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SI1 ."INTRODUCTION AND SUMMARY

Consider the classical MANOVA model

Y = Xe + E (1.1)

where E N(O,In( E = (E1 E2 ) Y =(YI Y2) X =(X 1 X2 ) and

E) 11 (~ 12 11=(~ 12'1 (1.2)
C.21 622) 21  22

Also, E ij and Xi are of order Pixpj and nxr i respectively, p = P1 + P2 and

r = rI + r2. In addition, Yi and E. are of order nxpi. Then, we are interested
1 1* 1

in testing the following hypotheses:

Problem [I] H:e 12 = 0 and E 12 - 0 vs K: not H

xProblem [III H:e 12 =0, 6 21 = 0 and E 12 =0 vs K: not H

Problem [III] H:z 12 - 0 under e12 - 0 and 821 = 0

vs K:E 12 # 0 under 612 = 0 and 821 = 0.

The motivation behind each problem is stated in Section 2 and some examples

are also yiven there. In this section, some formal features of the problems

are made clear and our results are briefly summarized together with some results

in the literature. A basic feature in the problems treated here is that in each

hypothesis the independence (Z12 = 0) between Y1 and Y2 is included corresponding

to the structure of the regression coefficient matrix G.

.A..

\.,- -x>-.'.......



2

In Problem [I], the hypothesis will be regarded in Section 2 as a

formulation of the hypothesis of no causality from X1 to Y2 where X = [Xl,X 2

may be random but is fixed with full rank. Also =12 0 in the hypothesis

may be viewed as a special case of the GMANOVA (general MANOVA) hypothesis

MIeM2 = 0 (1.3)

where M1 and M2 are fixed matrices of full rank. In fact, M1 = [1,0] and

M2 = (~) implies e1 2 =0. The problem of testing (1.3) in the GMANOVA model

of the form Y = ZIOZ 2 + E is known as the GMANOVA problem and has been treated

by Potthoff and Roy (1964), Rao (1965,1966), Khatri (1967), Krishnaiah (1969),

Gleser and Olkin (1970), Fujikoshi (1973), Kariya (1978), Marden (1982a) and

others.Potthoff and Roy (1964) proposed the GMANOVA model and considered adhoc

procedures for testing the general linear hypothesis on the location parameters.

Rao (1965,1966) reduced the problem to testing the general linear hypothesis

under a conditional model. Khatri (1966) derived the LRT for testing the

general linear hypothesis under Potthoff and Roy model. Later; Gleser and Of'kinh: (197(

gave a canonical reduction of the problem and discussed the LRT procea'ire using

the canonical form. However they have not treated Problem [I]. It should be

noted that when (1.3) is dealt with, the presence of a general M2 in (1.3)

affects the covariance structure so that in the case of (1.3) E12 = 0 should be

replaced by the hypothesis
S I

M2-M 2 + P2AP2 (1.4)

where P2 is a matrix of full rank satisfying P2M2 = 0 (see Kariya (1985), pp

175-176). That is, Problem [I] is considered equivalent to the problem of testing

(1.3) and (1.4) simultaneously since both problems give the same canonical form.

Hence, solving the former problem implies solving the latter

- . . . .. . .
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problem and vice versa. Now for Problem [I], applying the invariance principle,

we first expand the power function of an invariant test in the neighborhood of

the hypothesis and based on it propose a test, in Section 3, which maximizes

the power in a slightly restricted neighborhood of the null hypothesis. Of

course due to the local optimality, it is admissible. The test statistic there

is a linear combination of the LBI test statistic T1 for testing = 0.1 . 12

(Schwartz (1967)) and the LBI test statistic T2 for testing E12 = 0 under

012 = 0. The latter test is equivalent to the LBI test of independence with

some data missing in Eaton and Kariya (1983). Because of the form of T2, T1

and T2 are correlated and so our test is not equal to a test combining the two

independent LBI test statistics T1 and T3 for the two separate hypotheses

1" 0 and E12  0 (without e12 = 0), though T1 is the same. This is a feature

of the joint treatment of the two hypotheses and it implies that a test combining

the two independent statistics T, and T which are LBI for each hypothesis does

not maximize the local power in any direction except for the case that the test

depends on T1 only and that the alternative space is restricted to the space on

which E12 = 0. The problem of how to combine independent tests is discussed in

the literature (see e.g., Marden (1982b)), though we do not discuss it here.

But the LRT statistic for Problem [I] gives a natural combination for two sepa-

rate hypotheses. In fact, it is the product of the two independent LRT statistics.

This might support the idea that we separately treat the hypotheses and then

combine the two tests. However, as has been observed in Eaton and Kariya (1983),

even when 612 = 0, the LRT for testing E12 = 0 ignores the additional information" even hen 12

i1 (data) available through 012 = 0. In this sense, the above fact may not be

seriously taken into account. The asymptotic null distributions of the test

..
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based on T1 and T2 and the LRT are derived in Section 5 and the unbiasedness

of the LRT is shown. It is noted that the group leaving the problem invariant

is small so that the power function of an invariant test including the LRT

depends on many parameters including the canonical correlations.

In Problem [II], the hypothesis will be regarded in Section 2 as the

hypothesis of no additional information in canonical correlation analysis or

a formulation of the hypothesis of no causality from X1 to Y2 and from X2 to

Y1 . where X may be random but is fixed with full rank. Here the restrictions

612 = 0 and @21 = 0 are special cases of

MIM 2 = 0 and M3eM4 = 0. (1.5)

However, the two GMANOVA type restrictions in (1.5) cannot be expressed

as a single GMANOVA hypothesis of the form Mell2 = 0. That is, the

problem of testing. (1.5) even in our MANOVA model Y = Xe + E is no

longer the GMANOVA proble. and difficult to treat unless M
I I I

and M3 are nested relative to X X or orthogonal relative to X X, i.e.,M 1X XM3 =

0 (see Kariya (1985) p 143). Since M1 = [1,0] and M3 = [0,I] in our present
I I I l

case, M1X XM3 = X1X2 and hence without X1X2 = 0 the problem of testing.

Problem [IV]: H:0 12 = 0 and 021 = 0 is difficult to treat. In fact, it is

not only difficuit to derive the LRT explicity but it is also difficult to

find a similar test detecting both 012 = 0 and 021 = 0 in a meaningful manner

(see Section 7). On the otber hand, the hypothesis on the covariance structure

which corresponds consistently to the hypothesis (1.5) is expressed as

II I I

SM 2 rlM2 + P2AIP 2  and E = M4 r2M4 + P4A2P4. (1.6)

24
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where P2M2 = 0 and P4M4 = 0. Since in Problem [iII M2M 4 = 0, we can take

.2 = M4 and P4 = M2 so tIat the two covariances in (1.6) become the same.

In Section 4 first in the case of X OX 0 we analyze Problem [II] via

invariance, but because the group leaving the problem invariant is quite

small, no sufficient reduction is obtained and the space of a maximal invariant

parameter is of high dimmension. Hence in the case of X1X2 t 0 we simply show

the unbiasedness of the LRT derived by Fujikoshi (1982). The LRT statistic

here is the product of the three LRT statistics for the three separate hypotheses

"12 = 0, e21 = 0 and z12 = 0 but the three are dependent. It is noted that it

Y is difficult to consider the monotonicity of the power function of the LRT

because of the high dimmensional parammeter space. Next in the case of X1X2 = 0,

we expand the power function of an invariant test in the neighborhood of the

null hypothesis and based on it propose a test, which is a linear combination

of three statistics RI, R2 and R3. Here similar to Problem [I], R, and R2 are

respectively the LBI test statistics for the hypotheses 612 = 0 and 821 =0

and R3 is the LBI test statistic for z12 = 0 under 012 = 0 and 821 = 0. Hence

R1, R2 and R3 are dependent. This is a feature different from the separate

treatment of the three hypotheses. The asymptotic null distributions of this

test as well as the LRTare given in Section 5.

