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ABSTRACT

The authors proposed a research program to develop a generalized data-

base manager to support diverse kinds of data including text, icons, forms,

maps and other spatial data. The proposed research also included investigating

support for integrated data browsers to allow end-users to query, step through,

and update diverse data. Specific topics to be investigated included query

language facilities to support text and geometric data, user-defined abstract

data types in a DBMS, an ordered relation access method for text and other

ordered data, extended secondary indexes, main memory databases, con-

currency control for data browsers, and an application program interface based

on windows.

RESEARCH RESULTS DURING THE 1983-1984 YEAR

We have made significant progress in our exploration of abstract data types,

main memory data bases and extended secondary indexes during the last year.

We comment briefly on significant accomplishments in each of these areas in the

following subsections.

Abstract Data Types

One of our goals was to investigate ways of representing more complex

objects such as geometric objects, text, maps, etc. in a relational data base sys-

tem. Our major reseach result involves the possibility of using a query language

to represent data types. This research is explored in detail in [STON84], which is

included as an appendix to this document. Here we briefly review two previous

proposals, then indicate the significance of our current contribution.

Our previous approach to supporting complex objects in a data base system

was through abstract data types. We suggested allowing new types of columns to

be added to a data base system along with new operators on these columns



[STONE83]. For example, a skilled programmer could define polygons as a new

1data type along with a collection of operators on data of type polygon including

an intersection operator (!!). Then, other users could use polygons in the same

way they use the built-in types of a data manager (floating point numbers,

integers, and character strings). For example, a user could define the following

POLYGON relation

create POLYGON (pid = i4, p-desc = polygon)

and then find the polygons overlapping the unit square as follows:
'S

retrieve (POLYGON.all) where POLYGON.p-desc !! "0,0, 1, 1"

Support for user defined types and new operators has been constructed in

about 2500 lines of code for the INGRES relational data base system. Implemen-

tation details are addressed in [FOGG82, 0NG82], and ADTs run with a modest

performance degradation [FOGG82]. Initial suggestions concerning how to

integrate new operators into query processing heuristics and access methods

are contained in [STON83, ONG84].

The abstract data type approach to complex objects is conceptually clean

because no facilities peculiar to a specific kind of data are required. However, it

has the disadvantage that one cannot easily "open up" an object and examine its

component sub-objects. For example, suppose an airplane wing is defined as an

abstract data type composed of a collection of components (e.g. cowlings,

engines, etc.). In turn. each component could be composed of sub-components.

Then, suppose a user wished to isolate a turbine blade inside a specific engine on

a wing. To perform this task he would need two operators, one to "open up" the

wing and identify a specific engine and a second to "open up" the engine and

identify the desired turbine blade. Two cascaded operators are an awkward way

to search in a complex object for a specific sub-object.

-3-



A second approach is to extend a relational data base system with specific

facilities for particular complex objects. This is the approach taken in [LOR183]

for objects appropriate for CAD applications. It has the advantage that com-

ponent objects can be addressed but requires special-purpose services from a

DBMS.

Our major contribution under the current grant is a third approach which

may offer the good features of each of the abovc proposals. It involves support-

ing commands in the query language as a data type in a DBMS. In our environ-

ment this means that a column of a relation can have values which are one (or

more) commands in the data manipulation language QUEL. We explain our pro-

posal using the following example. Suppose a complex object is composed of

lines, text and polygons. Each component is described in a separate relation as

follows:

LINE (Lid, 1-desc)
TEXT (Tid, t-desc)
POLYGON (Pid, p-desc)

Example inserts into the LINE and POLYGON relation are:

append to LINE (Lid = 22,
description = "(0,0) (14,28)")

append to POLYGON (Pid = 44,
description = "(1,10) (14,22) (6,19) (12,22)")

Then, the object as a whole would be stored in the OBJECT relation:

OBJECT (oid, o-desc)

The description field in OBJECT would be of type QUEL and contain queries to

assemble the pieces of any given object from the other relations. For example,

the following insert would make object 6 composed of line 22 and polygon 44.

append to OBJECT(
oid = 6,
o-desc = "retrieve (LINE.all) where LINE.id = 22

retrieve (POLYGON.all) where pid =44")

4-



We have proposed extensions to QUEL which allow the components of an object

to be addressed. For example, one could retrieve all the line descriptions mak-

ing up object 6 which were of length greater than 10 as follows:

range of 0 is OBJECT
retrieve of (O.o-desc.1-desc) where

length (0.o-desc. 1-desc)>10

This notation has many points in common with the data manipulation language

GEM [ZANI83], and allows one to conveniently discuss subsets of components of

complex objects. In addition we can support clean sharing of lines, text and

polygons among multiple composite objects by having the same query in the

description field of more than one object, a feature lacking in the proposal of

[LR83].

Main Memory Data Bases

We have spent considerable time exploring the use of large amounts of main

memory to speed data base processing. In [DEWI84] we have presented our

results. The main contributions are:

1) an investigation of the viability of AVL trees in an environment where most of

a relation may be present in main memory

2) an investigation of new algorithms for performing relational joins which can

effectively utilize large quantities of main memory

3) an investigation of efficient means of obtaining crash recovery for a data base

mostly resident in main memory

Our conclusions are somewhat counterintuitive. For example, if is found

that merge-sort [SELI79] is rarely effective as a join tactic in an environment

with much main memory becasuse it is outperformed by several variations of

hashing joins. A full discussion of this point and others appears in [DEWI84],

which is also included in the appendix.

-6-
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Extended Secondary Indices

During the past year we have concentrated on designing a secondary index-

ing structure that would be appropriate for solid geometric objects such as the

polygons and rectagons which appear in CAD applications. Conventional spatial

indexing schemes (e.g. KDB trees [ROBI8i] are only appropriate for point data.

Our scheme, R-trees, allows efficient access to solid spatial objects according to

their location [GUTT84]. Leaf nodes in an R-tree contain index entries, each con-

sisting of a pointer to a spatial object and a rectangle that bounds the object.

Higher nodes contain similar entries, with pointers to lower nodes and rectan-

gles bounding the objects in the lower nodes. This hierarchy of covering rectan-

gles is built and maintained dynamically in a manner similar to a B+tree.

To search for all data overlapping a given rectangle, we examine the root

node to find which entries have rectangles overlapping the search area. The

corresponding subtrees can have data in the search area, and therefore we

apply the search algorithm recursively to each one. In this way we find all quali-

fying data, but avoid searching parts of the tree corresponding to objects that

are far from the search area.

R-trees can be built for any number of dimensions. In addition they are use-

ful for overlapping objects of non-zero size, a characteristic not shared by most

multi-dimensional indexing schemes, for example quad trees [FINK74], k-d trees

[BENT75], and K-D-B trees [ROBISI].

We have implemented R-trees, and in spatial search tests using VLSI data,

only about 150 usec of CPU time was required to find each qualifying item. This

indicates that the structure effectively restricts processing to qualifying or

*" near-qualifying data. Our paper on R-trees [GUTT84] is included in the appendix

to this proposal.
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* 1. Introduction

Spatial data objects often cover areas in multi-dimensional spaces and are not

well represented by point locations. For example, map objects like counties, census

tracts etc. occupy regions of non-zero size in two dimensions. A common operation

on spatial data is to search for all objects in an area. An example would be to find

all the counties that have land within 20 miles of a particular point. This kind of

spatial search occurs frequently in computer aided design (CAD) and geo-data appli-

cations. In such applications it is important to be able to retrieve objects efficiently

according to their spatial location.

. An index based on objects' spatial locations is desirable, but classical one-

dimensional database indexing structures are not appropriate to multi-dimensional

spatial searching. Structures based on exact matching of values, such as hash tables,

are not useful because a range search is required. Structures using one-dimensional

ordering of key values, such as B-trees and ISAM indexes, do not work because the

search space is multi-dimensional.

A number of structures have been proposed for handling multi-dimensional

point data, and a survey of methods can be found in [5]. Cell methods [4,8,161 are

not good for dynamic structures because the cell boundaries must be decided in

advance. Quad trees [7] and k-d trees [3] do not take paging of secondary memory

into account. K-D-B trees [13] are designed for paged memory but are only useful

for point data. The use of index intervals has been suggested in [15], but this

method cannot be used in multiple dimensions. Corner stitching [12] is an example

of a structure for two-dimensional spatial searching suitable for data objects of non-

A.
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zero size, but it assumes homogeneous primary memory and is not efficient for ran-

dom searches in very large collections of data. Grid files [10] handle non-point data

by mapping each object to a point in a higher-dimensional space. In this paper we

describe an alternative structure called an R-tree which represents data objects by

intervals in several dimensions.

Section 2 outlines the structure of an R-tree and Section 3 gives algorithms for

searching, inserting, deleting, and updating. Results of R-tree index performance

tests are presented in Section 4. Section 5 contains a summary of our conclusions.

2. R-Tree Index Structure

An R-tree is an index structure for n-dimensional spatial objects analogous to a

B-tree .2, 6). It is a height-balanced tree with records in the leaf nodes each contain-

ing an n-dimensional rectangle and a pointer to a o.bject having the rectangle as

a bounding box. Higher level nodes contain similar entries with links to lower nodes.

Nodes correspond to disk pages if the structure is disk-resident, and the tree is

designed so that a small number of nodes will be visited during a spatial search. The

index is completely dynamic; inserts and deletes can be intermixed with searches and

no periodic reorganization is required.

A spatial database consists of a collection of records representing spatial

objects, and each record has a unique identifier which can be used to retrieve it. We

approximate each spatial object by a bounding rectangle, i.e. a collection of intervals,

one along each dimension:

%
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'where n is the number of dimensions and Ii is a closed bounded interval [a,b]

describing the extent of the object along dimension i. Alternatively I, may have one

or both endpoints equal to infinity, indicating that the object extends outward

indefinitely.

Leaf nodes in the tree contain index record entries of the form

(I, tuple-identifier)

where tuple-identifier refers to a tuple in the database and I is an n-dimensional

rectangle containing the spatial object it represents. Non-leaf nodes contain entries

of the form

(I, child-pointer)

where child-pointer is the address of another node in the tree and I covers all rec-

tangles in the lower node's entries. In other words, I spatially contains all data

objects indexed in the subtree rooted at i's entry.

Let M be the maximum number of entries that will fit in one node and let

<-M be a parameter specifying the minimum number of entries in a node. An R--2

tree satisfies the following properties:

(1) Every leaf node contains between m and MVf index records unless it is the root.

(2) For each index record (I,tuple-identifier) in a leaf node, I is the smallest rec-

tangle that spatially contains the n-dimensional data object represented by the

indicated tuple.

(3) Every non-leaf node has between rn and M children unless it is the root.

(4) For each entry (I,child-pointer) in a non-leaf node, I is the smallest rectangle

that spatially contains the rectangles in the child node.

.. ,7 - ,.... .. .-. z.... -. ... . .
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(5) The root node has at least two children unless it is a leaf.

(8) All leaves appear on the same level.

Figure 2.1a and 2.1b show an example R-tree structure and the geometric forms

it represents.

The height of an R-tree containing N index records is at most FlogmNi,

because the branching factor of each node is at least m. The maximum number of

nodes is F---+ F-T+ + 1. Worst-case space utilization for all nodes except

the root is m Nodes will tend to have more than m entries, and this will decrease

tree height and improve space utilization. If nodes have more than 3 or 4 entries the

tree will be very wide, and almost all the space will be used for leaf nodes containing

index records. The parameter m can be varied as part of performance tuning, and

different values are tested experimentally in Section 4.

3. Searching and Updating

3.1. Searching

The search algorithm descends the tree from the root in a manner similar to a

B-tree. However when it visits a non-leaf node it may find that any number of sub-

trees from 0 to M need to be searched; hence it is not possible to guarantee good

wort-case performance. Nevertheles3 with most kinds of data the update algorithms

will maintain the tree in a form that allows the search algorithm to eliminate

irrelevant regions of the indexed space, and examine only data near the search area.

'4
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In the following we denote the rectangle part of an index entry E by E.I, and

the tuple-identifier or child-pointer part by E.p.

Algorithm Search. Given an R-tree whose root node is T, find all index records

whose rectangles overlap a search rectangle S.

Si. [Search subtrees.]

If T is not a leaf, check each entry E to determine whether E.I overlaps S.

For all overlapping entries, invoke Search on the tree whose root node is

pointed to by E.p.

S2. [Search leaf node.]

If T is a leaf, check all entries E to determine whether E.I overlaps S. If so, E

is a qualifying record.

