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SECTION I

INTRODUCTION

* A. THE NATURE AND ROLE OF THEORY

In most fields of knowledge, from physics to political science, it

is essential to use a hypothesis to make sense of a complex reality.

The complex reality we seek to model in this study is the load-

deformation response of a statistically homogenous assemblage of

particles. More specifically, we will attemp t to use the mathematical

theory of plasticity to determine the history of the state of stress

and strain at all points in a partially or totally plastic body of sand

when the the history of the boundary loadings and displacements are

specified.

To explain or model the complex phenomenon of particles crushing,

distorting, sliding, and rolling past each other under load, a theory

must simplify and abstract from reality, but these simplifications and

idealizations must lie within the framework of physically and

mathematically permissible stress-strain relations. The test of any

scientific theory is whether it explains or predicts what it is

designed to explain or predict, and not whether its assumptions exactly

mirror reality. On the other hand, the most useful theory (or stress-

strain relation in this case) is the simplest one which will work for

the problem at hand. A theory can consider only a few of the many

factors that influence real events; the trick is to incorporate the

most important factors into the theory and ignore the rest.



The mathematical theories of plasticity presented here should be

clearly distinguished from the physical or microstructural plasticity

theories which attempt to model geometrically the local interaction of

the granules. The mathematical (or phenomenological) theory is only a

formalization of known experimental results and does not inquire very

deeply into their physical basis; it is essential, however, to the

solution of problems in stress analysis and also for the correlation of

experimental data (Reference 1).

B. STATEMENT OF PROBLEM

The structural degradation of a flexible pavement is normally

associated with cracking of the bituminous surface course and the

development of ruts in the wheel paths (Reference 2). In this report,

we focus on the latter aspect which involves considerations of the

accumulation of permanent deformation during the repeated application

of moving wheel loads at the surface. The conventional design procedure

(Reference 2) assumes that rutting occurs only in the subgrade and is

controlled by limiting the value of the vertical compressive strain at

the top of this layer. The stiffness of the material in this design

procedure is characterized by the resilient modulus and Poisson's

ratio, the resilient modulus of a cohesionless soil being defined as a

mean stress-dependent secant modulus obtained after 200 repetitions at

various deviatoric levels of undrained axial loading. Is this modulus

approriate for design? This is the question we will ultimately try to

answer in this investigation.

S-.-2



The study of rutting in roadway and runway structural support

systems is one of fundamental interest in soil mechanics. First, the

elements of underlying soil are subjected to three dimensional,

cyclically varying loading paths which, from the theoretical point of

view, implicate the subaspects of material anisotropy coupled with

rotation of the principal stress axes during loading. The studies of K

anisotropy and principal stress axes rotation, however, go hand in

hand; if, for instance, a material is idealized to possess directional

stiffness and strength isotropy, the circumstance of principal stress

axes rotation during loading is irrelevant.

Nevertheless, it is common knowledge that the fabric of earthen

materials are intimately related to the mechanical processes during

their formation. Cohesionless base or subbase courses, constructed by

vibratory compaction in the direction of deposition, are prime examples

of material which may exhibit significant strength and stiffness

anisotropy. The conventional empirical design approach for

characterizing the soil's stress-strain relations presently neglect: a)

the trajectory of the loading path in invariant stress space, b) the

accompanying principal stress axes rotation during loading, and c) the

Finherent as well as induced anisotropy of the material. Therefore, in

the specification of cyclic material behavior using the standard

resilient modulus test, there are several assumptions which may prove

to be over-simplified and unconservative analogues of real behavior.

%3
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A broader perspective on the importance of this study can be

proffered by quoting a recent comment of Ur. Salkind (Reference 3),

The relevance is extraordinarily high for this nation.
There is the obvious deterioration of our highway system
including potholes. The Air Force has 3700 miles of

'C runways around the world designed for a 20 year life.
Ninety-two percent are more than 20 years old and 25
percent are significantly deteriorated. The anticipated
replacement cost with today's technology is $1.9
billions .......The underlying methodology is empirical
and should be put on a sound analytical basis..The
pavement system, consisting of supporting soil,
underpavement, and paving material should be analyzed
for loads and moments (and loading spectrum) recognizing
the differing response of the various layers with-
different material properties. A basic science need is
the lack of measuring techniques for fundamental soil
properties and descriptions of soil constitutive
properties. Design is based on empirical values such as
the penetration of a standard cone. As soil is a multi-
phase mixture of solid particles, water, and air, the
challenge is to define what are the basic fundamental _
properties (eg. soil "fabric" or spatial arrangement of
particles) and how such properi-as change with
loading..

C. APPROACH

The methodology used in this study is intimately linked to the

development of phenomenological, cyclic, elasto-plastic model for

granular materials which explicitly (or implicitly) accounts for the -

influence of anisotropy on: 1) the direction of the plastic flow rate

vector, 2) the plastic modulus, and 3) the strength and stiffness

variation due to the relative orientation of the major symmetry axes of

stress with respect to those of fabric. This model will be based on the

formalism of cyclic plasticity as put forward by Dafalias and Popov

(Reference 4I). Although it is unlikely that a truly generalized

** :--:>.......



description of soil response can be developed given the present state-

of-the-art in conventional laboratory testing (Reference 5), it is

envisioned that the model which evolves from this research effort will

at least be able to remedy the numerical anomalies observed in a

previous attempt to simulate the moving wheel stress path (Reference

6).

* Attention, however, will not be restricted to this particular class

of cyclic elasto-plastic formulation. What is perhaps the most

analytically complete multi-surface model for soil - the pressure

sensitive isotropic/kinematic hardening model of Prevost (Reference 7)

- is also evaluated and serves as an interesting supplement to this

study of soil behavior.

* Although one such apparatus is reportedly under construction

(Reference 8), a laboratory device which can subject specimens of sand

to the six independent components of stress is, to our knowledge, non-

existent. This is, of course, a major constraint to the formulation of

generalized constitutive stress-strain relations since there is no way

to experimentally validate these models under general paths of loading.

At present, however, two unconventional laboratory tests provide useful

data for studying the influence of anisotropy on the stress-strain

response of sand: the hollow cylinder apparatus and the directional

shear cell (see, for example, References 9 and 10). The results of

recent studies in both these devices have been acquired, and we hope

that these data will form the mainstay of our study of anisotropy in

granular media. Simple exploratory tests in the 'triaxial' environment

also provide basic manifestations of stress-induced and inherent

5I ,k
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anisotropy on the plastic flow rate direction, the stiffness, and the

strength for no rotation or ninety degree jump rotations of the

principal stress axes.

In summary, the methodology centers on: a) collecting and analyzing

homogenous stress-strain data on anisotropic sand specimens from both

in-house and external sources, b) using these data to modify the

bounding surface plasticity model to permit simulation of the observed

anisotropic response, and c) implementing a popular anisotropic

hardening multi-surface model for comparison to the predictions of the

bounding surface model.

Our objectives here have been clearly defined, but it is fitting to

venture briefly into the prospects of future research which may emanate

directly from this present investigation. We recognize that the scope

of the effort herein is only a part of the broader picture of the study

of the moving wheel stress path and its impact on pavement rutting.

Once a model has been formulated to capture the essential aspects of

this stress path, the step that follows naturally is the incorporation

of such a model into a finite element computer code to generate

predictions of the stresses and displacements in a typical pavement

structure. We also foresee a parallel experimental study in which a

small scale model of a loaded pavement system will provia- a data base

of measured response for comparison to the analytic predictions. In all

likelihood, such an apparatus may take the form of the experimental

set-up used by Professor Yong at McGill University to study the

compactability of soil (Reference 11).

ItI
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SECTION II

PRELIMINARIES AND FUNDAMENTAL CONCEPTS

It is the primary objective of this chapter to present and discuss

in a methodical fashion the key concepts which form the foundation of

this dissertation. At the risk of composing this section in a format

which is perhaps unduly elementary and prolix to the mechanicist, the

authors strive herein to fill (what they consider) a conspicious void

in the soil mechanics literature: a discussion of plasticity theory r

which is comprehensible to the vast majority of geotechnical engineers

who do not have a full and working knowledge of classical plasticity or

tensor analysis. A similar sentiment does not, however, apply to metal

plasticity where many profound expositions on the subject have been

published (see, for example, References 1, 12, 13, 14, 15, and 16).

The sequence in which the relevant concepts are introduced is

p motivated solely by the writers' personal biases as geotechnical

engineers - accustomed to the many empirical correlations and

conventional plane strain, limit equilibrium methods of analysis -

venturing into the decidely rigorous field of generalized, elasto-

plastic stress-strain relations; the terms "generalized" and "elasto-

plastic" will be clarified in the sequel. At the beginning, it should

also be mentioned that, although an attempt will be made herein to

include as many of the basic precepts of soil plasticity as possible,

this chapter will only give a very condensed and selected treatment of

7 %



an extensive and complex body of knowledge. In a less formal setting,

this chapter may have been titled "Plain Talk About Plasticity For The

Soils Engineer."

A. TENSORS

1. Introduction

Lack of an intuitive grasp of tensors and tensor notation is -

perhaps the foremost reason that many geotechnical engineering

practitioners and students shun the theoretical aspects Of work-

hardening plasticity and its potentially diverse computer-based

applications in geomechanics. In an effort to make the substance of

this thesis comprehensible to a wider audience, it is pedagogical to

briefly and simply review the mathematical theory in terms of which

physical laws could be described and their universality checked.

In the ensuing discussion, the following terms and elementary

operations are used without definition: scalar, vector, linear

functions, rectangular Cartesian coordinates, orthogonality, components

(or coordinates), base vectors (or basis), domain of definition, and

the rules of a vector space such as the axioms of addition, scalar

multiple axioms and scalar product axioms. Additionally, it is helpful

to point out that rectangular Cartesian coordinates are used

exclusively throughout this dissertation; this particular set of base

vectors forms an orthonormal basis, simply meaning that the unit

vectors comprising this basis are mutually orthogonal (i.e., mutually

perpendicular).



Quoting from Malvern (Reference 17, p.7),

Physical laws, if they really describe the physical
world, should be independent of the position and
orientation of the observer. That is, if two scientists
using different coordinate systems observe the same
physical event, it should be possible to state a
physical law governing the event in such a way that if
the law is true for one observer, it is also true for p

the other.

Assume, for instance, that the physical event recorded is a spatial

vector t acting at some point P in a mass of sand which is in

equilibrium under a system of boundary forces. This vector represents

some geometrical or physical object acting at P and we can

instinctively reason that this "tangible" entity, t, does not depend on

the coordinate system in which it is viewed. Further, we can

intuitively reason that any operations or calculations involving this

vector must always have a physical interpretation. The validity of this

statement should not be surprising since many of the early workers in

vector analysis (Hamilton for example) actually sought these tools to

I mathematically describe real events; an excellent historical summary of

the development of vector analysis can be found in the work published

by Wrede (Reference 18).

Having established that the entities typically observed, such as

the familiar stress and strain vectors, are immutable with changes in

perspective of the viewer, we must now ask: How does one formulate

propositions involving geometrical and physical objects in a way free

from the influence of the underlying arbitrarily chosen coordinate

system? The manner in which this invariance requirement is

Uautomatically fulfilled rests on the representation of physical objects

9
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by tensors, the properties of tensors being such as to ensure the

desired invariance. To avoid any loss of clarity that may arise from

using the word "tensor" prior to its elucidation, it is didactic to

record the following: a vector is one of the possible classes of

tensors, and thus, the term "vector" may be interchanged with the term

"tensor" whenever the use of the latter leads to conceptual problems.

There are several excellent references which deal with the subject of

vector and tensor analysis in considerably more detail than the mere

overview presented in the following passages; some examples of these

references include the books by Akivis and Goldberg (Reference 19), Hay

(Reference 20), Jaunzemis (Reference 21), Malvern (Reference 17), Synge

and Schild (Reference 22) and Wrede (Reference 18).

Although the necessity to free our physical law from the

arbitrariness implicit in the selection of a coordinate system has been

set forth, it is important to realize that this assertion is

meaningless without the existence of coordinate systems and

transformation equations relpting them. The transformation idea plays a

major role in the present-day study of physical laws, and, in fact, the

use of tensor analysis as a descriptive language for theoretical

physics is largely based on the invariant properties of tensor

relations under certain types of transformations. For example, we can

imagine that the vector t was viewed by two observers using different

rectangular Cartesian coordinate systems (say rotated about the origin

with respect to each other), and, as a result, a different set of the

vector components were recorded by each scientist. Nonetheless, we

should expect that the length of the vector - a frame indifferent

10
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K quantity - computed by both these observers to be identical. The

transformation rules which guarantee the invariant properties of

vectors and tensors are actually quite simple but are very important in

deciding whether or not a quantity does indeed possess tensorial
U

chaiacteristics. To illustrate how a vector is converted from one

rectangular Cartesian coordinate system to another, let us consider the

following example where the "new" coordinate components and base

vectors are primed (') for distinction. The transformation from the old

basis ,,i2,i,3 )to the new basis (i,i ,i ) can be written in matrix

form as:

F C o ( i l , i l ) c o s " i , I ) C O S ( 3 , I
"' i' i] =[i,,i,i 3 ] Icos(i,,i ) cos(i 2 ,i) cos(i 3 ,i )

(O)

U where cos(i,,i), for example, represents the cosine of the angle

between i, and i. This is an ideal juncture to digress and introduce

two notational conventions which can save an enormous amount of

*equation writing.

The range convention states that when a small Latin suffix occurs

unrepeated in a term, it is understood to take all the values 1,2,3

while the summation convention specifies that when a small Latin suffix

is repeated in a term, summation with respect to that term is

understood, the range of summation being 1,2,3. To see the economy of

this notation, observe that equation 1 is completely expressed as

i'-Q i (2)

where Qmk is equal to cos(ik). The index "Im" in this equation is

Iknown as the free index since it occurs only once in each summand while

11



the index "k" is designated the dummy index because it appears twice in

the summand and implies summation over it admissible values (i.e.,

1,2,3). The corresponding transformation formulas for the vector

components (tr to t) can now be derived from the information contained

in equation 2 and the condition of invariance which requires that the

representations of the vector in the two systems to have exactly the

same form; i.e.,

t= t k = t' = t' mi' . (3)

Substituting the inverse relation of equation 2 (i.e., k = kr i)

into equation 3 leads to .I

tk Q i' =t' i' ,

k kr -r r r

or

(t'r) ~
r t kr) -r

from which we find

t' - t Q (4)
r k kr

With the invariance discussion and the vector transformation

example as background information, the following question can now be

asked: What actually is a tensor? It is best perhaps to bypass the

involved mathematical definition of a tensor and proceed with a

heuristic introduction (modified from References 17 and 21) giving rise

to the particular type of tensor in which we are most interested:

second order (or second rank), orthogonal tensors.

Scalars and vectors are fitted into the hierarchy of tensors by

identifying scalars with tensors of rank (or order) zero and vectors of

rank (or order) one. Within the framework of indicial notation, we can

say that the rank of the tensor corresponds to the number of indices

12



gappearing in the variable; scalars quantities possess no indices,

vectors have one index, second order tensors have two indices while

higher rank tensors possess three or more indices. Every variable that

can be written in index notation is not a tensor, however. Remember

that a vector has to obey certain rules of addition, etc. as well as

transform according to equation 4. These requirements for first order

tensors (i.e., vectors) can be generalized and extended to the higher

order tensors.

To introduce the tensor concept, let us characterize the state at

the point P (of, say, the representative sand mass) in terms of the

nature of the variable under scrutiny. An absolute scalar state can be

categorized as a state in which the measured quantity possesses a

magnitude which does not depend on the orientation of the observer

(i.e., a scalar variable); examples include mass, density, temperature,

and work. The magnitude of this type of variable is invariant under all

transformations of coordinates, and, as mentioned previously, it is

identified as a tensor of zero order. Suppose now that there exists a

(n)
scalar v n  (such as speed) associated with each direction at the point

P, the directions being described by the variablP unit vector n. This

"multiplicity of scalars depicts a scalar state, and, if we proceed by

associating this scalar with speed for instance, we can write

v(n) = v [In] = vin i  (5)

(n)where v is the speed in direction n, and the square brackets are

used to emphasize that v, the velocity vector, is a linear operator on

n. Deferring a more general proof until later, it can be said that the

(n)
totality of scalars v associated with all possible directions is

13
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fully known if the components of v are known for any three mutually

orthogonal directions. At the point P, therefore, the scalar state is

completely represented by a first order tensor, otherwise known as a

vector. The argument for a second order tensor suggests itself by

considering the existence of a vector state at P; that is, a different

(n)vector, t ,is associated with each direction n.

2. The Stress Tensor

The prize example Of second order tensors in solid mechanics

is the stress tensor, the complete set of data needed to predict the

totality of stress (or load intensity) vectors associated with all

planes passing through point P.

By recalling the routinely used Mohr circle stress representation

in soil mechanics, we generally expect different magnitudes of shear

stress and normal stress to act on an arbitrary plane through P, and,

consequently, the resulting stress vector is unique on each of these

planes. Immediately, we recognize that the stress vector (which is also

(in)
called the traction) t is a function of ni at the point P where n is

the unit vector normal to an arbitrary plane. In order to fully

describe the state of stress at P, we need then to derive a

(n)relationship between the vectors t and n ;in other words, we seek a

vector function of a single vector argument, n. It turns out that we

are in fact seeking a linear vector function, say 2, which can be

(n)
described as a rule associating the vector t with each vector n in

the domain of definition. A linear vector function is also called a

linear transformation of the domain or a linear operator acting in the

14



domain of definition of the function a. In analogy to equation 5, we

can now write

(n)t a [n] (6)

where again, as in equation 5, the square brackets are used to imply a

linear operation. The linearity assumption of the function a infers the

following relationships:

g[Dl + n2] =Gigs + [](7)

for arbitrary vectors n, and n2 , and

a[an] = a u[n] , (8)

for arbitrary vector n and real number a.

Geometrically, equation 7 means that the operator a carries the

diagonal of the parallelogram constructed on the vectors nj and n2 into

the diagonal of the parallelogram constructed on the vectors . =2ED1]

and t2 - 2[ ]. Equation 8, on the other hand, means that if the length

of the vector n is multiplied by a factor a, then so is the length of

the vector t
n

= [n])_

Using a rectangular Cartesian coordinate system, the traction

(n)
vector, t and the normal vector, n, can each be resolved into their

(n) (n) (n)
components t , t2  , and n,, n2 , n3 respectively, and the linear

@relationship between t and n can be written in matrix form as

t ,t2 ,'t = [n1 ,n2,n3 ] 21 U22 023

(; t n) ,(n) _(n) , 
7 113Cm)3 Cm (n) [2ia. az~ (9)

or alternatively, in indicial notation,

(n)
t i i , (10)

15
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where the components of the 3x3 matrix a is the stress tensor acting at

point P. Note that the wavy underscore under symbols such as a are used

to denote tensorial quantities in this chapter and throughout the

remainder of this report. In general, tensors can vary from point to

point within the illustrative sand sample, depicting a tensor field 2r

a tensor function of position. If the components of the stress tensor

are identical at all points in the granular mass, a homogenous state of

stress is said to exist; this concept of homogeneity of stress (and

likewise, strain) is particularly important in laboratory soil tests

where such an assumption is of fundamental importance in the

interpretation of test data (Reference 5).

Second order tensors undergo coordinate transformations in an

equivalent manner to vectors (see equation 4). The tranformation

formula (for a rotation of base vectors) is derived by employing a

series of previous equations. Recall from equation 4 that

t' - t Qr k kr

and by combining this equation with equation 10, we find
t' a njQ
r jk kr '

from which it can be further seen that n can be transformed to n'

resulting in

t' a Qj n' Q (11)
r jk s s kr

The left hand side of equation 11 can also be replaced by the

linear transformation such that

a' n' Q n'pr p jk js Qkr

which when rearranged yields

a' n' - Q n' Q -0 . (12)
pr p jk is s Qkr

16
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All the indices in equation 12 are dummy indices except "r" which

is the free index. A step that frequently occurs in derivations is the

interchange of summation indices, and it can be shown that the set of

equations compactly expressed in equation 12 is unchanged if the dummy

index p"p" is replaced by the dummy index "s". This manipulation allows

us to rewrite equation 12 as:

" 'n' Q n' Q 0

sr n -jk js kr

and by factoring out the common term n' we obtain

(a' - Q Q ) n'= 0
sr jk s kr s

from which we can at once deduce the tensor transformation rule to be
0' I Qj (13)

sr jk s kr

or in tensor notation,

Q T Q (14)

It was previously stated (without verification) that a vector is

completely defined once its components along three mutually orthogonal

directions have been specified; the reciprocal declaration for a second

order tensor will therefore quite naturally be that the components of a

second order tensor are determined once the vectors acting on three

mutually orthogonal planes are given. In actuality, this statement is

Mcorrect and it can be substantiated by inspecting the free body diagram

of figure I in which a soil prism is subject to a plane stress state.

Plane stress simply means that there is no resultant stress vector on

one of the three orthogonal planes, and, as a result, the stress tensor

can be represented by a 2x2 matrix instead of the generalized 3x3

matrix. Generalized, in this context, signifies a situation where the

full array of the stress tensor is considered in the problem; moreover,

17
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Figure 1. Representation of Plane Stress State at a "Point".
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when the adjective "generalized" is used to qualify a stress-strain

relationship, it is tacitly assumed that the law should relate all the

components of the strain (or strain increment) tensor to the tensor

components of stress (or stress increment) under any arbitrary loading

program.

Figure 1 shows the two-dimensional free body diagram of the

material prism with a uniform distribution of stress vectors acting on

each of the mutually perpendicular planes. By taking moments about the

point D, it can be shown that T xy = T y and this is known as the

theorem of conjugate shear stresses, a relationship which is valid

whenever there are no distributed body or surface couples acting on the

element. This two dimensional result can be generalized to three

dimensions where it can easily be seen that the 3x3 stress tensor

matrix is symmetric as a consequence of this theorem. Symmetry has

another Important implication in that there are now only six

independent components of the stress matrix tensor necessary to

describe the stress state at the point P. By invoking force equilibrium

in the x and y-directions of figure 1 , the two resulting equations can

be solved simultaneously for the unknowns T e and ae, provin~g that the

shear and normal stress (or the stress vector in this case) on an

arbitrary plane can be computed once the stress vectors on a set of

mutually perpendicular planes are given. Extension of this two-

dimensional result to three dimensions shows that the components of

three mutually perpendicular traction vectors are, in actuality, the

rows of the stress tensor matrix.

L
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Most geotechnical engineers are familiar with the Mohr-Coulomb

strength theory for granular soils which specifies a limit state (i.e.,

failure with infinite deformations) based on a combination of principal :,
stresses (a,, G., and 03). Even the more complicated failure criteria 9
for soils which have been recently proposed (see subsection II.F.1)

embody only mathematical functions of the principal stresses. This

underscores the need for a simple procedure to compute the principal

stresses once the frame-dependent components of the stress tensor are

specified. Note that, although the scalar principal values are

invariant, the vectorial description of the planes on which each

principal stress acts (say n p, n2 , and n 3 ) depends on the reference

coordinate system chosen.

A principal plane is a plane on which there are no shear stresses.

This implies that the normal stress is the sole component of the

traction vector acting on a principal plane, and the geometric

interpretation is that the traction vector and the unit normal vector

to the plane, n, both act in the same direction. Mathematically, the

principal plane requirement can be written as:

tn -A n , (15)

or in indicial notation,

(n)
ti  I n1  (16)

where A is the numerical value sought; remember that there are

generally three principal planes and therefore three principal values.

Substitution of equation 16 into equation 10 and rearranging leads

to

djn -nn - 0 (17)

20

.;A

- * . .



As an aid to solving equation 17, it is fitting at this stage to

introduce an extremely useful algebraic device known as the Kronecker

delta. The Kronecker delta, 6, is a second order tensor defined by
1 if i (1

'3 0 if i j
By writing out the terms in long form, it may be easily verified

that

n i =6 i3 n (19)

i j i

Now, an abt itut equation 19 i in equationg 17to ins tat

a.. .= + 6.. n 2 = 0 1 n-
1 3t 3

G3 nj + 03 n2 (G19) n3-"

~~and by proceeding to factor out n j, we see"

-,(oj.-AI6..) nj = 0 . (20)

For clarity, equation 20 can be written in long form as: i

D (Oii - A) n, + 012 n2 + 013 n3 = 0

1 02 ni1 + (022 - A) n2 + 023 n3 = 0 ,(21)

031 n1 + 032 n2 + (033 - A) n3 = 0

or written in matrix form as
C I I-X' G12 (113 n

F021 022
-
X G23 n =, (22)_ 3 ,, ,2 a, -3 3n."0

where it can be seen to represent a homogenous system of three linear

equations in four unknowns (nj, n2 , n3 and A). The fourth equation for

solving this system is derived from the fact that n is a unit vector

and hence we automatically know that its magnitude is unity; that is,

n.n = n ni = I . (23)

Also, equation 20 has a nontrivial solution if and only if the

determinant of the coefficient matrix in equation 22 is equal to zero

(see, for example, Reference 23, p.188). Based on this requirement for

21
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the existence of non-trivial solutions, we can solve for X by using the

property

G 1 1 A 012 0713

321 (22-X 023 - 0 (24)
031 032 0 3 3-A

This determinant can be written out term by term to yield a cubic

equation which takes the form

A - I, A2 - 12 A - 13 - 0 , (25)

where

Ii = 0I1 + o22 + a 3 3 -k

12 = (G11022 + 22033 + 033U11) -'23 731 12 I

- ( oijO - I ) + 2

and

0y1 1 0 12 0 13

3 = 021 122 023 (28)
031 032 03 3

It has previously been mentioned that the principal stresses are

independent of the observer's choice of coordinate axes, and since the

cubic relation of equation 25 is to yield the same answer for principal

stresses irregardless of the imposed reference frame, it is evident

that the coefficients of this cubic equation - I,, I., and i3 - will

also be independent of the coordinate s~stem. These coefficients are

the so-called invariants of the stress tensor a; I,, I., and :3 are the

first, second, and third invariants respectively. It will be shown

later in the discussion that it is much simpler to compute the

invariants as an intermediate step in the calculation of the principal

stresses when given a stress tensor which occupies all elements in a

3x3 stress matrix. However, this intermediate computation step can be

22
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circumvented by writing or directly formulating the failure criteria in

terms of the invarlants, but, in any event, it should be kept in mind

that the stress invariants and principal stresses can be

interchangeably used in a failure criterion. The following discussion

centers on the mathematical aspects of a typical methodology to replace

the invariants with the principal values of stress; the inverse

procedure of computing the invariants from the principal stresses has

already been explicitly stated in equations 26, 27, and 28.

The stress ten.3or can be decomposed additively into two components:

1) thne spherical or hydrostatic stress tensor (p 6i ), and 2) the

leviatoric stress tensor (s ). The first of these tensors represents

the average pressure or "bulk" stress (p) which causes a pure

volumetric strain on an isotropic continuum, while the second tensor,

s, is associated with the components of stress which bring about shape

changes in an ideal isotropic continuum. The spherical stress tensor is

defined as being equal to p 6ij where p is the mean normal pressure

( (Okk/ 3 or I,/3) and j is the Kronecker delta. Since, by definition,

we know the spherical and deviatoric stress tensors combine additively

to give the stress tensor, we can write the components of the stress

Sdeviator (or deviatoric stress tensor) as:

ij oij - 6 ij (29)

where compressive stresses are taken as positive, as it is throughout

this report. The development for the principal values and the

invariants of a apply equally well to the stress deviator, s, but, two

important points should be emphasized in this comparison: a) the

principal directions of the stress deviator are the same as those of
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the stress tensor since both represent directions perpendicular to

planes having no shear stress (see, for example, Reference 17, p.91),

and b) the first invariant of the stress deviator (say J I) is equal to

zero; i.e.,

J - s11 + 322 
+ 

s333

- G II - -I I + 0 22 - --I l + G 33 - -I I j
3 3 3 '

and recalling the relation of equation 26, clearly

J, = 0.

