling when the map is two-dimensional. The use of computer

algebra (MACSYMA) has been developed as a tool to study nonlinear

systems. In one application the investigators explored a new

control scheme for flexible space structures based on controlling

the stiffness matrix. MACSYMA was used along with normal form

theory to predict the stability properties of a stiffness controlled

system. Other studies using MACSYMA related to problems in robotic

dynamics were also completed or started. Finally, experimental work

was completed involving the application of mathematics to chaotic

motion of flexible structures.
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1. Introduction and Background

The subject of feedback control of elastic structures is an

important area in the design of large space structures [11,

robots and manipulators [21, and aeroelasticity of flight

structures [31-[5]. Much work has been done on the linear theory

of elastic structures with control but less is known about the

nonlinear dynamics of such systems.

In the last several years major advances have been made in

nonlinear dynamics and new phenomena have been explored with new

methods of analysis. Chief amongst them is the subject of

chaotic dynamics; that is the appearance of apparantly random

motions in a deterministic system [61. Such behavior is familiar

in fluid mechanics, but recently the Cornell Dynamics Group

demonstrated similar phenomena in mechanical systems, included

buckled beams [71-[9], systems with bilinear stiffness [101-[il]

and in multi-equilibrium positioning devices such as stepper

motors. In the mathematical theory of dynamical systems such

phenomena are modelled by strange attractors

The subject of strange attractors and chaos in feedback

systems has only recently been addressed--principally because one

must include nonlinearities in the system. Sparrow [12], for

example, has demonstrated an apparent strange attractor in a

single loop piecewise linear feedback system. Mees [131 has also

discussed the occurence of chaos in feedback controlled systems.

And in a recent unpublished study, the authors have discovered

chaos in equations for a feedback controlled elastic positioning

device (see discussion below).

Mr
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The types of systems we are prepared to study can be written

in the form:

4;,

mijqj I I yijq j + .. 
8ijqjqk + fi(qk) =gi(4kUk(t))

E. cijj + aijj h(qkkUk(t)) (1.)

where

qj are generalized coordinates,

are feedback control variables or forces,

Uk(t) are prescribed input functions,

and the functions f( ), g( ), and h( ) may be nonlinear

functions of their arguments.

These equations describe mechanical systems with feedback

forces and include elasticity and gyroscopic forces in order to

incorporate rotations in problems of spinning spacecraft as well

as robots and manipulators. The equations can also model certain

electrical devices such as nonlinear circuits and stepper motors.

Since the inception of this grant in December 1983, we have

concentrated on one and two degree of freedom systems in an

attempt to gain a basic analytical understanding of "low dimen-

sional" instability and chaos in feedback controlled devices. In

the next section we review our progress over the past year and in

the final section outline some outstanding questions and our pro-

posed research for the next two years. We list the publications

. prepared under the present grant in Section 4.

L4
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*. 2. Summary of Research Accomplishments: December 1983-November 1984

This summary is divided into three sections, one for each

P.I.

2.1 Analytical Studies of Feedback Controlled Oscillators

(P.J. Holmes, S. Wiggins (Grad. Student))

2.1.1 Bifurcation studies. Local and global bifurcation studies

of nonlinear oscillators subject to linear and nonlinear feedback

have been completed. The systems treated have the form

x + f(x,i,z) = 0

(2.1)

i + g(x,i,z) = 0

An example is the Duffing equation subject to linear feedback:

i3
x + 6- x + x =- z

(2.2)

- + cz = yx

The feedback variable, z , is modelled by a differential

equation, since we assume inherent dynamics in the control

devices (e.g. servomotors with inductance). In [14] and [15]

local bifurcation analyses of (2.2) and a fifth order variant of

(2.2) were carried out using center manifold theory. See the
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reprints attached. In both cases the interaction of steady and

periodic motions in complicated "codimension two" bifurcations

was described, and the role of "planar" homoclinic orbits

occurring on the center manifold discussed. The net effect of

these phenomena is to promote "ragged" boundaries to the

parameter regions in which feedback control is able to stablize

the system.

