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SECTION I

INTRODUCTION

A. THE NATURE AND ROLE OF THEORY

In most fields of knowledge, from physics to political science, it
is essential to use a hypothesis to make sense of a complex reality.
The complex reality we seek to model in this study is the load-
deformation response of a statistically homogenous assemblage of
particles. More specifically, we will attempt to use the mathematical
theory of plasticity to determine the history of the state of stress
and strain at all points in a partially or totally plastic body of sand
when the the history of the boundary loadings and displacements are
specified.

To explain or model the complex phenomenon of particles crushing,
distorting, sliding, and rolling past each other under load, a theory
must simplify and abstract from reality, but these simplifications and
idealizations must lie within the framework of physically and
mathematically permissible stress—strain relations. The test of any
scientific theory is whether it explains or predicts what it is
designed to explain or predict, and not whether its assumptions exactly
mirror reality. On the other hand, the most useful theory (or stress-
strain relation in this case) is the simplest one which will work for
the problem at hand. A theory can consider only a few of the many
factors that influence real events; the trick is to incorporate the

most important factors into the theory and ignore the rest.
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The mathematical theories of plasticity presented here should be
clearly distinguished from the physical or microstructural plasticity
theories which attempt to model geometrically the local interaction of
the granules. The mathematical (or phenomenological) theory is only a
formalization of known experimental results and does not inquire very
deeply into their physical basis; it is essential, however, to the
solution of problems in stress analysis and also for the correlation of

experimental data (Reference 1).

B. STATEMENT OF PROBLEM

The structural degradation of a flexible pavement is normally
associated with cracking of the bituminous surface course and the
development of ruts in the wheel paths (Reference 2). In this report,
we focus on the latter aspect which involves considerations of the
accumulation of permanent deformation during the repeated application
of moving wheel loads at the surface. The conventional design procedure
(Reference 2) assumes that rutting occurs only in the subgrade and is
controlled by limiting the value of the vertical compressive strain at
the top of this layer. The stiffness of the material in this design
procedure is characterized by the resilient modulus and Poisson's
ratio, the resilient modulus of a cohesionless soil being defined as a
mean stress—-dependent secant modulus obtained after 200 repetitions at
various deviatoric levels of undrained axial loading. Is this modulus

approriate for design? This is the question we will ultimately try to

answer in this investigation.
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The study of rutting in roadway and runway structural support

systems is one of fundamental interest in soil mechanics. First, the
elements of underlying soil are subjected to three dimensional,
cyclically varying loading paths which, from the theoretical point of
view, implicate the subaspects of material anisotropy coupled with
rotation of the principal stress axes during loading. The studies of
anisotropy and principal stress axes rotation, however, go hand in
hand; if, for instance, a material is idealized to possess directional
stiffness and strength isotropy, the circumstance of principal stress
axes rotation during loading is irrelevant.

Nevertheless, it is common knowledge that the fabric of earthen
materials are intimately related to the mechanical processes during
their formation. Cohesionless base or subbase courses, constructed by
vibratory compaction in the direction of deposition, are prime examples
of material which may exhibit significant strength and stiffness
anisotropy. The conventional empirical design approach for
characterizing the soil's stress—-strain relations presently neglect: a)
the trajectory of the loading path in invariant stress space, b) the
accompanying principal stress axes rotation during loading, and c) the
inherent as well as induced anisotropy of the material. Therefore, in
the specification of cyclic material behavior using the standard
resilient modulus test, there are several assumptions which may prove

to be over-simplified and unconservative analogues of real behavior.
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A broader perspective on the importance of this study can be

proffered by quoting a recent comment of Ur. Salkind (Reference 3),

.o
St
[ WS

The relevance is extraordinarily high for this nation.

There is the obvious deterioration of our highway system —
including potholes. The Air Force has 3700 miles of f?
runways around the world designed for a 20 year life, )
Ninety-two percent are more than 20 years old and 25

percent are significantly deteriorated. The anticipated ~§
replacement cost with today's technology is $1.9 e
billions.......The underlying methodology is empirical

and should be put on a sound analytical basis.....The -
pavement system, consisting of supporting soil, T
underpavement, and paving material should be analyzed

for loads and moments (and loading spectrum) recognizing

the differing response of the various layers with e
different material properties. A basic science need is —
the lack of measuring techniques for fundamental soil

properties and descriptions of soil constitutive o

properties, Design is based on empirical values such as Y
the penetration of a standard cone., As soil is a multi-
phase mixture of solid particles, water, and air, the

challenge is to define what are the basic fundamental ;;
properties (eg. soil "fabric" or spatial arrangement of <
particles) and how such properi.::¢s change with

loading...... '3
C. APPROACH

The methodology used in this study is intimately linked to the

2 4

development of phenomenological, cyclic, elasto-plastic model for

granular materials which explicitly (or implicitly) accounts for the E;
influence of anisotropy on: 1) the direction of the plastic flow rate -
vector, 2) the plastic modulus, and 3) the strength and stiffness !}
variation due to the relative orientation of the major symmetry axes of
stress with respect to those of fabric. This model will be based on the
:i formalism of cyclic plasticity as put forward by Dafalias and Popov 3:
“S (Reference 4). Although it is unlikely that a truly generalized .
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description of soil response can be developed given the present state-
of-the-art in conventional laboratory testing (Reference 5), it is
envisioned that the model which evolves from this research effort will
at least be able to remedy the numerical anomalies observed in a
previous attempt to simulate the moving wheel stress path (Reference
6).

Attention, however, will not be restricted to this particular class
of cyclic elasto-plastic formulation. What is perhaps the most
analytically complete multi-surface model for soil - the pressure
sensitive isotropic/kinematic hardening model of Prevost (Reference 7)
- is also evaluated and serves as an interesting supplement to this
study of soil behavior.

Although one such apparatus is reportedly under construction
(Reference 8), a laboratory device which can subject specimens of sand
to the six independent components of stress is, to our knowledge, non-
existent, This is, of course, a major constraint to the formulation of
generalized constitutive stress-strain relations since there is no way
to experimentally validate these models under general paths of loading.
At present, however, two unconventional laboratory tests provide useful
data for studying the influence of anisotropy on the stress-strain
response of sand: the hollow cylinder apparatus and the directional
shear cell (see, for example, References 9 and 10). The results of
recent studies in both these devices have been acquired, and we hope
that these data will form the mainstay of our study of anisotropy in

granular media. Simple exploratory tests in the 'triaxial' environment

also provide basic manifestations of stress—induced and inherent




e
"'_)-
.:1'
AN i
-3
{ anisotropy on the plastic flow rate direction, the stiffness, and the :j
-
i strength for no rotation or ninety degree jump rotations of the
VLN -
L] '.‘.' . M
g}}: principal stress axes. .J
In summary, the methodology centers on: a) collecting and analyzing ;!

homogenous stress-strain data on anisotropic sand specimens from both
in-house and external sources, b) using these data to modify the
bounding surface plasticity model to permit simulation of the observed
'fi anisotropic response, and c¢) implementing a popular anisotropic
hardening multi-surface model for comparison to the predictions of the
bounding surface model.

] Our objectives here nave been clearly defined, but it is fitting to
e

P

venture briefly into the prospects of future research which may emanate
directly from this present investigation. We recognize that the scope a
,E:; of the effort herein is only a part of the broader picture of the study
-~ h
f:i of the moving wheel stress path and its impact on pavement rutting. ﬁ
j;i Once a model has been formulated to capture the essential aspects of
:gp this stress path, the step that follows naturally is the incorporation i
i%? of such a model into a finite element computer code to generate j
A .
{:? predictions of the stresses and displacements in a typical pavement :
RE; structure. We also foresee a parallel experimental study in which a
iii small scale model of a loaded pavement system will provid~ a data base
3?; of measured response for comparison to the analytic predictions, In all
(-a likelihood, such an apparatus may take the form of the experimental ]
. Set-up used by Professor Yong at McGill University to study the :
-;: compactability of so0il (Reference 11). i
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SECTION II

PRELIMINARIES AND FUNDAMENTAL CONCEPTS

It is the primary objective of this chapter to present and discuss
in a methodical fashion the key concepts which form the foundation of
this dissertation. At the risk of composing this section in a format
which is perhaps unduly elementary and prolix to the mechanicist, the
authors strive herein to fill (what they consider) a conspicious void
in the soil mechanics literature: a discussion of plasticity theory
wnich is comprehensible to the vast majority of geotechnical engineers
who do not have a full and working knowledge of classical plasticity or
tensor analysis. A similar sentiment does not, however, apply to metal
plasticity where many profound expositions on the subject have been
published (see, for example, References 1, 12, 13, 14, 15, and 16).

The sequence in which the relevant concepts are introduced is
motivated solely by the writers' personal biases as geotechnical
engineers - accustomed to the many empirical correlations and
conventional plane strain, limit equilibrium methods of analysis -

venturing into the decidely rigorous field of generalized, elasto-

plastic stress-strain relations; the terms "generalized" and "elasto-
nlastic" will be clarified in the sequel. At the beginning, it should
also be mentioned that, although an attempt will be made herein to

include as many of the basic precepts of soil plasticity as possible,

this chapter will only give a very condensed and selected treatment of
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an extensive and complex body of knowledge. In a less formal setting,
this chapter may have been titled "Plain Talk About Plasticity For The =
Soils Engineer." 55
=)
A. TENSORS
1. Introduction -
Lack of an intuitive grasp of tensors and tensor notation is o
: perhaps the foremost reason that many geotechnical engineering -
;;‘ practitioners and students shun the theoretical aspects of work- ‘
Pj hardening plasticity and its potentially diverse computer-based ;3
;. applications in geomechanics. In an effort to make the substance of
;Z this thesis comprehensible to a wider audience, it is pedagogical to
' briefly and simply review the mathematical theory in terms of which ;;
physical laws could be described and their universality checked. -
In the ensuing discussion, the following terms and elementary fi
operations are used without definition: scalar, vector, linear )
functions, rectangular Cartesian coordinates, orthogonality, ccmponents ;!
(or coordinates), base vectors (or basis), domain of definition, and A
the rules of a vector space such as the axioms of addition, scalar '?
multiple axioms and scalar product axioms. Additionally, it is helpful ::
to point out that rectangular Cartesian coordinates are used -
exclusively throughout this dissertation; this particular set of base é;
vectors forms an orthonormal basis, simply meaning that the unit .
vectors comprising this basis are mutually orthogonal (i.e., mutually f;
perpendicular). .
3
8
-4
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Quoting from Malvern (Reference 17, p.7),

Physical laws, if they really describe the physical
world, should be independent of the position and
orientation of the observer. That is, if two scientists
using different coordinate systems observe the same
physical event, it should be possible to state a
physical law governing the event in such a way that if
the law is true for one observer, it is also true for
the other.

Assume, for instance, that the physical event recorded is a spatial
vector t acting at some point P in a mass of sand which 1s in
equilibrium under a system of boundary forces. This vector represents
some geometrical or physical object acting at P and we can
instinctively reason that this "tangible" entity, t, does not depend on
the coordinate system in which it is viewed. Further, we can

intuitively reason that any operations or calculations involving this

vector must always have a physical interpretation. The validity of this

statement should not be surprising since many of the early workers in
vector analysis (Hamilton for example) actually sought these tools to
mathematically describe real events; an excellent historical summary of
the development of vector analysis can be found in the work published
by Wrede (Reference 18).

Having established that the entities typically observed, such as
the familiar stress and strain vectors, are immutable with changes in
perspective of the viewer, we must now ask: How does one formulate
propositions involving geometrical and physical objects in a way free
from the influence of the underlying arbitrarily chosen coordinate
system? The manner in which this invariance requirement is

automatically fulfilled rests on the representation of physical objects
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by tensors, the properties of tensors being such as to ensure the
desired invariance. To avoid any loss of clarity that may arise from
using the word "tensor" prior to its elucidation, it is didactic to
record the following: a vector is one of the possible classes of
tensors, and thus, the term "vector" may be interchanged with the term
"tensor" whenever the use of the latter leads to conceptual problems.
There are several excellent references which deal with the subject of
vector and tensor analysis in considerably more detail than the mere
overview presented in the following passages; some examples of these
references include the books by Akivis and Goldberg (Reference 19), Hay
(Reference 20), Jaunzemis (Reference 21), Malvern (Reference 17), Synge
and Schild (Reference 22) and Wrede (Reference 18).

Although the necessity to free our physical law from the
arbitrariness implicit in the selection of a coordinate system has been
set forth, it is important to realize that this assertion is
meaningless without the existence of coordinate systems and
transformation equations rel~ting them. The transformation idea plays a
major role in the present-day study of physical laws, and, in fact, the
use of tensor analysis as a descriptive language for theoretical
physics is largely based on the invariant properties of tensor
relations under certain types of transformations. For example, we can
imagine that the vector t was viewed by two observers using different
rectangular Cartesian coordinate systems (say rotated about the origin
with respect to each other), and, as a result, a different set of the
vector components were recorded by each scientist. Nonetheless, we

should expect that the length of the vector - a frame indifferent
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quantity - computed by both these observers to be identical. The
transformation rules which guarantee the invariant properties of
vectors and tensors are actually quite simple but are very important in
deciding whether or not a quantity does indeed possess tensorial
characteristics, To illustrate how a vector is converted from one
rectangular Cartesian coordinate system to another, let us consider the
following example where the "new" coordinate components and base
vectors are primed (') for distinction. The transformation from the old
basis .1,,i,,i;)to the new basis (i},i},i}) can be written in matrix

form as:

cos(i,,i}) cos(i,,i}) cos(i,,i})
_J_-'n}'z,_];'a] = [i-x:_iz’_j-_a] COS(_i,,i.é) COS(}Z,EE) COS(_j:a’.i,'z)
cos(i,,i}) cos(i,,i}) cos(i,,i})

(1)

M

where cos(},,};), for example, represents the cosine of the angle
between i, and ij. This is an ideal juncture to digress and introduce
two notational conventions which can save an enormous amount of
equation writing.

The range convention states that when a small Latin suffix occurs

unrepeated in a term, it is understood to take all the values 1,2,3

while the summation convention specifies that when a small Latin suffix

is repeated in a term, summation with respect to that term is

understood, the range of summation being 1,2,3. To see the economy of

this notation, observe that equation 1 is completely expressed as

= i (2)

where Q is equal to cos(i,,i'). The index "m" in this equation is
mKk ~K’~m

known as the free index since it occurs only once in each summand while

1
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the index "k" is designated the dummy index because it appears twice in
the summand and implies summation over it admissible values (i.e.,
1,2,3). The corresponding transformation formulas for the vector
components (tr to ti) can now be derived from the information contained

in equation 2 and the condition of invariance which requires that the

representations of the vector in the two systems to have exactly the

same form; i.e.,
= i a ' = £1 3
t=t i o=t bl . (3)
Substituting the inverse relation of equation 2 (i.e., ik = S }})

into equation 3 leads to

iY o o= ¢t §¢
tk ri Er' tr ir‘ ’
or
[ i =
(tr tk ri) lr' 0
from which we find
'8
tr tk ri : (4

With the invariance discussion and the vector transformation
example as background information, the following question can now be
asked: What actually is a tensor? It is best perhaps to bypass the
involved mathematical definition of a tensor and proceed with a
heuristic introduction (modified from References 17 and 21) giving rise
to the particular type of tensor in which we are most interested:
second order {(or second rank), orthogonal tensors.

Scalars and vectors are fitted into the hierarchy of tensors by
identifying scalars with tensors of rank (or order) zero and vectors of

rank (or order) one. Within the framework of indicial notation, we can

say that the rank of the tensor corresponds to the number of indices

12
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appearing in the variable; scalars quantities possess no indices,

vectors have one index, second order tensors have two indices while
higher rank tenscrs possess three or more indices. Every variable that
can be written in index notation is not a tensor, however, Remember
that a vector has to obey certain rules of addition, etc. as well as
transform according to equation 4. These requirements for first order
tensors (i.e,, vectors) can be generalized and extended to the higher
order tensors.

To introduce the tensor concept, let us characterize the state at
the point P (of, say, the representative sand mass) in terms of the

nature of the variable under scrutiny. An absolute scalar stat: can be

categorized as a state in which the measured quantity possesses a

magnitude which does not depend on the orientation of the observer

S S

(i.e., a scalar variable); examples include mass, density, temperature,

.
v
PP

3

and work. The magnitude of this type of variable is invariant under all

W

transformations of coordinates, and, as mentioned previously, it is

5 4

identified as a tensor of zero order. Suppose now that there exists a

(n)

scalar v

P4

PP S

(such as speed) associated with each direction at the point

T

P, the directions being described by the variable unit vector n. This

multiplicity of scalars depicts a scalar state, and, if we proceed by

associating this scalar with speed for instance, we can write

S ,
v = v [n] = ving (5)
n) . . . .
where v( ) is the speed in direction n, and the square brackets are

used to emphasize that v, the veloecity vector, is a linear operator on
n. Deferring a more general proof until later, it can be said that the

(n)

totality of scalars v associated with all possible directions is

13
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‘ fully known if the components of y are known for any three mutually

]

" orthogonal directions. At the point P, therefore, the scalar state is
- completely represented by a first order tensor, otherwise known as a

vector. The argument for a second order tensor suggests itself by

N 4 |

considering the existence of a vector state at P; that is, a different

- vector, g(n), is associated with each direction n. T
2. The Stress Tensor

The prize example of second order tensors in solid mechanics

is the stress tensor, the complete set of data needed to predict the -

totality of stress {(or load intensity) vectors associated with all
planes passing through point P.

By recalling the routinely used Mohr circle stress representation

Lk

in soil mechanics, we generally expect different magnitudes of shear

v
S

e
e f

stress and normal stress to act on an arbitrary plane through P, and,
consequently, the resulting stress vector is unique on each of these .
planes, Immediately, we recognize that the stress vector (which is also B

(n)

called the traction) L is a function of n at the point P where n is

\._.

the unit vector normal to an arbitrary plane. In order to fully

describe the state of stress at P, we need then to derive a v

R
relationship between the vectors g(n) and n ; Iin other words, we seek a .

~ S R
MR

vector function of a single vector argument, n., It turns out that we E;;

S._ are in fact seeking a linear vector function, say g, which can be -

. A
N described as a rule associating the vector g(") with each vector n in L

the domain of definition. A linear vector function is also called a

linear transformation of the domain or a linear operator acting in the

14 ;
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domain of definition of the function g. In analogy to equation 5, we

can now write

E(n) = ¢ [n] (6)
where again, as in equation 5, the square brackets are used to imply a
linear operation. The linearity assumption of the function g infers the
following relationships:

alny *+ n2] = gln,] + oln,] (7
for arbitrary vectors n, and n,, and

glan) = a oln] , (8)
for arbitrary vector n and real number a.

Geometrically, equation 7 means that the operator g carries the
diagonal of the parallelogram constructed on the vectors n, and n, into
the diagonal of the parallelogram constructed on the vectors t, = g(n,]
and t, = gln,]. Equation 8, on the other hand, means that if the length
of the vector n is multiplied by a factor a, then so is the length of
the vector g(”)a glnl.

Using a rectangular Cartesian coordinate system, the traction

(n)

vector, t , and the normal vector, n, can each be resolved into their

components tSn)’ cﬁ“), -E“) and n,;, n,, n,; respectively, and the linear

relationship between t and n can be written in matrix form as
011 G1z2 O35

(ny,nz,n,3] {020 022 0, ’ (9)
O3y O3z 033

[tsn) vt(n) ltgn)] =

or alternatively, in indicial notation,

t(n) n

i = oJi j , (10)

15
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where the components of the 3x3 matrix g is the stress tensor acting at
point P, Note that the wavy underscore under symbols such as ¢ are used
to denote tensorial quantities in this cgapter and throughout the
remainder of this report. In general, tensors can vary from point to
point within the illustrative sand sample, depicting a tensor field .r
a tensor function of position. If the components of the stress tensor
are identical at all points in the granular mass, a homogenous state of
stress is said to exist; this concept of homogeneity of stress (and
likewise, strain) is particularly important in laboratory soil tests
where such an assumption is of fundamental importance in the
interpretation of test data (Reference 5).

Second order tensors undergo coordinate transformations in an
equivalent manner to vectors (see equation 4), The tranformation
formula (for a rotation of base vectors) is derived by employing a
series of previous equations. Recall from equation 4 that

tr = 5% ’

and by combining this equation with equation 10, we find

t =
tr a Q

kr !

from which it can be further seen that n can be transformed to n'
resulting in

t' = Q n' Q

r 0jk js s kr * ()

The left hand side of equation 11 can also be replaced by the
linear transformation such that

Q.. n' Q

] ]
g n js s kr ’

= g
pr p Jk
which when rearranged yields

L4 L -. L} =
opr np °jk st ng ri o . (12)

55 4




il All the indices in equation 12 are dummy indices except "r" which

is the free index. A step that frequently occurs in derivations is the
%T interchange of summation indices, and it can be shown that the set of

equations compactly expressed in equation 12 is unchanged if the dummy
!! index "p" is replaced by the dummy index "s". This manipulation allows
. us to rewrite equation 12 as:
i 04 ML T 0y Qg Dy Q=0
3? and by factoring out the common term né , we obtain ?

