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1. WHY USE OPTICS

There have been several reasons why optics would be a suitable choice for

an adaptive signal processor. First, and foremost has been the speed and

bandwidth of electro-optic devices which can be used. Detectors and sources

have bandwidths of greater than 5 GHz, and are commercially available.

Second, these electro-optic devices are normally run with milliwatt power

levels such that the speed/power factor can provide a significant advantage

over electronics. Also we would like to note, that while many people claim

optics has an EMI advantage over electronics, it must be realized that the

electro-optic devices are driven by the very electronic devices that are prone

to EMI effects. Therefore, we will not claim EMI advantages since an optical

processor is at present still largely composed of electronics.
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2. OPTICAL ARRAY PROCESSORS

For the past two decades, optics has shown great processing power

by using its parallel interconnect strength. For instance, a Fourier

Transform of an object can be produced as quickly as the rise time of the

detector and source. Since each point in the Fourier Plane is a combination

of every point in the image plane, a system that has 64K (256 x 256) points in

Its image has 4 x 10 9interconnections performed simultaneously.

There have been two problems associated with optical processors: 1) lack

'4of a fast spatial light modulator.-with a large number of pixels, and 2)

accuracy. Both problems are addressed in this report. However in this work

we have assumed that the signal processing would be digital because optics can

provide fast calculations, but is limited by the dynamic range of the system,

especially the input and output sources and detectors. Sources are usually

LEDs or laser diodes and both can be modulated by current. However, LED's

obey an exponential law; tiat is the output power is related exponentially to

the input current. This makes the LED extremely difficult to linearize. Most

optical systems assume a dynamic range of 30-40 dB. While this is suitable

for many problems, the adaptive phased array radar problem requires 2 to 3

times that range. After all, antenna patterns can be created that have

sidelobes down 40-50 dB, so an adaptive processor must have at least that

range. Hence, optics must do its calculations digitally if it is to be

* effective. Ten bits of accuracy provides 60 dB of dynamic range, and is well

* within the current range of A/D converters.

2-1



3. DIGITAL OPTICS

Optics can perform digitally by using the Digital Multiplication by

-" Analog Convolution (DMAC) algorithm, which has been in use over the past 6

years. This is based on the fact that if two binary numbers are convolved,

and these results are A/D'ed, then shifted to the left and added, the answer

is the same as if the two numbers were multiplied digitally, as shown below.

ill Ill * 111 = 12321

x ii 1- A/D 01
ill 2 -AID lox
i l 3- A/D llxx

il1 2 - A/D lOXXX
110001 1 - A/D OIXXXX

110001

3-1
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4. HISTORY

To see how the DMAC algorithm is best implemented, it would be

beneficial to briefly look at the history of Optical Signal Processing.

Before the DMAC algorithm, all OSP was done in the analog domain.

However, the DMAC algorithms allowed the accuracy to increase to any number of

bits as needed with an increased expenditure of time. For example, we

previously said that the multiplying (analog) of two numbers optically is done

within the risetimes of the source and detector. To digitally multiply two

numbers takes 2N-1 clock cycles (to convolve two N bit numbers uses 2N-1

products and sums). Since the clock speed for acousto-optic devices can be

from 500 MHz to I GHz, this multiplication can be done in about 50-100 ns for

a 16 bit multiplication. See Figure 1. However, this result is in "mixed

±frA ~WBRG CEL 2
t

UG~r QLLECTING

LD&

.. Figure 1..
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binary" or analog form; it then must be converted to binary by an A/D

converter and a sum shifter which is a special digital adder (this will be

addressed in detail later in the report). However, this digital addition part

of the process can take an additional 100 ns. Compared to current robust

electronic multipliers (TRW data book), which use 50-100 ns to produce the

entire digital product, this optical algorithm is feeble. However, five years

ago when it was invented, it was clearly as good, if not better than the

electronic multipliers.

Fortunately, optics did not stop its development either. The DMAC

algorithm was extended to incorporate one of optic's great strengths;

parallelism. For example, by placing several acousto-optic cells side by side

and imaging the same source across them, it is possible to do many

multiplications simultaneously. As multichannel A.0. cells become available,

parallel multiplication becomes feasible. For instance, instead of doing one

product in 100 ns, it becomes possible, by using a 32 channel A.0. cell, to do

32 multiplications in 100 ns.

In 1981, P. Guilfoyle1 demonstrated a new architecture by using 2 crossed

multichannel A.0. cells. This SAOBic (see Figure 2) architecture has proved

to be semi-optimized for calculating matrix vector products. By using crossed

multichannel cells, this architecture utilizes the DMAC algorithm, the

parallelism of optics, and the common nature of many large processing problems

to create a powerful array processor. Since the important adaptive processing

problem is essentially a question of matrix inversion, and we have discussed

how optics solves this problem, one would assume the adaptive processing

problem is solved. On the periphery this may seem true, but when one examines

the problem and 4 ts solution in detail, several significant weaknesses of Bulk

Acousto-Optic processing using the DMAC algorithm come to the surface. These

will be evaluated and discussed in the following section.

4-2
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Figure 2. Digital accuracy AO vector-matrix multiplier.
Two multitransducer Bragg cells are imaged
onto each other.
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5. DETAILED LOOK AT DMAC

There are three basic steps Involved in the Digital Multiplication by

Analog Convolution algorithm.

1. Form a mixed binary product by convolution,

2. Pass through an A/D converter,

3. Shift and add.

All three of these can be improved upon.

1. The convolution of 2 sequences each of N words long uses 2N-1 clock

cycles. Therefore, this is one limiting factor in producing a

product. As devices get faster, the speed can improve, but

considering that A.O. cells operate with GHz bandwidth, this

improvement would be marginal. A large improvement would come from

decreasing the number of clock cycles needed.

