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A COMPARISON OF QUANTUM, CLASSICAL, AND SEMICLASSICAL
DESCRIPTIONS OF A MODEL, COLLINEAR, INELASTIC COLLISION

OF TWO DIATOMIC MOLECULES

I. Introduction

Molecular dynamics simulations involving a relatively large number of

molecules are becoming an increasingly powerful tool for the study of both

gas and condensed phase phenomena. There has been considerable progress in

the ability to simulate a variety of equilibrium and nonequilibrium situa-

tions and in calculating, for example, transport properties (1). This

progress is due both to the imoroved computational facilities and improved

methods of doing the calculations.

There is a now interest in using molecular dynamics to describe the

interaction of a shock wave and a condensed phase material. The motivation

for this approach is based on the observation that the region immediately

behind the shock wave is not in equilibrium. Thus molecular dynamics might

be used when the usual fluid descriptions, which assume equilibrium equa-

tions of state, transport processes, and reaction rates, are not valid.

Typical molecular dynamics simulations (3) describe the time evolution of

the dynamical state of the system by solving the classical equations of

motion. These calculations incorporate all of the interparticle inter-

actions as accurately as possible. For most applications, this classical

approximation to the dynamics is justified because typical quantum mechani-

cal interference effects (e.g.,resonant cross sections) tend to be averaged

out in systems possessing many degrees of freedom (4).

Manuscript approved October 1, 1985.
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Under some circumstances however, there might be residual quantum

mechanical effects, even though a statistical average is taken. This paper

presents the preliminary work done to develop phenomenological models of

vibrational energy exchange which can be incorporated into large scale

classical simulations. These models might be designed, for exammle, to

incorporate some of the effects of discrete vibrational excitations, and

thus test when they might be important in the calculation. The first step

in developing such models is a careful comparison between represencative

classical and quantum calculations, such as presented here.

1l. Background to Present Research

Due to practical computational limitations, most molelcular dynamics

studies treat molecules as rigid bodies (5). While this approach precludes

the possibility of vibrational energy exchange, it does incorporate the very

important dynamical effects of rotational and translational energy exchange

though molecular collisions. There are many examples in the literture of

simulations involving various shapes of rigid molecules (6). The inter-

action between molecules is generally taken as a sum of pairwise additive,

point interactions usually (but not always (7)) acting between atomic

centers. The equations of motion are most efficiently integrated in a

cartesian coordinate system with a series of holonomic constraints imposed

to reoroduce the molecular structure (5).

Some dynamics simulations have included vibrational degrees of freedom

explicitly (see for example, reference (9)). This requires a knowledge of

not only the intermolecular interactions (including their angular

dependences), but also a knowledge of the intramolecular potential as a

function of the nuclear coordinates. Explicitly including the vibrational

2
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degrees of freedom might also allow for the additional reactive processes of

bond dissociation or association (10). A disadvantage of this approach is

the requirement of treating all degrees of freedom on the same dynamical

footing, i.e., classically. While the classical treatment of the transla-

tional and rotational motions is generally an excellent approximation, the

vibrational interactions begin to become less reliable (8).

A further disadvantage of explicitly including all degrees of freedom

in a molecular dynamics simulation is the problem of temporally resolving

the rapid internal vibrations. This requires an integration time step on

the order of 1/40 of a vibrational period for systems with strong but

realistic bond potentials (9). Some studies have avoided this problem by

including artificially soft bonds, which vibrate at a low frequency (10,11).

The less rigorous rigid-body type of simulation can accomodate a larger time

step in the numerical solution of the classical equations of motion, con-

sequently a longer period of time can be simulated. In addition, there are

generally fewer equations of motion since there are fewer degrees of free-

dom.

The goal of the present research program is to investigate ways in

which the effects of the vibrational degrees of freedom might be included

within the framework of the computationally tractable rigid body approach to

molecular dynamics simulations. Of particular interest eventually is the

determination of the influence of the vibrational degrees of freedom on the

accumulation of internal energy and subsequent bond dissociation. The

initial step in such a study must be a determination of the quality of a

classical or semiclassical treatment of a vibrationally inelastic molecular

collision. Such a determination can be made by comvaring an exact quantum

calculation to the corresponding classical and semiclassical treatments.

3
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Previous work in comparing quantum, semiclassical and classical methods

for treating molecular collision phenomena has been motivated primarily by

interest in ascertaining the correspondence between classical mechanics and

,uantum mechanics (12). The motivation for the present work stems from the

need to incornorate, within the classical framework of dynamics simulations,

the important effects arising from vibrational ener-y exchange, quantum

effects due to interference, and the effects arising from dissociation.

Apart from the computational advantage of the classical approach to

molecular dynamics, it also possesses the advantage of allowing one to

follow the "trajectories," especially through the important interaction

region. Quantum dynamical treatments allow one to "look" at the physically

measurable quantities only before and after collision, oreventing intuitive

insight into the effect of a third body or other perturbations which might

interrupt the two body interaction. Such information from quantum calcula-

tions would be extremely useful, and attempts have been made previously to

address this question (13).

The first step in the present work is the selection of the particular

model molecular collision problem to serve as a benchmark for investigation.

The model chosen involves the collinear inelastic collision between diatomic

molecules, the details of which are described in section IIT. Transition

probabilities are determined quantum mechanically, semiclassically (using a

zlassical path approximation) and classically. The irecise methodologies

used are described in section IV. The results are Dresented and compared in

section V. The last section contains a discussion of the results and how

they impact on the question of improvement of molecular dynamics simula-

tions.