More recently, Wiggins and Holmes [161 have addressed global

questions and have developed a variant of Melnikov's method

(Guckenheimer and Holmes [171) to deal with three dimensional

perturbations of families of planar Hamiltonian systems. The

methods enable us to detect periodic orbits and invariant tori in

the three dimensional phase space and to compute their stability

and bifurcations in specific examples. We have applied the

methods to a number of systems, including modified Duffing and

van der Pol equations with feedback control. Used together with

"standard" bifurcation methods (Guckenheimer and Holmes [171),

the technique enables one to obtain a fairly complete picture of

the dynamics of specific three dimensional systems. A paper

describing this work is currently in preparation.

2.1.2 Knot theory and continuation of periodic orbits. P.J.

Holmes and R.F. Williams (Northwestern) have used Knot theory,

Hamiltonian bifurcation theory, Kneading theory, and symbolic

dynamics to trace certain bifurcation sequences for 'quadratic

like' two dimensional maps. An example is the Henon map, which
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may be written

F

(x,y) (y,-Ex+1-y (2.3)

As the parameters p and e = det(DF vary, a Smale horseshoe

is created in an uncountable infinity of bifurcations. We have

proved that countably many periodic bifurcation sequences of

saddle-nodes are reversed as one passes from the one dimensional

limit e = 0 to the area preserving limit c = 1 . This work

provides an important insight into the transition to chaos in two

dimensional maps and three dimensional flows. It is jointly

supported by NSF. A full paper is in preparation [18] and

* "presentations have been made at La Jolla Dynamics Days, January

1984 and the MSRI Berkeley workshop on topology and smooth

dynamical systems, June 1984. A paper is to be read at the XVIth

International Congress on Theoretical and Applied Mechanics in

Lyngby, Denmark, in August [19].

2.2 Analytical and Computer Algebra Analyses of Feedback Systems

and Nonlinear Oscillators

(R.H. Rand, W.L. Keith, L.A. Month (Visiting Assistant

Professor), T. Chakraborty (Grad. Student))

2.2.1 Normal form and center manifold calculations on MACSYMA

(with W.L. Keith). Paper presented at American Chemical Society

Computer Algebra meeting in Philadelphia, August 1984. MACSYMA

rprograms are presented which automatically compute center mani-
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folds and normal forms to arbitrary truncation orders (limited

only by the memory limitations of the computer). These programs

permit calculations to be accomplished which were previously

impossible by hand, thereby making these methods more attractive.

2.2.2 Parametric stiffness control of flexible structures (with

F.C. Moon). Paper presented at NASA Workshop on Identification

and Control of Flexible Space Structures, San Diego, May 1984

[20]. The work involves the system:

x" + (1 + z)x = 0 (stiffness controlled structure)

(2.4)

z'= -kz + f(x,x') (feedback law)

We used the MACSYMA program discussed in 1) above to obtain

an approximation for the center manifold z = g(x,y) associated

with this system. Then we used normal forms to study the flow on

the center manifold. Results included the prediction of the

stability of the zero solution as well as bifurcation of limit

cycles. Results were confirmed by numerical integration.

Note that in this work we had to go to terms of 0(x5 ) in

order to predict the Hopf bifurcations of the limit cycles. This

calculation would have been impossible without computer algebra.

2.2.3 Derivation of the Hopf bifurcation formula using Linstedt's

perturbation method and MACSYMA. Paper to be presented at

American Chemical Society Computer Algebra meeting in

Z! K?>i
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Philadelphia, August 1984 [21]. While the Hopf bifurcation

theorem (and the associated formula distinguishing supercritical

bifurcations from subcritical) are frequently used by applied

researchers, their derivation is less well understood. The idea

of this work is to offer a simple derivation based on the well

known Lindstedt's perturbation method. The calculation, while

straightforward, is lengthy, and the use of MACSYJA greatly

.. simplifies the derivation. This is an example of how computer

algebra can be used in proofs.

2.2.4 Dynamics of a system exhibiting the global bifurcation of a

limit cycle at infinity (with W. Keith). Paper submitted for

publication to the International Journal of Nonlinear Mechanics

[22]. We consider the system:

2 2) '

x" + x - e(l - ax - bx ' 0 (2.5)

which includes the Van der Pol and Rayleigh differential

equations as special cases. Using Lindstedt's method and the

Poincare-Bendixson theorem, we show that for various values of

the parameters a , b , e there exists a limit cycle in the x-

x' phase plane. Using Poincare's technique of projecting the

phase plane on the projective plane (i.e. a projection from the

center of a sphere), we show that the limit cycle is created from

four saddle-saddle connections between equilibrium points at

- infinity. Center manifold theory is used to determine the

stability of the equilibrium points at infinity. Numerical

* .* -~
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integration is used to verify the analytical results. Extensive

use is made of MACSYMA and of the normal form program discussed

in 1) above.