2. A/D converters limit the conversion speed from mixed binary to

binary.

3. Improve the Shift and Add (SA) routine as this process could take

the longest amount of time.

Finally, although a great number of signal processing problems can be

reconfigured into a matrix problem format, there are problems associated with

* radar signal processing that can be processed more efficiently with a more

general modular array. For example FFT's, perfect shuffles, etc. are not

optimized for the matrix format.

It was Aerodyne's intention to examine these three fundamental problems

of digital optical computing, propose alternatives, and integrate this

hardware with algorithms that solve the adaptive radar problem.

5-1
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5.1 Solutions to the DMAC Algorithms

5.1.1 Asynchronous Integrated Optical Multiply Accumulate Unit

5.1.1.1 Introduction

Current bulk acousto-optic processors calculate products very rapidly yet

they suffer the following limitations: 1) the data is clocked into the

processor thereby limiting the ultimate speed of the processor to that of the

clock, 2) the processor is limited to matrix calculations, 3) an extremely

stable, large platform is needed for the apparatus, and 4) a long time is

needed to convert the mixed binary output to useable (at least to the rest of

the computer world) pure binary.

The first three limitations will be addressed here, and we will propose

an alternative design. The fourth problem is currently under extensive

investigation by many researchers.

5.1.1.2 Asynchronous Processors

The first limitation (that of having a clocked processor) was recognized

by electronic designers more than a decade ago. The earliest designs of

digital electronic multipliers used synchronous (clocked) logic. As the

designs became more sophisticated, circuitry involVing only asynchronous logic

evolved such that present designs use a clock only for the input and output of

data. These multipliers are built out of half and full adders (AND gates and

EXCLUSIVE-OR gates). The time it takes for the multiplication of two n bit

words is on the order of n times the propagation delay time of a full adder.

Fl ,ures 3a and 3b show our design for an integrated optical asynchronous

multiply unit. The two data words to be multiplied are input to the multiply

unit. This multiply unit is basically a set of AND gates. However, the -

output of each multiply is summed such that the partial products (there are

2n-1 partial products for a n x n bit multiply) are represented by a "mixed

binery output." Thus a mixed binary result is common to most optical

computers. Note that the time for this multiplication is essentially the

5-2
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Figure 3a. Flash (Asynchronous) Multiplier Scheme
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Figure 3b. Flash Multiplier Integrated Optics Implementation
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switching time of the electro-optic device (0.1 ns for LiNbO 3 ; 100 ps for GaAs

etc.) plus the response time of the detector (less than 1 ns). Therefore, the

entire multiplication with a mixed binary result occurs in about 1 ns with

current electo-optic technology. In contrast the acousto-optic technology

needs 2n-1 clock cycles (which amounts to about 62 ns for a 16 bit multiply

with a 500 MHz acousto-optic cell). Furthermore, the proposed multiplier

needs only one switching cycle regardless of the size of the data word. This

makes the device very attractive for precise (e.g. large data words)

calculations.

While this multiplier creates a mixed binary output in a very short time,

a comparatively long time is needed to convert the mixed binary output to pure

binary. When this conversion time is added to the multiply time, it seems

that at its very best, the optical multiplier is not much faster than an

off-the-shelf electronic component (why change the technology for a factor of

two improvement?).

While multiplication is an Important process; it is not enough.

Something is usually done with the product; frequently addition. FFTrs,

convolutions, matrix and vector-vector products all come under the process

described as "sum of products" (SOP). (For this reason multiply accumulate

units have been developed.)

It so happens that the strength of optics is the weakness of digital

electronics. This process is addition; optics does it at the speed of light,

electronics does it at the propagation delay of a full adder (3-5 ns for VLSI,

10 ns for LSI). Figure 4 shows the timing needed for an asynchronous

integrated-optical multiply and accumulate unit. The workings of this device

are extremely simple. Instead of sending the mixed binary result to the A/D

converter, the value is held in a sample and hold circuit. The next two data

words are sent through the multiplier and their prbduct is then added to the

previous one.

5-4
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Figure 4. Timing For Multiply Accumulate Unit

For example, we may want to repeat the process so that we sum four

products. Each cycle takes approximately 2 ns, (1 ns to load the data,

another for the data to pass through the multiply unit). In this manner we

can calculate the total sum in mixed binary in 8 ns. Now the data is sent

through the associated circuitry to convert the mixed binary to pure binary.

Since this output circuitry accounts for 95% of the time used in the

calculation (a multiply occurs in 1 ns, it is converted to binary at most in

25 ns), the advantage of the optical accumulator is appearing. Off-the-shelf

electronic multiply accumulate units need 160 ns to perform 1 multiply

,- accumulate (640 ns for four 32 bit products) whereas our proposed optical

device requires only 60 ns.

5-5
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5.1.1.3 Matrix Calculations

The second limitation (being restricted to matrix calculations) is not

really a limitation since many large computational problems are or can be

setup in matrix format. Unfortunately, there are some common computational

problems (FFTs) that cannot be setup in matrix format. This inflexibility is

solved with the integrated optical unit. It is used at the register level,

rather than at the processor level (which limits acousto optic processors to --

matrix processors). Therefore any calculations involving multiplies, or

*. multiply-accumulates can be solved using the integrated optic device (or

* several of them) in place of current electronic or optical devices. Also, the

. integrated optic device keeps some of the parallelism of 3D optics; it sums

-- many partial products upon one detector simultaneously, yet it retains the

- flexibility (e.g. being able to be placed on a circuit board and being used in

a variety of architectures) of electronic chips.

