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SUMMARY

A continuum structure function is a nondecreasing mapping from the

unit hypercube to the unit interval. The theory of such functions

generalizes the traditional theory of binary and multistate structure

functions, permitting more realistic and flexible modelling of systems

subject to reliability growth, component degradation and partial

availability.

During the first year of work on this topic, the PI has developed

a theory of modules (i.e. subsystems), calculated various sets of bounds

on the distribution of the structure function when the component states

are random variables, deduced axiomatic characterizations of two important

special cases and derived a definition of the reliability importance of

the various components.
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1. INTRODUCTION

A continuum structure function (CSF) on the unit hypercube is a

mapping y: [O, 1]n,_ [0,1] which is nondecreasing in each argument; we

assume, without any loss of generality, that y(O) = 0 and y(l) = 1,

writing a = (A,...,a) E A = [O,l]n . Such functions are used to relate

the states x of the components C of a machine to that of the machine

itself, generalizing the well-known theory of binary and multistate

structure functions. In this report, we review the PI's research on such

functions during the first year of funding under Grant AFOSR-84-0243.

It is first convenient briefly to review previous work on this topic.

The first paper on structure functions whose domain is a continuum

is that of Ross (1979) who generalizes the classic IFRA and NBU closure

theorems. Block and Savits (1984) derive a topological decomposition for

upper semicontinuous CSFs on the non-negative orthant. Let

P = {xjy(x) > a whereas y(y) < a for all Y_ < x} where y < x means

that y < x but that y x. Then Block and Savits (1984) show that

y(x) = max min d{x da
-O yEP iEC iYi

where I is the indicator of A. They also use the sets P and K =

A Ux

{xly(x) < a whereas y(y) > a for all Y_ > x} to derive bounds on the

distribution of y(X) assuming that the Xi's are associated random variables

and that y is a continuous CSF with compact support.

Baxter (1984) studies properties of two special cases of CSFs on

the unit hypercube, viz.

-°- . .. . . . . . .
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.() = max min x.
l.r <p iEPr

(the Barlow-Wu CSF) and

n(x) = max TT x.
l.r<p iEPr

where P,••.,Pp are the p minimal path sets of a binary coherent structure

function.

Baxter (1986) proposes the following definitions of component relevancy.

Definition

C.1 If inf sup p{xly(xi,x) < y((x+c)i,x) for all c>O} = 1,
iEC XE

I is strictly coherent.

C.2 If inf f{xly(xi,x) < y((x+e)i,x) for all E>O, for some x E = ,
-EC -

y is coherent.
b'.

C.3 If inf sup {y(li,x) - y(Oi,x)} > 0, y is weakly coherent.
iEC xEA

In the above, p denotes Lebesgue measure and (xi,x) denotes

(xl,...,xix,xiMl,••.,Xn). It can be shown that C.l = C.2 - C.3.

Extension of these definitions to an arbitrary compact, connected A is

trivial and extension to an unbounded domain is straightforward.

Application to a finite domain involves replacing p by counting measure

and a suitable rescaling, in which case C.l, C.2 and C.3 reduce to

Griffith's definitions 2.2(i), (ii) and (iii) for multistate structures

(Griffith, 1980).
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Baxter (1986) proves that if y satisfies C.2 and an additional
requirement called completeness (essentially that if y(xi,O) is strictly

increasing, it is necessarily the identity function), then y(xvy) =

y(x)vy(Y) iff y(x) = sup xi, thereby generalizing Griffith's Proposition 2.2
iEC

to the continuum case.

Definition

Let {t c O<a<l} be a class of binary coherent structure functions

such that t(.) is a left-continuous and nonincreasing function of a for

fixed x where y is the indicator of {x >cc, i=1,2,...,n. If

F(x) > a iff 1 (XEA, O<a<l)

is said to be a Nativg CSF. (It is so called because it generalizes the

"second suggestion" of Natvig (1982) to the continuum case.)

Baxter (1986) studies properties of ; in particular, it is shown

that is coherent, though not strictly coherent, complete and right-

continuous. Its functional form is examined in detail.

In Sections 2, 3, and 4, respectively, we review the PI's work on

modules, bounds and axiomatic characterizations; this research was performed

jointly with Chul Kim, a former doctoral student.
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2. MODULES OF CSFs

Before giving the definition of a module, it is convenient to define

minimal path sets of upper simple CSFs on the unit hypercube.

A minimal vector to level a E Imy-{O} is a vector XEA such that

y(x) = a whereas y(y) <afor all y < x. If x is a minimal vector to level

a, the corresponding path set to level a is the (nonempty) set T. = T a(x)

(iEClx i x 01.

Definition (Baxter and Kim,1985a)

Let T c C be nonempty. If T is a path set to level a (for some x)

for all aEImy-{O}, then T is a minimal path set (MPS) of y.

