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A COMPARISON OF QUANTUM, CLASSICAL, AND SEMICLASSICAL
DESCRIPTIONS OF A MODEL, COLLINEAR, INELASTIC COLLISION
OF TWO DIATOMIC MOLECULES

I. Introduction

Molecular dvnamics simulations involving a relatively large number of
molecules are becoming an increasingly powerful tool for the study of both
gas and condensed phase phenomena. There has been coansiderable progress i{n
the ability to simulate a variety of equilibrium and nonequilibrium situa-
tions and in calculating, for example, transport properties (l1). This
progress is due both to the improved computational facilities and improved
methods of doing the calculations.

There is a now interest in using molecular dynamics to describe the
interaction of a shock wave and a condensed phase material. The motivation
for this approach is based on the observation that the region immediately
behind the shock wave is not in equilibrium., Thus molecular dynamics might
be used when the usual fluid descriptions, which assume equilibrium equa-
tions of state, transport processes, and reaction rates, are not valid.
Typical molecular dynamics simulations (3) describe the time evolution of
the dynamical state of the system by solving the classical equations of

motion. These calculations incorporate all of the interparticle inter-

actions as accuratelv as possible. For most applications, this classical
approximation to the dynamics is justified because typical quantum mechani- j
cal interference effects (e.g.,resonant cross sections) tend to be averaged

out in systems possessing many degrees of freedom (4).

Manuscript approved October 1, 1985.
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Under some circumstances however, there might be residual quantum

S

mechanical effects, even though a statistical average is taken. This paper |

presents the preliminary work done to develop phenomenological models of

vibrational energy exchange which can be incorporated into large scale
classical simulations. These models might be designed, for example, to
incorporate some of the effects of discrete vibrational excitations, and
thus test when theyv might be imporzant in the calculation., The first step
in develooping such models is a careful comparison hetween rapresentative

classical and quantum calculations, such as presented here.

I1. Background to Present Research

Due to practical computational limitations, most molelcular dynamics
studies treat molecules as rigid bodies (5). While this approach precludes
the possibility of vibrational energy exchange, it does incorporate the very
important dvnamical effects of rotational and translatiocnal energy exchange
though molecular collisions. There are many examples in the literture of
simulations involving various shapeé of rigid molecules (6). The interc-
action between molecules is generally taken as a sum of pairwise additive,
point interactions usually (but not always (7)) acting between atomic
centers. The equations of motion are most efficiently integrated in a

cartesian coordinate system with a series of holonomic coustraints imposed

to reproduce the molecular structure (5),

Some dynamics simulations have included vibrational degrees of frezedom
explicitly (see for example, reference (9)). This requires a knowledge of
not onlv the intermolecular interactions (including their angular
dependences), but also a knowledge of the intramolecular potential as a

function of the nuclear coordinates. Explicitly including the vibratiomal
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degrees of freedom might also allow for the additional reactive processes of
hond dissociation or association (10). A disadvantage of this approach is
the requirement of treating all degrees of freedom on the same dynamical
footing, i.e., classicallv., While the c¢lassical treatment of the transla-
tional and rotational motions is generally an excellent aporoximation, the
vibrational interactions begin to become less reliable (8).

A further disadvantage of explicitly including all degrees of freedom
in a molecular dvnamics simulation is the problem of temporally resolving
the rapid internal vibrations. This requires an integration time step on
the order of 1/40 of a vibrational period for systems with strong but
realistic bond potentials (9). Some studies have avoided this problem by
including artificially soft bonds, which vibrate at a low frequency (10,11).
The less rigorous rigid-body type of simulation can accomodate a larger time
step ln the numerical solution of the classical equations of motion, con-
sequently 1 longer period of time can be simulated. In addition, there are
generally fewer equations of motion since there are fewer degrees of free-
dom,

The goal of the present research program is to investigate ways in
which the effects of the vibrational degrees of freedom might be included
within the framework of the computationally tractable rigid body approach to

molecular dynamics simulations. Of particular interest eventually is the

determination of the influence of the vibrational degrees of freedom on the
accumulation of ianternal energy and subsequent bond dissociation. The
initial step in such a study must be a determination of the quality of a
classical or semiclasgsical treatment of a vibrationally inelastic molecular
collision. Such a determination can be made bv comparing an exact quantum

calculation to the corresponding classical and semiclassical treatments.
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Previous work in comparing quantum, semiclassical and classical methods
for treating molecular collision phenomena has been motivated primarilv by
interest in ascertaining the correspondence between :lassical mechanics and
quantum nechanics (12), The motivation for the present work stems from the
need to incorporate, within the classical framework of dynamics simulations,
the important effects arising from vibrational enerzy exchange, quantum
affects due to interferance, and the effects arising Zrom dissociation,

Apart from the computational advantage of the classical aporoach to
molecular dvnamics, it also possesses the advantage of allowing one to

follow the "trajectories," especially through the important interaction
region. OQuantum dynamical treatments allow one to "look" at the physically
measurable quantities only before and after collision, preventing intuitive
insight into the effect of a third body or other perturbations which might
interrupt the two body interaction. Such information from quantum calcula-
tions would be extremely useful, and attempts have been made previously to
address this question (13).

The first step in the present work is the selection of the particular

model molecular collision problem to serve as a benchmark for investigation.

The model chosen involves the collinear inelastic collision between diatomic

molecules, the details of which are described in section III. Transition

probabilities are determined quantum mechanically, semiclassically (using a

zlassical path aporoximation) and classically. The »orecise methodologies
used are described in section IV. The results are presented and coampared in
section 7. The last section contains a discussion of the results and how
thev impact on the question of improvement of molecular dvnamics simula-

tions.
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I1IT. The Model Problem

The problem we consider is a collinear collision Yetween two homo-
nuclear diatomic molaculas. Each molecule is represented as a harmonic
oscillactor. The masses and force constants ara chosen to correspond to
those of the oxvgen and nitrogen molecules, The iatarmolecular iatsractcion
arises from a leanard-Jones notential acting hetween the iaside atoms ia the
collinear system. Thus onlv adiacent atoms intaract., This is illustrated
schematically in Fig. I, where the atoms are labeled a,b,c and d and the

potential between atoms can be written:

k)
vab(rl) - 7—'(rl - rLo)z (la)
k9
Voa(f) = 3 (r; L ry)? (1b)
V. = 4e [(=2=)i2 _ (Z-)E} (le)
be Rye Rbc
vV =2V .=V . =0 (1d)

ac ad bd

where r;45 and t,q are the equilibrium separations of the molecules ab and bec
respectively. The separation between the centers of mass of the two

molecules is denoted by R,

= Rbc + 1/2(rl + rz)

The harmonic force constants ire denoted kL and kz. 7 and € are the Lennard

Jones distance a3~ . energv narameters respectivelv., For the problem

considered here,
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ryy = 2.282 hohr k; = 20.57 ev/(5ohr)?
ry; = 2.07% bohr k, = 40.09 ev/(bohr)?
a == 15 am g = 4,730 bohr

2, =y = 14 amu e = 010 ev

We axpress the Tennard-Jones potential, which is a function of Rbc’ in terms
Af zhe ¢ separatisn when the two oscillators are at there 2quilibrium

positions (F), and the small deviations from this value (x, and xz).