The invariants of the deviatoric stress tensor are denoted by JI,

J2 and J 3 respectively, and since, as we have shown, J1 is equal to

zero, the cubic expression for the stress deviator, in analogy to

equation 25 of the stress tensor a, lacks the quadratic term; i.e.,

A 3 
- J2 A - J, = 0 , (30)

where the roots, A, are now the principal values (or more formally, the

eigenvalues) of the stress deviator: S1, S2, and S3. The absence of the

quadratic term renders the solution of equation 30 more tractable than

that of equation 25. As a result, it is more convenient to solve for

the principal values of s and then compute the principal values of a

using the relations

a0 = s1 + p , 01 = S2 + p , and 03 - S3 + p • (31)

The direct evaluation of the roots, X, of equation 30 is not easy

until the similarity of equation 30 to the following trigonometric

identity is observed:

sin 38 = 3 sine - 4 sin'e
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which when divided through by four gives

sin3  - 3 sine + 1 sin 3e = 0 (32)

The mathematical manipulation is achieved by replacing X with r

sine in equation 30; this substitution results in

r3 sin 3e - J 2 r sine - J 0

and dividing through by r3 effects

sin e - J, sine - = 0. (33)

r r
2  r 

3

By equating equations 32 and 33, we record the following

equalities:

r 4

or

r J2 , (34)

and

J= - 1 sin 3e

or

sin 38 - - 4 J3 (35)

r
3

Substitution of the negative root of 34 into equation 35 leads to

sin 38 = [3/3 (J3/l/J2
3) (36)

2 "

or

1 = 1 sin [3v/3 (J3//J 2
3)] (37)

where 8 is known as the Lode angle (Reference 24), and it represents an

alternative invariant which frequently replaces the J3 invariant in
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failure criteria because of its straightforward geometric

interpretation (see section II.F.1).

Owing to the periodic nature of the sine function, the angles 38,

3e + 21, and 36 + 4n all give the same sine in terms of the calculated

invariants of the deviator in equation 36. If we further restrict 36 to

the range ± (i.e., -n L e L +7), the three independent roots of the
,,6

stress deviator are furnished (Reference 25),

s= - 2 VJ2 sin(e + 4 7) , (38)73

S 2  - 2 /J 2 sin(a) , (39)73

and,

S3 = - 2 /J 2 sin(e + 2 r) (40)

Finally, the relations of equations 38, 39 and 40 can be combined

with those of equation 31 to yield the principal values of the stress

tensor a,

~sin (a + 4/3 10 )

2 - 2 /J2  sin e + 1 . (41)

7-3 ~sin (6 + 2/3 7

3. The Strain Tensor

The mathematical interpretation of the concept of strain is

considerably more difficult than the development just presented for

stress. Nevertheless, a brief introduction to the small strain tensor

is attempted herein while it is recommended that the interested reader

refer to a continuum mechanics textbook to better understand the
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concept and implications of finite deformation. The presentation that

follows has been modified from Synge and Schild (Reference 22).

Most soils engineers are familiar with the geometrical measure of

unit extension, e, which is defined as the change in distance betweenN
two points divided by the distance prior to straining (Lo); i.e.,

e = (L - L0 ) L , (42)

where L, is the distance between particles P and Q, for instance, after

the deformation. If the coordinates of P and Q are denoted by x (P) and
r

x r(Q) respectively, we can write, from geometric considerations, that

L2= Lx r(P) - x r(Q)] [Xr (P) - Xr(Q)] (43)

Further, if the particles P and Q receive displacements u r(P) and

u r(Q) respectively, we can state that

x'(P) = xr(P) + ur(P ' (44)

and

X'(Q) = xr(Q) + u (Q) , (45)
r r r

where the primed coordinates represent the position of the particles P

and Q (which retain their identity) after deformation. The notation

u (P) and u (Q) indicates that the particles receive a displacement
r r

which is a function of their coordinates; if the displacement vector,

u, is the exactly the same for each particle in the medium, the whole

medium is then translated without deformation (i.e., a rigid body

motion). From equations 44 and 45, we have

L' = Ex'(P) - x'(Q)] [x'(P) - x'(Q)]
r rr

SX (P) + u (P) - x (Q) - ur(Q) ]

xr(P) + ur (P) - xr(Q) - ur (Q)], (46)
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and by substracting equation 43 from equation 46, we obtain

L = xr (P) + u r(P) -x r(Q) -u r(Q)][x r(P) + u r(P) -

X r(Q) - Ur (Q) - Xr (P) - Xr (Q)] [xr (P) - Xr (Q)]

which simplifies to

L 2 - L = [U (Q) - u (P)]LU (Q) - u (P)] +r r r r

2 xr (Q) - Xr (P)][ur(Q) - ur (P) (47)

If we fix our attention on the point P and let the neighboring

particle Q be located at some arbitrary direction but infinitesimal

distance from P, we can proceed to generalize the state of strain at

the point P. Since the distance between P and Q is assumed small, it is

apparent that the term [x (Q) - x (P)][x (Q) - x (P)] is also
r r r r

infinitesimal and we have approximately

U r(Q) = ur (P) + aur/3xslP Lxs(Q) - xs(P)] ,_

from which we can write

U (Q) - u (P) = Dur/aXsIp Lxs(Q) - xs(P)] . (48)

Substitution of equation 48 into equation 47 leads to

L - L2 3U /3x Lxs(Q) - xs(P)] aUr/EXtlP Lxt(Q) - xt(P)]

+ 2 Xr (Q) - xr (P)] aur/axmlp Xm(Q) - xm(P)] (49)

We also know that

Xr (Q) - xr (P)] - LO nr (50)

where n are the components of the unit vector directed from P to Q.
r

Substitution of the relation in 50 into 49 results in

L- 2 _Ur/aXslp LO ns aur/Dxtjp L. nt +

2 L, nr 3ur/3xmlP L0 nm

= L LUr/?Xsip n. 3ur/ xtjp n t +

2 nr U mu /ax rm] (51)
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and upon rearranging equation 51, we see that

L - au/ax j n aur/aXtl ntL -[ r  s P s r '

2 nr 3ur/Xmlp nm] (52)

If an assumption is made that the character of the strain is small,

this means that aur/3xtip and hence the term (aur!/x SIP aur/axtip) in

equation 52 is negligible; this equation may thus be rewritten as:

Lj - L: 2 nr aur/Xm n (53)

Moreover, we have identically

- L- L, L, + LO -

L L L

-- L, - L, L, L 0+ 2 L o , -.

Lo Lo

=L - L, ELI - L + 2] ,

0

, e(e+2) ; (54)

and with the assumption of small strain, e2 is negligible, and equation

54 reduces to - .

I - L 0 2 e (55) . -

Replacing the small strain approximation of equation 55 into

equation 53 yields

e nr 3ur/9xmxp  n . (56) _-

If the components of the small strain tensor at point P are now

defined as:

E r [u /ax + us/ax ] ,(57)-
rs 2 r s s r
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it is easy to see from equation 56 that the unit extension of every

infinitesimal element emanating from P in the arbitrary direction n is

determined by

e-Ers n r n~ s (58)

Soil engineers may wonder how the traditional shear strain concept

fits into this definition of strain, but it can be shown (see, for

example, Reference 17, p.121) that the off-diagonal terms of the tensor

eis approximately equal to half the decrease, 'Y rs' in the right angle

initially formed by the sides of an element initially parallel to the

directions specified by the indices r and s. This only holds for the

small strain assumption where the angles are small compared to one

radian. Another important geometrical measure is the volume change or

dilatation, and, if second order effects can be neglected (i.e. terms

Suich as [3u r/3xl 3 u r/ax I] are small), the reader can easily verify

that the volume strain (dV/V 0 ) is equal to the first invariant (or

trace) of the strain tensor E (or in indicial notation, E mm)

Throughout this report, the strain deviator (in analogy to the stress

deviator s) is denoted by eso we can write its components as:

mm 3j

Since, like stress, strain is a symmetric second order tensor, the

whole development of principal strains and invariants parallels the

previous discussion for the stress tensor.
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B. STRESS-STRAIN EQUATIONS AND CONSTITUTIVE THEORY

In order to solve statically indeterminate problems, the engineer %

* relies upon: a) the equations of equilibrium, b) the kinematic

compatibility conditions, and c) a knowledge of the load-deformation

response (or stress-strain constitution) of the engineering material

under consideration. As an aside, it may be useful to remind the soils

engineer of two elementary definitions which are not part of the

everyday soil mechanics vocabulary: first, kinematics is the study of

the motion of' a system of material particles without reference to the

forces which act on the system, and secondly, dynamics is that branch

of mechanics which deals with the motion of a system of material

* particles under the influence of forces, especially those which

* originate outside the system under consideration. For general

applicability, the load-deformation characterization of the solid media

is usually expressed in the form of a constitutive law relating the

force-type measure (stress) to the measure of change in shape and/or

volume (strain) of the medium. A constitutive law therefore expresses

an exact correspondence between a man-made action (force) and an effect

(deformation) which is due to nature. The correspondence is functional

-it is a mathematical representation of the physical processes which

take place in a material as it passes from one state of equilibrium to

* another (Reference 26). This is an approriate point to interject and

briefly clarify the meaning of the adjective functional.

Let us return to the sand mass which contains particle P and extend.

the discussion to include M discrete granules (P onane n h

mass. Say that the sand mass was subjected to a system of boundary
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loads which induced a motion of the granular assembly while a scientist

painstakingly recorded, at N prescribed time intervals, the location of

each of the M particles using a spatial reference frame x. The data log

therefore consists of the location of each particle M (6M) and the time

at which each measurement was made (t'). At the current time t (Z t'),

we are interested in formulating a constitutive relationship which

gives us the stress at point P, and, in our attempt to construct a

model of nature, we propose to derive such a relation based on the MN

discrete vector variables we have observed; i.e., the M locations x M at

N different times t' (~t). In other words, stress at P is a function

of these MN variables. This function converges to the definition of a

functional as the number of particles M and the discrete events in time

set t' approach infinity.

In this investigation, we are solely interested in the following:

a) evaluating the performance of certain recently proposed constitutive

postulates, and, if necessary, b) proposing and implementing

modifications to these existing models such that the influence of

principal stress axes rotation on material response is captured.

Without too much intellectual effort, we can tender a simple

stress-strain relation of the form

or inversely,

~kl Dli , 61

where the fourth order tensors (with 81 components) C ijkl and D klij are

called the stiffness and compliance tensors respectively. Note that the

number of components necessary to define a tensor of arbitrary order
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"n" is equal to 3
n . Alternatively, we may view the stress-strain

formulation on an incremental basis and write

a. c CR (62)
ij Cijkl kl'

or inversely,

D (63)
kl klij ij

where the superposed dot above the stress and strain tensors symbolizes

that these tensors are differentiated with respect to time. a and c, as

2';, they appear in equations 62 and 63, are termed the stress rate and

strain rate respectively. If the "step by step" load-deformation model

is further idealized to exclude the influence of rate of loading, we

can then write the resulting rate-independent equations as:

do.. C dE (6'4)
ij ijkl kl'

or inversely,

dE -D do (65)
kl klij ij

where do and dE are the stress increments and strain increments

respectively. The constitutive equations considered in this report are

-all of the rate-independent type.

In the formulation of general, rate independent, incremental

stress-strain formulations, our objective is one of identifying the

variables which influence the instantaneous magnitudes of the

components of the C or D fourth order tensors. Such a study bears

resemblance to many other specialized disciplines of civil engineering;

the econometrician, for instance, may determine by a selective process

that the following variables influence the price of highway

construction in a state for any given year: cost of labor, cost of

equipment, material costs, business climate, and a host of other

33
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tangible and intangible factors. The soils engineer, perhaps using the

econometrician's techniques of regression analysis and some of his

personal experience, can easily identify several factors influencing

soil behavior. Some of these more important variables in soil mechanics

t
which come to mind are: the history of the stress, a ; the magnitude of

t
the stress increment, do; the history of the strain, E ; and the "n"

so-called internal variables, gn' that contain information regarding:

a) the microstructural properties of the material, and b) discrete

events such as abrupt changes in the loading process. We can therefore

write a general functional, rate-independent, incremental stress-strain

relationship in the form

t t
dE = d a, , do, gn) , (66)

and our study in this report centers around the use of special cases of'

the relation in equation 66 to model soil behavior.

A basic difference between the econometrician's model and the

mechanician's load-deformation model must be highlighted: the

- mechanician is dealing with dependent and independent variables which

are physically significant while the econometrician is concerned with

variables which may frequently be intangible. Therfore, in the

selection of constitutive variables (such as stress and strain), and in

the actval formulation of the stress-strain equations, certain physical

and mathematical considerations have to be satisfied. These conditions

are embodied in the so-called axioms or principles of constitutive

theory. Since geotechnical engineers are, for the most part, interested

in isothermal processes, the principles which concern thermomechanical

events will be suppressed in the sequel.
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The Axiom of Causality states that the motion of the material

points of a body is to be considered a self-evident, observable effect

in the mechanical behavior of the body; any remaining quantities (such

as the stress) that enter the entropy production and the balance

equations - i.e., the equations of conservation of mass, balance of

momentum, and conservation of energy - are the causes or dependent

variables.

The Principle of Determinism infers that the stress in a body is

determined by the history of the motion of that body; this axiom

__ excludes the dependence of the stress at P on any point outside of the

body and any future events.

In the purely mechanical sense, the Axiom of Neighborhood or Local

Action rules out any appreciable effects on the stress at P that may be

caused by the motion of points distant from P.

During the discussion of stress and strain, it was made quite clear

that the tensor measures should be independent of the perspective of

the observer, and it is therefore instinctive to suggest a similar

constraint for the constitutive equations. This requirement that the

constitutive equations be form-invariant with respect to rigid motions

of the spatial frame of reference is known as the Principle of Material

Frame Indifference or Objectivity.

Finally, the Axiom of Admissibility states that all constitutive

equations must be consistent with the basic principles of continuum

mechanics; i.e., they are subject to the principles of conservation of

mass, balance of momenta, conservation of energy, and the Clausius-

Duhem inequality.
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C. A NOTE ON STRESS AND STRAIN IN GRANULAR MEDIA -"

The concepts of stress and strain discussed in the previous

sections are closely associated to the concept of a continuum which

effectively disregards the molecular structure of matter and

mathematically treats the medium as if there were no holes or gaps. The

following quotation from Lambe and Whitman (Reference 27, p.98)

succintly summarizes the applicability of the continuum stress measure

to granular materials:

..... when we speak of the stress acting at a point, we

envision the forces against the sides of an
infinitesimally small cube which is composed of some

homogenous material. At first sight we may therefore
wonder whether it makes sense to apply the concept of

stress to a particulate system such as soil. However,
the concept of stress as applied to soil is no more

abstract than the same concept applied to metals. A
metal is actually composed of many small crystals, and
on the submicroscopic scale the magnitude of the forces
vary randomly from crystal to crystal. For any material,
the inside of the infinitesimally small cube is thus
only statistically homogenous. In a sense all matter is
particulate, and it is meaningful to talk about
macroscopic stress only if this stress varies little
over distances which are of the order of magnitude of
the size of the largest particle. When we talk about
about stresses at a "point" within a soil, we often must
envision a rather large "point".

Local strains within a statistically homogenous mass of sand are

the result of distortion and crushing of individual particles and the

relative sliding and rolling velocities between particles. These local

strains are much larger than the overall (continuum) strain described

in subsection II A.3. The magnitude of strain caused by a stress will

in general depend on the composition, void ratio, past stress history,

and the manner in which the stress is applied. In soil mechanics

terminology, nomposition is a descriptive term that includes the
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average particle size, gradation of the particle sizes, angularity of

the particles, and the mineral type.

Figure 2 illustrates typical qualitative load-deformation behavior

for loose and dense soil media subject to two conventional laboratory

stress paths: hydrostatic compression, and conventional triaxial

compression. Figure 3 shows these paths together with an assortment of

other 'triaxial' stress paths used for research as well as routine

purposes. Note that, in this context, the adjective 'triaxial' is

somewhat ambiguous since this particular test scenario dictates that

the circumferential stress always be equal to the radial stress. The

stress state is therefore not truly triaxial, but biaxial. As we can

gather from figure 2, the stress-strain behavior of soil is quite

complicated, and, in order to approximately model the real behavior,a
drastic idealizations and simplifications are necessary. The major

presuppositions in most popular postulates are that a) soil response is

independent of the rate of loading, b) the interaction between the

a mechanical and thermal processes are negligible, and c) the strain

e
tensor can be decomposed into an elastic or recoverable part (ee ) and a

plastic or irrecoverable conjugate (fP) without any interaction between

the two simultaneously occuring strain types; i.e.,

e ep+ p (67)

- or on an incremental basis,

dE -dEe+ dEp . (68)

e e
The elastic or recoverable behavior (e or dce) is treated within

the framework of elasticity concepts while the irrecoverbale part (EP

37
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NAME OF TEST DesignationDECITO

Conventional TriaxialCT o 0 ->
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ExtensionCT 0

Mean Normal Pressure T C 6 0- + aOz+&0y 0;
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Figure 3. Typical Stress Paths Used to Investigate Stress-Strain Response
of Solid Cylindrical Soil Specimens.
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or dep ) is based on plasticity theory; both these theories will be

capsulized in later sub sections.

Three broad classes of continuum theories have evolved in the

development and advancement of soil stress-strain models (Reference

28): 1) the kinematically ambigous theories, 2) the phenomenological

theories, and 3) the microstructural theories.

The kinematically ambigous hypotheses employ the stress equations

of equilibrium in conjunction with the Coulomb yield condition to form

a system of equations relating the components of the stress tensor.

This class of theories is referred to as kinematicaliy ambiguous

1.2 because displacements and strains do not appear in the basic equations

of the theory. These theories assume the entire medium is in a state of

incipient yielding. The information obtained from these theories is

useful, but limited because the theories do not predict strains or any

results that follow from a specific stress-strain relation. An example

of this type of formulation can be found in Cambou's work (Reference

29).

Phenomenological continuum theories endeavor to devise constitutive

relations based on experimentally determined stress-strain curves. This

class of theory is presently the most popular and focuses on the

macroscopically observable and controllable stress and strain variables

without inquiring too deeply into the detailed mechanisms which control

the process of deformation. A controversial assumption of the

phenomenological continuum theories is that he test procedures for

granular materials, such as the conventional triaxial test, achieve

homogenous states of strain and stress, and therefore determine local

~40
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stress-strain relations. Research attention in the study described

herein is targeted toward this type of model.

The microstructural theories attempt to incorporate geometric

measures of local granular structure into the continuum theory; this

theory is then used to predict the influences of the microstructure on

the stress-strain relations. This local granular structure is also

called fabric and is defined as the spatial arrangement and contact

areas of the solid granular particles and associated voids. An example

of this type of formulation can be found in the Nemat-Nasser and

Menrabadi reference (Reference 30). The next major topic heading is

dedicated to elaborating the concept and significance of fabric

anisotropy in granular material.

D. FABRIC IN GRANULAR MATERIAL

The fabric of earthen materials are intimately related to the

mechanical processes occurring during their natural formation (or test

2 sample preparation) and the subsequent application of boundary forces.

We can look at process of fabric evolution in terms of the deformation

that occurs (kinematics) or the stresses that are acting (dynamics).

* Strains that accompany the stresses are influenced by the symmetry of

the applied stress system, and, to some extent, by the symmetry of the

sand's directional stiffness or fabric. If straining is continued to a

relatively high level, we may expect that the initial fabric will

develop such that its orientation aligns itself with the symmetry

pattern of the applied stress system. Before introducing and discussing

a select group of microscopic fabric measures, some of the pertinent

41
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Figure 4. Common Symmetry Types -Triclinic, Monoclinic, Orthorhombic,
and n-fold axis (Reference 31).

42



"1 1;0 W77 -j 7 " r A1WI 7
g symmetry patterns generated by combined kinematic and dynamic boundary

conditions will be addressed.

Triclinic symmetry implies that the media possesses no plane or

axis of symmetry, and is produced during complex deformations. Gerrard

(Reference 31) presents a simple example of tiow this most general and

least symmetric system may arise: triclinic symmetry may develop from

compression in direction 1 (see upper left sketch in figure 4), with

differential restraint in directions 2 and 3, coupled with shear

components acting in directions 2 and 3 on the plane having its normal

to axis 1. Geometrically, this fabric configuration may be referred to

by three non-mutually perpendicular axes of different length.

In the monoclinic system, there is a single plane of symmetry such

that any two directions symmetric with respect to this plane are

equivalent. An example of this type of symmetry is shown in the lower

left of figure J4 where the anisotropic structure may be created by the

following concurrent events: a) compression acting in direction 1, b)

deformation being prevented in the 2 and 3 directions, and c)

application of a shear stress component in the direction 2 acting on

the plane having its normal to axis 1. By slightly modifying this

monoclinic symmetry example, we can demonstrate an instance of n-fold

axis symmetry, more commonly known as cross-anisotropy in soil

mechanics. This can be accomplished by excluding the shear stress

application in the previous example with the result that an axis of

symmetry is produced such that any direction normal to the axis is

equivalent (see bottom right of figure 4).

U4
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The orthorhombic symmetry group can best be described by bringing

to mind the true triaxial device. Here, for example (top right of

figure 4i), three mutually perpendicular planes of symmetry can

originate from pure compressions of different magnitudes on the faces

of the cubical sand specimen. Lastly, the rarest natural case (but most

common idealization) is spherical symmetry or material isotropy which

implies that all directions in the material are equivalent, and

therefore, there are no dominant directions with regards to

deformation.

*The selection of the internal variables, gn, to characterize the

mechanical state of a sand medium (see equation 66) has been one of the

major themes provoking much discussion at two recently organized

symposia on the load-deformation response of granular materials: 1) the l

IUTAM Conference on Deformation and Failure of Granular Materials held

in 1982 at Delft, Netherlands (Reference 32), and 2) the U.S.-Japan -

Seminar on Continuum Mechanical and Statistical Approaches in the

Mechanics of Granular Materials which took place in 1978 at Sendai,

*Japan (Reference 33). There is no doubt that the initial void ratio (e

=V v/V , where Vv volume of voids, and Vs = volume of solids) is the

most dominant geometric measure, but as Cowin (Reference 28) poses:

"Given that porosity is the first measure of local granular structure

or fabric, what is the best second measure of local granular structure

or fabric?". This important topic will be examined briefly in the

following paragraphs.

An anthropomorphic description is perhaps ideal for introducing the

reader to the concept of fabric in granular material. Let us assume for
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illustrative purposes that, through detailed experimental

investigation, we have identified a microscopic geometric or physical

measure (say variable X) which serves as the secondary controlling

factor to the void ratio in interpreting the stress-strain response of

sand. Some of the suggestions for the variable X have been: 1) gradient

of the void ratio ae (Reference 314), 2) orientation of the long axes of

the particles (Reference 35), 3) distribution of the magnitude and

orientation of the inter-particle contact forces (Reference 29), 14)

distribution of the inter-particle contact normals (for example,

Reference 36), 5) distribution of branches; note: a branch is defined

as the vector connecting the centroids of neighboring particles and it

is thus possible to replace a granular mass by a systems of lines or

branches (Reference 37), 6) mean projected solid path (Reference 38),

and 7) mathematical representations in the form of second order tensors

(Reference 39).

A commander (mother nature) of an army (the set representing the

internal variable of the sand medium) always stations his troops

(variable X) in a configuration which provides maximum repulsive effort

to an invading force (boundary tractions). This means that the highest

concentration of variable X will point in the direction of the imposed

major principal stress. If the invading army (boundary tractions)

withdraws (an unloading event), we should expect the general (mother

nature) to keep his distribution of soldiers (X) practically unaltered.

It is an experimental fact that there is always some strain recovery

upon unloading, and this rebound is caused partly by elastic energy
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stored within individual particles as the soil was loaded and partly by

inelastic reverse sliding between particles. Traditionally, it has been

convenient to regard this unloading strain as purely elastic, but, in

reality, it stems from microstructural changes due to changes of the

fabric and should be considered as a dissipative thermodynamically

irreversible process (Reference 410). Returning to our anthropomorphic

description, we can therefore say that the general (mother nature) has

a built-in command to slight-y modify the arrangement of troops (X)

once the offensive army (boundary tractions) has been removed. The

configuration of the defensive forces (distribution of X) after

complete or partial withdrawal of the aggressor (complete or partial

removal of the boundary loads) still however reflects the intensity and

direction of the earlier attack (initial application of the system of

boundary loads). This represents an inducua fabric or stress induced

anisotropy in our granular material.

We can create additional scenarios with our anthropomorphic model

to manifest other features and considerations of fabric anisotropy.

During the initial placement of the forces (initial distribution of the

variable X during sample preparation or during natural formation of the

soil deposit) under the general's command, there is a bias in this

arrangement which is directly related to the general's personality

(gravity as a subset of mother nature). This is the so-called inherent

anisotropy,(Reference 41) of soil which differs from the stress-induced

anisotropy mentioned previously. Say, by chance, the invading army

(boundary tractions) attacks the defensive fortress (sand mass) with a

r uniform distribution of troops (uniform distribution of stress
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vectors), we will expect the maximum penetration (strain) at the

weakest locations (smallest concentration of X), but our wise general

(mother nature) should take corrective measures to prevent intrusion by

the enemy forces (boundary tractions) through the inherently vulnerable

sites (points of initially low X concentration). We can relate this

z situation to the effect of increazing hydrostatic pressure on an

inherently cross-anisotropic sand specimen; the results of such a test

carried out by Parkin et al. (Reference 35) shows that the ratio of the

incremental horizontal strain to incremental vertical strain decreases

from about 6 to 2.5. This shows that the influence of increasing

hydrostatic pressure is to decrease the degree of anisotropy, but it

does not completely wipe out the inherent anisotropic fabric. We can

also therefore see that the general (mother nature) cannot reorient his

forces at will since he is faced by the annoying internal constraints

(particles obstructing each other) which plague most large and complex

organizations (the microscopic world of particles sliding and rolling

past each other). These very same impediments are also manifest in the

case of stress-induced anisotropy.

We can now investigate the more complex situation of a virgin

loading with its accompanying fabric induction followed by unloading

and then a reloading event with rotated principal stress directions.

This is useful in extending the discussion of the progressive

development of anisotropy during the application of deviator stress as

opposed to the situation for hydrostatic compression described in the

preceding paragraph. Experimental evidence indicates that the principal

directions of fabric (i.e., principal directions of the distribution of



X or the second order tensor representation) match the principal

directions of the applied stress tensor during a virgin or prime

loading event, even with the continuous rotation of the principal

directions of stress (Reference 42). Again, the question of the

influence of microscopic hindrances to the realignment of particles and

hence fabric inductivity is one of fundamental research interest. Oda

et al. (Reference 43) has shown, through microscopic studies, that the

distribution function describing the orientation of contact normals

does not change significantly once the material starts to dilate. So,

if we can isolate the contact normal density function as a

representative measure of fabric, it is safe to assume that fabric

induction ceases when the granular material starts to distend.