This definition generalizes minimal path sets of binary coherent

structures to CSFs. MPSs do not necessarily exist for arbitrary CSFs and,

if they do exist, they may exhibit undesirable properties. The following

definition yields a large class of CSFs for which MPSs exist and are "well-

behaved."

Definition (Baxter and Kim, 1985a)

A CSF Y is upper simple if it satisfies the following conditions:

C.1 P1  0 and P1 c {O,1n M

r
C.2 UT = C where Tll,...,Tlr are the r path sets of Y to level 1.

i=l iar

C.3 If T is a path set to level a, then T is also a path set to level

IElmy-{O} for all 0 < a.

C.4 If Ta is a path set to level a < 1, then T0 c Tli for some path set

T to level 1.
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If y is upper simple, it has at least one MPS and is weakly coherent.

Further, no proper subset of an MPS is itself an MPS and the union of all

MPSs is C.

If Y is a right-continuous, upper simple CSF, then

T. T
c

(2.1) y(x) = max y(x 1,0 1)
l<i<r

where TI,...,Tr are the r MPSs of y and where xP denotes {xiExIiEPcC}.

Definition (Baxter and Kim, 1985a)

Suppose that y is weakly coherent, that AcC is nonempty and that

there exists a weakly coherent CSF yI: [0,1]IAI .- [0,1] and a CSF

,'L] n-IA +l -. [0,1] such that y(x) = X[Y(xA),x ] for all x E A. Then

(A,yi) is a module of (C,y) and A is a modular set of (C,y).

Baxter and Kim (1985a) prove the following theorems, thereby general-

izing part of the theory of modules of binary coherent structures

(Birnbaum and Esary, 1965) to the continuum case.

Theorem 2.1

Let (A,yl) be a module of (C,y) where y and yl are both upper simple.

Then the MPSs of yI are AnTl, ...,AnTk where Tl,...,Tk are those MPSs of

y which intersect A.

Theorem 2.2

Let y be a right-continuous, upper simple CSF with MPSs Tl ,...,T

Suppose that A c C is nonempty and that T. c A for j=l,2,...,k whereas

TjnA = 0 for j=k+l,...,r. Then there exists a weakly coherent CSF

YA: [0,l]IAI . [0,1] such that (AYA) is a module of (C,y).
. -A: ~

.~ .5 . . . . . . '
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Theorem 2.3

Let (A,yI) be a module of (C,y) where y and yl are both upper simple.

Then (AnT) u(AcnT') is an MPS of y whenever T and T' are MPSs of y which

intersect A.

Theorem 2.1 generalizes Theorem 4.1 of Birnbaum and Esary (1965)

and Theorem 2.2 is a partial converse. Theorem 2.3 generalizes part of the

Birnbaum-Esary Test for Modularity; conditions on y under which the converse

to this result holds have yet to be established, and hence the following

additional condition is required in the proof of Theorem 2.4 below.

C.5 Suppose that y is upper simple and that A c C is nonempty. If

(AnT) u(AcAT ') is an MPS of y whenever T and T' are MPSs of y which

intersect A, then A is a modular set of y and the associated CSF

is upper simple.

Theorem 2.4 (Three Modules Theorem)

Let y be an upper simple CSF which satisfies C.5. Suppose that Al, A2

and A3 are disjoint, nonempty subsets of C such that AIUA 2 and A2uA3

are modular sets of (C,y) and the associated CSFs are upper simple. Then

A1, A2, A3, AIUA3 and AIUA2UA3 are all modular sets of (C,y). Further,

those MPSs of y which intersect AIUA2UA3 all intersect each of A1 , A2

and A3 or else they intersect exactly one of these sets.

B
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3. BOUNDS

The distribution of y(X) is hard to evaluate in general since

(a) y may be a quite complicated function (b) the Xi's may be dependent

(c) n may be large. It is thus desirable to determine bounds on the

distribution of y(X).

Baxter and Kim (1985b) use decomposition (2.1) to prove the

following theorem.

Theorem 3.1

Let 'y be a right-continuous, upper simple CSF with minimal path sets

Tl .... ,Tr* Then, if Xl, .... Xn are associated random variables,

c c
T. T. r T. T.

max P{y(X 1,0 1) > x} < P{y(X) > x} < 4P{y(X 10 1) > x}
l<i<r

for all x E 1R.

In a manner analogous to the definitions of MPSs and upper simple

CSFs, we can define minimal cut sets (MCSs) and lower simple CSFs.

These have corresponding properties; in particular, if y is a left-

continuous, lower simple CSF with MCSs S1,... ,Sk, then

S. Sc

(3.1) y(x) min y(x Jl J).
1<j<k

N

,'.--.-'.'-.'--:-,'-.-'--i-i'.'i .".."."..".".-".-..-.- ....--....-..-.......- '..- ..-..................-....--.-,'-...-.....-..-..--.-..-.-..-.-..,...,-,,-..--.-.