5.1.1.4 Mechanical Stability

The final limitation is solved by realizing tirv. this integrated optical

module can be made pin for pin compatible with current electronic chips. The

size of a 16 bit multiply unit using current integrated optical technology

would be about 3" x 1". This is nearly the same size as a standard all

electronic 16 bit multiply chip. Compared to a small optic bench, especially

where spot sizes are on the order of 10-50 pm, we feel that our device offers

inherent advantages such that engineering time spent on stabilizing the

optical platform could be better spent on architectures and algorithms.

5.1.2 Analog To Digital Conversion Using Threshold Logic Elements

This report describes the operation of a threshold A/D converter and

compares the accuracy and speed required of its components to those of other

A/D converter designs.

5-6
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5.1.2.1 Operation of the Threshold A/D

The elements of this threshold A/D are analog comparators and Digital to

Analog (D/A) converters. The threshold logic element is the analog comparator

which sums several inputs, each with different weights and compares the

weighted sum to a reference voltage which is the threshold. The inputs to the

comparators are the input analog signal and the digital outputs of other

-' comparators. The various weighted inputs to the comparators which are driven

by logic signals comprise, in effect, several D/A converters.

Figure 5 shows a 2-bit threshold A/D converter.

Analog Inout Voltage

(0-4 volts)

2 threshold = 2
+L

Analog j (0,2)-

Adderr"

Threshold =1. i 

LSB MSB

Figure 5. 2-Bit Threshold A/D

The converter functions by evaluating whether the input signal is larger

or smaller than one MSB (Most Significant Bit) which is 2 volts in the

figure. If one MSB fits into the input signal then the digital output

comparator is high. In the next step a voltage equal to the MSB is subtracted

5-7
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from the analog signal before it arrives at the next threshold logic element

(comparator). This comparator determines if the remaining voltage is greater

or less than 1 unit, which is the value of the next bit position in the
digital output word. If the remaining voltage is greater than I then the .1
output bit position is a high. Thus this A/D converter works by successive

subtraction and it is evident in this 2-bit converter that the decision on the

Least Significant Bit must wait until the Most Significant Bit is decided.

Figure 6 shows a 4-bit threshold A/D system, with the analog subtraction

combined into the comparator. The analog comparators that perform addition

and subtraction and have specified switching levels are called "threshold

logic elements with weighted inputs." This converter also functions by first

evaluating whether the input signal is larger or smaller than one MSB. If one

MSB fits, then this voltage (8 in the figure) is subtracted and the next

smaller bit is checked. This technique is known as successive approximation

if only one comparator and one D/A, which does the subtraction, is used, and

requires N steps for an N bit analog to digital conversion. The threshold A/D

also works by successive approximation, however using a separate comparator

for each bit decision and several D/A's to do the subtraction at the

appropriate comparators. The system does not operate completely in parallel

like a "flash" A/D but it is faster than a clocked successive approximation

A/D. The clocked type is slower because extra space for timing errors must be

made at each step of the N cycles. The threshold A/D is asynchronous and has

the result "trickle down" with the digital output accepted after a suitable

delay.

5.1.2.2 Accuracy Requirements

A. Noise and Spurious Signals

A contemporary analysis of A/D accuracy involves several kinds of tests

which show the individual and collective effects of nonlinear and frequency

dependent errors. For example, one easily performed test uses an analog sine

wave as the input to the A/D, followed by a "perfect" D/A which then hopefully

5-8



4.

reproduces the sine wave. Errors in the analog to digital conversion result

In excess background noise, harmonics and other spurious signals which may be

observed with a spectrum analyzer. Providing two sine waves at different

frequencies simultaneously for the test signal will give intermodulation

products and yield information about the A/D which is especially appropriate

to applications having strong input signals.
__'

Analog Input: 0-15

8 Threshold

8

V4

4-4

LSB Comparator 8 

.

Z: 
-2

-4-

LSB Digital Outnut Word MSB

Figure 6. Threshold Logic A/D

A second test which is quite revealing gives the signal-to-noise or

signal-to- distortion ratio for applications having wide bandwidth signals.

In this case an analog input signal is also fed into the A/D and a "perfect"

D/A reproduces the signal which is again observed with a spectrum analyzer.

The input signal Is not a sine wave however, but wideband noise (within

aliasing requirements) with an empty notch. The spectrum analyzer reproduces

this noise spectrum with the notch still evident, but unfortunately filled in

* somewhat. This revealing tests gives the "noise power ratio" (depth of the

5-9
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notch in db) which is smaller than the signal-to-noise ratio obtained when the

input signal was a simple sine wave.

B. Monotonicity

The basic accuracy requirement of the threshold A/D is explained below.

This analysis gives a simple and useful accuracy result, but does not address

the periodic nonlinearities which give rise to harmonics and intermodulation
components.

There are two mechanisms which trigger the change in the digital output

*" word as the input analog voltage changes. First, the LSB comparator can alone

change state because the analog voltage crosses (in either direction) the

threshold at this comparator. (Note that the actual threshold of the LSB -------

comparator is modified by the state of the larger more significant bits.) The

second case occurs when the changing analog input voltage crosses the

threshold of any higher order comparator causing it to change state. Only one

higher order comparator is triggered by the slightly changed input voltage,

though that comparator then changes the thresholds on the lower comparators

which causes further changes in the lower comparators. The point here is that

- only one comparator at a time is supposed to initially trigger the change if

the input signal changes slowly, and that the LSB comparator alternates with

the higher order comparators in triggering this change when the input signal

is a slowly ramping voltage. As a result, the A/D error called missing codes

can be excluded by requiring that the threshold of the LSB comparator and each

of the other comparators never overlap with any combination of the D/A

subtraction lines. This requirement is met if the offsets of each comparator

in conjunction with the D/A subtract line feeding that comparator is less than

1/2 LSB.

The unwanted overlap of the thresholds of two higher order comparators

would require a much larger error equal to 2 LSBs or 4 LSBs etc., which we

will ignore here.

