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NOMENCLATURE

a length of delamination

h thickness of delaminations

11 distance of delamination from left end of the plate

t thickness of the plate

L length of the plate

H =t - h

=a/L

Th/t

a ij, Cj constants

Axx, Cxx axial stretching stiffness

Bxx coefficient of coupling between bending and stretching

Dxx axial bending stiffness

Qxx axial stiffness of single layer

Exx, Eyy, Vxy material constants

Pi axial forces

i = -Pi applied compressive forces

C.l

k2  
T

B 2

(Dxx - r i
xx

M i  bending moments

Nxx stress resultant

V i  shear forces

ui in-plane displacements

( ii

.-.r °r.-°.-r *., ---..........-..................................... ".......""..."..".':"" ''r :""r °-'



wi  transverse displacements

G energy release rate

L 4

xx

G* critical value of G

_, * L4

=4
Q x t

)P Primary state parameters

)a additional state parameters

0

6

I!

iii



SUMMARY

This report summarizes the first year work under the general heading Of

"Effect of Local Material Imperfections on the Buckling Behavior of

Composite Structural Elements".

It describes, through the introduction, two important areas: one of

delamination buckling and growth and one of the holes and foreign

inclusions.

In the subsequent sections, the important subject of delamination

buckling and delamination growth is presented with sufficient detail. The

geometries considered are flat laminates and the emphasis is to establish

the load carrying capability (damage tolerance) of the laminate. It is

clearly shown that two important parameter govern the behavior of the

delaminated (damaged) laminate: the size of the delamination and its

position (especially relative to its distance from the surface). Depending

on these two parameters the damage tolerance of the laminate is either

governed by buckling or by the fracture toughness of the material

(delamination growth). Finally, the second year effort is described. This

includes the analysis of delaminated cylindrical shells under various load

conditions.

(
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I. INTRODUCTION

The constant demand for lighter and more efficient structural

configurations has led the structural engineer to the use of new man-made

materials. At the same time this demand forced upon him very sophisticated

methods of testing, analysis and design, as well ac of fabrication and

manufacturing. The recent explosive progress in producing and using

composite materials has pointed towards the clear possibility of man

creating specific materials for specific missions. At the same time it has

been realized that some severe needs are created (related to this effort)

namely (i) the complete understanding of the behavior of composite

materials and what influences this behavior, (ii) the establishment of

design criteria upon which proper use of composites rests, and (iii) the

training of engineers in the area of composite structures. In all three

items, it is important to recognize that, with the advent of composite

media, certain new material imperfections, can be found in composite

structures as well as the better known imperfections, that one finds in

metallic structures. Thus, broken fibers, delaminated regions, cracks in

the matrix material as well as holes, foreign inclusions and small voids

constitute material and structural imperfections that do exist in composite

structures.

1.1 Delamination Buckling and Growth (Flat Plates)

One of the most common failure modes in composite materials is

delamination.

Delamination is developed as a result of imperfections in the

production technology or due to the effect of certain factors during the

operational life of the laminate, such as impact by foreign objects. The

presence of delamination in a laminated composite material may cause local



buckling and reduction in the over-all stiffness of the structure, which

may lead to early failure.

Problems of aelamination growth in composites have recieved attention

in recent years.

A double cantilever beam (D C B) specimen loaded in compression was

used by Chow & Ngan (1) to study the effect of buckling on crack

propagation. Initial geometric imperfection was made in the specimen in

order to obtain crack propagation at loads below the buckling load of the

perfect column. Chai (2) carried out an experimental program to determine

the damage propagation mechanisms of a composite panel (graphite/epoxy)4..
under simultaneous compressive in-plane loading and low-velocity transverse

impact. Also, he presented an analytical (one-dimensional) model for

delamination buckling and damage growth. For a homogeneous isotropic plate

under a compressive displacement-controlled loading, he obtained a closed

form expression for the energy release rate for the case of a thin film

model (the buckling of the delaminated layer assumed to produce a

negligible bending deformation in the main body of the laminate). A more

general model, where the delamination thickness was of the same order of

magnitude as the other thicknesses involved, was also considered.

Whitcomo (3) presented an approximate analysis for a symmetric

through-width delamination of a unidirectional graphite/epoxy bonded to an

aluminum bar. The buckled region was assumed to havE zero slope at both

ends. For the case of short and thick delaminated regions, the rotations

at the ends cannot be neglected, hence he accounted for the rotations by

considering a modified delaminatin length (effective length) which he

( obtained through a finite element solution of the postbuckling problem.

. ' i . . ,,-2



A finite element stress analysis was developed (4) to study the

postbuckling behavior. The stress distribution and strain energy release

rate were calculated for various delamination lengths, delamination depths,

applied loads and lateral deflections. A few specimens, consisting of

unidirectional graphite/epoxy bonded to aluminum, were fatigue-tested to

obtain delamination growth data. Yin and Wang (5) derived a simple

expression for the energy release rate associated with the growth of a

general one-dimensional delamination. First, a continuous stress field

produced by a certain subsystem of forces and moments was eliminated, then

the energy release rate associated with the remaining system of forces and

moments was evaluated by means of the path-independent J-integral. Also,

they (5) studied the possibilit of cracks branching off to neighboring

interlaminar faces and the condition f6r coalescing of multiple parallel

delaminations into a single layer.

A two-dimensional model, consisting of an internal rectangular

delamination with initial displacement imperfection in the thinner portion,

was proposed by Konishi (6). A test program was carried on a hybrid

specimen, boron/graphite/epoxy covers, and graphite/epoxy substructure.

The effect of static and cyclic loading on delamination growth was studied.

(Moreover, the effects of temperature and moisture were taken into

consideration.

The case of a circular homogeneous isotropic plate with a concentric

penny-shaped delaminatin subject to a radial compressive loading was

addressed in refs. (7-9). Based on an asymptotic analysis of the

postbuckling behavior of the delaminate layers, Bottega and Maewal (8)

considered the case of symmetric split, where the delaminatin assumed to

exist and grow in the mid-plane of the laminate. Considering

3



time-dependent loading and taking into account the inertia of the

delaminated layers, Bottega and Maewal (9) examined the dynamics of the

growth of penny-shaped delamination in a circular plate. The load applied

was in the form of a radial compressive load and a distributed transverse

tensile pulse. Using Hamilton's principle the equations of motion and the

corresponding growth laws were derived. Two models were studied by Yin (7)

concerning the delamination buckling of a penny-shaped delamination, the

thin film model and the symmetric split model. The energy release rate was

obtained for both models (7) by means of the M-integral.

Using finite element and Rayleigh-Ritz methods Shivakumar and Whitcomb

(10) predicted the buckling behavior of an elliptic delamination embedded

near the surface of a thick quasi-isotropic laminate. The laminate was

symmetric made of graphite/epoxy laminae. The results obtained by using

Rayleigh Ritz analysis showed good agreement with those obtained by using

finite element methods, except for highly anisotropic sublaminates.