) (oér B cjk st ri) né =0 Ei

;g from which we can at once deduce the tensor transformation rule to be ;!
- Oér © Tk st Ur ! (13) i
5 or in tensor notation, )
5 g' = QT a Q . (1) ﬂ
I. It was previously stated (without verification) that a vector is ;?
EZ completely defined once its components along three mutually orthogonal 'i
B directions have been specified; the reciprocal declaration for a second 3
!! order tensor will therefore quite naturally be that the components of a
- second order tensor are determined once the vectors acting on three
: mutually orthogonal planes are given. In actuality, this statement is
{: correct and it can be substantiated by inspecting the free body diagram
. of figure 1 in which a soil prism is subject to a plane stress state.
‘1 Plane stress simply means that there is no resultant stress vector on

one of the three orthogonal planes, and, as a result, the stress tensor
t can be represented by a 2x2 matrix instead of the generalized 3x3
o matrix., Generalized, in this context, signifies a situation where the
i full array of the stress tensor is considered in the problem; moreover,
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when the adjective "generalized" is used to qualify a stress-strain

relationship, it is tacitly assumed that the law should relate all the

components of the strain (or strain increment) tensor to the tensor

components of stress (or stress increment) under any arbitrary loading
program,
Figure 1 shows the two-dimensional free body diagram of the

material prism with a uniform distribution of stress vectors acting on

each of the mutually perpendicular planes. By taking moments about the

point D, it can be shown that Txy = Tyx and this is known as the

theorem of conjugate shear stresses, a relationship which is valid

whenever there are no distributed body or surface couples acting on the
element. This two dimensional result can be generalized to three
dimensions where it can easily be seen that the 3x3 stress tensor
matrix is symmetric as a consequence of this theorem. Symmetry has
another important implication in that there are now only six
independent components of the stress matrix tensor necessary to
describe the stress state at the point P. By invoking force equilibrium
in the x and y-directions of figure 1, the two resulting equations can

be solved simultaneously for the unknowns 1. and g

9 9° provirg that the

shear and normal stress (or the stress vector in this case) on an
arbitrary plane can be computed once the stress vectors on a set of
mutually perpendicular planes are given., Extension of this two-
dimensional result to three dimensions shows that the components of
three mutually perpendicular traction vectors are, in actuality, the

rows of the stress tensor matrix.
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Most geotechnical engineers are familiar with the Mohr-Coulomb

strength theory for granular soils which specifies a limit state (i.e.,

failure with infinite deformations) based on a combination of principal

stresses (¢,, 02, and ¢,). Even the more complicated failure criteria
for soils which have been recently proposed (see subsection II.F.1)
embody only mathematical functions of the principal stresses. This
underscores the need for a simple procedure to compute the principal
stresses once the frame-dependent components of the stress tensor are
specified. Note that, although the scalar principal values are
invariant, the vectorial description of the planes on which each
principal stress acts (say n,, 0., and n;) depends on the reference

coordinate system chosen.

s
-

h A principal plane is a plane on which there are no shear stresses.
- This implies that the normal stress is the sole component of the

- traction vector acting on a principal plane, and the geometric

b interpretation is that the traction vector and the unit normal vector
{

to the plane, n, both act in the same direction. Mathematically, the

principal plane requirement can be written as:
1,'(n)

PR I

=1in , (15)

or in indicial notation,

(n)
ti = A ny (16)

where A 1s the numerical value sought; remember that there are
generally three principal planes and therefore three principal values.
Substitution of equation 16 into equation 10 and rearranging leads
to

- - . .
9y 0y Ang =0 amn
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As an aid to solving equation 17, it is fitting at this stage to

introduce an extremely useful algebraic device known as the Kronecker

1 ifi=)
85" 0 iriAj (18)

delta. The Kronecker delta, 8§, 1s a second order tensor defined by

By writing out the terms in long form, it may be easily verified

that

(19)

Now, we can substitute equation 19 into equation 17 to find that

g..n. - x4§,.n, =0 ,
Ji ] 1) J

and by proceeding to factor out nj, we see

( -x8..)n, =0 .

a.. .
Ji 1] J

(20)

For clarity, equation 20 can be written in long form as:

(611 = A)ny + 0,2, N, + 0,3 0y =0

Oy Ny + (0, ~A) N, + 0,5 Ny =0

031 nl + 032 nz + (033 - A) ng = O
or written in matrix form as
0117 02 013 n,
02, G22=A Ja3 N,
O3, Oi2 G337A N,

) (21)

0
05 , (22)
0

where it can be seen to represent a homogenous system of three linear

equations in four unknowns (n,, n,, n, and ). The fourth equation for

solving this system is derived from the fact that n is a unit vector

and hence we automatically know that its magnitude is unity; that is,

nen = n, n,. 1 .
~ =~ S

(23)

Also, equation 20 has a nontrivial solution if and only if the

determinant of the coefficient matrix in equation 22 is equal to zero

(see, for example, Reference 23, p.188). Based on this requirement for

21
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the existence of non-trivial solutions, we can solve for A by using the

property
Gy1A Gi2 O13
021 czz-x 023 = O . (2“)
03, 032 0337A

This determinant can be written out term by term to yield a cubic

equation which takes the form

AP - I, A -I,0-1I, =0, (25)
where
I, =0,, + 0,, + 035 = LI R 2n
I, = =(0,1022 * 032033 * 0330;,) % 33, * 15, * i,
= ..0,., = I3 + 2 P
( IRLER T )
and
g G2 013
I, = 021 OG22 O23 . (28)
LR O3, LR

It has previously been mentioned that the principal stresses are
independent of the observer's choice of coordinate axes, and since the
cubic relation of equation 25 is to yield the same answer for principal
stresses irregardless of the imposed reference frame, it is evident
that the coefficients of this cubic equation - I,, I,, and I, - will
also be independent of the coordinate s,stem. These coefficients are
the so—-called invariants of the stress tensor g; I,, [,, and [, are the
first, second, and third invariants respectively. It will be shown
later in the discussion that it is much simpler to compute the
invariants as an intermediate step in the calculation of the principa.
3tresses when given a stress tensor which occupies all elements in a

3x3 stress matrix. However, this intermediate computation step can be
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'i circumvented by writing or directly formulating the failure criteria in ia
terms of the invariants, but, in any event, it should be kept in mind ‘ﬁ

E that the stress invariants and principal stresses can be ;i
interchangeably used in a failure criterion. The following discussion éﬁ

!! centers on the mathematical aspects of a typical methodology to replace Ea
o the invariants with the principal values of stress; the inverse 15
i procedure of computing the invariants from the principal stresses has tj
ff already been explicitly stated in equations 26, 27, and 28. E;
The stress tensor can be decomposed additively into two components: ii

- 1) the spherical or hydrostatic stress tensor (p 6ij)’ and 2) the ;%
Zeviatoric stress tensor (sij)' The first of these tensors represents ?3

l‘
o

the average pressure or "bulk" stress (p) which causes a pure
volumetric strain on an isotropic continuum, while the second tensor,

8, 1s associated with the components of stress which bring about shape

... WLt
i :14!‘ PEPAEY
e i

changes in an ideal isotropic continuum. The spherical stress tensor is ;Q

defined as being equal to p Gij where p is the mean normal pressure

(okk/3 or I,/73) and Sij is the Kronecker delta. Since, by definition,

we know the spherical and deviatoric stress tensors combine additively

to give the stress tensor, we can write the components of the stress

deviator (or deviatoric stress tensor) as:
515 7 %13 TP 8iy

where compressive stresses are taken as positive, as it is ‘hroughout

(29)

this report. The development for the principal values and the
invariants of g apply equally well to the stress deviator, s, but, two
important points should be emphasized in this comparison: a) the

principal directions of the stress deviator are the same as those of

23

- et S Dt T VN S TR VR TRNY TR N VAR
T S »\~.-;. B LIRS o

> g -w. -t - . - -
. S PSR MR L IS ESN PP AR T e 1 VR LN L
i \‘44 v CYAIY N .Y .L_‘g.—. ) vy L TP Gl e | oA o ".Jh.&A) A$ l\ P U W W A}‘AA_. > aP g a0 a2 A 8 2

v T= 2




; the stress tensor since both represent directions perpendicular to :;
< planes having no shear stress (see, for example, Reference 17, p.91),
and b) the first invariant of the stress deviator (say J,) is equal to
' zero; 1i.e., o
. w
: Jy = 83, * 8,2 * 83, |
=0, -1 I, +0,, -1I,+0,,-11, ,
3 3 3 o
and recalling the relation of equation 26, clearly —~
~
J, = 0. o
3 The invariants of the deviatoric stress tensor are denoted by J,, o
[+ vl
i J, and J; respectively, and since, as we have shown, J, is equal to =
zero, the cubic expression for the stress deviator, in analogy to
equation 25 of the stress tensor g, lacks the quadratic term; i.e., .
. AP - d, A -dy =0, (30) éf
i where the roots, A, are now the principal values (or more formally, the .
eigenvalues) of the stress deviator: s,, s,, and s,. The absence of the o
quadratic term renders the solution of equation 30 more tractable than é%
I that of equation 25. As a result, it is more convenient to solve for ?
.- the principal values of s and then compute the principal values of g
: using the relations

g, =3, +p, 6, =8, +p, and g3 = 33 + p . (31)
The direct evaluation of the roots, i, of equation 30 is not easy -
until the similarity of equation 30 to the following trigonometric
identity is observed:

sin 38 = 3 sine - U4 sin’e

1

IS
,. :.."‘
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which when divided through by four gives

sin® - 3 sine + 1 sin 38 = 0 . (32)
b 4

The mathematical manipulation is achieved by replacing i with r

sin® in equation 30; this substitution results in

3

r?® sin®¢ - J, r sing - J; =0 ,

and dividing through by r® effects

sin®g - J, sine - J, =0 . (33)
r2 r?

By equating equations 32 and 33, we record the following

equalities:
2 = 3
r2 4
or
r=31+ 2VJ,, (34)
73
and

Jy = -1 sin 30,
r\3

4
or
sin 36 = - 44, . (35)
r?
Substitution of the negative root of 34 into equation 35 leads to
sin 38 = [%_3 (Js//32.*)1 (36)
or
8 = % stn” [% (J3/¥3,*)] (37)

where 6 is known as the Lode angle (Reference 24), and it represents an

alternative invariant which frequently replaces the J, invariant in

25
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failure criteria because of its straightforward geometric

==
interpretation (see section II.F.1).
Owing to the periodic nature of the sine function, the angles 38,
36 + 2w, and 36 + 4w all give the same sine in terms of the calculated -
invariants of the deviator in equation 36, If we further restrict 36 to n
the range +m (i.e., -1 S 6 S +7), the three independent roots of the
2 6 6
stress deviator are furnished (Reference 25),
- S, = = 2V/J, sin(s + 4 m) . (38)
b - -_—
¥ V3 3
g S, = —_2VdJ, sin(9) ' (39) )
i 73 -
" and,
- )
- S; = = 2/J, sin(8 + 2 7) . (40)
: 73 3
Finally, the relations of equations 38, 39 and 40 can be combined ;;
with those of equation 31 to yield the principal values of the stress
tensor g, -i
g, sin (8 + 4/3 w) I,
0, = =2 Vi, sin ¢ + 1 I, . (41) =
03 ° 3 sin (e + 2/3 1) 3 I, ’
-
. 3. The Strain Tensor
hon
i The mathematical interpretation of the concept of strain is g
P; considerably more difficult than the development just presented for
b .
.- stress., Nevertheless, a brief introduction to the small strain tensor =

is attempted herein while it is recommended that the interested reader

refer to a continuum mechanics textbook to better understand the




l' concept and implications of finite deformation. The presentation that

follows has been modified from Synge and Schild (Reference 22).
Most soils engineers are familiar with the geometrical measure of

unit extension, e, which is defined as the change in distance between

. two points divided by the distance prior to straining (Lo); i.e.,
e = (L, - Ly) + L, , (42)
where L; is the distance between particles P and Q, for instance, after
- the deformation., If the coordinates of P and Q are denoted by Xr(P) and
xr(Q) respectively, we can write, from geometric considerations, that
- L = EXP(P) - xr(Q)] [Xr(P) - Xr<Q)] . (43)

Further, if the particles P and Q receive displacements ur(P) and

ur(Q) respectively, we can state that

x;(P) = xr(P) + ur(P) , (44)

and

= x1(Q) = x (Q +u (@ (45)
. where the primed coordinates represent the position of the particles P
!’ and Q (which retain their identity) after deformation. The notation
ur(P) and ur(Q) indicates that the particles receive a displacement
which is a function of their coordinates; if the displacement vector,
Fﬁ 4, is the exactly the same for each particle in the medium, the whole
medium is then translated without deformation (i.e., a rigid body
motion). From equations 44 and 45, we have
L} - EX}(P) - x;(Q)] [x;(P) - x;(Q)] ,

= [XF(P) + ur(P) - Xr(Q) - ur(Q)]

[x.(P) + u (P) = x,(Q) = u (], (u6)

27
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and by substracting equation 43 from equation 46, we obtain
2 12 - - -
L} - L3 = [x.(P) + u (P) = x(Q) = u (QI[x.(P) + u (P)
x(Q) = u (Q)] = [x.(P) = x (] [x (P) - x (] ,
which simplifies to
2 _ 12 _ - -
L} - L3 = [u.(Q) = u (P)ILu (Q) - u (P)] +
- - |
2 [x,(Q - x,(P)ILu (@) - u (P)] . (47)
If we fix our attention on the point P and let the neighboring
particle Q be located at some arbitrary direction but infinitesimal

distance from P, we can proceed to generalize the state of strain at

the point P. Since the distance between P and Q is assumed small, it is
apparent that the term [xr(Q) - xr(P)][xr(Q) - Xr(P)] is also
infinitesimal and we have approximately
u (Q) = u,(P) + du./3xglp [xg(Q) = x (P)]
from which we can write
u,(Q = u (P) = 3u /3x |, [x (Q) - x (P)] . (48)
Substitution of equation 48 into equation 47 leads to

LY - L3 = du /3x_|, [x (@) - x (P)] 3u /3x [x,(Q) = x,(P)]

elp
+ 2 [x(Q = x (P)] du /dx |, [x (Q - x (P)] . (49)
We also know that

[x.(Q) = x,(P)] = Lo n, (50)

where n, are the components of the unit vector directed from P to Q.

Substitution of the relation in 50 into 49 results in

L} - L3 = du./dx [p Lo ng Bu /3x |p Lo np +
2 Lo n, du /3x [, Lo n
= L [dup/dxgl, ng du/3x {p ng +
2 n, auP/ameP nm], (51)
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and upon rearranging equation 51, we see that

du /3x |, n o+

2 Lp2
L} - L3 [ou /ax |, n .

Le

S

2 n, aur/axmlP nd . (52)
If an assumption is made that the character of the strain is small,
) in

this means that 3u_/9x and hence the term (9u_/9x | ou_/9x
r r s'p r

t|P th

equation 52 is negligible; this equation may thus be rewritten as:

2 _y2 _
L - L] 2 n_ du /3x |, no . (53)
L3

Moreover, we have identically

LI - L3 = L, - L L, +Lg

L3 Lo Lo
= L, -L, L,=-L *2L,,
[]
Lo Lo
= Ll I.ao [LL = L + 2] ’
Lo Lo
= e(e+2) ; (54)

2

and with the assumption of small strain, e® is negligible, and equation

54 reduces to

L - L2 =2¢e. (55)

Replacing the small strain approximation of equation 55 into
equation 53 yields

e = n, Bur/ax n_ . (56)

mlP m

If the components of the small strain tensor at point P are now

defined as:

€ =

rs r aur/axs + aus/axr 1, (57)

1
2
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it is easy to see from equation 56 that the unit extension of every
infinitesimal element emanating from P in the arbitrary direction n is
determined by
e=¢€, . n.0g . (58)

Soil engineers may wonder how the traditional shear strain concept
fits into this definition of strain, but it can be shown (see, for
example, Reference 17, p.121) that the off-diagonal terms of the tensor
€ 1is approximately equal to half the decrease, Yrs' in the right angle
initially formed by the sides of an element initially parallel to the
directions specified by the indices r and s. This only holds for the
small strain assumption where the angles are small compared to one
radian. Another important geometrical measure is the volume change or
dilatation, and, if second order effects can be neglected (i.e. terms

such as [3ur/3x ur/axtlpl are small), the reader can easily verify

slP 9
that the volume strain (dV/V,) is equal to the first invariant (or
trace) of the strain tensor g (or in indicial notation, e ).
Throughout this report, the strain deviator (in analogy to the stress

deviator §) is denoted by e sc we can write its components as:

eij =gy T le 6. . (59)

w w

Since, like stress, strain is a symmetric second order tensor, the
whole development of principal strains and invariants parallels the

previous discussion for the stress tensor.
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B. STRESS-STRAIN EQUATIONS AND CONSTITUTIVE THEORY

In order to solve statically indeterminate problems, the engineer
relies upon: a) the equations of equilibrium, b) the kinematic ?;
compatibility conditions, and c¢) a knowledge of the load—deformation
response (or stress-strain constitution) of the engineering material o
under consideration. As an aside, it may be useful to remind the soils o
engineer of two elementary definitions which are not part of the 5
everyday soil mechanics vocabulary: first, kinematics is the study of
the motion of a system of material particles without reference to the
forces which act on the system, and secondly, dynamics is that branch
of mechanics which deals with the motion of a system of material !
particles under the influence of forces, especially those which i
originate outside the system under consideration. For general L
applicability, the load-deformation characterization of the solid media
is usually expressed in the form of a constitutive law relating the
force-type measure (stress) to the measure of change in shape and/or o
volume (strain) of the medium. A constitutive law therefore expresses X
an exact correspondence between a man-made action (force) and an effect ;$
(deformation) which is due to nature., The correspondence is functional {3
- it is a mathematical representation of the physical processes which
take place in a material as it passes from one state of equilibrium to
another (Reference 26). This is an approriate point to interject and

briefly clarify the meaning of the adjective functional.

Let us return to the sand mass which contains particle P and extend

the discussion to include M discrete granules (Py) contained in the

<
mass. Say that the sand mass was subjected to a system of boundary ;;3
S
31 SN
4
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loads which induced a motion of the granular assembly while a scientist

painstakingly recorded, at N prescribed time intervals, the location of

KA 5y v

each of the M particles using a spatial reference frame x. The data log

therefore consists of the location of each particle M (xy) and the time
- at which each measurement was made (t'). At the current time t (2 t'),
we are interested in formulating a constitutive relationship which
gives us the stress at point P, and, in our attempt to construct a
model of nature, we propose to derive such a relation based on the MN
discrete vector variables we have observed; i.e., the M locations Xy at
g: N different times t' (£ t). In other words, stress at P is a function
of these MN variables. This function converges to the definition of a
functional as the number of particles M and the discrete events in time
set t' approach infinity.

In this investigation, we are solely interested in the following:

a) evaluating the performance of certain recently proposed constitutive

postulates, and, if necessary, b) proposing and implementing

modifications to these existing models such that the influence of

- ‘,- ',- .‘- l‘-

principal stress axes rotation on material response is captured.

-
Ol

Without too much intellectual effort, we can tender a simple
stress—strain relation of the form
- %5 " Cigk1 Sa

.. or inversely,

(60)

o &1 = Pk1ij 913

where the fourth order tensors (with 81 components) C

(61)

and D

klij are

1jkl

called the stiffness and compliance tensors respectively. Note that the

number of components necessary to define a tensor of arbitrary order

AN

§
¥
b
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"n" is equal to 3n. Alternatively, we may view the stress—-strain

formulation on an incremental basis and write

955 = Cijk1 Sk (62)
or inversely,
€ ; (63)

k1 = D1ty %13
where the superposed dot above the stress and strain tensors symbolizes

that these tensors are differentiated with respect to time. é and é, as

they appear in equations 62 and 63, are termed the stress rate and

strain rate respectively. If the "step by step" load-deformation model

is further idealized to exclude the influence of rate of loading, we

can then write the resulting rate—independent equations as:

dcij = Cijkl dskl, (6u)
or inversely,
de (65)

k1 " P11y %945

where dg and dg are the stress increments and strain increments

respectively. The constitutive equations considered in this report are
all of the rate-independent type.

In the formulation of general, rate independent, incremental
stress—-strain formulations, our objective is one of identifying the
variables which influence the instantaneous magnitudes of the
components of the C or D fourth order tensors. Such a study bears
resemblance to many other specialized disciplines of civil engineering;
the econometrician, for instance, may determine by a selective process
that the following variables influence the price of highway
construction in a state for any given year: cost of labor, cost of

equipment, material costs, business climate, and a host of other




;i

E“ tangible and intangible factors. The soils engineer, perhaps using the ::
h: econometrician's techniques of regression analysis and some of his '
tf personal experience, can easily identify several factors influencing )
‘ soil behavior. Some of these more important variables in soil mechanics =
;i which come to mind are: the history of the stress, gt; the magnitude of {3
Li the stress increment, dg; the history of the strain, gt; and the "n" -
% so-called internal variables, 9, that contain information regarding: g

a) the microstructural properties of the material, and b) discrete .

events such as abrupt changes in the loading process. We can therefore

write a general functional, rate—-independent, incremental stress-strain é;
{f relationship in the form -
' de = d; (gt, gt, dg, g,) » (66) -
3 and our study in this report centers around the use of special cases of ;;

the relation in equation 66 to model soil behavior. ~
i A basic difference between the econometrician's model and the
- mechanician's load-deformation model must be highlighted: the
“ mechanician is dealing with dependent and independent variables which ?i
% are physically significant while the econometrician is concerned with o
L "~
ﬁ variables which may frequently be intangible. Therfore, in the N
% selection of constitutive variables (such as stress and strain), and in f?
;; the actval formulation of the stress—-strain equations, certain physical
i and mathematical considerations have to be satisfied. These conditions E:
E: are embodied in the so-called axioms or principles of constitutive ..
Z_ theory. Since geotechnical engineers are, for the most part, interested S8
S: in isothermal processes, the principles which concern thermomechanical ii
l events will be suppressed in the sequel. ~
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Action rules out any appreciable effects on the stress at P that may be

M A T A A Al A sl B

The Axiom of Causality states that the motion of the material

points of a body is to be considered a self-evident, observable effect
in the mechanical behavior of the body; any remaining quantities (such
as the stress) that enter the entropy production and the balance
equations - i.e., the equations of conservation of mass, balance of
momentum, and conservation of energy - are the causes or dependent
variables.

The Principle of Determinism infers that the stress in a body is

determined by the history of the motion of that body; this axiom
excludes the dependence of the stress at P on any point outside of the
body and any future events,

In the purely mechanical sense, the Axiom of Neighborhood or Local

&

[
b

caused by the motion of points distant from P,

B .'\'J

[y x
P WPy

During the discussion of stress and strain, it was made quite clear iy

1

that the tensor measures should be independent of the perspective of
the observer, and it is therefore instinctive to suggest a similar
constraint for the constitutive equations. This requirement that the
constitutive equations be form-invariant with respect to rigid motions

of the spatial frame of reference is known as the Principle of Material

Frame Indifference or Objectivity.

Finally, the Axiom of Admissibility states that all constitutive

equations must be consistent with the basic principles of continuum
mechanics; i.e., they are subject to the principles of conservation of s

mass, balance of momenta, conservation of energy, and the Clausius-

Duhem inequality.
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C. A NOTE ON STRESS AND STRAIN IN GRANULAR MEDIA

The concepts of stress and strain discussed in the previous
sections are closely associated to the concept of a continuum which
effectively disregards the molecular structure of matter and
mathematically treats the medium as if there were no holes or gaps. The
following quotation from Lambe and Whitman (Reference 27, p.98)
succintly summarizes the applicability of the continuum stress measure
to granular materials:

....when we speak of the stress acting at a point, we
envision the forces against the sides of an
infinitesimally small cube which is composed of some
homogenous material., At first sight we may therefore
wonder whether it makes sense to apply the concept of
stress to a particulate system such as soil. However,
the concept of stress as applied to soil is no more
abstract than the same concept applied to metals, A
metal is actually composed of many small crystals, and
on the submicroscopic scale the magnitude of the forces
vary randomly from crystal to crystal. For any material,
the inside of the infinitesimally small cube is thus
only statistically homogenous. In a sense all matter is
particulate, and it is meaningful to talk about
macroscopic stress only if this stress varies little
over distances which are of the order of magnitude of
the size of the largest particle. When we talk about
about stresses at a "point" within a soil, we of.en must
envision a rather large "point".

Local strains within a statistically homogenous mass of sand are

the result of distortion and crushing of individual particles and the

relative sliding and rolling velocities between particles. These local

strains are much larger than the overall (continuum) strain described
in subsection II A.3. The magnitude of strain caused by a stress will
in general depend on the composition, void ratio, past stress history,
and the manner in which the stress is applied. In soil mechanics

terminology, composition is a descriptive term that includes the
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average particle size, gradation of the particle sizes, angularity of
the particles, and the mineral type.