5-10
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An N bit threshold A/D requires N-1 D/A converters each with ±1/4 LSB

accuracy on the N bits. We assume ±1/4 LSB accuracy in the N comparators.

This guarantees monotonic behavior with no missing codes.

5.1.2.3 Speed and Relative Complexity of the Threshold A/D Converter

The speed of the threshold A/D is the time required for N comparators to

. settle in tandem, plus the time for N-i D/A converters to settle, also in

tandem. However the N-i D/A converter settling times are different. The

first settling time involves a change of one MSB In the D/A. The second

* settling time involves only the next lower bit. Finally the last "f/A"

settling time only involves a change of one LSB in the D/A. Thus the

trickle down settling time required is much less than N-i full D/A settling

times. However, on this point one should note that common A/D's using the

successive approximation technique also benefit from these decreasing D/A

settling times as it steps through the conversion process.

This threshold A/D is faster than a successive approximation A/D, but is

slower than a flash A/D. This threshold A/D has more parts than a

recirculating successive approximation A/D, which needs one comparator, one

" D/A, and* one digital counter. A flash A/D requires 2N-1 comparators and a

digital decoding circuit for an N-bit converter, but it generally does not

require an analog sample-and-hold circuit at the input as is required by the

successive approximation A/D and threshold A/D systems.

5.1.3 Sideways Summer

" 5.1.3.1 Introduction

In earlier work on digital optical computing, the process of converting -

the analog output from the Digital Multiply by Analog Convolution (DMAC)

algorithm to a computer usable binary form has either been given little

attention or simply ignored. In fact, this conversion process, typically

performed by A/D conversion and then shifting and adding (S/A), can be the

slowest part of an entire calculation. We show here a novel technique for L

5-11



reducing the delay time from 2N-2 full adder delays to log 2 (N-i) delays where

N is the number of bits being multiplied.

* 5.1.3.2 DMAC Operation J
Most digital optical computers base their computations on an algorithm

that provides digital accuracy by using an analog operation. As an example,

consider multiplying the two numbers 7 x 7 =49 digitally:

L
Binary 7 ill -

x 111

110001 binary
12321 mixed binary

If we add up the partial products without the carry, the sum will have a

number larger than what can be represented in binary. That is, the result

will be larger than 1. This non-binary result is said to be in "mixed binary"

form.

If we take the two sets of binary numbers and convolve them,

(111)*(III) = 12321

the output is exactly the mixed binary results of the previous example. To

translate this result to the equivalent binary answer, each digit of the mixed

binary analog number must undergo the following process:

1. Pass number through an A/D converter

2. Left-shifted one digit with respect to the previous partial product

3. Add the converted number to running sum.

5-12
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This procedure is more clearly illustrated if the numbers of the example are

represented in the following manner:

X10

2_ lox

3---1 IXX

IO~-10XXX

' 1 ~~01 XXXX ._._:

110001

Note that the largest analog number is at most equal to the number of

bits being multiplied (thus the use of Il1 in the example). Also, the number

of A/D converters needed to perform the mixed-binary to binary conversion is

equal to 2N-1. Therefore, for an N-bit multiplier, one needs 1 log 2N A/D',

2 log(N-1) A/D's, etc.

5.1.3.3 Implementation of the Adder

One of the simplest ways to perform the S/A is to use off-the-shelf (OTS)

adders. Typically, OTS full adders are 4 bits in width, require about 10 ns

to perform an add, 15 ns for the carry, and are commonly found with '83

suffixes (e.g., 7483, 74283, etc.). Note that there are also special purpose

adders (accumulators) which incorporate shift registers (e.g., the SN74S281).

However, these devices are slower to compute a sum than their conventional

counterparts.

For ease of notation, represent each A/D required for the conversion from

the set <A,B,C,D,E>, and each bit coming out of these A/D's by a number,

5-13
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starting with '1' including the "don't care" place holding x's. For example,

the bottom A/D will have bits E7 , E 6 , ... , E l. The following scheme to add

the number may now be implemented:

x j x A A1

X X B~J 43 X X

SXD CI CX X X

AX X X X

This implementation requires a full adder for rows A and B, another for

the partial product and row C, etc. In general, it requires 2N-2 delays to

perform the conversion. If we implement a digital/optical system to multiply

two 16-bit numbers, there would be 30 adder delays. Since typical delays are

on the order of 7 nsec for, say, high speed CMOS, the resulting multiplier
requires roughly 210 nsec to produce a binary answer. Given that an optical

system can produce the mixed binary result in about 50-100 nsec, a potential

bottleneck can occur as a result of the conversion.

5.1.3.4 Sideways Adder

If we take the least significant bit of each A/D, and form a word 2N-1

bits wide with the output from A/D converter A at the right and add this to

the word formed by taking the next least significant bit of each A/D converter

shifted left, etc. we see that we now have to add only log 2N words that are

2N-1 bits wide.
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X E 5  D4  C3  B 2  A1
E6  D 5  C4  B3  A2  X

The sums of each column are identical to those in the previous figure,but

the propagation delay is substantially less. In fact, as the number of bits

to be multiplied increases, the delay time to produce the binary output

increases only logarithmically for the sideways summer as opposed to doubling . .

for the conventional "shift and add" implementation.