Problem [III] was treated by Kariya, Fujikoshi and Krishnaiah (1984)

(abbreviated as KFK henceforth). In this model X is fixed but it

may not be of full rank. The model (1.1) with 012 = 0 and

2 0 is regarded as a combined expression of two correlated multivariate
" °regression models with different design matrices. When p1 = p2 = 1, Zellner

(1962, 1963) called it a seemingly unrelated regression (SUR) equation model,

while KFK called it a correlated regression equations (CRE) model. As has

g-.................. . . . . . . . . . .
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been discussed above, the information e12 = 0 and e21 = 0 on e cannot be

expressed as a single GMANOVA restriction and when it is expressed as the

form in (1.5), M1 and M3 are neither nested nor orthogonal relative to X X

(see Kariya (1985) p 143, 159-163, 207). Therefore, the model itself is not

put in the framework of the GMANOVA model and even the LRT for Problem [II]

is difficult to derive (in the case that XIX 2 0 0 or X1 is not nested to X2 ).

In Section 7, based on the idea of Mukherjee and Chandra (1984), we compare

the power of the LRT-like test, the Pillai type test and the LBI test proposed

in KFK. The comparison is made asymptotically in n with contiguous alternatives

and asymptotically in small canonical correlations p1 > '"  p l  (as P1-0).

There it is shown that the Pillai type test is asymptotically (in the same

sense) equivalent to the LBI test and that for those small pi's such that

= 4 I2 > some constant c, the LRT-like test is asymptotically better

than the LBI test, while for those small Pi-s such that ' < c, the LBI test is

better. Further, because in the case of X1 =X2  X0, the model in (1.1) is

reduced to

[YI'Y 2 ] = XO[611,e22 ] + 2]

which is nothing but the MANOVA model. Therefore the comparison in Section 7

holds as it stands for the LRT and the Pillai (LBI) test of independence in the

MANOVA model. This is a corollary of our result.

SPUJALITY

Z..
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2. MOTIVATION OF THE WORK

The motivation behind Problem (I]:012 = 0 and 021 = 0 is associated

with the problem of no causality from X1 to Y2 and total exogneity of X1 for

Y2" We will first write the model (1.1) as two correlated classical multi-

variate regression models.

Y = X1811 + X2°21 + E1

(2.1)
Y2 = X1812 + X2 2 + E(2.

Then the hypothesis 812 = 0 is equivalent to no effect of XI on Y2 as in the

usual case. However, since E1 and E2 are correlated, the regression equation

of Y2 under 812 = 0, conditional on Y1 is expressed as

-Y2 = X2822 + (Y1-Xe11 "X2e21 )zE1z1 2 + E3 "

2 In this sense the effect of XI on Y2 still remains unless E12 = 0. Therefore

the hypothesis e12 = 0 and E12 = 0 in Problem [I] is considered as a formu-

lation of no causality from X1 to Y2 or total exogeneity of X1 for Y2. An

example for Problem [I] is found in a problem of economic policy evaluation.

Suppose the model (2.1) is a reduced form of an econometric simultaneous

equations model which describes the interaction of economic variables, and

X1 is a matrix of policy variables (tax rate, government investment etc.).

Then the hypothesis in Problem [I] is interpreted as no effect of the policy

on some economic variables such as inflation rate, sales, consumption etc.

The motivation behind Problem [II]:.e12 = 0, e21 = 0 and = 0 is

similarly given in association with no causality from X to Y2 and no causality

from X2 to Y1. In addition, the problem is also considered as a formulation
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of no additional information hypothesis in canonical correlation analysis,

which was given by Fujikoshi (1982) based on Mckay (1977). To see this,

suppose there are two groups of measurements (variables), say x1 and x2, where

xi's are rix1 random vectors with means ui and joint covariance matrix T =

(ij ):(r1+r2)x(r1+r2) with Yi: rixr. (i,j = 1,2). Let 2(x1,x2) denote the

sum of squares of the canonical correlations between xI and x

62 (XlX tr-I - (2.2)

2  tr11 12 22 21'

which is regarded as a measure of total correlation between x1 and x 2. Some-

times for each group, there are some other measurements available, say yl and

Y2' which appear to be of some relevance for the correlation between the two

groups where yi:pixl (i=1,2). Then adding these variables to x1 and x2 , the

total correlation is measured by the sum of the canonical correlations between

z = (xl,y)' and z2  2(x2,Y2), say (z1 ,z2) as in the case of (2.2). But

the real or significant relevance of including the additional variables y1 and

Y2 may be in question relative to the original variables. This question gives

the following testing problem

(H:6 2) = (Xlx 2) vs K:6 (Z1,Z2) > 6 (xlx 2). (2.3)

Using a conditional argument, Fujikoshi (1982) showed that this problem is

equivalent to Problem [II] and he derived the LRT where Xi's and Y.'s in (1.1)

are the sample matrices of xi's and yj's. Mckay (1977a) treated the

* 2 2hypothesis 2(Zx 2) = 6 (x1 ,x2)(i.e., no additional information in y1 relative

to (xlx 2)) and showed that this hypothesis is equivalent to E in the model

(1.1). Some related topics are also found in Mckay (1977b) and Rao (1970).

The motivation for Problem (Ill] is stated in KFK (1984), Zellner (1962,

1963) and the articles therein.

%.1
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. 3. TESTS FOR = 0 AND z 0
12 12%

Based on the motivation stated in Section 2, we here consider the problem

of testing the hypothesis H against K where

H: B12 = 0, E12 = 0, K: not H. (3.1)

First we make an invariance consideration into the problem and obtain an expression

for the local behavior of the power function of an invariant test in the neighbor-

hood of the null hypothesis. Based on the expression, an invariant test together

with the LRT will be proposed and then the null distributions of these test statistics

will be given in Section 5. To begin with, a canonical reduction-ofthe problem is

performed. Write
X = A]with PEO(n) and A = (X'X)I GZ(r)

and express 612 = 0 as

M IM = 0 with M,= [ 1 ,0] and M= , (3.2)P2

where 0(n) denotes the group of nxn orthogonal matrices and G Or) the group

of rxr nonsingular matrices. Further let

MIAI = F(I,O) with FeGZr 1) and T £O(r)
1

and

" " "" .'.-' , 0 ) il l 12 rl
Z = \ P'Y and n = TAG. (3.3)

v.',. n_ "21 n22|r2

P 1 P2

Then the problem is to test (I,O) = n12 = 0 and 12= , i.e.,

H: 2= O2 ,1 = 0 (3.4)
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in the canonical model

/Z11 Z 12 ri (il "12iil
~ Z 1 Ell\E12Zz~ z22 r2 " n2i n22' I®R

'Z 3 1  Z3 2 ) r3' 0 0 kz21 22

Pl P2

wherer = n - r. This problem is clearly left invariant under the group

G = O(n)xB(p)xF acting on Z and (n,E) by

g(Z) = PZB + F (3.6)

P10 F 1
g(nj)= nB + , B'zB) (3.7)

P2 F21 F22 )

where

g = (P,B,F)cG

O(n) {P 0 P2 03 PicO(ri)} ,

B(p) {B ( BG(Pi

F F 11I 0 2)p rj,

F= {F F FijcR }
F21 22

0 0

It follows from (3.7) that the power function of an invariant test is a function

of (E12E12,s) where
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! 12 n~12 Z22 €, 2 (P) = ( ' ) and (3.8)

A A(p) = diag{p1,...,pt}: plxP2  (3.9)

with t = min(pl,p2 ). Here p 2 ... Pt are the characteristic roots of

-1 -1 -;- -1 -3-
S11E 2E-.1 and , is an orthogonal matrix which diagonalizes E .22 Z1 2

li 12 ~22 21 2 E111'12 22
Hence without loss of generality we assume 1= 12 and Z =S. Further, it

also follows from (3.6)that any invariant test is a function of (Z12 ,U) with

U = (Z31 •Z32)• on which G acts by

g(Z12 'U) = (P1Z12B2, P3UB) for g = (P,B,F)cG. (3.10)

Now to state one of our main results in this section, let D be the set of

all invariant tests of siz ('.,e.. V' ,k(Z)) = O(Z))

S -UU - S ij z3i Z3i (3.11)
S21 $221

and let 6 = 61 + 62 with

' -1

;1 = tr 12E12 = 12'2212

and (3.12)

62 1=li tr. 1112 22 21.