3.2. Insertion

Inserting index records for new data tuples is similar to insertion in a B-tree in

that new index records are added to the leaves, nodes that overflow are split, and

splits propagate up the tree.

Algorithm Insert. Insert a new index entry E into an R-tree.

I1. [Find position for new record.]

Invoke ChooseLeaf to select a leaf node L in which to place E.

12. [Add record to leaf node.]

If L has room for another entry, install E. Otherwise invoke SplitNode to

obtain L and LL containing E and all the old entries of L.

V-
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13. [Propagate changes upward.]

Invoke ExpandTree on L, also passing LL if a split was performed.

14. [Grow tree taller.]

If node split propagation resulted in the root being split, create a new root

whose children are the two nodes resulting from the split.

Algorithm ChooseLeaf. Select a leaf node of an R-tree in which to place a new

index entry E.

CLI. [Initialize.]

Set N to be the root node.

CL2. [Leaf check.]

If N is a leaf, return N.

CL3. [Choose subtree.]

If N is not a leaf, let F be the entry in N whose rectangle F.I needs least

enlargement to include E.I. Resolve ties by choosing the entry with the rec-

tangle of smallest area.

CL4. [Descend until a leaf is reached.]

Set N to be the child node pointed to by F.p and repeat from CL2.

Algorithm ExpandTree. Ascend from a leaf node L in an R-tree to the root,

adjusting covering rectangles and propagating node splits as necessary.

ET1. [Initialize.]

Set N=L. If L was split previously, set NN to be the resulting second node.

.'1
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ET2. [Check if done.]

If N is the root, stop.

ET3. [Adjust covering rectangle in parent entry.]

Let P be the parent node of N, and let EN be N's entry in P. Adjust EN."

so that it tightly encloses all entry rertangles in N.

ET4. [Propagate node split upward.]

If N has a partner NN resulting from an earlier split, create a new entry ENN

with ENN.p pointing to NN and ENN.I enclosing all rectangles in NN. Add

ENN to P if there is room. Otherwise, invoke SplitNode to produce P and

PP containing ENN and all P's old entries.

ET5. [Move up to next level.]

Set N=-P and set NN=PP if a split occurred. Repeat from ET2.

Algorithm SplitNode is described in Section 3.5.

3.3. Deletion

Algorithm Delete. Remove index record E from an R-tree.

DI. [Find node containing record.]

Invoke FindLeaf to locate the leaf node L ontaining 3top if the record

was not found.

D2. [Delete record.j

Remove E from L.



D3. [Adjust tree.]

Invoke CondenseTree to adjust the covering rectangles on the path from L

to the root, to eliminate under-full nodes, and to propagate node eliminations

up the tree.

D4. [Shorten tree.]

If the root node has only one child after the tree has been adjusted, make the

child the new root.

Algorithm FindLeaf. Given an R-tree whose root node is T, find the leaf node con-

taining the index entry E.

FLI. [Search subtrees.]

If T is not a leaf, check each entry F in T to determine if F.! overlaps E.I.

For each such entry invoke FindLeaf on the tree whose root is pointed to by

F.p until E is found or all entries have been checked.

FL2. [Search leaf node for record.]

If T is a leaf, check each entry to see if it matches E. If E is found return T.

Algorithm CondenseTree. Given an R-tree leaf node L from which an entry has

been deleted, elimi-ate the node if it has too few entries and relocate its entries.

Propagate node elimination upward as necessary. Adjust all covering rectangles on

the path to the root, making them smaller if possible.

CTl. [Initialize.]

Set N=L. Set Q, the set of eliminated nodes, to be empty.

w2V
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CT2. [Find parent entry unless root has been reached.]

If N is the root, go to CT6. Otherwise let P be the parent of N, and let EN

be N's entry in P.

CT3. [Eliminate under-full node.]

If N has fewer than m entries, delete EN from P and add N to set Q.

CT4. [Adjust covering rectangle.]

If N has not been eliminated, adjust EN.I to tightly contain all entries in N.

CT5. [Move up one level in tree.]

Set N=P and repeat from CT2.

CT6. [Re-insert orphaned entries.]

Re-insert all entries of nodes in set Q. Entries from eliminated leaf nodes are

re-inserted in tree leaves as described in Algorithm Insert, but entries from

higher-level nodes must be placed higher in the tree. This is done so that

leaves of their dependent subtrees will be on the same level as leaves of the

main tree.

The procedure outlined above for disposing of under-full nodes differs from the

corresponding operation on a B-tree, in which two or more adjacent nodes are

merged. A B-tree-like approach is possible for R-trees, although there is no adja-

cency in the B-tree sense: an under-full node can be merged with whichever sibling

will have its area increased lea.t, or the orphaned entries can be distributed among

sibling nodes. Either method can cause nodes to be split.

.-
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Re-insertion was chosen instead for two reasons: first, it accomplishes the same

thing and is easier to implement because the Insert routine can be used. Efficiency

should be comparable because pages needed during re-insertion usually will be the

same ones visited during the preceding search and will already be in memory. The

second reason is that re-insertion incrementally refines the spatial structure of the

tree, and prevents gradual deterioration that might occur if each entry were located

permanently under the same parent node.

3.4. Updates and Other Operations

If a data tuple is updated so that its covering rectangle is changed, itt index

record must be deleted, updated, and then re-inserted, so that it will find its way to

the right place in the tree.

Other kinds of searches besides the one described above may be useful, for

example to find all data objects completely contained in a search area, or all objects

that contain a search area. These operations can be implemented by straightforward

variations on the algorithm given. A search for a specific entry whose identity is

known beforehand is required by the deletion algorithm and is implemented by Algo-

rithm FindLeaf. Variants of range deletion, in which index entries for all data

objects in a particular area are removed, are also well supported by R-trees.

3.5. Node Splitting

When an attempt is made to add an entry to a full node containing M entries,

the collection of M+ 1 entries must be divided between two nodes. The division

i .. ". .'. "........... -.. -..... "."."."..-...........".... ".-........."..."..."."'....-....""....,..."..-.
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should be done in a way that makes it as unlikely as possible that both new nodes

will need to be examined on subsequent searches. Since the decision to visit a node

is based on whether the search area overlaps the covering rectangle for the node's

entries, the total area of the two covering rectangles should be minimized. Figure

3.1 illustrates this point. The area of the covering rectangles in the "bad split" case

is much larger than in the "good split" case.

*Note that the same criterion was used in procedure ChooseLeaf to decide where

to insert a new index entry: at each level in the tree, the subtree was chosen whose

covering rectangle would have to be enlarged least.

We now turn to algorithms for partitioning the set of M+ 1 entries into two

* groups, one for each new page.

- - - - - -----

- --I Ii I I

Bdst Goo - s-l-t
I I

I , I

I I I

II I

SIi I

Had split Good split

Figure 3.1

i .; . . .. . - - . .. - . - . .. - .- .. . .. .- . . ... . .. .. .
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3.5.1. Exhaustive Algorithm

The most straightforward way to find the minimum area node split is to gen-

erate all alternatives and choose the best. However, the number of possible parti-

tions is approximately 2 M- and a reasonable value of M is 50, so the number of

) possible splits is very large. We implemented a modified form of the exhaustive node

split algorithm to use as a standard for comparison with other algorithms, but it was

too slow to use with large page sizes.

3.5.2. A Quadratic-Cost Algorithm

This algorithm attempts to find a small-area split, but is not guaranteed to find

one with the smallest area possible. The cost is quadratic in M and linear in the

number of dimensions. The algorithm picks two of the M+ I entries to be the first

elements of the groups which will make up the new nodes. The pair chosen is the

one that would waste the most area if both entries were put in the same group, i.e.

the area of the rectangle covering both entries, minus the areas of the rectangles in

the entries, would be greatest. Then the remaining entries are selected one at a time

and assigned to a group. At each step the area expansion required to add each entry

to each group is calculated, and the entry chosen is the one showing the greatest

difference between the two groups in the expansion required to include it.

Algorithm Quadratic Split. Divide a set of M+ 1 index entries into two groups.

* A two dimensional rectangle can be represented by four numbers of four bytes each.
If a pointer also takes four bytes, each entry requires 20 bytes. A page of 1024 bytes will bold
about 50 entries.
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QSI. [Pick first entry for each group.]

Apply Algorithm PickSeeds to choose two entries to be the first elements of

the groups. Assign each to a group.

QS2. [Check if done.]

If all entries have been assigned, stop. If one group has so few entries that all

the rest must be assigned to it in order for it to have the minimum number

m, assign them and stop.

*-QS3. [Select entry to assign.]

Invoke Algorithm PickNext to choose the next entry to assign. Add it to

the group whose covering rectangle will have to be enlarged least to accommo-

date it. Resolve ties by adding the entry to the group with smaller area, then

* .to the one with fewer entries, then to either. Repeat from QS2.

Algorithm PickSeeds. Select two entries to be the first elements of the groups.

PSI. [Calculate inefficiency of grouping entries together.]

For each pair of entries E1 and E2 , compose a rectangle J including E1.1 and

E2.I. Calculate d= area(J) - area(E,.I) - area(E2..I).

PS2. [Choose the most wasteful pair.]

Choose the pair with the largest d to be put in different t-oups.

Algorithm PickNext. Select one remaining entry for classification in a group.

PN1. [Determine cost of putting each entry in each group.]

For each entry E not yet in a group, calculate d1= the area increase required

in the covering rectangle of Group I to include E.I. Calculate d, similarly for



Group 2.

PN2. [Find entry with greatest preference for one group.]

Choose the entry with the greatest difference between d1 and d2. If more

than one has the same lowest difference pick any of them.

3.5.3. A Linear-Cost Algorithm

This algorithm is linear in M and in the number of dimensions. First it selects

seed entries for the two groups, choosing the two whose rectangles are the most

widely separa~ea along any dimension. Then it processes the remaining entries

without ordering them in any special way, placing each in one of the groups.

Algorithm Linear Split is identical to Quadratic Split but uses a different version

* of PickSeeds. PickNext simply chooses any of the remaining entries.

Algorithm LinearPickSeeds. Select two entries to be the first elements of the

groups.

LPS1. [Find extreme rectangles along all dimensions.]

Along each dimension, find the entry whose rectangle has the highest low side,

and the one with the lowest high side. Record the separation.

LPS2. [Adjust for shape of the rectangle cluster.]

Normalize the separations by dividing by the width of the entire set along the

corresponding dimension.

LPS3. [Select the most extreme pair.]

Choose the pair with the greatest normalized separation alung any dimension.
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4. Performance Tests

We implemented R-trees in C under Unix on a Vax 11/780 computer. Our

implementation has been used for a series of performance tests, whose purpose was

to verify the practicality of the structure, to choose values for M and m, and to

evaluate different node-splitting algorithms. This section presents the results.

Five page sizes were tested, corresponding to different values of M:

Bytes per Page Max Entries per Page (M)
128 6
258 12
512 25

1024 50
2048 102

The minimum number of entries in a node (m) was tested for values M/2, M/3, and

2. The three node split algorithms described earlier were implemented in different

versions of the program.

All our tests used two-dimensional data, although the structure and algorithms

work for any number of dimensions. During the first part of each test run the pro-

gram read geometry data from files and constructed an index tree, beginning with an

empty tree and calling Insert with each new index record. Insert performance was

measured for the last 10% of the records, when the tree was nearly its final size.

During the second phase the program called the function Search with random

I.
search rectangles made up using the local random number generation facility. 100

searches were performed per test run, each retrieving about 5% of the data.

Finally the program read the input files a second time aud called the function

Delete to remove the index record for every tenth data item. Thus measurements

...............................................
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were taken for scattered deletion of 109o of the index records.

The tests were done using Very Large Scale Integrated circuit (VLSI) layout

data from the RISC-Il computer chip. [11]. The first series of tests used the circuit

cell CENTRAL, containing 1057 rectangles (Figure 4.1).

Figure 4.2 shows the cost in CPU time for inserting the last 10% of the records

as a function of page size. The exhaustive algorithm, whose cost increases exponen-

tially with page size, is seen to be very slow for larger page sizes. The linear algo-

rithm is fastest, as expected. With this algorithm CPU time hardly increased with

page size at all, which suggests that node splitting was responsible for only a small

F - w

Figure 4.1
Circuit cell CENTRAL (1057 rectangles).

21
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part of the cost of inserting records.

The decreased cost of the quadratic algorithm with a stricter node fill require-

ment reflects the fact that it stops doing expensive processing when one group

becomes too full, and changes to a linear mode for the rest of the split.