Of the range of earthen materials, the influence of inherent as

well as induced anisotropy on uncemented granular deposits (like sand)

is greatest. Based on the discussion presented in this subsection, we

can now identify two of the internal state variables (9n of equation

66) which provide information regarding the stress-strain-strength

response of sand: 1) the initial void ratio, and 2) the fabric measure

which may be phenomenological or micromechanical, depending on the

level of observation.

-C.

E. ELASTICITY

We now turn our attention to the mathematical models used to

simulate the stress-strain response of soil. In this section, we

summarize the essential features of the three broad classes of

elasticity-based constitutive models (References 44 and 45): 1) the
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Cauchy type, 2) the Hyperelastic (or Green) type, and 3) the

incremental (or Hypoelastic) type. Although, in the strict sense, the

definition of an elastic body implies fully recoverable behavior, we

can, for mathematical convenience in some instances, suppose that all

strains are "elastic" and thus disregard the decomposition set forth in

equations 67 and 68. This assumption has been applied extensively in

the modeling of soil behavior, but we should note that this

idealization is only suitable for a limited class of problems wherein a

monotonically increasing load prevails.

1. Cauchy Type Elasticity

Recall from equation 66 that we can select the strain

increment to be a function of several variables
t t

.( , do, gn

if we assume that this relationship is not a functional (i.e. not a

t t
function of a function such as a or e ) but merely a function of its

independent variables (i.e., the current state of stress, a, or strain,

t), then the incremental relationship is not dependent on the stress

path or strain path followed to get to the current state of stress or

strain. With this assumption, we can restate this idealized stress-

strain relationship as:

de - d (a, do, gn) . (69)

If we then further presuppose the nonexistence of any significant

internal variables, equation 69 can be simplified to obtain a Cauchy

type formulation of the form

dE dE (a, do) , (70)
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or inversely,

do~d~c~d) ,(71)

where the current state of stress depends onl on the current saeo

strain or vice-versa. The stress-strain behavior described by equations

.470 and 71 is reversible, but it has been shown that this type of

formulation may generate energy during a load-unload cycle (Reference

441), thus violating the axiom of admissibility stated in section II B.

A comparison of equation 71 with equation 64 shows that we may 1-

write an incremental Cauchy elastic stress-strain relation in the form

dij = ijkl "kl

'where the components of the fourth order, elastic stiffness tensor, C,

is only dependent on the present components of the strain tensor, e. In

order to provide some insight into the formulation of this type of

elasticity relation, the most uncomplicated elastic constitutive

relation will now be derived.

41. ~ Let us proceed by first assuming that the body is isotropic (i.e., q

it has spherical symmetry as described in section II D). This implies

that the Pcurth order stiffness tensor C is also isotropic in the sense

that its ccmponents are equivalent for all rectangular Cartesian

coordinate systems. By generalizing the second order tensor

transformation formula (equation 13) to its fourth order equivalent, we

ob tain1

i~jkl - ip Qjq Qkr Qls Cpqrs (2
as the transformation rule for the "elastic" stiffness tensor C. With

the isotropy assumption, we expect the response to be Indifferent to

the orientation of the observer and hence we must also insist that C be
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g equal to C'. A fourth order isotropic tensor - which obeys this

transformation rule and satisfies the requirement that C - C' - can be

constructed from Kronecker deltas, 6, defined earlier in equation 18

(see, for example, Reference 22, p.211). The most general isotropic

tensor of the fourth order that can be built up from the Kronecker

delta is

Cijkl A 6 ij 6k1 +  6 ik 6j1 + v 6 i1 6 jk (73)

where X, u, and v are invariants. Since 6 = 61', equation 73 transforms

according to the rule stated in equation 72 to give C equal to C'. To

simplify the solution still further, we must mention the fact that, by

definition, the strain tensor, F, is symmetric (see equation 57); i.e.,

Ekl E 1k Consequently, there is no loss of generality in writing

C =C.... , (74)
ijkl ijIk

and by substituting equation 73 into equation 74, we have

iJ kl ik jl +  1 jk

A 6ij 61k + ' 
6 11 6 jk + v 6 ik 6j, (75)

which simplifies to

- v) (6 ik 6 - 6 6j ) = 0 , (76)

such that u = v. With this equality, equation 73 then becomes

C - A 6 + P (6 6 + 6 6 ),(77)
ijkl ij kl ik jl il jk

where A and p are the elastic Lame constants. If we utilize the

deviatoric stress and strain tensors (s and e) together with the

volumetric strain (e mm) measure, we can compare these Lame constants to;mm

the more familiar elastic constants such as the bulk modulus K (=

do kk/ 3 de I), and the shear modulus G (- dsij/[ 2 dei]). This can be

effected by writing out the isotropic elastic stress-strain relation
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doij = [A 6ij 6kl + (6 ik 6jl + 6ii 6jk) ]dEkl

= X 6 ij dmm + 2 P d ,ij (78)

where de is the incremental volumetric strain or dilatation (section
mm

II.A.3). By multiplying both sides of equation 78 by the Kronecker

delta, 6ij, we obtain the bulk modulus in terms of X and as follows:

do = 3 de + 2 de , (79)
kk Imm mm

or

do /3dc =K = + 2 (80)

kk mm

We can determine the expression for the shear modulus by

substituting

doi = dsi j + I dokk 6ij
3

and

dEj deij + I d kk 6ij ad

3

into equation 78; this leads to

dsij + 1 dokk 6iJ X 6ij de mm + 2 l. (deij + 1 dekk 6ij),
33

and upon substitution of the relation in equation 79 into the

expression above, we obtain

dsij/2 deij - G • (81)

This rather lengthy discussion of the Cauchy elastic formulation is

justified since it has been, and still is, extensively used in soil

mechanics to simulate nonlinear behavior (see, for example, References

46 and 47). The technique usually invloves making K and G scalar

functions of the stress or strain state.
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2. Hyperelasticity or Green Type Elasticity

Green defined an elastic material as one for which a strain

energy function, W, (or a complementary energy function, 9) exists

(see, for example, Reference 17). The development of this category of

elasticity models was motivated by the need to satisfy thermodynamic

admissibility, a drawback of the Cauchy elastic model. Stresses or

strains in this idealized material class are computed as follows:

.=3W (82),-" aij,

3

or

E j .(83)13 3o..
..> ij

For an initially isotropic material, the strain energy function, W,

can be written as

w ail +I w 3 (84)
ae ij 3 ij - I, J

( i + Ca E-. + Eim 
5m . (85)

where

W =W(I 1, 121 13) o A+ A, I, A2 12 +A 3 I~ + A4 I

A5 11 12 + A6 13 + A, I4 + A, I2 I, + A, I, I, + A,, I,

(86)

kk' ij ij'

13 F 1 M E
km kn Emn, " 3

and Ci (1 1,2,3) are the response functions which satisfy the

condition 30 /31. - 3(j/31i; this last condition ensures the symmetryi 3

of the predicted stress tensor. To complete the model formulation, the

constants Ak (k -1,2,..,10) are determined from experimental results.
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Different orders of hyperelastic models can be obtained by

retaining higher order terms in equation 84; if, for instance, we keep

terms up to the third power, we obtain a second-order hyperelastic law.

Various aspects of soil behavior can be accounted for in this

formulation by using different orders of the model; for example,
4'-

dilatancy can be realistically simulated by including the third term of

equation 86. A detailed description of a hyperelastic formulation can

be found in Saleeb and Chen (Reference 44).

3. Hypoelasticity or Incremental Type Elasticity "

This type of formulation is used to describe a class of

materials in which the current state of stress depends on the current

. 4 tstate of strain and the history of the stress a (or the stress path).

The incremental constitutive relation is generally written in the form

do - f(a , de) , (87)

where f is a tensor valued function of the current stress, a, and the

strain increment, de. The principle of material frame indifference (or

objectivity) imposes the restriction that f obey the transformation

(see equation 14)
T 7 QT

Q f(a, dc) Q T f(Q de QT Q Q ) (88)

-" -for any rotation, Q, of the spatial reference frame. When f satisfies

the stipulation of equation 88, it is known as a hemitropic function of

and dE. A polynomial representation of f can be expressed in the form

(see, for example, Reference 45, p.256):
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do' = f(a, dE) = a tr(de) 5 + al dE + a 2 tr(dE) 0' +

a, tr(o' de) 6 + 1 a, (de a' + o' dc) + a 5 tr(de) a" +

a,6 tr(o' dE) a' + a, tr(a' dE) 6 +

1 a. (dE o' + a'" de) + a, tr(o' dE) a'" +

ao tr(o' 2 dE:) a' + (%, tr(a'2 de) 2'' (89)

where a' is a nondimensional stress (a/2p), 4 being the Lame shear

modulus of equation 78, ak (k = 1,2,..,11) are the eleven constitutive

constants, and "tr" denotes the trace operator of a matrix (i.e., the

sum of the diagonal terms). The constants a. are usually dimensionless

analytic functions of the three invariants of a' which are determined

by experimentation and by curve fitting.

The general form of the expression in equation 66 can be further

classified according to the powers of the dimensionless stress tensor

a' occuring on the right hand side of this equation. A hypoelastic body

of grade zero is independent of a' (i.e., dependent on 01,), and, in

-p this case, equation 89 reduces to

do' = f(o, dE) = Col tr(dE) 6 + al de ; (90)

by comparing this equation to equation 99, we find that

= A and cc =l
q , 2u

Similarly, we can construct a hypoelastic constitutive equation of

grade one by including only the terms to the first power of a' in

equation 89. The hypoelastic body of grade one is thus represented by

do' = f(c, dE) = Co tr(d§) 6 + a, dE + a 2 tr(dc) a' +

a, tr(a' de) 6 + 1 a. (dE G' + a' dE)
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and, as we can see, the description can be extended up to grade two

with the penalty being the task of having to fit a larger number of

parameters ak to the experimental data. These parameters must be

determined from representative laboratory tests using curve fitting and

regression analysis; this procedure often leads to questions of

uniqueness because it may be possible to fit more than one set of

parameters to a set of laboratory data.

F. PLASTICITY

Having outlined the theory used in computing the elastic, or

sometimes pseudo-elastic, component of the total strain increment (see

equation 68), we now turn to the unarguably more difficult subject of

the plastic or irrevesible component of strain, dEp . This topic

embraces the theory of plasticity, a mathematical tool which until 1952

(Reference 4 8) remained strictly in the domain of the metal physicist.

Over the last thirty years, the role of plasticity in soil mechanics

has increased in unison with the functional importance of electronic

computers as an engineer's working tool. Nevertheless, plasticity still

remains a mystery to many geotechnical engineers, and there is no doubt

that a newcomer to this field will encounter some difficulty in sifting

through the esoterically written literature on the subject. One of the

chief objectives of this section is to provide a feel for plasticity

theory by highlighting the fundamental postulates with emphasis on its

application to granular material.
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1 . Yield Surface

Perhaps the best place to start talking about plasticity is to

-' introduce, or rather draw attention to, the concept of a yield surface

in stress space. To aid in this objective, the following notation is

n nadopted: T and a are the shear stress and normal stress components

respectively on a plane identified by a unit normal vector n.

In the calculation of the stability of earth structures,

geotechnical engineers frequently rely on the Mohr-Coulomb failure

envelope drawn in Tn- a n space. This straight line is a failure

surface (or more precisely, a failure curve) drawn in two-dimensional

stress space while the particular solution technique is known as limit

equilibrium analysis, a method which provides no information on the

deformation prior to reaching the critical T n /0n ratio. Failure can be

interpreted as the limiting combination of shear and normal stresses to

cause "unrestrained flow" in a soil mass. Yield (or a yield surface),

on the other hand, is the locus of stress component points in stress

space that mark the onset of plastic (or irreversible) deformation;

this description contrasts with the typical strain off-set definitions

used in metal plasticity. Correspondingly, we can construct ayel

curve inTn anspace to enclose a domain called the elastic range

(i.e., the totality of elastic states in which an infinitesimal change

of stress da produces no permanent strain de ). If we construct a very

simple model where we assume the soil to remain elastic until its

n n
stress state (i.e. T and a ) reaches failure, then the yield curve

coincides with the failure curve and we have what is called elastic-I

Lperfectly plastic behavior (see figure 5e). Until the anomalies which
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(a) Noninearly elastic (b) Linearly elastic

a- a-

IEE

(c) Nonelastic, or plastic (d) Rigid, perfectly plastic

(e) Elastic, f)Rigid, (g) E lastic,
Perfectly plastic Work-hardening Work-hardening

Figure 5. Idealizations of Rate Independent Stress-Strain Behavior.
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p result from the assumption of yield/failure locii coincidence can be

pointed out, it is helpful to think of both these concepts in terms of

a single surface.

In section II A.2, we established the fact that the stress state at

a point is represented by the nine components of the stress tensor a.

Therefore, it is necessary to generalize the representation of the'.

yield/failure surface from this two dimensional picture into a nine-

dimensional space. Although such a space need not be regarded as having

an actual physical existence, it is an extremely valuable concept

because the language of geometry may be applied with reference to it

(Reference 22). We can call the set of values a, a12 , 013, J21, 022,

023, 03, , 032 and 033 a point, and the variables a.. the coordinates.
13

The totality of points corresponding to all values of say N coordinates

within certain ranges constitute a space of N dimensions denoted by VN;

other terms commonly used for VN are hyperspace, manifold, or variety.

Before studying the analytical depiction of yield and failure locii

in hyperspace, it is advantageous to review the relevant elementary

geometric concepts of the familiar Euclidean space of two or three

n n
dimensions. If we are concerned with only two coordinates 0 and T , a

curve in this space is then specified by a series of connected pairs

n n T
[E- , a 1. The two coordinates of a point in V2 are given as functions

of a real parameter u (a S u b); I.e.,

n n
Cf (u) , and a . f2 (u), (91)

where f i(u) are the two functions of the parameter "u" used in

characterizing the curve. If, for example, we assign the functions

f (u) the following forms:
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• 4.

f tan u , and f2 - u , (92)

we see that this parameteric representation of a portion of the curve

n nplots as a Mohr-Coulomb failure envelope in T - a space within the

limits: a S n < b. For the general nine dimensional stress space, we

can extend this description and define a curve as the totality of

points given by the equations

r fr (u) (r - 1,2,..,9) . (93)

The parametric representation of a surface in three dimensional

space is an extension of the idea of a curve; instead of the dependency

of the three coordinate variables on a single constant u, the points

describing a surface are assumed to be functions of two parameters: u,

and u2 . A fundamental property of a surface is the division of

neighboring portions of space into two parts (such as elastic and

plastic regions). Note that, in the definition of a surface, the number

of parameters, u, is one less than the number of space dimensions; this

observation allows us to carry the surface definition to nine-

dimensional stress space by writing

a. fr (ui, u2 , u 3 . ... . . US) (r - 1,2,..,9) , (94)

where the u's are parameters and fr are nine functions. By writing out

the nine equations expressed indicially in equation 94, one may verify

that the eight parameters u i (1- 1,2,3,..,8) can be eliminated to give

a single equation of the form

F(a. ) . 0 (95)
i

which represents a hypersurface in V The theoretician is therefore
9.

confronted with the task of fitting an analytical function of the type
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shown in equation 95 to the experimentally determined locii of stress

states which bring about yield or failure.

If an existing testing device had the capability to subject sand

specimens to the six independent components of stress, the yield

function representation (of equation 95) could be stated in terms of

the nine stress components. Unfortunately, such equipment is not

available at the present time, and the analytic functions proposed to

represent the yield hypersurface of soil are founded on experimental

stress-strain data obtained from restrictive classes of test paths

(such as the true triaxial device and the conventional triaxial test).

These yield/failure surface representations are therefore either

generalized to nine-dimensional space or are assumed to model idealized

isotropic materials. The latter assumption permits us to state a

failure/yield criteria solely in terms of the three principal stresses

(c, 0, and a, axes), thus, in effect, disregard any directional

stiffness or strength properties present in the medium. This leads to

an interesting geometrical consequence: in principal stress space, the

yield surface may be sketched using a piecewise smooth surface to which

we can attach direct physical interpretation of the stress intensity

(or stress invariants).

Figure 6 depicts a yield surface in principal stress space. The

hydrostatic axis is defined by G - 02 - 03 while the other geometric

feature of importance, the deviatoric (or octahedral or 7r) plane ,is

specified by the condition that the sum (a, + 02 + 03) be equal to a

constant; this plane, it turns out, is perpendicular to the hydrostatic

axis. If we perform a constant "p" test (i.e., a mean normal pressure
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Yield Surface Hydrostatic Axis

'7-03

Deviatoric Plane

e=3o

Tre sc a

e=-33

212

Deviatoric Plane

Hydrostatic Paint

System.
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test, TC or TE of figure 3), the stress point remains on a single

deviatoric plane throughout the loading, and this provides a useful

method for probing the shape and size of the yield surface's projection

on the 7 plane. The influence of three aspects of loading on the

yield/failure criteria is manifest in this Heigh-Westergaard

cylindrical coordinate system: a) the shear stress intensity (/[2J 2])

is depicted by the length of the vector joining the stress state to the r

r point at which the hydrostatic axis intersects the deviatoric plane; b)

the relative magnitude of intermediate principal stress can be

calculated directly from the Lode angle 0 (see equation 37); and

finally, c) the effect of confining pressure on the yield/failure of

frictional materials is easily visualized by noting the variation in

the size and possibly shape of the yield surface's I sections for

different levels of mean pressure (or distance along the hydrostatic

axis). In summary, we can therefor( conveniently put equation 95 in the

form F(1 1 , /J 2 1, e) - 0 to repesent the yield or failure functions for

isotropic materials.

The much used Mohr-Coulomb failure criteria (Reference 49) for sand

is usually stated as:

( -a,) + (a, + a) = sin €, (96)

where p is the angle of internal friction. If we combine this equation

with equation 41, the yield surface for the Mohr-Coulomb criteria in

terms of the stress invariants can be written as:

F= i sin + VJ, s sin - cos 6 } 0, (97)

3 /3
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and a trace of this surface on the IT plane is shown in figure 6. In

three-dimesional principal stress space, this yield function plots as

an irregular hexagonal pyramid with its apex at the origin for non-

cohesive soils. The other two I-plane projections in figure 6 are those

of the popular Tresca and Mises yield surfaces used in metal

plasticity. Mises (Reference 50) postulated a yield representation of

the form

F - VJ, - k 0 0, (98)

where k is a parameter determining the size of the yield surface (i.e.

the yield stress). This criteria says that plastic flow will begin once

the load-deformation process produces a critical strain energy of

distortion (i.e., the strain energy neglecting the effects of

hydrostatic pressure and volume change). On the other hand, Tresca

(Reference 51) proposed that the initiation of plastic flow can be

correlated to the peak shear stress ([a, - a,]/2); by employing

equation 41, this maximum shear stress yield criterion may be

mathematically expressed as:

F - -1 VJ [ sin (a + 4 i) - sin (6 + 2 i) ] - k - 0

which simplifies to

F -= J2 cos e - k - 0 , (99)

where k is again a parameter controlling the size of the yield surface.

It is important to note that the functions written in equations 98 and

99 are both independent of the variable I, (i.e. the confining

pressure) with the implication that yielding is non-frictional. This

is, of course, a very unrealistic assumption in the characterzation of
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dranedsoi beavir.An approximation to the Mohr-Coulomb law was put

forward by Drucker and Prager (Reference 48) as a modification of the

Mssyedcieinin the form of a circular cone. For cohesionlessI

soil ths yeldfunction is written as:

F- 2snII- 1/J2  =0, (100)

where 0 is the angle of internal friction of the material along a CTC

path (see figure 3). Even though the development of the Drucker-Prager

yield function was motivated by mathematical convenience, it is widely

applied in soil and rock mechanics; however, there is evidence that theI

Mohr-Coulomb law fits the experimental data better (see, for example,

Reference 52).

'- By examining sketches of the above-mentioned yield criteria and the
hydrostatic compression load-unload stress-strain diagram in figure 2,

an obvious shortcoming in the soil mechanics application of these yield

criteria becomes evident: these yield surfaces are all "open" along the

hydrostatic stress axis and will thus predict no plastic strain for

loading paths directed out but away from the failure surface. Yet, from

the hydrostatic loading plotted in figure 2, we see that considerableI

irreversible plastic volumetric strain is generated by this stress

path. In recognition of this deficiency, Drucker et al. (Reference 53)

capped the Drucker-Prager yield surface to reflect the difference

between yield and failure in soil. Nowadays, the modern versions of

this type of plasticity model are frequently referred to as cap-models

(Reference 54).
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The development of more sophisticated laboratory equipment and

stress-strain data has permitted researchers to refine the functional

forms of the yield surface in principal stress space. Using the results

of true triaxial tests, Lade and Duncan (Reference 55) have proposed a

failure theory which incorporates the third invariant of stress and is

written as:

F = (I,/I,) (I/pa)m- k = 0 , (101)I a

where pa is the atmospheric pressure, m is an exponent explaining -

deviation from purely frictional response, and k is a size-controlling

parameter of the surface. They also added a spherical cap to this

"open-ended" function to account for the yielding during hydrostatic

compression.

Matsuoka and Nakai (Reference 56), on the assumption that the shear

stress to normal stress ratio reaches a limiting value on the mobilized -

plane, have derived a quite simple form for the failure criteria for

isotropic soils; i.e.,

F =I12-k - 0 ,(102)

where k assumes the usual role of determining the size of the failure

envelope. The mobilized plane concept is a three-dimensional extension

of the Mohr-Coulomb criteria which accounts for the influence of

intermediate principal stress, and this criteria, together with the

Lade surface (equation 101), appear to be gaining wide acceptance as

suitable yield/failure criteria for idealized isotropic sands. The

Mises, Drucker-Prager, Lade, and Matsuoka surfaces have been shown by
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Desai (Reference 57) to be special cases of a completely general third-

order polynomial in terms of the stress invariants, and it therefore
r.

seems likely that, as more reliable and reproducible stress-strain data

becomes available, new failure/yield functions will emerge in the near

future.

2. Incremental Plastic Stress-Strain Relation

Given a yield surface enclosing an elastic domain, we are now

faced with the task of predicting the incremental plastic strain after

the stress point penetrates this region. If the yield surface does not

coincide with the failure surface, we will expect a finite value of

incremental strain when the stress state exits the elastic regime. The

subject of this sub-section deals with the computation of the

incremental plastic strain or, more generally, the mathematical theory

of plasticity. By definition, plasticity theory excludes any influence

of the rate of application of stress increment on the predicted plastic

strain increment.

In analogy to the flow lines and equipotential lines used in

seepage analysis, we can postulate the existence of a plastic

potential, G, in stress space which determines the direction of a
'" p

plastic strain increment vector, den, resulting from a stress increment

(Reference 50)

d =AX 3G ,A > 0 (103)

where A is a scalar factor which controls the magnitude of the

generated plastic strain increment and, like the yield/failure
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function F, G is a scalar function of stress. Inspection of equation

103 reveals that an isotropic plasticity theory will predict a plastic

strain increment vector with principal directions coinciding with those

of the stress tensor; recent experimental evidence (Reference 58)

indicates that this assumption may not be approriate for granular

materials. The magnitude (A) and direction (3G ) of this plastic
3aii j

strain increment, dep, depend upon the variables listed in equation 66;

t t
i.e., the stress history 2 , the strain history E , and any internal

variables of significance. Up to this point, three problem statements

*g of plasticity theory have been put forth: a) the determination of the

scalar factor A for computing the magnitude of the strain increment, b)

the so-called flow rule or direction of the strain increment vector

based on the gradient of a scalar function, G, constructed in stress

space, and c) the representation of the yield surface in stress space.

The yield surface concept has already been described so we will

continue here by first discussing the plastic flow direction and then

lead into the methodology used for calculating the scalar factor A.

Geometrically, the flow rule can be interpreted as equating the

strain increment vector to the exterior normal of a proposed plastic

potential; conversely, we can view it as the superposition of

experimentally determined plastic strain increment vectors in stress

space followed by a back calculation to give a potential function such

- that the strain increment vectors lie normal to this contrived surface.
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7A
Mises (Reference 50) made the assumption that the yield surface and the

plastic potential coincide; i.e.,

de~ A 3F(14

and this suggests a strong connection between the flow law and the

yield criterion. When this assumption is made, the flow rule is called

associated (i.e., the normality rule), but, if we do not insist upon

associating the plastic potential with the yield function (Reference

59), the flow rule is termed non-associated. The implications of the

normality rule, it turns out, are far reaching, and it is perhaps best

to provide some insight into the structure of the incremental plastic -

stress-strain relation by summarizing Prager's (Reference 60) treatment

of the subject. Essentially, Prager has formulated stipulations, which

are to be used in conjunction with the axioms of constitutive theory,

to establish admissible plastic stress-strain relations.

The first assumption is designed to preclude the effects of rate of

loading, and it says that the constitutive equation

dE - d? ado

Must be homogenous of degree one in the stress increment do. Recall

that homogeneity of order n ensures that

= dE 0  d,2) =A dE do, 2n'(105)

where A is a positive constant.

A simple example will clarify this seemingly complex mathematical

statement: Suppose that an axial stress increment of I psi produced a

plastic strain increment of .01 % in the axial direction; this means

69

-2......."....



that if A is equal to say 2, a stress increment of 2 psi (A x 1 psi)

will predict a plastic strain increment of .02% (A x .01%). Ideally

then, our solution should be independent of the 3tress increment

provided the stiffness change during the stress increment is

negligible. A very important particular case of equation 105 is when

the function de is linear; the linearity assumption allows us to write

the incremental plastic stress-strain relation in the form

d =P , D do (106)
13 ijkl dkl

where D is a fourth order plastic compliance tensor function of the

stress history a , n plastic internal variables qnP and m discrete

memory parameters m In a general sense, the linearity assumptionm

states that if all do are increased in ratio, all deP are increased
kl k

in 'he same proportion.

The second assumption, the condition of continuity, is intended to

eliminate the possibility of jump discontinuities in the stress-strai-

curve as the material's stress state either penetrates the elastic

domain (i.e., the yield hypersurface) from within or is unloaded from a

plastic state back into the elastic regime. To guarantee a smooth

transition from elastic response to elastic-plastic response and vice-

t
versa, a limiting stress vector, do , tangential to the exterior of the

yield surface shoula develop no plastic strain increment. The

mathematical constraint which results from the satisfaction of this

requirement will now be examined. Let us start by assuming that a

current stress state, a, lies on the yield surface (i.e., it satisfies

the condition F(2) = 0). An infinitesimal change of stress, do, from
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this plastic state [F(a) = 0] may lead to either of three possible

si tuat ions:

a). an elastic state (unloading) 3F do < 0 (107)

b). no permanent strain (neutral loading) DF do = 0 , (108)

or
c). permanent strain (loading) aF d > 0 (109)

where the notation ":" is the double contraction operator (see, for

instance, Reference 17) such that the scalar product DF doi isLi j
compactly written as 3F:do. Next, we decompose an arbitrary stress

n t
increment, do, into its components normal (do) and tangential (do

t ) to

the yield surface

do = dot +dn " -.

t
The continuity condition states that the tangential component, do

t

constitutes a neutral loading, and, hence, does not produce any plastic

strains. Consequently, the plastic strain increment magnitude, IdePl,

is entirely dependent on the magnitude of the normal component of do so

we may write

deIa do n =do VF/IVFI ,(110)

where n is the unit normal vector to the hypersurface taken in the

direction of increasing F, and V is the symbolic operator del which L

when placed to the left of a scalar function such as F(o) denotes the

gradient tensor F.
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In his presentation of the restrictions imposed by the uniqueness

condition, Prager (Reference 60) made use of the following boundary

value problem: given the instantaneous mechanical state in a body

together with a system of infinitesimal increments of surface

tractions, find the corresponding stress increments throughout the

body. It is then reasonable to demand that plasticity theory predict

unique solution to the problem, but let us assume that the boundary

value problem admits two solutions. Say these two solutions resulted in

a difference between the stress increments at a given point of the body

equal to A(da), and likewise, differences in elastic and plastic strain

e
increments equal to A(dE ) and A(dEp ) respectively. Now, the two

solutions correspond to the same increment of surface tractions, so by

the principle of virtual work, we expect the work done on the body (of

volume V) will be the same for both solutions; i.e.,

[ A(do) + A(de§P) ] dV = 0 , (11I)

which means that the integrand must be positive definite. By virtue of

Hooke's law, the quantity

'.- .'. A(da) :A dce

will always be positive definite so the uniqueness condition reduces to

one of showing

A(da):A d p )  (112)

--- is positive definite. In the investigation of equation 112, three

possible cases must be considered: 1) both solutions result in

* iunloading, 2) both solutions constitute loading, and 3) one solution is

an unloading event while the other is a loading process. In the first

case, dE, is zero for both solutions and equation 112 vanishes
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trivially. To investigate the second case, we label the two "loading"

(1) (2)
solutions do and do and impose the restriction that the plastic

strain increment direction be such that equation 112 is always

positive. The limiting scenario occurs when do 1 and do 2 are both

tangential to the yield surface but directed in an opposite sense; then

the only way equation 112 will be positive is if the plastic strain

increment is directed along the outward normal to the yield surface.

