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q q 11, "INTRODUCTION AND SUMMARY
A
A
J:&f Consider the classical MANOVA model
.
) Y=X0+E (1.1)
S } _ ) .
o where E = N(0,I ®z), E = (E) E,), ¥ = (Y, ¥,), X = (X; X,), and
.}:\x .
614 O I
o=| 712 z 1z (1.2)
o 21 %22 21 I22
o= Also, zij and Xi are of order pixpj and nxr, respectively, p = Py *+ Py and
5 r=rytr,. In addition, Yi and Ei are of order nxp. . Then, we are interested
b in testing the following hypotheses:
&?5 Problem ([I] H:e12 = 0 and Iyp = 0 vs K: not H
h&ﬁ: Problem [II] H:84, =0, 6,y = 0 and 2,, = 0 vs K: not H
) - = =
%2_ Problem [III] H: g T 0 under 815 = 0 and 8y1 = 0

# 0 under 912 = 0 and 921 = 0.

The motivation behind each problem is stated in Section 2 and some examples

are also ygiven there. In this section, some formal features of the problems

are made clear and our results are briefly summarized together with some results

in the literature. A basic feature in the problems treated here is that in each

hypothesis the independence (z,, = 0) between Y, and Y, is included corresponding
12 1 2

to the structure of the regression coefficient matrix o.

--------------
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In Problem [I], the hypothesis will be regarded in Section 2 as a
formulation of the hypothesis of no causality from X1 to Y2 where X = [XI’XZ]
may be random but is fixed with'fu11 rank. Also 612 = 0 in the hypothesis

may be viewed as a special case of the GMANOVA (general MANOVA) hypothesis

MIGM2 =0 (1.3)

where M1 and M2 are fixed matrices of full rank. In fact, M1 = [I,0] and

M, = (?) implies 8,, = 0. The problem of testing (1.3) in the GMANOVA model

of the form Y = 21022 + E is known as the GMANOVA problem and has been treated
by Potthoff and Roy (1964), Rao (1965,1966), Khatri (1967), Krishnaiah (1969),
Gleser and O0lkin (1970), Fujikoshi (1973), Kariya (1978), Marden (1982a) and
others.Potthoff and Roy (1964) proposed the GMANOVA model and considered adhoc
procedures for testing the general linear hypothesis on the location parameters.
Rao (1965,1966) reduced the problem to testing the general linear hypothesis
under a conditional model. Khatri (1966) derived the LRT for testing the
general linear hypothesis under Potthoff and Roy model. Later; Gleser and OVkin:(197(
gave a canonical reduction of the problem and discussed the LRT procedure using
the canonical form. However they have not treated Problem [I]. It should be
noted that when (1.3) is dealt with, the presence of a general M, in (1.3)
affects the covariance structure so that in the case of (1.3) Z;p = 0 should be
replaced by the hypothesis

I = MtM, + PyaP, (1.4)

where P2 is a matrix of full rank satisfying P2M2 = 0 (see Kariya (1985), pp
175-176). That is, Problem [I] is considered equivalent to the problem of testing
(1.3) and (1.4) simultaneously since both problems give the same canonical form.

Hence, solving the former problem implies solving the latter
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A : problem and vice versa. Now for Problem [I], applying the invariance principle,
h'z we first expand the power function of an invariant test in the neighborhood of

A

the hypothesis and based on it propose a test, in Section 3, which maximizes

the power in a slightly restricted neighborhood of the null hypothesis. Of
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course due to the local optimality, it is admissible. The test statistic there
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is a linear combination of the LBI test statistic T1 for testing 810 = 0

e
_Egg (Schwartz (1967)) and the LBI test statistic T, for testing I, = 0 under

A“ 12 © 0. The latter test is eqﬁivalent to the LBI test of independence with

g? some data missing in Eaton and Kariya (1983). Because of the form of T2, T1
:};ﬁi and T, are correlated and so our test is not equal to a test combining the ‘two
ZT:; independent LBI test statistics T1 and T, for the two separate hypotheses

;;% 812 = 0 and £,, = 0 (without 6;, = 0), though T, is the same. This is a feature
‘;h;i of the joint treatment of the two hypotheses and it implies that a test combining
“.; the two independent statistics T1 and T3 which are LBI for each hypothesis does
2&% not maximize the local power in any direction except for the case that the test
‘éEEk depends on T1 only and that the alternative space is restricted to the space on
;’h which Iy = 0. The problem of how to combine independent tests is discussed in
iiﬁ the literature (see e.g., Marden (1982b)), though we do not discuss it here.
iiéf But the LRT statistic for Problem [I] gives a natural combination for two sepa-
,f::j rate hypotheses. In fact, it is the product of the two independent LRT statistics.
}.:E This might support the idea that we separately treat the hypotheses and then
'22% combine the two tests. However, as has been observed in Eaton and Kariya (1983),
(3§? even when 85 = 0, the LRT for testing Iip = 0 ignores the additional information
Sﬁgﬂ (data) available through 812 = 0. In this sense, the above fact may not be
i%&g seriously taken into account. The asymptotic null distributions of the test
§,£;
i
.iﬁ
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based on T1 and T2 and the LRT are derived in Section 5 and the unbiasedness
of the LRT is shown. It is noted that the group leaving the problem invariant
is small so that the power function of an invariant test including the LRT
depends on many parameters including the canonical correlations.

In Problem [II], the hypothesis will be regarded in Section 2 as the
hypothesis of no additional information in canonical correlation analysis or
a formulation of the hypothesis of no causality from X1 to Y2 and from X2 to

Yl, where X may be random but is fixed with full rank. Here the restrictions

8y, = 0 and 851 = 0 are special cases of
M,6M, = 0 and MjeM, = 0. (1.5)

However, the two GMANOVA type restrictions in (1.5) cannot be expressed
as a single GMANOVA hypothesis of the form-iieﬁz = 0.. That is, the
problem of testing_ (1.5) even in our MANOVA model Y = Xe + E is no
longer the GMANOVA “problem and difficult to.treat unless M

and M3 are nested relative to X'X or orthogonal relative to X'X, 1.e.,M1XIXM; =
0 (see Kariya (1985) p 143). Since M1 = [I,0] and My = [0,I] in our present
case, MIX'XM; = XiX2 and hence without Xix2 = 0 the problem of testing.

Problem [IV]: H:0,, = 0 and 8,y = 0 is difficult to treat. In fact, it is

not only difficutt to derive the LRT explicity but it is also difficult to

find a similar test detecting both 81, = 0 and 859 = 0 in a meaningful manner

(see Section 7). On the other hand, the hypothesis on the covariance structure

which corresponds consistently to the hypothesis (1.5) is expressed as

L= MzrlM2 + P2A1P2 and ¢ = M4I‘2M4 + P4A2P4. (1.6)
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where P;MZ = 0 and P;M4 = 0., Since in Problem [II] ”éM4 = 0, we can take
P2 = M4 and Py = M2 so that the two covariances in (1.6) become the same.
In Section 4, first in the case of Xix2 # 0 we analyze Problem [II] via
invariance, but because the group leaving the problem invariant is quite
small, no sufficient reduction is obtained and the space of a maximal invariant
parameter is of high dimmension. Hence in the case of xixz # 0 we simply show
the unbiasedness of the LRT derived by Fujikoshi (1982). The LRT statistic
here is the product of the three LRT statistics for the three separate hypotheses
810 = 0, 8y = 0 and Zyp = 0 but the three are dependent. It is noted that it
is difficult to consider the monotonicity of the power function of the LRT
because of the high dimmensional parammeter space. Next in the case of XiX2 = 0,
we expand the power function of an invariant test in the neighborhood of the
null hypothesis and based on it propose a test, which is a linear combination
of three statistics Ry» R2 and Ry. Here similar to Problem [I], Ry and R2 are
respectively the LBI test statistics for the hypotheses 8y = 0 and 85 = 0
and R, is the LBI test statistic for I;, = O under 6,, = 0 and 8,, = 0. Hence
Rl’ R2 and R3 are dependent. This is a feature different from the separate
treatment of the three hypotheses. The asymptotic null distributions of this
test as well as the LRT are given ih Section 5.