Figure 2 illustrates typical qualitative load-deformation behavior
for loose and dense soil media subject to two conventional laboratory
stress paths: hydrostatic compression, and conventional triaxial
compression. Figure 3 shows these paths together with an assortment of
other 'triaxial' stress paths used for research as well as routine
purposes. Note that, in this context, the adjective 'triaxial' is
somewhat ambiguous since this particular test scenario dictates that
the circumferential stress always be equal to the radial stress, The
stress state is therefore not truly triaxial, but biaxial. As we can
gather from figure 2, the stress—strain behavior of soil is quite
complicated, and, in order to approximately model the real behavior,
drastic idealizations and simplifications are necessary. The major
presuppositions in most popular postulates are that a) soil response is
independent of the rate of loading, b) the interaction between the
mechanical and thermal processes are negligible, and c¢) the strain
tensor can be decomposed into an elastic or recoverable part (ge) and a
plastic or irrecoverable conjugate (gp) without any interaction between
the two simultaneously occuring strain types; i.e.,

€ = e+ P, (67)
or on an incremental basis,
de = de®+ aeP . (68)
The elastic or recoverable behavior (ge or dge) is treated within

the framework of elasticity concepts while the irrecoverbale part (gp

37
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NAME OF TEST

Standard

DESCRIPTION
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Designation
Conventiqnal Triaxial CTC ATy = Aoy = O, Acy >0
Compression
Hydrostatic Compression HC Aoy=Ac0y =00y >0
Conventional Triaxial =
Extension CTE Aoy =80, >0; Aoy =0
Mean Normal Pressure TC Ao+ Aoyt ATy=0;
Triaxial Compression Aoy>00, (=40, )
Mean Normal Pressure TE Qoy+8o;+ Aoy =0;
Triaxial Extension 8o, =00,>00,
Reduced Triaxial - _
Compression RTC 00, =40;<0; 8oy =0
Reducgd Triaxial RTE Ao,<0; Aoy =A0, =0
Extension y
A L

A 0x=0.
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|
2
2 HC 3P=0,+20,
|
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Figure 3. Typical Stress Paths Used to Investigate Stress-Strain Response
of Solid Cylindrical Soil Specimens.
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or dgp) is based on plasticity theory; both these theories will be
capsulized in later sub sections.

Three broad classes of continuum theories have evolved in the
development and advancement of soil stress-strain models (Reference
28): 1) the kinematically ambigous theories, 2) the phenomenological
theories, and 3) the microstructural theories.

The kinematically ambigous hypotheses employ the stress equations
of equilibrium in conjunction with the Coulomb yield condition to form
a system of equations relating the components of the stress tensor.

This class of theories is referred to as kinematically ambiguous

because displacements and strains do not appear in the basic =3uations
of the theory. These theories assume the entire medium is in a state of
incipient yielding. The information obtained from these theories is
useful, but limited because the theories do not predict strains or any
results that follow from a specific stress—strain relation. An example
of this type of formulation can be found in Cambou's work (Reference
29).

Phenomenological continuum theories endeavor to devise constitutive

relations based on experimentally determined stress-strain curves., This
class of theory is presently the most popular and focuses on the
macroscopically observable and controllable stress and strain variables
without inquiring too deeply into the detailed mechanisms which control
the process of deformation. A controversial assumption of the
phenomenological continuum theories is that che test procedures for
granular materials, such as the conventional triaxial test, achieve

homogenous states of strain and stress, and therefore determine local

40
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'I stress—strain relations. Research attention in the study described
erein is targeted toward this type of model.

The microstructural theories attempt to incorporate geometric

measures of local granular structure into the continuum theory; this

,! theory 1is then used to predict the influences of the microstructure on ;
s the stress-strain relations. This local granular structure is also i
~} called fabric and is defined as the spatial arrangement and contact ?
ik areas of the solid granular particles and associated voids. An example Gi
of this type of formulation can be found in the Nemat-Nasser and ;g

- Menrabadl reference (Reference 30). The next major topic heading is ;;
S

dedicated to 2laborating the concept and significance of fabric

v
.
TR

anisotropy in granular material.

-
SRR

D. FABRIC IN GRANULAR MATERIAL
The fabric of earthen materials are intimately related to the Q}

mechanical processes occurring during their natural formation (or test

!! sample preparation) and the subsequent application of boundary forces.
We can look at process of fabric evolution in terms of the deformation
that occurs (kinematics) or the stresses that are acting (dynamics).

- Strains that accompany the stresses are influenced by the symmetry of

the applied stress system, and, to some extent, by the symmetry of the

sand's directional stiffness or fabric, If straining is continued to a

o
‘ relatively high level, we may expect that the initial fabric will

:;; develop such that its orientation aligns itself with the symmetry

. pattern of the applied stress system. Before introducing and discussing

ii

a select group of microscopic fabric measures, some of the pertinent

4
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ll symmetry patterns generated by combined kinematic and dynamic boundary
conditions will be addressed.

Triclinic symmetry implies that the media possesses no plane or
axis of symmetry, and is produced during complex deformations. Gerrard
(Reference 31) presents a simple example of uow this most general and
least symmetric system may arise: triclinic symmetry may develop from
compression in direction 1 (see upper left sketch in figure 4), with
differential restraint in directions 2 and 3, coupled with shear
components acting in directions 2 and 3 on the plane having its normal
to axis 1, Geometrically, this fabric configuration may be referred to
Dy three non-mutually perpendicular axes of different length.

In the monoclinic system, there is a single plane of symmetry such

that any two directions symmetric with respect to this plane are

equivalent. An example of this type of symmetry is shown in the lower
i{j left of figure 4 where the anisotropic structure may be created by the

following concurrent events: a) compression acting in direction 1, b)
. deformation being prevented in the 2 and 3 directions, and ¢)

application of a shear stress component in the direction 2 acting on

the plane having its normal to axis 1. By slightly modifying this

i
i

monoclinic symmetry example, we can demonstrate an instance of n-fold

wr

g axis symmetry, more commonly known as cross-anisotropy in soil

iﬁ mechanics, This can be accomplished by excluding the shear stress

. application in the previous example with the result that an axis of
- symmetry is produced such that any direction normal to the axis is
- equivalent (see bottom right of figure 4),

-
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The orthorhombic symmetry group can best be described by bringing
to mind the true triaxial device. Here, for example (top right of
figure U4), three mutually perpendicular planes of symmetry can
originate from pure compressions of different magnitudes on the faces
of the cubical sand specimen. Lastly, the rarest natural case (but most

common idealization) is spherical symmetry or material isotropy which

implies that all directions in the material are equivalent, and
therefore, there are no dominant directions with regards to
deformation.

The selection of the internal variables, 3p to characterize the
mechanical state of a sand medium (see equation 66) has been one of the
major themes provoking much discussion at two recently organized
symposia on the load-deformation response of granular materials: 1) the
IUTAM Conference on Deformation and Failure of Granular Materials held
in 1982 at Delft, Netherlands (Reference 32), and 2) the U.S.-Japan
Seminar on Continuum Mechanical and Statistical Approaches in the
Mechanics of Granular Materials which took place in 1978 at Sendai,
Japan (Reference 33). There is no doubt that the initial void ratio (e
= VV/VS, where Vv = volume of voids, and Vs = volume of solids) is the
most dominant geometric measure, but as Cowin (Reference 28) poses:
"Given that porosity is the first measure of local granular structure
or fabric, what is the best second measure of local granular structure
or fabric?", This important topic will be examined briefly in the
following paragraphs.

An anthropomorphic description is perhaps ideal for introducing the

reader to the concept of fabric in granular material. Let us assume for

by
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illustrative purposes that, through detailed experimental
investigation, we have identified a microscopic geometric or physical
measure (say variable X) which serves as the secondary controlling
factor to the void ratio in interpreting the stress-strain response of
sand. Some of the suggestions for the variable X have been: 1) gradient

of the void ratio de (Reference 34), 2) orientation of the long axes of
9X

the particles (Reference 35), 3) distribution of the magnitude and
orientation of the inter-particle contact forces (Reference 29), 4)
distribution of the inter-particle contact normals (for example,
Reference 36), 5) distribution of branches; note: a branch is defined
as the vector connecting the centroids of neighboring particles and it
is thus possible to replace a granular mass by a systems of lines or
branches (Reference 37), 6) mean projected solid path (Reference 38),
and 7) mathematical representations in the form of second order tensors
(Reference 39).

A commander (mother nature) of an army (the set representing the
internal variable of the sand medium) always stations his troops
(variable X) in a configuration which provides maximum repulsive effort
to an invading force (boundary tractions). This means that the highest
concentration of variable X will point in the direction of the imposed
major principal stress, If the invading army (boundary tractions)
withdraws (an unloading event), we should expect the general (mother
nature) to keep his distribution of soldiers (X) practically unaltered.
It is an experimental fact that there is always some strain recovery

upon unloading, and this rebound is caused partly by elastic energy

:
£ i




|
.:_ -
b
g. stored within individual particles as the soil was loaded and partly by ;:
\S inelastic reverse sliding between particles., Traditionally, it has been )
,E convenient to regard this unloading strain as purely elastic, but, in %;
;ﬁ reality, it stems from microstructural changes due to changes of the . =
;; fabric and should be considered as a dissipative thermodynamically -
: irreversible process (Reference 40). Returning to our anthropomorphic N
description, we can therefore say that the general (mother nature) has
- a built-in command to slightly modify the arrangement of troops (X)
f once the offensive army (boundary tractions) has been removed. Tne )
e configuration of the defensive forces (distribution of X) after ;;
K complete or partial withdrawal of the aggressor (complete or partial .
Ef removal of the boundary loads) still however reflects the intensity and ~
}: direction of the earlier attack (initial application of the system of ié
boundary loads). This represents an induccd fabric or stress induced
anisotropy in our granular material. ;
We can create additional scenarios with our anthropomorphic model ..
ot to manifest other features and considerations of fabric anisotropy. !!
;i During the initial placement of the forces (initial distribution of the R
;i variable X during sample preparation or during natural formation of the
:f 30il deposit) under the general's command, there is a bias in this S?
:g arrangement which is directly related to the general's personality
:{ (gravity as a subset of mother nature). This is the so-called inherent ;j
- anisotropy (Reference 41) of soil which differs from the stress-—induced .
';i anisotropy mentioned previously. Say, by chance, the invading army .
::: (boundary tractions) attacks the defensive fortress (sand mass) with a T
f; uniform distribution of troops (uniform distribution of stress :3
o
o 46
v gi
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.‘ vectors), we will expect the maximum penetration (strain) at the
weakest locations (smallest concentration of X), but our wise general
(mother nature) should take corrective measures to prevent intrusion by

the enemy forces (boundary tractions) through the inherently vulnerable

E! sites (points of initially low X concentration). We can relate this }
Q{ situation to the effect of increasing hydrostatic pressure on an ;
R inherently cross-anisotropic sand specimen; the results of such a test
= carried out by Parkin et al. (Reference 35) shows that the ratio of the

incremental horizontal strain to incremental vertical strain decreases
;; from about 6 to 2.5. This shows that the influence of increasing

.

nydrostatic pressure is to decrease the degree of anisotropy, but it
- does not completely wipe out the inherent anisotropic fabric. We can

also therefore see that the general (mother nature) cannot reorient his

forces at will since he is faced by the annoying internal constraints
(particles obstructing each other) which plague most large and complex

organizations (the microscopic world of particles sliding and rolling

past each other). These very same impediments are also manifest in the

S

o case of stress—induced anisotropy.

S We can now investigate the more complex situation of a virgin

ff loading with its accompanying fabric induction followed by unloading ]

i and then a reloading event with rotated principal stress directions. ﬁ

i; This is useful in extending the discussion of the progressive g
development of anisotropy during the application of deviator stress as f
opposed to the situation for hydrostatic compression described in the ;

o preceding paragraph. Experimental evidence indicates that the principal :

=

directions of fabric (i.e., principal directions of the distribution of

47
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X or the second order tensor representation) match the principal

directions of the applied stress tensor during a virgin or prime

loading event, even with the continuous rotation of the principal
directions of stress (Reference 42)., Again, the question of the
influence of microscopic hindrances to the realignment of particles and
hence fabric inductivity is one of fundamental research interest. Oda
et al, (Reference 43) has shown, through microscopic studies, that the
distribution function describing the orientation of contact normals
does not change significantly once the material starts to dilate. So,
if we can isolate the contact normal density function as a
representative measure of fabric, it is safe to assume that fabric
induction ceases when the granular material starts to distend.

Of the range of earthen materials, the influence of inherent as
well as induced anisotropy on uncemented granular deposits (like sand)
is greatest. Based on the discussion presented in this subsection, we
can now ldentify two of the internal state variables (gn of equation
66) which provide information regarding the stress-strain-strength
response of sand: 1) the initial void ratio, and 2) the fabric measure
which may be phenomenological or micromechanical, depending on the

level of observation.

E. ELASTICITY

We now turn our attention to the mathematical models used to
simulate the stress~strain response of soil. In this section, we
summarize the essential features of the three broad classes of

elasticity-based constitutive models (References 44 and 45): 1) the
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Cauchy type, 2) the Hyperelastic (or Green) type, and 3) the
incremental (or Hypoelastic) type. Although, in the strict sense, the
definition of an elastic body implies fully recoverable behavior, we
can, for mathematical convenience in some instances, suppose that all
strains are "elastic" and thus disregard the decomposition set forth in
equations 67 and 68. This assumption has been appliec extensively in
the modeling of soil behavior, but we should note that this
idealization is only suitable for a limited class of problems wherein a

monotonically increasing load prevails.

1. Cauchy Type Elasticity
Recall from equation 66 that we can select the strain
increment to be a function of several variables
de = d; (gt. gt, dg, g)
if we assume that this relationship is not a functional (i.,e. not a
function of a function such as gt or gt) but merely a function of its
independent variables (i.e., the current state of stress, g, or strain,
€), *then the incremental relationship is not dependent on the stress
path or strain path followed to get to the current state of stress or
strain, With this assumption, we can restate this idealized stress-
strain relationship as:
de = dg (g, dg, g_) - (69)
If we then further presuppose the nonexistence of any significant
internal variables, equation 69 can be simplified to obtain a Cauchy

type formulation of the form

de = de (g, dg) , (70)
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or inversely,

a5

dg = dg (g, de) , (T1)

2
PR
Ta‘na

where the current state of stress depends only on the current state of

strain or vice-versa. The stress-strain behavior described by equations

Al

70 and 71 is reversible, but it has been shown that this type of
formulation may generate energy during a load-unload cycle (Reference

L4), thus violating the axiom of admissibility stated in section II B.

A comparison of equation 71 with equation 64 shows that we may g

b

write an incremental Cauchy elastic stress—strain relation in the form )
4055 = Cyge1 981 =

where the components of the fourth order, elastic stiffness tensor, c,

.
SV

is only dependent on the present components of the strain tensor, €. In

order to provide some insight into the formulation of this type of

elasticity relation, the most uncomplicated elastic constitutive

relation will now be derived.

v
e S

Let us proceed by first assuming that the body is isotropic (i.e.,

it has spherical symmetry as described in section II D). This implies

that the fourth order stiffness tensor C is also isotropic in the sense

el
.
AR

that its ccmponents are equivalent for all rectangular Cartesian

coordinate systems. By generalizing the second order tensor ?3
transformation formula (equation 13) to its fourth order equivalent, we

!

obtain :j

' - ' '

Cijkl Qip qu ri le Cpqrs (72) 'é

as the transformation rule for the "elastic" stiffness tensor C. With !

the isotropy assumption, we expect the response to be indifferent to E;
the orientation of the observer and hence we must also insist that C be

3

.'_1

’.r’
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equal to C'., A fourth order isotropic tensor - which obeys this
transformation rule and satisfies the requirement that C = C' - can be
constructed from Kronecker deltas, §, defined earlier in equation 18
(see, for example, Reference 22, p.211). The most general isotropic
tensor of the fourth order that can be built up from the Kronecker
delta is

= A8 8 +usd, 8., +v$ 8

ik “Jj1 il (73)

C1 k1 1j "kl k7

where A, u, and v are invariants. Since § = §', equation 73 transforms
according to the rule stated in equation 72 to give C equal to C'. To
simplify the solution still further, we must mention the fact that, by
definition, the strain tensor, g, is symmetric (see equation 57); i.e.,
Ekl = €k Consequently, there is no loss of generality in writing

Cijkr = Cijik ° (74)

and by substituting equation 73 into equation 74, we have

A 6ij le +u Gik Gjl + v Gil ij =
A Gij le +u 611 ij + v 61k 6j1 ’ (75)
which simplifies to
(w = v) (éik i1 °” 611 Sjk ) =0 , (76)

such that y = v, With this equality, equation 73 then becomes

Cijkl = ) Gij 6kl +u (Gik 5j1 + 611 ij) ’ 77
where A and y are the elastic Lame constants. If we utilize the
deviatoric stress and strain tensors (3 and e) together with the
volumetric strain (emm) measure, we can compare these Lame constants to
the more familiar elastic constants such as the bulk modulus K (=

dokk/[3 demm]), and the shear modulus G (= dsij/[2deij]). This can be

effected by writing out the isotropic elastic stress-strain relation
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doij = [ )\Gij 6kl+u (dik 6j1+6il ij) ]dekl =
= A Gij demm +2u deij , (78)
where demm is the incremental volumetric strain or dilatation (section :ﬁ
II.A.3). By multiplying both sides of equation 78 by the Kronecker -
rﬁ
delta, Gij’ we obtain the bulk modulus in terms of A and y as follows: )
dokk = 3 de . * 2y demm R (79) :?
or -
-
dokk/3 de, =~ = K=x+2u . (80) i
3 3
We can determine the expression for the shear modulus Dy .
substituting -
dojg = dsyy * % oy 94 b
and
deij = deij + % dskk 6ij o
into equation 78; this leads to wr
dsij + % d°kk Gij = A Gij dsmm + 2y (deij + % dekk Gij)’ ]
and upon substitution of the relation in equation 79 into the Fi
expression above, we obtain .
\_;
dsij/2 deiJ =G=yu ., (81)
This rather lengthy discussion of the Cauchy elastic formulation is f%
justified since it has been, and still is, extensively used in soil
mechanics to simulate nonlinear behavior (see, for example, References E;
46 and 47). The technique usually invloves making K and G scalar )
functions of the stress or strain state, -
i::
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2. Hyperelasticity or Green Type Elasticity
Green defined an elastic material as one for which a strain
energy function, W, (or a complementary energy function, Q) exists
(see, for example, Reference 17). The development of this category of
elasticity models was motivated by the need to satisfy thermodynamic
admissibility, a drawback of the Cauchy elastic model. Stresses or

strains in this idealized material class are computed as follows:

.. = oW R 82
"1 7 5 02
1)
or
€.. = a0 . (83)
+d a0
iJ

For an initially isotropic material, the strain energy function, W,

can be written as

og; = W 3L, + W I, + W 3I, (84)
b3, Je;; L, ey, 30, de
= ¢x 61j + ¢2 Eij + @3 Eim €mj , (85)

where

W= W(il, Iza I) =4, + Ay I, + A, I, + A, i% + A, I+

condition aoi/afj = a¢j/afi; this last condition ensures the symmetry

As I, I, +Ag I, + A, I? +Ag 121, + A, I, I, +A,, 12,
(86)
= ey Io=1ejyeg a
2 _q
L= 1 Sn Skn mn ]
3 e
and @1 (1 = 1,2,3) are the response functions which satisfy the §$
.'1
-]

of the predicted stress tensor. To complete the model formulation, the

constants A, (k =1,2,..,10) are determined from experimental results.



Different orders of hyperelastic models can be obtained by
retaining higher order terms in equation 84; if, for instance, we keep
terms up to the third power, we obtain a second-order hyperelastic law.
Various aspects of soil behavior can be accounted for in this
formulation by using different orders of the model; for example,
dilatancy can be realistically simulated by including the third term of
equation 86. A detailed description of a hyperelastic formulation can

be found in Saleeb and Chen (Reference u4).

3. Hypoelasticity or Incremental Type Elasticity

This type of formulation is used to describe a class of
materials in which the current state of stress depends on the current
state of strain and the history of the stress gt (or the stress path).
The incremental constitutive relation is generally written in the form

dg = f(g , de) , (87)
where [ is a tensor valued function of the current stress, g, and the
strain increment, de. The principle of material frame indifference (or
objectivity) imposes the restriction that f obey the transformation
(see equation 14)

Q flg, de) Q = f£(@de @, Qg (88)

for any rotation, Q, of the spatial reference frame. When f satisfies
the stipulation of equation 88, it is known as a hemitropic function of

g and deg. A polynomial representation of f can be expressed in the form

(see, for example, Reference U5, p.256):

s
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dg' = f(g, dg) = o, tr(dg) § + a; de + a, tr(de) g' +

ay tr(g' de) § + 1 a, (de g' *+ g' dg) *+ a5 tr(de) g'* +
2

ag tr(g' de) o' + a, tr(g'? dg) & +

aa (dE 9!2 + gvz dE) + 0.9 tr‘(g' dS) 2'2 +

@10 tr(g'? dg) g' + @, tr(g'? de) ¢'? , (89)
where g' is a nondimensional stress (g/2u), u being the Lame shear

modulus of equation 78, a, (k = 1,2,..,11) are the eleven constitutive

k

constants, and "tr" denotes the trace operator of a matrix (i.e., the

sum of the diagonal terms). The constants a., are usually dimensionless
analytic functions of the three invariants of g¢g' which are determined Nk
by experimentation and by curve fitting.

The general form of the expression in equation 66 can be further

2]
classified according to the powers of the dimensionless stress tensor ;;
o
g' occuring on the right hand side of this equation. A hypoelastic body f:
of grade zero is independent of g' (i.e., dependent on g'°), and, in ;Q
N
=
this case, equation 89 reduces to g
dg' = f(g, de) = ao tr(de) § + o, dg (90)
by comparing this equation to equation 99, we find that
Ay = A and a, =1 .
2 u
Similarly, we can construct a hypoelastic constitutive equation of
grade one by including only the terms to the first power of g' in
equation 89. The hypoelastic body of grade one is thus represented by
dg' = f(g, dg) = a, tr(de) § + a, de + a, tr(de) g' +
a; tr(g' de) § + 1 a, (dg g' *+ g' de) ,
2
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and, as we can see, the description can be extended up to grade two

with the penalty being the task of having to fit a larger number of

parameters a, to the experimental data. These parameters must be

k
determined from representative laboratory tests using curve fitting and
regression analysis; this procedure often leads to questions of

uniqueness because it may be possible to fit more than one set of

parameters to a set of laboratory data.

F. PLASTICITY

Having outlined the theory used in computing the elastic, or
sometimes pseudo—elastic, component of the total strain increment (see
equation 68), we now turn to the unarguably more difficult subject of
the plastic or irrevesible component of strain, dgp. This topic
embraces the theory of plasticity, a mathematical tool which until 1952
(Reference U48) remained strictly in the domain of the metal physicist.
Over the last thirty years, the role of plasticity in soil mechanics
has increased in unison with the functional importance of electronic
computers as an engineer's working tool. Nevertheless, plasticity still
remains a mystery to many geotechnical engineers, and there is no doubt
that a newcomer to this field will encounter some difficulty in sifting
through the esoterically written literature on the subject. One of the
chief objectives of this section is to provide a feel for plasticity
theory by highlighting the fundamental postulates with emphasis on its

application to granular material.
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1. Yield Surface
Perhaps the best place to start talking about plasticity is to

introduce, or rather draw attention to, the concept of a yield surface

in stress space. To aid in this objective, the following notation is
adopted: rn and Un are the shear stress and normal stress components
respectively on a plane identified by a unit normal vector n.