4
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UT1. The M1odel Problem

The problem we consider is a collinear collision between two homo-

nuclear diatomic molecules. Each molecule is represented as a harmonic

oscillator. The masses and force constants are chosen to corresoond to

those of the oxygen and nitrogen molecules. The intermolecular interaction

arises from a Lennard-Jones Dotential acting between the inside atoms in the

collnear system. Thus only adiacent atoms interact. This is illustrated

schematically in Fig. !, where the atoms are labeled a,b,c and d and the

potential between atoms can be written:

_(r r (la)

(r r (l <b)
Vcd(r2) = , (r2  r20

V 4c a(~ )12 0'L )6! (ic)
bc R - Rb

V v V 0o (1d)
ac ad bd

where r O and r20 are the equilibrium separations of the molecules ab and bc

respectively. The separation between the centers of mass of the two

molecules is denoted by R,

R~b 1 /2(r, +r2

The harmionic force constants ire denoted k, and k2 " i and c are the Lennard

Jones distance a, energy oarameters respectivelr. For the oroblem

*. considered here,

5
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r j =.22 bohr '= 20.57 ev/(bohr)2

r2  = 2.074 bohr k= 40.09 ev/(bohr) 2

"a =M 1 amiu a 4.730 bohr

m = md = 14 amu C = .010 ev

"Je express the T-nnard-Jones potential, which is a function of Rbc, in terms

of :he )c 3eoaration when the two oscillators are at there equilibrium

positions (F), and the small deviations from this value (x, and x2 .

F = R - 1/2 (rL0 + r 20 ) (2a)

V r, - r1o (2b)

= r2 - r2 0

Using Eans. (2) in Eqn. (Ic) the Lennard-Jones potential becomes,

F -- X 1-

2 (x_ + X2 ) (x + x 2 )

(3)

F F (

where,

a 1/2(x I + x2)/F. (4)

The kinetic energy, in the center of mass coordinate system, zan be

written as,

2 2 2
p P

... T IT U- . . . . . . -f" (5)

,, d bc

<6



where , 02, and P are the momenta zon4ugate to r', r2, and R and the

reduced masses are defined as,

ma  m m
= m c d

ab m mb cd mc + md

(6)

(ma + %)(mc + md)

ab,cd ma + mb + m. + md

The Hamiltonian for the model system is thus,

2 2 2
P P 2 1 + P

ab cd abcd

+ T + VLJ(Rb)
abcd

IV. Theoretical Approaches to the Scattering Problem

A. Ouantum Mechanical Description

Since the Hamiltonian for the system does not depend on time, we search

for stationary state solutions of the Schroedinger equation. Tn the quantum

mechani-al treatment of inelastic scattering, it is convenient to work with

a comolete set of functions of the internal coordinates r, and r2 . The

scattering wavefunction, which is a function of the three zoordinates r,, r-)

and R, is then written as a linear expansion in this set of functions, where

the ex.ansion coefficients are functions of R.

"(R,r = r2 )  fpn (R)n(r r2) (8)

n
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.he set of functions (r ,r,); is chosen to be the eigenfunctions of the

4nteral oortion of the Hamiltonian. Since the internal .ortion of the

Hamiltonian is the sum of two harmonic oscillator Mamiltonians, the eigen-

functions are simD!r products of harmonic oscillator eigenf'inctins.

H0 (r.,r 1) (r ,r ) E (r , ) (9)

he re

hn(ri-r2) = 1(r1 ) j(r2) (10)

and

.1 kI 1/2 -( k 2  1/2

n t2 
1 ab cd

he index n soecifies the state of both molecules, i.e. soecifies i and j.

The time indeoendent Schroedinger equation for the entire system is,

_T2 d2  0T" + V (R,r ,r2) -
" H°(r.,r 2)] (R) n(r i,r2)

.. - b,cd n

" E j. f n(R) n(r1 ,r2) (12)

--ultioliing_ on the left by (r,,r) and integrating over the internal

coordinates, r and r, yields the following set of coupled equations for the

exDansion coefficients f 'R),
r.z

d2  2.ab,cd
.2 f ) \ )fpP(R) + n3)

d ' 0zz I n r ;n

ha

irS
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I.I

where

Vzn(R) (rr)Vb(R'rr) n(r 'r2 )dr dr2  (i")

Eqn. (13) can be rewritten in matrix form as,

[-d
2

with the symmetric matrix D defined by,

D D ab 2 [V (R) + (E - E)5 .] (16)
ij ji 2 ij i ij

The coupled equations (Eq. 13) are solved numerically by the R-matrix method

(14). The essential idea of the method is to solve the problem in the

interaction region where the basis states are coupled to one another and

*. then to match this wavefunction with the known uncoupled asymptotic forms.

The solution in the interaction region is determined by dividing the R-space

into many sectors within which the coupling potential does not change

significantly. Within each sector, the unitary transformation is found

which diagonalizes the coupling matrix D.

U + (R) D(R)U(R) =D'(R) (17)

Thuation (15) may then be written within each sector in the uncoupled form,

d2  U(R) = Q'(R) (18)

where

%-



*1 f(R) f(= (19)

and D' is a diagonal matrix. The solution is then matched at adjacent

sectors, ensuring the continuity of the wavefunction and its derivative.

Formally, the summations over n in Eons. (12) and (13) extend to

infinity. This is because an 4nfinite number of the functions tn(r,r 2 ) are

required to form a complete set of functions which soan the space of r and

r2 . The choice of internal state eigenfunctions to represent this space is

a judicious one however, since it is expected that even in the interaction

region, the oscillators will to some extent retain their identity. In
,

practice we do a finite basis set expansion. Functions are selected on the

basis of their energy, and the calculations are performed until increasing

the length of the expansion has no effect on the answer.

To solve the Schroedinger Equation, we need to know the elements of the

coupling matrix defined in Eqn. (14) as a function of the molecular separa-

*J tion R. This requires either the calculation of N-squared integrals (N is

the number of basis states) each time a different value of R is considered

during the course of the calculation, or the prior storage of a large amount

of R-dependent data. To avoid the storage problem and to simplify the inte-

gral computation, we use the following scheme for evaluating the matrix

elements of the Lennard-Jones potential.