The present work deals primarily with the question of delamination

* buckling and growth and how the presence of the delamination affeets the

global load carrying capacity of the system. A one-dimensional model is

presented in order to predict (a) delamination buckling loads of across the

Cwidth delaminated, axially loaded laminated plate and (b) the ultimate

load-carrying capability of above geometry, when delamination growth takes

place. The model is employed to predict critical loads for delaminated

wide columns with both simply supported and clamped ends. The effects of

delamination position, size and thickness on the critical loads are studied

in detail for both sets of boundary conditions. Results are obtained for

delaminated isotropic plates and for plates made up of special type of

symmetric cross-ply laminates. The results reveal that for certain

4



geometries the buckling load can serve as a measure of the load carrying

capacity of the delaminated configuration. In other cases, the buckling

load is very small and delamination growth is strong possibility, depending

on the toughness of the material. Also, the present model can be used to

study the effect of the presence of coupling between bending and stretching

on delamination growth. In this aspect, a delaminated plate in the form of

unsymmetric cross-ply laminate is studied.

1.2 Effect of Holes and Foreign Inclusions on Buckling

The effect of small cutouts of various shapes on the response of

elastc shells has received great attention. Experimental studies have

shown that holes could cause a severe reduction in the buckling loads of

shells.

Based ona two-dimensional finite difference scheme, Brogan and Almroth

(11) presented a nonlinear analysis for cylindrical shells with

rectangular cutouts. A modified Newton method was used (11) to reduce the

computational time. Also, simple experiments were performed (11) in order

0 to verify the computational scheme and satisfactory agreement between the

theory and test were obtained. A finite element analysis of a cylindrical

shell with reinforced circular opening was presented by Meller and Bushnell

(12). The cylindrical shell was ring-stiffened and made of steel, and

axially compressed. The effect of geometric imperfection was included (12).

At the same time, a similar work to that done by Mellar was carried out by

Baker and Bennett (13). They (13) tested a ring-stiffened cylindrical

shell, reinforced with circular holes under the action of unsymmetric axial

loading. The effect of hole diameter on the buckling load was reported

(13). Also, they (13) took into consideration when the penetrations

5
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(holes) were cutting no ring stiffeners, and cutting one, two and three

ring-stiffeners.

As far as the effect of small holes on composite structure is

concerned, an experimental drogram was carried out by Byers (14) on a

damaged graphite/polymer laminate. A controlled damage in the form of

circular holes and simulated delamination were introduced into the

composite specimens (14), which were subjected to static compression and
0

cyclic compression load. Four different types of graphite/polymer were

tested to evaluate the damage tolerance of each type. In some cases the

compression strength of the damaged specimens reduced to 40% of, the

compression strength of the undamaged specimens.

Another material imperfection is the rigid inclusion (small). The

effect of rigid inclusions on the stress field of the medium in the

neighborhood of the inclusion has received (limited) attention in the past

25 years [15-19]. As far as these authors know, the effect of rigid

inclusions on the buckling characteristics of the system (that contains the

rigid inclusion) has not been studied.

1.3 Future Work

The problem of buckling of delaminated cylindrical shell. has not

received the deserved attention. Very few investigations have been carried

out in this area. Kulkarni and Frederic (20) used a "branched integration"

technique to solve the problem of buckling of two layered cylindrical

shell, partially debonded, subjected to axial compression. They (20)

considered the case where the delamination originates at the boundary.

Results were obtained for different lengths of debonding and inner to outer

layer thickness ratios. A significant decrease in the critical load was

observed. The buckling of stiffened circular cylindrical shells, with two

6



unbonded orthotropic layers, was reported by Jones (21). Jones (21)

assumed that the layers did not separate during buckling, i.e. the

deformation of both layers were assumed to be the same. Also, he examined

the case where one of the two unbonded orthotropic layers was

circumferentially cracked. His results for a cylindrical shell made of

aluminum with ablative outer layer subjected to hydrostatic pressure showed

that the ablative layer had to be increased by 50% in thickness in the

0 damaged (unbonded) cylindrical shell in order to obtain the same buckling

loads of the perfect cylindrical shell. Troshin (22) examined the effect

of longitudinal delamination in a laminar cylindrical shell in the critical

external pressure. The delamination was assumed to extend over the entire

length of the shell. He studied the effect of the length and position of

the delamination over the shell thickness on the critical external

* pressure.

It is intended to extend the one-dimensional model of sectin (I) to a

two-dimensional model to investigate and study the effect of

* circumferential delamination on the buckling loads of circular cylindrical

shells subject to compressive loading. Other delamination shapes and loads

will also be considered.

C!
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II. MATHEMATICAL FORMULATION

II.1 Description of the Problem

A one-dimensional modelling of the laminated plate is employed. This

is similar to the one used in Ref. 3.

Delamination exists and grows (if it does) along a plane parallel to

the reference plane. This simplified modelling is employed in order to

understand better and pay more attention to the physical behavior, rather

than get involved (and lost) in a more complex model with several

additional parameters and a considerably more difficult solution scheme.

In accordance with this philosophy, it is also assumed that the

delamination exists before the compressive loading is applied. The

location and length (size) of the delamination is arbitrary and the ends of

the plate are either hinged or clamped (see Fig. 1). Note that, because of

the one-dimensional modelling, the sides of the plate are free. Finally,

it is assumed that the delamination separates the column (or plate) into

four regions, and each one of these regions has such dimensions (lengths

and thicknesses) that Euler-Bernoulli beam theory is applicable (this

assumption may also be removed by employing more accurate theories for

small length to thickness ratios).

The three axes of orthotropy are parallel to the reference frame x,y,z.

The natural plane of the plate lies on the xy-plane. The plate is of unit

width and is subjected to a uniform compressive load, P, along the

supported edges. A layer of uniform but arbitrary thickness h and of

length a is delaminated (see Fig. 1). The delamination extends across the

entire width of the plate (one-dimensional modelling). Note from Fig. 1

(that the delamination divides the plate (column) into four regions, 1-4.

The coordinate system is such that x is measured from the left end.

8
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Moreover, ui and w1  i 1,2,3,4) denote the in-plane and transverse

displacements of material poins on the midplane of each region (each part).

For example, w3 is the transverse displacement of material points on the

plane h/2 units from the top surface (region 3), while w2 is the transverse

displacement of material points on the plane H/2 units from the bottom

surface (region 2). Furthermore, note that because of the Euler-Bernoulli

assumptions wi(x) characterizes the transverse displacement of every

material point in region I and position x. Similarly, the inplane

displacement, ui(x,zi), of every material point is given by

where zi is measured from the midsurface of each region and the comma

denotes differentiation with respect to the index that follows.