Problem [III] was treated by Kariya, Fujikoshi and Krishnaiah (1984)
(abbreviated as KFK henceforth). In this model X is fixed but it
may not be of full rank. The model (1.1) with 81, = 0 and
851 = 0 is regarded as a combined expression of two correlated multivariate
regression models with different design matrices. When Py = Pp = 1, Zellner
(1962, 1963) called it a seemingly unrelated regression (SUR) equation model,

while KFK called it a correlated regression equations (CRE) model. As has
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[ been discussed above, the information 815 = 0 and 851 = 0 on © cannot be
. expressed as a single GMANOVA restriction and when it is expressed as the
2
ey 1
b form in (1.5), M; and M; are neither nested nor orthogonal relative to X X
[+ (see Kariya (1985) p 143, 159-163, 207). Therefore, the model itself is not
[\ - put in the framework of the GMANOVA model and even the LRT for Problem [II]
N '
o is difficult to derive (in the case that x1x2 #0 or X, is not nested to X2).
In Section 7, based on the idea of Mukherjee and Chandra (1984), we compare
o the power of the LRT-1ike test, the Pillai type test and the LBI test proposed
'1 in KFK. The comparison is made asymptotically in n with contiguous alternatives
h.
G and asymptotically in small canonical correlations Py 2.--2 0p (as p1+0).
' 1
There it is shown that the Pillai type test is asymptotically (in the same
sense) equivalent to the LBI test and that for those small pi'S such that
T = Zp?/(zpf)z > some constant ¢, the LRT-like test is asymptotically better
8 than the LBI test, while for those small p.'s such that T < c, the LBI test is
v better. Further, because in the case of X; =X, = X, the model in (1.1) is
,
2 reduced to
:: [YI’YZ] = 0[6119922] + [EI’EZ]’
& which is nothing but the MANOVA model. Therefore the comparison in Section 7
- holds as it stands for the LRT and the Pillai (LBI) test of independence in the
? MANOVA model. This is a corollary of our result. T
v
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2. MOTIVATION OF THE WORK

The motivation behind Problem [I]:e12 = 0 and 6y = 0 is associated
with the problem of no causality from X1 to Y2 and total exogneity of X1 for
Yz. We will first write the model (1.1) as two correlated classical multi-

variate regression models.

Y, = X;6,, + X,0,, +E

1 111 2721 1

(2.1)

-
n

2 = %1% * X8, + Ej.

Then the hypothesis 612 = 0 is equivalent to no effect of X1 on Y2 as in the
usual case. However, since E1 and E2 are correlated, the regression equation

of Y2 under 80 = 0, conditional on Y1 is expressed as

Yy = Xghgy + (Yy-Xjoy -Xy0,0)E 2, + Ey.

In this sense the effect of X1 on ¥, still remains unless Lyp = 0. Therefore
the hypothesis 612 = 0 and I1p = 0 in Problem [I] is considered as a formu-
lation of no causality from X1 to Y2 or total exogeneity of X1 for Yz. An
example for Problem [I] is found in a problem of economic policy evaluation.
Suppose the model (2.1) is a reduced form of an econometric simultaneous
equations model which describes the interaction of economic variables, and
X1 is a matrix of policy variables (tax rate, government investment etc.).
Then the hypothesis in Problem [I] is interpreted as no effect of the policy
on some economic variables such as inflation rate, sales, consumption etc.

The motivation behind Problem [II]:#®

=0, 8,, = 0 and 212 =0 is

12 21
similarly given in association with no causality from X1 to Y2 and no causality

from X2 to Yl‘

In addition, the problem is also considered as a formulation
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of no additional information hypothesis in canonical correlation analysis,
which was given by Fujikoshi (1982) based on Mckay (1977). To see this,
suppose there are two groups of measurements (variables), say Xq and Xy where
xi's are rixl random vectors with means My and joint covariance matrix v =

. . ] . . L 2
(wij).(r1+r2)x(r1+r2) with ¥, rixrj (i, =1,2). Let & (xl,xz) denote the

sum of squares of the canonical correlations between Xq and Xy

2 _ -1 -1
8 (xl,xz) = trw11w12v22w21, (2.2)

which is regarded as a measure of total correlation between Xq and Xoe Some-
times for each group, there are some other measurements available, say ¥q and
Yoo which appear to be of some relevance for the correlation between the two
groups where yi:pixl (i=1,2). Then adding these variables to Xq and Xy the
total correlation is measured by the sum of the canonical correlations between
2y = (xi,yi)' and z, = (xé.yé)', say 62(z1.22) as in the case of (2.2). But
the real or significant relevance of including the additional variables ¥q and
y, may be in question relative to the original variables. This question gives

the following testing problem
H:62(2),2,) = 62(xp0%,) vs Kis2(z,2,) > 62(x)ax,).  (2.3)

Using a conditional argument, Fujikoshi (1982) showed that this problem is
equivalent to Problem [II] and he derived the LRT where Xi's and Yj's in (1.1)
are the sample matrices of xi's and yj's. Mckay (1977a) treated the
hypothesis Gz(zl,xz) = az(xl,xz)(i.e., no additional information in y, relative
to (xl,xz)) and showed that this hypothesis is equivalent to 1o in the model
(1.1). Some related topics are also found in Mckay (1977b) and Rao (1970).

The motivation for Problem [III] is stated in KFK (1984), Zellner (1962,

1963) and the articles therein.




2&::‘::: _ 3. TESTS FOR 8y, = 0 AND I1p ® 0

¢ Based on the motivation stated in Section 2, we here consider the problem
4 !

:I:Ey of testing the hypothesis H against K where

o Hi 875, =0, ;5 =0, Kinct H. (3.1)

First we make an invariance consideration into the problem and obtain an expression
\. for the local behavior of the power function of an invariant test in the neighbor-
hood of the null hypothesis. Based on the expression, an invariant test together

with the LRT will be proposed and then the null distributions of these test statistics

o
',[:“b'?] will be given in Section 5. To begin with, a canonical reduction of the problem is
o performed. Write A .
= x = P[B]with PeO(n) and A = (X'X)* e6e(r)
and express 840 = 0 as

s ] _ (o
M_leNh = 0 with M, = [Ip ,01 and My = (I >, (3.2)
B ! P2
where 0(n) denotes the group of nxn orthogonal matrices and G&r) the group
_ of rxr nonsingular matrices. Further let

o MA™ = F(1,00¥ with FeG&(r)) and ¥ eo(r)
x and . \
1
7 =0 P'Y and n = / 2L ype, (3.3)

0 Lhr > Ir
o ) \“21 N22 |2

Py P2

Then the problem is to test (I,0) n(?)= np = 0 and ip * 0, i.e.,

H: Ny = 0, Lo = 0 (3.4)
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in the canonical model

v/l
2%
z=|1,

v 131
P

where rg=n-r.

A et il ae e

.............

10

" "1 M2
rg v Nng mpp | I
rj 0 0

G = 5(n)xB(p)xF acting on Z and (n,Z) by

g(T\’E)

where

0(n)

It follows from (3.7) that the power function of an invariant test is a function

of (512512,9) where

.. \.- -

PRSI A . . P
- d - - YR B . N e Lt .
DR L A, TR P R T S T e T

g(Z) = PZB + F

0 F
nB +
2 Fa1 F22

11 0

g = (P,B,F)eG

Pl 0 0
0 P2 (| PieO(r‘i)},

r.p.
| Fy5eR Ty

, B'zB)

I11 o2
L1 22

This problem is clearly left invariant under the group

(3.6)

(3.7)
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:"\ 512 = nlzzélzi ¢, Q = Q(D) = (in ?) and (3-8)
.
3
::; A= a(p) = d1ag{p1,...,pt}: P1%P, (3.9)
S
.,";
H with t = min(pl,pz). Here pi > ... z_pi are the characteristic roots of
o £-ls. . £2li.. and ¢ is an orthogonal matrix which diagonalizes £ ir,.zolr, 53%
11*12°22%21 g 9 22%21°11%12% 22"
L'-
-l Hence without Toss of generality we assume n1o = &qp and 2=Q. Further, it
A
i also follows from (3.6)that any invariant test is a function of (le.U) with
1]
P - U = (Z315Z3,), on which G acts by
Ef' Now to state one of our main results in this section, let Di be the set of
N all invariant tests of size;aléiuea,¢gﬂ%<;» oe(2)) = ¢(2)),
v $,4 S
P -y =711 712 —
L ] Pl B TR Y (3.11)
f:: 21 22
_:::.
) and let & = § + 8, with
<5
- . v -1
- o) = tregpf1p = trnyploonyy
and (3.12)
_et 2 _ -1 -1
- 52 =14=1°% = TI1ntattar
j;_ Clearly ny, = 0 and £;, = 0 if and only if 6= 0, or §; = 0 and &, = 0.
Fé Theorem 3.1 . There is ¢ > 0 such that on the set {(n,Z)|s < €}, the
;ﬁ power function of any test ¢ in Di is evaluated as
. "(¢’(nsz)) =a t 61C1(¢) + 62C2(¢) + 0(6) (3'13)
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where
r.,+r p ' '
13 P -1
Cy(¢) z—plpzl—rl EqlotrZy 2y, (Z,,2)5455,) " 11, (3.14)
rytr -1 !
Cyle) = %, EglolratrS)3515(S02%215215) Sy