2.2.5 Computer algebra analysis for the stability of a rigid body

with an oscillating particle (with L.A. Month). Paper submitted

to the Journal of Applied Mechanics [231. This work concerns the

stability of the steady rotation of a rigid body containing a

paricle which oscillates sinusoidally along a principal axis.

The presence of the oscillating particle makes the criterion much

more complicated than in the classical problem of the stability

of a spinning rigid body (without an oscillating particle).

Mathematically, this problem involves the stability of an

equilibrium position in a nonlinear dynamical system which is

parametrically driven by a periodic forcing function. We offer a

perturbation solution for transition curves in an appropriate

parameter plane obtained by using MACSYMA. The use of computer

algebra permits us to obtain expressions for the explicit

dependence of the transition curves on the moments on inertia of

the rigid body. This kind of result is in marked contrast to the

traditional numerical approach to this kind of problem (in which

one must assume numerical values for the moments of inertia at

the outset.) In fact, we use such a numerical approach based on

Floquet theory to confirm our computer algebra results.

2.2.6 Analysis of the slow-flow equations governing the first

order perturbative solution to two coupled van der Pol

oscillators (with T. Chakraborty). (Work in progress.) In a



; W W -CL.. ULW - - - PP W Ir T, V -W

-10-

1980 paper of Rand and Holmes, the problem of the dynamics of two

linearly coupled Van der Pol oscillators was addressed. An

*approximate solution was derived in the form

x = R1 (t) cos f1 (t) , y = R2 (t) cos f2 (t) (2.6)

where the amplitudes R and the phases f depended on slow time

t according to differential equations:

2R1 + RI (R2 /4-1) - aR2 sin f = 0

1R +R 2227

2R + R 2 (R2/4-1) + aR1 sin f =0 (2.7)

-2f' + d + a(R 2/R1 R1/R 2) cos f = 0

where f = f - f2 is the phase lag, and where a and d are

parameters. We now continue the study of this problem by using

normal forms and center manifold theory in conjunction with

MACSYMA (see 1 above) to explore the dynamics of this system of

equations. We show that the a- d parameter plane contains a

cusp catastrophe and a line of Hopf bifurcations, a sitatuion

reminiscent of the associated problem of a single Van der Pol

oscillator driven by a sinusoidal forcing function (investigated

by Holmes and D. Rand in 1978). Current work involves the

investigation of other bifurcations in these equations, including

period-doubling.

I-
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2.3 Experiments on Chaotic Vibrations in a Feedback Controlled

System, Dynamic Instabilities in a Rotating Manipulator Arm, and

Parametric Stiffness Control of Space Structures (F.C. Moon, M.

" Golnaraghi (Grad Student), W.L. Keith)

2.3.1 Experimental Observations of Chaotic Vibrations in a

Mechanical System with Servo-Motor Feedback Control. To simulate

the dynamical phenomena in a system of equations like (1.1) or

(2.1), we have built a one degree of freedom linear positioning

device (Figure 1). Magnets are used to create two prefered

- -positions and the mass is programmed to oscillate between these

- two positions using a servomotor. A simple linear feedback law

is used. The equations governing this electromechanical system

are as follows:

mx + cx- k x + k x= -F

(2.8)

F + = Sx + G(x - X(t))

where X(t) = X(t + T) is a periodic reference function.

This system has been shown earlier [14] to exhibit chaotic

dynamics in numerical simulation. These equations could

represent an automated tool which is supposed to periodically

switch from one work station to another. The object of our

research is to see how fast the tool can follow the desired path

without going chaotic.
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The parameters in our experimental study are the switching

time T and the feedback gain G

Poincare maps of chaotic vibrations from the experiments are

shown in Figure 2. When the motion is periodic, a finite set of

dots are present. However, this Figure shows a large set of dots

in sheet-like arrangements characteristic of strange attractors.

