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NOMENCLATURE

length of delamination

thickness of delaminations

distance of delamination from left end of the plate
thickness of the plate

length of the plate

=t - h
= a/lL,

h/t

constants

axial stretching stiffness

coefficient of coupling between bending and stretching
axial bending stiffness

axial stiffness of single layer

vxy Mmaterial constants

axial forces

applied compressive forces

bending moments
stress resultant
shear forces

in-plane displacements
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SUMMARY

This report summarizes the first year work under the general heading of
"Effect of Local Material Imperfections on the Buckling Behavior of
Composite Structural Elements™.

It describes, through the introduction, two important areas: one of
delamination buckling and growth and one of the holes and foreign
inclusions.

In the subsequent sections, the important subject of delamination
buckling and delamination growth is presented with sufficient detail. The
geometries considered are flat laminates and the emphasis is to establish
the load carrying capability (damage tolerance) of the laminate. It is
clearly shown that two important parameter govern the behavior of the
delaminated (damaged) laminate: the size of the delamination and its
position (especially relative to its distance from the surface). Depending
on these two parameters the damage tolerance of the laminate is either
governed by buckling or by the fracture toughness of the material
(delamination growth). Finally, the second year effort is described. This
includes the analysis of delaminated cylindrical shells under various load

conditions.

iv

L R T T T T TRV ywywywy it i

PP P

TR B B RO o e & S o,




I. INTRODUCTION

The constant demand for lighter and more efficient structural
configurations has led the structural engineer to the use of new man-made
materials. At the same time this demand forced upon him very sophisticated
methods of testing, analysis and design, as well as of fabrication and
manufacturing. The recent explosive progress in producing and using
composite materials has pointed towards the clear possibility of man
creating specific materials for specific missions. At the same time it has
been realized that some severe needs are created (related to this effort)
namely (i) the complete understanding of the behavior of composite
materials and what influences this behavior, (ii) the establishment of
design criteria upon which proper use of composites rests, and (iii) the
training of engineers in the area of composite structures. In all three
items, it is important to recognize that, with the advent of composite
media, certain new material imperfections, can be found in composite
structures as well as the better known imperfections, that one finds in
metallic structures. Thus, broken fibers, delaminated regions, cracks in
the matrix material as well as holes, foreign inclusions and small voids
constitute material and structural imperfections that do exist in composite
structures.

I.1 Delamination Buckling and Growth (Flat Plates)

One of the most common failure modes in composite materials is
delamination.

Delamination is developed as a result of imperfections in the
production technology or due to the effect of certain factors during the
operational life of the laminate, such as impact by foreign objects. The

presence of delamination in a laminated composite material may cause local
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buckling and reduction in the over-all stiffness of the structure, which
may lead to early failure.

Problems of delamination growth in composites have recieved attention
in recent years.

A double cantilever beam (D C B) specimen loaded in compression was
used by Chow & Ngan (1) to study the effect of buckling on crack
propagation. Initial geometric imperfection was made in the specimen in
order to obtain crack propagation at loads below the buckling load of the
perfect column. Chai (2) carried out an experimental program to determine
the damage propagation mechanisms of a composite panel (graphite/epoxy)
under simultaneous compressive in-plane loading anJ low-velocity ;ransverse
impact. Also, he presented an analytical (one-dimensional) model for
delamination buckling and damage growth. For a homogeneous isotropic plate
under a compressive displacement-controlled loading, he obtained a closed
form expression for the energy release rate for the case of a thin film
model (the buckling of the delaminated layer assumed to produce a
negligible bending deformation in the main body of the laminate). A more
general model, where the delamination thickness was of the same order of
magnitude as the other thicknesses involved, was also considered.

Whitcomb (3) presented an approximate analysis for a symmetric
through-width delamination of a unidirectional graphite/epoxy bonded to an
aluminum bar. The buckled region was assumed to have zero slope at both
ends. For the case of short and thick delaminated regions, the rotations
at the ends cannot be neglected, hence he accounted for the rotations by

considering a modified delaminatin length (effective length) which he

obtained through a finite element solution of the postbuckling problem.
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A finite element stress analysis was developed (4) to study the
postbuckling behavior. The stress distribution and strain energy release
rate were calculated for various delamination lengths, delamination depths,
applied loads and lateral deflections. A few specimens, consisting of
unidirectional graphite/epoxy bonded to aluminum, were fatigue-tested to
obtain delamination growth data. Yin and Wang (5) derived a simple
expression for the energy release rate associated with the growth of a
general one-dimensional delamination. First, a continuous stress field
produced by a certain subsystem of forces and moments was eliminated, then
the energy release rate associated with the remaining system of forces and
moments was evaluated by means of the path-independent J-integral. Also,
they (5) studied the possibilit of cracks branching off to neighboring )
interlaminar faces and the condition for coalescing of multiple parallel
delaminations into a single layer.

A two-dimensional model, consisting of an internal rectangular
delamination with initial displacement imperfection in the thinner portion,
was proposed by Konishi (6). A test program was carried on a hybrid
specimen, boron/graphite/epoxy covers, and graphite/epoxy substructure.
The effect of static and cyclic loading on delamination growth was studied.
6 Moreover, the effects of temperature and moisture were taken into

consideration.
The case of a circular homogeneous isotropic plate with a concentric
. penny-shaped delaminatin subject to a radial compressive loading was
addressed in refs. (7-9). Based on an asymptotic analysis of the
postbuckling behavior of the delaminate layers, Bottega and Maewal (8)
(Y considered the case of symmetric split, where the delaminatin assumed to

exist and grow in the mid-plane of the laminate,. Considering
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time-dependent loading and taking into account the inertia of the
delaminated layers, Bottega and Maewal (9) examined the dynamics of the
growth of penny-shaped delamination in a circular plate. The load applied
was in the form of a radial compressive load and a distributed transverse
tensile pulse. Using Hamilton's principle the equations of motion and the
corresponding growth laws were derived. Two models were studied by Yin (7)
concerning the delamination buckling of a penny-shaped delamination, the
thin film model and the symmetric split model. The energy release rate was
obtained for both models (7) by means of the M-integral.

Using finite element and Rayleigh-Ritz methods Shivakumar and Whitcomb
(10) predicted the buckliné behavior of an elliptic delamination embedded
near the surface of a thick quasi-isotropic laminate. The laminate was
symmetric made of graphite/epoxy laminae. The results obtained by using
Rayleigh Ritz analysis showed good agreement with those obtained by using
finite element methods, except for highly anisotropic sublaminates.

The present work deals primarily with the question of delamination
buckling and growth and how the presence of the delamination affects the
global load carrying capacity of the system. A one-dimensional model is
presented in order to predict (a) delamination buckling loads of across the
width delaminated, axially loaded laminated plate and (b) the ultimate
load-carrying capability of above geometry, when delamination growth takes
place. The model is employed to predict critical loads for delaminated
Wwide columns with both simply supported and clamped ends. The effects of
delamination position, size and thickness on the critical loads are studied
in detail for both sets of boundary conditions. Results are obtained for
delaminated isotropic plates and for plates made up of special type of

symmetric cross-ply laminates. The results reveal that for certain

ian e fote,




- >

o,
N
ol o

P D )

T I A
LTS WL R
';‘:._*J‘-.:(. Ao s o

~

geometries the buckling load can serve as a measure of the load carrying
capacity of the delaminated configuration., In other cases, the buckling
load is very small and delamination growth is strong possibility, depending
on the toughness of the material. Also, the present model can be used to
study the effect of the presence of coupling between bending and stretching
on delamination growth. 1In this aspect, a delaminated plate in the form of
unsymmetric cross-ply laminate is studied.