(3.15)

1 -1 r3
- P1trSpy(Sytlialyp) Y - 5
1im sup, Jo(s)/s] = 0.
§-+0 ¢
Here E0(°) denotes the expectation of (-) under the null hypothesis. The
proof is given at the end of this section. The expression (3.13) shows the
local behavior of the power function of an invariant test ¢, according to
which the power function is approximated by a-+61C1(¢) + 62C2(¢) in the
neighborhood
N = {{n,z)]|trn E-ln' o+ trt-l): 2-12 < €}
€ i 12°22'12 11°12%22"21
and the approximation is uniform in ¢. Since a test maximizing the local power

a + 61C1(¢) + 6, C2(¢) depends on at least the ratio of &, and §, » no LBI

1

test exists. This is natural in the serse that the quantities 84 and 62 indicate

are different and the deviation of sl(or “12) from 0 is independent of the devia-
tion of §, (or 212) from 0. On the contrary, the form of .

the power function in (3.13) reflects how an invariant test can detect each local
deviation from each null case. That is, C1(¢) basically measures the local power
of ¢ against the local deviation of 61 from 0, while C2(¢) the local power of ¢

against the deviation of 5, from 0.

However, the statistics whith define the expectations of C1(¢) and C2(¢)

___________________
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oW in (3.14) and (3.15), are not independent even under the null hypothesis. In
b4
y fact, the statistics

b

'\,':;') P

p Y - _1 -1

e R tr2,21,(2),2),#55,) ") and

h (3.16)

Tp = PatrSISyp(Spptiglip) T Sy P trS (50451 )

D are dependent on each other. This is a feature of the simultaneous treatment
e of the two seperate hypotheses. To investigate this point further, observe
jgi that the test, say Vys which maximizes C1(¢) is given by the critical region
b

- T1 >c

f%li and it is the LBI test for testing Mo = 0 without Zyp = 0. More specifically
™~ it is LBI for testing the General MANOVA hypothesis

T " M. oM. =

;".':.{ H : M.IE)MZ =0 (3.17)

?:E in the MANOVA model Y = Xo + E with E ~N(0,I ® £) where X: nxr, MI: ryxr and
) .

o8 M,: pxp, are arbitrarily fixed matrices of full rank. This test is even UMPI
fﬁ; (uniformly most powerful invariant) when rp=lorp,s= 1 and the power function
:f; of an invariant test ¥ for the hypothesis in (3.17) is locally expressed as
A 1y (¥5(n,z))= o + 6,C,(¥) + o(s;) (3.18)

AN

(*?7 where (n,r) is the parameter of a canonical form corresponding to (e,f)(see
[ .
’ f} Kariya(1985), p 169). On the other hand, the test, say Yoo which mazimizes
B ‘\'
el C,(¢) is given by the critical region
"\._r'... TZ > C
,{Jf":
AN
S

&
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with T2 in (3.16) and it is the LBI test for testing Lyp = 0 in the case of

no = 0. More specifically it is LBI for testing independence I1p = 0 in

the missing data model

Z), " N(n12,1r1® Z,,) With nj, =0
(3.19)
U~ N(O,I_  ®cz)and Z,, and U are independent
rs 12

where the counterpart of Zy5 is missing (see Eaton and Kariya (1983)) and

the power function of any invariant test in the model (3.19) is expressed as
wz(w,(o,z)) =a + 62C2(W) + 0(52) (3.20)

However, when N2 # 0, the test based on the critical region T2 > ¢ is not
easy to interpret as a test for testing the single hypothesis of the
independence Zyp = 0 alone because in the case of o #0, 212 would not be
involved in a test statistic. In other words, this is a difference between
treating the two hypotheses simultaneously and treating them separately.

Now by taking this point into account, we propose the test maximizing

a linear combination of C1(¢) and C2(¢);
Coe) = BraCy(e) + Chle) (0 <8 < =) (3.21)

where B is a constant independent of n. Using the Generalized Neyman-Pearson

Lemma, the critical region is given by
T(B) = BryTy + T, > k. (3.22)

Here T1 is multiplied by ry = n-r because from (3.3) n = o(n%) so that
8 = 0(n) provided X'X =0(n). The test bq with critical region T(8) > ¢

maximizes the power n(¢,(n,I)) locally in the neighborhood
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N Neg = {(n,2)] §) = Bra&,INN_

i €

since it maximizes (61/r3)8r3cl(¢) + 52C2(¢) = 52[3r3cl(¢) + C2(¢)] on NeB.

The constant B may be regarded as a weight for the importance of the hypothesis

"o T 0 relative to the hypothesis Iyo = 0, and it is chosen in advance. It is
noted that the test based on T(B) is not a linear combination of the two LBI tests
s WI and ¢2 stated above.

| We remark that for a given ¢ ¢ Di, the local sensitivity of ¢ against (61,62)
is measured by the two coordinate (C1(¢),C2(¢)).Second, when the information " = 0

js ignored in the missing data model (3.22), the LBI test for independence 212 =0

is given by the critical region

T, = trS]1S,5555, > k (3.23)

2 (see Schwartz (1967)). That is, this is the LBI test for independence in the
E?S MANOVA model without n,, = 0. Since the test with critical region Ty > k is LBI
iii for testing N = 0 without 212 = 0, we may combine these two tests. Here while
,éi the simultaneous treatment of the hypotheses yielded the dependent statistics T1
a;a _ and TZ’ the separate treatment yields the independent test statistics T1 and T3.
3§i The problem of how to combine independent test statistics is discussed in the
;; literature (see, e.q., Marden (1982)). In this paper we do not get involved

: ? in this problem. But as is shown next, the LRT for the simultaneous hypotheses
3t% gives a natural combination of the LRT statistics for two separate hypotheses.

The LRT for our problem is easily obtained by using the canonical model in -

(3.9) as follows:
IS

; sl .1l 2l L G
1509 11S20%2157051 189911051 1S52%21,2p,l

........................
...................................
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A
;f' 0f course, when L1L2 is small, the joint hypothesis is rejected. As is well
A

n known, L1 is the LRT statistic for Zyp = 0 without Ny T 0 while Lz is the LRT
T .

‘tﬁ statistic for n;, = 0 without Zy, = 0. Further L, and L, are independent so that
" the two independent LRT statistics are combined in (3.24). It is noted that

~: even when Ny = 0, the LRT statistic for 212 = 0 is given by L1 so that the LRT
ii ignores the additional data Z,, (see Eaton and Kariya (1984)). The unbiasedness

property of the power function is considered as a special case of Problem (II)
o8 in the next section.

Proof of Theorem 3.1. The proof is similar to KFK (1984). To derive the

distribution of a maximal invariant T=T = T(ZIZ’U) under the action (3.10) of

(L G on (ZIZ’U)’ we apply the Wijsman's representation theorem. Let PIE Q) be

the distribution of a maximal invariant T. Then the density of T with respect

P o 5

T ] o
to P(O,I) evaluated at T = T(ZIZ’U) is given by

o] T - .
R = dP(Elz,n)/dP(o’I) = H(Zy,,Ug,,,0)/H(Z;,,0]0,T) (3.29

I~ where

i& H(ZIZ’UIEIZDQ) = f f(P12128229 P3UB|512sQ)x(B)Vl(dpl)V3(dp3)u1(dBl)Uz(de)
X

’ /2 (ry#r,)/2 -P;