P 8

Theorem 3.2

Let y be a left-continuous, lower simple CSF with minimal cut sets

sit ...,SS. Then, if Xl,***,Xn are associated random variables,

t S. S.~ S. S.~
TEP{y(X J,l J) > x} < Pf-y(X) > x} < min Pty(X J,l 3) > X
j=l l<j<t

for all x c R.

Suppose, now,that there is a partition {Al, ... 'AN) of nonempty subsets

of C such that (A1,yl),... ,(ANYN) are modules of (C,y) and y(x) =

x[-Y1(x 1) -x N)] for all x E A. Then we say that (C,y) admits of a

modular deconiposition [X(l'l,..( Y } Baxter and Kim (1985b)

show that, in such a case, the bounds of Theoreris3.l and 3.2 may be

improved.

Theorem 3.3

Suppose that -Y is a CSF with modul ar decomposition tx, (Al,$Y I), .. ,(AN ,YN)
A.

and that X is a vector of associated random variables. Let Y. -Y(X J) for

() If f' and x are both right-continuous and upper simple with minimal

path sets Tit... Tr and Pit' ...'P respectively,
r C

max PtY(X 1,0 1)> x} < max P{X(Y ,01)_x<Py()>x
l<i<r l< i

c c
P ii .r T. T.
HiPfx(-y 1,0 1)> x) < HLP{-Y(x 1,0 1)> x1.
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(ii) If y and x are both left-continuous and lower simple with minimal

cut sets S1, ...,2S t and vl..v respectively,

t S. Sc k \) V

fPly (X J 1l j) > x1 < ]P{x(Y ]l 1 > X) < P~y(X) > X} <
j=l j=l

c c.

V. \.).

wi n Y J,l 3) > x} < win Pty (X ',l j) > X}.
bcj<k l<j<t

We now consider a different set of bounds based on the sets P and K
0.

Definition

Let {at, tET} be a collection of real numbers such that 0 < at <1

for all t C T. Define hat =sup ilat and TTat if T wee s

the set of all finite subsets of T.

NOTATION: Let U, txly(x)>oa} and L, f xl-y(x)<al}.

Theorem 3.4 (Block and Savits, 1984)

Let y be a CSF and suppose that X is a vector of associated random

variables.

Mi If U is closed,

sup P{X>yi <~ PNy(X)>cL} . P{X > Y1.
)fE P

(ii) If L Ckis closed,
n

IF P( 0 { iX>y;) < P{y(X)>al} < inf P(( fJ{X>Y.).LyEK0  j=l yEK j=1 3

-7 2. 2 . . . . . . .
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Baxter and Kim (1985c) show that if y admits of a modular decomposition,

these bounds may be improved as follows.

Theorem 3.5

Let -Y be a weakly coherent CSF with continuous modular decomposition

'I Iand suppose that X is a vector of associated random
N9N A.

variables. Let Z.i = Y.(X 1), i=l,2,...,N.

M(i)f U,., is closed,

sup P{ X > Y1 < sup p(Z,-wl< Pf-y(X)>Ctl i P{Z > W)< LI P{X Y)}

(ii) If L, is closed,

yC _ __ wEv j=l Py)>}

< inf P((I{fZ.>wj})) inf P fx>yYl).
wEvC, j1l y'K (4 j J

In the above, we use the notation

=fzly<(z) > (i whereas x(w) < t for all w < z}

f zlX(z) < a whereas X(w) > a for all w > z).
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4. AXIOMATIC CHARACTERIZATIONS

Kim and Baxter (1985) present axiomatic characterizations of the

Barlow-Wu and Natvig CSFs. In particular, they show that y is a Barlow-Wu

CSF if and only if it satisfies the following conditions:

El: y is continuous

E2: P 0 and P c {,ct} n, 0 < CX < 1

E3: There is no nonempty open set A c A such that y is constant on A

E4: y is weakly coherent

and that y is a Natvig CSF if and only if it satisfies E2 and

El': y is right-continuous

E4': For each i E C and all a E (0,1], there exists an x E A such that

-Y(ai ,x) > a whereas y( ix) < a for all B < a.

The approach was suggested by the characterizations of Borges and

Rodrigues (1983).

In deriving these axiomatizations, Kim and Baxter (1985) prove the

following results which are of independent interest.

Proposition 4.1

If -y is a continuous CSF, conditions E2 and

E2': K a 0 and KD {cl}n, 0 < a < 1

are equivalent.
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Proposition 4.2 
nIf -y is a CSF which satisfies El, E2 and E3, then y({0,ct}n)={~

for all a E [0,1].

Propositlon 4.3

If y is a CSF which satisfies El, E2 and E3, then P,= aP, for all
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