Clearly n12 = 0 and 12= 0 if and only if 6= 0, or 61 = 0and 2 =0.

Theorem 3.1 . There is e > 0 such that on the set {(n,)j6 < e}, the

power function of any test * in I is evaluated as

S(,n,))= a + 61CI() + 62C2 () + o() (3.13)

---".
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where
rl+r 3  Pl' Fd r7 (7 +A1'

C = jirP1 EotrZI2Zl(Z I2ZI+S2 (3.14)
Tr1r2 ' 1

C (o) 1 3p -1 (S+2) -2plP 2  EO{[r3trS 11S12(S22+Z;2 12  
1S21

1r 3(3.15)

- PltrS22(S22+Z12Z12)} -2

lim sup€ I0(8)/si = 0.

Here E0(.) denotes the expectation of(.)under the null hypothesis. The

proof is given at the end of this section. The expression (3.13) shows the

local behavior of the power function of an invariant test 4, according to

which the power function is approximated by a+8 1C1(4) + 62C2( ) in the

neighborhood

N ='(n,~jt -1' t -1 ZZ-1 Z <CN N {(n,Z)Itrn 12 Z2 2n12 + tr 11 12 22 21 < c}

and the approximation is uniform in €. Since a test maximizing the local power

a + 6 1C1(4) + 62 C2(f) depends on at least the ratio of a Iand 62 , no LBI

test exists. This is natural in the sense that the quantities 61 and 62 indicate,

are different and the deviation of 61(or n 12) from 0 is independent of the devia-

tion of 62 (or Z12) from 0. On the contrary, the form-of

the power function in j3.13) reflects how, an invariant test can detect each local

deviation from each null case. That is, C1(f) basically measures the local power

of * against the local deviation of 61 from 0, while C2(4) the local power of €

against the deviation of 62 from 0.

However, the statistics whith define the expectations of C1( ) and C2W

,2
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in (3.14) and (3.15), are not independent even under the null hypothesis. In

fact, the statistics
Pl

T _ = trZ 2Z 2(ZI2ZI2+S 22 ) and

(3.16)

tS- S 'S+ZZt - -SI
-T 2  r 3 r 1 1 12( 22  1212' 21-Pltr 2 2 22+ 12 12

are dependent on each other. This is a feature of the simultaneous treatment

i of the two seperate hypotheses. To investigate this point further, observe

that the test, say V1. which maximizes Ci(€1 is given by the critical region

T> C

and it is the LBI test for testing n12 =0 without r.12 = 0. More specifically

it is LBI for testing the General MANOVA hypothesis

H M.1 eMI2 = 0 (3.17)

in the MANOVA model Y = Xe + E with E -N(O,I ® .) where X: nxr, MI: r1xr and

"M: pxP2 are arbitrarily fixed matrices of full rank. This test is even UMPI

(uniformly most powerful invariant) when r1 = 1 or p2 = 1 and the power function

of an invariant test V for the hypothesis in (3.17) is locally expressed as

P1(*,(n J ))= a + 1C( 5P) + 0(05) (3.18)

where (nE) is the parameter of a canonical form corresponding to (e,z)(see

Kariya(1985) , p 109). On the other hand, the test, say V2' which mazimizes

S2 (fl is given by the critical region

T 2  C

,.'i-.- >'-,".'.:'.,.",-.-i.. -;-',.-2.---T------ -".--"-" ." ",..''.'.''... . '.," .. ."."..... . . . . . .,'..-. .-. ,'-.-.,.. .. ".. ."...-.,.-"
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with T2 in (3.16) and it is the LBI test for testing E12 = 0 in the case of

n12 =0. More specifically it is LBI for testing independence E12 =0 in

the missing data model

Z 12 N(n12 ,r 1 Z22 ) with n12 = 0

U - N(O,I r3 ® Z) and Z12 and U are independent

where the counterpart of Z is missing (see Eaton and Kariya (1983)) and

the power function of any invariant test in the model (3.19) is expressed as

2= + 2C2('P) + 0(62) (3.20)

However, when n12 t 0, the test based on the critical region T2 > c is not

easy to interpret as a test for testing the single hypothesis of the

independence E12 = 0 alone because in the case of 1 0, Z12 would not be

involved in a test statistic. In other words, this is a difference between

treating the two hypotheses simultaneously and treating them separately.

Now by taking this point into account, we propose the test maximizing

a linear combination of C1 (0) and C24);

C (¢) = or 3 CI() + C2( ) (0 < a < -) (3.21)

where a is a constant independent of n. Using the Generalized Neyman-Pearson

Lemma, the critical region is given by

T(O) = Or3T1 + T2 > k. (3.22)

Here T1 is multiplied by r3 = n-r because from (3.3) n = (n ) so that

61 = O(n) provided X'X =O(n). The test 0 with critical region T(o) > c

maximizes the power T(O,(n,))locally in the neighborhood
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N = {(n)J = 8ra62}nN

since it maximizes (61/r3)Br3Cl(4) + 62C24) = 62 1[r3C1(4) + C2(0)] on N 0

The constant B may be regarded as a weight for the importance of the hypothesis

=12 = 0 relative to the hypothesis E12 =0 , and it is chosen in advance. It is

noted that the test based on T(B) is not a linear combination of the two LBI tests

1 and *2 stated above. I
We remark that for a given * e DI, the local sensitivity of * against (61,62)

is measured by the two coordinate (C1 (0),C 2(o)).Second, when the information =12 0

is ignored in the missing data model (3.22), the LBI test for independence E12 = 0

is given by the critical region

T3~ -1 -1

T trSllS12S22S21 > k (3.23)

(see Schwartz (1967)). That is, this is the LBI test for independence in the

MANOVA model without n12 = 0. Since the test with critical region T1 > k is LBI

for testing n12 = 0 without E12 = 0, we may combine these two tests. Here while

the simultaneous treatment of the hypotheses yielded the dependent statistics T1

and T2 , the separate treatment yields the independent test statistics T1 and T3.
'-

The problem of how to combine independent test statistics is discussed in the

literature (see, e.q., Marden (1982)). In this paper we do not get involved

in this problem. But as is shown next, the LRT for the simultaneous hypotheses

gives a natural combination of the LRT statistics for two separate hypotheses.

The LRT for our problem is easily obtained by using the canonical model in

(3.5) as follows:

,S I  ,- IS  I 221 - LIL 2  (3.24)

,S11 1S 22+z12Z12 1 IS111IS221 IS22+Z12 121
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Of course, when L1L2 is small, the joint hypothesis is rejected. As is well

known, L is the LRT statistic for Z12 = 0 without n12 = 0 while L2 is the LRT

statistic for n12 = 0 without =12 0. Further L, and L2 are independent so that

the two independent LRT statistics are combined in (3.24). It is noted that

even when n12 = 0, the LRT statistic for E12 = 0 is given by L1 so that the LRT

ignores the additional data Z12 (see Eaton and Kariya (1984)). The unbiasedness

property of the power function is considered as a special case of Problem (II)

in the next section.