A comparison of typical delays may be seen in the following table:

Summation Delay

Number Bits

* to be Conventional Sideways
Mul tiplied

8 14 2

12 22 2.5
16 30 3
32 62 4

-j 5.1.3.5 Implementation In Advanced Technologies

Full adders are extremely simple circuits. Typical 4-bit full adders use

about 25 NOR-equivalent gates, most of which make up the "AND" and "XOR"

functions. A 32-bit full adder, on a single chip and with fast carry, can be

implemented with about 1000 devices. This circuit would require 32 input pins

(plus 1-5 pins for power) and 32 output pins (plus 1-5 ground). Thus a

minimum of 68 pins are required. A design incorporating 1000 gates is well

within the grasp of present VLSI technology, and switching speeds of

approximately 1 nsec/gate Is possible. (There would be 3-5 gate delays

between input and output.) Assuming 32 bit multiplication, with worst case

7 nsec delay per adder, the conversion time after the A/D would be 30 nsec.
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5.1.3.6 Power Considerations

Since several different technologies are currently available, it is

important to consider the tradeoffs between power and speed when Implementing "1
the Sideways Summer. For example, a 32-bit summer implemented in CMOS would

typically require 50 mw of power and could be laid out in roughly 2000 pm2.

Note that typical delay times in current CMOS implementations are 1-3 nsec per

gate.

Faster implementations may be realized with ECL or even GaAs

implementations. Typical delay improvements of one order of magnitude can be
expected. The tradeoffs include higher power (roughly three orders of I
magnitude for ECL) and larger area (again 1-2 orders of magnitude).

5.1.3.7 Conclusion

The potential bottleneck of converting "mixed binary" to binary can be

reduced logarithmically. Furthermore, the building of a custom sideways

summer in VLSI technology is well within current electronic technologies, amd

it is reasonable to assume that since these circuits are common to all optical

computers, that the.Sideways Summer will be rapidly accepted.

5.2 ARI Multiply Accumulate Unit (MAC)

What has been presented in the past three sections is the workings of a

replaceable electronic component; the MAC (see Figure 7). Because it

accomplishes addition at a speed limited by the optical source, this device is

potentially much quicker than its electronic counterpart. In fact, this

advantage becomes dominant as the number of products to be added increases.

Since it takes approximately 2 ns to create a mixed binary sum, the optimum

number of products to be added is about equal to the (electronic) output

conversion time divided by 2 ns. The best projected speed of the A/D is about
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16 x 16
Mul tiply-
Accumula te

Analog Sums

AID

Mixed Binary

SS

Binary Output

* Figure 7. Diagram of Array Processor (MAC)

10 ns; the SS uses about 30 ns. This totals 40 ns. Therefore, 20 products

should be accumulated. In contrast to this calculation to determine how many

products should be added, a calculation is needed to determine the needed

dynamic range of the system. The limiting factor for the dynamic range turns

out to be the A/D converter, which is technology limited. The need for

"flash" A/D converters was evidenced in the section on TLU A/Ds, and at

present 6 bits running at 10 ns is the state of the art. This will

undoubtedly improve in the future, for example to 8 bits, which produces 256

levels to decode. A sixteen bit convolving multiplier needs to sum 16

diagonals; therefore 16 products can be accumulated. This comes close to the

suggested accumulation of 20 products.

Before we explain how we could improve this system, a detailed

specification would be helpful. We have created an asynchronous integrated

optical multiply accumulate unit that performs 16 bit integer calculations.

, The device is built on an integrated optical substrate, probably LiNbO 3 ,

S". possibly GaAs in the future. Included are 256 optical AND gates, 31 Flash A/D

S-. converters which follow a charge collecting circuit, with the 31 A/Ds leading

. . . . . . . . ....
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into a VLSI sideways summer that is made of high speed CMOS. Sixteen -

multiplications are created and summed every 80 ns with full individual 32 bit

products. This implies a 200 MHz throughput rate, or to use a better

performance indicator, 200 million multiply adds/sec (HAS). This chip by

itself would be the heart of an array processor that performs 200 M HAS. No

*array processor runs that fast primarily because of slow addition, unless

there is a high degree of parallelism (e.g. many MAC's). However, this one

chip could conceivably multiply a 16 x 16 matrix by a 16 x I vector

in 16.80 ns = 1.52 is. If 16 of these MACs were run in parallel, the time

*required drops to 80 ns. Systolic architectures are discussed later.

5.3 Fault Tolerance

Because our device is a module, the problem of a malfunction can be7T

solved by replacing the module. In contrast, consider the case of an N

*channel A.0. cell. Each channel performs a multiplication. N channels means

N multiplications can be done simultaneously. If, however, one channel

*breaks, the entire N channel A.0. cell must be replaced. This amounts to

replacing the processor, not a part of the processor. Consider the above

simple example, but using the ARI module; performing the N multiplications

simultaneously would now require N modules. If one module were to break, it

could either be replaced, or another module could serve double duty. While

the scied drops somewhat, the processor could continue to function.

If we consider the scenario where the mathematical problem to be solved

involves a systolic architecture, the advantages of the modular approach

become even more attractive. Using N+Y modules allows for Y units to fail.

However, since the systolic architecture includes a pipeline, the number of

modules in use will stay the same.

5-181
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not in normal use

Broken Use

This cannot be as easily accomplished in the A.0. architecture,

especially using the SAOBic architecture. The SAOBic architecture requires

that each channel correspond to a vector. If one channel breaks, the whole

vector cannot propagate through without errors. The only feasible solution

for the bulk architecture to become fault tolerant is to 1) detect the bad

channel, and 2) redirect the data from the bad channel to an extra "good"

channel. This would preclude the use of the SAOBic architecture since each

channel has a specific relation to its neighbor. - "

Using the ARI modular approach has introduced a technique to combat the

fault problem which 1) is easier to implement than bulk optics, and 2) can

take advantage of previous research on fault tolerance done for purely

electronic processors.

See Appendix C for a quantitative analysis of fault tolerance in optical

processors.
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APPENDIX A

Once hardware has been developed, an algorithm that fits the specific

architecture should be chosen. In the particular problem considered here, a

set of simultaneous equations is to be solved with a specified accuracy and

time requirement. Therefore, the algorithm must be optimized to meet these

constraints.