The cost of deleting an item from the index, shown in Figure 4.3, is affected by

the split algorithm and especially by the minimum node fill requirement. This is

true because deletion indirectly causes node splitting when entries from under-full

nodes are re-inserted. Stricter fill requirements cause nodes to be eliminated more

frequently, and each one has more entries to re-insert. When the minimum fill is 2

re-insertion is rare; the cost of scanning nodes and traversing the tree dominates and

E m=2 E = Exhaustive algorithm
200 / Q = Quadratic algorithm

/ L = Linear algorithm

100 /

/ ,E m=M/2
cu/ / Q m=2CPU 50 ////S

msec.
. Byter perpag

CPUinsert c i i Q m=M/2

2. "

-. ":. , - - o .. .. . . . L m =2
" '"10. L m=M/2

:%:128 256 512 1024 2048

LI  Bytes per page

Figure 4.2
CPU cost of inserting records.
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the split algorithm has little effect. The curves are rough because node eliminations

occur randomly and infrequently; there were too few of them in our tests to smooth

out the variations.

Figures 4.4 and 4.5 show that the search performance of the index is very insen-

sitive to the use of different node split algorithms and fill requirements. "The exhaus-

tive algorithm produces a slightly better index structure, resulting in fewer pages

touched and less CPU cost, but even the crudest algorithm, the linear one with

m=M/2, provides reasonable performance. Most combinations of algorithm and

minimum fill come within 10% of the performance achieved with node splits pro-

duced by the exhaustive algorithm.

100 a a a a a i, aa,
E = Exhaustive algorithm

E m=M/2 Q = Quadratic algorithm
50/ L = Linear algorithm
50CPU m=M/2

msec. -- 7 Q m=M/2
per
delete 20 / /*

L m=2/'/ - ".'1"Q m=2

10 " E m =2 --

128 256 512 1024 2048
Bytes per page

Figure 4.3
CPU cost of deleting records.
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.6 E = Exhaustive algorithm

Q = Quadratic algorithm
. L = Linear algorithm;-':..5-

Pages . E m=2
touched
per \'.
qualifying -

record .3 *5 ,

.2

L m=M/2

.1 L m=2
Q m=M/2

128 256 512 1024 2046

Bytes per page

F igure 4.4
Search performance: Pages touched.

I I I I a I I I I a Il

E = Exhaustive algorithm
500 Q = Quadratic algorithm L m=M/2

L = Linear algorithm 
L II

CPU ,

usec. " Q m=M/2
per Lm
qualifying
record 300 

Q m=2

200-

E m=2 E m=M/2

100 1 __ ___ ___ __ ___,_,__ ___ __-._
125 256 512 1024 2048

Bytes per page

Figure 4.5
Search performance: CPU cost.

,p.. .. " .. ,- -. $ ." ., ' , .-. ' - . ,, -. ,y ,-. -,, .. , . . ,.. . ., -,-.. .,. . , . . . , . ,- ,,.- . . , ,



-1 MI..1. K

21

Figure 4.8 shows the storage space occupied by the index tree as a function of

algorithm, fill criterion and page size. Generally the results bear out our expectation

that stricter node fill criteria produce smaller indexes. The least dense index con-

sumes about 50% more space than the T-ost dense, but all results for 1/2-full and

1/3-full (not shown) are within 15% of each other.

We performed a second series of tests to measure R-tree performance as a func-

tion of the amount of data in the index. The same sequence of test operations as

before was run on samples containing 1057, 2238, 3295, and 4559 rectangles. The

first sample contained layout data from the same circuit cell CENTRAL a used ear-

lier. The second sample consisted of layout from a larger circuit cell containing 2238

rectangles. The third sample was made by using both CENTRAL and the larger

E Exhaustive algorithm
S=Quadratic algorithm

50k L
E rn=2 L Linear algorithm

Q m=2
45k

Bytes 40k

required L m=2
35k L m=M/2-

Q m=M/2
30k

125 256 512 1024 2048
Bytes per page

Figure 4.6
Space efficiency.
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cell, with the two cells effectively placed on top of each other. Three cells were com-

bined to make up the last sample. Because the samples were all composed in

different ways using varying data, performance results would not scale perfectly and

some unevenness was to be expected.

Two combinations of algorithm and node fill requirement were chosen for the

tests: the linear split algorithm with m=2, and the quadratic algorithm with

m=M/3, both with a page size of 1024 bytes (M=50). Both have good search per-

formance; the linear configuration has about half the insert cost, and the quadratic

one produces a smaller index.

Figure 4.7 shows the results of tests whose purpose was to determine how insert

and delete performance is affected by tree size. Both test configurations produced

trees with two levels for 1057 records and three levels for the other sample sizes.

The figure shows that the cost of inserts with the quadratic algorithm is nearly con-

stant except where the tree increases in height, where the curve shows a definite

jump because the number of levels where an expensive split can occur increases. The

liuear algorithm shows no jump, indicating again that linear node splits account for

only a small part of the cost of inserts.

Deletion with the linear configuration has nearly constant cost for fixed tree J

height, and a small jump where the tree becomes taller. The tests involved too few

deletions to cause any node splits on re-insertion with the relaxed node fill require-

ment. A few splits did occur during deletion with the quadratic configuration, but

only I to 6 per test run, and the number of nodes eliminated was similarly small,

varying between 4 and 15. Such small numbers, coupled with the high cost of node
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Q = Quadratic algorithm. m=M/3
L = Linear algorithm, m=2

40-

CPU msec.
per 30

. .e l e t 
2 0 

Q i n e re t e

insert

deee 20 Q delete

10-Lisr

1000 2000 3000 4000 5000
Number of records

Figure 4.7
CPU cost of inserts and deletes vs. amount of data.

eliminations, made the quadratic curve very erratic.

When allowance is made for variations due to the small sample size, the tests

show that insert and delete cost is independent of tree width but is affected by tree

height, which grows slowly with the number of data items. This performance is very

similar to that of a B-tree.

The search tests retrieved between 3% and 6% of the data on each search. Fig-

ures 4.8 and 4.9 confirm that the two configurations have nearly the same perfor-

mance. The downward trend of the curves is to be expected, because the cost of

processing higher tree nodes becomes less significant as the amount of data retrieved

in each search increases. The decrease would have been more uniform, but an unex-

pected variation in the 2238-item sample raised the cost at the second data point.

......... - .-.... .. .. ..-.. 
.. ,-....,--.......-,.. 
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..- _ .- ..-. 
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.15
Q = Quadratic algorithm, m=M/3

L = Linear algorithm, m=2

Pages .1

touched
per
qualifying
record

.05

1000 2000 3000 4000 5000
Number of records

Figure 4.8
Search performance vs. amount of data: Pages touched

This sample was considerably denser than the others and contained more long shapes

spanning many small ones. The search rectangles tended to overlap a larger fraction

of the bins in the index, which resulted in less efficient searching.

The low CPU cost per qualifying record, less than 150 microseconds for larger

amounts of data, shows that the index is quite effective in narrowing searches to

small subtrees.

The straight lines in Figure 4.10 reflect the fact that almost all the space in an

R-tree index is used for leaf nodes, whose number varies linearly with the amount of

data. For the linear-2 test configuration the total space occupied by the R-tree was

about 40 bytes per data item, compared to 20 bytes per item for the index records

alone. The corresponding figure for the quadratic-1/3 configuration was about 33

..e,
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300

250

CPU usec.
per 200
qualifying
record

150 Q

L
100

50 Q = Quadratic algorithm, m=M/3

L = Linear algorithm, m=2

1000 2000 3000 4000 5000
Number of records

Figure 4.9
Search performance vs. amount of data: CPU cost

bytes per item.

5. Conclusions

The R-tree structure has been shown to be useful for indexing spatial data

objects that have non-zero size. Nodes corresponding to disk pages of reasonable size

(e.g. 1024 bytes) have values of M that produce good performance. With smaller

nodes the structure should also be effective as a main-memory index; CPU perfor-

mance would be comparable but there would be no I/O cost.

The linear node-split algorithm proved to be as good as more expensive tech-

niques. It was fast, and the slightly worse quality of the splits did not affect search

performance noticeably.
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Preliminary investigation indicates that R-trees would be easy to add to any

relational database system that supported conventional access methods, (e.g.

INGRES [91, System-R [1] ). Moreover, the new structure would work especially well

in conjunction with abstract data types and abstract indexes (14] to streamline the

handling of spatial data.

200k
Q = Quadratic algorithm, m=M/3 L

,. L = Linear algorithm, m=2

150k Q

Bytes
required

1* 100k

50k

1000 2000 3000 4000 5000
Number of records

Figure 5.10
Space required for R-tree vs. amount of data.
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ABSTRACT
This paper explores the use of commands in a query language as an

abstract data type (ADT) in data base management systems. Basically, an ADT
facility allows new data types, such as polygons, lines, money, time, arrays of
floating point numbers, bit vectors. etc., to supplement the built-in data types in
a data base system. In this paper we demonstrate the power of adding a data
type corresponding to commands in a query language. We also propose three
extensions to the query language QUEL to enhance its power in this augmented
environment.

* I INTRODUCTION

Abstract data types (ADTs) [LISK74, GuTT77] have been extensively

investigated in a programming language context. Basically, an ADT is an

encapsulation of a data structure (so that its implementation details are not

visible to an outside client procedure) along with a collection of related

t7 operations on this encapsulated structure. The canonical example of an ADT is a

stack with related operations: new, push, pop and empty.

The use of ADTs in a relational data base context has been discussed in

[ROWE79, SCHM78, WAXSS79]. In these proposals a relation is considered an

abstract data type whose implementation details are hidden from application

level software. Allowable operations are defined by procedures written in a

*.[-. -programming language that supports both data base access and ADTs. One use

This Research was supported by the Navy Electronics Sysens Comnmtand under Contract
N00039-83-C-0243 and by t he Air Force Offce of Scientiflc Research under Grant 83-0021.

% .
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of this kind of data type is suggested in [R0WE79] and involves an EMPLOYEE

abstract data type with related operations hire-employee, fire-employee and

change-salary.

In [STON82, STON83] we presented an alternate use of ADTs. Instead of

treating an entire relation as an ADT, we suggested that the individual columns

of a relation be ADTs. This use of ADTs is a gene.'alization of data base experts

[STON80].

In Section II we briefly review our proposal and then in Section III we

introduce QUEL as a data type and indicate desirable operators for this new

type. Section IV turns to a discussion of three extensions to the QUEL language

that are useful in this environment. In Section V we consider optimization issues

related to QUEL ADTs. Lastly, we indicate that several data base problems

including referential integrity, non-first normal form relations, and

generalization hierarchies can be solved by defining QUEL as an abstract data

type. Section VI presents our approach to these problems. Section VII

concludes by summarizing the paper.

I] ABSTRACT DATA TYPES

We explain our use of ADTs with an example concerning geometric objects.

In computer aided design of integrated circuits, objects are often made up of

rectangular boxes. For a VLSI data base one would like to define a column of a

". relation as type "box". For example, one might create a boxes relation as

follows:

create boxes (owner = i4.
layer = c15,
box-desc = box-ADT)

Here, the boxes relation has three fields: the identifier of the circuit containing

the box, the processing layer for the box (polysilicon, diffusion, etc.) and a

description of the box's geometry. All fields are represented by built-in types

'' ' ,,_ .".-- -. ''.. * " - - "- , , . . . . . . . . . . .



except box-desc which is an ADT.

Tuples can be appended to this relation using QUEL [STON76] as follows:

append to boxes (owner = 99,
layer = "polysilicon",
box-desc = "0,0,2,3")

The built-in data types are converted to an internal representation and stored in

a data base system. The string "0.0,.2,3", represents the box bounded by x=O,

y=0, x=2, y=3 and requires special recognition code. An input procedure must

be available to the DBMS to perform the conversion of the character string

"0.0.2.3" to an object with data type box-ADT. Such a routine is analogous to the

procedure ascii-to-float which converts a character string to a floating point

number.

It is desirable to have special operators for box-ADTs. for example, one

would clip box dimensions as follows:

range of b is boxes
replace b (box-desc = b.box-desc * "0,0.4,1")

where b.owner = 99

The * operator represents box intersection. In this case "0,0,4,1" will be

converted to an object of type box-ADT, and a procedure must be available to

perform box intersection between this ADT and b.box-desc.

In addition, one might want to define new comparison operations. For

example, one might wish to define 11 as an operator meaning "overlaps". The f

operator could then be used to return the boxes overlapping the unit square

based at the origin as follows:

.-.. range of b is boxes
retrieve (b.box-desc)

where b.box-desc I "0,0.1,1'

Again, a procedure is required for the overlap operator.