F =R - 1/2 (rlo + fzo) (23)

Xl = L‘L - rlo (Zb)

X3 T T T Ty
Using Egns. (2) in Eqn. (le¢) the Lennard-Jones potential tecomes,

g g

a 4 12 Y
Vbc(F’xl’XZ) se {( . _‘% (x, + %)) PARN (U % (x, +%,) )°}
(3
= 4e {( % M2 -0 - (28 -
“here,
a = 1/2(xl + xz)/F. (4)

The winetic energy, in the center of mass coordinate system, can be

writcen as,

2 2 2
2 p P
L 2
- .
T = L - . -
2u 2u 2u (3
ab ed ab,cd
'.;5.‘ ‘
,p“‘l |
N
v,
*\-
- 6
i
e e T g e T el e D D e ]
ISR ST P Ut DU SR W ATy W v S S o N WP W P TR A VAL W P WPE, (PRI (AP U0 Wy W WA Y VG W WA W D WS .




c"rw'rrv Cakac-ats- adey aiih-ahe ‘ol 4= Sl A asa st Subhs AN i ol
T

where o, 0,, and P are the momenta conjugate to r , T, and R and the

raduced masses are defined as,

LD L
ab m + s cd m +m
a c d
(6)
. ) (ma + mb)(mc + md)
ab,cd ma + mb + mc - m:l
The Hamiltoanian for the model system is thus,
2 2 2
P p |4
fm (et e ?) + (e + L x,?) V(R
’ 2u 7 “1f1 2 7 f2%2 2u 13 PRpe
ab cd ab,cd
(7
p2
o
i+ 2u * VLJ(Rbc)
ab,cd

1V, Theoretical Approaches to the Scattering Problem

A. Ouantum Mechanical Description

Since the Hamiltonian for the system does not depend on time, we search
for stationarv state solutions of the Schroedinger equation. In the guantum
mechanical treatment of inelastic scattefing, it is convenient to work with
a complete set of functions of the ianternal coordinates r, and Tre The
scattaring wavefunction, which is a function of the +hree coordinates Toa T,
and 3, is then written as a linear expansion in this set of functions, where

the expansion coefficients are functions of R.

g = ~ p
‘D(R9r’.’r2) :1 fpn(R)°n<rl,f2) (3)
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The set of “unctions ,31(r ,T5) is chosen “o be the 2igenfunctions of the
iaternal ocortion of the Hamiltonian. Siace the iatarnal dortion of the

damiltonian is the sum of two harmounic oscillator Hamiltonians, the eizen-

Zunctions are simplv products of harmonic oscillator aizenfunctinns,

0 ,y) b (r,5y) T3 (5 ,1y) (9
where
bn(flgl‘z) = Di(rl)d)j(rz) (10)
and
Xy 172 k2 12
TR 4T o= (LR (o )R(—) (11)
n i j 2 LIRS 2 Mg

The index a1 specifies the state of both molecules, i.e. spvecifies i and j.

The :time independent Schroedinger equation for the entire svstem is,

f - a2 + V. (R £,) + qo( MY e (R) B ¢ T,)
EETTNP dr? be PFL2 ST - “ap a'tivt2

(R 3 () (12)

S0 -1

Mulzisiviag on zhe laft Sy 31(: ,T~) and integrating over the intarmnal
ccordinates, r, and ¢, vields the following set of coupled equations Zor the

axpansion coefficients EDZ\R).

L (R) = Hab,cd (2-E)E L (R) + - Y. (R)E (R) (13
FECEREY AR TRE VTR AN - Yn T ont )
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where

.k .
Jzn(R) = fjbz(rl,rz)vbc(a,ri,rz) @n(rl,rz)drldr2 (1)

Zgn. (13) can be rewritten in matrix form as,

£(R) = Q(RVE(R) (13)

G
wl

with the svmmetric matrix D defined by,

- 2uab,cd

£2

Dyj ® Dyy

[Vij(R) + (Ei— E)Sij] (16)

The coupled equations (Eq. 13) are solved numerically by the R-matrix method
(14)., The essential idea of the method 1Is to solve the problem in the
interaction region where the basis states are coupled to one another and
then to match this wavefunction with the known uncoupled asymptotic forms.
The solution in the interaction region is determined bv dividing the R-space
into many sectors within which the coupling potential does not change
significantly., Within each sector, the unitary transformation Ls found

which diagonalizes the coupling matrix D.
g (R) D(RIU(R) = D7 (R) (17)
Zquation (13) may then be written within each sector in the uncoupled form,

£7(R) = D7E(R) (18)

Q'.\la.
m| N

where
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£7(R) = U (RIE(R) (19)

and D” is a diagonal matrix. The solution is then matched at adjacent
sactors, ensuring the countinuitv of the wavefunction and its derivative.