Ideally, floating point computations on a direct matrix inversion

algorithm (DM1) would provide a stable accurate result. Unfortunately, in

this adaptive processing problem, the time constraint (solving the problem in

2-10 uis) precludes the use of floating point hardware. (This is not entirely

true. The new Weitek and AMD floating point chip sets can run with 90 ns

clocks, thereby allowing 10 multiplications per update time. If enough chips

are used, the possibility of solving the problem in the allowed update time

becomes closer to reality. Actually, results have shown that for this

floating point hardware to be viable, 50 u.s update times are the minimum that

should be considered.) Nonetheless, the optical processor we have been

describing uses only fixed point calculations.

Second, the MII is usually not the best choice for many considerations.

(Various algorithms and their attributes will be described in Appendix B).

Suffice it to say that the algorithm needs only to converge to a solution tha t

is important to the problem. For example, if the jammer power is 40 dB

greater than the signal, and the processor provides 41 dB of adaptation; it is

not important that the real solution of 41.748 dB, which needs 2x more time,

be obtained.

A-1.
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APPENDIX B

OPTICAL THRESHOLD LOGIC A/D CONVERTER

Conjugate Gradient Methods

Various forms of gradient methods have been investigated for use in

solving systems of simultaneous linear algebraic equations

Ax b

The approaches minimize the square of the residual, R - b - Ax. The conjugate

' gradient method developed by Hestenes and Stiefel1 offers the advantage of

* simplicity in application, an important consideration for optical

. implementation. In addition to computational simplicity the approach has

three other major advantages

0 The original matrix A is not modified during the computation. This

insures that errors do not accumulate from step to step in the

procedure. If A has many zeros, this feature allows the

exploitation of the sparcity. The conjugate gradient approach is a

method of choice for large sparse systems.

o At each step of the procedure the estimated solution vector improves

and the square of the residual monotonically decreases. That is

I I'i I and li Rill monotonically decrease.
o The procedure can be restarted at any point.

These features have direct application in adaptive processing. If we

'- have a solution xk to Akxk - bk and Ak+1 is formed from the addition

and some rows and the deletion of others, the conjugate gradient approach can

be started for the Ak+lxk+l - bk+1 with an estimated x which uses the

.-' knowledge of the previous solution. One can start the k+1 problem with the

" kth solution. While the approach to adaptive processing is formally a batch

procedure it is not necessary to ignore previous information when forming a

B-i
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trial solution. A batch application of the conjugate gradient method has been

successfully applied to the adaptive processing problem by Daniel.2

The basic algorithm for solving Ax f b is as follows. Select a trial

solution xo then the initial residual Ro is found and the procedure
-. s ta rts. l..

R b -Ax P S ATR 7

qi Ap~ a, S1121Ji

xI 1 =xt + aiP R R1 - a q

Si1 ATR i+ a S 1H/SiI
P S +BP
i+1 i+1 i

At each step the square of the residual is smaller than the square of the

residual of the previous step. 111 1 2 < flR 1 j 2 . The conjugate

gradient technique formally converges in a finite number of steps and is in

this sense a direct method. In the absence of roundoff, N iterations are

required where N is the number of nonzero singular values of A. For.

ill-conditioned problems where roundoff can be expected, convergence is not

reached in N steps. By treating the method as if it were an iterative one and
3

continuing one convergence is typically obtained In less thaa 2N steps .

. Unlike other iterative approaches, prior knowledge about the singular values

of A is not required in order to establish convergence. Indeed the parameters

a i and 31 of the algorithm are often used as acceleration parameters in

iterative methods.

The algorithm is equivalent to applying the conjugate gradient method

directly to the normal equations, however as Hestenes and Stiefel indicate,

the algorithm is numerically superior to solution of the normal equations

since ATA is never explicitly formed. Elfving' has studied several L

B-2



. . -o ..

4.%

different formulations of the conjugate gradient method as applied to the

ill-conditioned problem as has Reid. 5 The general consensus is that the

algorithm gives accurate results.

The solution errors that are caused by solving the linear system of

equations on a short word length computer (analog or optical) are magnified by

the condition number of the matrix A. We have investigated the feasibility of

using equilibration techniques to transform the problem to a system of less

ill conditional equations.
L

Ax = b can be transformed into Hy = g by the identity

(TAS)S X Tb

where

H - TAS

y - S- X

and

g Tb

T and S are nonsingular. For a square matrix the transformation TAS do not

change the problem mathematically. However the condition number of H is not

the same as that of A. The condition of H can be controlled by the selection

of T and S. If we restrict T and S to be diagonal, then T scales the rows of

A and S scales the columns of A.

The desired scaling is one which makes the rows and columns of H as

linearly independent as possible. The optimal scaling will cause the

condition number of H to be a minimum. This problem has been solved for

6certain matrix norms by Bauer. However the solution depends on knowledge of

A. This is information that is not available a priori. A partial solution

7is given by Van Der Sluis. He showed that for column scaling, T = 1, the

B-3
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condition obtained from choosing S so that the columns are of unit length

differs from the condition of the optimal Sop t by less than the square root

of the dimension of A.

Major scaling will not only aid in operating convergence, but will reduce

roundoff error as well. This is particularly important since the optical

processor is not a floating point machine. If scaling is done by powers of I
the exponent, the mantissa of the numbers are not affected. Thus there should

be no effect on roundoff errors due to diagonal scaling for floating point

processors. This is not the case for fixed point processors where roundoff

errors should be affected severely.