0 11.2 Delamination Buckling

The delaminated plate (wide column) is assumed to be:

(a) homogeneous and, at most, orthotrople or

(b) made up of special type of symmetric cross-ply laminates; such

that the prebuckling state is a membrane one.

The necessary equations, including kinematic relations, constitutive

relations, relations between loads and moments on one side and kinematic

parameters on the other, and equilibrium equations, are given below:

0

00

&KXd LI. XI, c ,. . (3)
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V. ,, ( o6)

where

Pi axial forces

Mi bending moments

Vi shearing force

Note that: for our problem (unit width plate)

/

I ° I

I! . =( ,F ~

where

11
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00
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The boundary conditions, both in-plane and transverse and the

continuity conditions (kinematic and internal loads) are also listed below:

In-Plane Boundary Conditions:

1,t X: o L,=o at x= (12)
Transverse Boundary Conditions:

* (a) Simple Suppports,

at x - 0: wl = 0 and /1=J X) - 0 (134)
at x = L: w4 = 0 and W 0

C (b) Clamped Supports

at x = 0: wl = 0 and (3 =0)

at x - L: w4 = 0 and 
W IX 0U 

b

4 Kinematic Continuity Conditions

at Xzj

IU (14 a)
12
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"4 2

4 2

<~W W. -z =
- +W, +W, k, 4s1

Continuity in Moments and Forces

at~ Y= /,

0~~ ~~ 2i,//f~/~ _/ h 0
j4, 1/+ V2 V (15a)

- .+g +P_-
1 4+4 +I b.
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where M i , V i and Pi can be expressed in terms of the displacement

gradients, through Eqs. (2) to (7).

11.2.1 Primary (Membrane) State Solution

As the compressive load P is applied (quasi) statically, the plate

remains flat and a primary state solution is characterized by

P

an V( P- (16e)

where Ai and Bi are arbitrary constants.

Use of the boundary and continuity conditions leads to complete

C
knowledge of the primary state, or

P
S0 I,2.j1.

P p

and

C- _j P

P

/'P=o

014

J."-- ..-.

... ... .. ... .. .- .. ... ... .. ... .. ... .. ... ..



11.2.2 Buckling Equations

The buckling equations are derived b

method (23 - 2 5 ), based on the concept of the e

equilibrium position at a bifurcation point

required steps are as follows: start with the

proper boundary and interior continuity con(

purturb them (from the primary state) by allo

admissable changes in the displacement functior

at a point at which an adjacent equilibrium pa

point), and retain first-order terms in the ac

resulting linear ordinary differential eqtiations a

The corresponding boundary and continuity condi

pururbation technique.

The following expressions are substituted in e

* ,: L,. W ,",.= L,.

I ? I

C/

where the super "a" parameters denote the small

a acorrespond to the admissible variationw 1 and ui).

The buckling equations are:

)P x 0

15
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The related conditions are

In-Plane Boundary Conditions

a O o-t x L:
tit =e = a=o (23)

Transverse Boundary Conditions

(a) Simple Supports

at xo W, 0  Ofa

at X=I W, o 0W,, It =

(b) Clamped Supports

X~Io:ai =0 W- "'i,, A =0* ' /: L 4 = (24b}W4 /4/)f

Kinematic Continuity Conditions

I, Z ",x 2.

i, 14//,

46

a (25 b)
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Continuity in Moments and Forces

a 4

* at x~-4a

- 4 < = (6bP/'

S--f 't + V

T.2.3 Solution of Buckling Equations

The solution to the buckling equations can be written as

W u,. q *x+6k (+saJ

I

> k.(27b)

are velk9 rIS (/S)

17
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Note that, since the admissible variations in the displacement

components can be made as small as one wishes, the reference surface strain

can be linearized, or (see Eq. (2)).

Thus, the expressions for the internal forces and moments become (see

Eqs. (3-5).

'W.A-* 4-,N~X F ,14

Moreover, the solution to the buckling equations, Eqs. (27), requires

knowledge of 24 constants (Cil , Ci2, aij, i = 1,2,3,4 and j = 1,2,3,4).

* There exist 24 boundary and continuity conditions, which are homogeneous in

ui, wi and their space-derivatives. These consist of two in-plane boundary

conditions, Eqs. (23), four transverse boundary conditions, either Eqs.

C(24a) or Eqs. (24b), twelve kinematic continuity conditions, Eqs. (25a) and

(25b), and six continuity conditions in moments and forces, Eqs. (26a) and

(26b). Their number is 24 also.

Use of the boundary conditions yields a system of linear, homogeneous,

algebraic equations in Ci1 , Ci 2 and aij. For a nontrivial solution to

exist the determinant of the coefficients must vanish. The determinant

contains geometric parameters and the applied load P, because of the

P
presence of Pi [see Eqs. (18)].

18



Before proceeding with the description and actual solution of the0
determinant, certain non-dimensionalized parameters are introduced. These

are

- a

'Cr
* Per- .

p r I- L 4for S-C

€ / 7r'D,,,, or C-C (°

L 2

td'

* a.

- 'J- I. 4,, ,, (31)

219

19



Note: for the considered case, where all four regions (plates) are

symmetric w.r.t. their mid-reference planes, the following relations holds:

Cc

CX
Aelee CY

ki'ce ~1 kj=,.jk, ~j k 4 = D41 k, (2

where

DI = 4) piy

241

*, D41 l= I

Now, we can write the following expressions for the kij's

*k

(3(z

le - DrYJ 3 , _

Moreover, the nondimenslonalized coefficients aij ' are defined as

20



-:L 7--. - . -7W - -

* aj-- d'j /-ki ',,,

6(ij~ L1)/ 71* ,, a,. I/6 ~io,,,4 (g6b)

In terms of the new non-dimensionalized quantities, the system of

homogeneous, linear algebraic equations which govern the buckling of the

delaminated plate, could be written as:

where [A] is a twenty by twenty matrix and {X} a one by twenty (column)

matrix.

For a nontrivial solution to exist for the system of Eqs. (37), the (g)

determinant of the coefficients must vanish (see Eq. 39). The lowest

eigenvalue (T) gives the value of the critical load. Note that the

elements of the determinant in Eq. (39) contain the geometric parameters h,

. and a as well as the material parameters, Exx, Eyy, vxy, the effect of

stacking sequence included in Dxx;, load parameter P.

1.3 Delamination Growth

Delamination of a composite laminate reduces the over-all stiffness

and thereby lowers the buckling load of the laminate. The latter may or
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may not be a useful indication of the load-carrying capacity of the

delaminated plate. In some cases it may be significantly smaller than the

elastic collapse load in the postbuckling regime, especially if the

* laminate contains a relatively long and thin delamination. In order to

determine the ultimate load capacity, and the possibility of spreading of

the damaged (delaminated) area to the undamaged area, the post-buckling

solution is employed. Delamination growth (if it occurs) is assumed to

occur in its own plane and, it is governed by the Griffith fracture

criterion.