In the calculation of the stability of earth structures,
geotechnical engineers frequently rely on the Mohr-Coulomb failure
envelope drawn in Tn - on space. This straight line is a failure
surface (or more precisely, a failure ggzzg) drawn in two-dimensiocnal
stress space while the particular solution technique is known as limit

equilibrium analysis, a method which provides no information on the

deformation prior to reaching the critical rn/on ratio. Failure can be
interpreted as the limiting combination of shear and normal stresses to
cause "unrestrained flow" in a soil mass, Yield (or a yield surface),
on the other hand, is the locus of stress component points in stress
space that mark the onset of plastic (or irreversible) deformation;
this description contrasts with the typical strain off-set definitions

used in metal plasticity. Correspondingly, we can construct a yield

curve in Tn - cn space to enclose a domain called the elastic range

(i.e., the totality of elastic states in which an infinitesimal change

of stress dg produces no permanent strain dgp). If we construct a very
simple model where we assume the soil to remain elastic until its
3tress state (i.e. rn and on) reaches failure, then the yield curve
coincides with the failure curve and we have what is called elastic-

perfectly plastic behavior (see figure 5e). Until the anomalies which
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Figure 5. ldealizations of Rate Independent Stress-Strain Behavior.
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:: curve in this space is then specified by a series of connected pairs =3
(17, ¢"]. The two coordinates of a point in V, are given as functions %:

-, 0
' [
- of a real parameter u (a $ u S b); i.e., &j

n n

) T o= f; (u), and ¢ = f,(u), (91) :%
- o
¥ where f,(u) are the two functions of the parameter "u" used in 3

N characterizing the curve, If, for example, we assign the functions ﬂ

fi(u) the following forms: ;?

N o
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result from the assumption of yield/failure locii coincidence can be
pointed out, it is helpful to think of both these concepts in terms of
a single surface.

In section II A.2, we established the fact that the stress state at
a point is represented by the nine components of the stress tensor g.
Therefore, it is necessary to generalize the representation of the
yield/failure surface from this two dimensional picture into a nine-
dimensional space. Although such a space need not be regarded as having
an actual physical existence, it is an extremely valuable concept
bDecause the language of geometry may be applied with reference to it

(Reference 22). We can call the set of values d,,, 0,2, 013y O215 T22s

Oz3» 03,5 03, and o, @ point, and the variables oij the coordinates.
The totality of points corresponding to all values of say N coordinates

within certain ranges constitute a space of N dimensions denoted by Vys

other terms commonly used for VN are hyperspace, manifold, or variety.

Before studying the analytical depiction of yield and failure locii
in hyperspace, it is advantageous to review the relevant elementary
geometric concepts of the familiar Euclidean space of two or three

. . n n
dimensions. If we are concerned with only two coordinates ¢ and t, a

ol e
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fy, =tan¢ u , and f, =u , (92)
we see that this parameteric representation of a portion of the curve
plots as a Mohr-Coulomb failure envelope in Tn - on space within the
limits: a g on S b. For the general nine dimensional stress space, we
can extend this description and define a curve as the totality of
points given by the equations

0. = f, (u) (r =1,2,..,9) . (93)

The parametric representation of a surface in three dimensional

space is an extension of the idea of a curve; instead of the dependency
of the three coordinate variables on a single constant u, the points
describing a surface are assumed to be functions of two parameters: u,
and u,. A fundamental property of a surface is the division of
neighboring portions of space into two parts (such as elastic and
plastic regions). Note that, in the definition of a surface, the number
of parameters, u, is one less than the number of space dimensions; this
observation allows us to carry the surface definition to nine-
dimensional stress space by writing

o, = fr(ul, Uz, Uzseenas,lg) (r =1,2,..,9) , (94)
where the u's are parameters and fr are nine functions. By writing out
the nine equations expressed indicially in equation 94, one may verify
that the eight parameters uy (i= 1,2,3,..,8) can be eliminated to give
a single equation of the form

F(o,,) = 0 , (95)

i

which represents a hypersurface in V The theoretician is therefore

90
confronted with the task of fitting an analytical function of the type
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i shown in equation 95 to the experimentally determined locii of stress :
states which bring about yield or failure.

f: If an existing testing device had the capability to subject sand

specimens to the six independent components of stress, the yield

function representation (of equation 95) could be stated in terms of )

the nine stress components. Unfortunately, such equipment is not

available at the present time, and the analytic functions proposed to
- represent the yield hypersurface of soil are founded on experimental
stress—strain data obtained from restrictive classes of test paths
(such as the true triaxial device and the conventional triaxial test).
These yield/failure surface representations are therefore either
generalized to nine-dimensional space or are assumed to model idealized
o3 isotropic materials, The latter assumption permits us to state a
failure/yield criteria solely in terms of the three principal stresses
(0,, 0,, and o, axes), thus, in effect, disregard any directional
stiffness or strength properties present in the medium, This leads to
!l an interesting geometrical consequence: in principal stress space, the :

yleld surface may be sketched using a piecewise smooth surface to which E

we can attach direct physical interpretation of the stress intensity N

= (or stress invariants). 1
Figure 6 depicts a yield surface in principal stress space. The R

hydrostatic axis is defined by g, = ¢, = ¢, while the other geometric

feature of importance, the deviatoric (or octahedral or w) plane ,is F

specified by the condition that the sum (¢, + 0, + 0,) be equal to a

constant; this plane, it turns out, is perpendicular to the hydrostatic -

m..

axis. If we perform a constant "p" test (i.e., a mean normal pressure
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Yield Surface

Hydrostatic Axis

(c’l :o’zz 0-3)
O]

Deviatoric Plane

@=54.74"— (oy+0,+ 0y 0)

o
03 !
Tresca
Mohr
Coulomb
-C
8=-30 3

Deviatoric Plane

Hydrostatic Point
(0y=0,z20)

Figure 6. Yield Surface in Heigh-Westergaard Cylindrical Coordinate
System.
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i' test, TC or TE of figure 3), the stress point remains on a single
deviatoric plane throughout the loading, and this provides a useful

iﬁl method for probing the shape and size of the yield surface's projection

(al

on the m plane. The influence of three aspects of loading on the

yield/failure criteria is manifest in this Heigh-Westergaard

cylindrical coordinate system: a) the shear stress intensity (/[2J,])

Ve~
W' B

is depicted by the length of the vector joining the stress state to the
point at which the hydrostatic axis intersects the deviatoric plane; b)

the relative magnitude of intermediate principal stress can be

calculated directly from the Lode angle 6 (see equation 37); and

finally, c) the effect of confining pressure on the yield/failure of

[imanmn]
R

frictional materials is easily visualized by noting the variation in

the size and possibly shape of the yield surface's m sections for
different levels of mean pressure (or distance along the hydrostatic
axis). In summary, we can therefors conveniently put equation 95 in the
form F(I,, vJ,, 8) = 0 to repesent the yield or failure functions for
isotropic materials.,

The much used Mohr-Coulomb failure criteria (Reference 49) for sand
is usually stated as:

(0, = g,) ¢+ (g, + 0,) = sin ¢, (96)

where ¢ is the angle of internal friction. If we combine this equation
with equation 41, the yield surface for the Mohr-Coulomb criteria in

terms of the stress invariants can be written as:

F=1I sin¢ +vVJ, { sine sin ¢ - cos e } =0, (97)
3 V3
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and a trace of this surface on the 7 plane is shown in figure 6. In
three-dimesional principal stress space, this yield function plots as
an irregular hexagonal pyramid with its apex at the origin for non- f;

cohesive soils. The other two m-plane projections in figure 6 are those

=
of the popular Tresca and Mises yield surfaces used in metal >
plasticity. Mises (Reference 50) postulated a yield representation of ;:.
the form -
F=vyJ, ~k=0, (98) B
{ where k is a parameter determining the size of the yield surface (i.e.
the yield stress). This criteria says that plastic flow will begin once ;;
the load-deformation process produces a critical strain energy of
distortion (i.e., the strain energy neglecting the effects of :
hydrostatic pressure and volume change). On the other hand, Tresca ;;
(Reference 51) proposed that the initiation of plastic flow can be -
| .
? correlated to the peak shear stress ({o, = 0,1/2); by employing L;
equation 41, this maximum shear stress yleld criterion may be -
mathematically expressed as: F!

F==-1 /J,[sin(g+Ul4m)-sin(e+2m) 1-k=0, -
V3 3 3 -
which simplifies to

-y

Fa= /J,cos8-k=20, (99) -

where k is again a parameter controlling the size of the yield surface. y

-

It is important to note that the functions written in equations 98 and =1

99 are both independent of the variable I, (i.e. the confining 3

“§

pressure) with the implication that yielding is non-frictional. This N

is, of course, a very unrealistic assumption in the characterzation of ;é
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drained soil behavior. An approximation to the Mohr-Coulomb law was put
forward by Drucker and Prager (Reference 48) as a modification of the
Mises yield criterion in the form of a circular cone. For cohesionless
soil, this yield function is written as:

F = 2 Sin ¢ Il - /Jz = 0, (100)
VY3 (3 - sin ¢)

where ¢ is the angle of internal friction of the material along a CTC

path (see figure 3). Even though the development of the Drucker-Prager
yield function was motivated by mathematical convenience, it is widely
applied in soil and rock mechanics; however, there is evidence that the
Mohr-Coulomb law fits the experimental data better (see, for example,
Reference 52).

By examining sketches of the above-mentioned yield criteria and the
hydrostatic compression load-unload stress-strain diagram in figure 2,
an obvious shortcoming in the soil mechanics application of these yield
criteria becomes evident: these yield surfaces are all "open" along the
hydrostatic stress axis and will thus predict no plastic strain for
loading paths directed out but away from the failure surface., Yet, from
the hydrostatic loading plotted in figure 2, we see that considerable
irreversible plastic volumetric strain is generated by this stress
path. In recognition of this deficiency, Drucker et al. (Reference 53)
capped the Drucker-Prager yield surface to reflect the difference

between yield and failure in soil, Nowadays, the modern versions of

this type of plasticity model are frequently referred to as cap-models

(Reference SU4).

65

B e T T et e A P o o N T T NPT B R AP RN
Ve . .
LT - 7w

.
g
A
IPRPVIRTYY W YA ST LD SSSIAREY | * ! | SAARININ S "IN

T ST T TG E W AN RO L W U A R

P




- 2
=y
&
< N
= »
‘l The development of more sophisticated laboratory equipment and s
-t stress—strain data has permitted researchers to refine the functional =
o
N forms of the yield surface in principal stress space. Using the results f%
of true triaxial tests, Lade and Duncan (Reference 55) have proposed a
-
-
S failure theory which incorporates the third invariant of stress and is had
{
" written as: .
A v .
'fd m .
-, F = (I3/I) (I/p,) -k =0, (101)
where Py is the atmospheric pressure, m is an exponent explaining -
: deviation from purely frictional response, and k is a size-controlling .
parameter of the surface, They also added a spherical cap to tnis E}
-
"open—-ended" function to account for the yielding during hydrostatic
compression.
Matsuoka and Nakai (Reference 56), on the assumption that the shear "
o
- stress to normal stress ratio reaches a limiting value on the mobilized —
ﬁ plane, have derived a quite simple form for the failure criteria for N
> h
- isotropic soils; i.e.,
: F= I,1,-k=0, (102) -
-h" I3 "
‘.‘
.l .-
\3 where k assumes the usual role of determining the size of the failure v
- oy
. envelope. The mobilized plane concept is a three-dimensional extension
-
b of the Mohr-Coulomb c¢riteria which accounts for the influence of t;
N intermediate principal stress, and this criteria, together with the .
" Lade surface (equation 101), appear to be gaining wide acceptance as o
{
-~ suitable yield/failure criteria for idealized isotropic sands. The :‘
) Mises, Drucker—-Prager, Lade, and Matsuoka surfaces have been shown by o
N 3
)
-:: 66 )
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Desai (Reference 57) to be special cases of a completely general third-

order polynomial in terms of the stress invariants, and it therefore
seems likely that, as more reliable and reproducible stress-strain data
becomes available, new failure/yield functions will emerge in the near

future,

2. Incremental Plastic Stress—Strain Relation

Given a yield surface enclosing an elastic domain, we are now
faced with the task of predicting the incremental plastic strain after
the stress point penetrates this region. If the yield surface does not
coincide with the failure surface, we will expect a finite value of
incremental strain when the stress state exits the elastic regime, The
subject of this sub-section deals with the computation of the
incremental plastic strain or, more generally, the mathematical theory
of plasticity. By definition, plasticity theory excludes any influence
of the rate of application of stress increment on the predicted plastic
strain increment.

In analogy to the flow lines and equipotential lines used in
seepage analysis, we can postulate the existence of a plastic
potential, G, in stress space which determines the direction of a

p

plastic strain increment vector, de , resulting from a stress increment

(Reference 50) ,

defj=xac ,A>0 (103)
Boij

where A is a scalar factor which controls the magnitude of the

generated plastic strain increment and, like the yield/failure




function F, G is a scalar function of stress., Inspection of equation
103 reveals that an isotropic plasticity theory will predict a plastic
strain increment vector with principal directions coinciding with those
of the stress tensor; recent experimental evidence (Reference 58)
indicates that this assumption may not be approriate for granular
materials. The magnitude (A) and direction (3G__) of this plastic
acij

strain increment, dgp, depend upon the variables listed in equation 66;
i.e., the stress history gt, the strain history gt, and any internal
variables of significance, Up to this point, three problem statements
of plasticity theory have been put forth: a) the determination of the
scalar factor A for computing the magnitude of the strain increment, b)
the so-called flow rule or direction of the strain increment vector
based on the gradient of a scalar function, G, constructed in stress
space, and c) the representation of the yield surface in stress space.
The yield surface concept has already been described so we will
continue here by first discussing the plastic flow direction and then
lead into the methodology used for calculating the scalar factor 2.

Geometrically, the flow rule can be interpreted as equating the
strain increment vector to the exterior normal of a proposed plastic
potential; conversely, we can view it as the superposition of
experimentally determined plastic strain increment vectors in stress

space followed by a back calculation to give a potential function such

that the strain increment vectors lie normal to this contrived surface.
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Mises (Reference 50) made the assumption that the yield surface and the

plastic potential coincide; i.e.,

de‘i’_. =1 3F (104)
- Boij
and this suggests a strong connection between the flow law and the
yield criterion. When this assumption is made, the flow rule is called

associated (i.e., the normality rule), but, if we do not insist upon

associating the plastic potential with the yield function (Reference

59), the flow rule is termed non-associated. The implications of the

normality rule, it turns out, are far reaching, and it is perhaps best
to provide some insight into the structure of the incremental plastic
stress—-strain relation by summarizing Prager's (Reference 60) treatment
of the subject. Essentially, Prager has formulated stipulations, which
are to be used in conjunction with the axioms of constitutive theory,
to establish admissible plastic stress-strain relations.

The first assumption is designed to preclude the effects of rate of
loading, and it says that the constitutive equation

ac® = ac® (g, ag, g) ,

must be homogenous of degree one in the stress increment dg. Recall

that homogeneity of order n ensures that

dgp = dgp (gt, Adg, g ) = A" dgp (gt. dg, gn), (105)

where A is a positive constant.
A simple example will clarify this seemingly complex mathematical
statement: suppose that an axial stress increment of 1 psi produced a

plastic strain increment of .01 % in the axial direction; this means
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that if A is equal to say 2, a stress increment of 2 psi (A x 1 psi)
will predict a plastic strain increment of .02% (A x .01%). Ideally
then, our solution should be independent of the stress increment
provided the stiffness change during the stress increment is

negligible. A very important particular case of equation 105 is when

~

the function dgp is linear; the linearity assumption allows us to write

the incremental plastic stress—-strain relation in the form

p
deij

Dijkl dckl ’ (106)
where D is a fourth order plastic compliance tensor function of the
stress history g”, n plastic internal variables Ay and m discrete

memory parameters Em' In a general sense, the linearity assumption

p

states that if all dokl are increased in ratio, all dekl

are increased
in the same proportion,

The second assumption, the condition of continuity, is intended to

eliminate the possibility of jump discontinuities in the stress—-strai-~
curve as the material's stress state either penetrates the elastic
domain (i.e., the yield hypersurface) from within or is unloaded from a
plastic state back into the elastic regime, To guarantee a smooth
transition from elastic response to elastic-plastic response and vice-
versa, a limiting stress vector, dgt, tangential to the exterior of the
yield surface should devzlop no plastic strain increment., The
mathematical constraint which results from the satisfaction of this
requirement will now be examined, Let us start by assuming that a
current stress state, g, lies on the yield surface (i.e., it satisfi:s

the condition F(g) = 0). An infinitesimal change of stress, dg, from
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i this plastic state [F(g) = 0] may lead to either of three possible =5
situations: o
a). an elastic state (unloading) 9F 1 dg <0 , (107) jff
9g -
' b). no permanent strain (neutral loading) 3F : dg = 0 , (108) :f:ﬂ
- og L
s
- or . ._'-_...1
- ¢). permanent strain (loading) o9F : dg >0 (109) :&ﬁ
BN L
. 2
: where the notation ":" 1is the double contraction operator (see, for Ufi
E instance, Reference 17) such that the scalar product oJF doij is ;;;3
Boij T"f%
X compactly written as 3F:dg. Next, we decompose an arbltrary stress .573
E s .
increment, dg, into its components normal (dgn) and tangential (dgt) to

| the yield surface

dg = dot + don .

The continuity condition states that the tangential component, dgt,
constitutes a neutral loading, and, hence, does not produce any plastic

strains., Consequently, the plastic strain increment magnitude, |d§p|,

is entirely dependent on the magnitude of the normal component of dg so

we may write

|deP| « dg : n = dg : VE/|VE| , (110) o

where n is the unit normal vector to the hypersurface taken in the l;ff
tal

direction of increasing F, and V is the symbolic operator del which %r*-

when placed to the left of a scalar function such as F(g) denotes the

gradient tensor JF.
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In his presentation of the restrictions imposed by the uniqueness _
condition, Prager (Reference 60) made use of the following boundary =
value problem: given the instantaneous mechanical state in a body E;
together with a system of infinitesimal increments of surface ‘
—
tractions, find the corresponding stress increments throughout the Ef
body. It is then reasonable to demand that plasticity theory predict =
unique solution to the protlem, but let us assume that the boundary z
value problem admits two solutions. Say these two solutions resulted in f§
a difference between the stress increments at a given point of the body K
equal to A(dg), and likewise, differences in elastic and plastic strain ‘if
{

increments equal to A(dge) and A(dgp) respectively. Now, the two
solutions correspond to the same increment of surface tractions, so by
the principle of virtual work, we expect the work done on the body {of
volume V) will be the same for both solutions; i.e.,

£, U aGdg) = (a(de®) + a(ae)} Tav =0, (111)

which means that the integrand must be positive definite. By virtue of

4 g Hooke's law, the quantity

.-Ez A(dg):A(de®)

f‘?- will always be positive definite 30 the uniqueness condition reduces to
;J:E one of showing

o A(dg):A(de?) (112)
;i; is positive definite. In the investigation of equation 112, three

?]i possible cases must be considered: 1) both solutions result in

:f:& unloading, 2) both solutions constitute loading, and 3) one solution is
ééﬁ an unloading event while the other is a loading process. In the first

case, dg? is zero for both solutions and equation 112 vanishes

K
Y
‘C.
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trivially. To investigate the second case, we label the two "loading"

solutions dg(1) and dg(z) and impose the restriction that the plastic

strain increment direction be such that equation 112 is always
positive. The limiting scenario occurs when dg(1) and dg(Z) are both
tangential to the yield surface but directed in an opposite sense; then
the only way equation 112 will be positive is if the plastic strain
increment is directed along the outward normal to the yield surface.
The arguments for case 2 parallel those for case 3, and we can thus
conclude that a sufficient condition for uniqueness of a boundary value

problem is that the flow rule be associated and that normality of the

plastic strain increment apply; that is,

daeP . « oF ) (113)
1 3q
ij

By combining the results of: a) the linearity assumption (equation

- 106), b) the continuity condition (equation 110), and ¢) the uniqueness

condition (equation 113), we can derive the flow rule as:

a®P = 1 _VF  (3F : dg} , K >0 (114)
K "TVE] 3¢ P

gl

where Kp is a positive scalar quantity known as the generalized plastic
modulus; also, this equation applies only when F(g) = 0 and a loading
event is in process (i.e., equation 109 is satisfied). For non-

associative flow, equation 114 can be modified to

4¢P = 1 96 (3F : dg} , K_>0 . (115)
K TGl 39 P
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The quantity

L = { : do} (116)

-
K
p

is frequently separated from equations 114 and 115 and is termed the

wlw
talm

loading function, L (Reference 4); this separation means that the flow
rule may now be condensed to
deP?. =L m (117)
ij ij ?

where mij are the components of the unit tensor gradient to the plastic

potential G.

The generalized plastic modulus, Kp, can be considered as a plastic

conjugate to the elastic modulus, E, which controls the stiffness of
the incremental plastic response. In plasticity theory, we must also

V* consider how the magnitude of the scalar Kp changes with the plastic
ﬁl internal variables q, {(PIVs). As the stress point penetrates the

ﬁ, initial yield surface and moves outward, we can model continued plastic

behavior by postulating that this yield surface either: a) undergoes a

size change, b) translates, c¢) rotates, d) changes its shape, or e)
experiences any combination of the four previous postulates, such that,

after the deformation, the surface satisfies the condition F(g + dg) =

0. In other words, the stress state went from one plastic state
[(F(g)=0] to another plastic state [F(g + dg) = 0], and when this

requirement is met, the consistency condition is said to be satisfied

-
-
(] during plastic flow. This type of behavior is known as work hardening

and idealized examples of such response are shown in figures 5f and 5g.

This subject is treated separately in the subsection which immediately

follows., The various postulates for the expansion, translation, etec. of

T4

L i I TR ) - : et TNt - :

T S B A T ST

A A R R A N D I A
SRR N G R O R CAR A ST S

AN

SO TP U S R S W0 W WU S0 Py WV WY, WE 0y U, (TR W Wty Yoty L g

]

e

ol

| gy

s

£t

{ A

LIS N PR
e T T AT T L AT




(R

P
TS
0]

Lt han T mon gl o a0 ekl Nl Mk St Sal A i iy

B R R
NG IR T )

C il aouil NS aRet ava S itk e e

the yield surface are called hardening laws, and further discussion of

this subject will also be postponed to a later subsection.