Formallv, the summations over n in Ygns. {12) and (13) extend to
infinity, This is because an “afinite number of the functions ﬁn(:L,rZ) are
required to form 2 complaete set of Zunctions which span the space of r. and
r;. The choice of internal state eigenfunctioms to represent this space is
a judicious one however, since it is expected that even in the iateraction
region, the oscillators will to some extent retain their identity., 1In
practice we do a finite basis set expansion. Functions are selected on the
basis of their energy, and the calculations are performed until increasing
the length of the expansion has no effect on the answer,

To solve the Schroedinger Equation, we need to know the elements of the
coupling matrix defined in Eqn. (l4) as a function of the molecular separa-
tion R. This requires either the calculation of N-squared integrals (N is
the number of basis states) each time a different value of R is considered
during the course of the calculation, or the prior storage of a large amount
of R~dependent data. To avoid the storage problem and to simplify the inte-
gral computation, we use the following scheme for evaluating the matrix
elements of the Lennard-Jones potential,

Ta Eqn. (3), the Lennard-Joues potential acting between the inside atoms
was written so as to separate the dependence of the potential on the inter-
nal coordinates (the a dependence) from the dependence on the collision
coordinate {(the 7 dependence). Tor a given molecular separation, we can aow
expand zhe potential about the equilibrium positions of the oscillators.

Thus edquation (3) is expanded in a Tavlsr series in a about the point a=0,

10
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Carrving the exvansion to fourth order and integrating over the internal

coordinates, the coupling matrix V becomes,

UE) = a2 - (F

+

12 <] 1
)87 1 sel120) = 6() AL

2 o 2
v a8 - 21Dy A2

5 12 55 (3)
F) - 56(?) ] A /2F

+ se[364(
12 6 b
v ae(1365D) - 126D 1 20 )2
(21)

with the matrices A(n) defined as,

ég;) - [/ ¢i(rl,r2)(x,_+x2)ﬂ ﬁj(rl,rz)drl,drz (22)
The important point is that these matrices, and hence the integrals which
make up the coupling elements, have no dependence on the collision coordi-
nate. The coupling matrix is obtained as a function of R by multiplying
these previously stored matrices by the R-dependent coefficients shown in
Eqn. (21). We have found that the coupling matrix is well converged when
the expansion of the Lennard-Jones potantial is carried out to fourth order.
As an additional test, we have performed a number of classical trajectory
calculations using this truncated expansion of the potential., Again, the
fourth order expansion produces results which are the same as the analytical

form for the potential o four decimal places,
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- 3, Semiclassical Description
RN
:j{ The semiclassical method we have chosen is generally referred to as a
: classical path approach. The underlving idea is that motion along a
‘iﬁ’ collision coordinate is responsible for initiating transitions among the
;ilj discrete quantum states of the colliding partners, but that this motion is
y essentiallv classical in nature. One first chooses a reasonable mean tra-
o jectorv for the collisional degree of freedom. This trajectorv could be, for
S
‘-‘. ry s
[ example, a classical trajectory associated with a hypothetical system for
A
) which the internal degrees of freedom have been frozen. Since the inter-
f:‘ action among the collision partners is a function of the collision coordi-
li} nate, this predetermined trajectory provides the interaction potential as a
y function of time. Using this interaction potential, one then constructs a
:f: time dependent Hamiltonian operator for the internal degrees of freedom.
-
11ft The time dependent Schroedinger equation is then solved in the subspace of
the internal degrees of freedom.
- For our model problem, we first separate the Hamiltonian into a portion
:}: which contains all of the {ntermal coordinate dependence and a portion which
3 depends upon the collision coordinate ouly,
N
x':':
'::::: > 0
H = {2 —= + V(R,r )} + {4 + WR,r) - VW(R,r )} (23)
n u dr o] o
s ab,cd
i
‘??i The first set of brackets contain a simple Hamiltonian for the collision
el
:;:: coordinate., We solve this one dimensional problem classically to obtain the
S0 collision coordinate R as a function of time. The second set of brackets
contain a Hamiltonian for the finternal degrees of freedom. The collision
.. coordinate appears as a parameter in this Hamiltonian, its time dependence
I having been pre—determined, The equation which must be solved is then
o
N 12
Y




3‘?(rl,f2,t)

s

Y 0 \
r::_: if\ ——at—-— = [H + V(R)r) - V(R,ro)] ?(rl,rzot) (2“)
N
{
Ay As in the close coupling calculations, we expand the wavefunction in a basis
LS
ﬁﬁ} of eizenstates of y° , the harmonic oscillator product functionms,

[

(e ,ry,t) = z bj(rl,rz)xj(t)
] _

(25
=1 b (c ,r,) (a () 4 13.(c))
. ] ] B!
]
left multiplying Eqn. (24) by one particular eigenfunction and integrating
over the internal coordinates produces equations describing the time depen~-

dence of the real and imaginary components of the expansion coefficients:

Ja
I -
NI {Ej V(R,ro)}Bj +E ijsk

(26)

>
Q-LQ’
nl ®

= {Ej - V(R,ro)}uj - E ijak
These equations can then be solved numerically., A typical calculation
Yegins with the a large separation between the two molecules with unit
orobability of being in one of the internal eigenstates (entrance channels).
The svstem then proceeds through the {interaction region and back out to
large separation., The square moduli of the expansion coefficients then give
the probabilitv that a measurement will find the system in each of the

possible exir channels., The validity of the classical path approach is

13
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j discussed bv Child [l5]. Essentially what is found is what one intuitively
. expects, The change in momentum associated with transitions among various

diabatic stataes should be small relative to the momentum associated with the

o collision coordinate. In other words, the classical paths associated with
':1- different entrance and exit channels should all lie close to the assumed
L path.,

e C. Classical Deseripzion

The classical description of the inelastic scattering is also based on
o the Hamiltonian of Eqn. (7). While classical trajectories governed by this
Hamiltonian are straightforward to calculate (16), it is less clear how to
compare the trajectory results with the corresponding quantum mechanical
results, The most widely applied approach for making comparisons hetween
classical and quantum results is the gquasi-classical method (17). Before
applying this approach, a canonical transformation (26) is applied to the
- Hamiltonian of Equn. (7) such that the rnew internal coordinates and momenta
correspound to the action-angle variables. The action variables are
proportional to the total energy of the oscillators and are therefore
o susceptible to being "quantized" in units of Planck”s constant (18). The
- angle variables then correspond to the phase of the oscillators. For the
M harmonic oscillators under consideration, the old internal coordinates and
- momenta (r,p) are given in terms of the new action-angle variables (n,q) as:
- 2o+ 1/2)%,L72

r - ro = [ = ] sin q

(27

f;: p = [2(a + 1/2YRuwl]l’2 cos gq

14
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The Hamiltonian of =qn. (7), in terms of these new conjugate variables, is

LT,

e s
-

given bv,

P2
H(P,R)n)nz )ql)QZ) = b)

oM (R,fl (nlaql)’rz(HZ,Q2))
ab,cd

kR
(28)

s (ay + 1/2) 4w+ (a, + 1/2) fo,

A useful property of the intarmal action-angle variables is that in the
asvmototic region, where the intaraction potential vanishes, the Hamiltonian
(Zgn. (28)) bYecomes independent of the new angle variables, Hamilton“s

aquations of motion, given by,

M _3H _
In, ~ 4 LR
M _oH _ - (29)
n, a2 3, 22
M . 34 .
.5? = R - ﬁ = P

therefore imply that the action variables (i.e., the internal oscillator

energles) become constants of *he motion both before and after collision.