1.2 Effect of Holes and Foreign Inclusions on Buckling

The effect of small cutouts of various shapes on the response of
elastc shells has received great attention. Experimental studies have
shown that holes could cause a severe reduction in the buckling loads of
shells.

Based ona two-dimensional finite difference scheme, Brogan and Almroth
(11) presented a nonlinear analysis for cylindrical shells with
rectangular cutouts. A modified Newton method was used (11) to reduce the
computational time. Also, simple experiments were performed (11) in order
to verify the computational scheme and satisfactory agreement between the
theory and test were obtained. A finite element analysis of a cylindrical
shell with reinforced circular opening was presented by Meller and Bushnell
(12). The cylindrical shell was ring-stiffened and made of steel, and
axially compressed. The effect of geometric imperfection was included (12).
At the same time, a similar work to that done by Mellar was carried out by
Baker and Bennett (13). They (13) tested a ring-stiffened cylindrical
shell, reinforced with circular holes under the action of unsymmetric axial
loading. The effect of hole diameter on the buckling load was reported

{(13). Also, they (13) took into consideration when the penetrations
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(holes) were cutting no ring stiffeners, and cutting one, two and three
ring-stiffeners.

As far as the effect of small holes on composite structure is

+ concerned, an experimental program was carried out by Byers (14) on a

damaged graphite/polymer laminate. " A controlled damage in the form of
circular holes and simulated delamination were introduced into the
composite specimens (14), which were subjected to static compression and
cyclic compression load. Four different types of graphite/polymer were
tested to evaluate the damage tolerance of each type. In some cases the
compression strength of the damaged specimens reduced to u40% of the
compression strength of the undamaged specimens.

Another material imperfection is the rigid inclusion (small). The

effect of rigid inclusions on the stress field of the medium in the
neighborhood of the inclusion has received (limited) attention in the past
25 years [15-19]. As far as these authors know, the effect of rigid
inclusions on the buckling characteristics of the system (that contains the

rigid inclusion) has not been studied.

1.3 Future Work
The problem of buckling of delaminated c¢cylindrical shells has not

received the deserved attention. Very few investigations have been carried

i

out in this area. Kulkarni and Frederic (20) used a "branched integration”

gog .

technique to solve the problem of buckling of two layered cylindrical

¢ shell, partially debonded, subjected to axial compression. They (20) 1
considered the case where the delamination originates at the boundary.
Results were obtained for different lengths of debonding and inner to outer

. layer thickness ratios. A significant decrease in the critical load was

e AN A A % 8 2

observed. The buckling of stiffened circular cylindrical shells, with two
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unbonded orthotropic layers, was reported by Jones (21). Jones (21)

assumed that the layers did not separate during buckling, i.e. the
deformation of both layers were assumed to be the same. Also, he examined
the case where one of the two unbonded orthotropic layers was
circumferentially cracked. His results for a cylindrical shell made of
aluminum with ablative outer layer subjected to hydrostatic pressure showed
that the ablative layer had to be increased by 50% in thickness in the
damaged (unbonded) cylindrical shell in order to obtain the same buckling
loads of the perfect cylindrical shell. Troshin (22) examined the effect
of longitudinal delamination in a laminar cylindrical shell in the critical
external pressure. The delamination was assumed to extend over the entire
length of the shell. He studied the effect of the length and position of
the delamination over the shell thickness on the critical external
pressure,

It is intended to extend the one-dimensional model of sectin (I) to a
two-dimensional model to investigate and stuay the effect of
circumferential delamination on the buckling loads of circular cylindrical

shells subject to compressive loading. Other delamination shapes and loads

will also be considered.
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P II. MATHEMATICAL FORMULATION

II.1 Description of the Problem

A one-dimensional modelling of the laminated plate is employed. This
is similar to the one used in Ref. 3.

Delamination exists and grows (if it does) along a plane parallel to
the reference plane. This simplified modelling is employed in order to
understand better and pay more attention to the physical behavior, rather
than get involved (and lost) in a more complex model with several
additional parameters and a considerably more difficult solution scheme.
In accordance with this philosophy, it is also assumed that the
delamination exists before the compressive loading is applied. The
location and length (size) of the delamination is arbitrary and the ends of
the plate are either hinged or clamped (see Fig. 1). Note that, because of

the one-dimensional modelling, the sides of the plate are free. Finally,

it is assumed that the delamination separates the column (or plate) into
four regions, and each one of these regions has such dimensions (lengths
and thicknesses) that Euler-Bernoulli beam theory is applicable (this
assumption may also be removed by employing more accurate theories for
small length to thickness ratios).

The three axes of orthotropy are parallel to the reference frame x,y,z.

The natural plane of the plate lies on the xy-plane. The plate is of unit
width and is subjected to a uniform compressive load, 3, along the
supported edges. A layer of uniform but arbitrary thickness h and of
length a is delaminated (see Fig. 1). The delamination extends across the
entire width of the plate (one-dimensional modelling). Note from Fig. 1
that the delamination divides the plate (column) into four regions, 1-4.

The coordinate system is such that X ls measured from the left end.

8
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Moreover, uj and wy (i = 1,2,3,4) denote the in-plane and transverse
displacements of material poins on the midplane of each region (each part).
For example, LE] is the transverse displacement of material points on the
plane h/2 units from the top surface (region 3), while wp is the transverse
displacement of material points on the plane H/2 units from the bottom
surface (region 2). Furthermore, note that because of the Euler-Bernoulli
assumptions wj(x) characterizes the transverse displacement of every
material point in region i and position x. Similarly, the inplane

displacement, E}(x,zi), of every material point is given by

Ulx, 2)= 1 (x)- 2w (1)
where zj is measured from the midsurface of each region and the comma

denotes differentiation with respect to the index that follows.

I1.2 Delamination Buckling

The delaminated plate (wide column) is assumed to be:
{a) homogeneous and, at most, orthotropie or
(b) made up of special type of symmetric cross-ply laminates; such
that the prebuckling state is a membrane one.
The necessary equations, including kinematic relations, constitutive
relations, relations between loads and moments on one side and kinematic

parameters on the other, and equilibrium equations, are given below:

: : (2)

A/.:C,gxo (3)
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where
Pj axial forces
Mj bending moments
Vi shearing force

Note that: for our problem (unit width plate)

M’{i = /? .
{ A’x; 4 tyz0 (Plhte strip)
C = 2
Xy (ﬂn-% )’, / o;, 2o (wife Ca/ﬂmﬂ}

where

(%)

n
K
A - G U‘l -A-—l I/I= I;y (q)
II K=1 IJ' * ) ’.3'12;3/4‘
4 K 3 3
Dex:= 1 Qxx (he - b)) o)
! K=1

1
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b;x_/ 5},11@.& ny' Mafer‘fa/ Constants of /dm/'rmf( (k)
Y ] ! /
in plate i)
<
The boundary conditions, both in-plane and transverse and the
continuity conditions (kinematic and internal loads) are also listed below:
® In-Plane Boundary Conditions:
at x=o: Y,=o0 ; al x=L : F=-P (12)
Transverse Boundary Conditions:
® (a) Simple Suppports,
at x = 0: wy = 0 and M/‘lxx:o (134)
at x = L: wy = 0 and W4"x=0
¢ (b) Clamped Supports
at x = 0: wy = 0 and Wm‘:o (135)
at x = L: wy = 0 and \ot/"x::o
¢ Kinematic Continuity Conditions

at x.—./j :
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where Mj, Vj and Pj can be expressed in terms of the displacement

gradients, through Egs. (2) to (7).
I1I1.2.1 Primary (Membrane) State Solution

As the compressive load P is applied (quasi) statically, the plate

remains flat and a primary state solution is characterized by

P
V%'—-‘—O

and U,-P::/Tl.x + B;' (16)

where Ki and E} are arbitrary constants.