::.'. -" . . . " " '" " " '" . . . :"?.'i . . -. .".. . ..i:' .. .. . ':g -- '. .



As a result an ADT contains the following elements:

a) a registration procedure to inform the DBMS of the new type, giving the

length of its internal representation.

b) a collection of routines which implement operators for this type and perform

conversions to other types. These routines must obey a prespecifled protocol

for accepting arguments and returning results. Once defined by the ADT

implementor, the new type and operators become available to other users of the

DBMS.

c) modest changes to the parser and query execution routines to correctly

parse commands with new operators and call the routines defined by the ADT

implementor during execution.

This abstraction has been constructed in about 2500 lines of code for the

INGRES relational data base system. Implementation details are addressed in

[FOGG82, 0NG82], and ADTs execute with a modest performance degradation

[FOGG82]. Suggestions concerning how to integrate new operators into query

processing heuristics and access methods are contained in [STON83, ONG83].

III QUEL AS A DATA TYPE

We turn now to utilizing the ADT mechanism to define commands in a query

language as an ADT. Hence, a column of a relation can have values which are one

(or more) commands in the data manipulation language, QUEL. We explain our

proposal using the following relations:

EMP (name, salary-history, hobbies, dept. age, bonus)
DEPT (dname, floor)
SALARY (name, date, pay-rate)

SOFTBALL (name, position, average)
MUSIC (name, instrument, level)
RACING (name. auto, circuit)
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A tuple exists in the EMP relation for each employee in a particular company.

Employees can have zero or more hobbies. For those employees who have

softball as a hobby, a tuple in the SOFTBALL relation gives their position and

batting average. If an employee plays an instrument, a tuple in MUSIC indicates

the instrument he plays and his skill level. Lastly, those employees who race

sportcars are listed in the RACING relation along with the type of car they drive

and the circuit they race on.

The SALARY relation contains employees salary histories. Each time the

salary of an employee is modified, a tuple is appended to the SALARY relation

K 'indicating the date of the modification and the new pay-rate. The DEPT relation

contains the floor number of each department. Lastly, the EMP relation

contains three fields, salary-history, hobbies, and dept which are of type QUEL.

The hobbies field holds a query (or queries) which, when executed, will yield

information on the employee's hobbies. The dept field contains a query which

will return the name of the department for which the employee works, and the

salary-history field contains a query that finds all records in his salary history.

An example insert to the EMP relation might be:

append to EMP (
name = "Fred",
salary-history = "range of s is SALARY

retrieve (s.all)
where s.name = "Fred"",

hobbies = "range of m is MUSIC
retrieve (m.all) where m.name = "Fred"
range of r is RACING
retrieve (r.all) where r.name = "Fred"",

dept = "range of d is DEPT
retrieve (d.dname) where d.dname = "toy"",

age = 25,
bonus = 10)

The appropriate additional insertions are:

append to MUSIC(
name = "Fred",
instrument = "piano",
level = "novice")

%-q
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append to RACING(
name "Fred",
auto = "formula Ford",
circuit = "SCCA")

This collection of inserts will append Fred as a new employee in the toy

department with racing and music as hobbies.

In a later section we will propose an implementation of this data type. In

this section we specify desirable operators this type and their intended

semantics.

The current implementation of ADTs [FOGG82, ONG82] allows operators to

be overloaded. INGRES currently allows "." as an operator with two operands, a

tuple variable and a column name, e.g E.name. Our first ADT operator overloads

the operator ".". First, we propose that "." allow a left operand which is a field of

type QUEL and a right operand of type column name. For example:

range of e is EMP
retrieve (e.hobbies.instrument)

where e.name = "Fred"
and e.hobbies.level = "novice"

In this case "name" is a column in the relation indicated by e while "level" and

"instrument" are columns in the relation (or relations) specified by the QUEL in

e.hobbies. This command is interpreted as follows:

1) Find all values for e.hobbies which satisfy the qualification "e.name = "Fred".

2) For each value found, ignore all commands which it contains except
RETRIEVE and TJFINE VIEW. For each RETRIEVE command which the value
contains, replace the keyword RETRIEVE with the keyword DEFINE VIEW and
execute it to form a legal view. For each view definition which the value
contains, execute it directly to form a legal view. Then, define t to be a tuple
variable which will iterate over the this collection of views. For each one,
execute:

retrieve (t.instrument) where t.level = "novice"
The result of the overall query is the union of the results of the individual
commands executed in step 2.

In general, if X is a tuple variable, Y is a field of type QUEL, and Z is a field,

then X.Y.Z is a field in a collection of views, one for each RETIRIEVE and DEFINE

W-6-
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VIEW command contained in a qualifying value for X.Y. Moreover, "." can be

arbitrarily nested and the above semantics apply recursively at each level. Also

note that this use of "." is similar to that proposed in GEM [ZANI83]. and we

comment further on the relationship of our proposal to GEM in a later section.

Our second use of "." has a left operand which is a field of type QUEL and a

right operand which is a QUEL statement, e.g.:

range of e is EMP
retrieve (e.salary-history.

retrieve (date, pay-rate) where pay-rate < 400)
where e.name = "Fred"

Here. e.salary-history is a field of type QUEL and the inner RETRIEVE command

* is the right hand operand for the intervening .... This use of . is a short-hand

notation for the equivalent expression:

range of e is EMP
retrieve (e. salary-history. date, e.salary-history.pay-rate)
where e.name = "Fred" and e.salary-history.pay-rate < 400

In this nested retrieval context "." has a similar meaning to the one discussed

above. In particular, the left hand operator evaluates to the collection of views

mentioned earlier, and a range variable, say t, is created to iteratively span this

set. The QUEL command which is the right hand operand in then executed for

each view by appending t as the tuple variable to any field name which does not

have an explicit variable.

When the right hand operand is a RETRIEVE command, the result of this

operator is a collection of result relations. The semantics of "." when the right

hand operand is a QUEL update command are unclear, and we expect to support

this form of nesting only for retrieves.

We now turn to several other operators on QUEL data items. First, all the

normal character string operators can be overloaded. For example:

range of e is EMP
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retrieve (e.name) where e.dept = "range of d is DEPT
retrieve (d.dname) where
d.dname = "toy""

In this context, "=" simply implies character string equality between e.dept and

the constant string containing the query.

Consider an operator, ==, which has two fields of type QUEL as operands

and returns true if they specify the same collection of tuples. For example,

range of e is EMP
range of f is EMP
retrieve (e.name, f.name) where e.salary-history ==

f. salary-history

This query will return pairs of employees with identical names and salary

histories. A containment operator, <<, can be specified similarly for operands

which are fields of type QUEL. Additionally, all operators in a relational algebra

(e.g join, union, intersection) can be easily defined between fields of type QUEL

Any relational algebra operators will produce a result of type relation.

Since QUEL allows cascaded operators, we require operators for data of type

relation. It is straight forward to overload all operators for the QUEL data type

to apply to data of type relation. For example to find pairs of employees with

different names and the same salary history. we would execute

range of e is EMP
range of f is EMP
retrieve (e.name, f.name)

where e. salary-history.
retrieve (date, payrate)

==f.salary-history.
retrieve (date, payrate)

Here, has relations as both operands and returns true if the two relations are

equal.

The last generalization is to allow any operator for fields of type QUEL to be

overloaded to apply to operands which are QUEL statements or tuple variables.

For example, suppose a relation STANDARD contains a collection of dates and
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payrates. The following command would find all employees with the same salary

history that appears in STANDARD:

range of e is EMP
range of s is STANDARD
retrieve (e.name)

where e.salary-history.
retrieve (date, payrate)

== retrieve (s.all)

Here the right hand operand of == is a simple QUEL statement. A shorthand for

the above statement would have a tuple variable for the right operand of == as

follows:

. range of e is EMP
range of s is standard
retrieve (e.name)

where e.salary-history.
retrieve (date, payrate)

==S

Our complete set of proposed operators appears in Table 1. Most can be

applied interchangeably to operands which are fields of type QUEL, tuple

variables, QUEL statements, and relations.

IV EXTENSIONS TO QUEL

There are three main extensions which we propose for inclusion in QUEL to

enhance its power in the ADT environment of Section III. In addition, we endorse

the proposal made in [ZANI83] to have default tuple variables. In this situation,

a command such as:

retrieve (EMP.age) where EMP.name = "Fred"

would be interpreted as:

range of EMP is EMP
re trieve (EMP.age) where LMP.name = "Fred"

This suggestion simplifies many QUEL commands and was inserted into one

version oft UEL [RTI83].
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operator description left right result
name operand operand

referencing field of field-name field
type QUEL

- - referencing field of QUEL relation
type QUEL statement

- character * * boolean
string compare

.= relation 5 boolean
compare

relation * boolean
inclusion

relation S boolean
inclusion

U union * relation

'!! intersection * relation

JJ natural join * relation

OJ outer join * * relation

" denotes a field of type QUEL, a QUEL statement,
a relation or a tuple variable

Proposed Operators

Table 1

In addition to default tuple variables we propose three other extensions.

-:...First, we suggest the possibility of executing data in the data base rather than

retrieving or updating it. The syntax is as follows:

exec (EMP.hobbies) where EVIP.name = "Fred"

The target list must be a field of type QUEL and instances which satisfy the

i2j qualification are found and executed. In this case, the hobbies which Fred

engages in are returned.
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This extension frees a user from having to know the field names in the QUEL

in e.hobbies. Also, it allows one to store updates in the data base and execute

them at a later time. Such data base procedures are discussed in Section VI.

Notice that EXEC complicates the extended interpretation of "." in the

previous section. For example, it is reasonable to have a value for e.hobbies

which is an EXEC command. For example, one could change Fred's hobbies to

be the same as John's by the following update:

range of E is EMP
replace e (hobbies =

"range of f is EMP
exec (f.hobbies) where f.name = "John.")

where e.name = 'Tred"

If X is a tuple variable, Y is a field of type QUEL and Z is a field and if a qualifying

value for X.Y contains an EXEC command, then the semantics of X.Y.Z from the

previous section must be extended. In particular X.Y.Z can be a column in an

additional set of views. For each EXEC contained in a qualifying value of X.Y,

replace the EXEC by RETRJEVE and run the command. If the result contains

values of type QUEL, then X.Y.Z must span any views which result from these

values by executing DEFINE VIEW commands, replacing RETRIEVE commands by

DEFINE VIEW comands and recusively applying the above meaning to EXEC

commands.

The second extension is to generalize the range statement. We propose to

allow a tuple variable to range over a collection of one or more relations. Then

we use this facility to support the further generalizition illustrated below:

range of e is
EMP.salary-history where EMP.name = "Fred"

retrieve (e.date) where e.pay-rate = 1000

The intent is to allow e to range over the result of a query specification. Because

RETRIEVE is the only reasonable QUEL command to put in a range statement, we

.4, leave it out of the syntax and include only the target list and qualification.
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Moreover, the query specification must return data items of type QUEL. The

purpose of the second extension is to allow the above expression rather than the

less natural equivalent command:

range of e is EMP
retrieve (e.salary-history. date)

where e.salary-history.pay-rate = 1000
and e.name = "Fred"

If X and U are tuple variables and Y a field of type QUEL then the semantics of

range of U is X.Y where qualification

•. ., are the following:

1) Run the query
retrieve (X.Y) where qualification

to find qualifying data items of type QUEL.

2) For each RETRIEVE, DEFINE VIEW or EXEC command, perform the steps
indicated earlier to define the appropriate collection of views, Cl.....Cn.

3) Replace the range statement by

range of U is C1,...,Cn

The third extension is to allow update commands to have a generalized

target relation as suggested by the following example:

append to EMP.salary-history
(date = "6/81", payrate = 2000, name = "Fred")

where EMP.name = "Fred"

Currently QUEL only supports a target which is a relation. In this generalization,

the target can also be a column of a relation in the data base which is of type

QUEL

The intent of the third extension is to allow the above expression rather

than the equivalent extended command:

range of e is EMP.salary-history where EMP.name = "Fred"
append to e (date = " /81", payrate = 2000, name = "Fred")

Notice that extended range statements and extended targets automatically

introduce views. The usual semantic problems occur in updating these views.

-12-
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V SPECIAL CASES OF QUEL AS A DATA TYPE

Three special QUEL data types will be suggested in this section to allow

either increased performance or a more natural syntax. First we suggest

relations as a special case of the QUEL ADT. Clearly, a value of type QUEL can be

a relation, i.e.:

7- range of R is any-relation
retrieve (Rall)

Since the interpretation of the QUEL extensions in Section IV required that the

query be treated as a view, we must invoke view processing to support such

functions. A data type of relation as a special case of a QUEL data type will allow

such operators to be optimized by ignoring the view processing.