We can take two different approaches to obtain the functional
relation between plastic modulus and loading history. The first method
is simply demonstrated by coupling the stress with the plastic internal
variables and writing F(g, qn) = 0. The consistency condition therefore

requires that

= = N
dF gg doij + %E_ dq, o , (118
ij a9
p

and if we single out the nlastic strain tensor, €, as our only PIV,
then we can rewrite the consistency condition as:

dF = 3F__ do, + 3F de§j= o . (119)
p
aoij Seij
Substitution of equation 114 into equation 119 leads to

dF = gF :dg + JF = 1 VFE  {3F : dg} =0
)

39
from which one observes

K =-293F : VF , (120)

p ;;3 TVET

which completes the specificatio- of the flow rule. The task of
calibrating the plastic stress—strain relation is therefore one of
fitting the experimental stress—-strain data to obtain the variation of
F with gp for use in equation 120. An approach of this type is
discussed in some detail in section IV,

The second option for finding the plastic modulus as a function of
stress history is to assume that there are a field of nesting (i.e.,

non-intersecting) yield surfaces in stress space, each of which has a
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plastic modulus associated with it (References 61 and 62). Depending

upon the loading, a yield surface will translate and/or change its size
such that its resulting motion may engage an interior or exterior yield
surface which has its own unique set of plastic modulus parameters. In
this way, the plastic modulus can vary to reflect the loading history.
A model of this type is also discussed in some detail in section III,

Although it will not be pursued here, Prager (Reference 60) also
derived the consequences which result from the condition of

irreversibility, a fundamental assumption in plasticity theory. From

the thermodynamic standpoint, the condition of irreversibility requires
a positive rate of entropy production, and an in-depth discussion of
this topic, as it relates to soil media, can be found in Jain
(Reference 26). More general descriptions of plasticity and
thermodynamics considerations can be found in a series of papers by

Lubliner (see, for instance, Reference 63).

3. Drucker' Stability Postulate
With the mention of work hardening in the previous subsection,
it is approriate to now introduce one of the cornerstones of modern

plasticity theory: Drucker's stability postulates.

The meaning of work hardening in the case of a simple axial

compression test is just that the stress is a monotonically increasing
function of strain which implies that the deformation is stable.
Drucker (Reference 1) observes that the definition of work hardening is

not a simple picture for more general states of stress and paths of

loading where some components of stress may increase while others may




ST MRS

decrease. He then advanced the definition of material stability in

terms of the work done by the stress increment on the plastic strain
increment. In his 1950 paper, Drucker defines work hardening in the
following manner. Consider a material element in which a homogenous
state of stress g and strain g exists. Let an external agency, entirely
separate and distinct from the agency which caused the existing state
of stress and strain, apply small surface tractions which alter the
stress at each point by dg and produce corresponding small strain
increments de. Next assume that this external agency slowly removes the
added surface tractions thus relieving the elastic strain increments

e
de . Stability implies that positive work is done by the external

agency during the application of the set of stresses, or

do:de > 0 , (121)
and also, the net work performed by it over the cycle of application
and removal is zero or positive; mathematically, this means that

dg : (de - dg°) = dg:de® 2 0. (122)

It is emphasized that the work referred to is not the total work

done by all the forces acting, but it is only the work done by the
added set on the displacements which result. The latter postulate
(equation 122) can be rephrased to read: work hardening means that
useful energy over and above the elastic energy cannot be extracted
from the material and the system of forces acting upon it. Upon
examination of equation 122 (which is commonly referred to as
"stability in the small"), one can immediately conclude that this

p

postulate implies normality of de” to the yield surface. Drucker

(Reference 64) extended his postulates by considering the external
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agency to apply a finite set of surface tractions to the body with its =
=
*
initial stress state g residing within the yield surface at a
reference time zero. The external agency first causes the stress state 3
to move to a point, g (at time t), exactly on the yield surface; it .
o
then gives rise to an infinitesimal loading increment dg (with a "
corresponding dgp), over an arbtrarily short interval At, which now 1
moves the point to a neighboring point outside or on the initial yield -
o
surface. Finally, the external agency removes the stress increment dg ?j
* * -
and returns to ¢ (at time t ) along an elastic path. The net work done
(dwnet) by the external agency over the cycle is assumed to be positive o
and it is equal to the total work during the cycle (dwt) minus the work ~y
."S
* -
(dwo) that would be done during the cycle by the initial stress g ; hE
i.e., ot
t e t+At e
dw, = I (g:de™) dt + j [o:(de® + deP)] dt + -
’ t o
t e
f (g:deg”) dt . (123) =
t+At ﬁ
N
However, the net elastic work during the cycle is zero so equation
123 simplifies to .
t+At -
au, = f (g:deP) at (124) by,
t o
and similarly, we can show -
t+at, .
p
dW_ = j (g :de”) dt . (125)
o] = = .
t L
Therefore, o
LAt * Y
W = dW, - dW_ = [(g - g ):dePT dt >0 (126) =
d net t 0 e - C = ’ —
78
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and so by Drucker's definition, the following must hold

* p
(0 - g ):ide” >0 . (127)

With equation 127 (otherwise known as "stability in the large"),

convexity of the yield surface can be demonstrated as follows. To

satisfy the inequality in equation 127, all vectors g - g* must lie to
one side of the hyperplane which is normal to the strain increment
vector dgp; this must hold for all points on the yield hypersurface,
thus immediately proving that the yield surface is convex. This
completes our discussion of Drucker's stability postulate and we now
turn our attention to the questions concerning the suitability of the

normality rule in soil plasticity.

4, Applicability of the Normality Rule To Soil Mechanics

Jain (Reference 26) concludes that the normality rule applies
to materials which are: a) incompressible and their strength is not a
function of confining pressure, b) rigid plastic or elastic-perfectly Lfd

plastic, and c¢) cohesive., "Standard" materials are categorized as those

which follow the normality rule while "non-standard" materials do not
follow this rule. The undrained behavior of saturated normally
consolidated clays can be considered sufficiently close to "standard"
materials. There are, however, two ways in which non-standard materials
can make use of the normality rule: the first consists of using a non-
assoclative flow law (equation 115) with the added complexity of
finding a plastic potential surface G, while the second approach of

non-associative soil plasticity takes into account any deviation from a
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"standard" material by modifying the plastic strain increment vector “f

=
(i.e., the components 9F of the normality equation). For this second
alternative, observe from equation 104 that the incremental plastic .
-
volumetric strain (deik) and the incremental plastic deviatoric strain =
tensor de?j may be written respectively as follows: .
ae? = oF (128) "
kk 3
Tk
-~
and o
p
det ., = 2 3F . (129)
ij T T
ij o
-
In order to bring the analytical result for a "non-standard"
:. material in agreement with the experimental observations, the i:
{L volumetric component deEk must be modified by a factor A, and the .
!. deviatoric components de?j by a factor A,; equations 128 and 129 could 533
N {
3 then be put in the forms o
- p ol
- de,, = A A 23F (130)
3, |
KK ;
and o
=- p -0
g dei. = ) A, oF . (131) i
- J as, . !
X ij 4
To clarify the influence of the factors A, and A,, equations 130 s
:i and 131 may specifically be written for the 'triaxial' environment or EE
o p—q subspace as: o
avP = 2 A, oF (132)
- v ap \‘.\'
n and Ny
de® = 2 (de, - de;) = A A, _OF (133) -
3 RE §
\:\L
.‘?‘\
80 ,
“y
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where dvp/v is the plastic volume strain and d;p is called the plastic
equivalent shear strain. A geometric interpretation of equations 124
and 126 is sketched in figure 7. Figure 7a corresponds to the normality
rule (i.e., A; = A, =1) and figure 7b shows how the volumetric and
deviatoric components are modified to change both the magnitude and

direction of the resulting plastic strain increment vector. An

important consequence of this latter modification is that it results in
a non-symmetric incremental compliance matrix (the D matrix of equation
106). Finally, figure 7c¢ illustrates how the magnitude of the plastic
strain increment vector may be changed without altering its direction;
this is accomplished by setting A, = A, = A such that A is not equal to
unity.

Restrictions on the selection of the two factors A, and A, imposed
by stability considerations (of the previous sub-section) have been
discussed by Jain (Reference 26), and, he concludes that the modifying
factor A, must be positive whereas A, may take a negative value.
Examples of models where these parameters have been employed can be
found in the papers b, Sture et al, (Reference 65) and Prevost

(Reference 7).

5. Hardening Rules for Soils
Having reviewed the concepts regarding: a) the initial yield
surface, b) the plastic flow laws, and ¢) the work hardening
implications, we complete our discussion of the basic precepts of
platicity theory by surveying the analytical methods used to update the

size, the shape, and the location of subsequent yield surfaces during
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Figure 7. Diagrams Illustrating the Modifying Effects of the Coefficients
Ay and A2: (a) A] = A2 = 13 (b) A1 # AZ; (c) A] = AZ = A
(Reference 26).
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work hardening. It is the theoretician's objective to postulate a
hardening law (i.e., position/size/shape change of the yield surface)
which reflects as closely as possible the history of the deformation.
The geometrical properties of a yield surface or a field of surfaces
should characterize the current mechanical state of the medium and
reflect its loading history.

Let us continue our discussion by denoting the center of a yield
surface with the symbol £ and by assuming that its size is controlled
by the parameter k, a mathematical equivalent to, say, the radius of a
circle, If we adopt the approach suggested in equation 119 to determine
the plastic modulus, and disregard tne possibility of any shape
changes, the yield function can be written in the form

F(g, &y ky q)) =0 , (134)
where q, are the plastic internal variables., For this particular case,

the consistency condition will therefore be stated as:

dF = 3F : dg + OF : dg + OF dk + 3F_dq = 0 . (135)
30 3E 3K 3q,

Alternatively, if the field of work hardening modulii (or nesting
yield surfaces) model is chosen, there is no need to include q, as an
independent variable in F since the consistency condition, per se, will
not be used to determine the plastic modulus, However, the consistency
condition must still be invoked to ensure that the stress point moves
to another plastic state (F = 0) as the yield surface translates and

changes its size, For this type of model, the consistency condition is

stated as:
dF = 3F : dg + 3F : dg + 3F dk = 0 . (136
90 of ok
83
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The simplest work hardening assumption is known as isotropic

hardening (Reference 66). In this type of hardening the yield surface
is assumed to maintain its shape while only its size may change. This

assumption eliminates the translation term, 3F : d§, in equation 135,

33
and, in addition, it may be assumed that the size modification is

solely a function of the plastic deformation (i.e., plastic strain or

plastic work). These postulates form the basis for the critical state

model (or density hardening) in soil mechanics (Reference 67); in
geotechnical engineering parlance, this is the familiar void ratio (or
volume strain) versus the logarithm of the effective confining pressure
plot (e vs. log p'). Here, we assume the size of the yield surface is a
function of the plastic void ratio (ep), and using the consistency
condition

dF =~ 3F : dg + OoF 3k deP= 0, (137)
3g ak seP

we obtain the expression for the plastic modulus (see equation 120) in

the form
Kp = 3F 3k (1+e) 1_tr(VE) . (138)
ok deP |VF|

This class of hardening models is applicable to clays under
monotonic loading, and the Cam~clay model (Reference 67) and the cap
model (Reference 54) are examples of this particular formulation. These
models differ only in the form of the yield function. The disadvantage
of this model lies in its inability to simulate cyclic loading,
dilatancy, and hardening due to shear strains. The last two

shortcomings can be mitigated by the use of combined hardening
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(deviatoric and density), a class of hardening not covered in this

section but treated fairly extensively in section 1V, ;1

kﬁ For monotonic loading processes, the isotropic hardening model can Eé
be successfully applied to the solution of boundary value problems; i

ﬁ? however, for cyclic loading events, where hysteretic phenomena are of é;
- essential importance, the isotropic hardening model does not provide an 'f'
< accurate description. The isotropically hardening surface is usually 5
L3 defined by a large offset value and its interior domain i{s regarded as ;;
“ elastic. If after initial preconsolidation of a soil specimen, the Ef
l.k stress is slightly decreased, reverse plastic flow is experimentally Q%
. observed with the result that the unload stress—strain curve departs E%
f significantly from the elastic curve. In order to account for this ;i
QY effect, Prager (Reference 12) introduced his concept of kinematic ifi
hardening in which the center of the yield surface is assumed to ék

i translate in the direction of the plastic strain increment vector Eé
(dgp). In the application of this hardening rule, a problem arises: t:

although the yield surface remains rigid in stress space, it may not Zgﬂ

0 appear rigid in subspaces. To overcome this difficulty, Ziegler §§§
: (Reference 68) proposed that the surface translates in the direction of E;;
= a vector from the center of the yield surface to the loading point Tf5
) fi.e., dg « (g - §)]. Based on experimental observations however, E
; Phillips (Reference 69) has postulated that the yield surface ]
translates in the direction of the stress increment (i.e., df « dg). 7

The possible variations on the hardening law are endless, and, for E;E

>, additional discussion of research on hardening, the reader is referred ié

» to Naghdi (Reference 15). L;\

Y
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Among the topics omitted in this section are the Mroz kinematic
hardening rule (Reference 61) and the bounding surface concept
(Reference 4). These topics were omitted not because of any lack of
importance to soil plasticity; on the contrary, their consideration is
central to the presentation of the current research, Accordingly, one
of the more sophisticated anisotropic hardening rules is presented in
the section immediately following, while the bounding surface

philosophy is deferred to section IV,

6. Incremental Elasto—~Plastic Stress-Strain Relation
When elastic and plastic strain increments are occuring
simultaneously, the constitutive equations must be organized in a
compact but general form for computational purposes. The equation for
the total strain increment (equation 68) is written as:
de = dge + dgp ’
and if our test simulation is stress-controlled (i.e., dg is known), we

can compute the total strain increment by first combining equations 80

and 81 to obtain the elastic strain increment as:
e e e

deij = deij + demm 51j
= (dsij + 2G) + % (do,, + 3K) 8iy - (139)
In tensor notation, we may rewrite equation 139 in the form
ae® = 0¢ a0 , (140)

where Qeis the fourth order, incremental elastic compliance tensor,

Equation 140 can then be combined with equation 115 to yield the

86

T T T T T T T T e e T T W LT R S VR TP ST SR
e T R .:.‘, B L A ,,-.._-. . Cn I\,*‘,:“.‘r”—‘:: on 'r- B ._..\..-‘-._.\._.\_._“.‘\'.}".v.._
- g

~
e "e - ) NI v ’

A R A R A 3 e St . w e, o W\ L,

S T e R . Lo Pl Banhdied Al il Soche Kot Al it o dadiadon s dun e PR P




expression which can be used to directly compute the total strain

-
|

increment for a stress controlled test

/4
A ™

A de = D% dg + 1__ VG {3F : dg} . (141)
“ Kp |vg| og
If, however, a strain controlled test was being simulated, the f:
inverse relation of equation 141 will be needed. The algebraic —?j
operations in inverting the stress-strain relation of equation 141 can e
be carried out by first multiplying both sides of equation 141 by the :.
inverse of the Qematrix; i.e., %:
e, -! e, ~! “3
(D7) de = dg + (D) 1 VG {3F : dg} , (142) .
Kp IVQ 90 "
and if we replace VG by the unit tensor m , K /|VF| by the symbol Ci:
|V§| P R
-1 e
Ké, the normalized gradient to the yield function by n, and (Qe) by s
the incremental elastic stiffness tensor Qe, we can compactly rewrite =
equation 142 as: fi
e e ~%
C  de = dg + C 1_m{n: dg} . (143) s
K h [
p
The next step is to multiply both sides of equation 143 by the -
tensor n as shown below Z%
e e oS
n:Cide=p:dg+n:c _1_mi{p:dgl , o
K! il
P .
and from this equation we find i
1 n:dg = n: ¢c® de (144) =
K K' + n:iC:m

p p
Substitution of equation 144 into 143 gives

3

"l _l{
e

c®de=dg + (€% m) (n:CS de ,
e
K' + (n:C7:m
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from which we easily see

dg = [ C ) 1de . (145)

-~

If the flow rule is associated (i.e., m = n), the stiffness matrix
expressed in equation 145 exhibits the major symmetry, but if m is not
equal to n (i.e., non-associative flow) the matrix loses its major
symmetry and leads to increased computation costs in numerical

applications.

88

el el en e = n L. Y T 5 Coee -l e e el - «
ST ] - C AT SR L NN [P P T L L P L R LN * -
E N R A (S T T e T T S e e e e e K
. “ e R S R I e "R PtV e I I SR SR S AN SR (P SR SRR S AR
o) - PP n PSS NS, i At S B A i 2 a3 e af-;k_ AR DTN

JR2abatofnd et et S23 Sav Sab Sali Rbbag A 48R Sinits sty




e
&

SECTION III Lo

ELASTO-PLASTIC ANISOTROPIC HARDENING MODEL OF PREVOST

«lx"s
[
»

A. INTRODUCTION =
3 R
A The stress—strain behavior of soil is strongly nonlinear, E:f
;; anisotropic, elastoplastic, hysteretic, and path dependent. Although :;:
inherently anisotropic materials can be modeled to a certain extent by iiﬂ'
4: nonlinear elastic, and isotropically hardening elastic-plastic ;5?
constitutive models, features such as stress—induced anisotropy in ;2}
conjunction with rotation of principal stress axes cannot be simulated fff
by these classes of mathematical material models. Alternatively, more ‘Ti
general models which merge concepts from isotropic and kinematic

plasticity have been developed to realistically simulate the plastic *é:
behavior of soil when subjected to complicated three dimensional, and, E?
in particular, cyclic loading paths. %ﬁ
Prevost (Reference 7) has utilized the field of work hardening ;ﬁi
) modulii concept forwarded by Mroz (Reference 61) to develop a set of ?Z?
elasto-plastic anisotropic hardening models for characterizing many 'i

categories of soil responses ranging from undrained behavior of -
saturated clays to drained behavior of sands. In this report, we are Ei}
S
. only interested in drained behavior of cohesionless soils so we focus 3?(

- strictly on the pressure sensitive version of Prevost models. e
5 E?f
g‘ ;i;
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;: B. FIELD OF WORK HARDENING MODULII CONCEPT e
‘. An understanding of the field of work hardening moduli concept is a =
;z fundamental prerequisite to any discussion on the anisotropic hardening o
;? theories used in modeling soil behavior. This concept is most simply i
-
: explained by considering the case of a mean normal pressure 'triaxial' E:
E test on a plastically incompressible isotropic material (such as the -
3 undrained behavior of soil using stress paths TC or TE of figure 3); %3
| here, we need only be concerned with the yield surface's projection on f?
.k the octahedral plane in principal stress space. Suppose we now carry <
% out a series of shear tests starting at the same hydrostatic state but ;i
:; "radially" moving out on the 7 plane at different Lode angles. For each ff
? test, we plot the principal stress difference versus the principal EE
‘2' plastic strain difference and note the slope of the curve at different 2.
3 stress levels, By noting the initial slopes of each stress—strain plot, =
‘% we can assign it the magnitude of the elastic shear modulus G, from
i which, we can then separate the elastic strain from the total strains -
] to obtain the plastic components. i?
j Along each of the linear shear paths emanating from the hydrostatic -
- state, we record the decrease of the plastic shear modulus with ff
increasing distance from the starting point. Next, we connect the L)
ﬁ points of equal plastic shear modulii on all radial paths to form a ;:
iﬁ field of "closed" yield surfaces, each with its associated plastic
i modulus, Since a point on this plane is characterized by a single B
2; magnitude of plastic tangent modulus, the resulting plot of the field “
:: of yleld surfaces should be non-intersecting or nesting. .
4 %j‘
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ii For simplicity, we may assume that these locii of iso-plastic shear
modulii all form similar curves which can be approximated by circles

(or Mises yield surfaces). Also, let us further idealize the model by

adopting a purely kinematic hardening rule (i.e., the centers of these =
yield circles can translate, but their radii do not change). With the -
location, size, and plastic shear modulus of each yield circle known,
we can now simulate the model response for an arbitrary stress path. As
we load from the hydrostatic state, the stress point moves out on the
deviatoric plane to engage the first yield surface (enclosing the
purely elastic domain), activating its plastic modulus in the elasto-
plastic constitutive equation (equations 141 or 145), As shearing -
prcceeds, the active yield surface, with the current stress state
residing on it, translates toward the second nesting surface in the f‘
field such that when both surfaces come into contact, they do not ‘:

intersect. This condition is satisfied by using Mroz's hardening rule,

a topic which will be treated later in this section. e
When the second surface is engaged, its plastic modulus replaces L
that of surface #1 in the constitutive equation, and it also follows a
Mroz hardening rule to the third surface. The now deactivated first -
surface remains attached to the second surface at the point where it
initially came into contact with surface #2, and this point is known as

the conjugate point. Since the inner surface must satisfy the "nesting" .

or non—-intersecting requirement while staying in contact with the =

active surface, its translation is dictated solely by the movement of S

Sy e v RO &
F ,
. PP o

the active surface. If the shear loading continues, and the second
surface comes into contact with the third surface in the field, the :k
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same transition process takes place and surface #3 now carries with it
surfaces #1 and #2 as it translates toward surface #4 according to the
Mroz hardening rule.

If while on surface #4 (or any other surface for that matter), we
start unloading back to the hydrostatic stress state along the virgin
stress path trajectory, the stress point deactivates surface #4 and
returns to the region enclosed by surface #1 (i.e., the elastic
domain). Accordingly, the plastic modulus is "infinity" in this region
and the response of the material is once again purely elastic. As the
unloading continues, the stress point moves toward the opposite end of
circle #1 and engages it on the way back to the hydrostatic state of
stress. Note that when the stress point exits the elastic region on
this unload path, reverse plastic strain are generated. Furthermore,
depending on the arrangement of these surfaces prior to the unload, the
stress point may encounter several other surfaces during a reverse or
re—-directed path, and we can therefore see the influence of loading
history on anisotropy, which is manifest in the instantaneous

configuration of the field of surfaces. In the calibration of the

initial field of surfaces, it may turn out that the yield surfaces may

not be symmetrically placed with respect to the hydrostatic axis, and

this, in essence, reflects the inherent anisotropy of the soil.
This multi~surface concept, simply presented in pressure- ;;”
insensitive space, provides the fundamental mathematical tools for
extending the description to predict the complicated stress-strain-
strength behavior of dense sands subject to generalized loading

conditions.

" R
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Two simplifications of this multi-level memory structure have been
introduced in the soil mechanics literature., The first is to consider

the existence of only yield surface #1, F,, and the outermost or

consolidation surface, Fp. Note that the Mroz translation rule is still
in effect for such a two surface configuration, Instead of the field of
hardening modulii, we must now prescribe an interpolation rule which
describes the variation of the plastic modulus with the distance
between the current stress state on surface #1 and its conjugate point
on the consolidation surface, Fp. Such a modified description of the
field of work hardening modulii was elaborated independently by Krieg

(Reference 70) and Dafalias and Popov (Reference 71). A variation of

this concept, known as the bounding surface model, in which the size of

the elastic region (yield surface #1) is vanishingly small, will be
discussed in detail in the next section., It is important to note here,
however, that the degenerate nature of yield surface #1 "frees" the
theoretician from the analytical rigor of Mroz's hardening rule, and
allows the use of an experimentally verifiable mapping rule to locate
the conjugate point on Fp.