Proof of Theorem 3.1. The proof is similar to KFK (1984). To derive the

distribution of a maximal invariant T = T = T(Z12,U) under the action (3.10) of

T
G on (Z12,U), we apply the Wijsman's representation theorem. Let P(k. V be

the distribution of a maximal invariant T. Then the density of T with respect

to POI) evaluated at T = T(Z12,U) is given by

R =dPT S,/dPT -H(Zn/( 10-) 32
(0,) 12 uJ 12 )/H(Z 1 2,UIO,I) ( 3.2SdP&12, /PoI (1,I1

where

H(Z12,UI& 12,') = I f(PIZI2B22, P3UBJ12,n)X(B)v1(dP1) 3(dP3)j1 (dB1)j2 (dB2)
, H r12 22 (r+3)/ 1)v )l2 2P

X(B) IBIBr/2 IB2B21 , Uj(dBj) = PBj I /2dB

0H = (r1 ) x O(r3) x GZ(Pl) x GZ(P2), f(Z12,Uk&12,n) is the density of Z and

U with Z12  N(&12,I@ I) and U - N(O,Ir s)), and vi(dP.) is the invariant
22 12 r1

probability measure on 0(ri) (i=1,3: j=1,2). The condition for which(3.25)

holds is satisfied (see Wijsman (1967)). In order to obtain the local behavior

of the power function of an invariant test in a neighborhood of &12 = 0 and

= , we evaluate R in (3.25)locally. After cancellation of some constants the

I1
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numerator in (3.25) is expressed as

r2-r

H(Z12'UIr 2' = ll-r 31 2 exp[- K]X(B)vl(dP1 )l(dB 1 )u2 (dB2)

where

i! K = trB2 Z12Z12B2 - 2trP 1Z12B2 12 + trE12 12

(3.26)

+ trBS 11B1F11 + 2trB S12B2FI2 + trB2S22B2F22.-. r+2r+t

with

a.1  (Fl F1
= (F F12 (3.27)

SF21 F22

Here replacing B1 by S and B2 by (Z +S B2 leaves the ratio R

remain the same since the Jacobin factors coming out are cancelled out with

those of the denominator. Further writing F i as

F (I-a 1 = I + Ai1 + A2 (I-A I

with A = AA and A22 - A A. Then K in (3.26) becomes

K = trB 1  + trB 2B2 - B + tre12 12 + 2trBIS12F12 + K1 +K2

where

p .. "-" " '2 1I + 2 .2 -11.- K1 = trBiBI[AI+AI (I-A1) 1]; K2 = tr22B[2 1
K rBB A A I- K trB2S 2 2  AA(I-A)

12 Z1 2 (Z1 2 Z12 + 2 2 ) ' S12  S 1S2(Z12 Z1 2 +2S22

- and *I .
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S22 = (Z12Z 12 + S 22--2S 22 (Z12Z12 +S 22) "

Now expand the components of exp[- K] as

S2 ' tr1 Z 12 B 2f' ~C12z'+s)2

exp[trP1Z12B2&12I= 1 + trP1Z12B 12 + (trPIZ12B2 12  + 01

exp[-trBS 2B2 F 2  1 - trBISI2B2 FI2  (trBISI2B2FI2 )
2 +0

exp[-K ] = 1 - trB BIA I +-03 and

3~

exp[- K2] = 1 - trB 2S22B2A2 + 04.

Then in the same way as in KFK(1984), the remainder terms oi's are shown to be

e(a) with 6- in (3.12), which is uniform in (Z12,S) because of the boundedness
of i12 and Si's . Further when oi's are integrated over P1 and Bi's, they are

shown to be o(6) uniformly in (Z12,S). Now taking the product of these terms

and ignoring the odd functions of eitherP I or BI or B2 because they are zero

when integrated, we obtain

r3/2 I
R = l Jl(dP1)h1(B1 )h2 (B2 )dBldB2

where

1 )I.B.Ii/2d/
hi (BI) = exp(-trBiBi)BiBil/dBi/Di

I- I[(trP1Z12B2 )2 + (trB1S12B2 F12) trBI;BIAA

- trB 2S22B2 A] + o5 = 1 + (I+II+III+IV] + 0, say

Di  exp(- trBiBi)IB i Bl1 i2dBil

.. . . . . .. . . ..-. ~- - -
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N 1 = r3- p1 and M2= r1+ r 3 - P2. Here H(ZkU(0,I))= 01 D2 and Is, - 3/2=

1 +0o(6) were used. The remainder 0 5 is shown to be o(6) for 6 small uniformly

in (Z1 ,) fo F = (I-AA a.we now need to integrate J. But arguing as

j ~ in KFK (19Ts4) pp 391-392, we obtain

I Jf(trP1z 12 B 2  )2vl(dP1)h 2(B 2 )dB2 = r 1P 2t1E2t i 2

IIv (tBSBF) j1~ B)Bd r3(r1+r3) tS-StA ()
1 ;12 2 12' 11 2' 2 12 = P 1 P2  tr 12 12tr

III ( trBjB AA'h (B )dB r 3 P 1 t

IV = (trB12 2 B I A)h (B )dB2  r I r3 tri 22 trAA',

and 10 5 1 (dP1I)h 1(B1)h 2(B2 )dBjdB2  o (6). Thus, observing that the power function

of an invariant test * is given by

,r(*,(,E)) JPT~1 n = RdPT 9)

the result in (3.13) is finally obtained, completing the proof.
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4. TESTS FOR THE HYPOTHESIS 012=0, e21=0, AND

We shall first consider via invariance the Problem (II):

H: 012 = 0, 021 = 0, z12 = 0 vs K: not H. (4.1)

Since e12 =0 and e21 =0 are expressed as

M~eM2 = 0 and M3eM4 = 0

and since M1 X XM3 = X1X2  0 in general, the group leaving this problem invariant

is smaller than the group leaving the problem (I) invariant, where M1 and M2 are

T h a s
defined by (3.2 ), 3 = (4,) and . The special case XIX 2 =0 will be

briefly treated later. Here we use the following canonical form

{W = K(X'X)I X Y N(n,A(Z) with n = Ke

= Y (I-Po)Y - W(Z,r 3 ) with r = n r (4.2)

and S are independent

where P0 = X(X'X) 1X"

" " K = 0Q 
1 1 Q 1 2 ) r ,

K -(0 .. with (X'X) = Q r1(4.3)
'22 Q21 Q22 r2

1 I r2

and

A = 12 with Q12 = Q-iQ12Q22 (4.4)

Partition W and n as

a

: , - --a.- . , 
I
, . • • .• .. .-.• .- . , - . -. . , . . -. . . , , . . . " - " " " " - " -
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S**W 11 W 12 '1 nll n12)rl
and ri =

1W21 W22  r2  n21 n2l r2

P1  P2  P1  P2

respectively. Then in the model (4.2) the problem is to test

H: 2= 0, n21  0 O, E 12 = 0.

rlp, r2 P2

The problem is clearly left invariant under the group G = Gt(P l)xGZ(P 2)xR xR

acting on (W,S) by

g(WS) = (WB+FB'SB) with B and B a F1 0 (4.5)0B andF) 0 F2

where g = (B1,B2,F1,F2)eG. From this action of G, it is easy to see that an

invariant test is a function of (W12 ,W21,S) only and that the power function of

an invariant test is a function of

= C~) 12 = Q-1  1 -2 P2 and Q21 = -Q 21 P1  (4.6)

where PicO(Pi)'s (i=1,2) satisfy

" ' = E= diag( Pit '.pto o): Plxp2 with t = min(P1 ,p2) (4.7)
1 11 12 22P2 .... ,

and p >  >pt are the canonical correlations. So we can assume n12 = E12'

"21 = C21 and E l = without loss of generality. In this set-up, we may proceed

in the same way as we did in Section 3 to obtain an expression for the locally

approximate power of an invariant test. However by doing so we end up with a

very complicated expression of local power which depends on many parameters in an

intractrable way. This implies that a further invariance consideration into the

problem will not help to propose a new test which possibly takes into account the

0"
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simultaneous occurance of the three hypotheses n12 :, n21 0 , and E = 0. Of

course no LBI test exists.