If growth takes place, it is important to examine whether the growth

could be arrested at a later stage or not. The energy release rate has

been used to determine whether the delamination growth is stable or

unstable. The path-independent J-integral (27) has been used to obtain the

energy release rate.

Also, the present model will be used to study the effect of the

presence of coupling between bending and stretching on delamination growth.

In this aspect, a delaminated plate in the form of unsymmetric crossply

laminate is studied. Note that for such geometry there is coupling between

bending and stretching regardless o the level of the applied load, and

therefore the possibility of bifurcational buckling does not exist.

111.3.1 Mathematical Formulation of Delamination Growth

In deriving the equations governing the delamination growth, the case

of symmetric delamination, where the delamination is located symmetrically

w.r.t. the two ends of the plate, will be considered. Also, a

clamped-clampled boundary condition is assumed. In the following analysis,

the case of plate strip will be considered (cy = 0). The model will handle

23

:.

"-. .. ++ -" - ., . .-.. . . . . . . . . . . . .., .. .. . . . . . .... . . . . . . ..u°. -. . , . . -, ,,° - ,.• ,, °°%°.° +" -o- - ° j . .. . . . . . . . .......-. ..... .. +°. J - .j " . . . . - •.. . . .. ° . . . . . . . .



both cases; the case for which the primary state is membrane one and the

case where there is a coupling between bending and stretching.

The stress resultants and bending moments are given by (26);

1 - B -D x(4o)

where for the plate strip

f ' °  o o]

0x1~f 0 0 4'

Note that for both the orthotropic plate and cross-ply laminate

O

41=,4 17 12 1 - (4.2)

The equilibrium equations for plate (i) reduces to:

ro pisto /1(43)

where

Substitution of the expression for Nxx and Mxx into the equilibrium

( equations, Eqs. (43,44) yields

24



w (46)
"XXXX ",.

xx
To obtain the in-plane displacement 

we have

-- ° =K i 'vXxi Ae 1x1)AxY

0 2 
(Y7

OI x,; T It4,.4 7

i.e.

( X +~$ Y 4;W

For each part of the four parts (plates) of the delaminated 
plate the

in-plane displacement and transverse 
displacement are given by:

U. [ j(2J- . .

,'o,,,., ,4xx .aja (4)

where

( /. ,25
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For symmetric delamination with clamped-damped boundary conditions, Eq.

(24b) could be simplified to:

V$x ( J (zi4[: C k1 -. k i? fok q -) os. .< . -z)1
Cs[os - o, ~ (9- 4

i The displacements Uj and W i (i - 1,2,3) are now given in terms of only

three unknowns A, K2 and K3, since K1 is given in terms of the applied load

P. To determine these three unknowns, three equations are required. The

* required equations are the continuity in forces and moments as well as

continuity in in-plane displacement.

- continuity in forces

- continuity in moments (see Fig. 2)

Using the expressions for M1, M2 & M3 gives
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Fig. 2 Applied Moments and Forces
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- ze

where

- continuity in In-plane displacement (see Fig. 2)
C.

Using Eqs. (49 & 58) resuls in:

-7-

Using Eq. (55), we have

28
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Solving Eqs. (53, 59, & 60) simultaneously, one can obtain the values of

P1 , P2 & P3 in terms of the applied load P. Also, once P1 , P2 and P 3 are

known, the unknown constant A could be obtained and hence, the displacement

functions are known for every level of the applied load P. Now, the

postbuckling solution is known and the next step is to establish a

delamination growth criterion.

11.3.2 ENERGY RELEASE RATE

* In the present work, it is assumed that delamination growth (if it

occurs) will take place in its own plane and is governed by the Griffith

fracture criterion. It is also important to find out whether this growth

is stable or unstable, in doing so, one has to calculate the energy release

rate (the energy required to produce a unit of new delamination).

In order to calculate the energy release rate, the path-independent

J-integral is used (27). The use of the J-integral beside being helpful inC

avoiding the calculation of stress singularities at the delamination tip,

is useful in the cases where plasticity effects are not negligible (28).

The J-integral is defined as:

where r is a closed contour around the crack tip.
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but Ey 0

G =j 7 f e (63)
where G is the energy release rate

but K

a_ -

where axi is the stress in the x-direction in lamina number k belongs to

regi-n (i).

The stress distribution is decompassed into two subsystems, as in Refs

(5,29), (a) a continuous stress field, which makes no constribution to the

J-integral and (b) a subsystem (2) which does. The subsystem (2)

contributions are:

Region (3) contributions

2.-

(-' L4/ Jxx

30



Note that the above integration is calculated at the cross section x - i.

a

+ (4yy- , + k -d '

Region (2) contribution

2/
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11.3.3 End Shortening and Delamination Opening

As we will see later, the knowledge of the end shorting and

delamination opening will help in some cases to find the load carrying

capacity of the system.

-'E,('I -- 
+_

* k'?AL i-2[,.k -u.n/ s#4s /,-.-,,,] t;

delamination opening -- (4-. ) w ( ) (7Zd)

A W= I - I

First the following non-dimensional parameters are introduced.

/7 - -- - -,,, o,
1 X~x 1  

xxv.

t GII

x.i.x -

., , ,. ' ax . I,3 2
4 32
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41 In terms of the above nondimensional parameters, the equations governing

the behavior, Eqs (53, 59, & 60) and growth Eq. (68) of the delaminated

plate can be summarized as:

_z. _- I 4 .. _ I7

54. K, Sit u (5
-k- -<-FJ#
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These three equations, Eqs. (78)-(80) are valid for any plate with

across the width (one-dimensional) delamination, provided that the

assumption of cylindrical bending deformation holds (Cey • 0).

I
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* III RESULTS AND DISCUSSION

The Georgia Tech high speed digital computer CDC-Cyber 70, Model 74-28

was employed for generating results. These results are presented both

* in tabular and graphical form.

III.1 Buckling Results

III.1.1 Orthotropic Plate

Results for buckling loads of a delaminated orthotropic plate are

generated.

Table 1 shows values of critical loads, 5, of a clamped configuration

with a symmetric delamination [see Eq. (30)], for several values of the

delamination length parameter, a, and of the delamination thickness

parameter, ;.