The arguments for case 2 parallel those for case 3, and we can thus

conclude that a sufficient condition for uniqueness of a boundary value

problem is that the flow rule be associated and that normality of the

plastic strain increment apply; that is,

V.P 3F (113)

By combining the results of: a) the linearity assumption (equation

106), b) the continuity condition (equation 110), and c) the uniqueness

condition (equation 113), we can derive the flow rule as:

d 1 VF O~F : dol K p> 0 (1114)
-K - VFI aa .

p

where K is a positive scalar quantity known as the generalized plastic
p

modulus; also, this equation applies only when F(2) a0 and a loading

event is in process (i.e., equation 109 is satisfied). For non-

associative flow, equation 1114 can be modified to

=~ 1 VG O~F :do') K > 0 .(115)

-K

p1
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The quantity

L - 1 {F dal (116)
p 3a

is frequently separated from equations 114 and 115 and is termed the

loading function, L (Reference 4); this separation means that the flow

rule may now be condensed to

de - L m , (117)

where m are the components of the unit tensor gradient to the plastic
ij

potential G.

The generalized plastic modulus, K can be considered as a plastic
pL

conjugate to the elastic modulus, E, which controls the stiffness of

the incremental plastic response. In plasticity theory, we must also

consider how the magnitude of the scalar K changes with the plastic

internal variables qn (PIVs). As the stress point penetrates the "

initial yield surface and moves outward, we can model continued plastic

behavior by postulating that this yield surface either: a) undergoes a

size change, b) translates, c) rotates, d) changes its shape, or e)

experiences any combination of the four previous postulates, such that,

after the deformation, the surface satisfies the condition F(o + do)

0. In other words, the stress state went from one plastic state

[F(o)-0] to another plastic state [F(o + do) - 0], and when this

requirement is met, the consistency condition is said to be satisfied

during plastic flow. This type of behavior is known as work hardening

and idealized examples of such response are shown in figures 5f and 5g.

This subject is treated separately in the subsection which immediately

follows. The various postulates for the expansion, translation, etc. of
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the yield surface are called hardening laws, and further discussion of

this subject will also be postponed to a later subsection.

We can take two different approaches to obtain the functional

relation between plastic modulus and loading history. The first method

is simply demonstrated by coupling the stress with the plastic internal

variables and writing F(2, q = 0. The consistency condition therefore

requires that

dF - DF do +3 F dq 0 , (118

90 aqn

p
and if we single out the ;lastic strain tensor, P as our only PIV,

then we can rewrite the consistency condition as:

dF 3F do.+ 3F dE .=0 .(119)

iJ iJ

Substitution of equation 114 into equation 119 leads to

dF - 3F : do + DF : 1 VF {F : do} = 0

p K JVEJ o -

from which one observes

K -F VF (120)

which completes the specificatio"x of the flow rule. The task of

calibrating the plastic stress-strain relation is therefore one of

fitting the experimental stress-strain data to obtain the variation of

p
F with E for use in equation 120. An approach of this type is

discussed in some detail in section IV.

The second option for finding the plastic modulus as a function of

stress history is to assume that there are a field of nesting (i.e.,

non-intersecting) yield surfaces in stress space, each of which has a
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plastic modulus associated with it (References 61 and 62). Depending

upon the loading, a yield surface will translate and/or change its size

such that its resulting motion may engage an interior or exterior yield

surface which has its own unique set of plastic modulus parameters. In

this way, the plastic modulus can vary to reflect the loading histo.-y.

A model of this type is also discussed in some detail in section III.

Although it will not be pursued here, Prager (Reference 60) also

derived the consequences which result from the condition of

irreversibility, a fundamental assumption in plasticity theory. From

the thermodynamic standpoint, the condition of irreversibility requires

a positive rate of entropy production, and an in-depth discussion of

this topic, as it relates to soil media, can be found in Jain

(Reference 26). More general descriptions of plasticity and_

thermodynamics considerations can be found in a series of papers by

Lubliner (see, for instance, Reference 63).

3. Drucker' Stability Postulate

With the mention of work hardening in the previous subsection,

it is approriate to now introduce one of the cornerstones of modern

plasticity theory: Drucker's stability postulates.

The meaning of work hardening in the case of a simple axial

V. compression test Is just that the stress is a monotonically increasing

function of strain which implies that the deformation is stable.

Drucker (Reference 1) observes that the definition of work hardening is

not a simple picture for more general states of stress and paths of

loading where some components of stress may increase while others may
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decrease. He then advanced the definition of material stability in

terms of the work done by the stress increment on the plastic strain

* increment. In his 1950 paper, Drucker defines work hardening in the

following manner. Consider a material elemant in which a homogenous

state of stress a and strain e exists. Let an external agency, entirely

* separate and distinct from the agency which caused the existing state

of stress and strain, apply small surface tractions which alter the

stress at each point by do and produce corresponding small strain

increments dc. Next assume that this external agency slowly removes the

added surface tractions thus relieving the elastic strain increments

e
dE Stability implies that positive work is done by the external

* agency during the application of the set of stresses, or

dcj:dE > 0 ,(121)

and also, the net work performed by it over the cycle of application

and removal is zero or positive; mathematically, this means that

do (d4 - dEe )=da:dep a 0. (122)

It is emphasized that the work referred to is not the total work

done by all the forces acting, but it is only the work done by the

added set on the displacements which result. The latter postulate

(equation 122) can be rephrased to read: work hardening means that

Useful energy over and above the elastic energy cannot be extracted -

from the material and the system of forces acting upon it. Upon

examination of equation 122 (which is commonly referred to as

"stability in the small"), one can immediately conclude that this

postulate implies normality of dE~ to the yield surface. Drucker

(Reference 64) extended his postulates by considering the external
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agency to apply a finite set of surface tractions to the body with its

initial stress state a residing within the yield surface at a

reference time zero. The external agency first causes the stress state

to move to a point, a (at time t), exactly on the yield surface; it

then gives rise to an infinitesimal loading increment da (with a ,

corresponding dEP), over an arbtrarily short interval At, which now

moves the point to a neighboring point outside or on the initial yield

surface. Finally, the external agency removes the stress increment do

and returns to a (at time t ) along an elastic path. The net work done
.-

(dWnet ) by the external agency over the cycle is assumed to be positive

and it is equal to the total work during the cycle (dW ) minus the work
t

(dW ) that would be done during the cycle by the initial stress a

i.e., A.

dWt (a:dE e) dt + J a:(dEe + dEP)] dt +

t(a:dee) dt (123)

However, the net elastic work during the cycle is zero so equation

123 simplifies to

(t+At -

dW =t (y:de dt , (124)

and similarly, we can show
rt+At, -p

dW J( :dEP) dt . (125)

Therefore,

~t+At
dWnet -dW - dW° t - a ):dEP] dt > 0, (126) u
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and so by Drucker's definition, the following must hold

(a - a ):de p  > 0 . (127)

With equation 127 (otherwise known as "stability in the large"),

convexity of the yield surface can be demonstrated as follows. To

satisfy the inequality in equation 127, all vectors o - a must lie to

one side of the hyperplane which is normal to the strain increment

vector dcP; this must hold for all points on the yield hypersurface,

thus immediately proving that the yield surface is convex. This

completes our discussion of Drucker's stability postulate and we now

turn our attention to the questions concerning the suitability of the

normality rule in soil plasticity.

4. Applicability of the Normality Rule To Soil Mechanics

Jain (Reference 26) concludes that the normality rule applies

to materials which are: a) incompressible and their strength is not a

function of confining pressure, b) rigid plastic or elastic-perfectly

plastic, and c) cohesive. "Standard" materials are categorized as those

which follow the normality rule while "non-standard" materials do not

follow this rule. The undrained behavior of saturated normally

consolidated clays can be considered sufficiently close to "standard"

materials. There are, however, two ways in which non-standard materials

can make use of the normality rule: the first consists of using a non-

associative flow law (equation 115) with the added complexity of

finding a plastic potential surface G, while the second approach of

non-associative soil plasticity takes into account any deviation from a
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"standard" material by modifying the plastic strain increment vector

(i.e., the components 3F of the normality equation). For this second

alternative, observe from equation 104 that the incremental plastic

volumetric strain (dckk) and the incremental plastic deviatoric strain

tensor de j may be written respectively as follows:

d kk X 3F (128)

kk

and

de p , =A 3F (129)
1j

13

In order to bring the analytical result for a "non-standard"

material in agreement with "he experimental observations, the

volumetric component dEP k must be modified by a factor A, and the
kk

deviatoric components deij by a factor A 2 ; equations 128 and 129 could

then be put in the forms

dc X A 3F (130)ackk

and

de -A A, 3F (131)as..
13

To clarify the influence of the factors A, and A2, equations 130

and 131 may specifically be written for the 'triaxial' environment or

p-q subspace as:

dvp  A, aF (132)
v ap

and

d p  2 (del - dE 3 ) A A A2  3F (133)
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where dvP/v is the plastic volume strain and de is called the plastic

equivalent shear strain. A geometric interpretation of equations 124

and 126 is sketched in figure 7. Figure 7a corresponds to the normality

rule (i.e., A, = A 2 =1) and figure 7b shows how the volumetric and

deviatoric components are modified to change both the magnitude and

direction of the resulting plastic strain increment vector. An

important consequence of this latter modification is that it results in

a non-symmetric incremental compliance matrix (the D matrix of equation

106). Finally, figure 7c illustrates how the magnitude of the plastic

" strain increment vector may be changed without altering its direction;

this is accomplished by setting A, A 2 - A such that A is not equal to

unity.

Restrictions on the selection of the two factors A, and A 2 imposed

by stability considerations (of the previous sub-section) have been

discussed by Jain (Reference 26), and, he concludes that the modifying

factor A 2 must be positive whereas A, may take a negative value.

Examples of models where these parameters have been employed can be

found in the papers b, Sture et al. (Reference 65) and Prevost

*+ (Reference 7).

5. Hardening Rules for Soils

Having reviewed the concepts regarding: a) the initial yield

surface, b) the plastic flow laws, and c) the work hardening

implications, we complete our discussion of the basic precepts of

platicity theory by surveying the analytical methods used to update the

size, the shape, and the location of subsequent yield surfaces during
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Figure 7. Diagrams Illustrating the Modifying Effects of the Coefficients
A1  and A2: (a) A1  A2  :1; (b) A1  A2; (c) A =A2 =A
(Reference 26).
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work hardening. It is the theoretician's objective to postulate a

hardening law (i.e., position/size/shape change of the yield surface)

which reflects as closely as possible the history of the deformation.

The geometrical properties of a yield surface or a field of surfaces

should characterize the current mechanical state of the medium and

reflect its loading history.

Let us continue our discussion by denoting the center of a yield

surface with the symbol L and by assuming that its size is controlled

by the parameter k, a mathematical equivalent to, say, the radius of a

circle. If we adopt the approach suggested in equation 119 to determine

the plastic modulus, and disregard the possibility of any shape

changes, the yield function can be written in the form

F(o, L, k, q = 0 , (13 4)

where q are the plastic internal variables. For this particular case,

the consistency condition will therefore be stated as:

dF = 3F : do + 3F :d + DF dk + 3F dq= 0 .(135)

k 3q n (15
Alternatively, if the field of work hardening modulii (or nesting

yield surfaces) model is chosen, there is no need to include q as an

independent variable in F since the consistency condition, per se, will

not be used to determine the plastic modulus. However, the consistency

condition must still be invoked to ensure that the stress point moves

to another plastic state (F = 0) as the yield surface translates and

changes its size. For this type of model, the 
consistency condition is

stated as:

dF F :do + 3F : dL + 3F dk =0. (136
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The simplest work hardening assumption is known as isotropic

hardening (Reference 66). In this type of hardening the yield surface

is assumed to maintain its shape while only its size may change. This

assumption eliminates the translation term, 3F : dg, in equation 135,

and, in addition, it may be assumed that the size modification is

solely a function of the plastic deformation (i.e., plastic strain or

plastic work). These postulates form the basis for the critical st:.te

model (or density hardening) in soil mechanics (Reference 67); in

geotechnical engineering parlance, this is the familiar void ratio (or

volume strain) versus the logarithm of the effective confining pressure

plot (e vs. log p'). Here, we assume the size of the yield surface is a

function of the plastic void ratio (eP), and using the consistency

condition

dF 3F do + aF 3k deP _ 0 , (137)

3- 3k ep
.

we obtain the expression for the plastic modulus (see equation 120) in

the form

-" K - aF ak (1+e) 1 tr(VF) (138)
p

ak ae p  JVFJ

This class of hardening models is applicable to clays under

monotonic loading, and the Cam-clay model (Reference 67) and the cap

model (Reference 54) are examples of this particular formulation. These

models differ only in the form of the yield function. The disadvantage

of this model lies in its inability to simulate cyclic loading,

dilatancy, and hardening due to shear strains. The last two

shortcomings can be mitigated by the use of combined hardening
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(deviatoric and density), a class of hardening not covered in this

section but treated fairly extensively in section IV.

For monotonic loading processes, the isotropic hardening model can .
be successfully applied to the solution of boundary value problems;

however, for cyclic loading events, where hysteretic phenomena are of

essential importance, the isotropic hardening model does not provide an

accurate description. The isotropically hardening surface is usually

defined by a large offset value and its interior domain is regarded as

elastic. If after initial preconsolidation of a soil specimen, tkhe

stress is slightly decreased, reverse plastic flow is experimentally

observed with the result that the unload stress-strain curve departs

significantly from the elastic curve. In order to account for this

effect, Prager (Reference 12) introduced his concept of kinematic

hardening in which the center of the yield surface is assumed to

* translate in the direction of the plastic strain increment vector

(den). In the application of this hardening rule, a problem arises:

although the yield surface remains rigid in stress space, it may not

appear rigid in subspaces. To overcome this difficulty, Ziegler

(Reference 68) proposed that the surface translates in the direction of

a vector from the center of the yield surface to the loading point

[i.e., d (a - ).Based on experimental observations however,

Phillips (Reference 69) has postulated that the yield surface

translates in the direction of the stress increment (i.e., dL a do).

The possible variations on the hardening law are endless, and, for

additional discussion of research on hardening, the reader is referred

tj Naghdi (Reference 15).
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Among the topics omitted in this section are the Mroz kinematic

hardening rule (Reference 61) and the bounding surface concept

(Reference 4). These topics were omitted not because of any lack of

importance to soil plasticity; on the contrary, their consideration is

central to the presentation of the current research. Accordingly, one

of the more sophisticated anisotropic hardening rules is presented in

the section immediately following, while the bounding surface

- philosophy is deferred to section IV.

6. Incremental Elasto-Plastic Stress-Strain Relation

When elastic and plastic strain increments are occuring

simultaneously, the constitutive equations must be organized in a

compact but general form for computational purposes. The equation for

the total strain increment (equation 68) is written as:

de - dee + de
p

and if our test simulation is stress-controlled (i.e., do is known), we

can compute the total strain increment by first combining equations 80

and 81 to obtain the elastic strain increment as:

de e -de e .+d~eij ij mm 6 ij
- (dsij + 2G) + 1 (dukk + 3K) 6ij (139)

In tensor notation, we may rewrite equation 139 in the form*'1

dge - De d (140)

where Deis the fourth order, incremental elastic compliance tensor.

Equation 140 can then be combined with equation 115 to yield the
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expression which can be used to directly compute the total strain

increment for a stress controlled test

d = D e do + 1 VG {F : do) (141)F K P VGI o
If, however, a strain controlled test was being simulated, the

inverse relation of equation 141 will be needed. The algebraic

operations in inverting the stress-strain relation of equation 141 can

be carried out by first multiplying both sides of equation 141 by the

e
inverse of the D matrix; i.e.,

(e)- e I_ __ _

(D dE = do + (De) 1 VG OaF : dal , (142)
K p

and if we replace VG by the unit tensor , K/1FI. by the symbol

K', the normalized gradient to the yield function by n, and (De) by
p

the incremental elastic stiffness tensor , we can compactly rewrite

equation 142 as:

C dE - do + Ce 1 m [n : do) (143)

P

The next step is to multiply both sides of equation 143 by the

tensor n as shown below

n : Ce de - n :do + n : C I m {n : do}

and from this equation we find

1 n:da = n: Ce de (144)

K' K' + n:Ce :m

p p

Substitution of equation 144 into 143 gives

ee e
C dE - do + (c m) (n : C e ) dE

K' + (n:C e:m);
p
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from which we easily see

do LC + (Ce M) (n Ce ] de (1i45)

K;+ (n: Cem

If the flow rule is associated (i.e., Tn D ), the stiffness matrix

expressed in equation 1L45 exhibits the major symmetry, but if m is not

- equal to n (i.e., non-associative flow) the matrix loses its major

symmetry and leads to Increased computation costs in numerical

applications.
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SECTION III

ELASTO-PLASTIC ANISOTROPIC HARDENING MODEL OF PREVOST

A. INTRODUCTION

The stress-strain behavior of soil is strongly nonlinear,

anisotropic, elastoplastic, hysteretic, and path dependent. Although

inherently anisotropic materials can be modeled to a certain extent by

nonlinear elastic, and isotropically hardening elastic-plastic

constitutive models, features such as stress-induced anisotropy in

conjunction with rotation of principal stress axes cannot be simulated

by these classes of mathematical material models. Alternatively, more

general models which merge concepts from isotropic and kinematic

plasticity have been developed to realistically simulate the plastic

behavior of soil when subjected to complicated three dimensional, and,

in particular, cyclic loading paths.

Prevost (Reference 7) has utilized the field of work hardening

modulii concept forwarded by Mroz (Reference 61) to develop a set of

elasto-plastic anisotropic hardening models for characterizing many

categories of soil responses ranging from undrained behavior of

saturated clays to drained behavior of sands. In this report, we are

only interested in drained behavior of cohesionless soils so we focus ","

strictly on the pressure sensitive version of Prevost models.
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B. FIELD OF WORK HARDENING MODULII CONCEPT

An understanding of the field of work hardening moduli concept is a

fundamental prerequisite to any discussion on the anisotropic hardening

theories used in modeling soil behavior. This concept is most simply

explained by considering the case of a mean normal pressure 'triaxial'

test on a plastically incompressible isotropic material (such as the

undrained behavior of soil using stress paths TC or TE of figure 3);

here, we need only be concerned with the yield surface's projection on

the octahedral plane in principal stress space. Suppose we now carry

out a series of shear tests starting at the same hydrostatic state but

"radially" moving out on the iT plane at different Lode angles. For each

test, we plot the principal stress difference versus the principal

plastic strain difference and note the slope of the curve at different

stress levels. By noting the initial slopes of each stress-strain plot, -

we can assign it the magnitude of the elastic shear modulus G, from

which, we can then separate the elastic strain from the total strains

to obtain the plastic components.

Along each of the linear shear paths emanating from the hydrostatic

state, we record the decrease of the plastic shear modulus with

increasing distance from the starting point. Next, we connect the

points of equal plastic shear modulii on all radial paths to form a

field of "closed" yield surfaces, each with its associated plastic

modulus. Since a point on this plane is characterized by a single

magnitude of plastic tangent modulus, the resulting plot of the field

of yield surfaces should be non-intersecting or nesting.
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For simplicity, we may assume that these locil of iso-plastic shear

modulil all form similar curves which can be approximated by circles

V (or Mises yield surfaces). Also, let us further idealize the model by

adopting a purely kinematic hardening rule (i.e., the centers of these

yield circles can translate, but their radii do not change). With the

location, size, and plastic shear modulus of each yield circle known,

we can now simulate the model response for an arbitrary stress path. As

F we load from the hydrostatic state, the stress point moves out on the

deviatoric plane to engage the first yield surface (enclosing the

purely elastic domain), activating its plastic modulus in the elasto-

plastic constitutive equation (equations 141i or 145). As shearing

proceeds, the active yield surface, with the current stress state

residing on it, translates toward the second nesting surface in the -

field such that when both surfaces come into contact, they do not

intersect. This condition is satisfied by using Mroz's hardening rule,

a topic wh~.ch will be treated later In this section.

When the second surface is engaged, its plastic modulus replaces

that of surface #1 in the constitutive equation, and it also follows a

Mroz hardening rule to the third surface. The now deactivated first

surface remains attached to the second surface at the point where it

initially came into contact with surface #2, and this point is known as

the conjugate point. Since the inner surface must satisfy the "nesting"

or non-intersecting requirement while staying in contact with the

active surface, its translation is dictated solely by the movement of

the active surface. If the shear loading continues, and the second

surface comes into contact with the third surface in the field, the
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same transition process takes place and surface #3 now carries with it

surfaces #1 and #2 as it translates toward surface #14 according to the

Mroz hardening rule.

If while on surface #14 (or any other surface for that matter), we

start unloading back to the hydrostatic stress state along the virgin -

stress path trajectory, the stress point deactivates surface #41 and

returns to the region enclosed by surface #1 (i.e., the elastic

domain). Accordingly, the plastic modulus is "infinity" in this region

and the response of the material is once again purely elastic. As the

unloading continues, the stress point moves toward the opposite end of ;

circle #1 and engages it on the way back to the hydrostatic state of

stress. Note that when the stress point exits the elastic region on

this unload path, reverse plastic strain are generated. Furthermore, -

depending on the arrangement of these surfaces prior to the unload, the

stress point may encounter several other surfaces during a reverse or

re-directed path, and we can therefore see the influence of loading

history on anisotropy, which is manifest in the instantaneous

configuration of the field of surfaces. In the calibration of the

initial field of surfaces, it may turn out that the yield surfaces may

not be symmetrically placed with respect to the hydrostatic axis, and

this, in essence, reflects the inherent anisotropy of the soil.

This multi-surface concept, simply presented in pressure-

insensitive space, provides the fundamental mathematical tools for

extending the description to predict the complicated stress-strain-

strength behavior of dense sands subject to generalized loading

conditions.
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Two simplifications of this multi-level memory structure have been

introduced in the soil mechanics literature. The first is to consider

.*" the existence of only yield surface #1, F,, and the outermost or

consolidation surface, F . Note that the Mroz translation rule is still

in effect for such a two surface configuration. Instead of the field of

hardening modulii, we must now prescribe an interpolation rule which

describes the variation of the plastic modulus with the distance

between the current stress state on surface #1 and its conjugate point

on the consolidation surface, F . Such a modified description of the
P-

field of work hardening modulii was elaborated independently by Krieg

(Reference 70) and Dafalias and Popov (Reference 71). A variation of

this concept, known as the bounding surface model, in which the size of

the elastic region (yield surface #1) is vanishingly small, will be

discussed in detail in the next section. It is important to note here,

however, that the degenerate nature of yield surface #1 "frees" the

theoretician from the analytical rigor of Mroz's hardening rule, and

allows the use of an experimentally verifiable mapping rule to locate

the conjugate point on F
p

An alternative simplified description of hardening is provided by

* assuming that the field of hardening moduli inside the consolidation

surface, Fp, is represented by an infinite number of nesting surfaces

and the active plastic modulus depends on the ratio of the radius of

the instantaneous loading circle and the consolidation surface. A

loading surface is defined as the subsequent surface into which an

initial yield surface deforms and/or translates such that the loading

surface includes the current stress point. If the radius of the loading
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surface continue to increase due to a re-direction of the loading

program, then the plastic modulus is governed by the ratio of the

loading surface radius to the consolidation surface radius. If, on the

other hand, the stress path reverses and is directed to the interior of

the loading surface, the instantaneous location of this surface is

recorded and is now called a stress reversal surface. Prior to the

penetration of this stress reversal surface in the unload phase, the

plastic modulus is controlled by the ratio of the active loading

surface to stress reversal surface radii. Once the stress state exits

the domain enclosed by the stress reversal surface, the interpolation

rule reverts to its original form. In this way, the memory of a loading

event is only erased by another event of greater intensity. Pietrusczak

and Mroz (Reference 72) have utilized this mathematical scheme to model

the behavior of clay, but it has not yet been applied to sands.

In the following subsections, we describe the essential features of

* . what may be the simplest and most complete statement on elasto-olastic

hardening theory: the Prevost Pressure Sensitive Isotropic/Kinematic

Hardening Model.

C. MODEL CHARACTERISTICS

The pressure-sensitive version of the Prevost model is formulated

in terms of directional stress components (i.e., the stress invariants

are not used), and associative flow is assumed in the deviatoric

subspace. The model does not explicitly involve plastic potentials,

although their existence is implied since the computation of the

plastic volumetric strain uses a form of equation 130 of the previous
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K, section. Material frame indifference is satisfied in the formulation,

but it is not certain whether energy is conserved under all conditions

of loading and unloading (Reference 65). The development of the model

is based on conventional flow or incremental plasticity theory, and,a
hence, most of the fundamental postulates of the previous section are

merely specialized in this development.

D. YIELD FUNCTION

The model employs a yield function of the form

(i) (m) \ (m) ( ) 2 rk(m) 2=
F =3Ls-c J:3s- C[pL- - ]2o

2

(146)

where s and p denote the deviatoric stress tensor and the mean stress

respectively; a represent the deviatoric tensor components of the

center of the yield surface while a locates the surface's center of

k( m )  th
along the p axis; nis the radius of the m yield surface, and C is

the axis ratio of the yield ellipse when projected in p-q subspace.

Prevost frequently set the factor C 2 equal to 9/2, and, in this

particular instance, equation 146 simplifies to
Cm) Ejm) (m

F(m) - 3 [a - m: _ - [k (m)] 2 = 0

where the tensor components of the center of a yield surface m (jim)

relate to a and B as follows:

..(m) (n) B(m)

With this particular yield axis ratio, the surfaces plot as spheres

of radius /2k (m ) in stress space.
:• 3
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E. FLOW RULE

The flow rule is of the form expressed in equation 130 and 131 of

the previous section; Prevost (Reference 7) assumes normality in the

deviatoric subspace which implies that the function A 2 is set equal to

one but its complementary function A, of equation 130 is retained to

model the plastic volumetric strain response.