Use of the boundary and continuity conditions leads to complete

knowledge of the primary state, or

P
w.

/

l“

0 i:'lz}}}4-

S —— X f:l,i, 3,4

/
L
/’ —
and ‘6? = /7 - f’ R

P =447 4 (17}
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II.2.2 Buckling Equations

The buckling equations are derived by
method(23'25), based on the concept of the e
equilibrium position at a bifurcation point
required steps are as follows: start with the .

proper boundary and interior continuity conc

purturdb them (from the primary state) by allo
admissable changes in the displacement functior
at a point at which an adjacent equilibrium pa
point), and retain first-order terms in the ac
resulting linear ordinary differential equations a
The corresponding boundary and continuity condi-

pururbation technique.

The following expressions are substituted in e

P a
{l/ = Lé,q—t[i ; V@; - L‘C-a

f=F

u
+
AV

/Wl.

N

=1
/

where the super “a" parameters denote the small :
correspond to the admissible variationv¢§ and Jt).

The buckling equations are:

a

1) X




.
The related conditions are
i In-Plane Boundary Conditions
a a Z
df X=0: ul =0 , a't X:L : E =0 (23) }
® Transverse Boundary Conditions '
(a) Simple Supports z
a a ]
at X=0: W =o ﬂn/w =0 :
P / lsx x
. p (244) ,
at x=L : W, =o and W yy =0 %
¢ (b) Clamped Supports h
Vi a
a2t X=o : W, =0 and M{,x =0 '
c ¢ Y20 and G2 = (248]
a X:L N % =0 an 4/)’ =0
Kinematic Continuity Conditions
®
d?f X= ./;
a_ 4,,%_,°¢
U -3 %x = U,
¢ a 4
U+ g w g =e6”
1 Tux i ( )
a’ a a 252
VI{ = W, VI/]
a a
- W
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Continuity in Moments and Forces

at x=4

A A B o

a 7 3 Z
AR AN A (262)
,/a+ﬁa—r7d=o
al x=¥+a ,
/WA» ~/”z /V/,*/O ;I/‘P———“-o
ey =
a A a

+/02 —f/? =0

-

\
Q) &

T..2.3 Solution of Buckling Equations

The solution to the buckling equations can be written as
=C x+C (7274)
'y /72

él
M{- -—ﬂ smkx-rd [os/(x+gx+y4
//

where I(l.z:: - (E/Dxx,' ) (275)

=12, 1, 4
ﬁP are  given by [/s (18)
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Note that, since the admissible variations in the displacement

Ahiiih el asiont it

components can be made as small as one wishes, the reference surface strain

can be linearized, or (see Eq. (2)).

(50 ) =u” (26)

XX .
)(’ ‘) x

T

Thus, the expressions for the internal forces and moments become (see

Egqs. (3-5).

( ’;X 1
a a i

/”I. = - D)(x'- M{'/XX (2?)
A a F a

V/‘ - Dxx,' W o

) XxXx / ’}x

\

Moreover, the solution to the buckling equations, Eqs. (27), requires
knowledge of 24 constants (Cij, Cio, ajj, 1 =1,2,3,4 and j = 1,2,3,4).
There exist 24 boundary and continuity conditions, which are homogeneous in
uj, Wiy and their gpace-derivatives. These consist of two in-plane boundary ]
conditions, Egs. (23)._four transverse boundary conditions, either Eqgs.
(24a) or Egs. (24b), twelve kinematic continuity conditions, Egs. (25a) and
(25b), and six continuity conditions in moments and forces, Eqs. (26a) and
(26b). Their number is 24 also.

Use of the boundary conditions yields a system of linear, homogeneous,
algebraic equations in 511, 6}2 and ajj. For a nontrivial solution to
exist the determinant of the coefficients must vanish. The determinant
contains geometric parameters and the applied load 3, because of the

presence of Pf [see Egs. (18)].

18
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Before proceeding with the description and actual solution of the

PS 4
determinant, certain non-dimensionalized parameters are introduced. These
are _ -

=2 ; h=b ; H-H_)-h

° L z ¢

pP-FL ;
7
r
o Pff‘f
7
7_ D
P 7 for S-s
Cr g ?
¢ Perf 47 Dy, for C-c (30)

‘ Kij = K '/J (=Y 17,4 (31)

P j:I/Z,}




eTwTYwTY

Note: for the considered case, where all four regions (plates) are
o
symmetric w.r.t. their mid-reference planes, the following relations holds:
> =L-H 5 X
Cox, C
/, XX,
’ee e D : :
where
D.. - /(/_/,-) 277
21 B—'
9 X

Dzl-_//’--.DL“/'

| Dyx,
® -

D4‘ - /

Now, we can write the following expressions for the kij"s

’ Kis = 2m(P
KIZ = (‘Z*Z) K13 (33}

{
Ky = 4k
b ky= Dk o (74)

lt  Dc=Dws (35)
Az(;\’XJ

Moreover, the nondimensionalized coefficients Zij are defined as
]

20
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o ij= 4 [t [=1,1,1,4

* Zf} = dj; L/Lé 1= 7,4 (3{6)

In terms of the new non-dimensionalized quantities, the system of
homogeneous, linear algebraic equations which govern the buckling of the

delaminated plate, could be written as:

“ [AT{x} =2 7/

where [A] is a twenty by twenty matrix and {X} a one by twenty (column)

matrix.

[X} {d,, ﬂ_” s Gy 4 a,, Zz; _;4 ﬂ_

4 dél 412 dé! 2;44 C?2 7! 4_7 _F ;

For a nontrivial solution to exist for the system of Eqs. (37), the (38)

determinant of the coefficients must vanish (see Eq. 39). The lowest
eigenvalue (F) gives the value of the critical load. Note that the
elements of the determinant in Eq. (39) contain the geometric parameters F,

% and a as well as the material parameters, Exx» Eyy, vxy, the effect of

stacking sequence included in Dxx}' load parameter'F.
!

I.3 Delamination Growth

Delamination of a composite laminate reduces the over-all stiffness
and thereby lowers the buckling load of the laminate. The latter may or

21
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0 0 o o -5 k23c0e kyy .5 k23 sin Ky -5h 0 0 0
0 0 0o o 0 0 0 0 .Hikyconky - (8
ein kll cos k) —1 1 -ein k3) ~co® kzx - ll -1 0 (V]
sin k), 008 Ky, il 1 0 0 0 o - sinky, - zue
kyscoe ky; -kisstnky; 1° 0 =k, 3cu8 ka) k25 sin ko, -1 o (M) 4]
kj3000 kyy)  =kjgean ky) 1 Q 0 0 0 (] ~€44C08Ky) .”.1
0 0 0 0 =-.Shkyscos ky; 5B kpy ein kg2  -.5h . O 0 0
(o] o o o 0 0 c 0 . K 408 ko, -.oM k,,oﬁ
0 0 o o ~ein ky; -cos ky, <(I}ed) -1 o . 0
A 0 0 o o 0 0 0o o0 - atn <, - cos
0 0 0 o 0 (V] 0 0 :
-k”coo u,z k”sin ]
oin k), comky; O 0 - stn Hecomky 0 © -h sanky) -h cos:
o 0 -1 0 0 0 E o o 0
0 0 0 0 i sin ky, -H cos ky, 0 0 4 unk’z - cosc
o 0 o o o 0 i o o 0
0 1 0 1 0 0 o 0 0 0
k4 0 1 0 0 0 0 o0 o 0
0
Q 0 o o ] +] 0 0 0
o] 0 (o} o]
o (] 0 0 0 0

In case of s-s boundaries, the underlined terms have to be changed to:
A(18,1) = 0.0 A(20,13) = sin k
A(18,2) = 1,0 -
A(18,3) = 0.0 A(20,14) = con k
A(20,18) = 0.0

13
13
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may not be a useful indication of the load-carrying capacity of the

delaminated plate. In some cases it may be significantly smaller than the
elastic collapse load in the postbuckling regime, especially if the
laminate contains a relatively long and thin delamination. In order to
determine the ultimate load capacity, and the possibility of spreading of
the damaged (delaminated) area to the undamaged area, the post-buckling
solution is employed. Delamination growth (if it occurs) is assumed to
occur in its own plane and, it is governed by the Griffith fracture
criterion.