This work is continuing and will be reported in a paper in

early Fall. We are planning to build a two or three degree of

freedom device to simulate more complex robotic manipulators.

2.3.2 Dynamic Instabilities in a Two Degree of Freedom,

Flexible, Rotating Manipulator Arm. (Paper to be presented at a

topical meeting on "Applications of MACSYMA" at the American

Chemical Society meeting in Philadelphia, August 1984. In

preparation for submission to ASME Journal of Systems, Dynamics

and Control.)

In this work we have examined the dynamic stability of a two

link manipulator with in-plane and out-of-plane flexibility

(Figure 3). Using nonlinear and linear analysis, with the aid of

MACSYMA, we have shown that both static and dynamic regions of

instability exist (divergence and flutter) for given rotation

rates and stiffness ratios (Figure 4). We have also run

numerical simulation which show these local instabilities as well

as the global motions. The equations for this manipulator arm

fall into the general category equation given by (1.1).

P'
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2.3.3 Parametric Stiffness Control of Flexible Structures. (with

R.H. Rand) Current proposals for the control of flexible

structures often employ rockets or other force producing devices

which will add considerable mass to the structure. We are

exploring a new scheme where cables will be used to change the

initial internal stress in the structure and thereby affect the

stiffness matrix of the structure. In this theory we assume a~~~~~~ystiffnessmarxothstctr. ntisterwesuea

structure expressed by mass and stiffness matrices, [20]:

,m.{Ix} + [m]{x} = f(t) (2.9)

We assume that some elements of the stiffness matrix depend on

various cable tensions Tk , i.e.,

ki= k? T (2.10)
ij + aijk k

In turn we assume that the cable tensions are controlled by a

feedback control system and that these feedback loop obey

equations of the form

1 2k +T = Gk (xi'31) , (2.11)
ak

where Gk are control gains and e k are feedback lags.

We have shown that this system must employ a nonlinear

control law in order to be globally stable. MACSYMA has been

used along with normal form theory to analyze the stability of

such systems (see section 2.2.2).

S, " ? & 4 r.. - .&A
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3. Proposed Research

In the main, we propose to continue our present lines of

research. Some specific projects we envision are:

3.1 Analytical Studies of Three Dimensional Systems.

P.J. Holmes and S. Wiggins (Grad. Student) propose to expand

their present study to include more general classes of three

dimensional systems which, in some "unperturbed" form, become

completely integrable. Perturbations of the Euler equations

governing the motion of a rigid body in the absence of gravity or

in free fall are a good example which has many applications in

the study of sattelite dynamics. Melnikov methods are readily

applicable to such problems (cf. Holmes and Marsden [24]), and

our interest in them is prompted by a numerical study of chaotic

motions in a feedback controlled rigid body problem (cf. Rand and

Month's (1984] work outline in 2.2.5 above). More generally, we

wish to develop tools for the study of the large amplitude

(global) dynamics of a wider class of three dimensional systems

which are "almost integrable". We also plan to consider

periodically forced systems, an example of which is provided by

* the nonlinear oscillator studied by Holmes [14] in the presence

of periodic position inputs to the feedback loop. See also

"- §2.3.1 above and Figure 2. Numerical evidence due to Moon and

Marzec and Spiegel (25] suggests that chaotic motions occur in

both periodically forced and autonomous third order (feed back)

systems, and we wish to obtain a better analytical understanding

of these observations.

1..
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3.2 Analytical and Computer Algebra Analyses of Nonlinear

Oscillators.

Work so far has used computer algebra (MACSYMA) normal form

programs to deal with problems in which the degenerate

singularity has a linearization of the form:

0 -wl 0 0

0 1 0 -1 wl 0 0 0
or or (3.1)

0 0 1 0 0 0 0 -w2

0 0 w2 0

In the case of the Van der Pol and Rayleigh equations at

infinity, and in the case of a two mode model of a continuous

structure with controlled stiffness, we found that while the

MACSYMA programs could accomplish the trans.ormation to normal

form, the resulting nonlinear expressions were not determined,

i.e., we could not use the existing theory of Takens [1974] to

conclude that higher order terms would not change the topological

nature of the truncated equations (Guckenheimer and Holmes, p.