The major obstacle ia making zomparisons bYetween classical and quantum
mechanical results is the fact that the classical action variables (i.e.,
the classical counterpart of the vibrational quantum aumbers) are allowed to
nave a continuous range >f values, whereas the quantum mechanical oscilla-
rors ara allowed o have only discrete values for guantum numbers (i.e.,

integers). The crux »f the quasi-classical approach {(also known as the
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“"bianing" or "histogram”" method) is simplv to assign final (asvmptotic) aon-
integer values of the action variables to the nearest integer value. In
practice, a large aumber of trajectories are calculated, each trajectory is
subsequently "bSinned'", and a statistical analvsis is performed on the
results of binning the "batch" of trajectories.

Trajectories begin in the asvmptotic region, where the variables ars !

assigned the Zollowing initial conditions (assuming a total collision enerzy

13

bR o

R = large

n, = integer (corresponding to initial quantum state)

n, = integer (corresponding to initial quantum state) (30
= - - 172

P {zuab,cd(E (ﬂl + 1/2)’6‘”1 (nz + I/Z)ﬁ“’z)]

q; = random (0,2T)

q, = random (0,27),

The angle variables (i.e., the initial oscillator phases) are chosen

randomly from a uniform distribution between 0O and 2m., A large number of

trajectories simulates, to a close approximation, all of the possible types

of molecular encounters for this collinear model. The equations of motion

(Eqn. (29)) are aumerically integrated until the collision coordinate
becomes large. At this point, the final action variable is assigned to a

"bin" corresponding to the quantum final aumber.

16
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- V. Computational Results

Calculations were performed for total collision energies ranging from
1.0 ev to 2.25 ev, Figure II shows the intermolecular potential acting
between atoms b and ¢. On the same energy scale, the figure also shows the
energy level spacings for the two oscillators and the positions of the first
several levels of the combined system. Note, for exzample, that a collision
starting in the ground state (0,D) with a total enerzy of 1,2 ev would have
roughly .24 ev as initial internal (vibrational) energy and would thus have
about .76 ev as initial translational energy in the collision coordinate.
The Lennard-Jones distance parameter, ¢ = 2.5 &, is somewhat smaller than
the approximately 3.5 A that one might expect to see for a nonbonded inter-
action between nitrogen and oxygen. This was done to increase the amount of
inelastic scattering at low energies, The indexing scheme for the diatomic
product functions is shown in Table I,

As was mentioned esarlier, the flexibility in the semiclassical approach
is in the choice of the classical path. A strict interpretation of a
quantum mechanical description of the scattering event does not recognize
the existence of well defined '"path' for the collision coordinate along
which the system proceeds. We do, however, speak of such a path as it
relateg to the approximate semiclassical description. As described above,
the most obvious choice for this path is a classical trajectory for the
collisional degree of freedom with the intermal coordinates frozen at their
equilibrium values.

Table IT displays a comparison, for a particular collision, of gquantum

3!

.
e

mechanical and semiclassical state-to-state probabilities wheres wvarious

B)

ok

classical oath approaches were used. The semiclassical calculations at this

&
PRI

.
Tt

as

enerzy all use 25 Sasis states. The close coupling calculations use 30. At
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; <. his energy, l4 of these channels are open. The total 2nergy for tne calcu-
\ lation is 1.25 ev, and the oscillators are initially in their ground states.
At 1.25 ev, all of the calculations show roughly 90 percent retention prob=~
abilicv (elastic scattering).

The first semiclassical column in Table II corresponds to a calculation
in which the path is the simple classical trajectory for the collision
zoordiinacs. The agreement is at least qualitativelv quite good. Note the
direction of the deviation. The semiclassical scheme predicts too much
inelastic scattering. This deviation can be understood by noting that
energy is not conserved in this calculation. The system begins with the
minimum allowable energy in the Iinternal vibrations. As the molecules
proceed along the classical trajectory, the Hamiltonian for the intermal
degrees of freedom changes with time reflecting the coupling between the
oscillators. This coupling produces an amplitude to find the system in
higher energy internal states. Fnergy 1s not a constant of the motion for
the internal portion of the motion since the Hamiltonian depends on time,
hut energy is conserved by construction for the collision coordinate.
Therefore energy is not conserved for the system as a whole. The molecules
can emerge from the collision with appreciable probabilities of being found
in higher energy states, yet the molecules translate away from one another
w@ith the same kinetic energy that they had during the approach. There is a
aet adition of energy to the svstem.

In the collision considered here, a consequence of this energy addition

is too much inelastic coupling. As the molecules approach each other and
rranslational enerzy Y“egins to be transferred to internmal vibrational
energy, one expects the molecules to slow down. With less energy Iin the

translation, the molscules would not aporoach as closely and consequently,

18
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there would be less coupling. A orediction of the probabilityv for a svstem

< starzing in a highly excited state to emerze in the ground vibrational state
II has the opposite problem, Starting with only a small portion of the enerzv
- i1 translation, the trajectorv would not provide enough coupling since it

cannot reflect a transfer of energy from the internal coordinates to the
collision coordinate,

These two probabiliries, of a transition Zrom the 2round state to a
sarticular excited statz and from that excited state to the ground state,
are known to be equal Yv microscopic reversibility. It is then reasonable
to symmetrize this probability matrix to impose this feature of the correct
physical result., We do this simply by taking the arithmetic mean of two
svmmetrically disposed probabiliries. The diagonal elements, the probabili-
ties of alastic scattering, are then adjusted by the normalization condi-
tion. Results, which have been modified in this way are shown in column b
of Table II. These are a anotable improvement (in comparison to the quantum
mechanical calculations) over the probabilities in the first column.