. r3/e . 1'73 . ' J/2

<y = . = 0. s

i? X(8) IB l l 2 2' ’ UJ(dBJ) lBJBJI dBJ

i3

- H=0(r;) x 0(ry) x 6&(p;) x 6G&(p,), f(ZlZ,Ulglz,n) is the density of Z;, and
= U with Z,,~ N(g,,,I®1I) and U~ N(O,I_ ®Q), and v,(dP.) is the invariant
.- 12 12 ry it
;E} probability measure on O(ri) (i=1,3: j=1,2). The condition for which(3.25)
'E holds is satisfied (see Wijsman (1967)). In order to obtain the local behavior
f} . of the power function of an invariant test in a neighborhood of E1p = 0 and

o Ly, = 0, we evaluate R in (3.25)10cally. After cancellation of some constants the
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numerator in (3.25) is expressed as
(Z;,4U]€1 ,,0) 1 3/2 (B)vy (4P Jus (
H(Z,,,U]E,,,0) = J o exp[-}K1X(B)vy (dP, )uy (dB. Ju.,(dB,)
12°Y1%q5 O )<62(p, JG2(p,) 11dPJuy(dBy)u,(dB,
where
1 1 [} 1
K = trBylypZ1,8, - 2trPZ),By81, + tregngg,
( 3.26)
] 1 [] ]
+ trB)S) ByFyy + 2trB S B.F ) + trB,S,.B,F )
with
Foo F
gtl = |11 12} (3.27)
Fa1 Fa2

Here replacing B, by SI?BI and B2 by (2{2212+522)'%82 leaves the ratio R
remain the same since the Jacobin factors coming out are cancelled out with

those of the denominator. Further writing Fii as

_ -1 _ 2 -1
Fg = (T=044)77 = T+ ags + a5,(I-845)

with All = AA' and By = 8 A. Then K in (3.26) becomes

] ] -~ t -~
K = trBlB1 + trBZB2 - 2trP121282512 + tr512512 + 2tr81512F12 + K1 + K2

where

_ ' 2 -1, _ '~ 2 -1
K; = trBlBI[A1+A1(I-A1) 15 K, = trBZSZZBZ[A2+A2(I-A2) ]

= Y R %
Z1p = Zyp(Zya15%S50) % Spp = S17812(215215%Sp,) " and

..............................................
. - .
N . S DL S SR AR P I

el
PP A
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~ 1

S0 = (Laligt Spp) (121 54559) ™%
Now expand the components of exp[-%K] as
exp[trPlilszs£2]= 1+ trPlilzBZEiz + g(trPlilzBZEiz)z + o
expI-trB;S; BoF1p] = 1 - trB S, BF o + k(tr8 S, B,F1 )2 40,
exp[-}K,] = 1 - gtrBiBIAI +.0,  and
expl-3K,] = 1 - %trB,S,B,0, +0, .

Then in the same way as in KFK(1984), the remainder terms oi's are shown to be
e(s) with & in (3.12), which is uniform in (212,5) because of the boundedness
of 212 and §ij.s . Further when oi's are integrated over P1 and Bi's, they are
shown to be o(8) uniformly in (212,5). Now taking the product of these terms

and ignoring the odd functions of eitherP1 or B1 or B2 because they are zero

when integrated, we obtain
R = [al 32[ gy (dp.)h, (B, )h,(B,)dB, dB
1'9P1)hy (B, )h,(B,)dB,dB,
where
' v Mis2
h;(8;) = exp(-}tr8 B.) (BB, d8. /D,
3 =1 4 %[(trP 2, B )2 + (trB.S, B F. ) - trB.Ban
121282812 151282F12 181

t~ '
- trBZSZZBZA A] + o5 = 1 + S[I+II+11I+IV] + 05, say

D

' ' M
i Jexp(-%trBiBi)lBiBil ‘/sti,

A R TR AL R RS N !"."HT
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-k
Ml = r3 - pl and M2 = I‘l + r3 - p2. Here H(stU(O I))- Dl 2 and IQ, 3/2 =

1 +0(8) were used. The remainder Og is shown to be o(§) for & small uniformly

' -
in (Z » for F12 = (I-28 ) 1A. We now need to integrate J. But arguing as

12’
in KFK (1934) pp 391-392, we obtain

+r ' .t o~
j(trP1 12 2512) vl(dP )h,(B,)dB, = ri 23 treg o8 ,trZ 575,
r3(r1+r3) .
I = [(tr8,5,,8F; )% (8) )y (8,)d8,d8, = g triipta 4o,
¢ . ' r3P1 )
11 = J(trBlBlAA Jhy(B,)dB, = - P tras
f r-|+r'3 - '
IV = J(trBZSZZBZA A)hz(Bz)dB2 = - pZ trSzztrAA s

and ]05 1(dPl)hl(Bl)hz(Bz)dBldB2 = o(8). Thus, observing that the power function

of an invariant test ¢ is given by

T T
"(¢’(niz)) = I¢dp(€129) = J¢de(o’1):

the result in (3.13) is finally obtained, completing the proof.
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4. TESTS FOR THE HYPOTHESIS ¢ =0, AND 212=0

12%% %21
We shall first consider via invariance the Problem (II):

H: 8,5 = 0, 8,5 = 0, L, = 0 vs K: not H. (4.1)
Since 840 = 0 and 8,y = 0 are expressed as

M,oM, = 0 and M_oM

19" 30 = 0

and since Mlx XM3 = Xlx2 # 0 in general, the group leaving this problem invariant

is smaller than the group leaving the problem (I) invariant, where M1 and M2 are
]

defined by (3.2 ), My = (0,I) and My = GD . The special case X;X, = 0 will be

briefly treated later. Here we use the following canonical form

= KX X)IX'Y < N(n,A® £) with n = Ke

w-

) '
S=Y (I-PO)Y ~ W(z,r3) with rg=n-r (4.2)
W and S are independent

where P = x(x x)"1x’,

0 91 Y2\ N1

Q '
kK =| -1 L | with (X x)"}=q = (4.3)
0 .Q Q7 Q r
2 21 %2 T2
- 1 "2
and Q )
I
) 12 o o e o
A with Q15 = 01101, - (4.4)
Qp I

Partition W and n as

....................................................

.........................................................
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W, W r (N7 N0 \r

w4 11712171 andn:(n 12\"1 .
Yo1 M2 | T2 "1 21 )72
P1 P2 P1 P2

respectively. Then in the model (4.2) the problem is to test

H: nyp = 0, nyp = 0, Zyp = 0.

'1Py TaP2
The problem is clearly left invariant under the group G = Gﬂ(pl)xGﬂ(pz)XR xR
acting on (W,S) by

F

g(W,S) = (WB+F,B SB) with B = and F = (4.5)
0 B, 0 F,

where g = (Bl,Bz,Fl,FZ)eG. From this action of G, it is easy to see that an
invariant test is a function of (wlz,wzl,s) only and that the power function of
an invariant test is a function of

{1 a _ a=k% -k _ =% =%
Q= (A. [|rf12 T 018,555 Pp and £5) = Q7 00Zy7 Py (4.6)

where Pi€(XPi)'S (i=1,2) satisfy

plz;;ﬁzlzzégpz = 8 = diag( pys..e1pys0a.ens0)t Pyxpy with € = min(pyp,)  (4.7)

and p > > p, are the canonical correlations. So we can assume nj, = &1,
1

Noy = €21 and £ = 0 without loss of generality. In this set-up, we may proceed
in the same way as we did in Section 3 to obtain an expression for the locally
approximate power of an invariant test. However by doing so we end up with a
very complicated expression of local power which depends on many parameters in an
intractrable way. This implies that a further invariance consideration into the

problem will not help to propose a new test which possibly takes into account the
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simultaneous occurance of the three hypotheses Ny = 0, Nyy = 0, and Iy = 0. oOf

course no LBI test exists.
On the other hand, the LRT is given by the critical region L < c, which
was originally derived by Fujikoshi (1982), where

Is] __1s] 15,51 15441

= L,L,L

—
"

HogWoy | 1S9q 1Sl [SpptHyNpl Sy +Hp Wy

B AV PP
It is also directly obtained from the distribution of (NIZ,NZI,S) since the
LRT is always invariant (under a very mild condition). The statistics Ll’ L2
and L3 in (4.8) are respectively the LRT statistics for the three separate
hypotheses 212 = 0, 912 = 0, and 621 = 0, and the LRT statistic L1L2L3 for our
simultaneous hypothesis in (4.8) may be viewed as showing how to combine the
three LRT statistics for the three separate hypotheses. But here it is noted
that L2 and L3 are correlated because of the correlation of w12 and H21 unless

R |
XIXZ =0 or 212 = 0. In fact, if~ui and v, are respectively the i-th and
j-th rows of le and w21, the covariance matrix of Ug and vj is shown to te

Cov (ui.vj) = Q358 ¢ Pp¥Py

where a5 is the(i,j)th element of 012 in (4.4) and 012 =~ 0 and 8 = 0 are respec-
tively equivalent to X1X2 = 0 and 212‘= 0. This correlation between L2 and L3

makes it d.rficult to investigate optimality properties of the LRT. Now to show

the unbiasedness of the LRT, note that from le'N(EIZ.Ica I) and HZI'N(EZI.IGD I)