In order to facilitate an easy comparison of the formulation

reported herein and Prevost's work, most of his notational conventions

are adopted; whereupon, the tensors Q and P are the gradient tensors to

the yield and plastic potential functions replacing 7F and 7G of the

previous section, and, Q' and P' are the deviatoric components of Q and

P respectively. These tensors enter the flow rule as:

de-1 dQ:da} 1 P

p
and, as a consequence of stating the flow rule in this form, observe

that the inverse constitutive relation (equation 145) is now

do [ Ce + (Ce:P) (Q:Ce) ] de

K {Q:Q} + (Q:Ce :P)

The non-associativity function of equation 130, A,, is assumed to

take the form -

A, - 1 + A 3  (Q' : Q'} ,

tr Q

where A 3 is a constant multiplied by a term which indicates the

variation of the departure from associativity as a function of position

along meridional sections of the yield surface. Note, however, that the

magnitude of A, remains constant on any given octahedral plane and the

plastic volumetric strain rate is associated when Q' - 0. Since the
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non-associativity of the flow is modeled by a single parameter, we can

drop the subscript on A 3 in the sequel and refer to it as simply the

I - "A" parameter.

A pair of plastic modulus parameters h
(m ) and B(m) characterizes

each surface. These parameters are used to calculate the generalized

plastic modulus K on a given surface. As in the non-associativity
p

function A,, the plastic modulus, Kp, is assumed to vary along the

meridional section of a yield surface while being fixed on any given

octahedral plane; to mathematically effect this desired variation, the

plastic modulus is given by

K = h(m) + tr Q B (m )

I ... Vs3Q:Ql
(m) C) (n

where h is the plastic shear modulus and [h + B m ] and [h(m)

B (m) I are the plastic bulk modulii associated with F(m ) which are

mobilized in consolidation tests upon loading and unloading,

respectively. The projections of the yield surfaces onto the deviatoric

p. stress subspace thus define regions of constant plastic shear moduli.

F. HARDENING RULE

The field of yield surfaces are assumed to translate and deform

isotropically, but, from considerations of Mroz's rule presented

earlier in subsection II.B, it is apparent that the hardening cannot be

specified arbitrarirly. The easier aspect of this hardening rule -

i.e., the positioning of interior inactive surfaces - will be presented

before the more complicated aspect of updating the location of the

active surface as it moves towards its conjugate point.
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Say we generalize the yield function to the form

F (m) . ;(m) [ (m) I k (m)~ I' -n . n >O (1417)

where n is the degree of F(m in Cc Im) we further assume that

all the yield surfaces are similar we can say that F ( oral)m

Fis usually chosen as a homogenous function of order n of its

arguments. What does this mean and what are its consequences? The yield

function F is said to be homogenous of order n if the following is

satisfied:

-A (m) n (m),

where A is a positive scalar.

'When a surface m is moving toward a surface m+1, the stress point

on surface m, say at M, moves to the corresponding conjugate point on

surface m+1 , say at R, to avoid overlapping. This path of movement is

depicted in figure 8 for a field of surfaces drawn in 'triaxiall

subspace. Geometrically, it can easily be shown that the tensor linking

(m)the center coordinates of surface m, L , to the stress point a , at

M, is directed in the same sense as the tensor connecting the center of

surface m+1 ,~1, to the conjugate stress state at R, say

Mathematically, this may be expressed as:

(in) ~ (i+1)]
- =A C a R (1418)

where A is again a positive scalar.

When surface m comes into contact with surface m+1, a R coincides

with a and equation 1148 becomes

(in+1) (n

or
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A (m+l) (149)
- g(m)

by using equations 147 and 149, we see

F[a (m+) I - A n (m)] [k(m+1)]n

An k (m)] =Ck ](m+)]n  or A -k (m + 1 ) 1 (150)

[k(m)]

and

0 - (m+1) = k(m+1)

(m) kCm)

This equation applies whenever surface m+1 has been engaged and m

now functions as one of the interior inactive surfaces. We can say that

whenever we know the location and size of the active surface together

with the sizes of the interior surfaces, the location of these interior

surfaces can be calcilated forthwith; to satisfy the tangency condition

at the point of intersection, we have

""-"Cm - - (n) j. , (-2) - ... etc.
k(m) k(M-1 )k(m-2)
km k k~1

By combining equations 148 and 150, we can derive the expression

for the translation direction L joining the current stress state on

surface F(m) to its conjugate point on the next larger surface

(F(m +1)); that is,

V.".= kC(m+1) -(m) -(m+1).. -[ - ] - [ - ] .( 51k Cm)

The sizes of all surfaces are assumed to expand or contract at the

' same rate which is governed by the total volumetric strain increment as

follows:

dkCm) A dev (152)I - (m-V
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where X is an experimentally determined parameter governing the

isotropic processes. This equation applies for all yield surfaces (of

finite size) in the configuration. Equation 152 can be integrated to

directly give the instantaneous yield surface sizes

(M) C M)
k km) exp(X V), (153)

where km) are the intial values of kCm) (at ev - 0). It is also

assumed that the centers of the yield surfaces exterior to the active

surface F m) move radially according to

Cml M+1 (m2 m+2)
L Cm ) = exp(X Exp(cv) E(+1 (m 2)

wher (mP) (p)LO expX E , (154~)

where L.m+1 are the initial center location of the surfaces

m+1 to the consolidation (or outermost) surface p. It is apparent from

equations 153 and 154 that the surfaces shrink in size and move back

toward the origin in stress space when the material starts to dilate;

this, in effect, simulates a weakening and softening of the soil's

structure.

We have specified all but one mathematical aspect of the

translation rule: the computation of the magnitude of the incremental

translation tensor du (= du _) for the active yield surface m.

Numerically, this is accomplished by first defining the translation

direction using equation 151 in which the center location L and

the sizes k (M ) and k (M+ 1 ) have been previously updated using equations

153 and 154 respectively. To complete this item, we need now only

compute the scalar dp by employing the consistency condition.

If an arbitrary stress increment, = s + p 6, is applied, it is

expected that the active yield surface will translate and change size L
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such that the consistency condition is also guaranteed after any

translation and size change of this surface. To make for a neater

presentation, the implied superscript m, in reference to the active

surface, is omitted hereafter. The attention to detail in this

derivation may seem overzealous, but it is considered approriate since

these equations, to our knowledge, appear here for the first time in

published literature.

Mathematically, the consistency requirement, after the incremental

hardening, may be expressed as:

F =3 [(s +) (a + cd]:L(S + + +

C2 [(p + ) - (B + j)]2 - [k + ]2 (155)

As an aid in seeking the solution, equation 155 may be reorganized

to read

F = 3 [(s - ct) (s - )l:(S - ) - )]
27

Sc2 [(p -) + ( j -)]2 [k + 2 + 2 k - - -

which may then be further expanded to

3 [(s - a):(s - a)] + 3 [(5 - a1:(s - )] +

2 2

3 [(s - a):(s- ;)] +C2 (p - B)2 +', -( )

2 C2 (p - 1(p - 1 = k2 + 2 k k + k k (156)

From equation 146, recall that

3 (S - a):(s - C) + C2 (p - )2 - k2
r : 2

so that substitution of this identity into equation 156 leads to
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3 [(C i:s-c) 3 [C )Cs -c)]+

C2 (p- )2 . 2 C2 (p- B)(p- g) - 2 k + . (157)

It is convenient to expand some of the parenthetical terms of

equation 157 to obtain

3 s:s + 3 + 3 (s -cc) 3 -) +

c 2  , c2  , -2 C2 p B + 2 C2 (p - B) p -

2 C2 (p- a) B - 2 k k- k - 0 (158)

With the translation rate tensor written as:

+ du = dp (dev 2 + tr ' t)

3

where dev are the deviatoric components of the tensor , and B can

now be replaced by dp dev u and dp tr p respectively in equation 158.
3

With the translation direction L already specified, the objective

reduces to one of determining the scalar coefficient dp. This is

realized by solving the resulting expression for du as follows:

3 + 3 (dui dev &):(di dev i) - 3 s:(di dev +

2 2

3 (s - a):S - 3 (s - a):(du dev ) + C2 p2 +

Cd~i t~r pi dp tr p±- 2 pdu tr p + 2 C2 (p -B)p
3 3 3

2 C2 (p - B) du tr p - 2 k k - k k = 0 . (159)
3

Equation 159 is quadratic in du, and must be solved accordingly;

first collect the coefficients of dV2, dp, and the constant terms and

store them in descriptive variables known as A, B, and C respectively.

The result is

A - 3 (dev 1 : dev s) + C2 tr t , (160)
3 3

103

-. -.-. '



B = - 3 s:(dev ) - 3 (s - a):(dev ) - 2 C2 p tr -

3
2 C2 (p - B) tr , (161)

3
and

C' - 3 a: + 3 (s C2  + 2 C2 (p - B) p -

2 k -k . (162)

With the coefficients expressed in equations 160, 161, and 162, we

can now compactly write equation 159 as:

A dp' + B dp + C' - 0

from which the solution for the roots are

dij= -B VB2 - 4 A CI . (163)
2 A

Equation 163 can be conveniently solved by replacing the variable B

by an alternate variable B' = -B/2 (i.e, B = -2B'). With the alternate

variable B', equation 163 is now written as:

du = 2B' _1/{4B 2 - 4 A C11
2 A

SB' ± /B '2 - A C'} , (164)
A

where A and C' are defined in equations 160 and 162, and

B' - -B - 3 s:(dev ) + 3 (s - c):(dev ) + C' p tr +

2 2 2 3
C 2 (p - B) tr

3
Finally, the root of equation 164 is specified by the condition

that the scalar product dl:[3 5 + 6] be greater than zero, and this
2 Li

final aspect completes the specification of the Prevost

isotropic/kinematic hardening rule.
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F. MODEL CALIBRATION

The last, but perhaps most singular, feature of the Prevost model

is its calibration procedure to determine the size and location as well

as the plastic modulus and non-associative flow parameters for each

surface in the initial configuration. This task can sometimes prove to

be more challenging than any other phase, as the writers can attest to,

in the actual implementation of the Prevost model.

Complete specification of the model parameters requires the

determination of: 1) the initial positions and sizes of the yield

surfaces together with their associated plastic moduli, 2) their size

or plastic modulus, or both, change as loading proceeds, and 3) the

elastic shear, G, and bulk, B, moduli (Reference 7). The input stress-

strain data is obtained wholly from the results of a montonic drained

conventional triaxial compression test (CTC) and a reduced triaxial

extension (RTE) test (the stress paths of which are depicted in figure

3).

In test sample preparation, the soil develops its original

anisotropy in the direction of consolidation, and the horizontal

direction is thus an isotropic plane (xz plane) while the axial

direction (y axis) is an axis of rotational symmetry. With this n-fold

axis symmetry and a corresponding calibration stress path which is

restricted to the Rendulic (or triaxial) plane, equation 146 simplifies

to

F [q 2 32 C2 [p - ] - [k(m)] = 0 , (165)

where

y cx'
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N

and

a - 3 a /2 = ax 3 az

From both a geometrical and an intuitive standpoint, it is

interesting to note the similarity of equation 165 to that of a

translated circle of radius k in a Cp versus q coordinate system with a

center location at [C8, a]. These circular plots are illustrated in

figure 8 where the angle e is also defined. Observe from this figure

that we can straight-forwardly write the following equations:

q = + k sine , (166)

and 4A

p= B + k cose. (167)

Substitution of these relations into the 'triaxial' elasto-plastic

constitutive equations

dE = dp + I tr(P) 1 {Q:dol"v 3K K T g 2-

K

and

de 1 ds + 1 Q' 1 {Q:do}de y ~ YY -r - T,.
p

leads to

dEdv 1 K

I {2C cose + V6 Am cose ItaneI} (sine + C Y cose), (168)
7-m 3 Y
p

and

d= 1 + 1 sine (sine + C Y cose} , (169)
dq 2-- Kp.'

p
where Y = dp/dq, de - dE y dex, d~v  2 dE x +dc and

(K)m =h + B case . (170)
pm m m
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The dependence of the model parameter group x = K, G, h and Bi
(M) Wm W~m

and group y -m) ,and k are assumed to be of the forms

, -ix -x , ( p n ( 1 7 1 )"

Pi

5 and

y = y, exp(A c ) , (172)

where x, and y, refer to initial values, and A and n are experimental

parameters. Note that the dependency of the group y parameters was

alluded to previously in the discussion of the hardening rule.

For most cohesionless soils, n can be assumed to be equal to 0.5

(Reference 27), and the isotropic hardening parameter, X, is determined

from the results of one-dimensional consolidation tests. It is assumed

that these consolidation test results plot as straight lines parallel

to the projection of critical state lines on the volumetric strain (E)

versus the logarithm of the mean normal pressure (p) plane. This

L parameter is then simply determined from the results of Ko-

consolidation soil tests results (Reference 7) as:

K - 1 dP + de (173)

- ~PK '"

where the subscript/superscript K refers to Ko- loading conditions.

If we let C and eE denote the values of e when the stress point

reaches the yield surface F in a CTC (or loading) and an RTE (or

unloading) 'est respectively, equations 166, 167, 168, 169, 170, 171

and 172 can be combined to give
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1 ± 1 = I~ [ TC (Xc+YC) ± 3*E (XE+YE) ] (174)
tan e tan e 2 C

C E

and

coseC - cosE = RCE (sin C sineE) (175)

where

RC ERCE= C 1pC - PF exp[X(Ev - E )] J +
CCE

{qc - qE exp[X(e - )] }, 
1 = (p/p~ dE - 1

n
X d q 2 G1

(Pc/p' d - 1 "
Y. dp 3 K1

and similarly for XE and YE? where the subscripts/c.perscripts refer to

CTC and RTE loading conditions, respectively. In equation 174, the plus

sign ( ) is to be used when taneC tan6, is less than zero, and the

minus sign (-) otherwise.

The next step in the calibration procedure is to tabulate the

stress strain data reporting the quantities q, p, Ev' E for the CTC and

RTE test on the material, both of which start at the same confining

pressure (pi). After that, we calculate dq/de and dp/de~ at each data

point and include these quantities in corresponding columns of the

tabulated data sets. With these data, we assign the elastic bulk

modulus, K, and shear modulus, G, the initial values of the slopes 1

(dp/dEv ) and dq/dE respectively. If the magnitudes of these elastic

parameters are different for the CTC and RTE tests, the larger

magnitude is chosen.

Provided with the following: 1) the isotropic hardening parameter,

k, (equation 173), 2) an estimate of the constant n, 3) the initial

108

'-- - - -- " - ;:. "" " " ' ;" " "



values of the elastic parameters, 4) the slopes of the CTC and RTE

stress paths (Y0 and YE), and 5) an assumed value of the yield axis

ratio C, we now enter the digital CTC stress-strain data and select a

representative slope dq/dE to be used in establishing the first yield

surface of the configuration. Using this magnitude of dq/dE, we next

enter the RTE test and search for the corresponding line of data which

matches this slope. If an exact correspondence is not found, a simple

linear interpolation scheme can be devised. These data are all that is

necessary to simultaneously solve equations 17L4 and 175 for a nd 9-.

F'or this purpose, note that equation 175 is more conveniently rewritten

i6;

as:

1 1 F-2 R CE / -RE F 11]
tan6 tanG tanO tana-

CC E

Once iand 6- have been calculated, the model parameters

associated with F() are simply obtained by combining equations 166,

167, 168, and 169 (Prevost, 1980); namely,

B =[EX sine zc- sin e i 
mC C X nB~ E] + cose - cose...

h c g=iX Usine t ZC - B , cosw n

m C C m C

I tane.1

(in) CE
ke =T [est ean) -s E exp(- o Ed + [sine o sine]

linear ~~~~in)poaio chm n )b eie.Teedt r l hti

oruo n t exp(-X t ) - ko s inr

(in) C - (in)
)1p0 1exp(-X e) - k cos

C

where

m = sine + C Y cose s

C C C
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and

ZE = sineE + C Y E cose E

The procedure is repeated by chosing another magnitude of dq/de for

the CTC and calculating the parameters associated with the resulting

surface. Note that, if it turns out to be more convenient, we could

just as well select dq/di from the RTE test data and then proceed to

find the corresponding data point in the CTC log.

Almost always, the initial configuration of surfaces turn out to be

intersecting, but, it usually takes only a slight adjustment in sizes

and/or positions to rectify the arrangement. Moreover, it is evident

that the degree of accuracy achieved by such a representation of the

experimental curves is directly dependent on the number of dq/de points

or surfaces used to describe the field of work-hardening modulii.

This final aspect completes the presentation of the

isotropic/kinematic hardening model of Prevost.

.
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SECTION IV

BOUNDING SURFACE PLASTICITY FORMULATION FOR GRANULAR MATERIAL

A. GENERAL

The bounding surface concept was proposed by Dafalias and Popov

(Reference 71) as a simplified variation of the two surface model which

was briefly prefaced in section III. In this theory, the yield surface

enclosing the elastic region (i.e., yield surface #1) is assumed to be

vanishingly small, thus degenerating to a point. If we adopt the model

classification nomenclature of the previous section - i.e., multi-

surface, two-surface, infinite surface, etc. -, we can call this type

of formulation a one surface model, described solely by an

isotropically hardening bounding (or consolidation) surface F C Since

the ensuing presentation focuses on a single surface, we can drop the

subscript "c" which is used to qualify the yield surface function F.

Although the bounding surface characterization does not possess an

evolutionary law as sophisticated as, say, the Isotropic/kinematic

hardening model of Prevost, it is a reasonable and computationally less

expensive idealization, capable of realistically simulating some

loading and unloading tests (Reference 72). One distinct advantage,

however, of the bounding surface model is its independence from the

analytically rigorous hardening rule of Mroz. This permits the use of

any experimentally verifiable and admissible mapping rule to associate

the actual stress state to a conjugate point on the bound.

L
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For points within the consolidation surface, the mapping rule's

" role is two-fold: first, it specifies the plastic strain increment

direction as a function of the gradient tensor (VF) at the image (or

conjugate) point; and secondly, the plastic modulus, K is assumed to

depend on: 1) the plastic modulus at the conjugate point, 2) the

Euclidean distance between the actual stress state and the image stress

state, 3) any approriate plastic internal variables, and 4) suitable

discrete memory indicators of the loading.

The formulation that follows is based on the formalism of cyclic

plasticity as presented in section II (Reference 4). Also, the

presentation in this section consists for the most part of original

work with all externally derived ideas being acknowledged at first

* .mention.

B. DETAILS OF FUNCTION

As discussed in section II.F.1, an assumption of material isotropy

means that the bounding surface function, F(aijpq n) n 0, can be

expressed in terms of the three invariants of the stress tensor: I,,

and J, (or e, where e is the Lode angle). The bar over the stress

quantities indicate points on F - 0 while q are the n plastic internal

variables (PIVs) used in characterizing the state of the material; the

variables qn are usually taken to be scalars or components of properly

* ;invariant second rank tensors such as inelastic strain. The isotropy

* . assumption further implies a six-fold symmetry in the i plane, and

hence, it is only necessary to describe a 60 section for a complete
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isotropic representation of a yield/bounding surface in three-

dimensional principal stress space (i.e., [-w/6] ; S [r/6]).

1. Consolidation portion of piecewise continuous surface

Let us first analytically describe the meridional sections

(that is, 8 held constant) of the bounding surface, F, and then extend
°°.

the description to include the variation of its projection on the

plane. The meridional section for the region of the surface bounded by

the I, axis and the critical state line (CSL) is first discussed since

its development is much simpler than the mathematical representation of

that part of the surface enclosed by the "failure" envelope (or locus -

of peak stress ratios of the frictional material) and the CSL. In this

context, the critical (or characteristic) state is defined as the pre-

peak stress ratio at which the plastic volumetric strain rate is zero.

Further, note that the sections in the 7 plane are geometrically

similar while those in the meridional section show a scale distortion

dependent only on the value of 8. Once a function g(8) has been

specified to describe the relationship between /J2 and the Lode angle

(6), it is more convenient to use the equivalent octahedral shear

stress /J2 ([ [VJ, I g(e)] - constant) in the analytical equations of

the meridional sections, and to later generalize the description to

three dimensional principal stress space by replacing /J 2  with the

term [J,/g(j)] in the succeeding equations.

An ellipse, with its major and minor principal axes coincident with

the I, and /J2 axes respectively, is chosen as the functional form of

the section of the bounding surface delimited by the I, axis and the

113.
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CSL. From figure 9, observe that N (= [N/g(e)] = constant) is the

slope of the critical state line and S (- [S/g(e)] - constant) is the

slope of the limiting "failure" envelope in this equivalent shear

stress vs. mean stress sub-space. This selection of the slope of the

yield/plastic potential function at the origin of stress space to be

equal to S is not absolutely necessary, but it does ensure that the

stress state never resides outside a limit envelope. ." •
For normally consolidated clays or loose sands, S and N usually

coincide, but for dense sand or highly overconsolidated clays, the

material usually starts dilating (i.e., reaches N ) before actually

reaching its peak combined stress state (at S )

I is the point at which the bounding ellipsoid intersects the

hydrostatic axis while Q is a parameter used to locate the center of

this ellipse on the I, axis. Also, as shown in figure 9, IO/Q is the I,

component of the center coordinate of the ellipse, and one may

furthermore observe that the semi-diameter of the major axis is equal

to I - (Io/Q). At this center coordinate on the I, axis, the CSL

intersects the bounding ellipse so we can also easily recognize that

the magnitude of its conjugate /J2  coordinate is equal to N (Io/Q).

Given this background information, we can now proceed to mathematically

depict the surface in stress-invariant coordinate space.

Recall from elementary analytic geometry that the equation of an

ellipse, with its major axis parallel to an arbitrary x reference

abscissa, can be expressed as:

F = (x-h )2  + (y-k) = 1,

:2114
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where 2a and 2b are the major and minor axes respectively, and, h and k4

are the x and y coordinates of the center respectively.

Reorganization of the equation above gives rise to

F - (x-h)2 + (a2 /b2 ) (y-k)2 = aa,

and, by identifying x - Ii,, h - (IO/Q), y - /J , k 0 0, a 1 -
* *

(Io/Q), b - N (Io/Q) and (a/b) - (Q-1)/N , we can now express the

ellipse in this pressure-sensitive invariant stress space as:

2F = 2 - 2 (Io/Q)I1  {(Q-1)/N }2 j + I2 [(2/Q)-11 = 0

(176)

Note that the parameter Q in equation 176 controls the aspect ratio

of the ellipsoid's meridional section - it is actually equal to {Q - 11

divided by N -, and it can be regarded as a material parameter, the

. magnitude of which can be determined by either: a) heuristic methods,

b) experience, or c) a back calculation based on the observed plastic

strain rate trajectory.

2. Dilatation portion of piecewise continuous surface

The meridional segment of the surface, bounded by the CSL and

the limiting asymptote (drawn through the origin of stress space and

defined by S ) in the positive octant of principal stress space, is

next presented. A thorough development of the equation used to describe

this portion of the bounding surface is considered approrlate since (to

the authors' knowledge) it is introduced in this paper for the first

time in the soil mechanics plasticity theory literature.

Let us start by initially considering the following general second

order equation (defined for convenience in an arbitrary rectangular
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Cartesian x-y coordinate system) to which we shall subsequently apply

the relevant constraints:

F - a x2 + b y 2 + c xy + d y + e x + f - 0 (177)

As a first step, we can divide equation 177 by the coefficient of

X2, v "a", and then rename the constants such that b = b/a, c = c/a,

etc.; this algebraic operation results in

F - X2 + b y2 + c xy + d y + e x + f 0 . (178)

me Inserting the stress invariant variables in place of x and y in

equation 178 yields

F = I,2 + b J2  + c 1VJ2 + d /J 2 + e I, + f = 0 (179)

Equation 179 is now subjected to four consecutive constraints such

that this function is continuous with the ellipse and satisfies certain

* -- boundary stipulations:

a. Constraint #1: F 0 at I, - /J2  0; this implies that

the constant f is equal to zero, and, as a result, equation 179 reduces

to

F = 2 + b J 2 + C I'/J2 + d VJ 2 + e I, = 0 (180)

b. Constraint #2: at I, - /J2  0, dVJ, /d 1 - S and this

condition establishes that

d/J2 /d11 = -F/I 1 , + 3F//J 2

= - (21, + c VJ 2 + e) + (2 b /j 2  c I, + d) = S

from which we obtain

e - -S d (181)

Substitution of equation 181 into equation 180 gives
-* - - * - * *-

F f12 + b J 2  + C I1VJ 2 + d Y/J, - S d 1, 0 (182)
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C. Constraint #3: at - (IO/Q), VJ2 N (10/Q), and

substituting this contrived relation into equation 182 furnishes

d - (Io/Q) [1 + bN 2 + cN ] + [S -N ] (183)

And now we can substitute 183 into equation 182 to obtain

F -12 + b J 2 + cI,/JZ +

(Io/Q)[l + bN 2 + cN*] {/J 2  - S ,} . (184)
CS -N I

d. Constraint #14: at I, I,/Q and Y/J 2 = N (Io/Q) ,

dVJ2 /dI, = 0

but

d/J2 /dI =-aF/aIi + 3F//J 2 = 0

which implies that 3F/31, = 0, and therefore

2 1, + c J - S (Io/Q) [1 + bN 2 + cN = 0
[S - N ]

from which we then see that

c = (S /N 2) - (2/N) -S b . (185)

Finally, the substitution of equation 185 into -quatlon 184 gives

the following expression for the bounding surface characterizing the

meridional section between the limit asymptote and the CSL:

F = 12 + b J2 +[S - 2 - S b] - +

N 2  N

(Io/Q)[1 - bN 1 - SIl = 0 0 (186)

N

After exhausting all available constraints, inspection of equation

186 reveals that we have eliminated all but one independent parameter

(i.e., "b") from the original set (i.e., "a" "V" "c" Id", "e, &

"f"). This single distinct parameter can be considered analogous to Q

in equation 176 inasmuch as it controls the longitudinal shape of a
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scertain section of the isotropic bounding/yield function, and, as will
be discussed later, it also effectively dictates the direction of the

plastic flow rate vector if normality is assumed.

p
3. Range of the parameters "Q" and "b"

It now remains to specify the allowable range and

qualititative significance of the shape controlling parameters Q and b.

Theoretically, Q can vary in the range 1 Q , and this is obvious

when one recalls that the axis ratio of the ellipse is equal to (Q -

1)/N. In the past, this value has been assumed tc be equal to 2

(Reference 73) or 2.72 (Reference 67), but more recently however,

magnitudes of Q closer to 5 have been reported for sand (References 6

and 74). The moderately detailed derivation that ensues determines the

restriction on the parameter b for real roots over the range of

interest and also sheds some light on the magnitude of "b" at which the

canonical form of equation 186 undergoes a transition.