An alternative simplified description of hardening is provided by
assuming that the field of hardening moduli inside the consolidation
surface, Fp, is represented by an infinite number of nesting surfaces
and the active plastic modulus depends on the ratio of the radius of
the instantaneous loading circle and the consolidation surface. A

loading surface is defined as the subsequent surface intc which an

initial yield surface deforms and/or translates such that the loading

surface includes the current stress point. If the radius of the loading
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surface continue to increase due to a re—-direction of the loading
program, then the plastic modulus is governed by the ratio of the
loading surface radius to the consclidation surface radius. If, on the
other hand, the stress path reverses and is directed to the interior of
the loading surface, the instantaneous location of this surface is

recorded and is now called a stress reversal surface., Prior to the

penetration of this stress reversal surface in the unlcad phase, the
plastic modulus is controlled by the ratio of the active loading
surface to stress reversal surface radii., Once the stress state exits
the domain enclosed by the stress reversal surface, the interpolation
rule reverts to its original form., In this way, the memory of a loading
event is only erased by another event of greater intensity. Pietrusczak
and Mroz (Reference 72) have utilized this mathematical scheme to model
the behavior of clay, but it has not yet been applied to sands.

In the following subsections, we describe the essential features of
what may be the simplest and most complete statement on elasto-plastic

hardening theory: the Prevost Pressure Sensitive Isotropic/Kinematic

Hardening Model.

C. MODEL CHARACTERISTICS

The pressure-sensitive version of the Prevost model is formulated
in terms of directional stress components (i.e., the stress invariants
are not used), and associative flow is assumed in the deviatoric
subspace. The model does not explicitly involve plastic potentials,
although their existence is implied since the computation of the

plastic volumetric strain uses a form of equation 130 of the previous
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section., Material frame indifference is satisfied in the formulation,
but it is not certain whether energy is conserved under all conditions
of loading and unloading (Reference 65). The development of the model
is based on conventional flow or incremental plasticity theory, and,
hence, most of the fundamental postulates of the previous section are

merely specialized in this development.

D. YIELD FUNCTION

The model employs a yield function of the form

4
F(m) -3 (s- g\m)]:g§ _ g‘(m)] £ ctp - 3(71)]2 _ [k(m)]2= 0,
2
(146)
w“here s and p denote the deviatoric stress tensor and the mean stress 3

respectively; a represent the deviatoric tensor components of the
center of the yield surface while B8 locates the surface's center of

. (m) | . th . X
along the p axis; k is the radius of the m yield surface, and C is
the axis ratio of the yield ellipse when projected in p—q subspace.
Prevost frequently set the factor C? equal to 9/2, and, in this
particular instance, equation 146 simplifies to .

plm) [q - g(m)]:[g _ g(m)] _ [k(m)]2 -0,

A} [ON]

)

where the tensor components of the center of a yield surface m (g(m

) .
relate to ¢ and 8 as follows:
E:(m) - g(m) g{m) 5

+

With this particular yield axis ratio, the surfaces plot as spheres

of radius igk(m) in stress space.

3
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L E. FLOW RULE -
‘ -
S The flow rule is of the form expressed in equation 130 and 131 of )
1; the previous section; Prevost (Reference 7) assumes normality in the fﬂ |
[~ “
B deviatoric subspace which implies that the function A, is set equal to
=
k- one but its complementary function A, of equation 130 is retained to -
2 model the plastic volumetric strain response. .
L) \..
- In order to facilitate an easy comparison of the formulation R
reported herein and Prevost's work, most of his notational conventions =
5 are adopted; whereupon, the tensors Q and P are the gradient tensors to )
AQ the yield and plastic potential functions replacing VF and VG of the f}
= =
- previous section, and, Q' and P' are the deviatoric components of Q and
ﬁ P respectively. These tensors enter the flow rule as: éé
. de® = 1 {Q:dg} 1 P .
, K Tare =
: p = =
- and, as a consequence of stating the flow rule in this form, observe
% that the inverse constitutive relation (equation 145) is now
- e e e
dg = [ C° + _ (C:P) (Q:CT) 1 de . e
e
- £ 1:01 + (:cep) B
' The non—associativity function of equation 130, A,, is assumed to L?
3L
take the form <t
- Ay =1+ A, (@ Q'Y s
: I tr 9 l <.
o where A; 1s a constant multiplied by a term which indicates the o
= \J-.'
= variation of the departure from associativity as a function of position
{ along meridional sections of the yield surface, Note, however, that the
' L
- magnitude of A, remains constant on any given octahedral plane and the
’ plastic volumetric strain rate is associated when Q' = Q. Since the éj
< R
QZ 96
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non-associativity of the flow is modeled by a single parameter, we can

drop the subscript on As; in the sequel and refer to it as simply the
"A" parameter.

(m)

A pair of plastic modulus parameters h and B(m)

characterizes
each surface. These parameters are used to calculate the generalized
plastic modulus Kp on a given surface. As in the non-associativity
function A,, the plastic modulus, Kp, is assumed to vary along the
meridional section of a yield surface while being fixed on any given
octahedral plane; to mathematically effect this desired variation, the
plastic modulus is given by

K =n'™ . tr @ B™

P /13Q:Q)

(m) is the plastic shear modulus and [h(m) + B(m)] and [h

(m) _

where h
(m) . ; . . (m) ;

B ] are the plastic bulk modulii associated with F which are

mobilized in consolidation tests upon loading and unloading,

respectively. The projections of the yield surfaces onto the deviatoric

stress subspace thus define regions of constant plastic shear moduli.

F. HARDENING RULE

The field of yield surfaces are assumed to translate and deform
isotropically, but, from considerations of Mroz's rule presented
earlier in subsection II,B, it is apparent that the hardening cannot be
specified arbitrarirly. The easier aspect of this hardening rule -
i.e., the positioning of interior inactive surfaces - will be presented
before the more complicated aspect of updating the location of the

active surface as it moves towards its conjugate point.
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{ Say we generalize the yield function to the form -
: PO L p®p - ™y @y a0 (147)

p , ~(m) (m)

b, where n is the degree of F in (g - £ 1. If we further assume that
: all the yield surfaces are similar we can say that F = F<m) for all m. g;
VQ F is usually chosen as a homogenous function of order n of its N
" arguments. What does this mean and what are its consequences? The yield -

function F is said to be homogenous of order n if the following is
. =
satisfied: oL
K - m n -
i Flato - £™)1 = 4" Flo - ¢™7, )
C where A is a positive scalar. N

,i; When a surface m is moving toward a surface m+1, the stress point
ﬁl on surface m, say at M, moves to the corresponding conjugate point on e
. surface m+1, say at R, to avoid overlapping. This path of movement is g%
f: depicted in figure 8 for a field of surfaces drawn in 'triaxial’

j? subspace., Geometrically, it can easily be shown that the tensor linking %

h the center coordinates of surface m, g(m), to the stress point g , at _
o M, is directed in the same sense as the tensor connecting the center of “h
', +
R surface m+1, g(m 1), to the conjugate stress state at R, say 9g- ')

» Mathematically, this may be expressed as:

(m) _ o(m+1) =

kS g - & = Al gp-§ 1, (148) o

B A

tﬁ where A is again a positive scalar. .

i )

L~ A
.l When surface m comes into contact with surface m+1, g coincides R
{

’t% with ¢ and equation 148 becomes N
- m+1 m .
N g_§< )'A[g—g()]' 1

N ‘

or o




Figure 8. Field of Nesting Surfaces in p'-q (top) and Cp'-q subspaces
(bottom) (Reference 7).
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peg g™ (149)
g - §(m)
by using equations 147 and 149, we see
g [g - §(m+1)] - " F lg - é(m)] . [k(m+1)]n
R D e AL (150)
k™3
and
o - g™ (m1)
o - (m) k(m)

- 2

This equation applies whenever surface m+1 has been engaged and m
now functions as one of the interior inactive surfaces, We can say that
whenever we know the location and size of the active surface together
with the sizes of the interior surfaces, the location of these interior
surfaces can be calcnlated forthwith; to satisfy the tangency condition
at the point of intersection, we have

(m) (m1) _

g - & = g - f g - £
k(m) k(m—l) k(m—2)

(m-2) = .., ete,

By combining equaticns 148 and 150, we can derive the expression

for the translation direction y joining the current stress state on

surface F(m) to its conjugate point on the next larger surface
(F{™1)) 0 that s,
+
R C L e A (151)
k(m) 1
The sizes of all surfaces are assumed to expand or contract at the 3
same rate which is governed by the total volumetric strain increment as ¥
‘
follows: 1
a'™ ., de, (152) '
k(m)
100
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where A is an experimentally determined parameter governing the
isotropic processes. This equation applies for all yield surfaces (of
finite size) in the configuration. Equation 152 can be integrated to
directly give the instantaneous yield surface sizes

k(m) a kgm) exp{Ai ev), (153)

(m) (m)

where k, are the intial values of k (at e, = 0). It is also

assumed that the centers of the yield surfaces exterior to the active

(m)

surface F move radiallx according to
m+1 +
5( ) gsm R exp(A €) ; g(m+2) - §£m+2) exp(A €.) 3
§(p) = ggp) exp(A €) , (154)
where £lmt!) (p) e
ere £, reesesfo ~ are the initial center location of the surfaces

m+1 to the consolidation (or outermost) surface p. It is apparent from
equations 153 and 154 that the surfaces shrink in size and move back
toward the origin in stress space when the material starts to dilate;
this, in effect, simulates a weakening and softening of the soil's
structure,

We have specified all but one mathematical aspect of the
translation rule: the computation of the magnitude of the incremental
translation tensor dy (= du p) for the active yield surface m,
Numerically, this is accomplished by first defining the translation
direction p using equation 151 in which the center location g(m+1) and

(m) {m+1)

the sizes k and k have been previously updated using equations

153 and 154 respectively. To complete this item, we need now only
compute the scalar dy by employing the consistency condition.

If an arbitrary stress increment, é = 3 + b §, is applied, it is

expected that the active yield surface will translate and change size
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such that the consistency condition is also guaranteed after any

-t
translation and size change of this surface. To make for a neater &
presentation, the implied superscript m, in reference to the active
surface, is omitted hereafter. The attention to detail in this

pw
derivation may seem overzealous, but it is considered approriate since et
these equations, to our knowledge, appear here for the first time in .
published literature. o

Mathematically, the consistency requirement, after the incremental ~
hardening, may be expressed as:
F=30(s+8) -(a*a):l(s+3) - (a+a)]+
2 )
C2[(p+p)=-(8+ A ~[k+k]? . (155) .
As an aid in seeking the solution, equation 155 may be reorganized 1
to read e
==
- L] L] . J
F=30(s=-a)+ (8-a)]:l(s-2a)+(s-q)]+
2 .
C2(p-8) + (=@ =(k+KJ? =kiv2kkekk , o
which may then be further expanded to *5
30s -z -a)l+30(s-a):(8- @)~ »
2 2 s
30(8-a):(3=a)] +C? (p-8)2+C% (p~23)?+
-
2C2 (p=B)(pP=~8) = K2 +2KK+*KkEKk . (156)
From equation 146, recall that ~
oy
3(s-a)i(sg=~a)+C%(p-8)%=xk?, v
2

k‘,{
S0 that substitution of this identity into equation 156 leads to tﬂ

0

~

-,

S
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3M(s=-@:i(3-@)]+3[(s-a)i(sg-a)]+
2

C2 (p-8)2+2C> (p-B)p-8)= 2kk+kk . (157)
It is convenient to expand some of the parenthetical terms of

equation 157 to obtain

. o L] . L] L L] -
$:3+ 3aig-33:a+3(8-a)ig-3(8-a)a+

njw
njw

C252+C2é2_202p8+2Cz(p..B)f)_
2C* (p-8)f-2kk-kk=0, (158)

With the translation rate tensor written as:

1R e

g = + é § = dupy =dp (devy + tr usg) ,
3
where dev y are the deviatoric components of the tensor y, é and 8 can

now be replaced by du dev y and du tr p respectively in equation 158.
3

With the translation direction y already specified, the objective
reduces to one of determining the scalar coefficient du., This is
realized by solving the resulting expression for du as follows:

(du dev p):(du dev y) = 3 é:(du dev y) +

:é +

Plw
tne

3
2
s -3 (s - ga):(du dev ) + C? p* +

oe

3¢

- a)s
CZdu tr ydutru-2C2pdutry+2C?(p=-8)p-
3 3 3

2C* (p=8)dutruy-2kk-kk=0 . (159)
3

Equation 159 is quadratic in duy, and must be solved accordingly;
first collect the coefficients of du?, du, and the constant terms and
store them in descriptive variables known as A, B, and C respectively.

The result is

A =3 (devy :devy)+C®try try , (160)
2
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B=-3 é:(dev g) -3 (3 - a):(dev y) -2 C? ptr g -

3
2 C% (p - B).££§g R (161)
and
c'-%§:§+3(§-g):§+c’6=+2c2(p-e)ﬁ-
2kk=-kk . (162)

With the coefficients expressed in equations 160, 161, and 162, we
can now compactly write equation 159 as:
Ady?2 +Bdy+C' =20 |,
from which the solution for the roots are

duy = =-B +/{B2-4acC'} . (163)
2 A

Equation 163 can be conveniently solved by replacing the variable B
by an alternate variable B' = -B/2 (i.e, B = -2B'). With the alternate
variable B', equation 163 is now written as:

du = 2B' + v{4B'2-4ac'} ,
2 A

= B' +v{B'2-ac'} , (164)
A

where A and C' are defined in equations 160 and 162, and

B' = =B = 3 s:(dev ) + 3 (s-a)i(devy) +C2ptry +
2 2 2 3

C? (p - B) tr3g .

Finally, the root of equation 164 is specified by the condition

that the scalar product dy:(3 8 + p §] be greater than zero, and this
2

final aspect completes the specification of the Prevost

isotropic/kinematic hardening rule.
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. F. MODEL CALIBRATION

The last, but perhaps most singular, feature of the Prevost model

is its calibration procedure to determine the size and location as well

as the plastic modulus and non-associative flow parameters for each

-'J"

o surface in the initial configuration. This task can sometimes prove to
. be more challenging than any other phase, as the writers can attest to,
t? in the actual implementation of the Prevost model.
g§ Complete specification of the model parameters requires the 5
) determination of: 1) the initial positions and sizes of the yield i
&; surfaces together with their associated plastic moduli, 2) their size i
— .
or plastic modulus, or both, change as loading proceeds, and 3) the 3
elastic shear, G, and bulk, B, moduli (Reference 7). The input stress-
strain data is obtained wholly from the results of a montonic drained
. conventional triaxial compression test (CTC) and a reduced triaxial ’
extension (RTE) test (the stress paths of which are depicted in figure ?
]
3). -3
!! In test sample preparation, the soil develops its original
anisotropy in the direction of consolidation, and the horizontal
if‘ direction is thus an isotropic plane (xz plane} while the axial
r direction (y axis) is an axis of rotational symmetry., With this n-fold

axis symmetry and a corresponding calibration stress path which is N
restricted to the Rendulic (or triaxial) plane, equation 146 simplifies Oy
to i

f:_‘ Flm

-

- fa-a™izacrp-g™pE o™y lg (165

where

v

I | 1
IR I
P,
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+
(' and -~
: =
3 a = 3 ay/Z = =3 a = -3 a,.
2 From both a geometrical and an intuitive standpoint, it is -
interesting to note the similarity of equation 165 to that of a —
w
translated circle of radius k in a Cp versus q coordinate system with a s
center location at [CB, a]. These circular plots are illustrated in <
figure 8 where the angle 8 is also defined. Observe from this figure
) that we can straight-forwardly write the following equations: 2%
. q=a+ Kk sing , (166)
" and xg
p=8~+kcoss. (167) -
c -
Substitution of these relations into the 'triaxial' elasto-plastic T
constitutive equations ;%
[ de, =dp + 1 tr(P) 1 {Q:dg} ' .
2K K 2 -
‘:: 3 Kp Q .;3
and
de. = 1 ds + 1 Q1 {Qds} , &
.. yy ZG YY K Q 2 LI
. p ~
" leads to .
v dev/dp = 1 +
3K =
K 1_{2C cose + /6 A_cos® [tang|} {sine + C Y cose}, (168) B
y K 3y
X P .
‘ and '
} de = 1+ 1 sing {sine + C Y cose} , (169) .
3 d 2 G K =
q p X
where Y = dp/dq, de = dey - dex, dev = 2 dex + dey yand B
m (Kp)m = hm + am cose . (170) =4
. a»
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The dependence of the model parameter group x = K, G, hm and Bm,

and group y = a(m), B(m), and k(m) are assumed to be of the forms
x=x, (p)" (171)
Pa
and
y =y, exp(h €)) , (172)

where x, and y, refer to initial values, and i and n are experimental
parameters. Note that the dependency of the group y parameters was
alluded to previously in the discussion of the hardening rule,

For most cohesionless soils, n can be assumed to be equal to 0.5
(Reference 27), and the isotropic hardening parameter, A, is determined
from the results of one-dimensional consolidation tests, It is assumed
that these consolidation test results plot as straight lines parallel
to the projection of critical state lines on the volumetric strain (sv)
versus the logarithm of the mean normal pressure (p) plane. This
parameter is then simply determined from the results of K,-
consolidation soil tests results (Reference 7) as:

A= 1 dp + del (173)

v ’
Pg
where the subscript/superscript K refers to K,— loading conditions.

If we let o denote the values of 8 when the stress point

C and eE

reaches the yield surface F(m) in a CTC (or locading) and an RTE (or

unloading) “est respectively, equations 166, 167, 168, 169, 170, 171

and 172 can be combined to give

™

Clhed e Tl e i




)
N
\ - -
1 + 1 = 1 [ 3YC (XC+¥C) + 3YE (XE+YE) 1, (174 2
tan 8 tan ¢ 2 C
‘ C E =
- and
cose, — cost; = RCE (smeC - 51neE) . (175)
where s
- Roo = C (py = Py explA(ec = )] ) +
- CE C E v v
R c E -
:7\ {QC QE exp[)\(ev EV)] }v 2
1= (pc/px)nﬁ_g_ -1 ,
- XC dq 2 G, o
n '..
1 = (pc/pl) EV - ’
1, dp 3 K, ,
. ~
“ and similarly for XE and YE’ where the subscripts/cuperscripts refer to -
; CTC and RTE loading conditions, respectively. In equation 174, the plus
. sign (+) is to be used when taneC tang. 1s less than zero, and the
L minus sign (-) otherwise, ;;
-t
: The next step in the calibration procedure is to tabulate the
stress strain data reporting the quantities q, p, €yt e for the CTC and ;
RTE test on the material, both of which start at the same confining -
- pressure (p,). After that, we calculate dq/de and dp/de, at each data e
\_“.
:? point and include these quantities in corresponding columns of the »Q
P .
., |
o tabulated data sets. With these data, we assign the elastic bulk
modulus, K, and shear modulus, G, the initial values of the slopes 1 ff
) 3 '
(dp/dev) and dq/dE respectively. If the magnitudes of these elastic 5
B

v

PR
. -
P T, -
AP N A N

-

. R
PN, BPRS. W ¥

AP Al S Ml Sl

parameters are different for the CTC and RTE tests,

magnitude is chosen.

the larger

Provided with the following: 1) the isotropic hardening parameter,

A, (equation 173), 2) an estimate of the constant n, 3) the initial
108
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.I values of the elastic parameters, 4) the slopes of the CTC and RTE

stress paths (YC and YE), and 5) an assumed value of the yield axis

ratio C, we now enter the digital CTC stress—strain data and select a
representative slope dq/dE to be used in establishing the first yield
surface of the configuration. Using this magnitude of dq/dg, we next
enter the RTE test and search for the corresponding line of data which
matches this slope. If an exact correspondence is not found, a simple

linear interpolation scheme can be devised. These data are all that is

necessary to simultaneously solve equations 174 and 175 for 8¢ and 9..
L For this purpose, note that equation 175 is more convenlently rewritten
=

as:

1 + 1 +[2R.. /(1 -R2)IT 1 - 17
tang tang CE CE tang,. tans
c E C E

.' Once ec and eE have been calculated, the model parameters

(m)

associated with F are simply obtained by combining equations 146,

167, 168, and 169 (Prevost, 1980); namely,

- . _ ) - - 3
!, Bm [XC 51nec ZC xE smeE ZE] + LcoseC coseE_ ,
hm = XC s1neC ZC - Bm coseC ’
Y6 A = 1 3 Y. (X./Y.) = B_cose.]
m - C c °C m C ’
taneC
L o k(m) = [q. exp(=A ec) - q. exp{=A EE)] + [8inB. - sine.] i
1 C v E \'4 C e ’ .:.
1
(m) C (m) . 5
2y = q exp(-Ai ev) - K, sine. , 3
(m) -, C, _  (m) K
8, = Pe exp(=x ev) é] cosd. ]
where :;
9
ZC = 31nec + C YC coseC ’ "
-
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and

;i ZE = sineE + C YE coseE .

:} The procedure is repeated by chosing another magnitude of dq/de for

S

AY .

h the CTC and calculating the parameters associated with the resulting

A surface. Note that, if it turns out to be more convenient, we could
fl just as well select dq/de from the RTE test data and then proceed to

t} find the corresponding data point in the CTC log.

: Almost always, the initial configuration of surfaces turn out to be

N intersecting, but, it usually takes only a slight adjustment in sizes

7 and/or positions to rectify the arrangement. Moreover, it is evident
} that the degree of accuracy achieved by such a representation of the

'j experimental curves is directly dependent on the number of dq/dz points

) or surfaces used to describe the field of work-hardening modulii.

] This final aspect completes the presentation of the

N isotropic/kinematic hardening model of Prevost,
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i SECTION IV

BOUNDING SURFACE PLASTICITY FORMULATION FOR GRANULAR MATERIAL

~
.

A. GENERAL

73

-
.

The bounding surface concept was proposed by Dafalias and Popov
o (Reference 71) as a simplified variation of the two surface model which
was briefly prefaced in section III, In this theory, the yield surface
enclosing the elastic region (i.e., yield surface #1) is assumed to be

vanishingly small, thus degenerating to a point. If we adopt the model

classification nomenclature of the previous section - i.,e,, multi-
surface, two-surface, infinite surface, etc. =, we can call this type

of formulation a one surface model, described solely by an

isotropically hardening bounding (or consolidation) surface Fe. Since
the ensuing presentation focuses on a single surface, we can drop the
subscript "c¢" which is used to qualify the yield surface function F,
Although the bounding surface characterization does not possess an
evolutionary law as sophisticated as, say, the isotropic/kinematic
hardening model of Prevost, it is a reasonable and computationally less
expensive idealization, capable of realistically simulating some
loading and unloading tests (Reference 72). One distinect advantage,
however, of the bounding surface model is its independence from the
analytically rigorous hardening rule of Mroz. This permits the use of
any experimentally verifiable and admissible mapping rule to assoclate

the actual stress state to a conjugate point on the bound.

11

- . ".a ~. . T et - " o. '-‘ -- '—- '.4 '-- .. " 3 - ) - '.—' : V— -7 Au - 3 -7 - < : "
s - ® a® s e et ot - *w o - » =T Y. ¢ ' e et
- A R S D C PPN RS LA I

e . . . - - - -
TR W SN S

1, 'J‘ v

| 29 R
FLA A ) y oot

e

V.



For points within the consolidation surface, the mapping rule's
role is two-fold: first, it specifies the plastic strain increment
direction as a function of the gradient tensor (VF) at the image (or
conjugate) point; and secondly, the plastic modulus, Kp, is assumed to
depend on: 1) the plastic modulus at the conjugate point, 2) the
Euclidean distance between the actual stress state and the image stress
state, 3) any approriate plastic internal variables, and 4) suitable
discrete memory indicators of the loading.

