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SUMMARY

;;/A continuum structure function is a nondecreasing mapping from the
unit hypercube to the unit interVa]. The theory of such functions
generalizes the traditional theory of binary and multistate structure
functions, permitting more realistic and flexible modelling of systems
subject to reliability growth, component degradation and partial
availability.

During the first year of work on this topic, the PI has developed
a theory of modules (i.e. subsystems), calculated various sets of bounds
on the distribution of the structure function when the component states
are random variables, deduced axiomatic characterizations of two important
special cases and derived a definition of the reliability importance of

the various components. -
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1. INTRODUCTION

A continuum structure function (CSF) on the unit hypercube is a

mapping v: [0,1]noa [0,1] which is nondecreasing in each argument; we
assume, without any loss of generality, that y(0) = 0 and v(1) = 1,
writing a = (a,...,a) € A = [0,1]1". Such functions are used to relate
the states x of the components C of a machine to that of the machine
itself, generalizing the well-known theory of binary and multistate
structure functions. In this report, we review the PI's research on such
functions during the first year of funding under Grant AFOSR-84-0243.
It is first convenient briefly to review previous work on this topic.

The first paper on structure functions whose domain is a continuum
is that of Ross (1979) who generalizes the classic IFRA and NBU closure

theorems. Block and Savits (1984) derive a topological decomposition for

upper semicontinuous CSFs on the non-negative orthant. Let

P, = {xIY(x) > a whereas v(y) < a for all y < x} where y < x means

that y < x but that y # x. Then Block and Savits (1984) show that

L e )

y(x) = f max min I da
0 yep iec iyl

;' where IA is the indicator of A. They also use the sets Pa and Ka =

{x]y(x) < a whereas y(y) > o for all y > x} to derive bounds on the

distribution of y(X) assuming that the Xi‘s are associated random variables
and that y is a continuous CSF with compact support.
Baxter (1984) studies properties of two special cases of CSFs on

the unit hypercube, viz.
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z(x) = max min X; |
1<r<p ieP,

(the Barlow-Wu C5F) and

n(x) = max 7T X
I<r<p i€P,

where P],...,P are the p minimal path sets of a binary coherent structure

p
function.

Baxter (1986) proposes the following definitions of component relevancy.

Definition

C.1 If inf sup p{X’y(Xi,E) < y((x+g)i,5) for all &0} = 1,
ieC x€A

y is strictly coherent.

C.2 If inf u{x|y(x;,x) < y({x+ec);,x) for all >0, for some x € A} = 1,
i€l

vy is coherent.

C.3 If inf sup {y(1,,x) - v(0;,x)} > 0, y is weakly coherent.
ieC xea

In the above, y denotes Lebesgue measure and (xi,é) denotes

(XyseensXy 19XsX5qseeeaX ). It can be shown that C.1 = C.2 = C.3.
Extension of these definitions to an arbitrary compact, connected A is
trivial and extension to an unbounded domain is straightforward.
Application to a finite domain involves replacing u by counting measure
and a suitable rescaling, in which case C.1, C.2 and C.3 reduce to
Griffith's definitions 2.2(i), (ii) and (iii) for multistate structures

(Griffith, 1980).
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Baxter (1986) proves that if y satisfies C.2 and an additional
requirement called completeness (essentially that if y(xi,g) is strictly
:% increasing, it is necessarily the identity function), then y(xvy) =
v(x)vr(y) iff v(x) = sup x;, thereby generalizing Griffith's Proposition 2.2
ieC
to the continuum case.

Definition
Let {¢,, O<a<l} be a class of binary coherent structure functions
such that ¢a(xa) is a left-continuous and nonincreasing function of o for

fixed x where Yoi is the indicator of {xizg}, i=1,2,...,n. If
£(x) > a iff o (y) =1 (x€a, O<o<l)

£ is said to be a Nativg CSF. (It is so called because it generalizes the

"second suggestion" of Natvig (1982) to the continuum case.)

Baxter (1986) studies properties of £; in particular, it is shown
that £ is coherent, though not strictly coherent, complete and right-
continuous. Its functional form is examined in detail.

In Sections 2, 3, and 4, respectively, we review the PI's work on
modules, bounds and axiomatic characterizations; this research was performed

jointly with Chul Kim, a former doctoral student.
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2. MODULES OF CSFs

Before giving the definition of a module, it is convenient to define

minimal path sets of upper simple CSFs on the unit hypercube.

A minimal vector to level o € Imy-{0} is a vector xeA such that

v(x) = o whereas y(y) <afor all y < x. If x is a minimal vector to level
a, the corresponding path set to level a is the (nonempty) set T =T (x) =
{ieCix; # 0.

Definition (Baxter and Kim, 1985a)
Let T = C be nonempty. If T is a path set to level a (for some x)

for all o€Imy-{0}, then T is a minimal path set (MPS) of v.