If growth takes place, it is important to examine whether the growth
could be arrested at a later stage or not. The energy release rate has
been used to determine whether the delamination growth is stable or
unstable, The path-independent J-integral (27) has been used to obtain the
energy release rate.

Also, the present model will be used to study the effect of the
presence of coupling between bending and stretching on delamination growth.
In this aspect, a delaminated plate in the form of unsymmetric crossply
laminate is studied. Note that for such geometry there is coupling between
bending and stretching regardless of the level of the applied load, and
therefore the possibility of bifurcational buckling does not exist.

III.3.1 Mathematical Formulation of Delamination Growth

In deriving the equations governing the delamination growth, the case
of symmetric delamination, where the delamination is located symmetrically
w.r.t, the two ends of the plate, will be considered. Also, a
clamped-clampled boundary condition is assumed., In the following analysis,

the case of plate strip will be considered (ey = 0). The model will handle

23
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!. both cases; the case for which the primary state is membrane one and the
| case where there is a coupling between bending and stretching.

The stress resultants and bending moments are given by (26);

* VNI T4 -8l
M|~ B -DJ|x

where for the plate strip

(42)

[£°}= 40 o o}
¢ T (41)

Note that for both the orthotropic plate and cross-ply laminate

A,; &7 D,) ’27 (42)

The equilibrium equations for plate (i) reduces to:

/1411. = f‘onsfmf = - ? I=4,2,1,4 (4-3]

|
¢ Mxx/';x X + /‘,/(X,' M/I =0 =214 (44}

IXXx
where

‘ M (% P‘(xx '4’) "o X (45)

Substitution of the expression for Ny, and Mxx into the equilibrium

< equations, Eqs. (43,44) yields

24
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IXXXX (Dx
Aex

To obtain the in-plane displacement we have

l/'4:)! X = (M)

2,

@
© __F (B
b =- L 42X\ Ww.
XX HXXI. (,411 )' buy
®
- uo +_’. Wz (4’7)
- Yux 1 "Ly

e () W L 8

/

For each part of the four parts (plates) of the delaminated plate the

in-plane displacement and transverse displacement are given by:

U (x,2)= U (= 2; Wiy

BXX .

ﬁxx,—?) %f%"/x
20,14 49)

—
- -

Py

M{(z):duﬁty’k,t +ﬁ,:z(05k,' I+J (50}

where

Kz E "/ /]/4 (5I)

l. = 1
(D By
Xx ﬁxx I.
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For symmetric delamination with clamped-damped boundary conditions, Eq.

(24b) could be simplified to:

W(x)= A (s kx -1) osxsd  (524)
\A{(X)z/]{ (05"./,-1*‘-';—:%:-2 [tosk, 2 - Cask1(~/,+%"z}]}

° 451\'!{”} (524)
»tq:()():=/4;'695‘51{‘Zt;'!§J221£1f7‘[ZZLSk}ﬁg-—¢Q:SI{,(4“*%F'*t}]}

‘(,Sfﬂ’*§f%
Asxsf+% (52¢)

¢ The displacements U; and Wy (i = 1,2,3) a;e now given in terms of only
three unknowns A, Ky and K3, since Ky is given in terms of the applied load
F. To determine these three unknowns, three equations are required. The
@ required equations are the continuity in forces and moments as well as

continuity in in-plane displacement.

- continuity in forces

P:=/5z-+é (53)

- continuity in moments (see Fig. 2)

M-MM-F o} & (54)

Using the expressions for My, M, & M3 gives

26
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6 = Ak, sin k4 (5¢)

- continuity in in-plane displacement (see Fig. 2)

I (A

,4 - 2

th '4" 3 Ay, A,

/ ____I_____ | + l 4_}-&9?_0
{k L7k d s KGe /(24&(4 smzltz-{» 4

Using Eq. (55), we have

28




e e e g b aal el el seh st diedh gl ohuSatadi Bt Shatagl AN SR Sl e and i ML b 20" nlhtm Rt ft

— H ——
AUt R ) P
ez XX - ({0)

° B___xy)_l_(_'_.-.,.( er _@,, K,

K1
&;'M// A/X)Z}/Qd (Dxx tﬂk]

Solving Eqs. (53, 59, & 60) simultaneously, one can obtain the values of

® Py, P2 & P3 in terms of the applied load P. Also, once Py, Pp and P3 are
known, the unknown constant A could be obtained and hence, the displacement 5
functions are known for every level of the applied locad P. Now, the

< " postbuckling solution is known and the next step is to establish a
delamination growth criterion.
I1I.3.2 ENERGY RELEASE RATE

® In the present work, it is assumed that delamination growth (if 1t

occurs) will take place in its own plane and is governed by the Griffith

fracture criterion. It is also important to find out whether 'this growth

is stable or unstable, in doing so, one has to calculate the energy release
rate (the energy required to produce a unit of new delamination).

In order to calculate the energy release rate, the path-independent
J-integ.r'al is used (27). The use of the J-integral beside being helpful in
avoiding the calculation of stress singularities at the delamination tip,
is useful in the cases where plasticity effects are not negligible (28).

The J-integral is defined as:

-

T=\(27 £ d2-o; 0 24) S5 (61)

1y 1 { x

where [ i3 a closed contour around the crack tip.
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)- G=T=1 [ s ds (63)

but k K
o’ =

where 051 {s the stress in the x-direction in lamina number k belongs to
s regi~a (i).

E The stress distribution is decompassed into two subsystems, as in Refs
?.l (5,29), (a) a continuous stress field, which makes no constribution to the
:. J-integral and (b) a subsystem (2) which does. The subsystem (2)

contributions are:

E Region (3) contributions
. h
3 1 -
T:LIGK{(-’? B”’xm/ 7w
1 2 XX A +74_ Zyxx J/XX)
_h M Ty
T
30
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2
P By ) w %
[ B, L) |47 (45

Note that the above integration is calculated at the cross section x = %1.

j:é—ﬂ {ﬁ_§+3xx, B,,J+/-/ }(,
P Ay Ary Py, ZZ/IK/

Y

B,y /K
""%(D"’_?,i)] (;ﬂk,l:-’.t};lk}g—)gz (51{)

Region (2) contribution

T =LA [ Bﬂ'-g_”l-.é. K
SR 'qxx, '4xx ('4”' Axrs 1)/2’/‘7/?9

“ ﬂxr) _4_) % (67)

=7M/=;rz+7, (68)
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® II.3.3 End Shortening and Delamination Opening

As we will see later, the knowledge of the end shortling and
delamination opening will help in some cases to find the load carrying

capacity of the system.