In Eqn. (3), the Lennard-Jones potential acting between the inside atoms

was written so as to separate the dependence of the potential on the inter-

nal coordinates (the a dependence) from the dependence on the collision

* coordinate (the F dependence). For a given molecular seoaration, we can now

expand the ootential about the equilibrium positions of the oscillators.

Thus eauation (3) is expanded in a Taylor series in a about the point a-0.

U-



dV I 2V
V(F,-) V(F,-0) + (3) a + --1- ,%2 + (20)

dc 0 '!,d 0

Carrving the expansion to fourth order and integrating over the internal

coordinates, the coupling matrix V becomes,

V([78(FT i 2 - 21(F(a)6() /

S4€[364() 12 - 6() A ( 32

+ 4Cf7S~a).2 - 1(~ ] ~J )/2F

126 (3

+24)[1365(F) - 126(F) A(() 2F

FFF

(21)

with the matrices A(n) defined as,

(n)

(n fi(r,,rZ) (xvJ_,,) .(r1 ,r )dr,,dr2  (22)

The important point is that these matrices, and hence the integrals which

make up the coupling elements, have no dependence on the collision coordi-

nate. The coupling matrix is obtained as a function of R by multiplying

these previously stored matrices by the R-dependent coefficients shown in

Eqn. (21). We have found that the coupling matrix is well converged when

the expansion of the Lennard-Jones potential is carried out to fourth order.

As an additional test, we have performed a number of classical trajectory

calculations using this truncated expansion of the potential. Again, the

fourth order expansion produces results which are the same as the analytical

form for the potential :o four decimal places.

.. .



3. Semiclassical Description

The semiclassical method we have chosen is generally referred to as 3

classical path approach. The underlying idea is that motion along a

collision coordinate is responsible for initiating transitions among the

discrete quantum states of the colliding partners, but that this motion is

essentially classical in nature. One first chooses a reasonable mean tra-

jectorv for the collisional degree of freedom. This trajectory could be, for

example, a classical trajectory associated with a hypothetical system for

which the internal degrees of freedom have been frozen. Since the inter-

>:- action among the collision partners is a function of the collision coordi-

nate, this predetermined trajectory provides the interaction potential as a

function of time. Using this interaction potential, one then constructs a

time dependent Hamiltonian operator for the internal degrees of freedom.

The time dependent Schroedinger equation is then solved in the subspace of

the internal degrees of freedom.

" -For our model problem, we first separate the Hamiltonian into a portion

.-. which contains all of the internal coordinate dependence and a portion which

depends upon the collision coordinate only,

,%,,-._,2 d 2
2 d 2 + V(R,r )} + (H° + V(R,r) - V(R,r )} (23)

2lab,cd dR0 0

The first set of brackets contain a simple '4amiltonian for the collision

coordinate. 'de solve this one dimensional problem classically to obtain the

collision coordinate R as a function of time. The second set of brackets

contain a Hamiltonian for the internal degrees of freedom. The collision

coordinate appears as a oarameter in this Mamiltonian, its time dependence

having been pre-determined. The equation which must be solved is then

12
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'. (r 1, r,, t )
r r

__________ [o + V(a,r) -V(R,r 2 (r,,r,t) (24)
d t 0o

As in the close Coualing calculations, we expand the wavefunction in a basis

.of eigenstates of H , the harmonic oscillator product functions.

I ~?(rj'r2't) " J(r,'r2)X3t

(25)

(r,,r + i3

Left multiplying Eqn. (24) by one particular eigenfunction and integrating

over the internal coordinates produces equations describing the time depen-

dence of the real and imaginary components of the expansion coefficients:

-h _ E -V(R, . + V
dt j o j kjk k

(26)

-h -a {! - V(R,r )}a - Vjn
dt .30 . kjk'kJ k

These equations can then be solved numerically. A typical calculation

,. begins with the a large separation between the two molecules with unit

probability of being in one of the internal eigenstates (entrance channels).

The system then proceeds through the interaction region and back out to

large separation. The square moduli of the expansion coefficients then give

the probability that a measurement will find the system in each of the

possible exit channels. The validity of the classical path approach is

13



discussed by Child [15]. Essentially what is found is what one intuitively

expects. The change in momentum associated with transitions among various

diabatic states should be small relative to the momentum associated with the

collision coordinate. Tn other words, the classical paths associated with

different entrance and exit channels should all lie close to the assumed

oath.

C. Classicai Description

The classical description of the inelastic scattering is also based on

the Hamiltonian of Eqn. (7). While classical trajectories governed by this

Hamiltonian are straightforward to calculate (16), it is less clear how to

compare the trajectory results with the corresponding quantum mechanical

results. The most widely applied approach for making comparisons between

classical and quantum results is the quasi-classical method (17). 3efore

applying this approach, a canonical transformation (26) is applied to the

Hamiltonian of Eqn. (7) such that the new internal coordinates and momenta

correspond to the action-angle variables. The action variables are

proportional to the total energy of the oscillators and are therefore

susceptible to being "quantized" in units of Planck's constant (18). The

angle variables then correspond to the phase of the oscillators. For the

harmonic oscillators under consideration, the old internal coordinates and

momenta (r,p) are given in terms of the new action-angle variables (n,a) as:

2(n+ i/2)fi sin

r 0 W

(27)

p = [2(n + 1/2)fnww] I/ 2 cos q

14
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'"he Hamiltonian of Eqn. (7), in terms of these new conjugate variables, is

given by,

H(PRnn 2 ,qjq 2 ) = + VLJ(Rri (n,q)r 2 (n2 q2 ))
**-abcd

(28)

(n, - 1/2) ,,a + (n, 1 /2) Inw,

A useful property of the internal action-angle variables is that in the

asymptotic region, where the interaction potential vanishes, the Hamiltonian

° (Eqn. (28)) becomes independent of the new angle variables. Hamilton's

equations of motion, given by,

IH 3H

= n,

3H al (29)", " -a- -n2
T_ q2  2 2

-- R

therefore imply that the action variables (i.e., the internal oscillator

energies) become constants of the motion both before and after collision.