A We must now set out to answer the following question: What is the

restriction on the magnitude of "b" in equation 186 such that I, and

"J2 are real in the range 0 I, S (I/Q)? Let us start by assuming

that I1 is known in equation 186, thus making it possible to solve the

resulting quadratic for /J2  as follows:

b + {[S - 2 - S b] T1+ (I/Q)[1 - bN ]JI,/ +

N 2  N N
* -

(1 2 - (IO/Q)[- bN 3 S I,} = 0 . (187)

N

Equation 187 may be rewritten more compactly as:

A J2  + B /J2  + C = 0 , (188)
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where

A -b , (189)
" {[ * * *

B - 2 - S b] I,+ (Io/Q)[1 - bN 31 (190)

N 2  N N

and

C {12 - (I,/Q)[1 - bN I S I,} . (191)

N

Solving the quadratic of equation 188 for

VJ 2 = - B ± /(B2-4AC)
2A

shows that the roots are real only if (B2 - 4AC) is positive for 0

I (Io/Q). Replacing the proxy relations of equations 189, 190 and

7 191 into the expression (B2 - 4AC) results in

32 - 4AC = (IS - 2 - b - 4b) '2 +

N 2  N
* * * "'

2 !,(Io/Q)[1 - bN I[S - 2 + S b] +

N N 2  N

(1/Q)2 l1 - bN ]2 > 0 , for 0 : < (Io/Q) (192)

N

We can now further investigate equation 192 by setting I = 0

(i.e., its lower limit) and finding the limitation on b for real values

of /J 2 ; this operation yields

(Io/Q)2[1 - bN ]2 > 0
-ws

N

[1 -bN ]2 >0

N

b 1 (193)

N
2

Equation 193 therefore plac-s an upper bound on the magnitude of b

for real roots, but, still, we must now proceed further to probe the
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possibility of a lower bound. This can be accomplished by assigning I,

the value of it upper limit, (Io/Q), in equation 192; this results in

the following inequality:

ES - 2 -S b] 2 - 4b 2[ - bN ] [S -2 -S b] +

N 2  N N N 2  N

[1 -bN ]2  0. (194)

N

Equation 194 gives the same result as equation 193. We can now

continue with our query into the possibility of the existence of a

lower bound for b by simply substituting b = - in equation 194 and

testing for the validity of this inequality. This operation can be more

tractably accomplished by first dividing equation 194 by b 2 before the

proposed substitution; after some simplification, the following result

is deduced:

(-S )2 + 2(-N )(S ) + (-N > 0

S - 2N S + N 2 > 0

(S - N )2 > -
* N*

5 Z . (195)

We can observe from figure 9 that equation 195 is in fact always

true and hence there is no lower bound on the magnitude of the

parameter b.

The next question that we may ask is: At what magnitude of b does

the canonical form of equation 186 change from an ellipse to a

hyperbola? Adopting the general procedure for determining the canonical

form of 2nd order expressions, we can set the discriminant of equation

186 equal to zero and this produces
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B2 - 4AC = [S 2] b2 + E- 2 S 2 + 4 S - 4 ] b +

N 2  N

[S* 2 + 4 - S 0 , (196)
- -- * *

N4 N 2  N 3

from which we can solve the quadratic in equation 196 for b; i.e.,

b = 1 FS 2 - 4 S + 4] . (197)

S 2 N 2  
N

This magnitude of b computed in equation 197 is the special case

for a parabolic equation, but it also identifies the magnitude of b at

which the canonical form switches from an ellipse to a hyperbola (i.e.,

b less than the equality in equation 197 implies a hyperbolic function

while b greater than this equality infers an elliptic expression).

4. Inclusion of Bounding Surface Variation on 7T plane

Having presented the meridional sections, the next step is to

complete the description by incorporating the variation of /J2 with the

Lode angle, a, in equations 176 and 186. Recall that /J 2  is equal to

(/J2 / g(e)} in the afore-mentioned equations, and thus, in order to

complete the characterization, it is only necessary to specify the

functional form of g(6) and thereafter to replace /J 2 by /J 2 / g(6)]

in equations 176 and 186.

The following expression, previously proposed by Gudehus (Reference

75), is adopted (see figure 9) for the yield/bounding representation:

g(a) = 2K (198)

Cl-K] - Cl-K] sin 30

where -1/6 < 8 = Lode Angle = 1 arcsin C3/3 (J3//J2
3 )] < T/6.

Inspection of equation 198 shows that g(n/6) = 1 and hence
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= [ii2 / g e)]

at a= T! 6 (note: this is the case, for example, in the conventional

triaxial compression [CTC] test of figure 3). From equation 198, we can

also see that g(-7/6) = K, and an example of a test with thisI
particular Lode angle is the CTE in figure 3. We can therefore

determine the parameter K by comparing the friction angles derived from

CTC and CTE tests (0c and 0e respectively). The proof that the

parameter K can be determined from these friction angle data is

presented in the sequel. As a first step, note that

/J2 (16) = /J,

/J2 (-r/6) K /J2 ,

and therefore,

f/J 2 (-n/6) + /J 2 (Tr/6) = K . (199)

From elementary soil mechanics, we can write the equarions for the

slopes of the compression and extension failure envelopes in I, - VJ 2

space as:

V[3J 2 (r/6)]/p q/p 6 sin 0c (3 sin )  (200)

Y[3J2 (-iT/6)]/p = q/p = 6 sin / (3 + sin e (201)

where the subscripts c and e refer to compression and extension

respectively while p is the mean stress.

Combining equations 199, 200, and 201, we find that

K = [sin pe/sin c } ((3-sin 0c )/(3+sin oe)}  (202)

where, from the purely frictional assumption, it is implicit that K is

independent of the mean normal pressure.

With equations 198 and 202, the function g(e) is now defined and we

are furnished with the necessary information for replacing VJ 2 = /J 2 /
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g(e) in equations 176 and 186. The ensuing equations result directly -u

from this replacement of variables.

For the region between the I, axis and the CSL (i.e., the ellipse),

F = 1 2 2 (I0/Q)Ij + {(Q-I)/N*12 J2  + 1
2 [(2/Q)-I} = 0,

[g(e)]
2

(203)

and, for the region between the CSL and the failure envelope
F , 2+i* * -

F = + b - 2 - S b] IIVJ2 1 +

[g(e)] 2  N 2 N [g(e)]

(Io/Q)[1 - bN 1 ( 1 v'2 - S Ij = 0 (204)
wN [g(e)] ,

N

C. COMPUTATION OF THE GRADIENT TENSOR TO THE BOUNDING SURFACE

Having stated the functional form of the bounding surface in three

dimensional principal stress space, the next task at hand is to find

what is perhaps one of the most important variables in plasticity

theory: the gradient tensor to the bounding surface. Generally, F is a

function of the nine independent components of the stress tensor, but

the symmetry of the Cauchy stress tensor reduces the number of

independent variables to six while the assumption of material isotropy,

implicit throughout the previous discussion, further decreases the

number of independent variables to the three unique invariants. It is

therefore possible to compute the gradient 3F/a in terms of the three

independent variables - I, , /J2 and 0 - of F. We can start by writing

the expression for 3F/o in terms of the chain rul
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3F - aF d1, + aF dJ 2 + LF de , (205)

30 ail do awJd 3e do

.; where

sin 36 [3v/3 (J 3 //J 2
3 )] (206)

From equation 206 we find that

do V3 3J 3J, 3/J (207)i ~ ~ ~ ~ ] .Vj ]4( I 27
d2 2 cos 36 a [3/Jl [J ]" G

Substitution of equation 207 into equation 205 yields (in indicial-

- notation)

aF 7F 3 F K, ID{F - /3 3 J 3  DF 3/J 2

ac j ai au.. 3/j 2 Cos 38 [/J2]
4 36 3 j-_

/3 1 3F j3 (208)

2 cos 36 [v/J, P 36 a3.1j :

where

dI, - 6 (209)%" dai ,'.'
do

ij
dj 2, - 5 I ij, (210) : ;

di3  f a 3 T + 1 J2 6.. (211)
-~ 13

133

in which

s = I ij ' kk 6 ij

and

fa'3) T {(s22s3 - s 32), (Ss11 - ,2),(sss22 - s122),

(S23S13 -33 12),(s1312 -S S 2 00),(s1 2s 2 3 - S 2 2 s1 3 )}
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[1

In order to find the gradient tensor, we need therefore only to

compute the partial derivatives 3F , aF , and 3F of equations 203 and

204. We find from equation 203,

aF - 2(I - 1 , (212)

3F = 2 {(Q-1)/N }2 /J2  , (213)

3VJ2  [g(6)]
2

and

aF 2 {(Q-1)/N 12 J 2  (214)

ag(e) [g(e)],

Also, from equation 198, recognize that

dg(e) 6K (1-K) cos 3e (215)

de j[1+K] - [1-K] sin 3812

which is to be used in the following relation:

3F - 3F dg)

DF ag(e) de

In a similar manner to the derivation of equations 212, 213 and

214, we find from equation 204 that
":a 2 S* * * *

3F 2 , +[ - 2 - S b] /J, 1 - (10/Q)[1 - bN ] S

ail N2  N [g(e)] N

(216)

3F 2 b /Ja2 [S 2 -S b] , 1 +

a., [g(e)] 2  N 2 N [g(el]

(IO/Q)[1 - bN ] 1 (217)
" N [ g( e)1] i

and
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F -2b J - [S 2 S b] I1/J- 1 "

ag(e) [g(6)] 3  N -* -g(6)]2

(Io/Q)[1 - bN] 1 /J2  (218)

N [g(e)]
2

It will be useful at this stage of the development to prematurely

record two relationships which are extremely important in the

subsequent discussion on hardening; these are

a). for the consolidation surface,

F = 2 1, + 2 10 [2 - 11 , (219)l''" 3I- Q Q i-

and

b). for the dilation domain,

3F (1/Q)[1 -bN ] 1 I / 2 - S I,} (220)
ai0 N [g(6)

D. MAPPING RULE LINKING ARBITRARY STRESS STATE TO CONJUGATE POINT

An important attribute of the bounding surface constitutive

formulation is the association of the actual stress point, aj, to a

unique "image" point, ai" on F=O. This feature enables us to simulate

cyclic stress-strain response by correlating both the plastic loading

direction,n, and the plastic modulus, K at the image point a on F,

to the plastic loading vector, n, and the plastic modulus, Kp, at the

actual stress state, a. How is this image point, q , defined when the

actual stress state does not actually reside on F(a,q n)-O? Dafalias

(Reference 76) has proposed the radial mapping rule which assumes the

existence of an origin in stress space, coo enclosed within the convexL
bounding surface; once this origin has been selected, the image point
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is obtained as the intersection of F -0 by the straight line passing

through the origin and a . This can be expressed analytically as:

2 a-a -8 a (221)

From equation 221, it can be easily verified that a - 1 when a=a

and 8* as a approaches a * The "simple" mapping rule, in which a
-o -0

2 , has been found to give realistic predictions for clays (Reference

77). In order to simplify the presentation of the equations, the

"simple" mapping rule is assumed henceforth and equation 221 promptly

reduces to

0= . (222)

The motivation for the term "radial" mapping becomes more apparent

when one observe3 from equation 222 that the definition of the image

point can be interpreted as an imaginary radial (or proportional)

loading from the current stress state to the point at which this

hypothetical loading program intersects the surface, F-0; i.e., .

01 G a3 3 Y13  = G 2 8
G11 a22  a33  'J1 a13 a23

It is instructive to pause at this point and reflect upon the

consequences of not effecting the "simple" mapping rule (i.e., a 0).
-0

Say we assume that the bounding surface in figure 9 is used in

conjunction with the associated flow rule of plasticity. Consider now

that the isotropic sample is then subjected to a hydrostatic

consolidation and swell test; based upon theoretical considerations, we

would expect our mathematical model to predict a purely volumetric

strain rate during the loading and unloading phases. From figure 9, we

can note that there is only one location on the bounding surface which
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will predict no shear strains and this point is located at the

intersection of' the elliptic consolidation surface and the I, axis.

This immediately implies that the origin of mapping must lie somewhere

along the I, axis. But we must now inquire if this origin of mapping

can be specified arbitrarily on the I, axis? This question can again be

simply answered by examining the expected response for the hydrostatic

unloading after the initial spherical loading. Say we had defined the

- origin at some point Y 10 where Y ensures that the origin remains

within the convex bounding surface (i.e. 0 Y 1), and then we had

proceeded to unload the specimen to a magnitude of mean normal pressure

which made I, less than Y 10, It is apparent that this hypothetical

mapping rule will then put the image stress state on the dilatation

surface at the origin of stress space; at this point, the slope of the

bounding surface has been defined as S* and will always predict a shear

strain component! By a process of elimination therefore, we have

excluded all but the "simple" mapping rule when associative flow is

employed for simulating the response of an isotropic material with this

particular bounding surface representation.

The six-dimensional Cauchy stress tensor representation in equation

221 must be re-stated in terms of its invariants for subsequent use in

the previously derived isotropic bounding surface function. It is

straight-forward from equation 222 that

a kk B k or IB1 1 , (223)

and it can be further deduced that s s . .which directly impliesij 1i)

8 V J2  (22'4)
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Inspection of equation 206 reveals that the Lode angle, 8, is

unaffected by the magnitude of 8 (i.e., 8 e) as shown below

sin 38 - [ 3/3 (JI/J23 ) I [ 3/3 [(W J,)/(8 VJ23)]
2 2

- [ 3/3 (J,//J 2 ')] = sin 38 • (225)
2

The result in equation 225 indicates that the function g(8) in

equation 198 is insensitive to whether or not the actual stress state

is on the bounding surface. If the state of stress is known, we can

:1
solve for a by substituting equations 223 and 224 into the approriate A

choice of equations 203 or 204. With the "simple" mapping rule, the

applicable meridional section (i.e., above or below the CSL) is

trivially determined by the ratio VJ 2/ Il of the actual stress state,

but, for an arbitrary location of the origin of mapping, the portion of

the surface bearing the image point will have to be resolved by

checking to see if the straight line passing through the origin, g

and the actual stress state, a, crosses the CSL while F S 0.

Substitution of equations 223 and 224 into equation 203 leads to

F - 821I2 - 2 (Io/Q) 8I, + {(Q-I)/N 12 82J2 +

[g(e) ]
2

1o2 [(2/Q)-1j = 0. (226)

With the current state of stress (I,, VJ 2 and e) and the location

of the bounaing ellipse (I,) known, it is now possible to solve the

resulting quadratic equation for 6 in equation 225. The solution may be

written in the condensed manner,

8 = - B ± V(B2 -4AC) , with 1 S 8 (2,)7)
2A

where A
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A = 12 {(Q-1)/N} 2 J2

B - - 2 (Io/Q) I,

and

, C I Io2 {(2/Q)-1)

Equation 227 can be validated very easily by substituting into this

equation the two coordinates in invariant stress space where we know in

advance that the magnitude of B is equal to unity. These two obvious

cases occur at the following positions: {I, = I, /J2 = O} and {i, =

(Io/Q), /J2 = N(I/Q)I; independent insertion of each these coordinate

component sets into equation 227 shows that, for both instances, one of

the roots of the equation is indeed equal to unity while the other root

is less than one. If the reader should actually check these cases, it

will be observed that the ± operator in equation 227 is important, and

hence, in numerical implementation, it is essential to check both roots

of equation 227 and then select B as being equal to the root that is

greater than or equal to one.

An analogous procedure can be adopted in the derivation and

corroboration of the equation for B for the second portion of the

piecewise continuous meridional section. We proceed by interchanging in

equation 204 the equalities expressed in equations 223 and 224, and

obtain

F 8212 + b a2J2  + [S - 2 - S b] 821 ,/J 1 +

[g(e)] 2  N 2 N [g(e)]

(I,/Q)[I - bN B { 1 1J2 - S I,} = 0

N
N [g(e)] "

which gives the result

13
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8 = A , (228)

where

A = - (Io/Q)C1 - bN ] { /J 2 - S I J

N [g(e)]

and

B 1i 2 + b + S - 2 - S b] I 1VJ 2  1

[g()] 2  N 2 N(e)]

It can be easily verified that 8 is equal to unity for equation 228

- when the coordinate components are fit (IO/Q), /J2 = N(Io/Q)}, but

remember that, by definition, B is undefined at u that is, at {I, =

* . 0, VJ 2  = 01 8 ®-

E. THE LOADING FUNCTION

From equation 116, recall that the loading function is defined as:

K 30p ij

where K is the plastic modulus, and this definition implies that the
p

plastic loading direction at a stress state within the bounding surface

is defined as VF at its image stress point (or n = n). For a reloading

or virgin loading stress path (i.e., 3F ;ij > 0), the plastic loading

auij

direction is defined as VF (or n = n), but, for a reverse loading

event, when 3F ;ij < 0, the loading direction is specified as -7F (or
". ij -

.n--n). These assumptions ensure that the loading function is always
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non-negative leading to the generation of non-zero plastic strains

except for neutral loading where 3F aij is equal to zero.

3ij

We can therefore compute the loading function, L, by first

OR substituting equations 223 and 224 into equation 208 and then take the

inner product of the resulting second order tensor with a to produce

L 1 aF a.1 VF o 1 [3F6.5 3F 1 s3.
,- F3 -F -- i J

SK I, /'J,2 2/J2.p 13p p

/3 1 3F { I ;J_ - 3 J , a/J2 l I ij
'Z13

2 cos 38 a e 3 a] ij [/J 2] [0ij .

which simplifies to

.=I [3F +3F /J2  /3 1F{J3  - 3J3 /J 2 ],

K a 3/J2  2 cos 39 B 3e [/J] [/J j"
p

and can be finally written in the compact form

L 1_ I 3F, + aF /J2 + 1 aF eJ , (229)

K ail a'/i 2  B ;6
p

where

'/3 { 1 J, 3 J, /J}

2 cos 39 [/JL]"

F. THE FLOW RULE

With the definition of the loading function L, we can now write the

constitutive relation for the plastic strain rate (equation 117) as:

" L m.. .

where m are the components of the unit tensor gradient to the plastic
i j

potential.
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4.

It is proposed, at this stage in the development of the

constitutive model, that the history of the plastic strain tensor,

S(p)t, be used as the sole plastic internal variable for characterizing

the internal state of the material. Invariant quantities of the plastic

strain tensor, analogous to the first invariant of the stress tensor

(I,) and the square root of the second invariant of the deviatoric

stress tensor (1J 2 ), are selected such that the nine independent

components of the symmetric small strain tensor can now be replaced by

these two independent plastic state variables. These invariants are: a)

the plastic volumetric strain, e (denoted by the symbol 7), and b)
kk

the plastic equivalent shear strain defined as:

n = t dt = t( e. e;p  
.) dt, (230)tti j i j .

2

wheree;..= P..1Ekweeeij Pij kk ij';13 13 - ij*

The quantity r is known as the generalized or equivalent plastic

strain increment (Reference 66) and takes the same invariant form as

VJ2 is of the components of the stress tensor a. The equivalent strain

n provides a measure of the plastic distortion and it is important to

recognize that this quantity is computed by continually summing the

positive scalar /(1 eP .ei ). This implies that n will not be equal to

zero if an element of sand was distorted and then returned to its

original shape (i.e., eP . 0), but its magnitude will instead reflect

the history of plastic distortion (eP)t.

From the flow rule in equation 117 and the plastic strain increment

invariants defined above, these following useful relations are

obtained:
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kk L mkk (231)

eP = eP = L (mij -1 mkk 6i), orii ii) 'k 6i
3

p =L m where m =m - (232)

3
= / 1 L2 (mij-mkk 6 ij) (m .-i mkk 6 ) ]

n=L/[1 (mimij - 1ii mkk2)]
2 3

but m is a unit tensor, therefore,
~2

n L 1 (1 - 2 )] (233)
2 mkk

G. BACK CALCULATION OF THE PARAMETERS "Q" AND "b"

With the introduction of the scalar quantities and i in the

previous subsection, it is perhaps instructive to interject at this

point in the discussion and inspect the qualitative nature as well as

the quantitative significance of the parameters Q and b. Remember that

these parameters control the meridional shape of the piecewise

continuous bounding surface.

If we assume that the bounding function F is also the plastic

potential function (i.e., associative flow), we can attach some

relevancy to these parameters since they now effectively control the

simulation of dilatancy. Here, dilatancy is defined as the ratio of the

plastic volumetric strain rate ( ) to the plastic equivalent shear

strain rate (v). Several authors [perhaps most notably, Rowe (Reference

78)] have postulated the existence of a unique relationship between the

dilatancy and the ratio, 1/J2 /1,. Observation of the ratio of plastic

volumetric strain rate to plastic equivalent shear strain rate data
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from 'triaxial' tests confirm that the dilatancy is approximately

constant (see for example, Reference 78), and hence we can make use of

this phenomena to provide realistic estimates of the parameters 'IQ" and

Dividing equation 231 by equation 233 and employing the normality

rule of plasticity results in

' 6 3F/3I, + 3F//J*2 . (234)

- Given the incremental plastic strain tensor and the state of stress

(I/, /J2 ) we can iteratively solve for the parameter "Q" or "b" using

the following steps: 1) Assume a magnitude for "Q" or "b" within their

respective limits, 2) Solve for I, using equation 176 or equation 186

(this choice of equations depends on whether the stress state is above

or below the critical state line), 3) With the approriate gradient

tensor equations (i.e., equations 212 and 213 or equations 216 and 217)

solve equation 234 for the ratio Z/; and compare to the experimental

result, and 4) Repeat this procedure with a different estimate of "Q"

or 'b" until an acceptable tolerance for the ratio C/n in step 3 is

achieved.

H. THE CONSISTENCY CONDITION

The consistency condition is invoked for the bounding surface to

guarantee that the load increment leads from one plastic state to

another. This is accomplished by setting

F =F : + DF qn - 0 (235)
7 3qn

30 n
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further, from equation 116, we can verify that

L= I F c i3

j- p 1j

P 12

and hence,

3F:o =K p L (236)

*P By specifying that the rate equations for the n plastic internal

variables be written as:

q -' r , (237)n n

we can then restate the consistency condition to read

K L + 9F L r -0

- n

which when divided through by the loading function, L, yields

F- ;F r =0
p n

Hence,

K =-3F r (238)
p - nqn

From the flow rule (equation 117), we can see, for example, that if

the comoonents of the plastic strain tensor were chosen as the "hidden"

variables, 1, then r, will be represented by the unit gradient tensor

to the plastic potential, m.

I. SELECTION OF PLASTIC INTERNAL VARIABLES

Observe that the location (or size) of the yield/bounding surface

can be identified by using a single variable, I, which is the point
1
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where the elliptic cap intersects the hydrostatic stress axis. We can

therefore express our isotropic hardening law by determining 310

n

[i.e., I, = I0 (qn) implies F(2 , Io)] for each of the n so-called

independent "hidden" variables and then use the chain rule to find

,F qn 3F a,' in'•q ".n aI, aq n"

where aF is computed from either equations 219 or 220. Our task is now

simply the determination of 0 qn"

.i n

Since overconsolidated clays and dense sands exhibit stable

behavior, despite dilatancy, until the peak stress is attained, a

refined description of the customary critical state model (or pure

density hardening) is required. Enhancement of the density hardening

can be achieved by assuming that additional hardening takes place due

to the shear action. Three possible approaches for including this

distortional hardening aspect are discussed in the following.

.2

1. Combined Hardening Parameter (Strain)

The first alternative that is presented is due to Nova and

Wood (Reference 79) wherein they introduced a combined hardening

parameter, T, whose rate is expressed as follows:

A ,(239)

where A is a constant parameter, and, n and are defined in equations

231 and 233 respectively. Keeping in mind that the objective is to
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..

compute 3I0 qn' we can state for this particular case that our current

* - aim is the calculation of

K,- [A + j] (240)
DT 3T

As a general rule, a partial derivative can be found by observing

the variation of the value of a function when we give an increment to

one independent variable and keep all the other variables constant. In

order to evaluate 31 with n = 0, we can perform a hydrostatic

consolidation test on a normally consolidated isotropic specimen and

observe the relation between 10 and F,; for this particular case, 3IKo

DI_. Experimentally we may observe that there is a unique relationship

between 10 and Ekkn 0 that can be expressed as:

10 -IO] initial exp(X ekk) (241)

and after taking the time derivative of both sides of the equality in

equation 241, we find that we can now restate this relationship as:
Io=[ initial exp(A Ekk) A Ckk . (242)

By replacing equation 241 in equation 242, we can write the rate

equation as:

In = 0 --I I . ,(243)

A10

where X is a soil constant. This functional form will be recognized by

geotechnical engineers as the usual semi-logarithmic relationship

between the void ratio and the mean normal effective stress (i.e., e

vs. log p').
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If we unload the specimen, still under isotropic conditions, we

find that the recoverable or elastic part of the volumetric strain rate

can be expressed by a relation similar to equation 243 so that

kkn- (244)

where K is another constant larger than X. The irrecoverable or plastic

volumetric strain rate is therefore given by

kkjn =0 = In - 0 K-- - (2

from which we can easily see

K,"= aI 0 = 10 K X , (246)
' 3 T K X

and substitution of equation 246 into equation 240 leads to

31~ T - 31, [A n, + = 0 K A [A + ~J.(247)
aT aK -A

As an aid to understanding this hardening rule, note that equation

247 reflects the assumption that we can write

31_ - A 31,
an

We are still left with determining the parameter A, and, in

principle, we can perform an analogous test with /J 2 /I, - N such that

. 0 with the result that the hardening process takes place along the

zero-dilatancy line. It should be noted that this process is not unique

since the particular stress state /J 2 /I = N can be reached either

:T- during a hardening process or at the end of softening, at the critical

state. Note that the critical state (when unlimited deformations can

occur without change of stress or volume) may not coincide with
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failure. If the critical state is reached after softening, no variation

of I is possible because the material has already experienced

"infinite' strains when it encountered the "failure" line, but if the

material approaches the CSL during a hardening process, we would assume

that I, can vary. In the former case, we would therefore set the

constant A equal to zero while A will be positive in the latter.

Nova and Wood (Reference 79) suggests an alternative procedure to

the difficult determination of A through a 1J2 */Ii = N = constant

test. Before discussing this alternate method, it will be necessary to

introduce some preliminaries; the following stress-dilatancy

relationship is foremost:
p". -J* *

J2 /I, = N - u (Z;) , (248)
*m

where u is a material parameter. At = 0, we can find N (= /d I), '

and then subsequently use this parameter to find p from the relation in

equation 248. Based upon theoretical considerations presented in their

paper, Nova and Wood (Reference 79) have shown that the effective

stress path tends asymptotically to a definite value of /J /I for an

undrained test (i.e., no total volume change), and this effective

stress path can be depicted in the equation

/J 2 /I = N + X P A .(249 )
.. K

With <, A, i and N known from procedures outlined previously, we

can therefore get an estimate of A by observing the asymptotic

difference [/J, - N I which occurs during an undrained test.
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The final step is the computation of the bounding plastic modulus,

Kp, from the consistency condition. This can be simply effected by

first substituting equations 231 and 233 in equation 247 to obtain

M0 T =I. K A [A +

,. 1 K A [A L 1{ 1 (1 - Imkk )} + L mkk], (250)
K- 23

and then substituting equation 250 into the consistency condition

K L + 3F aI1p T - 0

which results in the following expression for Kp

K F 10 K A [A If 1 ( 1 nkk 2kk]p' - --k k 5
31,, K(X2 3

(251)

With the form of the yield/bounding surface assumed in thi- paper,

it is possible to solve for the parameter A directly from equation 251

without having to perform an undrained test. With an associative flow

rule assumption, we find that the dilatancy expression can be stated

as:

m)k * '{ 1 (I - I )} = - 1 (252)Mk + mkk  *

at failure, but at this point, we would also expect the plastic modulus

in equation 251 to go to zero. This means that

[A I[ 1 (1 - k ) + ] = 0 (253)
.''] 5 k k  nkk

2 3
and combining equations 252 and 253, we find

A -1

S

2. Combined Hardening (Work)

The second approach that includes the shear action in the

isotropic hardening is similar to Nova and Wood's (Reference 79)

1142
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combined parameter just described, but, instead of plastic strain, the

formulation is based on plastic work, W . In analogy to the synthesized
p

parameter T employed in tne previous development, the plastic work rate

is defined as:

'd s:e p  + 1, (254)
p 3

Substitution of equation 254 into the consistency criteria results

in

K L + 3F W K L + 3F rs e p  "1 0p a-W- P P p 7 3

p P

" K + 3F = . (255)
3p TI h - 3

P

Substituting equations 231 and 232 into equation 255 gives

K L + 3F 3a "3 MLr + M 0KP ;I, W - 3

from which we can compute the plastic modulus to be

md
3F k(256)
3,. aWp 3

The only unknown in equation 256 is the quantity I which must be
aW
p

calibrated from an estimated relationship based on experimental

observations. Lade (Reference 80) and Lade and Duncan (Reference 55)

have utilized the plastic work, Wp, extensively as a hardening

parameter and their proposed relationship between plastic work and the

mean pressure (or I) along the virgin hydrostatic compression path

takes the form:

W C Pa [ .2] r (257)

3 Pa
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where pa is the atmospheric pressure, and, C and r are material

parameters which can be determined from a plot of log (W /p ) versus

log [_2]. The parameter "r" is the slope of the transformed straight: !"]3 P a .

line graph while "C" is the magnitude of log (W p/P a) at [_[o2' equalp a

to 1. By rearranging equation 257 to put Io in terms of Wp, we find

Io "V/3 Pa [Wp/(C pa 5/r I

and therefore,

K-' = /3 W p/(C pa)](5/r)-I  (258)
W 2r C
P

Substitution of equation 258 into equation 256 gives the plastic

modulus as:

K - 3F /3 EW p/(C pa)]( '5/r) - [s : md + IL M kk] (259)
KP 7 2r C 3

It is interesting to note that by setting the parameter A equal to

zero in equation 251, we obtain the commonly used density hardening

model while there is no such parameter to give us this control in the

analogous plastic work hardening formulation (equation 259). In this

regard, the hardening described in terms of the combined strain

parameter T may be preferred over the plastic work formulation just

presented.