360 et seq.). For example, in the case of the double zero

eigenvalue, Takens shows that every such system may be reduced to

the form (Guckenheimer and Holmes (17] p. 365):

x' y + 0(3) y' = ax2 + bxy + 0(3) (3.2)

where a and b are constants to be determined. However, in

order for these equations to be 2-determined (i.e. in order to be
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able to safely neglect terms of order 3), the constant a must

be non-zero. In the case of the Van der Pol equation at

infinity, however, we find ourselves in this precise situation,

but where the constant a = 0

In such a situation, we cannot use Takens' results, but we

may hope to extend his results to cover these cases by using his

method of "blowing up" the singularity (Guckenheimer and Holmes,

pp. 362-364). The procedure involves a sequence of several (or

possibly many) transformations, and involves laborous algebra.

We propose to use MACSYMA to effect these transformations, with

the goal of obtaining conditions for the determinacy of cases

which were previously excluded from Takens' discussion.

In addition, we propose to continue our previous work on

feedback control systems.

3.3 New Experiments in Dynamics of Feedback Controlled Elastic

Systems

3.3.1 Chaotic vibrations. The experiments underway in the

current grant deal with a one degree of freedom system (Figures 1

and 2). We propose to construct a manipulator arm with two or

three degrees of freedom in order to explore the conditions under

which the system will exhibit chaotic vibrations. We will also

add elastic flexibility as a parameter as well as feedback gain

in our exploration of strange attractor vibrations.

uV
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3.3.2 Measurement of fractal dimension of strange attractors.

For systems with more than one degree of freedom it becomes

difficult to experimentally measure Poincare mpas since we must

project a high dimensional space onto a two dimensional place.

Another tool which has been used to describe strange attractors is

the concept of a fractal dimension. This idea is connected to

the fact that a strange attractor in phase space does not have a

dimension of integer value. The fractional dimension of the

attractor provides a guide to the minimum number of degrees of

freedom needed to describe the chaotic motion of the system.

We propose to develop an experimental technique coupled with

computer data reduction which will enable us to measure the

-fractal dimension of strange attractor motions in experimental

Isituations.

3.3.3 Experiments in stiffness controlled structures. We will

attempt to initiate some exploratory studies of controlling

flexible structures with tension controlled cables. These

experiments will involve a flexible beam under cable controlled

tension or compression. Given the major mathematical emphasis of

this grant, only preliminary experimental studies will be

i![, initiated. We hope to explore the experimental parameter ranges

in which the mathematical analysis of stiffness controlled

structures should be carried out.

IS
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4. Reports and Papers Published or Written Under Present Grant

1. Holmes, P.J., "Bifurcation and Chaos in a Simple Feedback

Control System," Proc. 22nd IEEE Conference on Decision and

Control, San Antonio, TX, December 1983, Vol. 1, pp. 365-

370.

2. Holmes, P.J., "Dynamics of a nonlinear oscillator with

Feedback Control: I: Local Analysis," submitted for

publication, 1984a.

3. Wiggins, S. and Holmes, P.J., "On Slowly Varying

oscillations," in preparation, 1984.

4. Holmes, P.J., "Knotted Orbits and Bifurcation Sequences in

Periodically Forced Oscillations," XVIth ICTAM, Lyngby,

Denmark, August 19-24, 1984b.

5. Moon, F.C., and Rand, R.H., "Parametric Stiffness Control of

Flexible Structures," Proc. NASA Workshop on Identification

and Control of Flexible Space Structures, San Diego, May

1984.

6. Keith, W.L. and Rand, R.H., "Dynamics of a System Exhibiting

the Global Bifurcation of a Limit Cycle at Infinity,"

submitted for publication, 1984.

7. Moon, F.C., "Fractal Boundary for Chaos in a Two-State

Mechanical Oscillator," Phys. Rev. Letters, January 1984.

8. Moon, F.C. and Li, G-X., "The Fractal Dimension of the Two-

Well Potential Strange Attractor," accepted for presentation

at XVIth International Congress of Theoretical and Applied

Mechanics, Lyngby, Denmark, August 1984.
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9. Moon, F.C., Keith, W.L., and Golnaraghi, M., "Instabilities

in the Dynamics of a Two-Link, Flexible, Manipulator Arm,"

in preparation.
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Figure 1: Experimental appartus for chaos in a feedback controlled system.
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