On the other hand, the LRT is given by the critical region L < c, which

was originally derived by Fujikoshi (1982), where
.IsI IsI is 221 Is11 L L,
L , - " - L1L2L3, say,
1s22+w12w12 11s 11+w21W21 1 IS1111 S2' s22 121 1S11+w21W21 1 (4.8)

It is also directly obtained from the distribution of (W12 ,W2 1,S) since the

LRT is always invariant (under a very mild condition). The statistics L1, L2

and L3 in (4.8) are respectively the LRT statistics for the three separate

hypotheses zl2 = 0, = 0, and e21 = 0, and the LRT statistic LI2L3 for our

simultaneous hypothesis in (4.8) may be viewed as showing how to combine the

three LRT statistics for the three separate hypotheses. But here it is noted

that L2 and L3 are correlated because of the correlation of W12 and W21 unless

XIX2 = 0 or E = 0. In fact, if-ui and vf are respectively the i th and

j-th rows of W12 and W21, the covariance matrix of ui and vi is shown to te

Coy (ui1 v) = qijA P2xP1

where qij is the(i,j)th element of 012 in (4.4) and 012 0 and A = 0 are respec-

tively equivalent to XlX 2 = 0 and E2= 0. This correlation between L and L3

makes it d.rficult to investigate optimality properties of the LRT. Now to show

the unbiasedness of the LRT, note that from W12 "N( 12 ,1 I) and W21-N(E21 ,1@ I)

22 W12W12~ W PI,2: 2) with 2 r and = 2E12(

V11  W21W21 ~ Wpl(I, ?: I) with 1 1r 2 and = 21 21

w .:-f..... -...-
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where W(',m:v) denotes the noncentral Wishart distribution with mean mT, degrees

of freedom m and noncentrality parameter v. In the original term, Vii is easily

shown to be equal to

V Yi[P 0 -PilYi with Pi = Xi(Xi) - Xi" (4.10)

Further, from (4.2),S and {Vil,V 22 } are independent, and when A = 0, Vll and V22

are independent. Here we use a conditional argument. First write L1L2 in

(4.8) as

L IL2 =S2211/1IS22"1 + V22 + -21s  $121 I s22"11As22.1 + u22; (4.11)

where

S22.1 = 22 - -1 1

U22 = 1yS 2 Y"  and y = - A'A.

Lemm- 4.1 (1) S22 .- WP2(In-r-)

(2) S22 .1and U22 are independent

(3) Conditional on YI' U22 - Wp2 (Ir 1 +pl:) where

... 1- ('= a-[:+A'S lA y- ;-

=,[-wt =(4.12)

1= [X 112+YlA '(P0-P2) X 12 +Y1
A ] with e2 '12'2 2"

Proof. Our original model may be viewed as

"[0 12]
[YI,Y 2] - N([X I ,X2] 210  In (  )

- .. 212-

with n in (4.6), where e : e PI" Hence conditional on YI'
21 21

.-. *
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Y2 - N(X 1 12+(Y1-X2 21 )A, I®-),

from which conditional on YIl we obtain

$211S 12 =2 P0 Y2 Wp2YPl:6 $11A),

V22 =Y 2 [Po-P1]Y1 - Wp(y,rl:) and

~221 1 11

$22-1 ~ Wp2(y,n-r-Pl ) .

Furtherconditional on YI $22.1' S21S1 S12 and V22 are independent and

S22 1 does not depend on YI" Thus all the result follow.

Theorem 4.1. The LRT with critical region L < c is unbiased.

Proof. Let

C={($22.1' 22 21S1112,'11,S11): LIL 2L3 < c}

be the critical region of size a in the space of (S22 . V22 +21S1 12 ,V11,$11)

Then since $11 and V11 are functions of Y1 only, from (4.10) the power function

of the LRT eL is expressed as

( L, (6 12' 21,' = P(CI5 12' 21 ,A)

E [P({(S22 1,U22 )I Is22 11/Is 22 1 + U22 1 cLi I(S11 V11 , 12,821,A)] (4.13)
1

where E denotes the expectation with respect to YI" Since
Y1

Is < C
$22.111S22.1 + U22
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is regarded as the LRT for testing T = 0 in the MANOVA set-up with (U

as is shown in Anderson et.al. (1964), it is an increasing function of each

characteristic root of T. Since B12 = 0 and A = 0 imply v = 0, from (4.13)

lr(L,(12, e21 ,A))! n(OL,(O,21,0)) = P(CIO, 21 ,0). (4.14)

But under A = 0, LIL 2 and L are independent because V11 and V22 are independent.

Further L3 = IS111/]Sll + V11 is regarded as the LRT statistic for testing

621 = 0 in the MANOVA set-up with (Vil,S11). Hence the inside of the conditional

expectation

P(C]0, 2110) = E1 L2 [P({(S lI VII)IL3 < c(LIL 2)-1 }1(M 21 '0)]

is an increasing function of each characteristic root of g21i21 implies

[] P(C1O,621,O) > P(CIO,O,O) >

Combining this with (4.13) yields the result.

Under A $ 0 or equivalently E12 $ 0, because L1L2 and L3 are correlated

unless X1X2 = 0, it seems difficult not only to establish a monotonicity

property of the power function of the LRT but also to find a naturel parameter

space on which the monotonicity is considered.

We remark that the above result holds even when the model Y = Xe + E is

defined for X conditioned and the marginal distribution of X does not depend on

(0,E). Hence the LRT for testing no additional information hypothesis in

canonical correlation model, which is nothing but our LRT though X is random,

is unbiased (see Section 2).

In the case of X1X2  0 0, we consider two special cases. First consider

...
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the case A = 0 or equivalenty E12 = 0. In this case the problem of testing

joint hypothesis 012 = 0 and e21 = 0 is simply split into two independent

problems in the two independent models Yi = X e + X e + Ei(i=l,2). However,S1 lii 2 2i 1

the LRT for the joint hypothesis is given by *L = X(L2L3 < c) and it is not the

product of the two LRT X(L2 < c2)X(L3 < c3) where X(A) denotes the indicator

function of a set A. The power function of *L for 612 = 0 and 021 0 is a

function of the characteristic roots.

-i=chi( eX1[PoP2]XI12) (i=1" ''P2)

1 22 12 1 02 112 22)p

and the characteristic roots

yj = ch (Ej . 1 X [Po-P 1]X2e21Z (j=l,...,pl),

and by similar argument as in the proof of Theorem 4.1, we obtain

Corollary 4.1. Under E 12 = 0, the power function of the LRT with critical

region L2L3 < c is increasing in each xi or yj.

Next we consider the unbiasedness of the LRT with critical region LIL 2 < c.

Since the distribution property of LIL 2 is simply obtained in the proof of

Theorem 4.1 by setting Vl = 0, we obtain

Corollary 4.2. The LRT with critical region LIL 2 < c for Problem [I]

is unbiased.

In fact, from (4.10) and Lemma 4.1, the power function of the LRT is easily

seen to be an increasing function of each characteristic root of T conditional

on Y. Hence the unbiasedness immediately follows from T > 0 and the fact that

012 = 0 and E12 = 0 imply ' = 0.

Finally we consider Problem [II] under XIX2 = 0. An example for this case

..
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is found in time series models (see Anderson (1971p.92)). Under X1X2 = 0, we
I

can take A =I in the canonical form in (4.2) as well as Q =(x.x. . Then

the group G = 0(r)xO(r2)xG leaves the problem invariant by the action

g(W,S) (rWB+F,B 'SB) with r I 1

where g = (P1,P2,g)eG. Hence in the same way as above, the problem is reduced

to the problem of testing 12 0. = 0 and A =0 in the canonical form

WI2  N(E12 , I(D I) with C12 = l122 2

21 N( 2 1 , I I) with C21 =Q22 21 111

S - W(fl,r 3) with sl in (4.6)

where W12, W2 1 and S here are independent. Also G acts on (W 2 ,W21 ,S) by

g(W12'W2 1
' S) = (PIW12B2 'P2W2 1 BIB SB).