The major obstacle in making zomparisons between classical and quantum

mechanical results is the fact :hat the classical action variables (i.e.,

:he classical counterpart of the vibrational quantum numbers) are allowed to

hiave a continuous range if values, whereas the quantum mechanical oscilla-

tors are allowed to have only discrete values for Quantum numbers (i.e.,

integers). The crux of the quasi-classical approach (also known as the

103
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"binning" or "histogram" method) is simply to assign final (asymptotic) non-

integer values of the action variables to the nearest integer value. In

practice, a large number of trajectories are calculated, each trajectory is

subsequently "binned", and a statistical analysis is performed on the

results of binning the "batch" of trajectories.

Trajectories begin in the asymptotic region, where the variables are

assigned the following initial conditions (assuming a total collision energy

R - large

n, - integer (corresponding to initial quantum state)

n2 = integer (corresponding to initial quantum state) (30)

P - [2Uabcd(E - (n, + 1/2wl - (n 2 + 1/2)" 2 )]I/2

q, random (0,27)

q2 - random (0,2).

The angle variables (i.e., the initial oscillator phases) are chosen

randomly from a uniform distribution between 0 and 2r. A large number of

trajectories simulates, to a close approximation, all of the possible types

of molecular encounters for this collinear model. The equations of motion

(Eqn. (29)) are numerically integrated until the collision coordinate

becomes large. kt this point, the final action variable is assigned to a

"bin" corresponding to the quantum final number.

1'-.
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V. Comvutational Results

Calculations were performed for total collision energies ranging from

1.0 ev to 2.25 ev. Figure I shows the intermolecular potential acting

between atoms b and c. On the same energy scale, the figure also shows the

energy level spacings for the two oscillators and the positions of the first

several levels of the combined system. Note, for example, that a collision

startin z in the ground state (0,0) with a total ener-gy of 1.0 ev would have

roughly .24 ev as initial internal (vibrational) energy and would thus have

about .76 ev as initial translational energy in the collision coordinate.

The Lennard-Jones distance parameter, a - 2.5 A, is somewhat smaller than

the approximately 3.5 A that one might exoect to see for a nonbonded inter-

action between nitrogen and oxygen. This was done to increase the amount of

inelastic scattering at low energies. The indexing scheme for the diatomic

product functions is shown in Table I.

As was mentioned earlier, the flexibility in the semiclassical approach

is in the choice of the classical path. A strict interpretation of a

quantum mechanical description of the scattering event does not recognize

the existence of well defined "path" for the collision coordinate along

which the system proceeds. We do, however, speak of such a path as it

relates to the approximate semiclassical description. As described above,

the most obvious choice for this path is a classical trajectory for the

collisional degree of freedom with the internal coordinates frozen at their

equilibrium values.

Table II displays a comparison, for a particular collision, of quantum

imechanical and semizlassical state-to-state probabilities where various

classical oath approaches were used. The semiclassical calculations at this

energy all use 25 basis states. The close coupling calculations use 30. At

17
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this energy, 14 of these channels are open. The total energy for tne calcu-

lation is 1.25 ev. and the oscillators are initially in their ground states.

-kt 1.25 ev, all of the calculations show roughly 90 percent retention prob-

abilitv (elastic scattering).

V The first semiclassical column in Table II corresponds to a calculation

in which the oath is the simple classical trajectory for the collision

zoordinace. The agreement is at least jualitatively quite good. Note the

direction of the deviation. The semiclassical scheme predicts too much

inelastic scattering. This deviation can be understood by noting that

energy is not conserved in this calculation. The system begins with the

minimum allowable energy in the internal vibrations. As the molecules

proceed along the classical trajectory, the Hamiltonian for the internal

degrees of freedom changes with time reflecting the coupling between the

oscillators. This coupling produces an amplitude to find the system in

higher energy internal states. Energy is not a constant of the motion for

the internal portion of the motion since the Hamiltonian depends on time,

but energy is conserved by construction for the collision coordinate.

Therefore energy is not conserved for the system as a whole. The molecules

can emerge from the collision with appreciable probabilities of being found

in higher energy states, yet the molecules translate away from one another

woith the same kinetic energy that they had during the approach. There is a

net adition of energy to the system.

* In the collision considered here, a consequence of this energy addition

% is too much inelastic coupling. As the molecules approach each other and

! translational energy begins to be transferred to internal vibrational

energy, one expects the molecules to slow down. With less energy in the

N-, translation, the molecules would not approach as closely and consequently,

18
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there would be less coupling. A orediction of the probability for a system

starting in a highly excited state to emerge in the ground vibrational state

has the opposite problem. Starting with only a small portion of the energy

1i translation, the trajectory would not provide enough coupling since it

cannot reflect a transfer of energy from the internal coordinates to the

collision coordinate.

These two orobabilities, of a transition from the ground state to a

oarticular excited state and from that excited state to the ground state,

are known to be equal by microscopic reversibility. It is then reasonable

to symmetrize this probability matrix to impose this feature of the correct

ohysical result. We do this simply by taking the arithmetic mean of two

symmetrically disposed probabilities. The diagonal elements, the probabili-

ties of elastic scattering, are then adjusted by the normalization condi-

:ion. Results, which have been modified in this way are shown in column b

of Table II. These are a notable improvement (in comparison to the quantum

mechanical calculations) over the probabilities in the first column.