Scaling has the effect of decreasing the disparity in the sizes of the 5
elements. A useful procedure is to select the scale so that the largest

elements in each row and column are on the order of unity.
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APPENDIX C
FAULT TOLERANCE AND SELF HEALING IN OPTICAL SYSTOLIC ARRAY PROCESSORS

C.1 Background

To our knowledge all optical systolic array processors so-far described

work only if every component part works perfectly. -  Yet these computers

involve many hundreds of sources, modulators, detectors, and convertors, D/A

convertors, etc. Many of these must operate at both very high speed and very

high accuracy. Drifts in speed or accuracy which might be tolerable in other

applications may have disastrous effects in such a computer. Rather than rely

on "perfection," we believe it wiser to allow for failures. The consequences

would be lower cost systems (higher yield) and more reliable operation.

In most other fields, as well, fault tolerance has proved necessary and

desirable, so a large body of knowledge concerning general approaches has been

developed. Here we attempt to apply some of those approaches to optical

systolic array processors.

C.2 General Approaches

We feel compelled to remark that good design, good component choice,

etc. can reduce the failure rate. It simply can not be asked to achieve

defect-free construction and operation at all times. All other remarks must

be tempered by this one. We discuss two general approaches to error control

below.

The first widely-used method is damage containment. In optical systolic

array processors, this principle favors smaller modules, so construction

yields can be high and replacement costs can be low. On the other hand,

construction from discrete components is obviously impractical and

uneconomical. Arrays of sources, modulators, detectors, etc. seem desirable.

Thus each case involves a tradeoff and general conclusions are not possible.

The second general approach is to "heal" defects when they are detected.

This is not always possible, so we must divide defects into two classes:

Cl.. 1.£
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healable and nonhealable or, as we prefer, minor and serious. Note that

healing may not be an infinitely-repeatable process, so a defect which was

minor in its first n occurrences might be major in the (N + 1) st occurrence.

The third general approach is to "bypass" serious defects when possible.

When a serious defect can not be bypassed, the system or module having that

defect must be replaced. This brings us back to the containment principle.

We will concentrate on the healing and bypassing strategies for optical

systolic array processing, but we must precede those discussions with remarks

on defining and detecting defects.

C.3 Defining and Detecting Defects

For our purposes, defect definition is easy. A defect in any component

is the operation of that component in a manner that causes an erroneous result -1
to occur in the calculated results.

In detecting such a defect we are driven (by the defect definition) to

make diagnostic calculations and compare the results with the known correct

results. If the diagnostic calculations are chosen well, we can

* at-least-partially isolate the defect.

For the sake of simplicity we will confine our search call "individual

multiply-accumulate channels." Furthermore, again for simplicity, most of our

remarks will be directed toward Matrix-Vector multipliers. Figure 1 shows, at

least symbolically, how a group of N channels can multiply an NxN matrix by an

N component Vector. In practice these channels can be constructed in many

ways: modulated source arrays, acousto-optic devices, surface acoustic wave H
devices, disrrete channel integrated optics, one source with discrete

modulators, etc. These details are important to the system design but not to %-.

our discussion on diagnostics.

,t., Diagnostics must begin with a model of the channel. We present and use a

.* simple model here. The designer must either make his components conform

C-2
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Constant Detectors •

M~a trix 'lector
Component Componen,
Modulators Modulators

Figure 1. A Symbolic Representation of An Optical Systolic Array Processor.
In practice the sources may be modulatable, the vector modulation
may be via an acousto optic cell, etc. Nevertheless, distinct
channels can always be defined.

(sufficiently-well so as not to change calculated results) with this model or

use a more appropriate model. We suspect the former approach will be easier.

- - Our channel model will assume

o A controllable-intensity light source set slightly below its maximum

o A matrix component modulator, with a transmission T, which depends
on its control voltage V, according to

. . - -- T~t  + [ ,T _ r ( V~ ( /U )
o +Em -T 1v/1
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where

T =minimum transmission

T maximum transmission ,

and

U1  reference voltage

o A Vector component modulator with transmission dependent on its
control voltage V12 according to

T -T 2 + [T~2  T /U (2)2 0 m 0 V2 U2)

where the quantities T0 (2), Tm(2), and U2 are defined as in Eq. (1).

o A detector whose ideal output will be defined as 1 when V, U1 and
V12 - U2 .

Let us writ-e the total output in terms of

R, - / (3)

and

R 2 V /U 2(4)
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w,!7.
We have, omitting some uninteresting proportionalities constants and assuming

a properly-adjusted source brightness, a signal

S (R1 ,R2) - T (R1) T2 (R2) {T 1) + [T(1) - T 1)1]Ri}2- m 07

x IT)+ (T(2 ) T 2 )] R2}- T(1) T 2 )

+ T( ) [T(2  T 2 )J R2 + T(2)T(1) T(1) ] R,
0 m 0 o 0  Tm - 0 j

+ (T(1 ) - T(1)] [T(2) _ T 2 )] R R (5)
S 0 0 1 2

With only a little more uninteresting algebra, we find

S (R1,R2) - S (0,0) + [2S (1,1/2) - S (1,1)] RI

+ [2s (1/2,1) s (1,1)] R2

+ [3S (1,1) 2S (1,1/2) 2(1/2,1) + S(O,0] R1R2  (6)

That is, by measuring four outputs [S (0,0), S (1/2,1), S (1,1/2), and

S (1,1)] we can determine the current operating curve S (R1 ,R2),

Now we must address the question of whether the S (R1 ,R2) function just

measured is acceptable. We will use as criteria

,-."m '" ( - ) < IS (1,1) 1 < (1 + E) (7)

rC-5
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and

(0,o) < C (8)

The value of c depends on the needed channel dynamic range. If the dynamic

range D is needed, a reasonable choice would be

- /(2D) (9)

Other criteria might be used, but this one is simple,probably adequate, and

easy to test. A channel failing either test is declared to contain a defect

or that the channel has failed.