The problem of the lack of energy conservation in semiclassical calcula-
zions of this sort is well known. Schemes designed to compensate for this

weakness have been proposed, usually by choosing a classical trajectorwy

which is characterized by an energy (19) or velocity (20) averaged between
initial aand final states. These schemes yield a path which is suitable for
the one state~to-state transitiom of interest., We are interested in simul-
taneouslv ascertaining a probability of the syvstem emerzing i{n each of the
exit channels given that it began in a particular entrance channel. The
above discussion suggests the incorporation of some sort of feedback mechan~-

ism ia the semiclassical calculations. Perhapos the classical path can be
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dvnamically modifiad so as to reflect, at least nartiallv, the vibrational-
translational energy transfer. Ideas along these lines have been prooosed
in the past, focusing on the coupling of the oscillator response to the
classical path (21) or on the incorporation of an effective potential for
the collision coordinace (22),

The probabilities in the third semiclassical column of table II, column
2, result from a simplz incorporation of some "Sack coupling' of the iatar-
nal degrees of freedom to the relative motion of the collision partners,
The classical path at the onset of the collision is the unperturbed classi-
cal trajectory associated with the total collision energy less the internal
energy for the particular entrance channel, The path is modified at each

timestep of the numerical intregration of Zan. (26) according to an energy

conservation constraint imposed on the system as a whole. Since the time

step can be made arbitrarily small, this corresponds to a continuous modifi-

cation. The total energy at any instant is,

p2 ¢ *
= = + +
E = constant . X4 xiEi Vint (31)
ab,cd

The first and second terms are the kinetic energy in the collision coordi-
nate and the internal energy respectively, The third term is the inter-

action potential which is calculated as,

reog* :
Vint = 0 P (rp,rp) VWry,rp,R) ¥(r,rp)3r,3ry

-9

i
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The %inetic energy in the collision coordinate, and hence the velocity are ‘
:f continucuslv modified such that Zqn, (31) remains satisfied. The relative \
i motion is essentiallyv zoverned “v an effective potential which is a function
ﬂ; of the guantum mechanical state of the iaternal system as well as the rela-
tive center of mass seoaration. The resultiag path, although not optimal
tor anv narticular state—-to-state probabilitv is biased toward exit channels
which oslav zhe zZreatest roale in the inelastic scattering,
The results i column ¢ of Table II show that modifving -“he classical

sath as described above improves the probabilities compared to case a,

almost halving the errors ia this case., Symmetrizing the probabilitvy matrix
as before leads to the entries found in the last column >f Table II. These
ii rasults are {n excellent agreement with the quantum mechanical probabili-

‘ ties. All of the semiclassical results reported below have been obtained by
- this procedure of {imposing energy conservation and syvmmetrizing. Although
the agreement hetween the quantum mechanical and semiclassical results is
not 3lwavs quite as striking as it is in the above esxample, we find that it
3 remains vervy good Zor every case we studied. Figure III shows inelastic
collision probabilities for the conditions in the sample calculation dis-
cussed above. Shown are probabilities that a system starting in a particu-

lar initial state, has a collision which is inelastic, leading collectively

to anv other state. That is, we are plotting one minus the retention prob-
abilitv. The close coupnled quantum results are labeled with a "7" and the
semiclassical results are labeled with an "S". The classical results, also

shown and labeled with a "C," will be discussed later. Although there are

fourteen dpen chaannels at this energy, the probability of an inelastic event
aoproaches essentially zero bv about the ainth or tenth state, Figure IV

corresovonds to collisions at 1.7 ev, 3 lower total energy than Figure III.

21
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Tizure 7 corresoonds to a nigher 2nergy .75 ev. Note that the scale of the
Zraoh nhas “een expanded bv an order »f magnitude for the 1.0 ev collisions
due t2 the small orobabilitv of inelastic scattering, For the 1.0 ev calcu-
lations, ther=2 are eight open channels, Sixteen basis states were used in
cthe gquantum calculations and fifteen in the semiclassical calculations. As
seen ia Tizure V, there is considerablv more inelastic scattering at 1,75
av, where fortv five hasis states were used for both the juantum and the
semiclassical calculations. F“igures IIi-V show basically the same trends in
the probabilities. 1Increasing the energy simply increases the amount of the
inelastic scattering.

It is also instructive to compare the quantum and semiclassical results
for scattering from a particular initial state, Figure VI shows such
results for a collision at 1.75 ev startcing in the second state, i.e., a
state with the nitrogen molecule in its ground state and the oxygen molacule
in its first excited state. As shown in Figure V, this is the initial state
for which the semiclassical and quantum calculations show the least agree-
nent. There is roughly equal probability for a transition to the first
state and a transition to the fourth state. These correspond to transitions
of the oxygen to its ground state and to its second excited state respec—
tivelv, The semiclassical calculations slightlv underestimate this prob-
abilitv in both casaes. The normalization condition requires that the sum of
~he deviations in Figure VI wvanish., It therefore follows that the retention
srobability {s overestimated.

The more complete results of the semiclassical and quantum mechanical

calculacions at the three energies (1.0 ev, 1.25 ev, and 1.75 ev) are shown
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{n Tables III-V, The semiclassical state-to-state probabilities ara dis-
olaved in parentheses below the quantum probabilities. The quantities nlot-
ted ia Fizures III, IV, and V are simply one minus the diagonal elements in
these Tables, Figure VI is the second column in Table V. Not all of the
twentv seven available channels are represented in Table V. One can see
however that the amount of inelastic scattering is drooping off rapidlv.