= u12w12~ HpZ(I,rZ:rz) with rp,=n and T, = E10810

=
N
nN
]

(4.9)

”21”21~ Wpl(I,rl:rl) with ry =T, and T = E91801

17273
(4.8)

1
l
|

say,
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where W(¥,m:v) denotes the noncentral Wishart distribution with mean mY, degrees

of freedom m and noncentrality parameter v. In the original term, vii is easily

shown to be equal to

I . _ -1'
Vij = Y;[Pg-P; 1Y with P, = X, (x X; ) (4.10)

Further, from (4.2),S and'{V11 22} are independent, and when A = 0, V11 and V22

are independent. Here we use a conditional argument. First write L1L2 in

(4.8) as
Ly = [552.1171S92.1 * Voo * 518 115120 = 1550.11/1555.0 * Uppl (4.11)
where
_ -1 <y -5
S02.1 ® 522 = S21511%120 S22.1 T Y TS22.Y

n - ';5 '1 ';5 - 1
Lemma- 4.1 (1) 522.1' sz(I,n-r-pl)
(2) gzz.land 022 are independent

(3) Conditional on Yl’ U22~ wp (I,r1+p1:w) where

2
f\v =y g sy 0y
(4.12)
- = ' - a 3 a ;5
|2 = 01181 (Pg-Pp) I 18 with iy = 01,030,
Proof. Our original model may be viewed as
0 512
[Y2Y,0 = NCTK X0 1 ®0)
810 .

. - - -l el s
with @ in (4.6), where 81 = 85;L Pl‘ Hence conditional on Yl’




1

Yy~ N(X1612+(Y1-X2821)A, I1®Y),

from which conditional on Yl’ we obtain

_1 ] . . [}
1S Y,PoY, wpz(Y,Pl.A 5118)

S11%12 = YaPo

521

) Y2[P0-P1]Y1 "W (y,rI:E) and

22 © P,

522.1 - wpz(st'r-pl)-
eyps -1 .
Furtherconditional on Yl’ 322.1, 521511512 and V22 are independent and

S does not depend on Yl' Thus all the result follow.

22-1

Theorem 4.1. The LRT with critical region L < ¢ is unbiased.

Proof. Let

Vo 45,571

C={(s 22%521511512°V11°

S,,,.V Sll): LlL L, < c}

22-1° 273

‘o . . . -1
be the critical region of size a in the space of (522.1, V22+521511512,V11,511).

Then since S,; and V,, are functions of Y, only, from (4.10) the power function

of the LRT 1 is expressed as
(4 2(81928,5758)) = P(C[8;,,85).8)

] e U ah 1, -
= By, PUUSgp.10Upp) | 1S9p.11/1855.1 * Ugpl < cLy 3 (S11:V110815:857,8)] (4.13)

where EY denotes the expectation with respect to Yl' Since
1

159911715550 * Uppl < €

T




Bahaatiabi_Bat At il Bat Sl Sad ek Sad Skl dd Sl sl LA A A A } Ao A s aAR are are o e al AF) |

25

is regarded as the LRT for testing ¥ = 0 in the MANQVA set-up with (U

22*522.1)
as is shown in Anderson et.al. (1964), it is an increasing function of each

characteristic root of ¥. Since 512 0and A =0 imply ¥ = 0, from (4.13)

"(¢L’(612: éZI’A))z “(¢L:(09§2110)) = P(C!0,521.0). (4-14)

But under Ao = 0, L1L2 and L3 are independent because V11 and sz are independent.

Further Ly =[S, /]S, + Vlll is regarded as the LRT statistic for testing

8,7 = 0 in the MANOVA set-up with (vll’sll)' Hence the inside of the conditional

expectation
- _ “l.im =
P(C[0,8,,,0) = ELle[p({(Sll’V11)|L3 < ¢(LyL,)772}0,8,,0)]
is an increasing function of each characteristic root of 6215é1 implies

P(C]0,§21,0)_g_g(CIO,O,O) >a

Combining this with (4.13) yields the result.

Under A # 0 or equivalently Iyo # 0, because L1L2 and L3 are correlated
unless xix2 = 0, it seems difficult not only to establish a monotonicity
property of the power function of the LRT but also to find a naturel parameter
space on which the monotonicity is considered.

We remark that the above result holds even when the model Y = Xo + E is
defined for X conditioned and the marginal distribution of X does not depend on
(6,z). Hence the LRT for testing no additional information hypothesis in
canonical correlation model, which is nothing but our LRT though X is random,
is unbiased (see Section 2).

]
In the case of X1X2 # 0, we consider two special cases. First consider

.......................
................................
.............................
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the case A = 0 or equivalenty Iip = 0. In this case the problem of testing

7
.
= joint hypothesis 8y, = 0 and 621 = 0 is simply split into two independent

j? problems in the two independent models Yi = Xleli + XZGZi + Ei(i=1’2)’ However,
- the LRT for the joint hypothesis is given by o = X(L2L3 < ¢) and it is not the
?:, product of the two LRT X(L2 < cz)X(L3 < c3) where X(A) denotes the indicator

é , . _ - n s
‘3 function of a set A. The power function of o for 6,0 0 and 8,51 0 is a

N function of the characteristic roots.
’; - ';ﬁ 1 ] - _}-5 .

2 A = chylTpg010%1 Po=Pp1%1815%25) (1=1s...5p))

™ and the characteristic roots

‘

._". '

- - - "o Yy .l

: vy = chy(E778,1 %, [Pg-Py1X051213) (3=14..00py),s

&3 and by similar argument as in the proof of Theorem 4.1, we obtain

i Corollary 4.1. Under Lyp = 0, the power function of the LRT with critical
- region L,L, < ¢ is increasing in each i, or Yje

Next we consider the unbiasedness of the LRT with critical region L1L2 < cC.

fj' Since the distribution property of L1L2 is simply obtained in the proof of

?‘ Theorem 4.1 by setting V;; = 0, we obtain

3 Corollary 4.2. The LRT with critical region L1L2 < ¢ for Problem [I]

> is unbiased,

ff In fact, from (4.10) and Lemma 4.1, the power function of the LRT is easily

seen to be an increasing function of each characteristic root of ¥ conditional
on Y. Hence the unbiasedness immediately follows from ¥ > 0 and the fact that
810 0 and Zyp = 0 imply ¥ = 0.

Finally we consider Problem [II] under Xix2 = 0. An example for this case
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is found in time series models (see Anderson (1971p.92)). Under Xix2 = 0, we
]
can take A = I in the canonical form in (4.2) as well as Q5 =(Xixi)'1. Then

the group G = O(r)xO(rz)xG leaves the problem invariant by the action
- ' Fl 0
g(W,S) = (TWB+F,B SB) with I =|° .
2

where 5 = (Pl,Pz,g)eé. Hence in the same way as above, the problem is reduced !

to the problem of testing 512 = 0, 521 = 0 and A = 0 in the canonical form
{/

i . o %
Wip™ NEgpe T T) with 815 = Qqy8,%55

—

- . . nk -k
Wop ~ N(gpps T@® ) with £y = Qp7051291T)

S - w(n,r3) with @ in (4.6 )
\

where NIZ’ le and S here are indépendent. Also G acts on ("12'”21'5) by
gHyg M1 S) = (P Wy B, P My B, 18 SB).

Since the group G is bigger than G, a result corresponding to Theorem 4.1 can
be derived. To see this, let v = vyt vy + vy with

[ ] (] _1 t
triga81p = trX X1815259815

Y1

' ' -1
v, = tr521£21 = trX2X2621211921 and

t 2 _ ' -1 -1 |

[}

V3

Theorem 4.2. There is an € > 0 such that on the set {(6,Z]v < e} the

power function of an invariant test ¢ of size a under G is evaluated as
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1(6,(0,2)) = o + 3[vyD;(6) + vyD,(8) + v3D,(0)] +0(v)

where

D;(8) = EglR,]

R, =231 ¢y’ W

r.,+r, p '
1*r3 P -1
17pp, v M 1241 M412%527)

r,+r, P ' 1
_Ttr3 Py -1
27 TF, T, EriyWyq (W) Wy #S9)

=
|

(Y‘ +r )(Y‘ ‘H‘) ' '
_ (rgra)(rytrg -1 1
3" PP, tr(Wy Wop #S1) 7S o (W W 5 #5,55) 7Sy

rydr ro+r
1*73 ' 1 Tt ' -1
- _pl_t"szz“"lz"ﬁz*szz) T TR, trSyq (Wy a1 +514)

and 1im sup, |o(v)/v] = O.
v>0 ¢
Proof. The proof is completely similar to that of Theorem 4.1. Regarding
' -

212 as le. replace B1 by w21(w21w21+sll) %Bl' Then every step goes through
and the result is obtained.