The internal representation of a QUEL data type may be anything from a

- text string for the command to a machine language procedure containing a

compled version of the access plan. The choice depends on trading off

efficiency, flexibility and complexity of the underlying DBMS. Alternatively, it is

also possible to precompute the answer to any RETRIEVE command. This

collection of pointers to tuples would be stored as the value of the field. In the

• I'case that at most one tuple qualified, this value would be a pointer to a single

tuple or the null pointer. This representation is exactly the data type "pointer

to a tuple" suggested by Powell [POWE83] and by Zaniola [ZANI83]. More

generally, the value could contain multiple pointers to tuples in different
relations. Consequently, implementing the QUEL data type by precomputing

answers for QUEL queries provides a generalized version of previous proposals.

Storing such physical pointers in the data base has a clear speed advantages

over storing the query. However, it also has the disadvantage that a pointer can

be left "dangling" if the tuple it points to is moved. Moreover, no consistency

guarantee is made if the tuple which is pointed to gets updated. Hence.

precomputing answers should be considered a very dangerous way to obtain
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efficiency.

The third special case of a QUEL data type can be illustrated by appending a

tuple to the EMP relation, e.g.

append to EMP (name = "Joe", dept = "shoe")

In this case dept is a field of type QUEL and we would prefer to simply enter the

value "shoe" and not the remainder of the query. If dept is defined to be a new

ADT which is special version of the QUEL ADT, then the routine which converts

' from external to internal format for this ADT can change "shoe" to:

retrieve (DEPT.dname) where DEPT.dname = "shoe"

Consequently, a user need not type all the extra pieces of the QUEL command.

VI USES OF QUEL AS A DATA TYPE

In this section we indicate several uses for the above facilities.

6.1 Unnormalized Relation

There has been much discussion surrounding normalization of relations,

and several recent proposals have advocated unnormalized relations [HASK82,

GUYI'82, ZANI83]. One use of a QUEL ADT is to support hierarchical data as noted

in the example use of salary-history.

6.2 Referential Integrity

The notion of referential integrity has been formalized for relational data

bases in [DATE81]. Basically, a data item must take on values from the set of

values in a column of another relation. Notice that our example use of the dept

field in the EMP relation automatically has this property. Although not all of the

options suggested in [DATE81] can be easily supported using QUEL as a data

type, several of the more common ones can be.

-- 14-



6.3 Variant Records

K Our use of queries in the hobbies field corresponds closely to the notion of

. variant records in a programming language such as Pascal. Frames oriented

languages such as FRL [ROBE77] or KRL [BOBR77] also allow a slot in a frame to

contain a value of an arbitrary type with arbitrary fields. Our use of QUEL

queries with different ranges supports this notion.

6.4 Aggregation and Generalization

QUEL as a data type can support both generalization and aggregation as

proposed in [SMIT77]. For example, consider:

PEOPLE (name, phone#)

where phone# is of type QUEL and is an aggregate for the more detailed values

area-code, exchange and number. A simple append to PEOPLE might be:

append to PEOPLE (name = "Fred", phone# =
"retrieve (area-code = 415,

exchange = 999,
number = 9911)")

Generalization is also easy to support. If all employees have exactly one hobby,

then the hobbies field in the EMP example relation will specify a simple

generalization hierarchy. In fact, our example use of hobbies supports a

generalization hierarchy with members which can be in several of the

subcategories at once.

6.5 Data Base Procedures

Stored commands are easily supported with the facilities described above.

For example, suppose an employee is allowed to have only one hobby and we

want a general data base procedure to change the hobby of an employee from

playing softball to playing a musical instrument. Call this procedure "softball-

to-music" and add it to a relation PROCEDURES as follows:
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append to PROCEDURES(
name = "softball-to-music",
code = "delete SOFTBALL where SOFTBALL.name $1

append to MUSIC (name = $1,
instrument = $2.
level = $3)

replace EMP (hobbies =
"retrieve (MUSIC.all)
where MUSIC.narne = $1")

Now suppose we define a new ADT operator, WITH, that will substitute a

parameter list given as the right hand operator into a query which is the left

hand operator. With this operator we can make Fred play the violin at skill level

novice as follows:

exec (PROCEDURES.code WITH (Fred, violin, novice)) where
PROCEDURES.name = "softball-to-music"

In this way we can store collections of QUEL commands in the data base and

execute them as procedures.

6.6 Triggers

Triggers have been widely suggested as a possible mechanism for

implementing consistency constraints and for producing side effects for

commands. They can be supported by using the features discussed in previous

sections. Consider a relation:

TRIGGER (if. relname, command, then)

The field "then" is of type QUEL while "if' is of type QUEL qualification. Both

"relname" and "command" are ordinary character string fields.

Currently INGRES performs deterred update [STON76] and writes a "side

file" containing proposed changes to the data base as phase 1 of a command. In

phase 2 the side file is processed and the changes are installed. Consider

modifying the side file to be a relation SIDE and interrupting query processing at

the end of phase 1 to perform:

low"
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exec (TRIGGER.then) where TRIGGER.if
and TRIGGER.command = user-command
and TRIGGERrelname = relation-from-user

Here, user-command is the type of command run by the user (e.g. replace,

delete) and relation-from-user is the name of the relation being updated. These

constants are readily available from the run time DBMS.

An example tuple in the TRIGGER relation might be:

append to TRIGGER(
if = "SIDE.TID = EMP.TID and EMP.name = "Fred"

and SIDE.age > EMP.age",
relname = "EMP",
command = "replace",
then - "append to ALARM

(message = "Fred got older")")

The TRIGGER relation is used to provide an alerting capability when Fred

receives an update. Since TRIGGER may have a large collection of tuples, we

require indexing on relname and command to restrict the set of TRIGGER.if

terms that must be evaluated. It may be reasonable to have other extra fields in

TRIGGER to provide further efficiency in TRIGGER selection.

6.7 Storing Data as Rules

Consider the requirement that all employees over 40 years old must receive

a bonus of 1000. The relation in Section II showed both "age" and "bonus" as

explicit data and an integrity constraint could easily be defined to enforce this

constraint, e.g.:

range of e is EMP
define integrity E where E.bonus = 1000 or E.age <= 40

However, an alternative representation would be to remove "bonus" as a

stored field in EMP and add the following rule to TRIGGER-

append to TRIGGER(
reLname = "EMP"

4% then = "replace SIDE( bonus = 1000)
where SIDE.TID EMP.TID and
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EMP.age > 40"

If the QUEL parser was changed to allow queries that retrieve fields which are

not stored, then this trigger will return the correct data by updating SIDE.

Hence, the trigger mechanism can support storing data items as rules. Of

course, the efficiency of this implementation is questionable, and it is awkward

to ask questions about what rules are in effect.

6.8 Complex Objects

There has been substantial discussion concerning data base support for

complex objects [LORI83, STON83]. Suppose a complex object is composed of

text, lines, and polygons. It would be possible to construct the following

relations:

OBJECT (Oid, description)
LINE (Lid, description, location)
TEXT (Tid, description, location)
POLYGON (Pid, description, location)

Here, the LINE, TEXT and POLYGON relations hold descriptions of individual

objects and can make use of the abstract data types described in [STON83].

Then, the description field in OBJECT would be of type QUEL and contain queries

to assemble the pieces of any given object from the other relations. This

representation allows clean sharing of Lines, Text and Polygons among multiple

higher level objects by allowing the same query to appear in multiple object

descriptions.

Materializing an object from the OBJECT relation will be slow since it

involves executing several additional QUEL queries. Hence, it may be desirable

to precompute the value of frequently used objects and store the result in the

OBJECT description field. This has the same costs and benefits which were

discussed in the context of storing tuple identifiers instead of queries in the

preceding section.
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6.9 Transitive Closure

The facilities of this paper can be used to support transitive closure

operations such as found in the "parts explosion" problem. Suppose one creates

a PARTS relation as follows:

PARTS (pname, composed-of)

Consider a car which is made up of a drivetrain and a body. These are made up

in turn of other smaller parts. The car would be inserted as follows:

append to PARTS(
pname = car",
composed-of "retrieve (pname = "car")

exec (PARTS. composed-of)
where PARTS.pname = "drive-train"

exec (PARTS. composed-of)
where PARTS.pnarne = "body"")

The command

exec (PARTS.composed-of) where PARTS.pname = $car"

will find all the parts that make up a car.

VUI IMPLEMENTATION

If INGRES had been designed to support internal multitasking, then it would

be a simple matter to implement EXEC by stacking the INGRES processing

environment and executing the new command in a single INGRES process.

However, at this point it would be very costly to change our code to be reentrant

and support this kind of recursion. Other systems (e.g. System-R [ASTR76]) do

not have this shortcoming.

Hence, our operational code to implement EXEC spawns a separate copy of

the INGRES code and passes the QUEL command to the spawned version for

execution. Returned data is redirected through the INGRES which did the

spawning to the user who ran the original command. Since the passed command

can be another EXEC, the total number of spawned INGRES's can increase
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4without bound. Currently, the command is passed to the spawned process as a

character string and all query processing steps are performed at run time by

the second process.

We are currently implementing QUEL as an ADT. This data type is internally

represented as a character string. Storing a preprocessed version of the

command would entail a great deal more code. Operators which return a result

of type relation will store the result in the data base and return the name of the

S... object. This result can be involved in further processing or returned to the user.

In the latter case, it is the responsibility of the internal-to-external conversion

routine to accept the relation name, access the data base and return tuples to

the calling program or user.

No thought has been given on how to optimize QUEL commands extended

m with the operators of Table 1. Integrating these new functions into query

-- processing heuristics is left for future research. The design of a programming

language interface supporting the objects generated by our proposal also

remains to be studied.

VIII CONCLUSIONS

This paper has proposed a novel use of abstract data types and extended

QUEL with three additional features. These extensions support added power,

referential integrity, variant records, data base procedures, generalization and

aggregation in a single facility.

Our proposal has points in common with GEM which supports new data types

corresponding to "pointer to a tuple" and "set of values". Moreover,

generalization hierarchies are supported and range variables can conveniently

be defined over entities in this hierarchy. Our proposal effectively supports both

of GEMs new data types as special cases of the QUEL ADT. Moreover,

generalization is cleanly supported. Only GEM's use of range variables is not

-.. __* ii2 .-20_
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contained in our proposal.
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ABSTRACT

With the availability of very large, relatively inexpensive main memories, it is becoming possi-
ble keep large databases resident in main memory. In this paper we consider the changes necessary to
permit a relational database system to take advantage of large amounts of main memory. We evaluate
AVL vs. B+-tree access methods for main memory databases, hash-based query processing strategies vs.
sort-merge, and study recovery issues when most or all of the database fits in main memory. As expected,
B+ -trees are the preferred storage mechanism unless more than 80-90% of the database fitb in main
memory. A somewhat surprising result is that hash based query processing strategies are advantageous
for large memory situations.

Key Words and Phrases: Main Memory Databases, Access Methods, Join Algorithms, Access Planning,
Recovery Mechanisms
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1. Introduction

Throughout the past decade main memory prices have plummetted and are expected to con-

tinue to do so. At the present time, memory for super-minicomputers such as the VAX 11/780 costs

. 'approximately $1,500 a megabyte. By 1990, 1 megabit memory chips will be commonplace and should

further reduce prices by another order of magnitude. Thus, in 1990 a gigabyte of memory should cost less

than $200,000. If 4 megabit memory chips are available, the price might be as low as $50,000.

With the availability of larger amounts of main memory, it becomes possible to contemplate

the storage of databases as main memory objects. In fact, IMS Fast Path IDATE821 has supported such

databases for some time. In this paper we consider the changes that might be needed to a relational data-

base system if most (or all) of a relation(s) is (are) resident in main memory.

In Section 2, the performance of alternative access methods for main memory database sys-

tems are considered. Algorithms for relational database operators in this environment are presented and

*. evaluated in Section 3. In Section 4, we describe how access planning will be affected by the availability

of large amounts of main memory for query processing. Section 5 discusses recovery in memory resident

databases. Our conclusions and suggestions for future research are contained in Section 6.

2. Access Methods for Memory Resident Databases

The standard access method for data on disk is the B+-tree [COME791, providing both ran-

dom and sequential key access. A B+ -tree is specially designed to provide fast access to disk-resident

data and makes fundamental use of the page size of the device. On the other hand, if a keyed relation is

known to reside in main memory, then an AVL (or other binary) tree organization may be a better choice.