The zlassical results shown in figures TII-Y ars all bHased on the
quasi-classical (17) (Yinning) method described in section III, Transition
probabilities from each specified initial state were calculated from 500
trajectories, Previous applications of the quasi-classical method have had
greatest success when manv final states are dynamically accessible (23). It
seems reasonable to expect, therefore, that higher collision energies should
pegin to show better agreement between the classical results and the corre-
sponding quantum results. By inspection of Figures III-V and also from the
results at 2.25 ev shown in Figure VII, one can see that the agreement does
not {mprove as expected. Certain state~to—state probabilities do show
excellent agreement, however, and general trends in transition probabilitias
are modelled reasonably well. For example, for collisions at 1.75 ev. (Fig.
V1), the classical estimate of the elastic scattering from the n(OZ) =1,
n(Ny;) = 0 initial state is significaatly less than the quantum prediction,
giving rise to a classical overestimate of the inelastic scattering from
that state (Fig. V)., At 2.25 ev, (Fig. VIII), the elastic scattering fvom
the ground vibrational state is in excellent agreement with the quantum
results., At 2.25 ev (the highest energy considered), the classical estimate
is hizh for inelastic scattering from initial states where nitrogen is more
excited than oxygen, and it is low for initial states where oxvgen is more
excited than nitrogen. This trend is not apparent at lower collision

energzies,
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:f shows essentially zero inelastic scattering f£or all i{nitial states. This is
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a severe test of the bianing procedure and it is normally under these low
energy conditions that other classical aporoaches e.g., the moment method
(24) or Wigner distribution methods (25) have had more success. The
unbinned final actions for a set of 400 trajectories are shown in Figure
7III. It is clear that the artificial imposition of “ianing "Soundaries"
mavy contribute to the inadequacy of the classical results. Other procedures
(such as those mentioned) mav prove more useful. Work 1s in progress to
determine the success and practicality of these other approaches.

Similar final action plots are shown in Figures IX and X for a higher
collision energy (2,25 ev), where inelastic scattering dominates. The
initial classical actions for the collisions represented in Fig. IX corres-
pond to quantum state 8 and for Fig. X to quantum state 13, The energetic-
ally accessible region for this high energy system is extensive. There are
44 open channels at this energy. This means that at least 44 of the bins
represented in Figures IX and X are accessible within the constraiat of
energy conservation., The emerging boundaries of the points in Figures IX
and X show that the dynamically accessible regions are much more restricted.
Figure IX for example, only 14 channels are being populuated (21 channels
are oopulated via the corresponding quantum mechanical dynamics). Apparent-
ly, the classical dynamics precludes the possibility of populating some of
these bins which correspond to states which are quantum mechanically access-
ible. Perhaos an alternative choice of inizial condition selection (a.g.,
via the Wigner distribution method (25)) or analvsis of final conditions

(e.2., the moment method (24)) would aeliminate some of the discrepencies.
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ji VI. Summary and Miscussion

};? As a shock passes through a condensed phase material, =ach molecule 1
ii instantaneocusly feels an impulse. This impulse is the sum of the changes in

S;i the individual forces the molecule feels as each of its neighbors moves.

;ﬂf Studying the microscopic behavior of such a system requires evaluating how a

soecific impulse effects a molecule, given the molecule”s initial state and

the impulse characteristics. To address this oroblem, we first need to asx

about the behavior of the microscopic svstem, and then about a macroscopic
ensemble of many such systems.

This paper addressed part of the miscroscopic question. Specifically,
we asked how quantum mechanical effects influence the description of a
microscopic collision, and what is a good calculation of the collision
properties. We considerad two harmonic oscillators interacting through a
Lennard~Jones potential. This model problem is a vehicle for studying the
quantum effects of discrete vibrational states on the collision of two
molecules, The model problem was solved quantum mechanically by a close-

coupling method, semiclassically by several variations of a classical path

approach, and classically by a quasiclassical trajectory method.

The quantum mechanical calculation was considered the correct answer
against which we compared the results of the classical and semiclassical
calculation. The output of this calculation was the final distribution of
iaternal states of the two molecules, once thev had collided and completely
separated, The gquantum mechanical results were discussed ia Section V.

The straightforward semiclassical classical path description discussed
in Section V gave reasonable answers, However, when the path was modified

o conserve energy and the microscopic reversibility was imposed on the
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final state to state probabilities, the results were found to be in
excellent agreement with the close-coupling calculatioas. The method
faithfully reproduced the exact quantum mechanical state-to=-state transition
probabilities for a wide range of collision energies. This range extends

from energies which produce almost no inelastic scattering to energies which

crcduce mostly inelastic scattering. This resul< 1s enccuraging since an
attengt was made tc thocse zotentials which correspend =o what zight te

expectad in a realistic mclecular collisiocn.

The classical methed used in this paper is the quasi-classical
“rajectory method. Final values of internal zoordinates {action variables)
vere assigned to guantum states by a simple binning procedure. The results
for the final distribution of vibratiocnal states of the molecules do not
agree sarticularly well with the quantum and semi-classical calculations.
In articular, the region of phase space required in order to populate
states which are pcpulated juantum mechanically and semiclassically appears
in some cases to te dynamically inaccessable.

It is reasonable to ask whether modifying the classical approach would
give bvetter answers. Tcr example, “he quasi-classical method as implemented
is not microscopically reversivsle. This impcrtant dynamical concept may be
incorporated in the calculations by selecting the initial action variatles
frcm a2 uniform distrizution centered zround a particular guantum number.
3ueh a micreoscerically reversible guasi-classical technique was used in 2

few <f the Initial states, but it showed no significant effect on the

resulis. This is nct surprising tecause the original batcres of
trajectories 4id not viclate micrcscopic reversitility to any significant
degree, “ther zaprroaches to final action analysis, such as the moment

methed, sr a modified choice of initial conditions which iIncorporate zuantum
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2ff3cts more directly, such as the Wigzner discrituticn zmetiacd, aight improve
<he agreement Yetween classical and zuantum results.

The encouragiag result of this paper is the good agreement between the
quantum and the semiclassical predictions, This introduces an interesting
possibility for molecular dvnamics calculations. The semiclassical calcula-
~ions could be used to determine the distribution of states arising from a
collision, Then this distribution could be incorporated as a submodel in a
classical molecular dvnamics calculation. This, however, involves several
leaps of faith, First, there is a basic problem that the quantum calcula-
tion only gives the final distribution of states, in the asvmptotic region

of the collision. It {s not at all clear how well the semiclassical calcu

lations represent the collision in the interaction region. The premise of
the molecular dynamics calculation would be that the results of an impulse
felt by a molecule, due to its simsltanecusly interacting with many mole-
cules, could be related to the results of an impulse of the same magnitude
felt by the collision with just one molecule. Even if the answers are not
equivalent, does statistical averaging make them better. These are just a

few of the questions that will be addressed in the future,
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TABLE I

for diatomic product functions. Vibrational
for the individual harmonic oscillator states

that the states are ordered in increasing energy.

n(1)

n(2)

ENERGY (ev)