Since the group G is bigger than G, a result corresponding to Theorem 4.1 can

be derived. To see this, let v = v + V2 + V3 with

I I -11 = tr 12&i2  = tr 1 .12 22 i2

"2 =r r and
2 21 t1X2X2 21 11 21

t2 -1 -1
V J = trAA =trE 11Z1Z E- Z

Theorem 4.2. There is an c > 0 such that on the set {(O,Zv < el the

power function of an invariant test € of size a under G is evaluated as

................................. -,



28

,(O,(OZ)) = + -t(1 D1W + V2DD2 W( + V3D3(4)] +o(v)

where

Di(M) = E [OR i]

= r1+r3 l trW W (Ww' )1

1 P 2  r, 12W12W12W12+22

r2+r3 P2 -
R = 2 2 trW 1W21(W21W21+S

2 pip 2 r2  1
(r1+r3)(r2+r3) tr(W IW1+Sl sI(W 2WI+S2 s

rl_____r3__ ' 1 -2r r 1(2W1S1-tr 21 21 11  12(W 12W 12+S 22) 21

r 1+r 3 1 r 2+r3
- 3trS (W s2+S - 23 tr.c, (W21W21e V 1

P1  22(w12 12 2

and lim sup to(v)/v. = 0.

Proof. The proof is completely similar to that of Theorem 4.1. Regarding

z 12 as W12, replace B1 by W21(W21W21+S11) %1. Then every step goes through

and the result is obtained.

In this expression, a symmetry which is lacking in Theorem 4.1 is secured,

and the statistics R1, R2 and R3 are respectively the LBI tests for testing
the separate hypotheses H:{12 = 0, H2:{21 = 0 and :Z 0 under E12 = 0 and

"21 = 0 (see Eaton and Kariya (1983) for H3) Also for each hypothesis Hi, the

power function of an invariant test is expressed as a + v.iDi( ) + o(Vi)(i=1,2,3).

Here again it is noted that the statistics R1,R2 and R3 are not independent

under the null hypothesis. R1 and R2 are independent under the null hypothesis.

Here following the discussion in Section 3, we may propose a combined test of these

statistics with critical region

........ . . . . . . . . . .
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R(81,982) 1r3R1 + 82r3R2 + R3 > c (4.15)

where r3 is put on R'S because v1 
= O(n) (-1,2). Here the constants a11s

may be considered indicating relative weights for the three hypotheses e12 = 0,

e2 = 0 and E12 =0. It will be often the case a = 82. This test clearly
3

maximizes the local power a + li=liiDi(o) in the neighborhood

((e,.) vi = r3A V3(i-1,2)i{f(e,E)i v < ei

Also the local sensitivity of an invariant test against (v1 ,V2,v3) is described

by the coordinates (D1(f),D 2 (f), D3(4)). Further, from the observations.

above, we may use the test based on R(13, 2 ) in (4.15) even if X1X2 0 0.

It is remarked that the LRT statistic in this case is of course the same

as L = L1L2L3 . But here because X1X2 = 0, in addition to the independence of

L and Li(i=2,3), L2 and L are independent though L1, L2 and L3 are jointly

dependent.

',

N7.

• .- : ,= - . ' ; . . .. . . . . .. . ... ... .
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5. ASYMPTOTIC NULL DISTRIBUTIONS OF THE TEST STATISTICS

The asymptotic null distribution of the LRT for Problem [II]: e12 =0

,21 = 0 and 12 0 has been derived by Fujikoshi (1982) in the context of

the problem of testing no additional information hypothesis in canonical

correlation anaylsis. From a more general viewpoint, we here briefly treat it

in a systematic way and then consider the asymptotic null distribution of the
LRT for Problem [I]:612 = 0 and = 0. The notation

A (q,n)
p

denotes that for independent Wishart matrices A and B,

" = IAI/IA + BI with A - Wp (,n) B Wp(.,q)

Lemma 5.1 Let Xi  A pi(qi,n-di) and Ai's be independent (i=1,2). Then

P(-m log Xl;2 < x) = Gf(x) +-- [Gf+4(x) - Gf(x)] + O(m"3 )9 (5.1)
m

where Gf(x) is the cdf of 2(0

f= p1q1 , f2 = P2q2 9 f = f1 + f2 9 m = n-p

p {f [dl (ql-pl-1)] + f2[d2 _ 1 (q2-p2-1)]}  (5.2)

"":flf2 1 ]
-u = s + [dl-d 2+ (p-P2-ql+q 2)]2

fff+ S s 1f _2 22_

s=i + 12 I =T (p +qi-5) and s2  (P2 +q2 5).

Proof. The result follows directly by the usual method based on

characteristic function.

Now for Problem [II], the LRT statistic is given by LIL 2L3 in (4.8) and

from Lemma 4.1 and (4.11), it is easy to see that under the null hypothesis
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Li2 L L2 2 Ap(rl1+Pl, n-r-Pl (5.3)

I = L3 - Pl (r2+P2, n-r) (5.4)

and x 1 and x2 are independent. Therefore the following result follows from

Lemma 5.1.

Proposition 5.1. For Problem [II]: e12 = 0, 621 = 0 and = , the

asymptotic null distribution of LRT based on -m log(LIL 2)L3 is given by (5.1)

where in (5.2) ql = r2 + P2' q2 = r, + Pis d1 = r and d2 = r + p.

On the other hand, for Problem [I], the LRT statistic is given by LL 2

in (3.24), which is the same as the L1L2 in Problem [II] and hence from (5.3)

under the null hypothesis

X2 = L1L2 A2 (r1+pl,n-r-p1 )

' The asymptotic null distribution of -2m log.lX 2 is well known .

Next we consider the asymptotic null distribution of R(B1,B2) in (4.15)

for Problem [II] and as a special case, obtain the null distribution of T(B)

in (3.22). But here for simplicity, the case aipir i = 1(1=1,2) will be treated.

A more general case can be obtained in a similar manner. From (4.15), let

the test statistic be

SR2 + R + 2p 1p2[l+ m (rl+r9) (5.5)

where m = n-r

(m+r2)trB11 (B11+S) with B

= (m+rl)trB22(B22+S22) I with B22
2 2 2222 W21
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R3 = (m+rl)(m+r )tr(Bll+Sll1Y'IS 1 (B22+S2 YS 2

P2  1
(m+r )tr (Bl+Sj)l1 21 (m+S2)1S

S2 r lll m +r1 )trS22(B22+ 22 )-

Theorem 5.1. For Problem [II]:e 12 = 0, e21 = 0, and E = 0, the

asymptotic null distribution of R in (5.5) is given by

1

- PP 2(r+r2 )[2Gf(x) - 3Gf 2(x) + G (x)] + O(m-3/2 )

TM- ~p2 2 ff+2f +4

where f = f1 + f2 + f3, f, = plr 2
' f 2 = P2 rl, f 3 = Pl P2 ' s, = p1 + r2 + 1

S=2 P2 + rl + 1 and s3 = P1 + P2 + 1.

The case of Problem [1] follows directly from this theorem.

Corollary 5.1. For Problem [I]: e12 = 0 and E = 0, the asymptotic null

distribution of

1T(rI/pl) + 2pP 2 [I +- r1] (5.7)

with T(B) in (3.22) is given by (5.6) with r2 = 0.

Outline of the Proof of Theorem 5.1. Under the null hypothesis, assuming

z = I without loss of generality, we have the three independent Wishart variates

B W (I,r2), B22 - W (I,r1) and S ~ W (I,m). As usual let

1 p2  p1V1
V= V = m(S-I) (5.8)v21 2

and expand R.'s in terms of V, Bl1 and B22 as

1.. . . . .
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trB + 1 Op(M-3/2

R. tl +m + j2 + (j=l,2)

R''' + 1~O m-3/2)
3= trV 12V21 " 2plP 2 + -I- q31 + m [q 32  2 " P1P2(r1+r2)] + (m

12"'2

where qjl - trBjjVjj, q 2 = trBjjV.jj - trB. + FrtrB.. with F = r2 and

r r1 (j=1,2). q tV tVq1 rr2  1 31 trV11V12V21  trV12V22V21  3 trV 1V12V21 +

trV 12V22V21 + trVIV 12V22V21 and q32= (r1+r2 )trV1 2V21 - trB11V12V21-

trB22V21V12 + P2trB11 + P2trB 22. Then is expressed as

R= trB11 + trB22 + trV12V21 + Lm (qll+q 21+q31)

(5.9)
... + 1 (q12+q22+q32+q32) + 2pP 2 [1+ (rl+r 2)] + .