The problem of the lack of energy conservation in semiclassical calcula-

tions of this sort is well known. Schemes designed to compensate for this

weakness have been proposed, usually by choosing a classical trajectory

" which is characterized by an energy (19) or velocity (20) averaged between

initial and final states. These schemes 7ield a path which is suitable for

the one state-to-state transition of interest. ';e are interested in simul-

taneously ascertaining a probability of the system emerging in each of The

exit channels given that it began in a particular entrance channel. The

above discussion suggests the incorporation of some sort of feedback mechan-

ism in the semiclassical calculations. ?erhaDs the classical oath can be

-- ' 19
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hynamically modified so as to reflect, at least oartially, the vibrational-

translational energy transfer. Ideas along these lines have been prooosed

in the past, focusing on the coupling of the oscillator response to the

classical path (21) or on the incorporation of an effective potential for

the collision coordinate (22).

The probabilities in the third semiclassical column of table I!, column

result from a simple incorporation of some "back coupling" of the iaer-

nal degrees of freedom to the relative motion of the collision partners.

The classical path at the onset of the collision is the unperturbed classi-

cal trajectory associated with the total collision energy less the internal

energy for the particular entrance channel. The path is modified at each

timestep of the numerical intregration of Eqn. (26) according to an energy

conservation constraint imposed on the system as a whole. Since the time

step can be made arbitrarily small, this corresponds to a continuous modifi-

cation. The total energy at any instant is,

E =constant __ + i XE + V (31)
i ii mnt

-ab,cd

The first and second terms are the kinetic energy in the collision coordi-

nate and the internal energy respectively. The third term is the inter-

action potential which is calculated as,

Vint = , *(rl,r 2) V(r1 ,r2 ,R) 1(rl,r 2 )3r, r2

(32)

*

i 3

20

-. -. - . . > . . .



The Kinetic ener--v in the collision coordinate, aid hence the velocity are

continuously modified such that 7qn. (31) remains satisfied. he relative

motion is essentially governed by an effective potential which is a function

of :he auantam mechanical state of the internal system as well as the rela-

tive center of mass separation. The resulting path, although not optimal

for any particular state-to-state orobability is biased toward exit channels

which olav :he greatest role in the inelastic scattering.

The results in column c of Table II show that modifying the classical

oath as described above improves the orobabilities compared to case a,

almost halving the errors in this case. Symmetrizing the probability matrix

as before leads to the entries found in the last column )f Table II. These

results are in excellent agreement with the quantum mechanical probabili-

ties. Al1 of the semiclassical results reported below have been obtained by

this procedure of imposing energy conservation and svmmetrizing. Although

the agreement between the quantum mechanical and semiclassical results is

not always quite as striking as it is in the above example, we find that it

remains vev good for every case we studied. Figure III shows inelastic

collision probabilities for the conditions in the sample calculation dis-

* cussed above. 5hown are probabilities that a system starting in a particu-

* lar initial state, has a collision which is inelastic, leading collectively

to any other state. That is, we are plotting one minus the retention prob-

ability. The close coupled quantum results are labeled with a "Q" and the

semiclassical results are labeled with an "S". -ne classical results, also

shown and labeled with a "C," will be discussed later. klthough there are

fourteen open channels at this energy, the probability of an inelastic event

approaches essentially zero by about the ninth or tenth state. Figure IV

corresoonds to collisions at 1.0 ev, a lower total energy than Figure 1I.
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7ilgure V corresoonds to a hizher energy 1.75 ev. Note that the scale of the

-raoh has been expanded by an order of magnitude for the 1.0 ev collisions

due to the small orobability of inelastic scattering. For the 1.0 ev calcu-

l~ations, there are eight oven channels. Sixteen basis states were used in

" the quantum calculations and fifteen in the semiclassical calculations. As

seen in Figure V, there is considerably more inelastic: scattering at 1.75

""ev, where L-orty five basis states were used for both the iuantum and -he

se- cLassical calculations. Figures IIi-V show basically the same trends in

the probabilities. Increasing the energy simply increases the amount of the

inelastic scattering.

It is also instructive to compare the quantum and semiclassical results

for scattering from a particular initial state. Figure V! shows such

results for a collision at 1.75 ev starting in the second state, i.e., a

state with the nitrogen molecule in its ground state and the oxygen molecule

in its first excited state. As shown in Figure V, this is the initial state

for which the semiclassical and quantum calculations show the least agree-

ment. There is roughly equal probability for a transition to the first

state and a transition to the fourth state. These correspond to transitions

of the oxygen to its ground state and to its second excited state respec-

tivelv. The semiclassical calculations slightly underestimate this prob-

ability in both cases. The normalization condition requires that the sum of

the deviations in Figure V! vanish. :t therefore follows that the retention

orobabilitv is overestimated.

T"he more complete results of the semiclassical and quantum mechanical

calculacions at the three energies (1.0 ev, 1.25 ev, and 1.75 ev) are shown
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in Tables Ill-V. The semiclassical state-to-state probabilities are dis-

Dlaved in parentheses below the quantum probabilities. The quantities plot-

ted in Figures 1I1, IV, and V are simply one minus the diagonal elements in

these Tables. Figure VI is the second column in Table V. Not all of the

twenty seven available channels are represented in Table V. One can see

'however :hat the amount of inelastic scattering is droooing off rapidly.

-he zlassical results shown in figures Ill-K are all based on the

iuasi-classical (17) (binning) method described in section III. Transition

probabilities from each specified initial state were calculated from 500

trajectories. Previous applications of the quasi-classical method have had

greatest success when many final states are dynamically accessible (23). It

seems reasonable to expect, therefore, that higher collision energies should

begin to show better agreement between the classical results and the corre-

soonding quantum results. By inspection of Figures Ill-V and also from the

results at 2.25 ev shown in Figure VII, one can see that the agreement does

not improve as expected. Certain state-to-state probabilities do show

excellent agreement, however, and general trends in transition probabilities

are modelled reasonably well. For example, for collisions at 1.75 ev. (Fig.