OV NOWOIEAUVUINAWO FVNMTNWO F-2NWO-+NO 0O

OMN EAWLWUTONEF2AWON EALWON—L2UWON-20MN—-20~+~00

0.2u42
0.4401
0.5366
0.6360
0.7325
0.8290
0.8319
0.9284
1.0249
1.0279
1.121%
1.1244
1.2208
1.2238
1.3173
1.3203
1.4138
1.4168
1.4197
1.5133
1.5162
1.6097
1.6127
1.6156
1.7062
1.7092
1.7121
1.8087
1.8086
1.8116
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TABLE 1I
Comparison of quantum mechanical state to state transition probabilities
with those calculated using a variety of semiclassical classical
path schemes f{or a collision with total energy 1.25 ev. starting
in the ground state.
STATE QUANTUM SEMICLASSICAL
a b c d
1 .925 .870 .906 .893 .924
2 .073 .119 .088 .100 .073
3 .001 .002 .002 .001 .001
4 .001 .008 .004 .006 .003
5 .000 .Q00 .000 .000 .000
14 .000 .000 .000 .000 .000
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TABLE III

Quartum mechanical state to state transition probabilities for
zodel system with a total collision energy of 1.00 ev., Semiclassical;
probabilities (see text) are shown in parentheses. There are eignt

ocen (energetically accessible) channels at this erergy.
. g

1 2 3 4 5 6
1 .981  .019  .000  .000 .000  .000
(.978) (.022) (.000) (.000) (.000) (.000)
2 .019 .967  .008 .006 .000  .000
(.022) (.962) (.006) (.010) (.000) (.000)
3 .000 .008 .991  .000 .001 .000
(.000) (.006) (.992) (.000) (.002) (.000)
4 .000 .006  .000 .990 .004 .000
(.000) (.010) (.000) (.986) (.003) (.000)
5 .000 .000 .00l .004 .994 .00l
(.000) (.000) (.002) (.003) (.994) (.001)
6 .000  .000  .000 .000 .00l  .999
(.000) (.000) (.000) (.000) (.001) (.999)
7 .000  .000  .000  .000 .000 .000
(.000) (.000) (.000) (.001) (.000) (.000)
8 .000  .000  .000  .000  .000  .000

(.000) (.000) (.000) (.000) (.000) (.000)
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.000
(.000)

.000
(.000)

.000
(.000)

.000
(.001)

.000
(.000)

.000
(.000)

1.00
(.999)

.000
(.000)
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.000
(.000)

.000
(.000)

.000
(.000)

.000
(.000)

.000
(.000)

.000
(.000)

.000
(.000)

1.00
(1.00)
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Same as TABLE III
are fourteen open

1
.325
.924)

973
.873)

.001
.001)

.001
.003)

.000
.000)

.000
.200)

.300
.300)

.00
.000)

.000
.000)

.200
.000)

.000
.000)

.000
.900)

.200
.000)

.200
.000)

2
1373
(-373)

.354
(.a55)

.020
(.014)

.051
(. 955)

.01
(.001)

.000
(-000)

.000
(.002)

.000
(.000)

.200
{.200)

.000
(.000)

.000
{.000)

973
(.200)

.000
(.200)

.00
(.000)

3

.301
.901)

1220
.014)
-967)

.001
.001)

.014
.017)

.00
.090)

.000
.000)

.000
.000)

.000
.000)

.000
.900)

.000
.000)

.000
.400)

.300
.000)

.000
.000)

L e i e i~

L il "Bl Sl ek it

channels.
4 3 6
.901 .00 .900
.303) (.200) (.900)
L0851 .301 .900
.385) (.001) (.000)
.g01 .14 .000
.001) (.017) (.000)
.910  .020  .000
.903) (.01S) (.000)
.020 .951 .010
.015) (.952) (.008)
.000 .010 .989
.000) (.008) (.991)
.0l6 .200 .000
.022) (.000) (.000)
.Q00 .004 .000
.000) (.006) (.000)
.000 .000 .000
.000) (.200) (.001)
.000 .000 .000
.000) (.000) (.000)
.000 .000 .000
.006) (.200) {(.000)
.000 .000 .200
.200) (.0%00) (.000)
.300 .000 .000
.000) (.300) (.000)
L300 .000 .000
.000) (.900) (.000)

TABLE IV

—~

—~

.000
.000)

.000
.002)

.000
.000)

.016
.022)

.000
.000)

.000
-000)

.972
.965)

.009
.008)

.000
-000)

.001
.004)

.000
.000)

.000
.900)

.000
.000)

.000
.000)
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L0009
.300)

.000
.000)

.000
.000)

.000
.000)

.004
.006)

.000
.000)

.009
.008)

.983
.981)

.004
.004)

.600
.000)

.000
.200)

.000
.001)

.000
.300)

.200
.000)

“ith a total collision

—_

energy of 1.25

1200
.300)

.000
.00}

.000
.000)

.900
.000)

.00
.000)

.000
.001)

.900
.000}

.004
.204)

.99S
.995)

.000
.200)

.001
.001)

.000
.000)

.000
.000)

.000
.000)

—

—

—

.000
.100)

.200
.000)

.000
.000)

.900
.000)

.000
.000)

.000
.000)

.01
.004)

.000
.000)

.000
.000)

.998
.995)

.000
.000)

.001
.001)

.000
.000)

.000
.000)

—

~ o~

—

.00
.300)

.000
.000)

.000
.000)

.00
“000)

.000
.000)

.000
.000)

.000
.000)

.000
.200)

.001
.001)

.000
.200)

.999
.999)

.000
.000)

.000
.000)

.000
.000)

o~

—~

—

ev.

L300
.300)

.000
.000)

.000
.000)

.000
.000)

.000
.000)

.000
.000)

.200
.000)

.000
-001)

.000
.000)

.001
.001)

.000
.000)

.999
.998)

.000
.000)

.000
.300)

1300
.300)

oy

.00
(.200)

.00
(.000)

.00
(.200)

.000
(-000)

.000
(.000)

.000
(.000)

.000
(.000)

,300
(.000)

.200
(.000)

.000
(.900)

.300
(.200)

1.00
(1.00)

.900
{.300)

—~

—

—~

—

~

—

@

(

(

'.300)

I’ et daeiiatahaar A SRR L R |

i4
.o
300

.000)

.000
.300)

.00
.000)

.000
.200)

.000
.000)

.200
.000)

.00
.300)

.900
.000)

.000
.000)

.000
.300)

.000
300)

.300
.300)

.00
1.00)
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TABLE V

Same as TABLE III with a total collisicn energy of 1.75 ev. Although
there are 27 open channels at this =nergy, only results for the first
14 are shown here. One can see from FIG. V that the probability of an
inelastic collision decreases consideraZly for higher states.