This definition generalizes minimal path sets of binary coherent
structures to CSFs. MPSs do not necessarily exist for arbitrary CSFs and,
if they do exist, they may exhibit undesirable properties. The following
definition yields a large class of CSFs for which MPSs exist and are "well-

behaved."

Definition (Baxter and Kim, 1985a)

A CSF v 1is upper simple if it satisfies the following conditions:
S C.1 P, #pand P, c{0,1)" - (0}

: r
: c.2 UTy; = Cwhere Ty ,...,T;, are the r path sets of Y to level 1.
i1

®
C.3 If T is a path set to level a, then T is also a path set to level
: REImy-{0} for all B < a.
! c.4 If Ta is a path set to level a <1, then T, < T]i for some path set
R T]i to level 1.
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If vy is upper simple, it has at least one MPS and is weakly coherent.
Further, no proper subset of an MPS is itself an MPS and the union of all
MPSs is C.

If Y is a right-continuous, upper simple CSF, then
(2.1) v(x) = max  y(x 1,00

1<i<r

where T],...,Tr are the r MPSs of y and where §P denotes {xi€§Ji€Pc£}.

Definition (Baxter and Kim, 1985a)
Suppose that y is weakly coherent, that AcC is nonempty and that

IA]

there exists a weakly coherent CSF Yy [0,1] -~ [0,1] and a CSF

c
N [O,]]n4Al+]-a [0,1] such that v(x) = X[Y](ZA)»EA ] for a1l x € A. Then

(A,Y]) is a module of (C,y) and A is a modular set of (C,y).

Baxter and Kim (1985a) prove the following theorems, thereby general-
izing part of the theory of modules of binary coherent structures

(Birnbaum and Esary, 1965) to the continuum case.

Theorem 2.1
Let (A,v7) be a module of (C,y) where y and Y are both upper simple.
Then the MPSs of Y are AnT],...,AnTk where T],...,Tk are those MPSs of

Y which intersect A.

Theorem 2.2

Let v be a right-continuous, upper simple CSF with MPSs T],...,Tr.

Suppose that A < C is nonempty and that Tj < A for j=1,2,...,k whereas

TjnA = P for j=k+1,...,r. Then there exists a weakly coherent CSF
va: [0,131A1 1, [0,17 such that (A,y,) is a module of (C,y).

R |
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Theorem 2.3
Let (A,Y]) be a module of (C,y) where y and yy are both upper simple.
Then (AnT) U (ASnT') is an MPS of y whenever T and T' are MPSs of y which

intersect A.

Theorem 2.1 generalizes Theorem 4.1 of Birnbaum and Esary (1965)
and Theorem 2.2 is a partial converse. Theorem 2.3 generalizes part of the
Birnbaum-Esary Test for Modularity; conditions on y under which the converse
to this result holds have yet to be established, and hence the following

additional condition is required in the proof of Theorem 2.4 below.

C.5 Suppose that vy is upper simple and that A < C is nonempty. If
(AnT)\J(ACnT') is an MPS of vy whenever T and T' are MPSs of y which
intersect A, then A is a modular set of vy and the associated CSF

is upper simple.

Theorem 2.4 (Three Modules Theorem)

Let v be an upper simple CSF which satisfies C.5. Suppose that A], A2
and A3 are disjoint, nonempty subsets of C such that A]UA2 and A2UA3
are modular sets of (C,y) and the associated CSFs are upper simple. Then

Aqs AZ’ A3, A]UA3 and AUA,UA; are all modular sets of (C,y). Further,

2
those MPSs of vy which intersect A]UA?_UA3 all intersect each of A], A2

and A3 or else they intersect exactly one of these sets.
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3. BOUNDS
The distribution of y(X) is hard to evaluate in general since
(a) y may be a quite complicated function (b) the X;'s may be dependent
(c) n may be large. It is thus desirable to determine bounds on the
distribution of y(X).
Baxter and Kim (1985b) use decomposition (2.1) to prove the

following theorem.

Theorem 3.1
Let vy be a right-continuous, upper simple CSF with minimal path sets

Tl”"’Tr' Then, if X]”“’Xn are associated random variables,

T. T 7¢

r T.
max P{y(Xx ',0 ') > x} < P{y(X) > x} < ,LI1P{Y(1 0" x
1<i<r 1=

for all x € R.

In a manner analogous to the definitions of MPSs and upper simple

CSFs, we can define minimal cut sets (MCSs) and lower simple CSFs.

These have corresponding properties; in particular, if y is a left-

p continuous, lower simple CSF with MCSs S],...,Sk, then
s, s$
(3.1) v(x) = min y(x 9,1 9).

153k
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Theorem 3.2

Let v be a left-continuous, lower simple CSF with minimal cut sets ‘

S]"“’St' Then, if X1""’Xn are associated random variables, g
|
t s, s 5. s
PiY(X 3,01 9) > x} < Piy(X) > x} < min P{y(x J,17) > x}
j=1 1<j<t

for all x € R.