In this expression, a symmetry which is lacking in Theorem 4.1 is secured,
and the statistics Rl’ R2 and R3 are respectively the LBl tests for testing
the separate hypotheses H1~:512 = 0, H2:£21 = 0 and H3:z12 = 0 under 512 = 0 and
Exn = 0 (see Eaton and Kariya (1983) for H3) Also for each hypothesis Hyo the
power function of an invariant test is expressed as a + %viDi(w) + o(vi)(i=1,2.3).
Here again it is noted that the statistics RI’RZ and R3 are not independent
under the null hypothesis. R1 and R2 are independent under the null hypothesis.

Here following the discussion in Section 3, we may propose a combined test of these

statistics with critical region
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R(BI.BZ) = 81r3R1 + 82r3R2 + R3 > C (4.15)

where r, is put on R;'s because vy ® 0(n) (i=1,2). Here the constants By's
may be considered indicating relative weights for the three hypotheses 912 =0,
8y = 0 and Iy = 0. It will be often the case By = B,. This test clearly
maximizes the local power o + z?=1°ini(¢) in the neighborhood

{(e,1)] v; = r3Biv3(i=1.2)}f1{(e,Z)| v < g}

Also the local sensitivity of an invariant test ¢ against (vl,vz,v3) is described

by the coordinates (D;(¢),0,(¢)s D5(¢)). Fyrther, from the observations.
above, we may use the test based on R(s{,sz) in (4.15) even if X;x2 # 0.

It is femarked that the LRT statistic in this case is of course the séme
as L = L1L2L3. Bui here because xixz = 0, in addition to the independence of
L1 and Li(1=2,3), L2 and L3 are independent though Ll’ L2 and L3 are Jointly

dependent.
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5. ASYMPTOTIC NULL DISTRIBUTIONS OF THE TEST STATISTICS

The asymptotic null distribution of the LRT for Problem [II]: el = 0,

2 -
8,51 = 0 and I1p = 0 has been derived by Fujikoshi (1982) in the context of

the problem of testing no additional information hypothesis in canonical
correlation anaylsis. From a more general viewpoint, we here briefly treat it
in a systematic way and then consider the asymptotic null distribution of the

LRT for Problem [I]:e12 = 0and z;, = 0. The notation
AT Ap(q,n)
denotes that for independent Wishart matrices A and B,
A = |A|/|A + B| with A ~ ﬂp(z.n) B ~ wp(z,q)
Lemma 5.1 Let A, ~ Api(qi’"'di) and A;'s be independent (i=1,2). Then
P(-n Tog Aphp < %) = Gylx) + 5 (Gyg(x) - Gelx)1 + 0(n™), (5.1)

where G (x) is the cdf of L(6),

fl = plql’ f2 = p2q2' f= fl + fzn m = n-p

-1 -1 (4.- Lga-p.- 5.2
p = {fld1- 5 (q-p;-1)1 + f,ldy- 5(ay-py-1)1) (5.2)
£ f
u=s+ _4_1f2 [dl'd2+ %(pl'pz'q1+q2)]2

f f

] Jhoe 2 f2 2 2
S =5 +5,, 5 =g (p+9)-5) and s, = gz (p5+a,-5).

Proof. The result follows directly by the usual method based on
characteristic function.

Now for Problem [II], the LRT statistic is given by L,L,L, in (4.8) and
from Lemma 4.1 and (4.11), it is easy to see that under the null hypothesis
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()]
]

Ly~ Apl(r2+p2. n-r) (5.4)

and Al and A, are independent. Therefore the following result follows from

Lemma 5.1.

Proposition 5.1. For Problem [II]: 912 =0, 621 = 0 and 212 = 0, the
asymptotic null distribution of LRT based on ~m log(LI.Lz)L3 is given by (5.1)
where in (5.2) Gy =Ty * Py Gy =T+ P d1 = r and dy =r +p.

On the other hand, for Problem [I], the LRT statistic is given by L1L2
in (3.24), which is the same as the L1L2 in Problem [II] and hence from (5.3)

under the null hypothesis

The asymptotic null distribution of -2m 109}12 is well known , - ..

Next we consider the asymptotic null distribution of R(BI’BZ) in (4.15)
for Problem [II] and as a special case, obtain the null distribution of T(8)
in (3.22). But here for simplicity, the case BiPsTy = 1(i=1,2) will be treated.
A more general case can be obtained in a similar manner. From (4.15), let

the test statistic be

Xt

e s - 1
= R1 + R2 + R3 + 2p1p2[1+ o (r1+r2)] (5.5)

where m = n-r

i 1 i}
1° (m+r2)trBll(Bll+Sll) with B11 N21N21

WMz

_ -1 .
R2 = (m+r1)tr822(822+522) with 822
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1

1
3 =g (meryd(mero)tr(By+8,,)" s 12(B2p*S55)" s 21

P2 -1 P -1
= (e )trS By 4519) 7 - 5 (mbr)trS,,(B,,45,,)"

Theorem 5.1. For Problem [II]:e12 =0, 621 = 0, and 212 = 0, the

t;f asymptotic null distribution of R in (5.5) is given by

P(R <x) =6 (x) - T_ (f $1+F 8,4, 53)[G (x) - f+2(x) + Gf+4(x)]
o (5.6)
- 35 PP P+ [26(X) = 36c,,(x) + Gy ()] + O(m™/2)
where f = f1 + f2 + f3,
S, =Pyt + 1 and S3 =Py tp,t 1.

f = P1fas Fu = Pprys F3 = PyPps sy = pp +rp + 1

The case of Problem [I] fo1low§ directly from this theorem.

Corollary 5.1. For Problem [I]: 815 = 0 and Lyp = 0, the asymptotic null

distribution of
..- 1
T = T(rllpl) + 291P2[1 + m '1] (5-7)

with T(8) in (3.22) is given by (5.6) with r, = 0.

Qutline of the Proof of Theorem 5.1. Under the null hypothesis, assuming

= I without loss of generality, we have the three independent Wishart variates

B

1n - Npl(I,rz), 822 ~ wpz(I,rl) and S ~ Np(I,m). As usual let
V,, V
vl 12, & (% 5-1) (5.8)
Y21 V22

and expand Ri's in terms of V, B11 and 822 as

B o T R
AT P . . . B e A AP R - RO - U Te et et
Dt S e e T e e e T ~ Loy -
2 Aas . PN P OIS SR VR I W SR S P W PN R W Vg WP 1’ PN A T S A ST ..L..Ll.x‘; n-_\._.n.
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1 1
g +— Q.. t=q.. +
trBJ1 - qu m qu Op(m

-3/2

)(§=1,2)

= . 1 1 - -3/2
tr¥ioVa - 2P fE91 Yy [a35 + a3p = PyPylry*ra)l + 0 (M ™07)

. i 2 o2 - N
where qj1 trBijjj, qu trBJ.J.Vjj trBjj + rjtrBjj with ry=r and
r = 1= = - - = 2
ry = ry (3=1,2), ay tr¥ 1 V12Y21 - trVyVaaVore 935 = PV VoVoy t

2 -
trVyoVoaVap * trVypVyaVagVyy and agp = (rp#r,)trVyVyy - trBy VooV, -

tr822V21V12 + pztrB11 + pztrBzz. Then R is expressed as

o - 1
Ro=trlyy * trigp * tripplpy * o2 (agy*9prtay)
(5.9)
+ 1 (41,40, *05,402,) + 2010, (14 5= (r14r,)] + (m~3/2)
m ‘9127922793293 1P U g ry*rali * 0, .
Then the characteristic function C(t) of R is expanded as
] 1, .1 -3/2
C(t) = E{H(t)[1 + = AL+ 5 A0+ 0(m ). (5.10)
i_ where H(t) = exp[it trB11 + it trB22 + it trV12V21], and A1 and A2 are functions
*.2 of B,;'s and Vij's' Since vij's are not independent, in evaluation of the
f:ﬁ expectation in (5.10),we may use the following lemma.
F Lemma 5.1. (1) The pdf of V is expanded as
G ] Sle?yae Lol 1eny -1
= f(V) = ¢ exp( 7 trvo) {1+ - - 3 (p+1)trv + g trv71} 4 o(m 7).
i
)

(2) The conditional pdf of Vi, given Vi and V22 is expanded as

e .
LR

Pt dn

, _ 1 1
f(Vlzlvll,sz) = ¢ exp(- 3 trVIZVZI){1+ E;ﬁ (- pztrv11 - pltrv11

]
. (]

oA

R EFRARN

-1
+ trv11V12V21 + trvlzvzzvzll} + O(m )'

- N l.'
LN
P ]

< p

4
:
:
¥
&‘.
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. Proof. (1) is well known. (2) is obtained by f(V)/f (Vll)fz(vzz), where
k the marginal pdf's of V 's are first expanded as in (1).