The last row gives the sum of the buckling loads of the two parts, if

the delamination extends through the entire length l = 1. This sum, 7, is

a measure of the load carrying capacity of the completely damaged

configuration

These results are also shown graphically- in Fig. 3. It is clearly

seen from these results, that as long as I h , buckling load is not

affected appreciably by the presence of the delaminatior. provided that the

delamination thickness is relatively small (7 < .2). For the same condition

of 1 1 h, the presence of the delamination becomes more pronounced as one

approaches a midthickness delamination ( - .5). Note that for this

extreme case, when -= - .5, For = .69 and For increases as a becomes

smaller and smaller. On the other hand, when > h the buckling load is

36
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Table 1. Buckling Loads for a Symmetric Delamination-Clamped Boundaries

h .02 .05 .10 .20 .30 .40 .50

.025 .6399889 .9999989 .9999996 .9999999 .9999999 .9999999 .9999999

.05 .1599975 .9949313 .9999824 .9999929 .9999949 .9999958 .9999960

.10 .0399994 .2499388 .9799200 .9997142 .9998254 .9998600 .9996683

.15 .0177775 .1110863 .4434620 .9965731 .9985213 .9988911 .9989777

.20 .0099999 .062471 .2495341 .9264435 .9923920 .9950435 .9955576

.25 .0063999 .0399923 .1597332 .6255729 .9661928 .9635314 .9d59276

.30 .0044444 .0277728 .1109427 .4371092 .8582246 .9543270 .9638297

.40 .0025000 .0152263 .0624213 .2470476 .5313834 •7883037 .8480737

.50 .0016000 .0099987 .0399587 .1585467 .3469048 .5675410 .6895626

.60 .0011111 .0069437 .0277551 .1103405 .2435310 .41238a4 .54114010

.70 .0008163 .0051017 .0203958 .0812210 .1803553 .3111042 .4309655

.80 .0006250 .0039061 .0156187 .0622944 .1390114 .2428107 .3514201

.90 .0004938 .0030865 .0123432 .0493028 .1104955 .1948719 .2923016

1.00 .0004000 .0025000 .0100000 .0400000 .0900000 .1600000 .2500000

7dam 9412000 .6572000 .7300000 . 5200000 .3700000 .2800000 .2500000
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Fig. 3 Effect of Symmetric Delamination on Buckling Loads of
Wide Column with Clamped Ends
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greatly affected and it drops drastically, especially for the smaller

values Of the delamination thickness.

A comparison of the buckling loads with the buckling load for the

completely damaged system (last number in each column) reveals certain

observations which suggest related conclusions. When S S h the values for

Pcr are higher than Pdam. This suggest that for these geometries the load

carrying capacity of the system is related to and measured by the buckling

load of the delaminated configuration. On the other hand, for a > h

buckling occurs at low values of the applied load. Then if the load is

further increased this may lead to delamination growth and the damaged area

may extend along the enire length of the system. This ;f course depends on

the fracture toughness of the material, but the implication is that Pdam is

a good lower bound for the load carrying capacity of the delaminated

• configuration. The problem of postbuckling behavior, delamination growth

and accurate estimation of the load carrying capacity of a delaminated

configuration is the subject of Part 111.2 of this report.

*• On Table 2, the value of the load in region 3 at the instant of

buckling is given for the same range of parameters, a and h, as on Table 1.

These results are also for the case of clamped supports. The values for

this region 3 load are nondimensionalized with respect to the critical load

of the region 3 geometry, as if its ends were clamped. This is done

primarily for finding the range of parameters 9 and h for which thin film

analysis holds [2]. Clearly, when p3 is close to unity, thin film analysis

is applicable and thus delamination growth can be treated by the simpler

analysis C2] developed for the case of thin film behavior. Thin film

behavior implies that region 3 only experiences buckling and postbuckling

deformations while the remaining of the plate remains undeformed. For

39
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Table 2. Region of Applicability of Thin Film Analysis for a Symmetric

Delaminated, Wide Column with Clamped Ends

.02 .05 .10 .20 .30 .40 .50

* .025 .9999827 .2499997 .0625000 .0156250 .0069444 .0039062 .0025000

.05 .9999845 .9949313 .2499956 .0625000 .0277776 .0156249 .010o000

.10 .9999855 .9997555 .9799200 .2499286 .1110917 .0624912 .0399947

.15 .9999863 .9997769 .9577894 .560572- . 496303 .1404691 .0899080

.20 .9999a71 .9997932 .9981364 .9264439 .4410631 .2487609 .1592892

.25 .9999881 .9998079 .9983327 .9774573 .6709672 .3841920 .2464812

.30 .9999889 .9998216 .9984847 .9834956 .85d2246 .536o9o .3469787

.40 .9999905 .9998483 .9987409 .9681904 .9446817 .7883037 .5427671

.50 .9999923 .9998741 .9989685 .9909166 .9636244 .6867828 .6895626

.60 .9999937 .9998995 .9991833 .9930647 .9741242 .9278740 .7792417

.70 .9999953 .9999261 °9993921 .9949577 .9819344 .9527566 .8446920

.80 -9999970 .9999503 -9995985 .9967103 .9883257 .9712427 .8996356

.90 .9999985 .9999750 .9997994 .9983807 .9944594 .9865390 .9502971

1.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
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Fig. 4 Region of Applicability of Thin Film Analysis for a Symmetric

Delaminated. Wide Column with Clamped Ends
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small values of h, say h .002, thin film is applicable for all values of

. As h increases, towards its maximum value of 0.5, the region of

applicability of thin film analysis is confined towards the high a-value

region. The results of Table 2 are presented graphically on Fig. 4.

Similary results are presented on Tables 3 and 4 and Figures 5 and 6

respectively for the case of simply supported ends. On Table 3, is

nondimensinalized with respect to the perfect geometry critical load for

simply supported ends. The values corresponding of Fdam (last row), are

the sum of the contributions of both parts acting independent of each other

and both being simply supported. This may be questionable, because a

better description of the completely damaged plate is needed. For example,

if, when the delamination extends along the entire length, the thin part is

lost (it becomes disconnected) then a better measure for 5dam would be

(i-1)3 rather than 'j3 + (i-R)3. It is also worth mentinoing here that the

values (P) corresponding to 1 = 1 (next to the last row) are calculated*

under the assumption that both parts (regions 3 and 2) have the same slope

at the boundaries.

The trends, observed in the case of clamped supports, are also

observed here but ehe regions seem to have shifted. For instance, on Table
C I it was observed that, as long as 9 S R, the buckling load was not

affected appreciably by the presence of the delamination, for relatively

small delamination thicknesses. Here on Table 3 this statement is also

true but a S h must be replaced by I S 2h, and so on.

So far results have been presented and discussed for the case of

symmetrically located delaminations [I - 0.5(1-a)].