Then the characteristic function C(t) of R is expanded as

C(t) = E{H(t)[1 + -L A1 + I A1 + (m3 2  (5.10)

where H(t) = exp[it trB11 + it trB22 + it trV12V21], and A1 and A2 are functions

. of Bi 's and V. 's. Since V. 's are not independent, in evaluation of the

expectation in (5.10),we may use the following lemma.

Lemma 5.1. (1) The pdf of V is expanded as

fv) = c exp(- trV2 ){l+1 [-1 (p+l)trV + trV3]} + O(m-1 ).

(2) The conditional pdf of V12 given V11 and V22 is expanded as

f(V121VV22)= c exp(- 7 trV12V21}+--1. [- P2trV11  p1trV11

+ trVV11 12V21 + trVI2V22V21 1 + O(ml).

Ii'
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Proof. (1) is well known. (2) is obtained by f(V)/f I(V l1 )f2(V22), where

the marginal pdf's of V. '5 I are first expanded as in (1).

Lemma 5.2.. The characteristic function of R is evaluated as

C(t) = (1-2it)- f 2{Q - -1 (f S +f s +f s )[(l-2it- 1] 12

(5.11)

~iipp(r 1+r )[2 - 3( 1-2it) - + (1-2it)- 2 1 + OWm 3/2)

* Proof. The proof is straightforward although it involves a lot of

computation. The result is obtained by using Lemma 5.1 and the following well

known results:

E[exp(ittrV 12 V21){1+ -L q 31 (it)q 32 + (IT)2  2 1

exp(itm tr S-S S- IS -W3/2
S11 12 22 21~ ~

-- f 3/2 - 1 f h 1 - 25.2
(1-21t) "21 f f3s 3 {1-21t)- 1 (.2

+ 0(m 3/2)

(Fujikoshi (1970), Muirhead (1970))

E [exp{it(m+r 2)trB 11(B 11+S 11)'

(5.13)
+ lt(m+r1)trB22(B22+S2 ) 1

-(f s +f ,s.)/2 1/
=(1-2it) p 1 2 1 (f s1+f S2  + ON 31 )

(Fujikoshi (1970), Murihead (1970))

Inverting C(t) in Lemma 5.2, we obtain the result in Theorem 5.1.
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6. TESTS FOR INDEPENDENCE WHEN e = 0 ANDe 2 1 = 0

As has been stated in Section 2, for problem [Ill] H: = 12 0 given

= 0 and = 0 KFK (1984) proposed the LBI test, a LRT-like test and a

trace test, and considered the asymptotic null and nonnull distributions of

* these tests. In this section, adopting what we call the method of small-small

asymptotics due to Mukerjee and Chandra (1984), we compare the power functions

of those tests. Since the model in Problem [III] is

i -ie l 0

n[YI , Y2] = [xlx 2 ] 0 ej + [E1 ,E2] (6.1)

P1  P2  r1 r2  22

-(O ( 11 E1 2 > 62
[ElE 2 ] N(O'In _\ 22 )  (6.2)

it contains the MANOVA model as a special case with X= X2. The comparison we

make here deals with the comparison of the Pillai test and the LRT for independ-

ence in the MANOVA model. In fact, as will be shown, when X = X2, the LBI

test and the trace test in Problem (III] are both reduced to the Pillai test of

independence in the MANOVA model, which is LBI, while the LRT-like test is

reduced to the LRT of independence in the MANOVA model. Following KFK (1984),

assume P1 > P2 without loss of generality and let

QO =I -X(XX)X = ZoZ0 with ZZ 0 = In0 (6.3)

QI I X (Xi x i)lx. (i--l,2)

where Zo:nxn0, no = n-r0 and r0 = rank [X1,X2 ] and A
+ is Penrose inverse of A.

Further let

X(X'X)+X - Xi(X Xi ) ' = Z with iZ= Irr i
r01
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where Zi :nx(r -ri), and let

1" 01 an

z ZZ 1: nx(no+ro-ri), (6.5)

Fil(ro-ri) I Z .L n z. .= (6.6)

13 131 13 21:r: LiJ(n-ro0 zo Y
%-":"Pi

S = G + B and R = S 545 I 54- 6712 22 21Sli (6.7)

where S = (S)ij with Sij:pixpj, G = (Gij) with Gij = UiU.:Pixpj and

B = (Bij) for i, j=1,2 with

13 B B M K M KM -B 1 (I 1 _- I,= ,1 , K-- ZlZ 2  (6.8)

\21 822)/ \ 2 M1 M2M2 /

Here we note that when X = X2, QO = Qi (i=1,2) so that B = 0 and S = G

with G - W(E,n0), which is nothing but the canonical form for the problem

of testing E12 = 0 in the MANOVA model. Now based on the notation introduced

above, our problem is to test 12 = 0 based on S in (5.7) and then the LRT-

like test statistic, the tract test statistic and the LBI test statistic

considered in KFK are respectively expressed as

T - no logI- RI (6.9)

T nO tr R (6.10)

T n {nln 2trR 1  'trST3 n 1 2 nlP2trlIYIQIQ2QIYI

- n2PltrS2Y 2Q2QIQ2Y2} + plp 2(2- -L t) (6.11)

-,t.

. P..: .,-. e . .,.- - -'- .. - ., -". ,-". .-,.2. .-2 ..2.• .2.-/ '-.Q l-.- '.':'. ,' +- -. .- - . .-2- n 0"". "V,"
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where

n. =n r. (i=0,1,2) and t = rI  2r. (6.12)

As has been shown in KFK, the power functions of these invariant tests
2 2

depend on (0,z) only through the canonical correlations p2 > PP2 of

-1 -1
" or the characteristic roots of E1 ZE _1 1 Here to consider the small-

small asymptotics for the power functions, first fix w, > ' >" 0 with

W1 0, which are chosen to be small later, and take

1 2 11 -n (j=l,...p) (6.13)

2 - n0  j ' P2

where 1 is supposedly small. This implies pj = (2wj/no) is eventually

small-small. Further let

='1 + "'" + p  = tro  (6.14)

= diag{pl,... w 2
1  (6.15)

f = plP 2 and s = P1 + P2 + 1. (6.16)

Then from the results in KFK, the asymptotic power functions of the tests

based on Ti's in (5.9), (5.10) and (5.11) under the local alternative {pjl

in (5.13) (as no-a) are given by

.,.- > X x6 +_ 4= (xi:6) +O0(n02) (6.17)
P(Ti > xi) : f(xis) +n'o0 a= ai .(j:f+2j,

1 i no j 0 ii f+2j 1 n0  (.7

(i=1,2,3) where 9k(X:6) = 1 - Gk(x:d), Gk(x:S) is the distribution function

of X2 distribution with degrees of freedom k and noncentrality parameter 6,

%- :~:~
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a fs- f (t+trKK) (trKK )s -r

a 11+fs f(t+trKK t6-

2 2a 12 0 (t+trKK )a +2tro a 13  -tr(D a1

a0= 1 1 2
fs=- s f(t+trKK (trKK )a r

:2 a2  = f(t+trKK )-t6

a 22 1fs + (s+t+trKK') + 2tr 2

a 23 = s6, a 24  t(

a3  =- fs 1.ftrKK' -(trKK )d -r0
30 4 2

a 1 = fs + ftrKK

a 32 =-fs + (s+trKK )~S + 2tr-t2

2a 33 -s6 and a 34 =-tro

NoethtE~ 0 a~ (=,23. To evaluate the power functions in (6.17)

further, let gf(x:t5) be the pdf of G f(x:6) and let G f(x) G Gf(x:0) and

gf(x) =gf(x:0). Then it is easy to see that

G f+2 (x:6) 2q f+2(x:&) + ~f(x:5) (6.18)

Kegf+ 2(x) =Xgf(x)/f (6.19)

(x 6-:) = ( ) C (x:6 f X6) + Vk-2) (6.20)
f m f mng. Q.