2 3 4 5 6 7 3 3 20 12 2 3 p

282 .05 .34 901 .00 901 .60 300 000 .000 .00 )00 300
.286) (.303) (.336) (.001) {.200) (.305) (.909) {.300) (.301) (.000) (.3€0) (.30Q) {.300)

354 )35 280 .016  .000  .030  .00L .300 .00L .000 .300  .J00  .300
[417) (.021) (.259) (.01l) (.000) (.039) (.203) (.900) (.005) (.000) (.200) (.00} (.900)

.035 .786 016 .1 .002 .301 .307 .290 .200 .000 .300 .000 .000

321) (.81%) (.009) (.146) (.002) (.001) (.911) (.000) (.000) (.000) (.001) (.000) (.200)

.280  .916 .363 .044 .001 .I31 .916 .00 .014 .000  .001  .300 .30
1259) (.209) (.481) (.029) (.000) (.222) (.012) (.300) (.926) (.000) (.002) (.000} (.202)

.593  .043 .017 .128 .006 .00l .000  .003  .30G¢  .%00
300) (.900)

—
—

—

A6 L 344
911 (.:40) (.029) (.634) (.028) (.011) (.130) (.006) ({.501) (.000) (.008)

.000 .002 .001 .043 .397 .000 .206 .3S1L  .000  .000  .300 .300  .200
300) (.002) (.000) (.228) (.910) (.000) (.204) (.3S3) (.000) (.001) (.000) (.2002 (.200)

.230 .201  .231 .017 .000 .303 .0S3 .90L .1S1  .000  .008 .000 .03
339) (.301) (.222) (.011) (.900) (.513) (.037) (.001) (.152) {.000) (.009) (.300) (.011)

001 .007 .016 .128 .006 .053 .648 .053  .J10  .000 .074  .003  .)00
2203) (.911) (.012) (.130) (.204) (.037) (.671) (.039) (.006) (.200) (.080) (.004) (.200)

.300  .000 .000 .006 .0S51  .001 .053 .328  .200 .027 .004 .929  .000
.300) (.300) (.000) (.006) (.053) (.301) (.333) (.843) (.000) (.020) (.003) (.034) (.000)

301 .900 .014 .00 .J00 .1S1  .010 .900 .707 .000 .049  .001  .064
_205) (.300) (.026) (.001) (.000) (.152) (.906) (.301) (.695) (.000) (.036) (.008) (.972)

300  .00Cc  .000 .000 .000 .000 .000 .027 .000 .964 000  .301  .000
.900) (.200) (.000) (.000) (.901) (.900) (.200) {.020) (.000) (.369) (.200) (.200) (.000)

.00 .060 .901 .003 .000 .008 .074 .004 .049 .000 .787  .045  .003
.000) (.901) (.002) (.008) (.000) (.009) (.380) (.203) (.036) (.900) (.791) (.034) (.202)

000  .000  .000  .000  .%00  .300  .003  .529 001 .00l .045 .388  .200
.900) (.000) (.000) (.001) (.202) (.900) (.204) (.d34) (.000) {.000) (.035) (.393) (.200)

300  .200  .000 .080 .000 .003 .000 .J00 .064 .000  .003  .300  .387
.000) (.060) (.002) (.000) (.00Q) (.01I) (.000) (.200) (.072) (.900) (.302) (.000) (.872)

—_—

—
—~

—
—

—
—

—
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FIG. II

Intermolecular Lennard-Jones potential for model diatom=-diatom system.
energy spacings for the collision partners and the first several erergy
levels for the combined system are shown on the same energy scale

for comparison.
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FIG. III

Total probability of an inelastic event for a collision erergy of 1.25 ev.
Shown are prctabilities predicted by quantum mechanical clcse coupling
calculations (Q), semiclassical classical path calculaticns (S) and
classical trajectcry calculations using the histogram binning technigue (C). ;
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rIG. IV

Same as FIG. III, except with a lower collision erergy of 1.00 ev.
Note the expanded scale.

36

...... T P PN R )
LN ol - .o . N i S -
T e e L I - . R R o . R A T
-, '_\..-_-.-‘_". BRI IT AL SRS '-\".'\r-,' e . ‘-_-\_;,‘., co N . T S S .
- MBI IR SRR S TR RO PP TR R PR WY, Py i D TRUr T 0 PRI W LT W WIS - SO F SR U S oee- T VNS A




e et A e A A RS S a g s g it n f 00l B el Ak tef wal tall u vh B aab el il atos st Se o tab Mt b gl WO TR FITRI AT P R TR T T T e T W e e L :JW
1Y

b
e

bt
e

1.0 ﬁr i I ]—l LS l L r L ] ﬁ' L I T ]7'

Q - QUANTUM MECHANICAL
8 c S - SEMICLASSICAL -
- C C - CLASSICAL -

PROBABILITY OF INELASTIC COLLISION

L

0 "

| ' N T T S S e
0 2 6

8 10 12 14 16 18 20

INITIAL QUANTUM STATE
FIG. V

|
4

Same as FIG. III except with a higher collisicn energy of 1.75 ev,
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FIG. VI

State-to-state transition probabilities for a 1.75 ev collision
beginning in the second entrance channel.
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FIG. VII

Classical vs. quantum mechanical probabilities of inelastic
collision for a total collision energy of 2.2% ev. Note that the
scattering is predominantly inelastic at this high energy.
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FIG. VIII

Distribution of final values c¢f classical action variables for
collisions at 1.0 ev. The initial values of the action variables

for all trajectories are oxygen: 1.0, nitrogen: 0.0 corresponding

to quantum state 2. The initial phases of the oscillators are
chosen randomly between 0. and 2 . The grid represents the
assignment to quantum states. The quasi-classical binning technique
predicts only elastic scattering in this case.
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Distribution of final values of classical acticn variables at 2.25 ev..
The initial values of the action variables for all trajectcries

are oxygen: 2.0, nitrogen: 1.0 corresponding to quantum state 8.

The initial phases of the oscillators are chosen randomly between

0. and 2 . The grid represents the assignment to quantum states.
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