In this section we analyze the performance of both structure for a relation R with the following charac-

teristics:

II1RII number of tuples in relation R
K width of the key for R in bytes

* L width of a tuple in bytes
P page size in bytes
4 size of a pointer in bytes

We have analyzed two cases of interest. The first is the cost of retrieving a single tuple using a

random key value. An example of this type of query is:

"s ** - - . -
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retrieve (emp.salary) where emp.name = "Jones"

The second case analyzed is the cost of reading N records sequentially. Consider the query

retrieve (emp.salary, emp.name) where emp.name = "J * "

which requests data on all employees whose names begin with J. To execute this query, the database sys-

tem would locate the first employee with a name beginning with J and then read sequentially. This

second case analyzes the sequential access portion of such a command.

For both cases (random and sequential access), there are two costs that are specific to the

access method:

,page readsl the number of pages read to execute the query

Icomparisonsl the number of record comparisons required to
isolate the particular data of interest.

The number of comparisons is indicative of the CPU time required to process the command while the

number of page reads approximates the I/O costs.

To compare the performance AVL and B+ -trees, we propose the following cost function:

cost = Z * [page-readsi + Icomparisons

Since a page read consumes perhaps 2000 instructions of operating system overhead and 30 milliseconds of

elapsed time while a comparison can easily be done in 200, we expect realistic values of Z to be in the

range of 10 to 30. Later in the section we will use several values in this range.

Moreover, it is possible (although not very likely) that an AVL-tree comparison will be cheaper

than a B+ -tree comparison. The reasoning is that the B+ -tree record must be located within a page

while an AVL tree does not contain any page structure and records can be directly located. Conse-

quently, we assume that an AVL-tree comparison costs Y times a B+-tree comparison for some Y < 1.

From Knuth [KNUT73, we can observe that in an IIRII-tuple AVL tree approximately

C l og..[RII + 0.25 comparisons

are required to find a tuple in a relation. Without any special precautions each of the C nodes to be

inspected will be on a different page.' Hence, the number of pages accessed is approximately C. The

If a paged binary tree organization is used instead, the fanout per node will be slightly worse than the B-tree. Furthermore,

s !_k



AVL structure will occupy approximately

S ['R1 *pL + 18) pages

Here FX 1 denotes the smallest integer larger than X. If IMI pages of main memory are available, and if

I M I < I S 1, and if a random replacement algorithm is used, the number of page faults to find a tuple in

a relation will be approximately:

faults = C * (I- I -I)

Consequently the cost of a random access by key is:

cost(A VL) Z*C*(1- I M- ) + Y*C

Next we derive the approximate cost for a random access to a tuple using a B+ -tree. Accord-

ing to YAO [YA0781, B-tree nodes are approximately 69 percent full on the average. Hence, the fanout of

a B+ -tree is approximately

.69*P

The number of leaf nodes will be about K+4

D -1JR*L data pages
.69 *P

The height of a B+ -tree index is thereby

10log2D
height - -

I log2A
The number of comparisons required to locate a tuple with a particular value is:

C [ -- og21!RI

The number of pages which the tree consumes is about

aMm

To a first approximation S' is

A

A-1

Again the number of page faults is approximately

paged binary trees are not balanced and the worst case access time may be significantlv poorer than in the case of a B-tree.
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' ,f faults --- (height+ 1) (1- S

As a result the cost of a B+ -tree access by key is:

co8t(B+ -tree) = Z*(height+ 1)*(1 - M- )+ C

An AVL-Tree will be the preferred structure for case I if

DIFF = cost(B+ -tree) - cost(AVL-Tree) > 0

If we assume that C = C ' = log2 1JRI1 and rearrange the terms in the inequality, then an AVL-Tree will

be preferred if:

(1-y),log211RIl > Z*log211RIl - Z*(height + )*(-

Note that if L >> 8 then S - 0.69 * S'. Define H = heiht+ 1 Some simplification yields:
log 211R]

SMI > Z*(1-H)+ Y-1 * I-H

s z 1.45

Obviously, if I MI >S, then AVL trees are the preferred structure regardless of the values of H, Y, and Z.

In this situation, the entire AVL-Tree is resident in main memory and there are no disk accesses. Since

both data structures require the same number of comparisons and the AVL comparisons are cheapers,

then the AVL-Tree is guaranteed to have lower cost. If I M I < S then AVL trees will be preferred if the

value of I Af I is larger than the value of min(IMI/S) shown as in Table 1. As can be seen, essentially :allS

of a relation has to be resident in main memory before an AVL tree is the preferred structure. For rea-

Table 1 - Minimum Residency Factor For Random Access

Z Y H min (IMI/S)
10 .5 .1 .91
10 .5 .2 .87
10 .5 .3 .82
10 .75 .1 .94
10 .75 .2 .90
10 .75 .3 .86
15 .75 .1 .96
15 .75 .2 .91
15 .75 .3 .86

In!• , . -. , .., - -. . ' - , ,.-, . . - . -... , . .. . - .... . . .. . . . . . ,- . . . . . ., - , ,. ,



-_ sonable values of H, Y and Z, at least 80 percent and sometimes more than 90 percent of a relation must

' be main memory resident.

We turn now to sequential access. For an AVL-Tree, the cost of reading N records sequen-

tially is N comparisons and N page reads, i.e.:

seq-cost(AVL) . Y*N + N*Zs(1- M-.L)

On the other hand, N records in a B+-Tree will occupy

[(N*L )/(I.38*P) data pages

L / (.69*P)

and consequently:

seq-cogt (B+ -Tree) = N + Q*Z*(i- M

An AVL-Tree will be preferred if:

IMt Z(I- I )+ (Y-1)

S Z*(1-H '/1.45)

where H -- -. It appears that reasonable values for H' are similar to reasonable values for H; hence,

Table 1 also applies to sequential access.

In both random and sequential access, a very high percentage of the tree must be in main

memory for an AVL-Tree to be competitive. Hence, it is likely to be a structure of limited general utility

and B+ -Trees will continue to remain the dominant access method for database management systems.

3. Algorithms for Relational Database Operations

3.1. Introduction

In this section we explore the performance of alternative algorithms for relational database

operations in an environment with very large amounts of main memory. Since many of the techniques

used for executing the relational join operator can also be used for other relational operators (e.g. aggre-

gate functions, cross product, and division), our evaluation efforts have concentrated on the join opera-

tion. However, at the end of the section, we discuss how our results extend to these other algorithms.

After introducing the notation used in our analysis, we present an analysis of the familiar

sort-merge [BLAS771 join algorithm using this notation. Next we analyze a multipass extension of the

V.. . .... . .. . . .



simple hashing algorithm. The third algorithm described is an algorithm that has been proposed by the

Japanese 5th generation project [KITS83I, and is called GRACE. In the first phase, the join of two large

relations is reduced to the join of several small sets of tuples. During the second phase, the tuple sets are

joined using a hardware sorter and a sort-merge algorithm. Finally, we present a new algorithm, called

the Hybrid algorithm. This algorithm is similar to the GRACE algorithm in that it partitions a join into

a set of smaller joins. However, during the second phase, hashing is used instead of sort merge.

In the following sections we develop cost formulas for each of the four algorithms and report

the result of analytic simulations of the four algorithms. Our results indicate that that the Hybrid algo-

rithm is preferable to all others over a large range of parameter values.

3.2. Notation and Assumptions

Let R and S be the two relations to be joined. The number of pages in these two relations is

denoted 1R and ISI, respectively. The number of tuples in R and S are represented by IIR11 and IIS1I. The

number of pages of main memory available to perform the join operation is denoted as IMI. Given IMI

pages of main memory, (M)R, {M()s specify the number of tuples from R and S that can fit in main

memory at one time.

We have used the following parameters to characterize the performance of the computer sys-

tem used:

comp time to compare keys
hash time to hash a key
move time to move a tuple
swap time to swap two tuples
-1 
0SQ time to perform a sequential 10 operation

IORAND time to execute a random 10 operation

To simplify our analysis we have made a number of assumptions. First, we have assumed that

I R I I S I. Next, several quantities need to be incremented by slight amounts to be accurate. For

example, a hash table or a sort structure to hold R requires somewhat more pages than IRI, and finding a

key value in a hash table requires, on the average, somewhat more than one probe. We use "F" to denote

is any and all of these increments, so for example a hash table to hold R will require IR(*F pages. To sim-

plify cost calculations, we have assumed no overlap of CPU and 10 processing. We have also ignored the

. ": ." ; ". . " , . ,.- • . . • .. . ". ". '- . . ' .' .' ". " . '. -. . " " . '. - . .• . *, ... .
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cost of reading the relations initially and the cost of writing the result of the join to disk since these costs

are the same for each algorithm.

In any sorting or hashing algorithm, the implementor must make a decision as to whether the

sort structure or hash table will contain entire tuples or only Tuple IDs (TIDs) and perhaps keys. If only

TIDs or TID-key pairs are used, there is a significant space savings since fewer bytes need to be manipu-

lated. On the other hand, every time a pair of joined tuples is output, the original tuples must be

retrieved. Since these tuples will most likely reside on disk, the cost of the random accesses to retrieve

the tuples can exceed the savings of using TIDs if the join produces a large number of tuples. For-

tunately, we can avoid making a choice as the decision affects our algorithms only in the values assigned

to certain parameters. For example, if only TID-key pairs are used then the parameter measuring the

time for a move will be smaller than if entire tuples are manipulated.

Three algorithms (Sort-merge, GRACE, and Hybrid hash) are much easier to describe if they

require at most two passes. Hence we assume the necessary condition V jT*F I Mj. For example, if F

= 1.2, then IMI is only 1,000 pages (4 megabytes at 4K bytes/page), and ISl (and IRI, since I R 1 1 S I)

can be as large as 800,000 pages (3.2 gigabytes!

3.3. Partitioning a Relation by Hash Values

If IMI < IRI*F, each of the hashing algorithms described in this paper requires that R and/or

S be partitioned into distinct subsets such that any two tuples which hash to the same value lie in the

same subset. One such partitioning is into the sets R. such that R, contains those tuples r for which h(r)

x. We call such a partition compatible with h.

A general way to create a partition of R compatible with h is to partition the set of hash

values X that h can assume into subsets, say X1 ,...X,. Then, for i ,...n define R, to be all tuples r

such that h(r) is in A,. In fact, every partition of R compatible with h can be derived in this general way,

beginning with a partition of the hash values. The power of this method is that if we partition both R and

S using the same h and the same partition of hash values, say into Rl,....R, and Sl,....S,, then the prob-

lem of joining R and S is reduced to the task of joining R, with S1, R 2 with S2, etc. [BABB79,

GOOD81].

. •.
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In order for the hash table of each set of R tuples to fit in memory, I R, I *F must be < MI.

This is not easily guaranteed. For example, how can one choose a partition of R, compatible with h, into

two sets of equal size? One might try trial and error: Begin by partitioning the set of hash values into

two sets X, and X 2 of equal size and then consider the sizes of the two corresponding sets of tuples R1

and R 2. If the R-sets are not of equal size then one changes the X sets to compensate, check the new R-

sets again, etc. Despite the apparent difficulties of selecting the sets X 1, X 2, ... , there are two mitigating

circumstances. Suppose that the key distribution has a bounded density and that the hash function

effectively randomizes the keys. If the number of keys in each partition is large, then the central limit

theorem assures us that the relative variation in the number of keys (and hence the number of tuples) in

each partition will be small. Furthermore, if we err slightly we can always apply the hybrid hash join

recursively, thereby adding an extra pass for the overflow tuples.

3.4. Sort-Merge Join Algorithm

The standard sort-merge algorithm begins by producing sorted runs of tuples which are on the

average twice as long as the number of tuples that can fit into a priority queue in memory [KNUT73].

This requires one pass over each relation. During the second phase, the runs are merged using an n-way

" merge, where n is as large as possible (since only one output page is needed for each run, n can be equal

to IMI-1). If n is less than the number of runs produced by the first phase, more than two phases will be

needed. Our assumptions guarantee that only two phases are needed.

The steps of the sort-merge join algorithm are:

(1) Scan S and produce output runs using a selection tree or some other priority queue structure. Do the

same for R. A typical run will be approximately F pages long [KNUT73]. Since the runs ofF

R have an average length of 2* 1 '8f pages, there are RI I *F such runs. Similarly, there are
F 2*IMI

IS I runs of S. Since S is the larger relation, the total number of runs is at most IS I*F
2*1 Al IMI

L. :". Therefore, all the runs can be merged at once if I MI > or IMI[I> W andwehave- , , ,l T - ,-n e h v

assumed IM1 to be at least VIS F pages. Thus all runs can be merged at once.