The formulation that follows is based on the formalism of cyclic
plasticity as presented in section II (Reference 4). Also, the
presentation in this section consists for the most part of original
work with all externally derived ideas being acknowledged at first

mention.

B. DETAILS OF FUNCTION

As discussed in section II.F.1, an assumption of material isotropy
means that the bounding surface function, F(Eij,qn) = Q, can be
expressed in terms of the three invariants of the stress tensor: fl,
/J, , and J, (or 8, where 8 is the Lode angle). The bar over the stress
quantities indicate points on F = 0 while q, are the n plastic internal
variables (PIVs) used in characterizing the state of the material; the
variables q, are usually taken to be scalars or components of properly
invariant second rank tensors such as inelastic strain. The isotropy

assumption further implies a six-fold symmetry in the =« plane, and

o
hence, it is only necessary to describe a 60 section for a complete
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isotropic representation of a yield/bounding surface in three-

dimensional principal stress space (i.e., [-n/6] s 8 s [#/6]).

1. Consolidation portion of piecewise continuous surface
Let us first analytically describe the meridional sections

(that 1is, 8 held constant) of the bounding surface, F, and then extend
the description to include the variation of its projection on the =
plane. The meridional section for the region of the surface bounded by
the I, axis and the critical state line (CSL) is first discussed since
its development is much simpler than the mathematical representation of
that part of the surface enclosed by the "failure" envelope (or locus
of peak stress ratios of the frictional material) and the CSL. In this
context, the critical (or characteristic) state is defined as the pre-
peak stress ratio at which the plastic voiumetric strain rate is zero,
Further, note that the sections in the m plane are geometrically
similar while those in the meridional section show a scale distortion
dependent only on the value of 5. Once a function 3(5) has been
specified to describe the relationship between v¥J, and the Lode angle
(5), it is more convenient to use the equivalent octahedral shear
stress /32* (= [/32 / 3(5)] = constant) in the analytical equations of
the meridional sections, and to later generalize the description to
three dimensional principal stress space by replacing /32* with the
term [v/J,/g(8)] in the succeeding equations.

An ellipse, with its major and minor principal axes coincident with
the I, and v/J, axes respectively, is chosen as the functional form of

the section of the bounding surface delimited by the I, axis and the
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CSL. From figure 9, observe that N* (= [N/g(g)] = constant) is the
slope of the critical state line and S* (= [S/g(é)] = constant) is the
slope of the limiting "failure" envelope in this equivalent shear
stress vs. mean stress sub-space. This selection of the slope of the
yield/plastic potential function at the origin of stress space to be
equal to S* is not absolutely necessary, but it does ensure that the
stress state never resides outside a limit envelope.

For normally consolidated clays or loose sands, S* and N* usually
coincide, but for dense sand or highly overconsolidated clays, the
material usually starts dilating (i.e., reaches N*) before actually
reaching its peak combined stress state (at S*).

I, is the point at which the bounding ellipsoid intersects the
hydrostatic axis while Q is a parameter used to locate the center of
this ellipse on the I, axis. Also, as shown in figure 9, I,/Q is the I,
component of the center coordinate of the ellipse, and one may
furthermore observe that the semi-diameter of the major axis is equal
to I, = (I,/Q). At this center coordinate on the I, axis, the CSL
intersects the bounding ellipse so we can also easily recognize that
the magnitude of its conjugate /32* coordinate is equal to N* (I,/Q).
Given this background information, we can now proceed to mathematically
depict the surface in stress—invariant coordinate space.

Recall from elementary analytic geometry that the equation of an
ellipse, with its major axis parallel to an arbitrary x reference
abscissa, can be expressed as:

F = (x=h)% + (y=k)? =1,

a‘ b*
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Limiting locus of possible
stress states

*/J; Characteristic state
line

b Ky

Image stress
state

Actual stress
state o

o o -
Io IO
Origin of Q

mapping

Figure 9. Meridional Section (top) and Octahedral Projection (bottom)
of the Bounding Surface Representation.
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where 2a and 2b are the major and minor axes respectively, and, h and k
are the x and y coordinates of the center respectively.
Reorganization of the equation above gives rise to
F = (x=h)? + (a%/v?) (y-k)? = a2,
and, by identifying x = f,, h = (I,/Q), ¥y = /32*, k =0, a=1I,-
(I,7Q), b = N*(IO/Q) and (a/b) = (Q-1)/N*, Wwe can now express the
ellipse in this pressure-sensitive invariant stress space as:
Fal?-2 (Lo/f, + ((e0A123," + 12 (701} = 0 .
(176)
Note that the parameter Q in equation 176 controls the aspect ratio
of the ellipscid's meridional section — it is actually equal to {Q - 1}
divided by N* -, and it can be regarded as a material parameter, the
magnitude of which can be determined by zither: a) heuristic methods,
b) experience, or c¢) a back calculation based on the observed plastic

strain rate trajectory.

2. Dilatation portion of piecewise continuous surface
The meridional segment of the surface, bounded by the CSL and

the limiting asymptote (drawn through the origin of stress space and
defined by S*) in the positive octant of principal stress space, is
next presented., A thorough development of the equation used to describe
this portion of the bounding surface is considered approriate since (to
the authors' knowledge) it is introduced in this paper for the first
time in the soil mechanics plasticity “heory literature.

Let us start by initially considering the following general second

order equation (defined for convenience in an arbitrary rectangular
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.t Cartesian x-y coordinate system) to which we shall subsequently apply
' the relevant constraints:
F=ax*+by?*+cxy+dy+ex+f=0. (177)
As a first step, we can divide equation 177 by the coefficient of
!! x%, "a", and then rename the constants such that b = b/a, ¢ = c/a,
. etc.; this algebraic operation results in

F= x2+by?+cxy+dy+ex+ =0, (178)
Inserting the stress invariant variables in place of x and y in
equation 178 yields

- - *
F=Ilz+sz

+cfl/32*+d/32*+e11+f=o . (179)

Equation 179 is now subjected to four consecutive constraints sucn
that this function is continuous with the ellipse and satisfies certain
boundary stipulations:

- - %
a, Constraint #1: F = 0 at I, = vJ, = 0; this implies that

the constant f is equal to zero, and, as a result, equation 179 reduces
to
- - * - * -
F = Ilz +bJ2 "'CI,\/J: +d/J2 +eI] =0 . (180)

*
S , and this

- - % - * -
b. Constraint #2: at I, = ¥J, = 0, &/J, /dI,
condition establishes that R

- % - - - ¥
avd, /dI, = -3F/3I, + 3F/aVd,

- - % - - *
=~ (2I, +c/J, +e)+ (2bVJ, +cI,+d) =5,
from which we obtain
*
e =-S5 d . (181)

Substitution of equation 181 into equation 180 gives

- - * - % * -
F = Ilz + sz + C Il\/Jz + d/Jz —S d Il = O . (182)
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[ ¢. Constraint #3: at I, = (I,/Q), vJ, =N (I,/Q), and =
. substituting this contrived relation into equation 182 furnishes =
’ * * % %
) d=(Io/Q) [1 +bN 2 +cNJ+[S-N] . (183)
And now we can substitute 183 into equation 182 to obtain
b=
- - * - - %
g F=I,2+bd, +cI/J, + ??
D * * - % -
N (Io/Q)[1 + BN 2 + oN 1 {VJ, -sS I,}. (184)
- * 3
: (s -N1
- - % *
d. Constraint #4: at I, = I,/Q and VJ, =N (I,/Q),
- % - o
d/Jz /dIl = O
but
' - % - - - % -
R d/Jd, /dI, = =3F/3I, + 3F/3v/J, =0 -
which implies that aF/af1 = 0, and therefore
X - . * * -
" 2 I, +¢cVJ;, = S(I,/Q [1 +DbN2?+cN] =0
- 3 ¥ -
(s =-nN1] La
) from which we then see that -
’ ¥ * * * -
- c=(S/N?) ~-(2/N)=-85 b . (185) :
N Finally, the substitution of equation 185 into :quation 184 gives
[- "
"l the following expression for the bounding surface characterizing the iﬂ
E meridional section between the limit asymptote and the CSL:
. - - % * * - - #*
F = Ilz+bJ2 +[S -2 -Sb]Il/Jz +
¥, ¥
N 2 N .
* - % % hend
- (Io/Q)[1_~ BN ] {(¥d, =S I;}=0 . (186) .
» T .
- N
5 After exhausting all available constraints, inspection of equation ;;
A o
f; 186 reveals that we have eliminated all but one independent parameter
o (i.e., "d") from the original set (i.e., "a", "b", "c", "d", "e", & &
'l n"Fny, This single distinct parameter can be considered analogous to Q
in equation 176 inasmuch as it controls the longitudinal shape of a =
. 118
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certain section of the isotropic bounding/yield function, and, as will

be discussed later, it also effectively dictates the direction of the

plastic flow rate vector if normality is assumed.

. 3. Range of the parameters "Q" and "b"
It now remains to specify the allowable range and

qualititative significance of the shape controlling parameters Q and b.

;3 Theoretically, Q can vary in the range 1 £ Q € », and this is obvious

) when one recalls that the axis ratio of the ellipse is equal to (Q -

;; 1)/N. In the past, this value has been assumed tZ be egqual to 2
{(Reference 73) or 2.72 (Reference 67), but more recently however,

55 magnitudes of Q closer to 5 have been reported for sand (References 6

o and 74). The moderately detailed derivation that ensues determines the

restriction on the parameter b for real roots over the range of

interest and also sheds some light on the magnitude of "b" at which the

canonical form of equation 186 undergoes a transition.

ll We must now set out to answer the following question: What is the
restriction on the magnitude of "b" in equation 186 such that fl and

o /32* are real in the range 0 s f, S (I,/7Q)? Let us start by assuming

g% that f, is known in equation 186, thus making it possible to solve the

- %
resulting quadratic for V/J, as follows:

- * * * - * - *
bJd, + {[S_=-2-5S0b]I,* (I/Q{1 - bdN I}/J, +
*

- * *
N 2 N N
. - * * o
o {I,2 - (I,/Q){1 - bN Js I} =0 . (187)
c\_‘ *
- N
Equation 187 may be rewritten more compactly as:

i; - - %

AJ, +BVJ, +C=0, (188)
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N where ..
A=b , (189) =
* * - *
B = {(S =2 =S b] I+ (I,/QL1_ - bN 1, (190)
* * *
N 2 N N
and -
g - * * _ 1
C = {I,?2 - (I,/Q[1 -bN1s I,} . (191) "
i ¥
i o N Cal
}; Solving the quadratic of equation 188 for o
- %
vJ, = = B + /(B%-4AC) -
2A -

shows that the roots are real only if (B? - U4AC) is positive for 0 £
I < (I,/Q). Replacing the proxy relations of equations 189, 190 and
K 191 into the expression (B? - 4AC) results in

* * ~
32 - uAC = {[S_ -2 -5Sbl*-Up}I,?+
*

*
NN :
Y - * * * ;'_‘:
2 I,(I,/Q[1_~-bN 1S -2 +Sbl~ =
» * * *
N N2 N
* - :
(Io/Q2*[1_=~DbN 3> 20, for 0 s I, s (I,/Q) . (192)
. )
N

We can now further investigate equation 192 by setting f, =0

UC‘:’

(i.e., its lower limit) and finding the limitation on b for real values

.
- of ¥J, ; this operation yields

(I,/Q2[1_ - BN 12 2 0
*

- b < 1 . (193)

3 Equation 193 therefore plac.s an upper bound on the magnitude of b

for real roots, but, still, we must now proceed further to probe the v

Lt
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possibility of a lower bound. This can be accomplished by assigning fl

the value of it upper limit, (I,/Q), in equation 192; this results in

the following inequality:

* * * * *
(8 =2 =-30pl*>-4 +2[1 =~DbN ]IS - 2-580b]+
¥ ¥ -¥ T ~x
N2 N N N 2 N
*
(1_-bNJ220. (194)
* .
N

Equation 194 gives the same result as equation 193. We can now
continue with our query into the possibility of the existence of a
lower bound for b by simply substituting b = == in equation 134 and
testing for the validity of this inequality. This operation can be more
tractably accomplished by first dividing equation 194 by b? before the
proposed substitution; after some simplification, the following result
is deduced:

* * * *

(=S )2 + 2(-N (S ) + (-N )2 20

* * * *
S2-2NS +N 220

* *

(S-N)220

* *
S 2N . (195)

We can observe from figure 9 that equation 195 is in fact always
true and hence there is no lower bound on the magnitude of the
parameter b.

The next question that we may ask is: At what magnitude of b does
the canonical form of equation 186 change from an ellipse to a
hyperbola? Adopting the general procedure for determining the canonical
form of 2nd order expressions, we can set the discriminant of equation

186 equal to zero and this produces
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* * *
B? - 4AC =[S ?]p?*+[-2852+48S -4]b +
* *
N 2 N
* *
(s2+4 -4s]=-o0, (196)

1

e ey )
P A B

from which we can solve the quadratic in equation 196 for b; i.e.,

*

H

*

b =1 (s 2 -43s
* NN )

S 2 N ? N

+ 4] (197)

This magnitude of b computed in equation 197 is the special case
for a parabolic equation, but it also identifies the magnitude of b at
which the canonical form switches from an ellipse to a hyperbola (i.e.,
5 less than the equality in equation 197 implies a hyperbolic function

while b greater than this equality infers an elliptic expression).

it

L, Inclusion of Bounding Surface Variation on w plane
Having presented the meridional sections, the next step is to -

complete the description by incorporating the variation of /32 with the
Lode angle, 3, in equations 176 and 186. Recall that /32* is equal to
[/32 / g(é)} in the afore-mentioned equations, and thus, in order to
complete the characterization, it is only necessary to specify the
functional form of g(g) and thereafter to replace /32* by [vVJ, / g(8)]
in equations 176 and 186.

The following expression, previously proposed by Gudehus (Reference
75), is adopted (see figure 9) for the yield/bounding representation:

g(e) = 2K ’ (198)
[1-K] = [1=-K] sin 35

where -n/6 < 8 = Lode Angle = 1 arcsin [3V3 (33//32’)] < /b . ﬂ
3 2 ’

Inspection of equation 198 shows that g(m/6) = 1 and hence

Lo
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/i = [V, 7 g@®)] = Vi,

at 8 = n/6 (note: this is the case, for example, in the conventional

triaxial compression {CTC] test of figure 3). From equation 198, we can
also see that g(-w/6) = K, and an example of a test with this
particular Lode angle is the CTE in figure 3. We can therefore
determine the parameter K by comparing the friction angles derived from
CTC and CTE tests (¢c and R respectively). The proof that the
E— parameter K can be determined from these friction angle data is
presented in the sequel, As a first step, note that

/3, (n8) = V3, ,

/I, (-1/6) = K VI,
and therefore,

K . (139)

VI, (=m/6) + VI, (n/6)

From elementary soil mechanics, we can write the equations for the

slopes of the compression and extension failure envelopes in I, - VJ,
space as:
v(3J,(n/6)1/p = q/p = 6 sin 6, / (3 = sin o)) , (200)
/[3J,(-1/6)1/p = a/p = 6 sin ¢_ / (3 + sin o) , (201)

where the subscripts ¢ and e refer to compression and extension

respectively while p is the mean stress.

Combining equations 199, 200, and 201, we find that
K = {sin ¢e/51n ¢c} {(3-sin ¢C)/(3+51n ¢e)} . (202)
where, from the purely frictional assumption, it is implicit that K is -
. 4
independent of the mean normal pressure.

With equations 198 and 202, the function g(g) is now defined and we

- % -
are furnished with the necessary information for replacing vJ, = /J, /
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g(8) in equations 176 and 186. The ensuing equations result directly
from this replacement of variables.
For the region between the I, axis and the CSL (i.e., the ellipse),

Fal,2-2 (Io/QT, + ((Q=1)/N'}2 J, + I,2 {(2/Q)-1} = 0,

[g(8)]?
(203)
and, for the region between the CSL and the failure envelope ,
- - * * - -
F= I,%2+ b J, + [S -2 =S bl I1,/J, 1 +
- * * -
[g(8)]? N2 N (g(8)]
* - * -
(Io/Q)El_ - bN J { 1 Vi, =S I,} =0 . (204)
* -
N [g(8)]

C. COMPUTATION OF THE GRADIENT TENSOR TO THE BOUNDING SURFACE

Having stated the functional form of the bounding surface in three
dimensional principal stress space, the next task at hand is to find
what is perhaps one of the most important variables in plasticity
theory: the gradient tensor to the bounding surface. Generally, F is a
function of the nine independent components of the stress tensor, but
the symmetry of the Cauchy stress tensor reduces the number of
independent variables to six while the assumption of material isotropy,
implicit throughout the previous discussion, further decreases the
number of independent variables to the three unique invariants. It is
therefore possible to compute the gradient 8F/8§ in terms of the three
independent variables - f, ' /32 and 8 - of F. We can start by writing

the expression for 3F/8§ in terms of the chain rul
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ﬁ 9F = 3F dI, +« 3F _ dv/J, + 3F d8 , (205)
3¢ 3I, dg I, dg 39 dg
where
sin 38 = [3/3 (Jy,//J.2)]1 . (206)
2
From equation 206 we find that
a8 /3 ( 3, 1 _3J, ¥, b (207)
dg 2 cos 38 3g [v/J,]° (V3,]* 3g

Substitution of equation 207 into equation 205 yields (in indicial

notation)
9F = VF = 3F 3I, + {3F_ - /3 3dy  3F | 3/, ¢
= - = - o -
6cij 3L, 3°1j WJ, 2 cos 38 [VJ,]* 38 Boij
{ __v3 1 | ad, , (208)
a a .12 5 g
2 cos 38 [vVJ,] 98 aoij
where
ay = 5y (209)
daiJ
dez = 1 Sij » (210)
doij /I,
dl, = (a7 + 17, Si5 (211)
do | . 3
iJ
in which
i3 % %5 T L %kibyy
and

T - - - - - - - - -
{a's} = {(8;2833 = 8232%), (38,1855 = 3,3°),(8,18,2 - 8127,

(823813 = 83381,2),(8,138,2 = 5,18,3),(8,28;3 = 5,,8;,)} .
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. In order to find the gradient tensor, we need therefore only to
(' compute the partial derivatives dF , dF , and oF of equations 203 and L
o 3, /7, 38 ¥
% %
a 204. We find from equation 203, r-
~ A
5 F = 2I, -1 , (212)
A ail Q .
* -
9F = 2 {(Q-1)/N }* V3, , (213)
k. Wi, [g(8)]12 -
h and
[ % - T
oF = -2 {(Q1)/N }2J, . (214)
- - — -
- 3g(9) [g(e)]?
. Also, from equation 198, recognize that
~ dg(8) = 6K (1~K) cos 38 , (215)
) {[1+K] - [1-K] sin 38}? s
Kl which is to be used in the following relation: -
aF = OF  dg(8) . N
. 38 ag(s) de b
In a similar manner to the derivation of equations 212, 213 and ;i
2 214, we find from equation 204 that
. - * * - * *
; F =211, +[S -2 =8SblvJ,_1 - (I/QQ1-bN1sS,
. - * * - * N
oI, NZON [(g(8)] N
o
. (216) -
- - * * -
K F =2 b vd, +[8_ -2 =-s8blI, 1 +
< - - * * -
vd, [g(9)]? N2 N (g(8)]
. . .
& (/{1 -boN 3 _1__ (217) |
0 * - 'N-,
" N Lg(8)) o
" and
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- * * - -
3F = -2b Jo - [S_ -2 =-sbpl] I/, _1 -

3g(8)  [g(d)1® NN [g(8) 12
(I,/Q)(1 - N1 1 VI, . (218)
N [g(8)]12

It will be useful at this stage of the development to prematurely
record two relationships which are extremely important in the
subsequent discussion on hardening; these are
a). for the consolidation surface,

F_ = =2I, +21I, {2-1}, (219)
31, Q Q

and
b). for the dilation domain,

* -

OF = (1/Q)1 - N {1 Vi, = s I,} . (220)
= N [8(8)]

D. MAPPING RULE LINKING ARBITRARY STRESS STATE TO CONJUGATE POINT
An ilmportant attribute of the bounding surface constitutive

formulation is the association of the actual stress point, °ij' to a
unique "image" point, ;ij’ on F=0, This feature enables us to simulate
cyclic stress—strain response by correlating both the plastic loading
direction, 5, and the plastic modulus, Rp, at the image point E on F,
to the plastic loading vector, n, and the plastic modulus, Kp, at the
actual stress state, g. How is this image point, E , defined when the
actual stress state does not actually reside on F(i,qn)=0? Dafalias
(Reference 76) has proposed the radial mapping rule which assumes the

existence of an origin in stress space, [P enclosed within the convex

bounding surface; once this origin has been selected, the image point
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e is obtained as the intersection of F = 0 by the straight line passing =
E\ through the origin and g . This can be expressed analytically as: =
& -0 =8(g-0) . (221)
¥ oo TR e
ﬂB From equation 221, it can be easily verified that 8 = 1 when g = §
_‘ and 8 + = as g approaches g The "simple" mapping rule, in which 95 = ;"‘
i? 0 , has been found to give realistic predictions for clays (Reference
‘ 77). In order to simplify the presentation of the equations, the
o "simple" mapping rule is assumed henceforth and equation 221 promptly =
¥ reduces to -
S g=8g . (222) N
o
3 The motivation for the term "radial" mapping becomes more apparent
- when one observes from equation 222 that the definition of the image
point can be interpreted as an imaginary radial (or proportional) -
- loading from the current stress state to the point at which this =
ff hypothetical loading program intersects the surface, F=0; i.e., <1
- Gyp =3z " 3a 8t vda v 8-
011 022 033 012 013 023 ;
‘?f It is instructive to pause at this point and reflect upon the -
.zé consequences of not effecting the "simple" mapping rule (i.e., 9% £ 0). };
- Say we assume that the bounding surface in figure 9 is used in a
%é conjunction with the associated flow rule of plasticity. Consider now f:
‘ that the isotropic sample is then subjected to a hydrostatic
consolidation and swell test; based upon theoretical considerations, we il
‘: would expect our mathematical model to predict a purely volumetric
3: strain rate during the loading and unloading phases. From figure 9, we
m;; can note that there is only one location on the bounding surface which gs

- b
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will predict no shear strains and this point is located at the
intersection of the elliptic consolidation surface and the I, axis.
This immediately implies that the origin of mapping must lie somewhere
along the I, axis. But we must now inquire if this origin of mapping
can be specified arbitrarily on the I, axis? This question can again be
simply answered by examining the expected response for the hydrostatic
unloading after the initial spherical loading. Say we had defined the
origin at some point Y I, where Y ensures that the origin remains
within the convex bounding surface (i.e. 0 £ Y £ 1), and then we had
proceeded to unload the specimen to a magnitude of mean normal pressure
which made I, less than ¥ I,. It is apparent that this hypothetical
mapping rule will then put the image stress state on the dilatation
surface at the origin of stress space; at this point, the slope of the
bounding surface has been defined as S* and will always predict a shear
strain component! By a process of elimination therefore, we have
excluded all but the "simple" mapping rule when associative flow is
employed for simulating the response of an isotropic material with this
particular bounding surface representation.