VI), the classical estimate of the elastic scattering from the n(O2) 1,

n(N2 ) = 0 initial state is significantly less than the quantum prediction,

giving rise to a classical overestimate of the inelastic scattering from

" that state (Fig. V). At 2.25 ev. (Fig. VIII), the elastic scattering from

the ground vibrational state is in excellent agreement with the quantum

results. At 2.25 ev (the highest energy considered), the classical estimate

, is high for inelastic scattering from initial states where nitrogen is more

*: excited than oxygen, and it is low for initial states where oxygen is more

excited than nitrogen. This trend is not apparent at lower collision

energies.
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At low collision energy (1.00 ev.), the classical binning approach

shows essentially zero inelastic scattering for all initial states. This is

a severe test of the binning procedure and it is normally under these low

energy conditions that other classical approaches e.g., the moment method

(24) or Wigner distribution methods (25) have had more success. The

unbinned final actions for a set of 400 trajectories are shown in Figure

ViTI. it is clear that the artificial imposition of binning "boundaries"

may contribute to the inadequacy of the classical results. Other procedures

(such as those mentioned) may prove more useful. Work is in progress to

determine the success and practicality of these other approaches.

Similar final action plots are shown in Figures IX and X for a higher

collision energy (2.25 ev), where inelastic scattering dominates. The

initial classical actions for the collisions represented in Fig. IX corres-

pond to quantum state 8 and for Fig. X to quantum state 13. The energetic-

ally accessible region for this high energy system is extensive. There are

44 open channels at this energy. This means that at least 44 of the bins

represented in Figures IX and X are accessible within the constraint of

energy conservation. The emerging boundaries of the points in Figures IX

and X show that the dynamically accessible regions are much more restricted.

Figure IX for example, only 14 channels are being populuated (21 channels

are oopulated via the corresponding quantum mechanical dynamics). Apparent-

ly, the classical dynamics precludes the possibility of populating some of

these bins which correspond to states which are quantum mechanically access-

ible. Perhaps an alternative choice of initial condition selection (e.g.,

via the 'igner distribution method (25)) or analysis of final conditions

(e.g., the moment method (24)) would eliminate some of the discrepencies.
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VI. Summary and Oiscussion

As a shock passes through a condensed phase material, each molecule

instantaneously feels an impulse. This impulse is the sum of the changes in

the individual forces the molecule feels as each of its neighbors moves.

Studying the microscopic behavior of such a system requires evaluating how a

soecific impulse effects a molecule, given the molecule's initial state and

the impulse characteristics. To address this nroblem, we first need to ask

about the behavior of the microscopic system, and then about a macroscopic

ensemble of many such systems.

This paper addressed part of the miscroscopic question. Specifically,

we asked how quantum mechanical effects influence the description of a

microscopic collision, and what is a good calculation of the collision

properties. We considered two harmonic oscillators interacting through a

Lennard-Jones potential. This model problem is a vehicle for studying the

quantum effects of discrete vibrational states on the collision of two

molecules. The model problem was solved quantum mechanically by a close-

coupling method, semiclassically by several variations of a classical path

aoproach, and classically by a quasiclassical trajectory method.

The quantum mechanical calculation was considered the correct answer

against which we compared the results of the classical and semiclassical

calculation. The output of this calculation was the final distribution of

internal states of the two molecules, once they had collided and completely

seoarated. The auantum mechanical results were discussed in Section V.

The straightforward semiclassical classical path description discussed

in Section V gave reasonable answers. However, when the path was modified

zo conserve energy and the microscopic reversibility was imposed on the
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final state to state probabilities, the results were found to be in

excellent agreement with the close-coupling calculations. The method

faithfully reproduced the exact quantum mechanical stace-to-state transition

orobabilities for a wide range of collision energies. This range extends

from energies which produce almost no inelastic scattering to energies which

=roduce mostly inelastic scattering. This resul. is encourag4ng since an

azemzt -as made tc zhoose :ocenrtials which correszcrd -.-- wlhat might be

expected in a realistic molecular collision.

The classical method used in this paDer is the quasi-classical

trajectory method. Final values of internal coordinates (action variables)

were assigned to Quantum states by a simple binning procedure. The results

for the final distribution of vibrational states of the molecules do not

agree particularly well with the quantum and semi-classical calculations.

in ;articular, the region of phase space required in order to populate

states which are populated quantum mechanically and semiclassically appears

in some cases to be dynamically inaccessable.

. is reasonable to ask whether =odi:zfing the classical approach would

give better answers. For example, the quasi-classical method as implemented

is not microscopically reversible. This important dynamical concept may be

incorporated in the calculations by selecting the initial action variables

from a uniform distribution centered around a particular quantum number.

.,ch a microsc-cically reversible quasi-classical technique *was used fn a

few of the initial states, but it showed no significant effect on the

results. This is not surprising because the original batches of

tra'ectories lid not violate microscopic reversibility to any significant

degree. ther acnroaches to final action analysis, such as the moment

method, or a modified choice of initial conditions which incor-orace quantum

-26.
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effects more direc!Zr, such as the Wigner distri'zution methcd, =ight imvrove

-.he agreement between ::assical and quant'um results.

The encouraging result of this paper is the good agreement between the

quantum and the semiclassical predictions. this introduces an interesting

possibilitv for molecular dynamics calculations. The semiclassical calcula-

tions could be used to determine the distribution of states arising from a

collision. Then this distribution could be incoroorated as a submodel in a

classical molecular dynamics calculation. T1his, however, involves several

leaps of faith. First, there is a basic problem that the quantum calcula-

tion only gives the final distribution of states, in the asymptotic region

of the collision. It is not at all clear how well the semiclassical calcu-

lations represent the collision in the interaction region. The premise of

the molecular dynamics calculation would be that the results of an impulse

felt by a molecule, due to its simultaneously interacting with many mole-

cules, could be related to the results of an impulse of the same magnitude

felt by the collision with just one molecule. Even if the answers are not

equivalent, does statistical averaging make them better. These are just a

few of the questions that will be addressed in the future.
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TABLE I

Indexing scheme for diatomic product functions. Vibrational
quantum numbers for the individual harmonic oscillator states
are shown. Note that the states are ordered in increasing energy.