As an aside, note that the more our system design increases D, the more

frequently a defect will occur given the same components.

C.4 Healing A Failed Channel

Because channels can fail in two ways (Expressions 7 and 8), two methods

of healing must be available. A channel which fails the criterion of

Expression 7 will be called "miscalibrated." A channel which fails the

criterion of Expression 8 will be called "noisy."

A miscalibration can be corrected by adjusting some combination of source

brightness and detector gain. Note that recalibration of a channel in which S

(RI,R 2 ) was less than unity could cause the channel to become noisy. Thus

Expression 8 must be retested after an upward recalibration. If Expression 8

is not satisfied, the channel has a serious failure.

A minor noise problem is one which can be removed by adjusting downward .

some combination of source brightness and detector gain while still satisfying

Expression 7. If such an adjustment is impossible, the channel has a serious

failure.

.. C-6



_ _ _ _ _ __W -I j2
C.5 Bypassing Channels With Serious Failures

We assume a module needing N operating channels to perform. To allow for

F channel failures per module we will need N + F channels per module. Of

course

F << N . (10)

We will assume that the N Matrix-information lines can be reconfigured

slightly and that up to F clock time delays can be inserted anywhere before,

within, or after the string of N vector components initiating the

calculation. The rest is easy and will be illustrated with the special case

of N - 3 and F 1 1, The Processor has N + F = 4 channels. The problem we want

to solve is the evaluation of

A., + .lG--; 2 11 12 13 1

+1

y AX = Y2  a 2 1  a2 2  a 2 3  1

Y3 a3 1  a3 2  a33  X3j

If the first three channels are good, we solve the augmented problem.

a11 a12 a13 0

[ Y2  21 22 23 0 2 (12)

a a32 a 0 X

0 J L0 0 0 0 J "L".C-

' "," C~-7.". "
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If, for example, the second channel Is seriously failed, we solve the

* augmented problem.

8ja11 0 a 12 a 13  X 1

0 0o 0 0o 0 (13)

82 0Qa a X

83310 32 833 3

The generalizations to matrix-matrix processors and to F > 1 are obvious. The 1
final results may have to be buffered for up to F clock periods If we want to

guarantee the output temporal format.

" ,~ ...-

C.6 Extension To Digital Calculations

Those familiar with digital optical systolic array processors will note

tha t the situation becomes mare complicated when the numbers are represented

with a string (spatial or temporal) of signals. We may be using a twos

complement representation of 16 bit real numbers. This requires 17 channels --

* to replace each of the individual modulators in the systems described

*earlier. To bypass F channels per multiplier unit, we need to allow 17 + F

channels per multiplier unit. The complication arising from this approach is

* now easy to explain. The matrix coefficient channels run independently, but

the vector coefficient channels intercommunicate. That is, there is no

built-in bypassing mechanism in any module. It a serious failure occurs inI
the third channel of any multiplier, then there must be a zero as the third
component. If we group M multiplier units into a module, we need MF spare

channels to heal F serious failures. As the last step of any module we can

make a smart buffer system which can reorder the vector component data in the

form needed for the next module. In a typical acousto-optic cell allows aboutL
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M = 60 17 channel multiplication units with 17 channels (60 x 17 1020).

Allowing a 1% serious failure rate, we expect about 10 serious failures among

the 1000 channels. If we make the very optimistic assumption that we will

have at most one serious failure per multiplier unit, we must allow 27

(- 17 + 10) channels per multiply. This reduces M to about 39 (39 x 27 "

1026). More importantly, the time required for calculation increases by a j
factor of 27/17 (-160%). If we go to an M = 1 module system, we need 18

- channels per multiplier. The time per calculation increases by a factor of

only 18/17 (- 6%). Of course this does not take into account the time lost in

the smart buffer. Nevertheless this analysis suggests that high M modules

such as those using 1000 pixel acousto-optic cells can be made fail safe

against serious failures only at some considerable loss of speed and capacity.

C.7 Software Error Checks

The "checksum" method of Huang and Abraham9 adds a bottom row to the A

matrix and a rightmost column to the B matrix in performing

A x B =C (14)

The resulting C matrix has both the extra bottom row and the extra right

column. The checksum rows and columns are simply projections along the

orthogonal direction. The product matrix C has both row and column checksums

which should also be correct. Thus error detection is possible. When there

is a single error it can even be located and corrected.

Extending all of these properties to matrix-vector multiplication is not

trivial. One way to do at least the error detection is to add both a bottom

checksum row and a right column (all zeros) to the starting matrix A to form
+

an augmented matrix A'. We then add a zero as the last component of x to form

an augmented vector x. This is best illustrated with the simple case

C-9
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A a (15)

x-
x LA2  (16)

A 2- a22  (17)

IS s 0

and

2 (18)

where

1 S~ 1 1  a 2 1  (19)

and

S 2 -a 2 1 +a 2 2  (20)

Ax' (21)
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In this way we can detect but not correct errors. The trouble is that for

large matrices the checksums may get too large for a fixed point computer to

handle.

To counteract this we replace Si with aSi, where a is chosen to keep

all of the Sil's in range. We may choose a as a prescribed fraction of the

maximum iSi for each matrix, for instance.

C.8 Overall Approach

We can summarize our approach as follows:

1. Try to make highly reliable, predictable channels,

2. Automatically test each channel on a regular basis,

o When possible, heal any failures,

o Bypass up to F failures using the methods described, and

o Replace or bypass modules in which the number of serious
channel failures exceeds F, and

o Use weighted checksums for real-time error detection.

The concept of bypassing modules is a simple extension of the concept of

bypassing channels and is another possible benefit of using a modular approach

to the construction of optical systolic array processors. Small modules have

distinct when we are dealing with digital accuracy computations.
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