ALz -2[Ul)-v0)+ U4+ 4)-t4d)]  (H2)

1y
i / Y / ' |
=, - — - 2 b

(S_'"—’;./I k Gak g 32 ;(75,,/94)4 f (494)

® W‘!r( Al 1S the end Séar‘fﬁf/'l%
delamination opening = | \4/] (4.'. 4) - W (41. :_',) (704}
° Aw ! / '
'—[kj &ﬂk,% K, Sink, £ k-; éﬂ/ﬁ%

¢ + — ] 6 (706)

- d

First the following non-dimensional parameters are introduced.
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€ . -k}:)(}_@.:ﬁ E (73) .F

@
b-0 L
6=6 2

o ry .5, 1.4
AL:,.(AL}?L? 3 Aw= AW s G:G—" (74}

£ P

In terms of the above nondimensional parameters, the equations governing

the behavior, Eqs (53, 59, & 60) and growth Eq. (68) of the delaminated

plate can be summarized as:
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..........
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These three equations, Eqs. (78)-(80) are valid for any plate with
o
across the width (one-dimensional) delamination, provided that the
assumption of cylindrical bending deformation holds (ey = 0),

¢

¢
‘o

o

¢

¢
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III RESULTS AND DISCUSSION

The Georgia Tech high speed digital computer CDC-Cyber 70, Model 7u-28
was employed for generating results, These results are presented both
in tabular and graphical form.

III.1 Buckling Results

III.1.1 Orthotropic Plate

Results for buckling loads of a delaminated orthotropic plate are
generated.

Table 1 shows values of critical loads, E, of a clamped configuration
with a symmetric delamination [see Eq. (30)], for several values of the
delamination length parameter, a2, and of the delamination thickness
parameter, h.

The last row gives the sum of the buckling loads of the two parts, if
the delamination extends through the entire length @ = 1, This sum, P, is
a measure of the load carrying capacity of the completely damaged

configuration

-— 2 - 3

P, =h+U-k) (81)

m
These results are also shown graphically-in Fig. 3. It is clearly

seen from these results, that as long as a $§ 3, buckling load is not
affected appreciably by the presence of the delaminatior provided that the
delamination thickness i{s relatively small (F'< .2). For the same condition

of 2 s h, the presence of the delamination becomes more pronounced as one

approaches a midthickness delamination (h = .5). Note that for this

extreme case, when @ = h = .5, Pon = .69 and Py, increases as a becomes

smaller and smaller. On the other hand, when 3@ > h the buckling load is
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Table 1. Buckling Loads for a Symmetric Delamination-Clamped Boundaries
\ Bl o2 .05 .10 .20 .30 .40 .50
2025 +6399889 |.9999989 |.9999996 | .9999999 |.9999999 |.9999999 |.9999999
05 | «1599975 |.9949313 | .9999824 | .9999929 |.9999949 |.9999938 |.9999960
«10 | +0399994 |.2499388 | 9799200 | «9997142 |.9998254 |.9998600 |.9996683
.15 | 0177775 |.1110863 |.4434620 |.9965731 |.9985213 |.9988911 |.9989777
<20 | 0099999 | «0624871 | .2495341 | .9264435 |.9923920 {.5950435 |.9955576
25 | .0063999 |.0399923 |.1597332 |.6255729 |.9661928 |.9635314 |.9859276
.30 | .0044444 |.0277728 {.1109427 |.4372092 |.8582246 |.9543270 |.9638297
.40 | 0025000 |.0152263 | .0624213 | 2470476 |.5313834 |.7883037 |.8480737
.50 | 0016000 |.0099987 | .0399587 | .15685467 |.3469048 |.5675410 | .6895626
.60 | .0011111 |.0069437 |.0277551 |.1103405 |.2435310 |.4123884 |.5411401
.70 | 0008163 |.0051017 |.0203958 |.0812210 |.1803553 |.3111042 |.4309655
.80 | .0006250 |.0039061 |.0156187 | .0622944 |.1390114 |.2428107 |.3514201
.90 | .0004938 |.0030863 |.0123432 |.0493028 |.1104955 |.1948719 |{.2923016

1.00 | 0004000 |.0025000 {.0100000 ] .0400000 |.0900000 |.1600000 |.2500000
Taag| 9412000 |.8572000 |.7330000 |.5200000 [.3700000 .2800000 |.2500000
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Fig. 3 Effect of Symmetric Delamination on Buckling Loads of
Wide Column with Clamped Ends
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greatly affected and it drops drastically, especially for the smaller
values Of the delamination thickness.

A comparison of the buckling loads with the buckling load for the
completely damaged system (last number in each column) reveals certain
observations which suggest related conclusions. When a s h the values for
Fcr are higher than Eﬁam- This suggest that for these geometries the load
carrying capacity of the system is related to and measured by the buckling
load of the delaminated configuration. On the other hand, for a > F
buckling occurs at low values of the applied load. Then if the load is
further increased this may lead to delamination growth and the damaged area
may extend along the enire length of the system. This of course depeﬁhs on
the fracture toughness of the material, but the implication is that Fdam is
a good lower bound for the load carrying capacity of the delaminated
configuration. The problem of postbuckling behavior, delamination growth
and accurate estimation of the load carrying capacity of a delaminated
configuration is the subject of Part III.2 of this report.

On Table 2, the value of the load in region 3 at the instant of
buckling is given for the same range of parameters, a and H, as on Table 1.
These results are also for the case of clamped supports. The values for
this region 3 load are nondimensionalized with respect to the critical load
of the region 3 geometry, as if i{ts ends were clamped. This is done
primarily for finding the range of parameters 3 and h for which thin film
analysis holds [2]. Clearly, when 53 is close to unity, thin film analysis
is'applicable and thus delamination growth can be treated by the simpler
analysis [2] developed for the case of thin film behavior. Thin film
behavior implies that region 3 only experiences buckling and postbuckling

deformations while the remaining of the plate remains undeformed. For
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Table 2. Region of Applicability of Thin Film Analysis for a Symmetric
Delaminated, Wide Column with Clamped Ends

\& 02 35 10 .20 .30 40 «50

a

025 | .9999827 | .2499997 | .0625000 | .0156250 | .0069444 | .0039062 | 0025000
05 | 49999845 | .9949313 | .2499956 | 40625000 | 0277776 | .0156249 | .0100000
<10 [ 49999855 | +9997555 | +9799200 | .2499286 | 1110917 | .0624912 | 0399947
15 | «9999863 | 9997769 | .9977894 | .5605723 | . 496303 | .1404691 | 0899080
<20 | «9999371| .9997932 | .9981364 | 9264439 | .4410631 | .2487609 | .1592892
25 | <9999881| .9998079 | .9983327| «9774573 | 6709672 | 3841920 | .2464812
«30 | «9999889 | .9998216 | 9984847 | 9834956 | .8582246 | 5368090 | 3469787
<40 | 49999905| 9998483 | 9987409 | 9881904 | «9446817 | .7883037 | 5427671
«50 | «9999923 | .9998741 | .9989685{ 9909166 | 9636244 | .5867828 | 6895626
<60 .| «9999937| 9998995 | «9991833 | 9930647 | 9741242 | 9278740 | 7792417
oT0 | ¢9999953 | «9999261 | 9993921 | «9949577 | 9819344 | 9527566 | .8446920
«80 | «9999970| «9999503 | 9995985 | 9967103 | 9885257 | +9712427 | .8996356
<30 | «9999985| .9399750 | 9997994 | .9983807 | .9944594 | 9865390 9502971 |
1.00 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000
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small values of i, say'H - 0;02, thin film is applicable for all values of
3. As h increases, towards its maximum value of 0.5, the region of
applicability of thin film analysis is confined towards the high d-value
region. The results of Table 2 are presented graphically on Fig. 4.
Similary results are presented on Tables 3 and 4 and Figures 5 and 6
respectively for the case of simply supported ends. On Table 3, D is
nondimensinalized with respect to the perfect geometry critical load for
simply supported ends. The values corresponding of Eham (last row), are
the sum of the contributions of both parts acting independent of each other
and both being simply supported. This may be questionable, because a
better description of the completely damaged plate is needed. For example,
if, when the delamination extends along the entire length, the thin part is

lost (it becomes disconnected) then a better measure for pPyay would be

(1-1)3 rather than h3 + (1-h)3. It is also worth mentinoing here that the

values (P) corresponding to 3 = 1 (next to the last row) are calculated

under the assumption that both parts (regions 3 and 2) have the same slope .

at the boundaries.