STATE INDEX n(1) n(2) ENERGY (ev)

1 0 0 0.2442
2 1 0 0.4401
3 0 1 0.5366
4 2 0 0.6360
5 1 1 0.7325
6 0 2 0.8290
7 3 0 0.8319
8 2 1 0.9284
9 1 2 1.0249

10 4 0 1.0279
11 0 3 1.1214
12 3 1 1.1244
13 2 2 1.2208
14 5 0 1.2238
15 1 3 1.3173
16 4 1 1.3203
17 0 14 1.4138
18 3 2 1.14168
19 6 0 1.4197
20 2 3 1.5133
21 5 1 1.5162
22 1 4 1.6097
23 4 2 1.6127
214 7 0 1.6156
25 0 5 1.7062
26 3 3 1.7092
27 6 1 1.7121
28 2 4 1.8057
29 5 2 1.8086
30 8 0 1.8116
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TABLE II

Comparison of quantum mechanical state to state transition probabilities
with those calculated using a variety of semiclassical classical
path schemes for a collision with total energy 1.25 ev. starting
in the ground state.

STATE QUANTUM SEMICLASSICAL

a b c d

1 .925 .870 .906 .893 .924

2 .073 .119 .088 .100 .073

3 .001 .002 .002 .001 .001

4 .001 .008 .004 .006 .003

5 .000 .000 .000 .000 .000

14 .000 .000 .000 .000 .000

p.:
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TABLE III

Quantum mechanical state to state transition probabilities f'or
model system with a total collision energy of 1.00 ev. Semiclassical;
probabilities (see text) are shown in parentheses. There are eight
open (energetically accessible) channels at this energy.

1 2 3 4 5 6 7

1 .981 .019 .000 .000 .000 .000 .000 .000
(.978) (.022) (.000) (.000) (.000) (.000) (.000) (.000)

2 .019 .967 .008 .006 .000 .000 .000 .000
(.022) (.962) (.006) (.010) (.000) (.000) (.000) (.000)

3 .000 .008 .991 .000 .001 .000 .000 .000
(.000) (.006) (.992) (.000) (.002) (.000) (.000) (.000)

4 .000 .006 .000 .990 .004 .000 .000 .000
(.000) (.010) (.000) (.986) (.003) (.000) (.001) (.000)

5 .000 .000 .001 .004 .994 .001 .000 .000
(.000) (.000) (.002) (.003) (.994) (.001) (.000) (.000)

6 .000 .000 .000 .000 .001 .999 .000 .000
(.000) (.000) (.000) (.000) (.001) (.999) (.000) (.000)

7 .000 .000 .000 .000 .000 .000 1.00 .000
(.000) (.000) (.000) (.001) (.000) (.000) (.999) (.000)

8 .000 .000 .000 .000 .000 .000 .000 1.00
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (1.00)

30
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TABLE IV

Same as TABLE !I! with a total collision energy of 1.25 ev. There
are fourteen open channels.

1 2 3 4 5 6 7 8 9 1-0 1. i2 I I 4

30 .925 .73 .301 .001 .300 .300 .000 .000 .300 .300 .300 .300 .)00 .^0
(.924) (.373) (.001) (.003) (.000) (.000) (.000) (.000) (.300) (.300) (.00) (.300) (.00) (.CO)

z .373 .354 .020 .051 .301 .000 .000 .000 .000 .300 .000 .000 .000 .300
(.373) (.855) (.014) (.355) (.001) (.000) (.002) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

3 .001 .020 .964 .001 .014 .000 .000 .000 .000 .000 .000 .000 .000 .000
(.001) (.014) (.-7) (.001) (.017) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.300)

4 .001 .051 .00 .910 .020 .000 .016 .000 .000 .000 .000 .000 .000 .300
0(.03) (.055) (.001) (.903) (.015) (.000) (.022) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

5 .000 .001 .014 .020 .951 .010 .000 .004 .300 .000 .000 .000 .000 .000
(.000) (.001) (.017) (.015) (.952) (.008) (.000) (.006) (.000) (.000) (.000) (.000) (.000) (.000)

6 .000 .000 .000 .000 .010 .989 .000 .000 .000 .000 .000 .000 .000 .000
(.000) (.000) (.300) (.000) (.008) (.991) (.000) (.000) (.001) (.000) (.000) (.000) (.000) (.000)

7 .000 .000 .000 .016 .000 .000 .972 .009 .000 .001 .000 .00 .000 .000
(.300) (.002) (.000) (.022) (.000) (.000) (.965) (.008) (.000) (.004) (.000) (.000) (.000) (.000)

a .000 .000 .000 .000 .004 .000 .009 .983 .004 .000 .000 .000 .000 .000
(.000) (.000) (.000) (.000) (.006) (.000) (.008) (.981) (.304) (.000) (.000) (.001) (.000) (.300)

9 .000 .000 .000 .000 .000 .000 .000 .004 .995 .000 .001 .000 .300 .000
(.000) (.000) (.000) (.000) (.00) (.001) (.000) (.004) (.995) (.000) (.001) (.000) (.000) (.000)

3. ..300 .000 .000 .000 .000 .000 .001 .000 .000 .998 .000 .001 .000 .000
(.000) (.000) (.000) (.000) (.00) (.000) (.004) (.000) (.300) (.99S) (.00) (.001) (.000) (.000)

...U. .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .999 .000 .000 .300
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.301) (.000) (.999) (.000) (.000) (.000)