Suppose, now, that there is a partition {A],...,AN} of nonempty subsets

of C such that (A],Y]L...,(AN,YN) are modules of (C,y) and y(x) =
A AN)

X[Y1(§.])’---aYN(£ ] for all x € A. Then we say that (C,y) admits of a

modular decomposition {x,(A],Y]),...,(AN,YN)}. Baxter and Kim (1985b)

show that, in such a case, the bounds of Theorems3.1 and 3.2 may be

improved.

Theorem 3.3
Suppose that v is a CSF with modular decompesition {X’(A]’YQ""KAN’YN)}
A,
and that X is a vector of associated random variables. Let Yj = Yj(Z.J) for

jz],z,.,.,N.
(i) 1If v and x are both right-continuous and upper simple with minimal
path sets T]""’Tr and u],...,up respectively,

T. T ¢

u, W
max P{y(x 1,0 ') > x} < max P{X(Y¥ ',0") > x} < P{y(X) > x} <
1<i<r 1<i<p
p W, u? r T. T1¢
Uetx(y 50"y > x < JIptv(x ',0 ") > xb.
i=] IR -

............................................
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(ii) If v and x are both left-continuous and lower simple with minimal

cut sets S],...,St and Vyse eV respectively,

c

t s. s k v, VS
PUY(X 9,0 9) > x} < TTPIx(X 9,1 9) > x} < PLy(X) > x} <
j=1 j=1
v. V¢ s. s¢
min P{x(Y 4,1 9) > x} < min Piy(x 3,1 9) > x}.
1<j<k B S RN 13

We now consider a different set of bounds based on the sets Pa and Ka.

Let {a,, t€T} be a collection of real numbers such that 0 < a; <1

t’
for all t € T. Define ngat = sup ||a, and TTa, = inf TTa, where = is
€ Sex teS teT Ser tesS

the set of all finite subsets of T.

NOTATION: Let U = {x|y(x)>a} and L = {x|y(x)<a}.

Let v be a CSF and suppose that X is a vector of associated random

variables.

(i) 1f U, is closed,

sup P{X>y} < P{y(X)>a} < 1_% P{X>y}.
xﬁPa Yep,

(ii) If La is closed,

T A

n n
U {x->y.}) < Piy(X)>a} < inf P(U{X.>y.}>.
yek, j=1 473 nga j=1 373

........................................
------------------------------------
......
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Baxter and Kim (1985¢c) show that if y admits of a modular decomposition,

these bounds may be improved as follows.

Theorem 3.5

Let Y be a weakly coherent CSF with continuous modular decomposition

{m,(A],y]),...,(AN,YN)} and suppose that X is a vector of associated random
A.
variables. Let Z, = Y. (X '), i=1,2,...,N.

(i) If U, is closed,

sup PIX > y} < sup P{Z>wi< P{y(X)>ul < 11 plz>w < ] Pix>yh
vep, wek weH Yep

ey

(ii) If L is closed,

n N
T r Uty < TR U

{Z.>w.}> < P{y(X)>u}
yek =1 wev =1 3

v.m‘jjir"w*vv
. N e ct

N n
< inf P((J {Zj>w.}> < inf P((J {X.>y.}>,
Wy Nj=] J yek  N\j=1 37

In the above, we use the notation

w-‘-ﬁ—mﬁ,
|

= {z|v(z) > u whereas x(w) <« for all w < z}

,
<
|

= {z|x(z) < a whereas x(w) > o for all w > z}.

EARAS MACESOEE WAmAOANS Ja

St ol PR T P L
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4. AXIOMATIC CHARACTERIZATIONS

Kim and Baxter (1985) present axiomatic characterizations of the
Barlow-Wu and Natvig CSFs. In particular, they show that vy is a Barlow-Wu

CSF if and only if it satisfies the following conditions:

El: y is continuous
F2: P #Pand P < {0,0}", 0 <a <1
o a -
E3: There is no nonempty open set A < A such that vy is constant on A

- E4: v is weakly coherent
and that y is a Natvig CSF if and only if it satisfies E2 and
E1': vy is right-continuous

E4': For each i € C and all a € (0,1], there exists an x € & such that

y(a;,x) > a whereas y(B;,x) < a for all g < a.

Rk D ' .

The approach was suggested by the characterizations of Borges and
Rodrigues (1983).
In deriving these axiomatizations, Kim and Baxter (1985) prove the

following results which are of independent interest.

Proposition 4.1

I[f v is a continuous CSF, conditions E2 and

E2': K # 0 and K,  {o,1}", 0 <a <1

are equivalent.
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Proposition 4.2

1f v is a CSF which satisfies E1, E2 and E3, then v({0,a}™) = {0,a}
for all a € [0,1].
Proposit‘on 4.3

If v is a CSF which satisfies E1, E2 and E3, then Pa= aP] for all
a € (0,1].
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