The trends, observed in the case of clamped supports, are also
observed here but the regions seem to have shifted. For instance, on Table
1 it was observed that, as long as 3s H, the buckling load was not
affected appreciably by the presence of the delamination, for relatively
small delamination thicknesses. Here on Table 3 this statement {s also
true but a § h must be replaced by 3 s 2h, and so on.

So far results have been presented and discussed for the case of
symmetrically located delaminations [%; = 0.5(1-a)].

Next, results are presented on Tables 5, 6, 7 and 8 for the case for

which the delamination is asymmetrically located.
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Table 3. Buckling Loads for a Symmetric Delamination Simply Supported
Boundaries
e \ a2 .05 o .20 .32 .40 .50
G5 «sz290009 | e 409999 | 10000V | 1.500uC0 | 1.000000 | 1.000000 | 1.000200
«05 | <0399u75 | 09999978 | 09999992 | .9939996 {.9999997 | 9999999 | .9999999
¢ <101 21599973 1 09929014 | 43999653 .7999Ubi «9999897 | 9999914 | .9999919
15 | 0711099 | .4443054 | +9995590 | 9990756 | 999918 | 19999342 | 19999579
20 [ «0599994 | 2499286 | .9722709 | 29994209 | .9990506 | .99y 7168 | .9997 368
¢ «25 | «0255296 | 01599562 | 46376529 | .9979532 | .9986852 | 49991293 | .9991691
<30 | 01777751 .1110815 -445542 +7932354 | 19970554 | 9977360 | .9979614
+40 | V099996 | .C624836 | .2493640 | .9016443 | .9651533 | .9902270 | .9912249
¢ +20 1 00604000 | +0399897 | .1596320 | .6177589 | .9402233 | .9686038 | .9729376
60 | 20044444 | <0277707 | .1108654 | «4330717 | .8149228 | .9198068 | .9343196
«T0 | +0032653 | 40204030 | .0814568 | .3193488 | .6484304 | .8350811 | .8703371
e +80 | 0025000 | «0156210 | .0623679 | 42449950 | 5117912 | 7263620 | .7667299
<90 | «0019753 | «0123426 | 0492799 | 1938276 | .4105782 | .6176623 | .6966477
1.00 | 0016000 | 0094975 | .0399176 { .1571446 | .3556235 | .5228832 | .6109859
* Py, | +9412000 | 5572000 {.7300000 {.5200000 |.3700000 | .2800000 | .2500000
6
.
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Table 4 Region of Applicability of Thin Film Analysis for a Symmetric

Delaminated. Wide Column with Simply Supported Ends

N B| .02 05 .10 .20 .30 <40 «50
025 | «3906251 | +0625000 | .0156250 | 0039063 | L00L7361 | 40009766 | 0006250
05 | +999961Q | +2499995 | +0625000 | 0156250 | 0069444 | +0039062 | +00250Q0
«10. | +9999834 | «9929014 | .2499913 | .062499L | .0277775 | .0156249 | 0099999
el5 | <9999836 | «9996871 | .5622497 | .1406079 | «0629500 | .0351539 | .0224986
«20 | .9999838 | 3997154 | .9722769 | .2498572 | .1110723 | .0624824 | .0399895
25 | 9999839 | .9997260 | .9963014 | .3898177 | .1734176 | 0975712 | .0624493
+30 | 9999840 | .9997337 | .99T0970 | .5586949 | «2492638 | «1403147 | .0898165
«40 | «9999841 | .9997383 | «9975360 | «9016460 | .4378460 | +2475568 | .1585960
e ] 9999642 | 49997416 | 49977000 | 49652483 | 6529328 | +3783609 | «2432344
+60 | 49999843 | 49997439 | 9977883 |+9744113 | .6149228 | .5173914 | .3363550
<70 ] 499995643 | 49997459 | +9978456 | 9780056 |.8825858 | «6393590 | +4264652
<80 | 49999843 | 49997466 | 9978860 | 9799799 |+9098510 | 7263620 | 5035072
«90 149999843 | .9997483 |.99791L78 |.9812521 |.9238010 | .7817289 |.5642846
L.0C | 49999843 |.9997483 | «9979401 |[.9821539 |.9322875 .81#0050 «6109859
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Fig. 5 Effect of Symmetric Delamination on Buckling Loads of
Wide Column with Simply Supported Ends.
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® Table 5. Effect of Delamination Location on the Buckling Load
(Clamped Supports; a = ,1)
h .05 ol o2 o3 o4 =5
L

+0 | 2499536 | 9806663 | «9991479 | 9987095 | 9980807 | .9977440
oL | 2499509 | .9870979 |.9956626 | 09922549 | .96879301 | 9656805
o2 | <2499463 | 49979824 |.9938938 | .9384996 | 9822217 |.9790165
o3 | «2499418 |.9553065 ].9959984 | .9923842 |.9862422 |.9861157
e45] «2499368 |.979520C 1.9997142 {.93998254 |.9998600 }.9998683

Table 6. Effect of Delamination Location on the Buckling Load

---------

(Clamped Supports; a = .2)
H 005 .l 02 03 .4 05
3
<0 | 0624932 | .2497486 | .9327570 | 9557411 | 9247731 | 9051069
1| 0624907 | .2496694 | 19479818 |.9142127 | .¢652345 | 3405072
2 | 0624008 | 2496161 | 9455077 |.9194764 | .8767561 | .8554676
o3 | 0624876 | .2495566 |.93509424 |.9613436 |.9401638 | 9277638
o4 | 40624871 | 2495341 |.9264435 ].9923920 |.9950435 |.9955576
a7
.......................................................... N R T e T T N NN Tt '
T S B Sy S

...........
............




RECTRE Sl Sl Bl Ao St Sl NSl St

T ETYT

Table 7. Effect of Delamination Location on the Buckling Load
(Simply Supports; @ = .l)
1{ -0 o1 .2 .3 .45
h
.05 | .998639 .996576 .994855 .993624 .992901
.10 | .999407 .999511 .999679 .999847 .999965
.20 | .998517 .998790 .999232 .999674 .999985
.30 | .997760 .997760 .998583 .999409 .999990
40 [ .995823 .996598 .997849 .999106 .999991
.50 .995113 .996020 .997483 .998954 .999992
Table 8. Effect of Delamination Location on the Buckling Load
(Simply Supports; T = .2)
o T 3 3 3
h
.05 ] .249936 .269933 .269931 .249929 .249929
.10 | .988205 .981420 .976383 .973308 .972277
.20 | .989043 .991885 .995416 .998312 .999429
.30 | .979666 .985074 .991836 .997459 .999651
.40 | .969003 .977209 .987545 .996274 .999719
.50 | .963667 .973241 .985342 .995645 .999737
¢
[ ¢
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Tables 5 and 6 present results for the case of clamped supports, in
terms of buckling loads P for various values of E, and 11. The results on
Table 5 correspond to a = 0.1 and those on Table 6, to a = 0.2. It is seen
from Table 5 and 6 that, as long as i s 5, the buckling load is the
smallest, when the delamination is located symmetrically, with respect to
the midpoint of the wide ¢olumn. On the other hand, when h > 3 the
buckling load is the smallest when the delamination is locatd in such a way
that it spans the quarter point of the wide column.