( Next, results are presented on Tables 5, 6, 7 and 8 for the case for

which the delamination is asymmetrically located.
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Table 3. Buckling Loads for a Synmetric Delamination Simply Supported
Boundaries

•b .32 .35 .L. .20 . .40 .50

.6,25 -j; 9 ,j:a -J,' 99 l.XJLuJ 1.XO030 1.DOOO00 1.000000 1.00&)00

.05 .u599u7T3 .9999978 .9999992 .9999996 .9999997 .9999999 .9999999

.iL .15)9975 .9929014 .)9996:5 . 999u51 .9999897 .9999914 .9999919

.15 .0711099 .4445054 .9995550 .999vtH6 .999919,8 .9999542 .9999579

.20 -0599994 .2499288 .97227u9 .9994,u9 .)990506 .9911188 .999738

.25 .0255996 .i599562 .b576529 .9979552 .998bb52 .9991293 .9991691

.50 .0177775 .1110815 .4451:)42 .)952354 .9970554 .997736o .9979614

.40 .u09999b .0624836 .2495840 .9016445 .9851553 .9902270 .9912249

.50 .0084000 .0399897 .1596320 .6177569 .9402235 .9686058 .9729376

.60 -0044444 .0277707 .1108654 .4530717 .8149228 .9198068 .9543196

.70 .0032653 .0204030 .0814568 .3193488 .6484304 .8550811 .8703371

.60 .0025000 .0156210 .0623679 .2449950 .5117912 .7263620 .7867299

.90 .0019753 .0123426 .0492799 .1938276 .4105782 .6176623 .6966477

1.00 .001b0o .0099975 .0599176 .1571446 .5556255 .5228a32 .6109859

• .94120J0 .-572000 .7300000 .5200000 .3700000 .280b000 .2500000

i
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* Table 4 Region of Applicability of Thin Film Analysis for a Symmetric

Delaminated. Wide Column with Simply Supported Ends

.02 .05 .10 .2Q .30 .40 .50

.025 .3906251 .0625000 .0156250 .0039063 .0017361 .0009766 .0006250

0 .05 .9999810 .2499995 .0625000 .0156250 .0069444 .0039062 .0025000

.10. .9999834 .9929014 .2499913 .0624991 .0277775 .0156249 .0099999

.15 .9999836 .9996871 .5622497 .1406079 .0629500 .0351539 .0224986

.20 .9999838 .9997154 .9722769 .2498572 .1110723 .0624824 .0399895

.25 -9999839 .9997260 .9963014 .3898177 .1734176 .0975712 .0624493

.30 .9999840 .9997337 .9970970 .5586949 .2492638 .1403147 .0898165

.40 .9999841 .9997383 .9975360 .9016460 .4378460 .2475568 .1585960

.50 -9999842 .9997416 .9977000 .9652483 .6529328 .3783609 .2432344

.60 .9999843 .9997439 .9977883 .9744113 .6149228 .5173914 .3363550

.70 -9999643 .9997459 .9978456 .9780056 .8825858 .6393590 .4264652

.80 .9999843 .9997466 .9978860 .9799799 .9098510 .7263620 .5035072

.90 -9999843 .9997483 .9979178 .9812521 .9238010 .7817289 .5642846

1.00 -9999843 .9997483 .9979401 .9821539 .9322875 .8170050 .6109859
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Fig. 5 Effect of Symnetric Delamination on Buckling Loads of

Wide Column with Simnply Supported Ends.
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Table 5. Effect of Delamination Location on the Buckling Load

(Clamped Supports; a = .1)

9 .05 .1 .2 .5 .4 .0

.0 .2499536 .9606663 .9991479 .9)87055 .9980807 .9977440

.1 .2499509 .9b70979 .9958626 .9922549 .9879301 .9b56805

.2 .2499465 .997")624 .9938958 .9J84996 .9822217 .9790165

.3 .2499418 .9b6d065 .9958984 .9925842 .98242e .9861157

.45 .2499588 .979920U .9997142 .9998254 .9998600 .9998683

Table 6. Effect of Delamination Location on the Buckling Load

(Clamped Supports; a = .2)

2 n .05 .1 .2 .3 .4 .5

.0 .0624932 .2497486 .9327570 -9557411 .9247731 .9051069

.1 .0024907 .2496894 .9479818 .9142127 .8652345 .8405072

.2 .0624608 .2496161 .9455077 .9194764 .8767561 .855476

• .0624676 .2495566 .9509424 .96i5456 .9401638 .9277638

.4. .0624871 .2495341 .9264435 .9923920 .9950435 .9955576
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Table 7. Effect of Delamination Location on the Buckling Load

(Simply Supports; i - .1)

.0 .I .2 .3 .45

.05 .998639 .996576 .994855 .993624 .992901

.10 .999407 .999511 .999679 .999847 .999965

.20 .998517 .998790 .999232 .999674 .999985

.30 .997760 .997760 .998583 .999409 .999990

.40 .995823 .996598 .997849 .999106 .999991

.-50 .995113 .996020 .997483 .998954 .999992

Table 8. Effect of Delamination Location on the Buckling Load

(Simply Supports; 1 - .2)

.0 .1 .2 .3 .4

.05 .249936 .269933 .269931 .249929 .249929

.10 .988205 .981420 .976383 .973308 .972277

.20 .989043 .991885 .995416 .998312 .999429

.30 .979666 .985074 .991836 .997459 .999651

.40 .969003 .977209 .987545 .996274 .999719

.-50 .963667 .973241 .985342 .995645 .999737
I
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Tables 5 and 6 present results for the case of clamped supports, in

terms of buckling loads for various values of ;, and £1. The results on

Table 5 correspond to a - 0.1 and those on Table 6, to - 0.2. It is seen

from Table 5 and 6 that, as long as h 9 a, the buckling load is the

smallest, when the delamination is located symmetrically, with respect to

the midpoint of the wide column. On the other hand, when h > a the

buckling load is the smallest when the delamination is locatd in such a way

that it spans the quarter point of the wide column.

For the case of simply supported columns the results of Tables 7 and 8

reveal similar trends. For h < 5, the buckling load is the smallest when

the delamination is located symmetrically with respect to the midpoint of

the wide column. Finally, for h 9 a, the buckling load is the smallest,

when the delamination starts from the end of the wide column.

* Note that in some cases, for h > I - 0.2 and clamped boundary

conditions, effect of delamination on the buckling load is considerable.

From Table 6 one observes that for h - 0.5 Pmin - 0.841 (£i - 0.1) while

* Pmax ' 0.996 (11 - 0.4).

111.1.3 Symmetric Cross-ply Plates

Results for buckling loads of delaminated plates made up of

4 Graphlte/Epoxy have been obtained.

The orthotropic axes are alternately oriented at angles 0o and 900

with the structural axes.