3. Two Parameter Hardening

As a final alternative, it can be assumed that n and act

independently in the yield condition, F(2,n,&) = 0. A two parameter

hardening rule of this type was considered by Prevost and Hoeg

(Reference 81) and McVay and Taesiri (Reference 6). Based on
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v experimental observations by Kondner (Reference 82), Prevost and Hoeg

(Reference 81) put forward the following hyperbolic relationship

between VJ2 and n to describe the hardening of their model's shear

yield surface:

/J = n /Ja , (260)
a + rl ulimt

but we know that S I, [J ]ultimate' and hence equation 260 can be

written as:

IJ = n SI 1  (261)

From equation 241, we can further see that

I, = [I1]initiaI exp(X ) , (262)

and substitution of this equation in 261 gives rise to

V = n S [I]initiaI exp(X ) ; (263)
~~a + n '

rearranging, we obtain

J= n S exp(A ) . (264)
. [I ]initial

The hardening relationship stated in equation 264 cannot be relied

upon exclusively in a single (or piecewise continuous) yield/bounding

function representation such as the one considered herein because it

does not model any hardening along a hydrostatic compression stress

path (i.e., r = 0). This feature should not be surprising since Prevost

and Hoeg (Reference 81) also used, in conjunction with their shear

surface, a singular volumetric surface (i.e., the stress state always

resides at the intersection of these two surfaces), governing the

yielding of the material during compression.
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In order to bypass the deficiency of this hardening rule in

transforming from the piecewise discontinuous yield surface depictioi

to a single continuous yield/bounding function, McVay and Taesiri

(Reference 6) adopted the following procedure: they first re-stated the

consistency condition in the form

_F + )F di a t r + f(I,/J,) 3F = 0 , (265)

K,~ d/JICSP 3n 3E

where the subscript CSP is an acronym for Calibration Shear Path,

and the function f(I,,1/J2 ) is selected such that f(11,/J 2 ) is equal to

zero along the calibration shear path but equal to unity along the

other calibration path which is the hydrostatic consolidation path.

This function, f(I11,/J 2 ), can be interpreted as a weighting factor,

between zero and unity, for the density hardening term of equation 265.

Along the CSP, a functional representation similar to that used by

Prevost and Hoeg (Reference 81) is adopted to model the relationship

between /J2 and n,

/J *n S , (266)

[I, initial a

where a is a constant which controls the initial slope of the assumed -

hyperbolic shear stress - shear strain curve.

From equation 266 we find

a./j - a S [I1]initial , (267)(a + n) 2'

which can be put in the following more convenient format for a+)

consistency condition:

+_ f I /* 3F ___ __

F a 3 dIJSP avj i + f(1 / 2)3 i 0. (268)
a 31 dVJ21CSP an aio a
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We must now select a calibration shear path (CSP) and evaluate

d1 , and then pick a realisti function f(I1 ,/J, ) which meets

d/J, CSP

the previously mentioned requirements. McVay and Taesiri (Reference 6)

settled upon the conventional triaxial compression (CTC) stress path as

their CSP (so the subscript CSP can now be replaced by CTC) and this

derivation describes the simple procedure by which dIo is

d,/J* CTC

computed. The equation for the CTC stress path on a normally

consolidated sample can be expressed as:

I = /(3J 2  ) + [II] i  , (269)

where [1I]. = [I,]
1 initial'

and substitution into equation 176 of this unique relationship between

the stress invariants gives

F - (V(3J2 *) + [I,])
2 -2 (I/Q)(V(3J2 ) + [I,]) +

I (Q-1 )/N }2 j 2  + IO •(2/Q)-l} - 0 (270)

p Taking the total derivative of this equation with respect to /J2

and rearranging, we obtain

dId =A , (271

d/J, CTC B

where

A J6 J 2  + 2/3 CI]. - 2I/3 10 + 2 t(Q-1)/N } /J,
. Q

and

B = 2,3 I/J 2  + 2 1, {1-(2/Q)} + 2 [1I].

Q Q
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These calculations can be carried out in a similar manner for the

dilatation portion of the bounding surface (see equation 186), and the

result is

dIo =A (272)I *B

d/J* CTC

where

A 2[3 + b + /3 A1] /J2 + II]. [2/3 + A,)

[1 - /3 S ]A2 I0,
S* ]i- J* * "

B = S A2 EI1]. - Vj,*A - /3S A2 ,

where

A, = [S - 2 - S b]

N 2  N

and
.*

A2  (1/Q)[1- bN ] .

N

The function f(I11,/J 2 ) must now be chosen. Recall from equation

269 that the equation of the CTC path is
'1 -/(3J,*) + [I,]i ,

and we can conveniently re-write this expression in the form

-_.. _(3J2*) = 1 (273)

[I ] - EI,] i

Observe that when the left hand portion of equation 273 is raised

to an arbitary exponent n, this quantity is still equal to one along

the CTC. This leads us to propose the general relationship
! n

f(11,/J2 ) 1 - /(3J (274)

[I] - [II]i

One may observe that this expression is equal to one whenever /J-

[- g(e) /J 2 ] is equal to zero, and therefore satisfies the requirement
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for pure volumetric hardening along the hydrostatic consolidation path.

But, is this equation valid for general loading programs? For a

monotonic CTC test on a normally consolidated sample, [I,] is always

greater than [Iti~, and, as a result, the denominator of the power term

is always positive for the calibration path. This, however, may not be

true for general paths and if the quantity ([II] - [I]) is in fact

negative while the exponent n is an odd integer, the expression for f

can be greater than one. Since we are seeking our range of f(I,,J)

to vary from zero to unity, we will need to allow for this possibility

by modifying equation 274 to the following form:

.. n
f(I ,3 /J 2  ) 1 - { /(3J, ) (275)

McVay and Taesiri (Reference 6) set n equal to one but wanted

further to decouple completely from the volumetric hardening, 3I,

when the combined deviatoric/hydrostatic stress state resided above the

trajectories of the CTC and Reduced Triaxial Extension (RTE) stress

paths. The CTC and RTE stress paths are 120 degrees apart in I, - VJ"

space. This requirement can be met by introducing the Heaviside step

function in equation 275,

f(1J,/J ) < - { /(3J 2 ) . (276)
.. ~~~I[I,] -[I].."'

A schematic illustration of this hardening is depicted in figure

10; note that in the regions A and C, combined shear and volumetric

hardening is assumed while the hardening in the region B is controlled

solely by the shear strain.
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We are now furnished with all the information we need for the

consistency condition of 268 except for Io ; this hardening can be

assumed to take the form of equation 246. For this third hardening

option, the plastic modulus on the bounding surface can then be

computed as:

K.. d.0  i 4 (1-Ikk )I

Kd/J* CSP an 2 3

+ f(IJ 3) I__ m kk (277)

J. LINK BETWEEN THE PLASTIC MODULUS (Kp) AND K AT THE BOUND
p p

The most conspicious feature of the bounding surface formulation is

the definition of the plastic modulus, K in terms of the plastic

modulus at the image point K The generalized plastic modulus, Kp, can

be taken as an experimentally determined function of: i) Kp, ii) the

Euclidean distance between a and a (say 6), iii) the Euclidean distance

between a and 2o (say 6,) and iv) a discrete memory parameter (say a)

which distinguishes among loading (a - 1), reverse loading (a = -1),

and reloading (a = 0) events. In the six-dimensional Cauchy stress

manifold, we can compute the Euclidean distances, 6 and 6,, between the

various pairs of stress coordinates as /[( - G ] and V'o.ij

(aij)o1
2
] respectively, and recollecting from equation 222 the 'simple'

mapping relationship 2 = 2 - , we determine

6 = /[(8j -(6)2] (6 I) V( o a (278)ij i~j 13 13

and

1 /[(Baoi - 0)2] B S /(oijoij) (279)
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We can now postulate a relationship of the form (see, for example,

Reference 83)

K + [(Kp)0 -K] 
,-,

p p p p o -'

- Kp + p(Kp)o - Kp -. (280)

where

(Kp)o = Kp at 6 = 6o P

K= K at 6 = 0,
p P

and f is a constant parameter; we may express the relationship in an

equivalent form (see, for instance, Reference 84):

K = K + H(o, q n = K + H(a, q (8 - 1) (281)p P - 6 -6 P -

where H is a positive 'shape' hardening function of the state. The

adjective "shape hardening" describes the role of H in defining the

shape of the stress-strain curves during plastic hardening. In equation

280, we can see that K = K when the stress point and its image
p P .

coincide (i.e. when a - 1) so we need only concern ourselves further

with the differences (if any) that arise from using equation 280

instead of equation 281 in simulating the reload (a = 0) plastic

modulus. It is also important to note that the continuity condition is

satisfied in both constitutive relations (equations 280 and 281) when a

loading program proceeds from a reloading to a virgin loading phase.

In both instances in the literature where the bounding surface

plasticity model has been used for sand (References 6 and 74), the

semi-empirical relations for modeling the unload (a = -1) plastic

modulus have not included K as an Indepandent variable, and as a
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result, the general relations presented above are not applicable to

this event. Nevertheless, the reverse loading modulus has been modeled

as a function of 6 and 60 and these relations will be presented after

the reload modulus is discussed.

Aboim and Roth (Reference 74) adopted a form of equation 281 in

their bounding surface constitutive equations for the reload (ai 0)

plastic modulus; they assumed that H(2, 2n) was equal to a constant

Hri and hence their representation was simply

K p= K p+ H rl(a-) (282)

For the reloading path (a =0), McVay and Taesiri (Reference 6)

assumed that Y was equal to unity in equation 280 and that the term

[(Kr )0 K I was a constant (say Hr2 such that the generalized plastic

reload modulus relationship could be expressed as:

K =K + H IB-li (283)p p r2

We can now assume an empirical relationship for the reverse loading

plastic modulus which is proportional to the relative distance between

the stress state and its image stress point. The key differences

rbetween the stress reversal modulus and the unload modulus are: i) the

continuity requirement is not applicable for reverse loading, and ii)

the unload modulus decreases with distance from the bounding surface

while we have already shown that the reload modulus decreases as it -

V approaches its image point on the bound. Possible empirical

relationships for the case when the discrete memory parameter ais

equal to -1 (reverse loading) arise naturally in the forms:
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K j6 {8x H 1 ulf81l1 ,(284)

or

K P 6 }' ( j )-1 - Hu2 (8-11 ,(285)

0

where H uland H u2are constants to be determined, together with H riand

H r2, by heuristic curve fitting of the experimental hysteresis loops.

From equations 2841 and 285, we can observe that the reverse loading

plastic modulus goes to infinity at the first load decrement following

a virgin loading phase; at this point, 6 is equal to unity but the

discrete memory parameter, a, is now equal to -1. This case is

important since it represents the sole instant when we theoretically

have purely elastic strains, thus making it possible to calibrate the

elastic constants.
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SECTION V

LABORATORY INVESTIGATION OF SOIL ANISOTROPY

A. INTRODUCTION

Although soils are known to exhibit significant stress-strain-

4- strength anisotropy, detailed quantitative measurements of anisotropic

properties have been severely restricted by the limited stress

conditions that can be applied with conventional test equipment. The

greatest limitation to a detailed study of anisotropic behavior is the

inability to have controlled changes of principal stress directions

(Reference 10).

Inherent anisotropy studies, using samples prepared in tilted

molds, have, in the past, provided quantitative as well as qualitative

indications of the influence of anisotropy on the load-deformation

response of cohesionless materials (References 35, 43, and 85). It has

been pointed out, however, (Reference 86) that the use of tilted

samples may lead to non-uniform stresses or strains, depending on the

flexibility of the boundary; this potential test flaw suggests a need

for alternative test procedures.

Recently, specialized devices, in which the direction of the

principal stress axes can be controlled, have shown significant

stiffness and strength variation with the relative orientation of the

principal stress axes to the material's fabric (References 9, 86, and

87). The hollow cylinder apparatus (HCA) and the directional shear cell

(DSC) are the two key types of non-standard equipment presently used in
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the controlled exploration of more general stress spaces. These

apparata are by no means ideal or capable off subjecting specimens to

completely general stress states, and, with the ever increasing use of

supposedly generalized stress-strain models in finite element analysis,

the development off improved devices to probe the whole stress-strain

spectra takes on added importance.

In this section, attention is devoted to very briefly describing

the following experimental devices which provide the source of the

measured stress-strain curves: 1) the hollow cylinder apparatus, 2) the

directional shear cell, and 3) a series of in-house 'triaxial' tests.

B. HOLLOW CYLINDER TEST

In their state of the art paper on Laboratory Strength Testing off

Soils, Saada and Townsend (Reference 5) discussed in great detail a4

large number off static testing devices; included in that paper is an

excellent review of the theoretical and practical aspects of the hollow

cylinder apparatus.

As part off the data collection phase off this research effort, the

results of a series of HCA tests, aimed at investigating inherent

anisotropy, on Reid-Bedford sand (at a void ratio off 0.67) were

obtained. This test environment is most conveniently described by

referring to figure 11 which depicts the state of stress in the "thin",

"long" hollow cylinder. The main feature that distinguishes the hollow

cylinder test from the conventional solid cylinder test is the

application of the shear stress Tez which effectively controls the

directions of the major and minor principal stresses (a, and GO) acting

156



r *

0'1 r

, ..

0'3~
YO'23

Figure 11. Stress State in Hollow Cylinder Apparatus (Reference 5).
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in the vertical plane of the cylinder (i.e., ez plane). In all these

tests, the internal and external cell pressures were always equal, and

this suggests that the potential non-uniformities in the radial and

circumferential normal stresses were mitigated across the thickness of

the specimen. With this special test scenario, note that the cell

pressure (a G ) is always equal to the intermediate principal stress
re

2 -.

From figure 11, we see that the change in principal stresses and

their directions are given by

Aa1 = 1 [AG + AG [ + ( 0 Ao 2+ AT 2 (286)
2 " z z e ez

A,3 = 1 LAo + Aoa ] - I[ {1 (Ao - Ao) 2 + AT 2 (287)

2 z e a ez

and

1 tan 2a AT Aez + [Aaz - e1 (288)

In the first series of tests, the intermediate principal stress and

the angle between the major principal stress and the vertical (B) were

held constant while the samples, inherently possessing an axial axis of

rotational symmetry, were monotonically sheared to failure. The angle B

varied over the range 00 to 900; more specifically, the nominal values

of 8 were 00, 150, 31.750, 450, 58.250, 750, and 900. For this
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particular series of tests, note that equations 286-288 simplify to the

following:

Ao = 1 AO [ 1 ( + 4K 2) , (289)I. g z
2

AG,= 1 AG C 1 - /(1 + 4K2 ) ] (290)2 z

A02 = 0, (291)

where

K - 1 tan 28 ,AT +AG . (292)Me ez z

The second series of tests were similar to the first except, now,

, the mean normal pressure was kept constant. In this case, equations

286-288 reduce to

AG, =1 u A 1 + 3 /(0 + 4K2)],
2 22

A = [1 - 3 1(1 + 4K 2 )],

and

2

where

K = 1 tan 2B = AT ez 3 Aa
9z 2 z

Again, B assumed the same range and magnitude of values as the

constant intermediate principal stress tests.

When dealing with such a variety of tests, it is always convenient

to introduce a compact but unmistakably clear notation, and here there

is no exception. Adopting Saada's convention (Reference 9), the tests

are designated by letters with the following meaning: "D" refers to

constant intermediate principal stress; "G" to constant mean normal

pressure; "C" and "T" to compression or extension depending on the
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direction of a z; and "R" to indicate if the shear stress (T O) was

applied. The numbers refer to nominal values of a during the test.

Therefore, a GTR 75, for example, is a mean normal pressure extension

test with the major principal stress inclined at an angle of 750 to the

vertical. Further, observe that a DC 0 and DT 90 in this classification

system are equivalent to the CTC and RTE stress paths respectively of

-" figure 3. Figure 12 shows the stress paths for all tests in the so-

called "M.I.T." p-q space (where p a a1  a, and q - G1 - 03).
2 2

Although not indicated on this figure, all tests started at an

*, effective confining pressure of 30 psi.

C. DIRECTIONAL SHEAR CELL

The Directional Shear Cell (DSC) is a plane strain, flexible

boundary stress controlled device which applies varying amounts of

normal and shear stresses to the sides of a cubical specimen, thus, in

effect, controlling the magnitude and direction of the major and minor

principal stresses. Figure 13 presents a diagram of the method used to

apply these normal and shear stresses to the sand sample, but, for a

more detailed explanation of this device and its operation, the reader

is referred to Bekenstein's thesis (Reference 10).

.A comprehensive series of DSC tests were carried out at M.I.T.

(Reference 10) to investigate: 1) the reproducibility and reliability

of the device in simulating supposedly "isotropic shear" tests, and 2)

1 60
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GTR 58.25 GCR 31.75

GTR 75 GR 15
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GC 0

DTR 58.25 ( DOR 31.75
N. R 45

DTR 75

b DT 90 DC0

Kt

(o' + a3 )/2

Figure 12. Hollow Cylinder Test Stress Paths (Reference 9).
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Figure 13. Diagram of Method Used to Apply Normal and Shear Stresses in
V the Directional Shear Cell (Reference 10).
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the influence of stress-induced as well as inherent anisotropy on the

stress-strain-strength behavior of both loose and dense Leighton-

Buzzard sand.

Isotropic shear tests are defined as monotonically loaded tests

wherein the principal stress direction and the minor principal stress

(a,) are held constant until failure; the depositional direction is

normal to the plane strain sides to negate any effects of inherent

anisotropy. This test is schematically illustrated in the monotonic

loading phase at the top of figure 14, and, from a theoretical

L standpoint, it is useful in defining the isotropic stress-strain-

strength behavior of the material. Before proceeding further with the

discussion, it should be noted that there is never a continuous

rotation of principal stress directions during these loading or

unloading paths; the mention of this implicit assumption is therefore

suppressed in the following.

Induced anisotropy is investigated in two general ways; in the

first method, step #1 Involves an initial loading, with 03 constant, to

a relatively high, but pre-peak stress ratio R (U10/03). This is then

V followed by a monotonic unloading to an isotropic stress state (R 1),

and finally, with a single jump rotation of the major principal stress

direction ~~B~reloading until failure takes place. This sequence of

events is depicted in figure 14. The second method for studying induced

anisotropy is illustrated in figure 15 where we note that the principal

stress directions A during the initial mornotonic loading (or

induction) phase is not perpendicular to the sides of the specimen.
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Figure 14. Directional Stress Paths for Jump Rotation Loading
Tests; Y> 0' (Reference 10).
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Figure 15. Directional Stress Paths for Jump Rotation Loading
Tests; TA> 0' (Reference 10).
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During the reload to failure, however, these principal directions are

kept normal to the sides of the cube specimen.

Inherent shear tests were monotonically loaded to failure, but,

unlike the induced tests, the samples were oriented so that shearm -
occured in a plane containing the direction of deposition. Several

variations on these tests were carried out, and detailed information

regarding this rather comprehensive study of anisotropy in granular

materials can be found in Bekenstein's (Reference 10) work. P

D. IN-HOUSE 'TRIAXIAL' TESTS

Triaxial testing at the University of Florida initiated with the

investigation of the shear strength of Reid-Bedford sand at void ratios

of 0.57 and 0.67 respectively. The tests were performed at initial

effective cell pressures of 25, 35, and 45 psi to bolrd the pressure

range used in the hollow cylinder tests (of the previous subsection). .

The tests consisted of either increasing or decreasing the axial load

while maintaining a constant cell pressure (i.e., CTC and RTE tests

respectively of figure 3). Vertical deformation, volume change, and

vertical load were measured with a dial gauge, a burette, and a .-.

calibrated load cell respectively. Figure 16 is a photograph of a

typical specimen after shearing to failure along an RTE path.

In the determination of the strength properties of the Reid-Bedford

sand, localized failure modes were predominant for RTE testing (see

figure 16). This suggests that the overall strain measurements may not

have been representative of the deformation in the local zone. It is

postulated that the inherent anisotropy (caused by pluviation through
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Figiure 16. Photograph of Localized Failure of a Solid Cylindrical
Specimen after an RTE test.
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air) coupled with the fact that dilation occurs only along the small

mobilized zones resulted in a net volumetric compression during these -

unloading tests. This gross behavior, therefore, may not have been

representative of the stress-strain response in the region of interest.

To correct this problem of possible strain inhomogeniety, the specimen

was constructed with a height to diameter ratio of ut.-ty while end

friction was minimized by coating the bearing caps with teflon spray.

These modified RTE tests were deemed acceptable.

Following the conventional strength testing, inherent anisotropy

was investigated in the triaxial cell by subjecting "unstrained"

samples to spherical loading paths. Owing to the high relative density

of the sand, the resulting volumetric compression during consolidation

was too small to be accurately measured by the usual burette and dial

gauge means; also, the errors introduced by end cap friction may have

obscured the volumetric strain measurements. After reviewing

alternative corrective measures, linear variable differential

transformers (LVDTs) were attached at the top and bottom one-third

points of the specimen; this, it was hoped, would eliminate the end

effects. The photograoh in figure 17 shows a sample with the LVDTa in

place prior to testing; figure 18, on the other hand, is a schematic of

the test set up used in the chamber. All LVDTs were calibrated to

record deformations to the nearest ±0.0001 inch; the electrical

connections were set up to record the average response of the

horizontal pair and the vertical pair of LVDTs.

-" The second phase of the 'triaxial' anisotropy investigation focused

on the observation of the development and demise of stress-induced

168



40-

Figure 17. Photograph of Specimen fitted with LVDT Deformation
Measurement Devices.
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% Figure 18. Schematic Illustration of 'Triaxiall Test Apparatus with

LVDTs in-place.
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anisotropy. These tests simply entailed an axial loading to a prepeak

deviatoric stress level, followed by a monotonic unloading back to the

original hydrostatic state of stress. The prepeak stress levels

selected were 20%, 410%, and 60% of the ultimate shear stress. Finally,

after the induction phase, the specimens were loaded spherically while

recording the vertical to circumferential strain ratio (i.e., E zIEc)

Deviation of this ratio from unity gave an indication of the evolution

of the directional stiffness with continued isotropic loading. Again,

as in the inherent anisotropy study of the dense sand, sensitivity in

deformation measurements was Of the essence. To achieve this objective,

simultaneous deformation readings were measured Using the !,VDTs,

vertically installed dial gauges, and burette readings. Figure 19

depicts the rather elaborate setup which includes a special (non

conducting) transformer oil in place of water in the chamber. As an

aside, it should be mentioned that this series of tests provided

considerable insight into the influence of anisotropy, especially as it

applies to the cyclic moving wheel stress path (Reference 6).

At the time of this writing, approximately thirty of the above

mentioned tests have been c~'rried out. The problems encountered in

deformation measurements were unexpected, and consequently, the

laboratory testing schedule is somewhat behind. This present series of

tests were inaugurated solely for the purpose of gaining insight into

the qualitative and quantitative influence of anisotropy. The

complexity of the observed behavior suggests that seve'al more basic

tests should be carried out before attempting to approximately model

Go the moving wheel stress path in the triaxial chamber. Also, a parallel

1 71
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- - Figure 19. Photograph of Test Apparatus with LVDTs attached to
Specimen in Confining Chamber Filled with Oil.
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series of tests will have to be performed for the Leighton Buzzard sand

to supplement our data base; these data will be requisite in the

initialization of the constitutive models prior to predicting the

directional shear cell test results.

.

V.
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SECTION VI

DISCUSSION OF RESULTS

A. GENERAL

The main analytical tasks now completed include: a) the computer

coding of the Prevost and Bounding Surface elasto-plastic models which

were presented in sections III and IV respectively, and b) a

supplementary numerical study of the successive stress states in a soil

supporting structure subject to a quasi-static moving wheel load. The

Prevost model has been calibrated and used to predict the entire series

of measured hollow cylinder test results, but, while the model

parameters for the Bounding Surface theory have also been calculated,

the present form of its hardening rule has restricted predictions to a

limited class of stress paths. Modifications to the hardening rule of

the latter are presently under way, however, to permit simulation of a

universal plastic stress-strain curve under arbitrary linear loading

paths.

Also, secondary computer codes have been written to assist in model

calibration and in reduction of both the hollow cylinder and solid

cylinder experimental data; the reduction routines also provide

information on the influence of principal stress axes rotation on

strength as defined hy some of the more popular failure criteria for

granular media. Finally, study of the stress-strain-strength data

obtained from the hollow cylinder test series and some simple

exploratory in-house solid cylinder tests has provided insight into how
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the presence, relative influence, and evolution of inherent as well as

stress-induced anisotropy of sand can be captured in a constitutive

model.

B. IN-HOUSE 'TRIAXIAL' TESTS

Table 1 is a summary of the physical characteristics of the well-

known Reid-Bedford sand which was used for the tests in both the in-

house solid cylinder apparatus (SCA) and in Saada's (Reference 9)

hollow cylinder apparatus (HCA). In all cases, the nominal void ratio

of the specimens was equal to 0.67 (which corresponds to a relative

density of 75%), and this parallel study of granular media behavior

provides a unique opportunity for comparing and evaluating the

influence of these devices on observed response. Accordingly, at

approriate junctures in the ensuing discussion, reference will be made

to the differences or similarities which arise from the specimen's

shape (i.e., hollow cylindrical or solid cylindrical).