For the case of simply supported columns the results of Tables 7 and 8
reveal similar trends. For h < a, the buckling load is the smallest when
the delamination is located symmetrically with respect to the midpoint of
the wide column. Finally, for h 2 5, the buckling load is the smallest,
when the delamination starts from the end of the wide column.
® Note that in some cases, for h >3 = 0.2 and clamped boundary
conditions, effect of delamination on the buckling load is considerable.

From Table 6 one observes that for h = 0.5 Ppip = 0.841 (Z; = 0.1) while

III.1.3 Symmetric Cross-ply Plates
Results for buckling loads of delaminated plates made up of

Graph.te/Epoxy have been obtained.

The orthotropic axes are alternately oriented at angles 0° and 90°
with the structural axes.

The elastic constants typical of this material are:

I;L//2;1_ =40 ) 63175/2;1-::.'5; y ALZ.T-=='25;

E_ is the tensile modulus in the filament direction (30 x 10 psi)

where,

ET is the modulus in the transverse direction (.75 x 106 psi)
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Table 9.

.......

[00/90°/0°]10T, with Clamped Ends

Buckling Loads for Symmetric Cross-Ply Laminates,

ol

o2

3

4

e

0.05

0.10
0.15
0,20
0.25
0.30
0.40
0.50
0.60
0.70
0.80

0.90

-9999686
+3990517
6294934
+3544494
«2269353
-1576354
«0507059
«0567913
0394509
0289931
0222044
-0175493
0142190

+9999933
«9997470
«9971932
+9603042
«6856117
«4804679
2718917
1745731
1215207
0894789
0686417
+0543362
+0440911

<9999951
+9998327
«3985950
9926085
+3695678
8756095
.5517876
. 3610403
2536700
1879562
1449236
.1152281
0938781

+9999958
+9998625
+9969176
«9951751
.3640387

+9560119.

« 7965493
- 5774029
+ 4205562
3176146
«2480524
1991666
1635797

3999960
+9998705
3989960
9956418
«9862131
+9646097
8556681
-6943155
» 5460455
+4354499
+3554099
2968545
«2531960
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Fig. 7 Effect of Symmetric Delamination on Buckling Loads of
Cross-Ply Laminates with Clamped Ends.
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®

‘ Table 10. Buckling Loads for Symmetric Cross-ply Laminates,

® [00/903/00]101,, with Clamped Ends

.1 02 03 04 05

®
0.05 |.9999907 |.9999937 |.9999953 .9999960 | .9999961
0.10 | 9994218 |.9997648 }.9998374 .9998647 | .9998721

Y 0.15 | 7516396 |.9974912 |.9986399 |.3989348 | .9990081 °
0.20 |.4237520 | .9724079 |.9931818 |.9952590 | .9956966
0425 |+2713595 | .7242170 |.9714534 |.9843584 |.9863974

® Q.30 |.1885120 |.5089376 |.8856250 |.9570613 |.9651120
0.40. | 1060935 |.2882870 |.5650983 |.8017537 | .8606837
0.50 |.0679288 |.1851633 |.3703492 |.5838284 | .6974178

® 0.60 |.0471911 |.1289302 |.2603643 |.4259284 | .5492680
0.70 |+0346837 |.0949420 |.1929842 }|.32191L17 |.4384057
0.80 [.0265641 |.0728424 |.1486349 |.2515180 |+3580450

. 0.90 |.0209962 |.0576684 |[.1183607 |.2020089 |.2992045
1.00 ].0170128 |.0468003 |.0964461 |.1659502 | .25531%0

¢

C
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Table 11, Buckling Loads for Symmetric Cross-ply Laminates,

[o°/902/o°310T, with Clamped Ends

il

0.05
0.10
Q.15
0.20
0.25
0.30
0.4Q
0.5
0.60
0.70
0.80
0.90

1.00

ol

2

o3

o4

>

«9999923
+9995946
«8830985
5003633
«3205248
02226972
-1253515
-0802672
0557673
.0409899
0313961
.0240171

.0201110

«959994u
«9997616
-3917533
«9784464
7654852
5402340
«3064068
.1968816
«1571230
.1009933
0774970
-0613616

.0498036

+9999953
«3998421
9986859
«9934780
«9732843
+8954534
«5796544
«3806192
2677667
1965476
1531672
.1218322

0992930

«9999959
9998666
+9989527
+3953480
«9846975
9581666
8072930
«5908523
«4318495
3266621
«2553549
.2051583
.1685782

«9999961
.9998736
49990209
.9957556
.9865968
-.9656552
.8631055
»7008153
«5528164
4416697
«3609600
«3018072

.2576600

e
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Fig. 8 Effect of Stacking Sequence on Buckling Loads of Delaminated

Plate
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GLT 18 the shear modulus (.375 x 10g psi)

VLT is Poisson's ratio

Results are generated for laminates with the stacking sequences,
[0°/90°/0°] 107> [O°/9Q2°/0°]10T. The effect of delamination length and
thickness on those buckling loads is studied. Note that [09/90;°9/0°]4q7
means that there is a stacking which consists of one thickness of 00, {
thicknesses of 90° and one thickness of 0°, and repeated ten times.

Results obtained for symmetric cross-ply delaminated plates are
similar to those for the orthotropic plate.

Table 9 shows the values of the buckling loads, F, of a clamped
symmetric cross-ply with stacking sequence [0°/90°/10°]10-r, for several
values of the delamination length parameter 3, and of the delamination
thickness prameter, h. The same results are shown graphically in Fig. 7.
The results show that for a relatively thin delaminatin (h § .2), the
presence of delamination has a negligible effect on the buckling load of
the delaminated plate, as long as 2 S 71. On the other hand, for the case
where 3 > h the value of the buckling loads is greatly affected by the
presence of delamination, especially for plates with thin delamination.

Tables 10 and 11 show similar results for the same configuration but
with stacking sequence [o°/902°/o°] and [0°/904°/0°] respectively. The
results of Tables 9, 10 and 11 are compared graphically in Fig. 8, with the
results obtained previously for the orthotropic plate (Table 1) for
delaminatin thickness h =.1.

It is clear from Fig 8. that as the thickness of the 90° layers
increases w.r.t. the thickness of the 00 layers the value of the buckling
load parameter becomes larger for the same delamination length and

thickness. On the other hand, we have to realize that the value of the
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B
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Fig. 9 Effect of relative stiffness on the buckling load of symmetric
cross-ply laminates.
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Table 12.

Buckling Loads for Symmetric Cross-ply Laminates,

[00/903/00]10T, with Simply Supports Ends.

&

ol

2

3

-4

)

0.05
0.10
Q.15
0.20
10.25
0.30
0.40
0.%0
0.60
0.70
0.80
0.90

1.00

«9999995
+9999814
«9998244
«3786462
«5656249
- 7453109
-4231350
+2710060
+1862612
-1383413
.1053314
-0837068

«0678074

«93399997
«9999673
+9996977
«99935297
9983632
«9950259
+9511346
7105996
« 5026573
3715460
«2853457
2258895

.1832116

«3999998
«3999903
«3399250
999074

+G989669
«9972902
«9566541
.9483680
.8408561
.6816561
. 5420407
.4362042
3572710

«3999998
«9999917
+9999364
«9997290
9991611
«9973754
9906448
9701004
+9239711
-8435466
«7385384
6313113
«5363347

9999998
9999921
9999396
9997439
.9992122
9960213
9914956
9738030
9364303
8742498
-7923643
7033758
6181324
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Fig. 10 Effect of Symmetric Delamination on Buckling Loads of
‘ Cross-Ply Laminates with Simply Supported Ends.
C
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buckling load parameter for each case is normalized w.r.t. the perfect
configuration.