Using (6.18), the power functions are evaluated as
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P(T1 4 ~ fX 6 2
P(T~~ ~ ~ ~ i ( :)+n b i.gf+2j(x .:6) + 0(n~ 0 (6.21)

K: where

11 2

=2(t+trKK )6 +2trs 2

122

b fs + f(t+trKK ) +2(trKK )a + 2trO

121

b fs + 2(t+trKK.)S + 2trO2

22 2(rK)

2 2b3 3 =2s - 2tro b b 4 - 2tro

b + 0 rK (rK'S+2r

31 1 ' 5

= -s +2( strKK + -r 2 2 2 (.3

b 3  =s - x3 .7 tr KK b )t
33+2 34 3C

Usn (621 an (61) une the** nul hyohei 6. 0 * - - . *, *~.
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From (6.20)(or Hill and Davis formula) we obtain with u in f(u) =

x = u b + O(n2) (6.24)xi  nu 0o*io  0

where bi0 = - uCi with Ci in (6.23). Hence using (6.20) and (6.24), we

obtain the following theorem.

Theorem 6.1. Let w(¢i ' ) be the power function of the test €i of size

a with critical region Ti > xi(i=1,2,3). Then for u satisfying Gf(u) =

- and for 6 small, it is evaluated as

(i,) = Gf(u:S) + - Hi(a)gf(u) + 0(n0 2 )(i=1,2,3) (6.25)
-,f no

where

H =ci 1 a + ci262 + Ci3 0(n02 )(i=1,2,3) (6.26)

22 u tK' -su 2-
c11 =c 21 =c 31 = f trKK -

23
- 2u trKK + '+2tKK u2  su3

12 T fsr) T7-72 f(f+2)(f+4)

= c =c + 2su 4

22 =32 12 +f(f+2) 2 (f+4)(f+6)

= 2u + 2u2  2u3  andT13 -T T f(f+2)(f+4T
u4

c2  =c33 - 1  2u4
23 =33 13 f(f+2)(f+4)(f+6)

Proof. Using (6.20) and (6.24), the power functions in (6.21) are

directly shown to be equal to those in (6.25) after some algebra, where

gf+3j(u:6) -e "6 ZkM0(Sk/k!)gf+2j+2k(U) and gf+2(u) = ugf(u)/f were used.

1*:
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;,C-C,"P2
"In the expression (6.25), 6 =i=i has been chosen to be small. That

is, the power functions were first asymptotically expanded in the orders of

k1n 0 (k=0,1,2...), and then for 6 small the terms of order n were asymptot-

k 0
ically expanded in the orders of 8 (k=0,1,...) since the terms of order n0

are common to all the tests, i.e., df(u:6). From this expression, the local

behaviors of the power functions are compared as follows.

* - Theorem 6.2. For the tests *i, it follows that with 6 = tro

(1) lim lim n0[w(.j,$) - ir(Oi,)]/s = 0 (j=2,3)

6+0

(2) lim lim no(o,') - W(I,]/2 =A()(j=2,3)
6'+0 no+=

and

(3) lim lim n0 [r(03 ,4) - (02,s)]/6 = 0
6-0 n+

0
4 2

where A() = [2u gf(u)/f(f+2) (f+4)(f+6)]y(t) with

y(O) = (pl+P 2+1) - (plP2+2) lim [tro2 /(tro) 2 (6.27)
6+0

Proof. Immediate from Theorem 6.1.

Now (1) implies that in terms of power all the three tests are asymptotically

equivalent up to O(nO ) and 0(6 ). The asymptotic difference between the LBI

test 03 (or the trace test 02) and the LRT-like test 01 appears in the term
of O of0(n 1 ) and 0(62) as is shown in (2). Setting = lim[tr$2/(tro)2], from

(2), if y(o) > 0, or equivalently (p1+P2+1)l(plP2+2) > T, the LBI test is

"k asymptotically better up to O(n 1) and 0(6 2) than the LRT-like test, while if

y(O) < 0, the LRT-like test is asymptotically better. Since tro2 = 2 and

trt = w i = 6, the inequality

, . 2 2 2

Ew- <,,,,I - f
(E<w.]Ew

k_0 2 ,.

%)? ::: :: :::::::::::: .- :;:.: :. -
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follows from "i > 0 and Schwartz's inequality. This implies

1 lim tro2/[tro] 2 < 1 (6.28)
P2 - 0

The equality in the first of (6.28) holds if and only if w 2 = " =

while the equality in the second inequality holds if and only if 2=

= 0 since 1 ..
2  > 0 > . On the other hand,

P2 (P1+P2+1)/(P lP2+1) < 1

since p1 > p2 > 0. Hence both the cases 1 >T >To and To > T > 1/P2 can

occur. The above observation will show that the closer T is to 1, the more

concentrated i's are around w1= "'" = p2 while the closer T is to l/p2,
1 P2

the more spread w 's are.
1

Next, we consider the small-small asymptotic comparison between the LRT

and the Pillai test of independence in the MANOVA model. As has been pointed

out, the problem of testing independence in the MANOVA model is included as

a special case of our problem with X1 = X2. In case X1 = X2, Z i = 0 in (6.4)

so that S = G in (6.7), K = 0 in (6.8), n 1 = n2 = n0 in (6.12), and T2 = T3

in (6.9) and (6.11). However this does not cause any changes in the results of

Theorem 6.1 and 6.2 except for the slight changes of the coefficients cij 's in

Theorem 6.1. That is, by setting K = 0 in c11 and c12, the results in Theorem

6.1 holds as it is, while Theorem 6.1 is effective whether or not X = X2.

Corollary 6.1. For testing independence in the MANOVA model with X . = X2 *

t - all the results in Theorem 6.1 hold. If > - l/P 2 ), Pillai's test, which

is LBI for fixed no, is asymptotically better up to O(n
1 ) and 0(62) than the
0

LRT while if 1 > T > T0 the LRT is asymptotically better.

- $ °w -. -*. . . . . . . . . . ..-.**•*,
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7. REMARKS

In this section, we first consider Problem [IV]:e12 = 0 and 612 = 0.

For this problem, it is easy to see that a canonical form of the model is

also given by the model in (4.2) where the joint hypothesis 612 = 0, 621 = 0

and E12 = 0 in Problem [II] was tested, and the hypothesis here becomes 12= 0

and n21 = 0. Further, the same group 6 = GL(Pl )xGZ(P2 )xR rlPxR
r2P2 acting on

(W,S) as in (4.5) leaves this problem. Hence the class of invariant tests in

Problem [II] is exactly the same as the class af invariant test in Problem [IV]

we are presently considering. This implies that the power function of an

invariant test in Problem [IV] is also a function of a, E12 and C21 in (4.6).

However, under the null hypothesis E12 = 0 and E21 = 0, it still depends on

n because n may not be zero in Problem [IV]. Therefore in general an

invariant test in the present problem is not similar. In fact, this follows

from the fact that the group does not act transitively on the parameter space

of the null hypothesis. This is true even in the case X1X2 = 0 where the

group is enlarged to 0 =,V(rl)xOr 2 )xG as in ( ). For example, suppose we

construct such statistics as

L2 = IS221/1S22 + W12W12 1 and L3 = 1S1 1 1iS 11 + W21W211 (7.1)

for "12 = 0 and "21 = 0 respectively analogously to (4.8), or

L; = trW S1SW and L = trWSW
La 12S22 12 3 21 11 21

But here L and L (or L' and L ) are correlated under the mull hypothesis so

2 3 2 3

that any test combining L2 and L3 (or L2 and L3) is not similar unless one of

the two statistics is completely ignored. Because of the non-similarity

-i - . -... . .- -. . -. -- -
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feature of the problem we leave it here. One might use a non-similar test

by combining L2 and L3 in (7.1) in such a way as L2 L3 or might test the two

hypothesis separately. It is noted that an explicit form of the LRT for the

present problem is difficult to derive.

'V.o
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