[ ; . -:.•. 7 .* *..



(2) Allocate one page of memory for buffer space for each run of R and S. Merge runs from R and S

concurrently. When a tuple from R matches one from S, output the pair.

The cost of this algorithm (igno:ing the cost of reading the relations initially and the cost of writing the

result of the join) is:

(11R1iog2  F + 11S 11iog2 (comp+ swap) Insert tuples into priority queue
to form initial runs

+ (IR I+ I S I )*OsEQ write initial runs

+ (I R I+ I S I) *ORAND Reread initial runs

+ (IRIllo2 11R1i + 1!S 11log2 IIsj! ) (comp+ swap) Insert tuples into priority queue(M)}R IF {M)slF
for final merge

+ (IIRII+ IS 1) * comp Join results of final merge.

This cost formula holds only if a tuple from R does not join with more than a page of tuples from S.

3.5. Simple-Hash Join Algorithm

If a hash table containing all of R fits into memory, i.e. if I R I *F < I M I, the simple-hash

join algorithm proceeds as follows: build a hash table for R in memory and then scan S, hashing each

tuple of S and checking for a match with R (to obtain reasonable performance the hash table for R should

contain at least TID-key pairs). If the hash table for R will not fit in memory, the simple-hash join algo-

rithm fills memory with a hash table for part of R, then scans S against that hash table, then it continues

with another part of R, scans the remainder of S again, etc.

The steps of the simple-hash join algorithm are:

(1) Let P = min(IMI, IRI*F). Choose a hash function h and a range of hash values so that -P- pages of

R-tuples will hash into that range. Scan the (smaller) relation R and consider each tuple. If the
tuple hashes into the chosen range, insert the tuple into a P-page hash table in memory. Otherwise,

write the tuple into a new file on disk.

(2) Scan the larger relation S and consid.r each tuple. If the tuple hashes into the chosen range, check
the hash table of R-tuples in memory for a match and output the pair if a match occurs. Otherwise,write the tuple to disk. Note that if key values of the two relations are distributed similarly, there

will be FSj - pages of the larger relation S processed in this pass.
F Rs
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(3) Repeat steps (1) and (2), replacing each of the relations R and S by the set of tuples from R and S
that were "passed over" and written to disk in the previous pass. The algorithm ends when no
tuples from R are passed over.

RI *F
The algorithm requires [ I M! passes to execute. We denote this quantity by A. Also note that on

°MI

{MR
the ith pass, i = 1, A-1, IIRII - i M tuples of R are passed over. The cost of the algorithm is:

jiRil * (hash + move) Place each tuple of R in a hash table

+ IISiI * (hash + comp*F) Check a tuple of S for a match.

+ ((A-1)*IIRII A*(A-1) ,{M-}F) * (hash+ move) Hash and move passed-over tuples in R.
2F

+2 * ( ){ s • (hash+ move) Hash and move passed-over tuples in S.

+((AA1)*R A *(A - l) *- ) I 2 *IOsEQ  Write and read passed-over tuples in R.
2 F+((A(1) )s...L IS

A *(A-) , 2 * lOSEQ Write and read passed-over tuples in S
2 F R

3.8. GRACE-Hash Join Algorithm

As outlined in [KITS83J, the GRACE-hash join algorithm executes as two phases. The first

phase begins by choosing an h and partitioning the set of hash values for h into IMI sets, corresponding to

a partition of R and S into IMI sets each, such that R is partitioned into sets of approximately equal size.

No assumptions are made about set sizes in the partition of S. The algorithm uses one page of main

memory as an output buffer for each of the IMI sets in the partition of R and S. During the second phase

of the algorithm, the join is performed using a hardware sorter to execute a sort-merge algorithm on each

pair of sets in the partition. To provide a fair comparison between the different algorithms, we have used

hashing to perform the join during the second phase. The algorithm proceeds as follows:

(1) Scan R. Using h, hash each tuple and place in the appropriate output buffer. When an output
buffer fills, it is written to disk. After R has been completely scanned, flush all output buffers to
disk.

(2) Scan S. Using h, hash each tuple and place in the appropriate output buffer. When an output
buffer fills, it is written to disk. After S has been completely scanned, flush all output buffers to
disk.
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Steps (3) and (4) below are repeated for each set R, < i< MI, in the partition for R, and its
corresponding set S,.

(3) Read R, into memory and build a hash table for it.

We pause to check that a hash table for R, can fit in memory. Assuming that all the sets R, are of

equal size, since there are IMI of them, I R, I will equal I pages. The inequality

IR, I *F < IMI is equivalent to R < iF 1Ml, and we have assumed that V171<1 IMI•

(4) Hash each tuple of S, with the same hash function used to build the hash table in (3). Probe for a
match. If there is one, output the result tuple, otherwise proceed with then next tuple of S,.

The cost of this algorithm is:

(11RII + IIsll) * (hash + move) Hash tuple and move to output buffer

+ (IRI + IsI) * IORAND Write partitioned relations to disk

+ (IRI + ISI) * 1
0

SEQ Read partitioued sets

+ IiI * (hash + move) Build hash tables in memory

+ IISfl * (hash + comp*F) Probe for a match

3.7. Hybrid-Hash Join Algorithm

In our hybrid-hash algorithm, we use the large main memory to minimize disk traffic. On the

first pass, instead of using all of memory as a buffer as is done in the GRACE algorithm, only as many

pages (B, defined below) as are necessary to partition R into sets that can fit in memory are used. The

rest of memory is used for a hash table that is processed at the same time that R and S are being parti-

tioned.

Let B - max(O, I RI *F-I S I). There will be B+ 1 steps in the hybrid-hash algorithm.
m I --i

First, choose a hash function h and partition R into R 0, ,RB, such that a hash table for R0 has

MI-B pages, and R ... , RB are of equal size.

Before describing the algorithm we first show that a hash table for R, will fit into memory.

Assuming that all sets R, are of equal size, we denote IR,I by p. We must show that:

p*F< I MI (a)

Since R0 is chosen so that a hash table for it fits into I MI -B pages of memory, we have:

4-
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I Rol *F= I M I -B (b)

16 Since the sum of all the R,-sets is R, we have

IR I=B~p+ IRol (c)

If a hash table for all of R fits into memory, we can choose B = 0 and be done with it. So henceforth we

assume M < R I*F. Thus, B- I R I *F-M If we solve (c) for p and substitute (b) in the result

IMI-1

we get:

"-,, p R1 [Rol = R I~ IMI-B (d)
_.B B B F*B

Now we multiply (d) by F and simplify to get:

p*F= IR I*F- IMI +I (e)
B

Finally, we substitute for B in (e) to get (a), which was our goal. Thus we have demonstrated that a hash

table for R, fits into memory.

Now we continue with the algorithm. Allocate B pages of memory to output buffer space, and

assign the other I M I-B pages of memory to a hash table for R0. We pause again to check that there are

enough pages in memory to hold the output buffers, i.e. that B< I M I . If we substitute for B in the ine-

quality B<I JMI and simplify, we get R- '*F M 1, which is true since we have assumed that that

v S I Al I.
The steps of the hybrid-hash algorithm are:

(1) Assign the ith output buffer page to R, for i =1,...,B. Scan R. Hash each tuple with h. If it
belongs to R0, place it in memory in the hash table for R0. Otherwise it belongs to R, for some
i>0, so move it to the ith output buffer page. When this step has finished, we have a hash table for
R o in memory, and Rt,...,RB are on disk. The partition of R corresponds to a partition of S compa-
tible with h, into sets So,...,SB.

(2) Assign the ith output buffer page to S, for i =1,....B. ScaL S. hashing each tuple with h. If the
tuple is in So, probe the hash table in memory for a match. If there is a match, output the the
result tuple. If there is no match, toss the tuple. Otherwise, the hashed tuple belongs to S, for some
i>O, so move it to the ith output buffer page. Now Rl,...,RB and S1,...,SB are on disk.

Repeat steps (3) and (4) for i - 1,...,B.

(?) Read R, and build a hash table for it in memory. We have already shown that a hash table for it
will fit in memory.

[,....... .

- ->... .. . .
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(4) Scan S,, hashing each tuple, and probing the hash table for R,, which is in memory. If there is a
, 9 match, output the result tuple, otherwise toss the S tuple.

I1Rol

For the cost computation, denote by q the quotient 7"R ' namely the fraction of R -"presented by R0.IR I
S.' ' To calculate the cost of this join we need to know the size of So, and we estimate it to be q*ISI. Then the

fraction of R and S sets remaining on the disk is 1-q. The cost of the hybrid-hash join is:

(IIRII + IISII)*hash Partition R and S

+ (IIRII+ IjS[I)*(1-q)*move Move tuples to output buffers

+ (IRI+ jSD)*(1-q)*IO'AND Write from output buffers

+ (IIRII+ IISjI)*(1-q)*hash Build hash tables for R and find where to probe for S

+ 11SlI*F*comp Probe for each tuple of S

+ IIRII*move Move tuples to hash tables for R

+ (IRI+ 1Sj)*(1-q)*IOsqQ Read sets into memory

3.8. Comparison of the 4 Join Algorithms

In Figure I we have displayed the relative performance of the four join algorithms. The verti-

cal axis is execution time in seconds. The horizontal axis is the ratio of IM I  Note that above a ratioI RI *F

of 1.0 all algorithms have the same execution time as at 1.0, except that sort-merge will improve to

ap,,roximately 900 seconds, since fewer 10 operations are needed. The parameter settings used are shown

in Table 2. We have assumed that there are at least v'TST*F pages in memory. For the values specified

in Table 2, this corresponds to I - 0.009.

R I *F

In generating these graphs we have used the cost formulas given above with one exception.

The 1
0 RAND term used in the cost formula for hybrid hash should be replaced by IOSEQ in the case that

there is only one output buffer. There is only one output buffer whenever I M I> R *F (0.5 on the

2

horizontal axis of Figure 1). The abrupt discontinuity in the performance of the hybrid hash algorithm at

0.5 occurs because when memory space decreases slightly, changing the number of output buffers from one

to two, the 1O time is suddenly calculated as a multiple of IORAND instead of IOsE. Even when there

. . ... ... . .
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Table 2 - Parameter Settings Used

comp time to compare keys microseconds
hash time to hash a key 9 microseconds
move time to move a tuple 20 microseconds
swap time to swap two tuples 60 microseconds
IOSEQ sequential I operation time 10 milliseconds
IOIAND random 10 operation time 25 milliseconds
F universal "fudge" factor 1.2
ISI size of S relation 10,000 pages
IRI size of R relation 10,000 pages
IIRiI/IRI number of R tuples/page 40
IIS l/lSl number of S tuples/page 40

, are only two or three buffers, 10 RAND is probably too large a figure to use to measure 10 cost, but we

have not made that change. This is what causes our graphs to indicate that simple hash will outperform

hybrid hash in a small region; in practice hybrid hash will probably always outperform simple hash.

We have generated similar graphs for the range of parameter values shown in Table 3. For

each of these values we observed the same qualitative shape and relative positioning of the different algo-

rithms as shown in Figure 1. Thus our conclusions do not appear to depend on the particular parameter

values that we have chosen.

3.9. Algorithms for Other Relational Operations

While we have not analyzed algorithms for the remaining relational operations such as aggre-

gate function and projection with duplication elimination, we can offer the following observations. For

aggregate functions in which related tuples must be grouped together (compute average employee salary

Table 3 - Other Parameter Settings Tested

comp 1 to 10 microseconds
hash 2 to 50 microseconds
move 10 to 50 microseconds
swap 20 to 250 microseconds

10 SEQ 5 to 10 milliseconds
10 RAND 15 to 35 milliseconds
F 1.0 to 1.4
ISI 10,000 to 200,000 pages
IIRII 100,000 to 1,000,000 tuples

'.4

+41

* 4 . "4 +i_.4 - 4 . . '
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by manager), the result relation will contain one tuple per group. If there is enough memory to hold the

result relation, then the fastest algorithm will be a one pass hashing algorithm in which each incoming

tuple is hashed on the grouping attribute. If there is not enough memory to hold the result relation (prob-

ably a very unlikely event as who would ever want to read even a 4 million byte report), then a variant of

the hybrid-hash algorithm described for the join operator appears fastest. This same hybrid-hash algo-

rithm appears to be the algorithm of choice for the projection operator as projection with duplicate elimi-

nation is very similar in nature to the aggregate function operation (in projection we are grouping identi-

cal tuples while in an aggregate function operation we are grouping tuples with an identical partitioning

attribute).