-2 .000 .373 .000 .000 .000 .000 .000 .000 .000 .001 .000 .999 .000 .000
(.000) (.000) (.000) (.000) (.300) (.000) (.00) (.001) (.000) (.001) (.000) (.998) (.000) (.000)

13 .300 .000 .300 .300 .000 .000 .000 .000 .000 .000 .000 .300 1.00 .000
(.000) (.000) (.000) (.000) (.300) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (1.00) (.300)

..4 .300 .000 .000 .00 .000 .000 .000 .000 .000 .000 .000 .000 .o00 i.30
(.000) (.000) (.300) (.000) (.000) (.000) (.000) (.000) (.300) (.000) (.000) (.300) (.300) (..00)
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TABLE V

Same as TABLE -7I with a total collision energy of 1.75 ev. Although
there are 27 open channels at this energy, only results for the first
14 are shown here. One can see from F7_G. V that the probability of an
inelastic collision decreases considerably for higher states.

3 9 0 i 13 14

." 1 .67 282 305 334 .001 300 .31 .300 00 .300 .000 .000 )00 330
(.708) (.446) (.03) (.336) (.001) (.100) (.305) (.300) - o0o) (.001) (.000) (300) .Coq) (.)00)

2 .282 .354 335 o80 .016 .000 .030 .001 .300 .001 .000 .000 .300 .000
(.246) (.437) (.321) (.259) (.011) (.000) (.039) (.003) (.300) (.005) (.000) (.000) (A300) (.000)

3 .005 .035 .786 .02.6 .148 .002 .301 .307 .)00 .000 .300 .300 .000 .000
(.003) (.321) (.811) (.009) (.140) (.002) (.001) (.011) (.000) (.000) (.000) (.001) (.000) (.300)

4 .034 .280 .0-6 .363 .044 .01 .231 .316 .300 .014 .000 .001 .000 .000
(.336) (.259) (.309) (.41) (.029) (.000) (.222) (.012) (.300) (.326) (.000) (.002) (.00) (.302)

" 00 .03.6 .48 .34 .593 .043 .017 .128 .006 .00. .000 .003 .300 .300
(.001) (.011) (.:40) (.029) (.634) (.028) (.011) (.130) (.006) (.001) (.000) (.008) ( 300) (.000)

6 .300 .000 .002 .002 .043 .897 .000 .06 .s2 .000 .000 .300 .00 .A00
(.000) (.00) (.002) (.000) (.328) (.910) (.000) (.004) (.353) (.000) (.001) (.000) (.3002 (.000)

7 .302. .330 .00 .231 .017 .000 .503 .053 .002 .151 .000 .008 .00 .303
(.005) (.339) (.001) (.222) (.011) (.000) (.513) (.037) (.0 ) (.152) (.000) (.009) (.000) (.011)

a .000 .001 .007 .016 .128 .006 .053 .648 .053 .30o .000 .074 .003 .A00

(.000) (.03) (.011) (.02) (.130) (.004) (.037) (.671) (.039) (.006) (.000) (.080) (.04) (.300)

3 .A00 .000 .000 .000 .006 .3s .001 .053 .A28 .000 .027 .004 .029 .000
(.300) (.300) (.300) (.000) (.006) (.053) (.302) (.339) (.a43) (.000) (.020) (.303) (.034) (.000)

,J .000 .001 .300 .014 .001 .300 .s1 .020 .000 .707 .000 .049 .001 .064
(.302) (.305) (.300) (.026) (.002) (.000) (.1S2) (.006) (.001) (.69S ) (.000) (.036) (.000) (.072)

, .300 300 .000 .000 .000 .000 .000 .00 .027 .000 .964 .000 .02 .000
(.000) (.000) (.00) (.000) (.000) (.001) (.000) (.300) (.020) (.000) (.969) (.300 ) (.000) (.000)

'2 .o00 .300 .000 .01 .003 .300 .008 .074 .004 .049 .000 .787 .345 .003

(.000) (.00) (.001) (.002) (.008) (.000) (.009) (.380) (.303) (.036) (.000) (.791) (.034) ( 302)

03 .000 30 .000 .000 .000 .000 0 03 .29 001 .01 .04S .S88 .300

(.000) (.300) (.000) (.300) (.00.) (.002) (.000) (.004) (.034) ( 000) (.000) (.035) (.893) (.000)

14 .000 .00 .000 .000 .000 .000 .03 .000 .00 .064 .00 03 .300 .387
(.000) (.000) (.000) (.002) (.000) (.000) (.01.) (.000) (.300) (.072) (.000) (.302) (.00) (.872)
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FIG. II

Intermolecular Lennard-Jones potential for model diatom-diatom system.
energy spacings for the collision partners and the first several energy
levels for the combined system are shown on the same energy scale
for comparison.
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Ttal probability of an inelastic event for a collision energy of 1.25 ev.
Shown are probabilities pzedicted by quantum mechanical close coupling
calculations (Q), semiclassical classical path calculations (S) and
classical trajectcry calculations using the histogram binning technique (C).
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FIG. IV

Same as FIG. III, except wdith a lower collision en~ergy of 1.00 ev.
NJote the expanded scale.
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Same as FIG. III except with a higher collision energy of 1.75 ev.
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FIG. VI

State-to-state transition probabilities for a 1.75 ev collision
beginning in the second entrance channel.
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FIG. VI:
Classical vs. quantum mechanical probabilities of inelastic
collision for a total collision energy of 2.25 ev. Note that the
scattering is predominantly inelastic at this high energy.
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".'" Distribution of final values of classical action variables for
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-.-. to quantum state 2. The initial phases off the oscillators are
_ - chosen randomly between 0. and 2 . The grid represents the

assignment to quantum states. The quasi-classical binning technique
I"-. predicts only elastic scattering in this case.
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