R Lemma 5.2. The characteristic function of R is evaluated as

c(t) = (1-2it) 720 - L (g5 8 5008, 1(1-211) 11

(5.11)

’.".: “-'-

> - 5 PP, (ry ) (2 - 3(1-2it) 7+ (1-2i6)721) + o(m™3/2).

'

Proof. The proof is straightforward although it involves a lot of

N '-.x.l.—.‘l

computation. The result is obtained by using Lemma 5.1 and the following well
known results:
(it)? 2

. it 1 .
E[exp(1ttrV12V21){1+ iﬁ G * o (1t)q32 + q31]}]

E exp(itm tr SliSIZSZZSZI) + 0(m™ 3/2)

‘f3/2
(1-2it) - Zﬁ 3s {(1- 21t)

(5.12)
+ o(m'3/2)]

(Fujikoshi (1970), Muirhead (1970))

E[exp{it(m+r2)tr811(811+511)'1

1 (5.13)
{n + it(mer) )trB,, (B,,4S,,)"

N -(f s,+f,5,)/2
; - (12in) P2

]

-3/2
1 - i% (flsl+fzsz) + 0(m 3/ )]

(Fujikoshi (1970), Murihead (1970))

fé Inverting C(t) in Lemma 5.2, we obtain the result in Theorem 5.1.
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L 6. TESTS FOR INDEPENDENCE WHEN 810 = 0 AND 8, = 0

4

N As has been stated in Section 2, for problem [III] H:zlz = 0 given

¢ 819 = 0 and 621 = 0 KFK (1984) proposed the LBI test, a LRT-1ike test and a

trace test, and considered the asymptotic null and nonnull distributions of
) these tests. In this section, adopting what we call the method of small-small
. asymptotics due to Mukerjee and Chandra (1984), we compare the power functions
of those tests. Since the model in Problem [III] is

5 611 0

= n[Yl, Y2] = [XI’XZ] 0 o + [EI’EZ] (6.1)

< T,q 2

O 11 "12

[E,,E,] ~ N(0O,I_® (6.2)

: 1°72 n T\ I22

g it contains the MANOVA model as a special case with X1 = XZ' The comparison we
:Qi make here deals with the comparison of the Pillai test and the LRT for independ-
s ence in the MANOVA model. In fact, as will be shown, when X; = X,, the LBI

J

s test and the trace test in Problem [III] are both reduced to the Pillai test of
?ﬁ independence in the MANOVA model, which is LBI, while the LRT-like test is

i reduced to the LRT of independence in the MANOVA model. Following KFK (1984),
i: assume p, > p, without Toss of generality and let

: [} + ] ) 1

G Q0 =T - X(XX)Xx = ZOZ0 with ZOZ0 = In

> 0 (6.3)

v - ! "1 R

\Qi =1 - X.i(x.ix.i) x]' (7"192)
where Z,:nxng, ng = n-r, and r, = rank [X;,X,] and A is Penrose inverse of A.
- Further let
] + ] ] _1 _ - =1 . -le =
X(x x)'x - xi(xixi) = Zizi with Zizi Iro-r1
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| where Z.:nx(rq-r.), and let

Y

. Zi = LZi,ZO}: nx(n0+r0-ri), (6.5)
%S

)

- M ) 7. v,

3 . |(n-r

f_ p1 0 0 i

- i

"3 _ _ I DR |

| S=6G+Band R =5,,5:5,5] (6.7)
;: where S = (Sij) with Sij:pixPj’ G = (Gij) with Gij = Uin:piij and

o B = (Bij) for i, j=1,2 with

: B.. B MM, M KM .

: B M)V N2 ka7, (6.8)
[ Ba1 Baz/ \MpK My MM,

Here we note that when X, = X,, Q4 = Q, (i=1,2) so that B = 0 and S = G
A
‘f:' with G ~ N(z,no), which is nothing but the canonical form for the problem
X of testing z;, = 0 in the MANOVA model. Now based on the notation introduced
- above, our probiem is to test o = 0 based on S in (5.7) and then the LRT-
. like test statistic, the tract test statistic and the LBI test statistic
:;; considered in KFK are respectively expressed as

:..\'
2 Ty = = ng Tog|1 - R (6.9)
It

{ Ty =ng trR (6.10)
- .1 -1,
% T3 ™ ng (M"2tR - Mt 100 Y

2 trs:ly! 2- L (6.11)
N - NaP1trSpa¥a0005Y,5} + pyp,(2- o t) :
N

l;‘.l
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where

3
1]

no-r (i=0,1,2) and t = rptr, - 2r. (6.12)

As has been shown in KFK, the power functions of these invariant tests
depend on (0,Z) only through the canonical correlations pf > ...20p

. s -1 -1 .
z or the characteristic roots of 212222221211. Here to consider the small-

small asymptotics for the power functions, first fix w12 ... 3(up > 0 with
2
wq # 0, which are chosen to be small later, and take

N} —

2
fj

=1 o
= ﬁa(uj (J-l,...,pz) (6.13)

1
where ﬁL is supposedly small. This implies 0 = (2u, /no)2 is eventually
0

small-small. Further let

§=wy * ... +mp2 = tro (6.14)
¢ = diagluqse.om, } (6.15)

1 Py
) f=ppyands =p; +p,+1. (6.16)

Then from the results in KFK, the asymptotic power functions of the tests
based on Ti's in (5.9), (5.10) and (5.11) under the local alternative {pj}

in (5.13) (as n0+m) are given by

P(T, > x;) = B(x;8) + - "o 230 23 spagy (Xy:6) *+0(ngH), (6.17)

(i=1,2,3) where Gk(x:d) =1 - Gk(x:s), Gk(x:s) is the distribution function

of X2 distribution with degrees of freedom k and noncentrality parameter §,
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1 1 1 1 2
a,. =L gs + 1 f(tetrkk) - ts
11 * % 2
A7, = (t+trKK.)6 + 2tr¢2 Q4 = - tr¢2 a;, =0
12 * 713 > 714
a, =-Les oL og(tatrkk’) - (trkK )5 - trod
20 4 2
a,, =4 s + 1 f(ertrkk’) - ts
21 2 2
d,, = - 1 fs + (s+t+trKK')6 + 2tr¢2
22 4
a = - 8§ a = - tr@z
23 ? 24
21 1 ! ' 2
a0 = - 7 fs - 3 ftrkKk - (trKK )6 - tro
_1 1 !
a31 =3 fs + 5 ftrkk
- ! 2
a3, = - fs + (s+trkK )s + 2tre
a = -s8§ and a = - tr@2
33 34 *

Note that z§=o aij =0 (i=1,2,3). To evaluate the power functions in (6.17)
further, let gf(x:a) be the pdf of Gf(xzs) and Tet G (x) = G,(x:0) and

gf(x) = gf(x:O). Then it is easy to see that

:; §f+2(x:6) = 2qf+2(x:5) + Ef(x:é) (6.18)

L"J

E{i Gepn(X) = xg(x)/f (6.19)
Belx+ £:6) = Belx:6) - £ g(x:6) + oim™?). (6.20)

b
[

L.' *
o
o
L
n
'— »
A
V.
v
r’.-.
LI
ﬁ

Using (6.18), the power functions are evaluated as
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=
b 7
{ P(Ti > ) G (x :8) + — g Zia1 bugﬂ_z‘](x :8) + 0(n0 )  (6.21)
where
byy = % fs + F(t+trkK ) + 2(trkK )6 + 2tro’
by, = 2(t+trkK )s + 2tre?
b, = - 2tre2, b,, = 0
13 ’ 14
1 ! ! 2
b21 =3 fs + f(t+trkK ) + 2(trKK )§ + 2tro
b,, = - 1 fs + 2(t+trKK')6 + 2t1r~<1>2
22 2
b,, = - 256 - 2tre2, b,, = - 2tred
23 , ’ 24
bay = 1 Fs + £ trkK + 2(trkK )§ + 2trel
31 2
b,, = - 1 fs + 2(trKK')5 + 2tr¢2
32 H
_ 2 L orrs2
b33 = - 256 - 2tro-, b34 = - 2tro-.
Using (6.21) and (6.19), under the null hypothesis § = 0
= P(T; > x;[Hg) = Ge(x;) - 109f(" ) + 0(n 2) (6.22)
3 (i=1,2,3) where
4,.,"' [ - 1 I
e by = - X, (4 sHt+trRK - sperir) = - x,C
X 20 2'2 2(f+2)’ - 2%2 (6.23)
'_: ~ 1 ] SX3
- b30 s - X3('2- s+trkK - m) = - X3C3
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From (6.20)(or Hill and Davis formula) we obtain with u in Gf(u) = g

- 1 (=2
X; S U - b1.0 + O\n0 ) (6.24)

i 0
where bi0 = - uCi with Ci in (6.23). Hence using (6.20) and (6.24), we
obtain the following theorem.