4. Access Planning and Query Optimlzatlon

In the classic paper on access path selection by Selinger (SEL1791, techniques are developed by

choosing the "best" processing strategy for a query. "Best" is defined to be the plan that minimizes the

function W*lCPUJ + 11/01 where ICPUI is the amount of CPU time consumed by a plan, IX/01 is the

number of I/0 operations required for a plan, and W is a weighting factor between CPU and 1/0

resources. Choosing a "best" plan involves enumerating all possible "interesting" orderings of the opera-

tors in query, all alternative algorithms for each operator, and all alternative access paths. The process is

complicated by the fact the order in which tuples are produced by an operator can have a significant

effect on the execution time of the subsequent operator in the query tree.

The analysis presented in Section 3 indicates that algorithms based on hashing (the hybrid-

hash algorithm in the case of the join operator aid the simple-hash algorithm to process projection and

aggregate function operators) are the fastest algorithms when a large amount of primary memory is avail-

able. Since the performance of these algorithms is not affected by the input order of the tuples and since

there is only one algorithm to choose from, query optimization is reduced to simply ordering the operators

so that the most selective operations are pushed towards the bottom of the query tree.
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5. Recovery In Large Memory Databases

5.1. Introduction and Assumptions

High transaction processing rates can be obtained on a processor with a large amount of main

memory, since input/output delays can be significantly reduced by keeping the database resident in

memory. For example, if the entire database is resident in memory, a transaction would never need to

access data pages on disk.

However, keeping a large portion of the database in volatile memory presents some unique

challenges to the recovery subsystem. The in-memory version of the database may differ significantly

from its latest snapshot on disk. A simple recovery scheme would proceed by first reloading the snapshot

on disk, and then applying the transaction log to bring it up to date. Unless the recovery system does

more than simple logging during normal transaction processing, recovery times would become intolerably

long using this approach.

Throughout this section, we will assume that the entire database fits in main memory. In such

an environment, we need only be concerned with log writes. A "typical" transaction writes 400 bytes of

log data (40 bytes for transaction begin/end, 360 bytes for old values/new values),2 which takes 10 ms

(time to write one 4096 byte page without a disk seek). We also assume that a small portion of memory

can be made stable by providing it with a back-up battery power supply.

5.2. Limits to Transaction Throughput

In conventional logging schemes, a transaction cannot commit until its log commit record has

been written to stable storage. Most transactions have very simple application logic, and perform three to

four page reads and writes. While transactions no longer need to read or write data pages if the database

is memory resident, they still need to perform at least one log I/O. Assuming a single log device, the sys-

tem could commit at most 100 transactions per second (1 second / 10 ms per commit = 100 committed

transactions per second). The time to write the log becomes the major bottleneck.

A scheme that amortizes this log I/O across several transactions is based on the notion of a

2 These are ballpark estimates, based on the example banking database and transactions in Jim Gray, 'Notes on Database
Operating Systems," IBM RJ2188(30001), (February 23, 1978).

'pz



17

pre-committed transaction. When a transaction is ready to complete, the transaction management system

places its commit record in the log buffer. The transaction releases all locks without waiting for the com-

mit record to be written to disk. The transaction is delayed from committing until its commit record actu-

ally appears on disk. The "user" is not notified that the transaction has committed until this event has

occurred. 3

By releasing its locks before it commits, other transactions can read the pre-committed

transaction's dirty data. Call these dependent transactions. Reading uncommitted data in this way does

not lead to an inconsistent state as long as the pre-committed transaction actually commits before its

dependent transactions. A pre-committed transaction does not commit only if the system crashes, never

because of a user or system induced abort. As long as records are sequentially added to the log, and the

pages of the log buffer are written to disk in sequence, a pre-committed transaction will have its commit

record on disk before its dependent transactions.

The transactions with commit records on the same log page are committed as a group, and are

* called the commit group. A single log I/0 is incurred to commit all transactions within the group. The

size of a commit group depends on how many transactions can fit their logs within a unit of log write (i.e.,

a log buffer page). Assuming the "typical" transaction, we could have up to ten transactions per commit

group. The transaction throughput can be increased by another order of magnitude, to 1000 transactions

per second (1 second / 10 ms to commit 10 transactions = 1000 transactions committed per second).

The throughput can be further increased by writing more than'one log page at a time, by par-

titioning the log across several devices. Since more than one log I/O can be active simultaneously, the

recovery system must maintain a topological ordering among the log pages, so the commit record of a

dependent transaction is not written to disk before the commit record of its associated pre-committed

transaction. The roots of the topological lattice can be written to disk simultaneously.

To maintain the ordering, and thus the serialization of the transactions, the lock table of the

concurrency control component must be extended. Associated with each lock are three sets of transac-

tions: active transactions that currently hold the lock, transactions that are waiting to be granted the

3 The notion of group commits appears to be part of the unwritten database folklore. The System-R implementors claim to
have implemented it. To our knowledge, neither the idea nor the implementation details has yet appeared in print.

J%
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lock, and pre-committed transactions that have released the lock but have not yet committed. When a

transaction is granted a lock, it becomes dependent on the pre-committed transactions that formerly held

the lock. The dependency list is maintained in the transaction's descriptor in the active transaction table.

When a transaction becomes pre-committed, it moves from the holding list to the pre-committed list for

all of its locks (we assume all locks are held until pre-commit), and the committed transactions in its

dependency list are removed. In becoming pre-committed, the transaction joins a commit group. The

commit groups of the remaining transactions in its dependency list are added to those on which its com-

mit group depends. A commit group cannot be written to disk, and thus commit, until all the groups it

depends on have previously been committed.

For recovery processing, a single log is recreated by merging the log fragments, as in a sort-

merge. For example, to roll backwards through the log, the most recent log page in each fragment is

examined. The page with the most recent timestamp is processed first, it is replaced by the next page in

that fragment, and the most recent log page of the group is again determined. By a careful buffering stra-

tegy, the reading of log pages from different fragments can be overlapped, thus reducing recovery time.

5.3. Checkpolntlng the Database

An approach for reducing recovery time is to periodically checkpoint the database to stable

storage [GRAY81I. Checkpointing limits recovery activities to those transactions that are active at the

checkpoint or who have begun since the last checkpoint. System-R, for example, takes an action con-

sistent checkpoint, during which no storage system operations may be in progress (a transaction consists

of several such actions, which correspond roughly to logical reads and writes of the database). Dirty

buffer pool pages are forced to disk. Since the database is assumeA to be large, a large number of dirty

pages will need to be written to disk, making the database unavailable for an intolerably long amount of

time. Consider the case of 1000 transactions per second, two dirty pages per transaction, and 30 seconds

between checkpoints. In the worst case, 60,000 pages would need to be written at the checkpoint!

We would like to overlap checkpoint with transaction activity. Let A be the set of pages

that have been updated since the last checkpoint. Once a checkpoint begins, transaction activity can con-

tinue if updates to pages of A... cause new in-memory versions to be created, leaving the old versions

"K'°
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available to be written to disk. A checkpointed, action consistent. state of the datablase is always main-

tained on disk. At a checkpoint, a portion of the state is replaced by Am,,. To guarantee that the state

is updated "carefully," we use a batch update approach by first writing these pages to stable storage. We

denote the batch update file by AdSk. If the system crashes while the disk state is being overwritten from

memory, it can be reconstructed from the pages in Ad,sk.

The algorithm proceeds in two phases. In phase 1, Am, is written to Ad,,k. During phase 2,

the pages in A,. are copied to their original locations on disk. For the algorithm to work, we must

assume:

' (1) Extra disk space is available to hold Ad,,k.

(2) Extra memory space is available to hold A ,.

- (3) No dirty page is ever written to disk except during a checkpoint.

Time stamps are used to determine membership in A ,. The timestamp T. indicates when

the current checkpoint began, or is zero if no checkpoint is in progress. When a transaction attempts to

update a page, the page's timestamp T.,, is compared to T,,. It Tpg, < Tp and the page is dirty, a

new version of the page is created and the in-core page table points to the new page. The update is

applied to the new page. The page's timestamp is updated to reflect the latest modification.

To obtain an action consistent state for the checkpoint, the system is initially quiesced. T, is

set to the current time clock to indicate that a checkpoint has begun. The active transaction list is con-

structed for later inclusion in the log. Transaction activity can now resume, since the old versions in

A,. can no longer be updated. Memory pages who are dirty and for which T,,,, < Tp are written to

A .,k. After Aduk has been created, a begin checkpoint record is written to the log with T, and the list of

active transactions, indicating that phase I of checkpoint is complete. The pages of A,, are then writ-

ten to their original locations on disk, making the disk state identical to the in-memory state as of T,.

An end checkpoint record is written to the log to indicate the completion of phase 2, AiSk is removed, and

T is reset.

The advantage of the algorithm is that checkpointing can be done in parallel with transaction

activity while maintaining an action consistent state on disk. This is particularly needed in a high update
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transaction environment, which can generate a large number of updated pages between checkpoints.

Further, as soon as a checkpoint completes, another can commence with only a negligible interruption of

service. Checkpointing proceeds at the maximum rate possible, i.e., as fast as pages can be written to

disk, thus keeping the log processing time to a minimum during recovery.

5.4. Reducing Log Size

While checkpointing will reduce the time to process the log, by reducing the necessary redo

activity, it does not help reduce the log size. The large amount of real memory available to us can be

used to reduce the log size, if we assume that a portion of memory can be made stable against system

power failures. For example, batteries can be used as a back-up power supply for low power CMOS

memory chips. We further assume that such memory is too expensive to be used for all of real memory.

Partition real memory into a stable portion and a conventional, non-stable portion. The stable

portion will be used to hold an in-memory log, which can be viewed as a reliable disk output queue for log

data. Transactions commit as soon as they write their commit records into the in-memory log. Log data

is written to disk as soon as a log buffer page fills up. Given the buffering of the log in memory, it may be

mure efficient to write the log a track at a time. In addition, multiple log writes can be directed to

different log devices without the need for the bookkeeping described above. However, in the steady state,

the number of transactions processed per second is still limited by how fast we can empty buffer pages by

writing them to disk-based stable storage.

Stable memory does not seem to gain much over the group commit mechanism. However, the

log can be significantly compressed while it is buffered in stable memory. The log entries for a particular

transaction are of the form

Begin Transaction
<Old Value, New Value>

<Old Value, New Value>
End Transaction

A transaction's space in the log can be significantly reduced if only new values are written to the disk

based log (approximately half of the size of the log stores the old values of modified data - this is only

needed if the transaction must be undone). This is advantageous for space management, and also reduces
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the recovery time by shortening the log.

In the conventional approach, log entries for all transactions are intermixed in the log. The

log manager maintains a list of committed transactions, and removes their old value entries from log

K : pages before writing them to disk. A transaction is removed from the list as soon as its commit record

has been written to disk. A more space efficient alternative is to maintain the log on a per transaction

basis in the stable memory. If enough space can be set aside to accommodate the logs of all active tran-

sactions, then only new values of committed transactions are ever written to disk.

Stable memory also assists in reducing the recovery time. To recover committed updates to

pages since the last checkpoint, the recovery system needs to find the log entry of the oldest update that

refers to an uncheckpointed page. A table can be placed in stable memory to record which pages have

been updated since their last checkpoint, and the log record id of the first operation that updated the

page. When a page is checkpointed to disk, its update status is reset. The log record id of the next

update on the page is entered into the table. The oldest entry in the table determines the point in the log

from which recovery should commence.

6. Conclusions and Future Research

In this paper we have examined changes to the organization of relational database manage-

ment systems to permit effective utilization of very large main memories. We have shown that the B+ -

tree access method will remain the preferred access method for keyed access to tuples in a relation unless

more than 80% - 90% of the databas can be kept in main memory. We have also evaluated alternative

algorithms for complex relational operators. We have shown that once the size of main memory exceeds

the square root of the size of the relations being processed, that the fastest algorithms for the join, projec-

tion, and aggregate operators are based on a hashing. It is interesting to note that this result also holds

for "small" main memories and "small" databases. Finally, we have discussed recovery techniques for

memory-resident databases.

There appear to be a number of promising areas for future research. These include buffer

management strategies (how to efficiently manage very large buffer pools), the effect of virtual memory on

query processing algorithms, and concurrency control. While locking is generally accepted to the algo-

- A t..a-A--- -.. . . . .... - -
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rithm of choice for disk resident databases, a versioning mechanism [REED83] may provide superior per-

formance for memory resident systems.
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