The elastic constants typical of this material are:

where, T IT

EL is the tensile modulus in the filament direction (30 x 106 psi)

ET is the modulus in the transverse direction (.75 x 106 psi)
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Table 9. Buckling Loads for Symmetric Cross-Ply Laminates,

[0°/900 /00 1OT, with Clamped Ends

.1 .2 .3 04 .5

0.05 .9999666 .9999933 .9999951 .999995a .9999960

0.10 .9990517 .9997470 .9998327 .9998625 .9998705

0.15 .6294934 -9971932 .9985950 .9969176 .9989960

0.20 -.3544494 .9605042 .992bod5 .995175. ..9956418

0.25 .2269353 .6856117 .9695678 .9840387 .9662131

0.30 .1576354 .404679 .6756095 .9560119 .9646097

0-40 .Od07059 .2718917 .5517876 .7965493 .6556681

0.50 .0567913 .1745731 .3610403 .5774029 .6943155

0.60 .0394509 .1215207 .2536700 .4205562 .5460455

0.70 .02b9931 .0894789 .1679582 .3176146 .4354499

0.80 .0222044 .06a6417 .1449236 .2480524 .3554099

0.90 .0175493 .0543362 .1152281 .1991666 .2968545

1.00 .0142190 .0440911 .0938781 .1635797 .2531960
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Fig. 7 Effect of Symmetric Delamination on Buckling Loads of
Cross-Ply Laminates with Clamped Ends.
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Table 10. Buckling Loads for Symmetric Cross-ply Laminates,

1 [0°/902/0°
0iOT, with Clamped Ends

.1 .2 .3 -4 .5

0.05 .9999907 .9999937 .9999953 .9999960 .9999961

0.10 .9994218 .9997648 .9998374 .9998647 .9998721

0.15 .7516396 .9974912 .9986399 .9989348 .9990081

0.20 .4237520 .9714079 .9931818 .9952590 .9956966

0.25 .2713595 -7242170 .9714534 .9843584 .9863974

• Q.30 .1885120 .5089376 .8856250 .957065.3 .9651120

0.40. .1060935 .2882870 .5650983 .8017537 .8606837

0.50 .0679288 .1851633 .3703492 .5838284 .6974178

0.60 .0471911 .1289302 .2603643 .4259284 .5492680

0.70 .0346837 .0949420 .1929842 .3219117 .4384057

0.80 .0265641 .0728424 .1488349 .2515180 .3580450

0.90 .0209962 .0576684 .1183607 .2020089 .2992045

1.00 .0170128 .0468003 .0964461 .1659502 .2553130

(
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Table 11. Buckling Loads for Symmetric Cross-ply Laminates,

[00 /900/0 0 OT, with Clamped Ends

0

. .2 .3 .4 .5

* 0.05 .9999923 -999994u .9999953 .9999959 .9999961

0.10 .9995946 .9997816 .9998421 .9998666 .9998736

0.15 .a830985 .9977533 .9986659 .9989527 .9990209

0.20 .5003633 .9784464 .9934780 .9953480 .99575 6

0.25 .3205248 .7654852 .9732843 .9b46975 .9565968

0.30 .2226972 .5402340 .8954534 .9581666 .9656552

0.40 .1253515 .3064068 .5796544 .8072930 .8631029

0.50 .0802672 .1968816 .3806192 .5908523 .7008153

0.60 .0557673 .1371230 .2677667 .4318495 .5528164

* 0.70 .0409899 .1009933 .1965476 .3266621 .4416697

0.80 .0313961 .0774970 .1531672 .2553549 .3609600

0.90 .024171 .0613616 .12185322 .2051583 .3018072

1.00 .0201110 .0498036 .0992930 .1665782 .2576600
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Fig. 8 Effect of Stacking Sequence on Buckling Loads of Delauiinated
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GLT is the shear modulus (.375 x 106 psi)

VLT is Poisson's ratio

Results are generated for laminates with the stacking sequences,

[0o/90 0 /0]11OT, [0 0/ 9 0/0 0 ]10T. The effect of delamination length and

thickness on those buckling loads is studied. Note that [00 /9i0 °/O]10T

means that there is a stacking which consists of one thickness of 0° , i

* thicknesses of 900 and one thickness of 00, and repeated ten times.

Results obtained for symmetric cross-ply delaminated plates are

similar to those for the orthotropic plate.

Table 9 shows the values of the buckling loads, F, of a clamped

symmetric cross-ply with stacking sequence [00 /90 0/100 O10T, for several

values of the delamination length parameter g, and of the delamination

thickness prameter, h. The same results are shown graphically in Fig. 7.

The results show that for a relatively thin delaminatin (i S .2), the

presence of delamination has a negligible effect on the buckling load of

the delaminated plate, as long as 1 h. On the other hand, for the case

where > h the value of the buckling loads is greatly affected by the

presence of delamination, especially for plates with thin delamination.

Tables 10 and 11 show similar results for the same configuration but

with stacking sequence [00 /9 0 /00 ] and [0o/9%/00] respectively. The

results of Tables 9, 10 and 11 are compared graphically in Fig. 8, with the

results obtained previously for the orthotropic plate (Table 1) for

delaminatin thickness h -.1.

It is clear from Fig 8. that as the thickness of the 900 layers

increases w.r.t. the thickness of the 00 layers the value of the buckling

( load parameter becomes larger for the same delamination length and

thickness. On the other hand, we have to realize that the value of the
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Fig. 9 Effect of relative stiffness on the buckling load of symmetric

I cross-ply laminates.
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Table 12. Buckling Loads for Symmetric Cross-ply Laminates,

* [0°/902/00 1l0T' with Simply Supports Ends.

.1 .2 .3 .4 .5

0.05 .9999995 .9999997 .9999998 .9999998 .9999998

0.10 .9999814 .9999873 .9999903 .9999917 .9999921

0.15 .9998244 .9998977 .9999250 .9999364 .9999396

0.20 .9986462 .9995297 .9996747 .9997290 .9997439

0.25 .9656249 .9963632 .9969669 .9991611 .9992122

* 0.30 .7493109 .9950259 .9972902 .9973754 .9980213

0.40 .4231350 .9511346 .9666541 .9906448 .9914956

0.50 .2710060 .7105996 .943680 .9701004 .9738030

0.60 .1862612 .5026573 .640b561 .9239711 .9364303

0.70 .1383413 .3715460 .6616561 .8435466 .8742498

0.80 .1059314 .2853457 .5420407 .7385384 .7923643

0.90 .083706d .225a895 .4362o42 .6313119 .7033758

1.00 .0678074 .1832116 .3572710 .5363347 .6181324
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Fig. 10 Effect of Symmetric Delamination on Buckling Loads of

Cross-Ply Laminates with Simply Supported Ends.
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buckling load parameter for each case is normalized w.r.t. the perfect

configuration.