Theorem 6.1. Let n(¢1,¢) be the power function of the test ¢ of size

o with critical region T, > x,(i=1,2,3). Then for u satisfying Gf(u) = q

and for 6 small, it is evaluated as

n(05,0) = Bluzs) + 515 Hi(8)gg(u) + 0(n?)(1=1,2,3)  (6.25)

where
Ho(8) =Ciq6 + Cind® + c.otre? + 0(n22)(i=1,2,3) (6.26)
i i1 i2 i3 0 165 .
2
- - _2u ' su
€11 = €1 = €31 = F UK - ey
Coo= = 28 pekk 4 (s+2trKK') u? - :
12 f F(F+2) - F(F+2)(F+0)
o4
2su
Chp = Cpp = Copy #+
22 732 12 7 (442)0(£44)(F+6)
Co = 2u + 2u2 - 2u3 and
13 ~ F T T(f+2) T F(fF2)(F+0)
4
- o 2u
€23 7 €33 7 13 ° TR (FAAI(TF

Proof. Using (6.20) and (6.24), the power functions in (6.21) are

directly shown to be equal to those in (6.25) after some algebra, where

-$

= @ k 1 -
gf+3J(U 5) e 2k=0(5 /k-)gf+2j+2k(u) and gf+2(u) = ugf(u)/f were used.
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P
In the expression (6.25), 6 = 2151“1 has been chosen to be small. That
is, the power functions were first asymptotically expanded in the orders of
~* were asymptot-

0
ically expanded in the orders of Gk (k=0,1,...) since the terms of order ng

nak(k=0,1,2...), and then for § small the terms of order n

are common to all the tests, i.e., Gf(uzs). From this expression, the local
behaviors of the power functions are compared as follows.

Theorem 6.2, For the tests ¢i’ it follows that with § = tre¢

(1) lim Vim noiw(¢j,¢) - n(¢,,0)1/8 = 0 (§=2,3)

&+0 ng*

(2) Tim Vim ngln(s500) = wle1.01/6% = a(6)(4=2,3)

§+0 no*m
and

-

(3) Tim Tin_ nglr(3,9) - n(0,,0)1/6% = 0
> no-)-oo

where a(3) = [2u4gf(u)/f(f+2)2(f+4)(f+6)]y(tb) with
V() = (py?pp*1) = (pypy#2) Tim [tro’/(ere)’] (6.27)

Proof. Immediate from Theorem 6.1.
Now (1) implies that in terms of power all the three tests are asymptotically
equivalent up to o(nal) and 0(8). The asymptotic difference between the LBI

test ¢, (or the trace test ¢2) and the LRT-1ike test ¢, appears in the term

i:; of o(nal) and 0(62) as is shown in (2). Setting t = lim[trézl(tr¢)2], from
E&S (2), if v(e) > 0, or equivalently (p +p,+1)/(p;p,*2) S*g- the LBI test is
Eé; asymptotically better up to o(nal) and 0(62) than the LRT-Tike test, while if
EEE y(¢) < 0, the LRT-1ike test is asymptotically better. Since tro? = me and
%5%5 tro = Iw;, = §, the inequality

oy

il ped < (20,12 < pylml]
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follows from wg > 0 and Schwartz's inequality. This implies

L <r = tim tro¥/rtre1? < 1 (6.28)
P2 §+0

The equality in the first of (6.28) holds if and only if W Twy T ... 0w Wp, 2
2
while the equality in the second inequality holds if and only if Wy = ... =

wpz = 0 since w >uw,y > ... 3“’p23 0. On the other hand,
1 .. .
"F; < To z (p1+p2+1)/(p1p2+1) <1

since p; > p, > 0. Hence both the cases 1> t > , and Ty > T > 1/p, can
occur. The above observation will show that the closer t is to 1, the more
concentrated “i's are around W = e =‘”p2’ while the closer t is to 1/p2,
the more spread mi's are.

Next, we consider the small-small asymptotic comparison between the LRT
and the Pillai test of independence in the MANOVA model. As has been pointed
out, the problem of testing independence in the MANOVA model is included as
a special case of our problem with X; = X,. In case X; = X,, ii = 0 in (6.4)

so that S = G in (6.7), K = 0 in (6.8), n = in (6.12), and T

2 = Mo 2= T3

in (6.9) and (6.11). However this does not cause any changes in the results of
Theorem 6.1 and 6.2 except for the slight changes of the coefficients cij's in
Theorem 6.1, That is, by setting K = 0 in 11 and Cqps the results in Theorem
6.1 holds as it is, while Theorem 6.1 is effective whether or not X1 = X2.

Corollary 6.1. For testing independence in the MANOVA model with X1 = XZ’

all the results in Theorem 6.1 hold. If 74 > r(z_l/pz), Pillai's test, which
is LBI for fixed Nge is asymptotically better up to o(nal) and 0(62) than the
LRT while if 1 >t > 1

0° the LRT is asymptotically better.
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7. REMARKS

5 In this section, we first consider Problem [IV]:e12 = 0 and 81, = 0.
. For this problem, it is easy to see that a canonical form of the model is

also given by the model in (4.2) where the joint hypothesis 89 = 0, 8y = 0

§ and Zyp = 0 in Problem [II] was tested, and the hypothesii gererb:comes nyp = 0
¥ and nyy = 0. Further, the same group 6 = Gz(pl)xGZ(pz)xR 1",p 272 acting on

'_ (W,S) as in (4.5) leaves this problem. Hence the class of invariant tests in
é; Problem [II] is exactly the same as the class af invariant test in Problem [IV]
f we are presently considering. This implies that the power function of an

j invariant test in Problem [IV] is also a function of @, £12 and £01 in (4.6).
E§ However, under the null hypothesis 812 © 0 and €1 = 0, it still depends on

;{ Q because @ may not be zero in Problem [IV]. Therefore in general an
.- invariant test in the present problem is not similar. In fact, this follows

from the fact that the group does not act transitively on the parameter space
[}

of the null hypothesis. This is true even in the case X1X2 = 0 where the

group is enlarged to & =.D(r1)x(Xr2)xG as in (). For example, suppose we

construct such statistics as

Ly = 1Sp01/1Sgp + WyMypl and Ly =[Sy [/]Syq + Wy | (7.1)

Y r ~ g 5
PSR

for Mo = 0 and Nyp = 0 respectively analogously to (4.8), or

.
Yy

! -1, ' 1!
= tri, ,S,.W and L, = trW,,S,W

Lo 12°22%12 3 21511%21°

But here L2 and L3 (or Lé and L;) are correlated under the mull hypothesis so

P

R £~ P

. ] ) . .
}: that any test combining L2 and L3 (or L2 and L3) is not similar unless one of
;g the two statistics is completely ignored. Because of the non-similarity
)
-
i
| '.,:
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7 . ot
(PR




Y,

I
[AEAE RS G W
A

TrTo
ot

iz 3 XD
Ao X ¥
R
PR 2D Sl A
LA TR

.

s
.-
e
P
-~

]
,“' -,
.

v

e
-.'f‘t‘:t
ot
PR T

e ]
N
K

>

gy

44

feature of the problem we leave it here.

One might use a non-similar test

by combining L2 and L3 in (7.1) in such a way as L2L3 or might test the two

hypothesis separately. It is noted that an explicit form of the LRT for the

present problem is difficult to derive.
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