The effect of relative value of transverse modulus (E»p) to the
tensile modulus (Eqq) is studied. Fig. 9 illustrates this effect for the
case of a symmetric, delaminated, cross-ply plate with clamped-clamped
boundary condition for a delamination thickness parameter h = .1. The
considered cross-ply plate has stacking sequence [0/90/0]1gT. The results
show that when the 0° layers and 90° layers are interchanged, the buckling
load parameter drops drastically even for a < h. A similar result has been
obtained for a [09/909/009] g1 cross-ply laminate with simply supported
boundary conditions., These results are presented on Table 12 and in Fig.
10. The results of this case are similar to those of the orthotropic plate
in general, but it is noticed that for relatively thin delamination (h =
.1) the buckling load parameter for the cross-ply laminate is much higher
than that of the orthotropic plate. This difference becomes smaller as the
delamination thickness increases.

III.1.3 Conclusions

A simple model has been employed to study delamination buckling and
the effect of location, size, and thickness of delamination on the buckling
load. The simplicity of the model limits the applicability of the results
to the case for which each region of the four parts of the plate is
symmetric w.r.t its reference plane.

For these geometries (laminates) the results serve a different purpose.
They can se employed to relate the ultimate load carrying capacity of the

completely (throughout) damaged laminate to the allowable for the

delaminated laminate,

o e Consiocnls i
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A good application of the present analysis and results is in the
analysis of adhesive bonding of two similar materials [1].

I1I1.2 Delamination Growth Results

First of all, before presenting any results, we are goint to
1‘llustr‘at:e the growth mechanism of the delaminated laminate, let us
consider Fig. 11. Consider a material with critical fracture toughness T*
and initial delamination length 30. The load is increased quasistatically
to Eo, where the critical value of the energy release rate, 5*, is reached.
As the delamination length extends by an amount A3, while the load is kept
constant, the figure shows that the available energy release rate
corresponding to the new delaminatioﬁ length a + A%, exceeds the critical
value 3*, hence growth will take place. On the other hand, if the initial
delamination length is 51, in this case an increase in the delamination
length A3y, will result in a decrease in the energy release rate,
consequently there will be no delamination growth as long as the load does
not changed (increased).

III.2.1 Orthotropic Plate:

Figures 12 to 14 contain three sets of curves showing the relations
between the non-dimensionalized eneryg-release rate, G = L4/ (EtD) , and the
normalized delamination length a = a/L, under fixed axial load and
delamination thickness. The three figures correspond respectively to the
cases h = 0.2, 0.1 and 0.02. These values of the normalized thickness are
thought to be representative of relatively thick, a relatively thin, and an
extremely thin delamination. Each curve in these figures refers to a fixed
value of the normalized axiai load F. and each curve is obtained from a
one-parameter family of numerical solutions of Eq. (75). In the case of

relatively long delaminations (i/h > 1), G varies over a wide range of
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Fig. 11 Energy Release Rate vs Delamination Length
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Fig. 14 Energy Release Rate for Orthotropic Plate
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values as a changes. Hence the curves are plotted in a semi-logrithmic

®
diagram.
In a quasi-static process of delamination growth, the energy-release
rate G maintains a constant critical value G* (the non-dimensionalized
¢ fracture toughness).
Figures 12-14 show that if the fractue toughness is relatively small,
say G* < 1072 (for very thin delamination h = .02) and G* < 10~! (for h 2
o

.1), then the delamination growth is unstable, in general, although it may
become stable shortly before the state of complete delamination (3 = 1).

Hence, if G* is small, delamination growth under a constant axial load P (a

dead load) is generally a catastrophic process. When a delaminated plate
buckles under an increasing axial load T’, the postbuckling solution follows
a vertical path on the G-3 curves (3 = constant) until the curve intersects
the horizontal path G = G*. The value of P at the intersecting point is
the ultimate axial load capacity of the plate. Afterwards delamination
grdwth starts and proceeds catastrophically under a constant axial load.

If the length of existing delamination is relatively short (3 < -ﬁ),
then G never attains the critical value G* and, consequently, delamination
growth does not occur. For such plates, the ultimate axial load capacity
i3 not governed by delamination gr‘owth,.but is determined by its elastic
postbuckling behavior. The critical buckling load is a lower bound of ,
and a close estimate for, the ultimate axial load capacity.

If the fracture toughness is relatively large, say E’) .3 (for very
thin delaminatin, Fx = .02) and G* > 1. (for E 2 .1), the figures show tha.t
all curves lie above the curve corresponding to Pyam (Pqagp = B3 + (1-R)I.
Consequently, {f h is small and G is large (as given above), the critical

(buckling) load of a completely delaminated plate is a close lower bound of
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Fig. 15 Energy Release Rate for Symmetric Cross-ply Laminates
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® the ultimate load carrying capacity of the laminate. If the fracture
toughness lies between these two extreme cases, rel tively high and
relatively low, then the delamination growth and the load carrying capacity
will depend upon the value of the fracture toughness G* as well as on the
initial delamination length parameter. The above statement is true as long
as the deflection and the end shortening are both bounded (see Figures 18
and 19). It is clear from the obtained results that for the same level of
the applied load and for the same delamination length, the energy release
rate increases as the delamination thickness increases, i.e. for the same
material the possibility of delamination growth increases as the thickness
of the delamination increases.

III1.2.2 Symmetric Cross-Ply Plate

The energy release rate is obtained for a delaminated plate made up of
Graphite/Epoxy with same material constants as given in the results of the
buckling problem. Among the different stacking sequence configurations,

which we deal with in the buckling problem, we are going to consider the

case of the stacking sequence [0°9/909/0°]1g7. Fig. 15, shows the results
for the cross-ply laminate with delamination.thickness h = .2. The general
shape of the obtained curves is similar to that of the orthotropic plate.
The only difference between the cross-ply results and the orthotropic
results is that for the same delamination length and delamination thickness
and some applied load, the energy release rate for the cross-ply laminate
is smaller (not much) than that of the orthotropic plate. Note that, when
we say same level of the applied load, we have to keep in mind that this

load is normalized w.r.t. the perfect geometry plate in each case.
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Fig. 16 Energy Release Rate for Unsymmetric Cross-ply Laminates
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Fig. 17 Energy Release Rate for Unsymmetric Cross-ply Laminates
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Fig. 18 End shortening of delaminated orthotropic plate.
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® II1.2.3 Unsymmetric Cross-ply
Since for lapjnates, in general, there exists a coupling between
bending ane extension, the present model is used to study the effect of the
presence of coupling between bending and stretching on delamination growth.
In this aspect, a delaminated plate in the form of unsymmetric cross-ply
laminate is studied. Note that for such geometry, there is coupling
between bending and stretching regardless of the level of the applied load,
and therefore the possibility of bifurcational buckling does not exist.
The unsymmetric cross-ply, [909/0°]ior is made up of Graphite/Epoxy. Figs.
16 & 17 show the energy release rate vs the delamination length for various
levels of the applied loads for delamination thickness h =.1and h = .2,
respectively. Unlike the orthotropic case, Fig. 16 shows that even for a <
h there exist an energy release rate, and the curves suggest unstable
growth in this range. The results show that for the same parameters, the
energy release rate for the unsymmetric cross-ply is less than that of the
orthotropic plate. Fig. 17 gives the energy release rate for the
® unsymmetric cross-ply with delamination thickness n o= .2, the results are
similar to that obtained for the orthotropic and (symmetric) cross-ply
plate.
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