The effect of relative value of transverse modulus (E2 2 ) to the

tensile modulus (E1 1 ) is studied. Fig. 9 illustrates this effect for the

case of a symmetric, delaminated, cross-ply plate with clamped-clamped

boundary condition for a delamination thickness parameter h - .1. The

considered cross-ply plate has stacking sequence [0/90/0110T. The results

show that when the 00 layers and 900 layers are interchanged, the buckling

load parameter drops drastically even for a < h. A similar result has been

obtained for a 10 0 /9 0 0 /00 ]10T cross-ply laminate with simply supported

boundary conditions. These results are presented on Table 12 and in Fig.

10. The results of this case are similar to those of the orthotropic plate

in general, but it is noticed that for relatively thin delamination (h -

* .1) the buckling load parameter for the cross-ply laminate is much higher

than that of the orthotropic plate. This difference becomes smaller as the

delamination thickness increases.

0 111..3 Conclusions

A simple model has been employed to study delamination buckling and

the effect of location, size, and thickness of delamination on the buckling

load. The simplicity of the model limits the applicability of the results

to the case for which each region of the four parts of the plate is

symmetric w.r.t its reference plane.

For these geometries (laminates) the results serve a different purpose.

They can be employed to relate the ultimate load carrying capacity of the

completely (throughout) damaged laminate to the allowable for the

delaminated laminate.

(
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A good application of the present analysis and results is in the

analysis of adhesive bonding of two similar materials [1].

111.2 Delamination Growth Results

First of all, before presenting any results, we are goint to

illustrate the growth mechanism of the delaminated laminate, let us

consider Fig. 11. Consider a material with critical fracture toughness *

and initial delamination length 'o . The load is increased quasistatically

to To, where the critical value of the energy release rate, I*, is reached.

As the delamination length extends by an amount A!, while the load is kept

constant, the figure shows that the available energy release rate

corresponding to the new delamination length a + Aa, exceeds the critical

value V, hence growth will take place. On the other hand, if the initial

delamination length is il, in this case an increase in the delamination

length All, will result in a decrease in the energy release rate,

consequently there will be no delamination growth as long as the load does

not changed (increased).

* 111.2.1 Orthotropic Plate:

Figures 12 to 14 contain three sets of curves showing the relations

between the non-dimensionalized eneryg-release rate, G - L4G/(Et5), and the

normalized delamination length a - a/L, under fixed axial load and

delamination thickness. The three figures correspond respectively to the

cases h - 0.2, 0.1 and 0.02. These values of the normalized thickness are

thought to be representative of relatively thick, a relatively thin, and an

extremely thin delamination. Each curve in these figures refers to a fixed

value of the normalized axial load P, and each curve is obtained from a

one-parameter family of numerical solutions of Eq. (75). In the case of

relatively long delaminations (g/I > 1), ' varies over a wide range of
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Fig. 12 Energy Release Rate for Orthotropic Plate
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values as changes. Hence the curves are plotted in a semi-logrithmic

diagram.

In a quasi-static process of delamination growth, the energy-release

rate 6 maintains a constant critical value V (the non-dimensionalized

fracture toughness).

Figures 12-14 show that if the fractue toughness is relatively small,

say Z* < 10-2 (for very thin delamination h = .02) and W < 10 - 1 (for i 9

.1), then the delamination growth is unstable, in general, although it may

become stable shortly before the state of complete delamination (9 = 1).

Hence, if Gd is small, delamination growth under a constant axial load P (a

dead load) is generally a catastrophic process. When a delaminated plate

buckles under an increasing axial load P, the postbuckling solution follows

a vertical path on the -i curves ( - constant) until the curve intersects

*• the horizontal path G = . The value of P at the intersecting point Is

the ultimate axial load capacity of the plate. Afterwards delamination

growth starts and proceeds catastrophically under a constant axial load.

* If the length of existing delamination is relatively short (i < i),

then G never attains the critical value G* and, consequently, delamination

growth does not occur. For such plates, the ultimate axial load capacity

is not governed by delamination growth, but is determined by its elastic

postbuckling behavior. The critical buckling load is a lower bound of

and a close estimate for, the ultimate axial load capacity.

If the fracture toughness is relatively large, say G > .3 (for very

thin delaminatin, h - .02) and V > 1. (for a E .1), the figures show that

all curves lie above the curve corresponding to Pdam ( dam ; 3

Consequently, if ; is small and3 is large (as given above), the critical(

(buckling) load of a completely delaminated plate is a close lower bound of
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Fig. 15 Energy Release Rate for Symmetric Cross-ply Laminates
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the ultimate load carrying capacity of the laminate. If the fracture

toughness lies between these two extreme cases, rel tively high and

relatively low, then the delamination growth and the load carrying capacity

will depend upon the value of the fracture toughness * as well as on the

initial delamination length parameter. The above statement is true as long

as the deflection and the end shortening are both bounded (see Figures 18

and 19). It is clear from the obtained results that for the same level of

the applied load and for the same delamination length, the energy release

rate increases as the delamination thickness increases, i.e. for the same

material the possibility of delamination growth increases as the thickness

of the delamination increases.

111.2.2 Symmetric Cross-Ply Plate

The energy release rate is obtained for a delaminated plate made up of

Graphite/Epoxy with same material constants as given in the results of the

buckling problem. Among the different stacking sequence configurations,

which we deal with in the buckling problem, we are going to consider the

• case of the stacking sequence [00/900 /00 10T. Fig. 15, shows the results

for the cross-ply laminate with delamination thickness h - .2. The general

shape of the obtained curves is similar to that of the orthotropic plate.

The only difference between the cross-ply results and the orthotropic

results is that for the same delamination length and delamination thickness

and some applied load, the energy release rate for the cross-ply laminate

is smaller (not much) than that of the orthotropic plate. Note that, when

we say same level of the applied load, we have to keep in mind that this

load is normalized w.r.t. the perfect geometry plate in each case.

6
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111.2.3 Unsymmetric Cross-ply

Since for laminates, in general, there exists a coupling between

bending ane extension, the present model is used to study the effect of the

presence of coupling between bending and stretching on delamination growth.

In this aspect, a delaminated plate in the form of unsymmetric cross-ply

laminate is studied. Note that for such geometry, there is coupling

between bending and stretching regardless of the level of the applied load,

and therefore the possibility of bifurcational buckling does not exist.

The unsymmetric cross-ply, [90 0 /00 ]1oT is made up of Graphite/Epoxy. Figs.

16 & 17 show the energy release rate vs the delamination length for various

levels of the applied loads for delamination thickness h - .1 and h = .2,

respectively. Unlike the orthotropic case, Fig. 16 shows that even for 9 <

there exist an energy release rate, and the curves suggest unstable

growth in this range. The results show that for the same parameters, the

energy release rate for the unsymmetric cross-ply is less than that of the

orthotropic plate. Fig. 17 gives the energy release rate for the

* unsymmetric cross-ply with delamination thickness h - .2, the results are

similar to that obtained for the orthotropic and (symmetric) cross-ply

plate.
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