At this point, it is convenient to highlight some useful relations

which are applicable to the 'triaxial' environment and to clarify the

meaning of the notation used on the axes of the graphs as well as the

tables in the sequel. We use

q =/(3 J2 )

= V(3 x 2nd invariant of the strain deviator e) "

p I1/3 - mean stress or mean normal pressure

p0 = initial effective mean stress

Pa - atmospheric pressure

13 - third invariant of a
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TABLE 1. PHYSICAL DESCRIPTION OF REID-BEDFORD SAND

CHARACTERISTIC DESCRIPTION

Color and Type Light brown, clean, fine,
uniform sand

Grain Shape Varying from subrounded to
subangular

Mineralogy 89% quartz, 9% feldspar,
2% ferromagnesians and
"heavies"

Maximum Dry Unit Weight 104.0 pcf

Minimum Dry Unit Weight 86.6 pcf

Granulometric Curve see figure 20

D60 (from figure 20) 0.29 mm

D10 (from figure 20) 0.16 mm

Coefficient of Uniformity, C 1.8
u

Specific Gravity, G 2.65 (ASTM D854-58)

Unified Soil Classification SP

Maximum Void Ratio, emax 0.91 (ASTM D-20419)

Minimum Void Ratio, emai 0.59 (ASTM D-2049)

-
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v= tr ( ) total volumetric strain

and

Integral of effective strain increment /[I (e:e)] dt
2

Note that

q -- o, - 03 , .

and

for the stress paths in the 'triaxial' chamber (see figure 3) since

either 0, = 02 (and E, = F) or a2 = 03 (and E 2 = E 3 ). In the context

of the following discussion, the term 'shear' stress is taken to mean a

constant multiplied by the octahedral shear stress while an analogous

definition holds for the term 'shear' strain.

A series of drained axial compression loading and axial extension

unloading tests (i.e., CTCs and RTEs of figure 3) were first carried

out to establish the strength of the sand. Initial effective confining

pressures of 25, 35, and 45 psi were selected for both the loading and

unloading paths. The corresponding series of HCA tests started at 30

psi, and, wherever possible, results of both tests are superposed for

comparison.

Figure 21 shows the measured stress paths in p-q subspace for the

axial loading tests. The strength parameters computed using the stress

states at the end of these trajectories appear as the first four rows

in tables 2 and 3; as can be seen, correlation of the strength between 7.

the SCA and HCA axial loading tests is excellent.
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TABLE 2. INFLUENCE OF PRINCIPAL STRESS AXES ROTATION ON STRENGTH

DRUCKER-PRAGER' S MATSUOKA'S MOHR-COULOMB' S

FAILURE FAILURE FAILURE

CRITERION CRITERION CRITERION
TEST I.D. (/J2/I,)f [-(I (, degrees)

Constant Intermediate Principal Stress Tests:

CTC @25 psi .306 5.23 38.97

CTC @30 psi
or
DC 0 .287 4.45 36.71

CTC @35 psi .291 4.59 37.14

CTC @45 psi .287 4.42 36.61

RTC .287 4.43 36.67

DCR 15 .298 5.00 40.39

DCR 32 .294 7.74 49.69

DTR 58 .212 5.81 42.74

DTR 75 .201 5.34 39.49

DT 90 .212 6.64 42.34

Constant Mean Normal Pressure Tests:

GC 0 .295 4.73 37.57

GCR 15 .315 5.83 42.89

GCR 32 .317 11.22 55.02

R 45 .250 8.22 49.32

GTR 58 .205 5.15 41.00

GTR 75 .185 3.91 35.49

GT 90 .204 5.63 40.00
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TABLE 3. SIMPLE MODEL OF FABRIC'S INFLUENCE ON STRENGTH

ANGLE BETWEEN ANGLE BETWEEN

LADE'S FAILURE 2ND SLIP LINE 1ST SLIP LINE

TEST CRITERION AND WEAK AXIS AND STRONG AXIS

I.D. [q!)f- 27] (Io, (degrees) (degrees)

I3 Pa

Constant Intermediate Principal Stress Tests:

CTC @25 psi 37.06 65 25

CTC @30 psi
or
DC 0 30.62 65 25

CTC @35 psi 32.07 65 25

CTC @45 psi 31.05 65 25 "

RTC 28.20 65 25

DCR 15 34.69 50 10

DCR 32 45.87 33 7

N DTR 58 26.70 7 33

DTR 75 23.90 10 50

* DT 90 29.61 25 25

Constant Mean Normal Pressure Tests:

GC 0 31.72 65 25

GCR 15 40.19 50 10

GCR 32 66.06 33 7

p R 45 40.42 20 20

GTR 58 23.91 7 33

GTR 75 17.93 10 50

GT 90 25.58 25 65
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Figures 22 and 23 show plots of the shear stress (q) vs. shear

strain (e) and volumetric strain (e v) vs. mean stress (p) respectively

for the CTC tests; a comparison of these graphs with the typical

behavior depicted in figure 2 indicates that this material behaves like

a dense sand, as it should. Inspection of figure 22 shows that there is

no apparent difference in the shear stress-shear strain responseI

V recorded in the SCA and HCA tests, but, by looking closely at the

volume strain vs. mean stress plots in figure 23, we see that the

volumetric strains measured in the HCA test are somewhat larger than

those in the SCA tests. This difference will become more apparent when

the bounding surface predictions of these tests are discussed in a

later subsection. Overall, however, there appears to be no significant

influence of the specimen's shape on material response for the axial

loading tests.

Unlike the loading tests, the response - i.e., stress-strain

behavior, volume change characteristics, and strength -of axial

unloading tests (RTEs) on sand is significantly affected by the

predominant failure mode occuring in the specimen; these may be classed

as line failures or zone failures.

In a zone failure, uniform conditions of stress and strain produce

multiple failure planes traversing the specimen at angles of ±(45 +

/2) degrees to the a3- direction. This mode of failure was typical of

all the axial loading tests. If the strains are non-uniform however,

line failure occurs in which two practically solid bodies slide past

each other along a single failure plane which is oriented at 45 + 4/2

degrees to the a.- direction. The photograph in figure 16 of the
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previous section is a typical example of an RTE line failure obtained

using specimens with height to diameter (H/D) ratios of 2.1. As pointed

out by Lade (Reference 88),

The stress-strain behavior of a line failure
specimen is governed by the relative
proportions of elastic and plastic deformation.
After initiation of dilation along one or two
narrow planes in an extension specimen, failure
will eventually occur along these relatively

Vi weak planes, and the specimen will only
compress elastically. Therefore, the greater
the height to diameter ratio of the specimen,
the smaller is the percentage of the total
volume of sand which is involved in the failure

and the larger is the percentage of the volume
which will undergo primarily elastic
compression. Thus, the average value of strains
in line failure specimens depend on the shape
of the specimen.

Although the tests in question are unloading tests, one should note

that it is possible for anisotropic samples to undergo elastic

compression; this will occur, for example, in cross-anisotropic

cylindrical specimens if

E /E r 1 , 1v

where E and E are the elastic tangent modulii in the axial and radial
: ' y r

(or circumferential) directions respectively, and v is Poisson's ratio.

Since the samples used in all experiments were prepared by a

combination of pluviation and tapping, it is expected that E will

initially be greater than Er.  :
Figure 24 is a plot of the effective stress paths for the series of

four RTE tests, each starting at confining pressures of 25, 30, 35, and

45 psi respectively; note that the test at 30 psi had an H/D ratio of

unity while the others were at the typical H/D ratio of about 2.1. The
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test with the H/D ratio of one was characterized by a zone type failure

while the other specimens experienced line failure modes upon 2

unloading. There was considerable scatter in the observed strength for

* these unloading tests, and the test with an H/D ratio at unity was the

only one considered acceptable. Further evidence at the marked

influence at specimen shape on the observed RTE test response can be

seen in the plots at shear stress vs. shear strain (figure 25) and

volumetric strain vs. mean normal pressure (figure 26). It is apparent W
that, because of the severe non-uniformities of strain in the line

failure specimens, almost any stress-strain relation can be producedj

from such specimens depending on their height to diameter ratio, and we

therefore recommend extra care in the analysis of the results of

unloading tests on solid cylindrical samples of sand.

The stress paths used for the next series of tests were selected

primarily for the purpose of providing qualitative and quantitative

data on inherent and stress-induced anisotropy. It is anticipated that

these simple tests can somehow form a fundamental basis for

mathematically modelling the influence of anisotropy on the direction

of the plastic flow rate vector. The first test consisted of a

spherical loading on a virgin sample which was prepared by pluviation

in conjunction with vibration in the direction of deposition. A plot of

the axial (or vertical) strain (e ) versus the circumferential (or
y

horizontal) strain (c )for this test is presented in figure 27.

Superimposed on this graph are the results of a similar test carried

out in the HCA; both tests started at a mean normal stress (p) of 10

psi and terminated at p =100 psi. Agreement between the two tests is
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remarkable. The ratio E /E is, as expected, greater than unity due to

the inherent stiffness anisotropy, and its magnitude actually starts at

about 6 and decreases to about 3 at the end of the test. It is clear

from these results that continued spherical loading of a specimen

prepared in this manner does not completely wipe out the influence of

inherent fabric on flow.

By using instead a rodding technique during specimen preparation,

it may be possible to create a random structure (with a random

orientation of the contact normals) which should produce E /E ratios
y

close to unity. But, since most natural deposits of sand do possess

some anisotropy due to their natural or artificial formation process,

investigation of nearly isotropic specimens may prove to be only of

academic interest.

Figure 28 is a plot similar to figure 27 except now the samples

have been subjected to some level of deviatoric loading (more

-specifically, CTC loading) prior to the hydrostatic consolidation.

Anisotropy was stress-induced in the specimens up to 15%, 40%, and 60%

respectively of the peak deviatoric stress level; at this point, the

" "specimens were unloaded back to an all-round pressure of 10 psi where

they were then all subsequently reloaded spherically to p = 100 psi.

The results of the last phase of the loading path are plotted in figure

28 together with the data of figure 27 and an idealized isotropic

response line to serve as a reference. Again, it is obvious from this

graph that the intensity of induced and inherent anisotropy does not

diminish significantly under continued spherical loading.
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C. HOLLOW CYLINDER TEST RESULTS

The hollow cylinder apparatus (HCA) data has been reduced using the

' '-'-'shear stress distribution assumptions outlined by Saada and Townsend

(]:':](Reference 5); axial displacements, volume change, and twist are

- '- converted to the components of the small strain tensor (f) while the

generalized stresses (axial load and torque) and the confining pressure

are represented by the components of the Cauchy stress tensor ()

Strength parameters for each of the fourteen shear tests have been

computed using four different isotropic failure criteria for sand;

these yield envelopes were presented earlier in SECTION II and include

those of

14 1). Drucker-Prager (Reference 48) in which it is assumed that

. failure is governed by the ratio of octahedral shear stress to

octahedral normal stress;

2). Lade (Reference 55) which is an empirically fitted criterion

using the first and third invariants of stress;

3). Matsuoka (Reference 56) in which he proposes the spatial

mobilized plane concept or a limiting value of shear to normal

stress on the the plane on which soil particles are on average

most mobilized;

and

4). Mohr-Coulomb (Reference 49) which is based on a limiting value

of shear to normal stress on the plane on which particles are

most mobilized (or the plane of maximum obliquity).

The results of this analysis are summarized in tables 2 and 3 using

the compact hollow cylinder test identification nomenclature of the
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previous section. The exponent "Im" used in the calculation of the Lade

strength constant was estimated to be equal to .056 (Reference 89).

Before attempting to isolate the influence of inherent anisotropy,

it is instructive the explore the following list of possible variables

on which the strength constants of tables 2 and 3 may depend:

I). the test apparatus is not ideal and there may be varying

degrees of non-uniformity in stress and/or strain for the

-different paths of loading;

2). the strength criterion may not be a good representation of

yield in that it may not be able to realistically capture the

influence of intermediate principal stress and/or bulk stress;

* and

3). induced and inherent anisotropy may produce directional

strength and stiffness properties as a result of the relative

orientation of the symmetry axes of the applied stress with

respect to symmetry axes of the existing fabric. It also seems

, intuitively reasonable to assume that the extent of this

variation will depend on the "deviatoric" intensity of the

fabric.

For this preliminary evaluation, we can assume that experimerts

were perfect and that Lade's failure criterion provides a satisfactory

representation of the isotropic failure locus on the octahedral plane.

These two assumptions allow us to isolate the variation in strength due

to anisotropy by studying the constant mean stress tests. Casual

inspection of table 2 reveals that, with the above-mentioned

assumptions, inherent anisotropy is clearly an important independent
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variable. The general trend in strength variation shows a peak when the

maximum compressive stress makes an angle of' 32 degrees with the axial

(or strongest) direction of the specimen while a minimum strength is

observed when this angle is 75 degrees. The discussion in the following

paragraph is an attempt to explain this behavior, and this approach, we

hope, will provide the framework for mathematically incorporating the

strength variation in the Bounding Surface plasticity model.

A crude but preliminary explanation for the observed strength

variation was conceived by using a simple slip-line field for materials

with friction. Following the usual convention (see, for example,

Reference 90), the directions of the first and second slip lines are

* identified by rotating anti-clockwise and clockwise respectively

through an angle of 45 - /m2 from the direction of the major principal

stress, where 0 m is the mobilized friction angle. Since the inherent

fabric anisotropy was created by gravity pouring and a small vertical

vibration, we naturally expect the vertical direction to initially be

stronger than the horizontal direction owing to the non-spherical

density distribution function of contact normals (or any other fabric

measure). The postulated model of strength variation then suggests

itself: the slip plane which is closer to the weaker direction

predominates and this can henceforth be called the critical plane. By

completely neglecting the non-critical slip plane, a correlation

between the strength and the angle between the critical plane and the

weak direction can then be sought. Table 3 presents the data which

compares this angle with the Lade strength parameter for an assumed

mobilized friction angle (0 ) of 40 degrees. Remember that we are
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focusing only on the mean normal pressure tests and it is implicit that

the initial fabric does not change during loading.

This simple sliding picture accounts for the minimum strength we

observe at the 58 to 75 degree rotations, and with the plot of figure

29 as an example, there is considerable experimental evidence to

support this explanation (References 86, 87, 91, 92, and 93). The data

in table 3, however, suggests that angle between the 1st slip line and

the strong axis should also be included in the sliding model in order

to interpret the peak strength at the 32 degree rotation.

In closing the discussion on observed strength, one should also

take note of the deviation of the shear strength as accounted for by

pure Coulomb friction; it is common knowledge that the measured

friction angle is a combination of surface friction and interlocking

friction, the latter decreasing as the confining stress increases

because: a) the particles become flattened at contact points, b) sharp

corners are crushed, and c) particles break. Of those used herein, only

the Lade failure criterion takes into account the curvature of the

failure locus on the meridional plane.

Having completed strength, we now proceed to a discussion of

stress-strain. Figures 30 and 31 are the shear stress vs. shear strain

and volume strain vs. mean stress plots respectively for the constant

intermediate principal stress tests in compression space. The shear

stress-shear strain plots can be easily fitted with hyperbolas, and

this suggests that the simple, but yet powerful, hyperbolic function

should be harnessed in a hardening rule which permits modification of

the limiting asymptote to model the influence of principal stress axes
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rotation on strength. The volume change characteristics depicted in

figure 31 support the critical state locus hypothesis, which defines a

zero dilatancy curve in stress space. For reference, the remainder of

the HCA experimental data plots are included in Appendix A.

D. PREDICTIONS OF HCA TESTS USING PREVOST'S MODEL

The Prevost isotropic/kinematic model has been calibrated for Reid-

Bedford sand using procedures outlined in section III. Although this

feature is exactly what this type of model should thrive on, volumetric

compression recorded during an unloading test prevents initialization

of the Prevost model. This peculiarity, in fact, motivated the study of

the sensitivity of the volume change response to the aspect ratio (H/D)

of the solid cylindrical samples. The sample of height to diameter

ratio of unity dilated from the start of the test until failure (see

figure 26), and it was thus selected as the unloading calibration path.

The parameter, X, controlling the isotropic hardening process was

determined from the results of an extensive series of one dimensional

consolidation tests carried out at the U.S. Army Waterways Experiment

Station in Mississippi (Reference 9J4). Table J4 is a summary of the

Prevost model parameters which were computed.

Before proceeding with the presentation, the distinction between

the terms "prediction" and "postdiction", as implied in this context,

must be emphasized. A postdiction will refer to the numerical

simulation of a test which was used in deriving the model parameters,

so if the model initialization scheme was precise, the experimental

data should be reproduced almost exactly. A prediction, on the other
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LSp.,

* TABLE 4. PREVOST MODEL PARAMETERS FOR REID-BEDFORD SAND

G = 13500 psi, K - 17680 psi, n = 0.5, C = 3/,/2, x = 130,
initial effective confining pressure - 30 psi,
initial void ratio - 0.67,
number of yield surfaces used to characterize field = 20

(m) (m) (m) h(m) (m)

2 6.408 31.27 6.951 25800 -4766 -.3538

3 8.813 30.94 12.002 22918 -7282 -.5238

4 12.345 31.45 18.028 12205 -4379 -.5792

5 12.867 32.02 21 .778 8084 -2904 -.7157

6 15.796 32.43 27.317 5225 -2183 -.7133

7 19.500 34.19 34.345 2873 -1206 -.8528

8 20.001 34.60 36.257 2404 -998 -.8677

9 20.106 35.26 38.34 1963 -783 -.9433 j
10 23.111 37.66 44.265 1324 -468 -1.085

11 25.289 38.74 48.304 1075 -380 -1.118

12 27.572 40.47 53.206 878 -300 -1.179

13 29.333 41.71 56.713 736 -246 -1.230

K. 14 33.178 44.29 63.402 562 -179 -1.317

15 35.950 46.11 68.734 465 -148 -1.364

16 39.355 48.64 75.509 388 -121 -1.434

17 46.289 54.03 89.040 293 -86 -1.510

18 51.052 59.62 101.946 236 -64 -1.6312

19 63.695 70.81 129.011 143 -37 -1.7759

20 65.566 77.95 144.322 95 -22 -1.8658

Ui
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hand, refers to the simulation of a loading path other than those used

in calibration.

As discussed in section III, the CTC and RTE loading path starting

at the same initial confining stress are used to establish the model

constants. Postdictions of both these test paths are presented in

figures 32 and 314 while the movement of the surfaces during these tests

are depicted in figures 33 and 35; each of these loading path recreates

its measured response to a reasonable degree of accuracy. In order to

minimize numerical discrepancies, 800 load steps were used for each

L simulation although most solutions were found to be stable when as

little as 200 load steps were used.

U The true test of the general applicability of a constitutive model,

however, is its ability to predict (and not regurgitate its input

data). All of the hollow cylinder tests (excluding, of course, the two

4 used in calibration) have been predicted with the Prevost model, and,

wherever possible, plots of the initial and final configurations of

field of yield surfaces (in Cp'-q subspace) accompany each prediction.

Predictions of the stress paths easily visualized in p-q stress space-

L i.e., TC (or GC 0), RTC, and TE (oi- GT 90) of figure 3 -are shown in

figures 36-141 while the remainder have been appended (see appendix B).

It is apparent that the model predictions are generally stiffer than

the actual response, but it is only fair to point out that the

postdictions were also somewhat stiffer than the input data. The '
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writers believe that the general trend of stiff predictions is due to

the lack of an explicit incorporation of the failure locus in the

formulation.

Further examination of all the plots show that as: a) the principal

stress axes of the stress path rotate away from those of the

calibration paths, or b) when the stress path itself deviates

significantly from either of the calibration paths, the predictions

worsen. This statement is best illustrated by inspecting the DCR 15

prediction which is remarkably good because, perhaps, the stress path

Y is, of all tests, the least different from the calibration DC 0 path;

the discouraging predictions of the DCR 32 and GCR 15 tests, however,

reflect the previous assertion. -

E. PREDICTIONS OF SOME TESTS USING THE BOUNDING SURFACE MODEL

The bounding surface model used for the predictions herein is still

in the embryonic stage of its development. At present, the McVay-

Taesiri hardening rule (Reference 6) has been implemented in the model

to generate prediction along the conventional triaxial compression and

hydrostatic compression stress paths (i.e., the CTC and HC of figure

3). This rule, however, only guarantees that the "universal" plastic

shear stress-shear strain curve and the traditional density hardening

relation are satisfied for the CTC and HC paths respectively. A

modification has been derived, but not yet implemented, which will

permit greater flexibility in simulating arbitrary paths. Nonetheless,

with a minimum of effort, we show that this adaptable model provides a

simple framework for generating rational predictions.
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The model parameters were estimated using procedures set forth in

section IV, and these parameters are summarized in table 5. All

parameters - except the "locking" hardening parameter X and the unload

modulus Hu which were reckoned from the load-unload HC test - were

calculated from a single test: the CTC starting at an effective

j. confining stress of 35 psi. Postdictions of both the load-unload HC

test and the calibration CTC are plotted in figures 42 and 43

respectively; the curve-fitted experimental data had high correlation

coefficients which is apparent from these graphs.

Predictions of the other three CTC stress paths, starting 3t lb.

30, and 45 psi respectively, are displayed in figures 44-46. The

agreement between the experimental and calculated stress-strain points

is remarkable, except for two slight deviations: a) the peak of the

simulated CTC test starting at 25 psi falls slightly below the

experimental data, and b) the observed volumetric strains for the CTC

test @30 psi were somewhat larger than the predicted magnitudes. The

apparent discrepancy in the predicted asymptote of the CTC test at @25

psi should, however, be no surprise because, as one may observe from

table 2, the measured strength of this test is conspiciously higher

than the other CTC tests. On the other hand, the li:parlty in the
.%

volumetric strain prediction of the CTC test @30 psi can be 3ttr~batel

to the device-dependency of the volume change characteristics; recall

that the results of a solid cylinder test was used in model

initialization while this CTC test @30 psi was carried out in the

hollow cylinder apparatus.
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TABLE 5. BOUNDING SURFACE MODEL PARAMETERS FOR REID-BEDFORD SAND

MAGNITUDE at

PARAMETER DESCRIPTION e = .67

Elastic Shear Modulus, G 13500 psi

Elastic Bulk Modulus, K 17680 psi

Isotropic "Locking" Hardening Parameter, A 325.73
,

Slope Of Critical State Line, N .1900

isotropic "Shear" Hardening Parameter S .6369

1sotropic "Shear" Hardening Parameter A 3.2178 x 10

Parameter used to control the Unload Modulus, Hu  1.4000 x 107

Shape controlling parameter of ellipse, Q 5.00

Shape controlling parameter of dilation surface, b -10.00
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• Surface Model.
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In closing, it can be said that this series of Bounding Surface

postdictions and predictions is good evidence that the characteristic

state (or zero dilatancy) line is well defined in stress space, and its

inclusion adds considerably to the predictive capability of the model

along the CTC.

F. ANALYTICAL STUDY OF THE MOVING WHEEL STRESS PATH

An analysis of the stresses in a sandy subgrade was undertaken in

order to approximate the stress history of an element of soil as a

wheel approaches a point directly above the element and then rolls away

from it. This is in the spirit of the stress path method commonly used

in estimating settlements of sand (Reference 27).

Initial study of this boundary value problem revolved around the

use of a finite element discrete analysis technique which has the

flexibility of employing either a linear elastic or the Prevost model

as its constitutive assumptions (Reference 95). The results of this

preliminary investigation showed only a slight variation in the

stresses predicted by both the linear elastic and Prevost models, and

it was thus decided that the added complexity and computer cost -

involved in using Prevost's model over the elastic model was not

justified. Consequently, we relied exclusively upon the results of

linear elastic analyses; this allowed us to use a simpler and much more

economical computational solution technique: the BISAR (Bitumen

Structures Analysis In Roads) computer program written specifically for

the analysis of layered systems under normal and tangential surface

r tractions (Reference 96). The theory used in this computer code is
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based on the selection of an approriate stress function involving

Bessel functions (Reference 97); the following simplifying assumptions

apply: 1) the pavement is a multilayered structure and each layer is

linear elastic, homogenous, and isotropic; 2) the interface between

layers is continuous (i.e., the frictional resistance between layers is

greater than the developed shear force); 3) the bottom layer is of

infinite thickness; and 4) all loads are circular and uniform over the

contact area.

Figure 47 shows the elastic constants assumed for each layer in the

pavement section (Reference 2) as well as the stresses induced by the

wheel load at various locations in the sand (subbase) stratum. One may

also use the sequence of pictures in this figure to visualize the

successive stress states in a soil element as the wheel approaches a

point on the surface directly above it. Although not unexpected, the
p.v

most striking feature of this study was the prediction of a continuous

rotation of the principal stress axes during the loading and unloading

sequences. Figure 48 depicts this moving wheel stress path in p-q

stress invariant space with the angle between the vertical direction

* and the major principal stress axis being used to keep track of the

material directions. For comparison, plots of the slope of a CTC test

path and that of a typical failure curve are also sketched on this

i% figure.

It is conclusive from this theoretical study of the rolling wheel

that rotation of the principal stress axes is of primary importance in

modelling its effect on pavement rutting. From the writers' point of

view, this problem becomes even more provocatively interesting when one

222

W.*.



-~ F.

.44-)

.jo

00

0 9o
to 14

* , 0

_ 0 0

~w 90 C

7 CY
60 Lo

0 a)'

= LLLJ>7
0 .

06.

1 o

0. 'L- QD

A~1; ."~V

-S-

a
co.

U'-

223



"i06sin / 1 =0-- 45.- Mc =

40.- STRENGTH

ENVELOPE

5-25.7

30. /
o-. / ' 33.4

CL 25.- '":/ 4 1.85

K 20 .- /

/ /0 3=45 6

15.- / /o -48.,

/CONVENTIONA /0=51.4
TRIAXIAL / 35.

10.- / COMPRESSION 54.5

/0=59.1

5.-1 ' 0 =66.4"-

S0= 76.2
0=86.5

p=I/3 ( ,+a+oa"3)

Figure 48. Moving Wheel Stress Path (Linear Elastic Assumption).
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takes note of the fact that, at a recent workshop, none of the "state-

of-the-art" soil constitutive models performed well in predicting a

test in which the principal stress axes underwent continuous rotation

(Reference 98). Arthur et al. (Reference 99) and Ishihara (Reference

100) have emphasized that the rotation of stresses presents

* . experimental and theoretical problems that remain to be solved.
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SECTION VII

CONCLUSIONS

The conclusions are summarized in the following list:

1. Specimens with line failures yield experimental stress-strain

curves which are both unreliable and show considerable scatter; this

r; undesirable failure mode occurs in axial extension tests using solid

cylindrical specimens with the typical aspect (height/diameter) ratio

of 2.1. Material response during compression loading tests in hollow

cylindrical and solid cylindrical specimens are, in general,

compatible.

2. Experimental evidence indicates that inherent as well as induced

anisotropy has a significant influence on the stiffness, strength, and

plastic flow rate direction of granular media. This implies that the

isotropy assumption may be too strong for practical problems where it

is known that the symmetry axes of the fabric and the stress tensor do

not always coincide during loading.

3. An analytical study has shown that the major and minor principal

stress axes undergo a continuous ninety degree rotation as a wheel

approaches an' then passes over an element of soil in the subbase of a

pavement structure. In stress invariant space, the slope of this stress
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path is not very different from that of the conventional triaxial

* compression stress path.

14. Although the pressure-sensitive Prevost isotropic/kinematic model

reasonably reproduces the response along its calibration paths, the

predictions generated by this model along linear non-calibration

loading paths were disappointing. This result effectively rules out the

use of the Prevost model in simulating the complicated moving wheel

stress path.

5. The Bounding Surface model is much simpler to understand and to

implement than the Prevost model. Preliminary results from this model

are very encouraging, and some possibilities have been proposed as to

- how the influence of principal stress axes rotation on stress-strain

and strength can be incorporated in a future version of this

* formulation.
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APPENDIX A

PLOTS OF HCA EXPERIMENTAL RESULTS

The following are computer plots of the experimental stress-strain

data obtained from the Hollow Cylinder Apparatus tests of Saada

(Reference 9). The notation applicable to the axes of these graphs hasI

been previously presented in SECTION VI.
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APPENDIX B

PREDICTION OF THE HCA TESTS USING PREVOST'S MODEL

This appendix contains plots of the measured Hollow Cylinder

Apparatus data (of APPENDIX A) superposed with predictions generated by

the Prevost Model.
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