The six-dimensional Cauchy stress tensor representation in equation
221 must be re—stated in terms of its invariants for subsequent use in
the previously derived isotropic bounding surface function. It is

straight-forward from equation 222 that

O = 80, or I, =81, , (223)
and it can be further deduced that s ije 8 s ijwhich directly implies
Vi, = 8V, . (22u)
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M Inspection of equation 206 reveals that the Lode angle, 8, is

unaffected by the magnitude of 8 (i.e., 8 = §) as shown below

o sin 38 = [_3v3 (J,/v3,%) = [_3v3 [(8% 4,)/(8* vJ,")]

e 2 2

= [ 3v/3 (J3/V/J,%)] = sin 38 . (225)
2

o The result in equation 225 indicates that the function g(8) in

S equation 198 is insensitive to whether or not the actual stress state

L is on the bounding surface. If the state of stress is known, we can

’-3 solve for 3 by substituting equations 223 and 224 into the approriate
choice of equations 203 or 204, With the "simple" mapping rule, the

2 applicable meridional section (i.e., above or below the CSL) is

trivially determined by the ratio vJ,/ I, of the actual stress state,

but, for an arbitrary location of the origin of mapping, the portion of

.-? the surface bearing the image point will have to be resolved by

checking to see if the straight line passing through the origin, 2q0

"{ and the actual stress state, g, crosses the CSL while F £ 0.

k-~ - Substitution of equations 223 and 224 into equation 203 leads to
2J *

= Fo=82I,2 -2 (I,/Q) I, + {(Q=1)/N }? g%J, +

3 gle

& I,? ((2/Q-1} = o. (226)

With the current state of stress (I,, vJ, and 8) and the location

o of the bounaing ellipse (I,) known, it is now possible to sclve the
(o resulting quadratic equation for g in equation 225. The solution may be
2 written in the condensed manner,

g = - B + V/(B*-U4AC) , With 1 § 8 s = (227)
- ) 2A '_v
— where 4
-
' 130 i
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. A=I,2+ (N2 d,
‘i [g(8)]>

Ba==2(I,/QT1I,,

and

C=1I,2 {(2/Q)-1} .

Equation 227 can be validated very easily by substituting into this
equation the two coordinates in invariant stress space where we know in
advance that the magnitude of B is equal to unity. These two obvious
cases occur at the following positions: {I, = I,, vJ, = 0} and {I, =
(1,/Q), VJ, = N(I,/Q)}; independent insertion of each these coordinate
component sets into equation 227 shows that, for both instances, one of
the roots of the equation is indeed equal to unity while the other root
is less than one. If the reader should actually check these cases, it
will be observed that the + operator in equation 227 is important, and
hence, in numerical implementation, it is essential to check both roots
of equation 227 and then select B as being equal to the root that is
greater than or equal to one.

An analogous procedure can be adopted in the derivation and
corroboration of the equation for 8 for the second portion of the
piecewise continuous meridional section. We proceed by interchanging in

equation 204 the equalities expressed in equations 223 and 224, and

obtain
F = B82I,2+ 1 g2J, + [s* -2 - S*b] 82I,v/J, 1 +
* *

(g(8)]? N2 N (g(a)]
* * o
(Ig/QC1_=-DbN I8 {_1 VJ,=-5 I,} =0 e
* .4
N (g(8)] 11
X

which gives the result

SO |

131

Yoyt
P S
. Y i

¥
«

.'J'
cend o4

.
e

e et e R

. - . P -, v, - . . . o ~ - . .
. . o PR T S R . - . id S e et AV e PR DY .
CORIRFIAF S D S VR S G g F AP O, T . Y u‘L;A_'.,u‘A_-s_ i, e Bl il el e, et S sl Bl AT WA P Ul I P, ¢




8 'A » (228)
B
where
* *
A= - (Io/Q)[l___bN ] (1 V/Jz_s I,} ’
N [g(6)]
and
* *
B=1I,2+_b J, +[s__=-2 =-8sblI/g, _1 .
*
[g(8)]? NEOoy [g(e)]

It can be easily verified that 8 is equal to unity for equation 228
when the coordinate components are {I1 = (I,/Q), V/J, = N(IO/Q)}, but
remember that, by definition, 8 is undefined at 95} that is, at {I, =

0, /J, = 0} 8 » =,

E. THE LOADING FUNCTION

From equation 116, recall that the loading function is defined as:

L-J_lg UiJ ’
K 90, .
p ij

where Kp is the plastic modulus, and this definition implies that the
plastic loading direction at a stress state within the bounding surface
18 defined as VF at its image stress poiat (or n = 5). For a reloading

or virgin loading stress path (i.e., 9F éij > 0), the plastic loading
Bcij
direction is defined as VF (or n = 5), but, for a reverse loading

event, when JF o
acij

n = —5). These assumptions ensure that the loading function is always

-

1] < 0, the loading direction is specified as -VF (or
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non—-negative leading to the generation of non-zero plastic strains

except for neutral loading where JF 513 is equal to zero.

Bcij
We can therefore compute the loading function, L, by first
substituting equations 223 and 224 into equation 208 and then take the

inner product of the resulting second order tensor with é to produce

L =1 3F oij-LVE:gzL[égdij+3F- 1 syt
K 3. . K K oI, Wi, 2/d,
p 1] p P
V3 1 9F { 1 3y - 3Jdy Wl ] ..
2 cos 38 235_ IRl 3 Vd,1* 2 Y
S Uij L 2 oij
which simplifies to
L=1 [8F I, +3F Vi, + _ 3 138 {3, ~39,/3,;i],
K oI, W, 2 cos 38 8 38 [/J,1° [VJ,1"
and can be finally written in the compact form
L=1 (I, +93F /i, +1 5Fd], (229)
K oI, VAR B 38
where
6 = Y3 {1 J, - 3J, Vi) .
3
2 cos 39 (V2] (vd,1*

F. THE FLOW RULE
With the definition of the lcading function L, we can now write the
constitutive relation for the plastic strain rate (equation 117) as:
op=
Eij L mij ,
where mij are the components of the unit tensor gradient to the plastic

potential.
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It is proposed, at this stage in the development of the
constitutive model, that the history of the plastic strain tensor,
(§p)t, be used as the sole plastic internal variable for characterizing
the internal state of the material. Invariant quantities of the plastic
strain tensor, analogous to the first invariant of the stress tensor
(I,) and the square root of the second invariant of the deviatoric
stress tensor (¥J.), are selected such that the nine independent

components of the symmetric small strain tensor can now be replaced by

these two independent plastic state variables. These invariants are: a)

p

KK (denoted by the symbol £), and b)

the plastic volumetric strain, ¢

the plastic equivalent shear strain defined as:

P

= : = .p
n ft n dt ft /(% e i e ij) dt, (230)
. P _ P ;P
where e 1j € 13 % € Kk Gij

The quantity ﬁ is known as the generalized or equivalent plastic
strain increment (Reference 66) and takes the same invariant form as
vJ, is of the components of the stress tensor g. The equivalent strain
n provides a measure of the plastic distortion and it is important to

recognize that this quantity is computed by continually summing the

positive scalar /(l épijépij)‘ This implies that n will not be equal to
2
zero if an element of sand was distorted and then returned to its
p

original shape (i.e., ¢ = 0), but its magnitude will instead reflect

the history of plastic distortion (gp)t.

From the flow rule in equation 117 and the plastic strain increment
invariants defined above, these following useful relations are

obtained:

134

R S - AR S . - . . ot Cote e NS LN e e T e Tl
ST e s L S T T AT S
. - . - . : - - - . 19 T N
P S O SRR Ry WY

. . .
‘a m T Te ol el ot . e e 0 C  Te e e e FER S
o W . CRUR DUSGT S Sy W) 2 (] L T Sh I S WU S Sy - - - o - _ = v .l B WD S P e AN Y




: = .p =
P _ P - -
e € j L (mlJ % Mk 51j), or
P =L m® where m® = m -1 m, S8 (232)
= § K =
b 2 - -
n=v[11L (mlJ Im 613') (miJ 1my ij) 1,
2 3 3
. - - 2
n=Lv[1 (mijmij 1o, )],
2 3
but m is a unit tensor, therefore,
] - _ 2
n=L /[% (1 %mkk ). (233)

G. 3BACK CALCULATION OF THE PARAMETERS "Q" AND "bp"

With the introduction of the scalar quantities é and ﬁ in the
previous subsection, it is perhaps instructive to interject at this
point in the discussion and inspect the qualitative nature as well as
the quantitative significance of the parameters Q and b. Remember that
these parameters control the meridional shape of the piecewise
continuous bounding surface,

If we assume that the bounding function F is also the plastic
potential function (i.e., associative flow), we can attach some
relevancy to these parameters since they now effectively control the
simulation of dilatancy. Here, dilatancy is defined as the ratio of the
plastic volumetric strain rate (é) to the plastic equivalent shear
strain rate (n). Several authors [perhaps most notably, Rowe (Reference
78)] have postulated the existence of a unique relationship between the
dilatancy and the ratio, /J:/Il. Observation of the ratio of plastic

volumetric strain rate to plastic equivalent shear strain rate data
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from 'triaxial' tests confirm that the dilatancy is approximately
constant (see for example, Reference 78), and hence we can make use of
this phenomena to provide realistic estimates of the parameters "Q" and
"b",

Dividing equation 231 by equation 233 and employing the normality
rule of plasticity results in

- 6 3F/3I, + 3F/3/J% . (234)

:jo'm'

Given the incremental plastic strain tensor and the state of stress
(1,, /Jt) Wwe can iteratively solve for the parameter "Q" or "b" using
the following steps: 1) Assume a magnitude for "Q" or "b" within their
respective limits, 2) Solve for I, using equation 176 or equation 186
(this choice of equations depends on whether the stress state is above
or below the critical state line), 3) With the approriate gradient
tensor equations (i.e., equations 212 and 213 or equations 216 and 217)
solve equation 234 for the ratio é/ﬁ and compare to the experimental
result, and U4) Repeat this procedure with a different estimate of "Q"
or "b" until an acceptable tolerance for the ratio é/ﬁ in step 3 is

achieved.

H. THE CONSISTENCY CONDITION
The consistency condition is invoked for the bounding surface to
guarantee that the load increment leads from one plastic state to

another, This is accomplished by setting

F=3F:g +3F q =0 ; (235)
3§ %y
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further, from equation 116, we can verify that

Qie

and hence,

(236)

m,o)
i
Qe
1
N
-
.

By specifying that the rate equations for the n plastic internal
variables be written as:
3, =Lr_, ' (237)

we can then restate the consistency condition to read

K L+ FLr =0 ,
a—q' n
n

which when divided through by the loading function, L, yields

F=K + o r =0 .

p — n
aqn
Hence,
k)= -3 r . (238)
aqn

From the flow rule (equation 117), we can see, for example, that if
the components of the plastic strain tensor were chosen as the "hidden"
variables, g,, then r, will be represented by the unit gradient tensor

to the plastic potential, m.

I. SELECTION OF PLASTIC INTERNAL VARIABLES

Observe that the location (or size) of the yield/bounding surface

can be lidentified by using a single variable, I, which is the point
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13 where the elliptic cap intersects the hydrostatic stress axis. We can -
=
; therefore express our isotropic hardening law by determining 31,
:‘ Bqn I'..:
N [i.e., I, = I, (qn) implies F(i » Lo)] for each of the n so—-called ’
independent "hidden" variables and then use the chain rule to find ;E
. 9F q = oF 3I, q,
. = n = =2"n -
- 3q, 3T, 3q,
where oF is computed from either equations 219 or 220. Our task is now
I, -
simply the determination of 3I, én' o
aq
n -
Since overconsolidated clays and dense sands exhibit stable i;
~ behavior, despite dilatancy, until the peak stress is attained, a
refined description of the customary critical state model (or pure
. density hardening) is required. Enhancement of the density hardening =
=

5 can be achieved by assuming that additional hardening takes place due
3 to the shear action. Three possible approaches for including this

4 distortional hardening aspect are discussed in the following.

1. Combined Hardening Parameter (Strain) >

- The first alternative that is presented is due to Nova and ~

Wood (Reference 79) wherein they introduced a combined hardening f?
- parameter, T, whose rate is expressed as follows:
5 T=an+ié (239) "
- d
; where A 1s a constant parameter, and, ﬁ and é are defined in equations
+
3 231 and 233 respectively. Keeping in mind that the objective is to
. =
' «ad
.
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compute 31, én, we can state for this particular case that our current
9q
n

aim is the calculation of

AL, T =3I, [An+&] . (240)
3T 3T

As a general rule, a partial derivative can be found by observing
the variation of the value of a function when we give an increment to
one independent variable and keep all the other variables constant. In

order to evaluate 3I, with ﬁ = 0, we can perform a hydrostatic
aT

consolidation test on a normally consolidated isotropic specimen and

observe the relation between I, and &; for this particular case, =

31,
aT

dl,. Experimentally we may observe that there is a unique relationship
9g

between I, and ¢ that can be expressed as:

kKkln = 0

I, = [I,1],

initial exp(x € ,.) , (241)

kk

and after taking the time derivative of both sides of the equality in
equation 241, we find that we can now restate this relationship as:

I, = [I,] exp(A € ) A ¢ (242)

initial kk kk :

By replacing equation 241 in equation 242, we can write the rate

equation as:

€ekln = 0 I, , (243)

=1
A I,

where A 1s a soil constant, This functional form will be recognized by

geotechnical engineers as the usual semi-logarithmic relationship

between the void ratio and the mean normal effective stress (i.e., e

vs. log p').
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A If we unload the specimen, still under isotropic conditions, we
‘ﬁix find that the recoverable or elastic part of the volumetric strain rate
RN
&
~
:in can be expressed by a relation similar to equation 243 so that
LA
NG ¢ -1 i (244)
s kKk|n = 0 -=
K
I,
‘ﬁ» where « is another constant larger than A. The irrecoverable or plastic
_* volumetric strain rate is therefore given by
s P - f = = 3 1 4
Skkfn =0 " En=0 2L s (245)
Ak
-.?‘s—'.'. Io
Zﬁ;‘ from which we can easily see
" Y
o 3, =931, =1, _x A, (246)
S g aT K =~ A
Ny
2$f and substitution of equation 246 into equation 240 leads to
"1
o I, T =3I, [An+8E]=1I,_x X [An+gl. (2u47)
oT 3t K = A
08 As an aid to understanding this hardening rule, note that equation
;ﬁii 247 reflects the assumption that we can write
J 3, = A 3, .
o an 9
'jj: We are still left with determining the parameter A, and, in
AN _ *
o principle, we can perform an analogous test with vJ, /I, = N such that
O é = 0 with the result that the hardening process takes place along the
L zero~dilatancy line. It should be noted that this process is not unique
- % * 3
O since the particular stress state vJ, /I, = N can be reached either h
};; during a hardening process or at the end of softening, at the critical
e state. Note that the critical state (when unlimited deformations can N
Ef} occur without change of stress or volume) may not coincide with
oY 140
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failure, If the critical state is reached after softening, no variation
of I, is possible because the material has already experienced
"infinite' strains when it encountered the "failure" line, but if the
material approaches the CSL during a hardening process, we would assume
that I, can vary. In the former case, we would therefore set the
constant A equal to zero while A will be positive in the latter,

Nova and Wood (Reference 79) suggests an alternative procedure to
the difficult determination of A through a /52*/I, = N* = constant
test. Before discussing this alternate method, it will be necessary to
introduce some preliminaries; the following stress-dilatancy
relationship 1s foremost:

./32*/11 =N -y (B , (248)
where y is a material parameter. At é = 0, we can find N* (= /32*/11),
and then subsequently use this parameter to find u from the relation in
equation 2u48. Based upon theoretical considerations presented in their
paper, Nova and Wood (Reference 79) have shown that the effective
stress path tends asymptotically to a definite value of /32*/11 for an
undrained test (i.e., no total volume change), and this effective
stress path can be depicted in the equation

- * *
/Jz /Il =N + A u A . (2“9)

K

*
With x, A, u and N known from procedures outlined previously, we
can therefore get an estimate of A by observing the asymptotic

- * *
difference [vJ, /1, - N ] which occurs during an undrained test.




The final step is the computation of the bounding plastic modulus,

Kp, from the consistency condition. This can be simply effected by
first substituting equations 231 and 233 in equation 247 to obtain

Ao T= Iy _x A [AR+ E]
aT K = A

= - 2
Lo _xAd (ALY/OL (1= 1m, %)} +Lm, 1, (250)
K = A 2 3
and then substituting equation 250 into the consistency condition
K L +3F 3I, T=0
P 9L, AT

which results in the following expression for Kp:

K ==93F I, «2 [A V{

1 n, 20 + = 1.
P 9l, K = X 2

(1 - "

1
3
(251)
With the form of the yield/bounding surface assumed in thi. paper,
it is possible to solve for the parameter A directly from equation 251
without having to perform an undrained test, With an associative flow
rule assumption, we find that the dilatancy expression can be stated

as:

-m.kk+/{l (1 -

1Tm, 2} ==-1 , (252)
5 § kk —%

S

at failure, but at this point, we would also expect the plastic modulus

3 e

in equation 251 to go to zero. This means that

a {1 (1= 1n
2 3

and combining equations 252 and 253, we find

kkz )} nkk] =0 , (253)

A = .

1
*
S
2. Combined Hardening (Work)

The second approach that includes the shear action in the

isotropic hardening is similar to Nova and Wood's (Reference 79)
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combined parameter just described, but, instead of plastic strain, the
formulation is based on plastic work, wp. In analogy to the synthesized
parameter T employed in tne previous development, the plastic work rate
is defined as:

I, € . (254)

in
K L+03F W =K L+3F (s:2P+ I,E]l=0
P aw. P P W 3
p p
=K L+3F_ 3, s:s"« ILEl=0. (259
p 37 3w - =
al, 3w 3
P
Substituting equations 231 and 232 into equation 255 gives
- ot .
Kpu+3F g [s:m + I, .m I1=0
I, oW 3
p
from which we can compute the plastic modulus to be
- - q
K ==-293F 3lgls:m + I, mkk] . (256)
p T
I, oW 3
p
The only unknown in equation 256 is the quantity 3I, which must be
oW
P

calibrated from an estimated relationship based on experimental
observations. Lade (Reference 80) and Lade and Duncan (Reference 55)
have utilized the plastic work, wp. extensively as a hardening
parameter and their proposed relationship between plastic work and the
mean pressure (or I,) along the virgin hydrostatic compression path

takes the form:

v r
Wwo=Cop [ I2]", (257)
p a 3 p 2
a
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L3

where Pa is the atmospheric pressure, and, C and r are material

parameters which can be determined from a plot of log (Wp/pa) versus

log [ 192 ]. The parameter "r" is the slope of the transformed straight

3 Pa
line graph while "C" is the magnitude of log (wp/pa) at [ I,%, equal
3p,°
to 1. By rearranging equation 257 to put I, in terms of wp, we find
.5/r
Io - /3 Pa [wp/(c Pa)] ’
and therefore,
.5/r)=1
3, - /3 W /(C pa)]( 5/r) . (258)
3W 2r C

P

Substitution of equation 258 into equation 256 gives the plastic

modulus as:

z (+5/r)=1 d
K =-93F V3 [W/(Cp)] (s:m + I, m 1. (259)
P 3t, 2r¢c P a 3 Kk

It is interesting to note that by setting the parameter A equal to
zero in equation 251, we obtain the commonly used density hardening
model while there is no such parameter toc give us this control in the
analogous plastic work hardening formulation (equation 259). In this
regard, the hardening described in terms of the combined strain
parameter T may be preferred over the plastic work formulation just

presented.

3. Two Parameter Hardening
As a final alternative, it can be assumed that n and £ act
independently in the yield condition, F(E.n,i) = 0. A two parameter

hardening rule of this type was considered by Prevost and Hoeg

(Referenc2 81) and McVay and Taesiri (Reference 6). Based on
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'i experimental observations by Kondner (Reference 82), Prevost and Hoeg
(Reference 81) put forward the following hyperbolic relationship

*
between ¥J, and n to describe the hardening of their model's shear

yield surface:

' * *
N Vi, = n (vVJ, ]ultimate » (260) :
a+n ‘
* * .
e but we know that S I, = [v/J, ]ultimate’ and hence equation 260 can be

written as:

— * *
/Jz = n S Il . (261)
a +n S

From equation 241, we can further see that

b I, =(I,] exp(\ £) , (262)

initial

and substitution of this equation in 261 gives rise to .

* *
Vd, = n S [I,]
a+n

inttial XP(A &) (263)

rearranging, we obtain

/Jz* = n S* exp(i €) . (264)
[11] a+n v

initial
The hardening relationship stated in equation 264 cannot be relied
upon exclusively in a single (or piecewise continuous) yield/bounding
function representation such as the one considered herein because it
does not model any hardening along a hydrostatic compression stress
path (i.e., n = 0). This feature should not be surprising since Prevost

and Hoeg (Reference 81) also used, in conjunction with their shear

surface, a singular volumetric surface (i.e., the stress state always

resides at the intersection of these two surfaces), governing the

yielding of the material during compression, -
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o
In order to bypass the deficiency of this hardening rule in -,
transforming from the piecewise discontinuous yield surface depiction =
to a single continuous yield/bounding function, MecVay and Taesiri
(Reference 6) adopted the following procedure: they first re-stated the
consistency condition in the form E;
b % . * .
gg : g+ 9F dI!* a/Jz n + £(I,,/J,) OF &£ =0, (265) QJ
90 9l, d/J,[CSP 3n 13 w
where the subscript CSP is an acronym for Calibration Shear Path, L+
and the function f(I,,/J,) is selected such that f(I,,/J,) is equal to ’
zero along the calibration shear path but equal to unity along the 53
other calibration path which is the hydrostatic consolidation path,
* -
Tnis function, f(I,,/J,), can be interpreted as a weighting factor, N
between zero and unity, for the density hardening term of equation 265. .
ad
Along the CSP, a functional representation similar to that used by -
Prevost and Hoeg (Reference 81) is adopted to model the relationship .
* ';'
between vJ, and n,
* * -
/3.t - n st (266) .3
(T dinitial a+n :
where a is a constant which controls the initial slope of the assumed 9
hyperbolic shear stress = shear strain curve. "
From equation 266 we find 52
avds ¥ 6
J = a . S [Il]lnitial 9 (2 7) .
(a +n) 3
an 3
-
which can be put in the following more convenient format for L.c
o
consistency condition: A
b % . * .
3F:g + 3F dI, WJd, n+ £(1,,/J,) 3F 3I, € =0 . (268)
- * g
g I, d/J,|CSP 3n 31, 3¢ Q
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We must now select a calibration shear path (CSP) and evaluate

- %
dI, , and then pick a realisti function f(I,,/J, ) which meets

*
dvJ,|Csp

the previously mentioned requirements. McVay and Taesiri (Reference 6)
settled upon the conventional triaxial compression (CTC) stress path as
their CSP (so the subscript CSP can now be replaced by CTC) and this

derivation describes the simple procedure by which dl, is
*
dvJ,|CTC

computed, The equation for the CTC stress path on a normally

consolidated sample can be expressed as:

I

1

where [I,]i ={1,]

/(33,) + (1,3, (269)

initial’
and substitution into equation 176 of this unique relationship between
the stress invariants gives
F = (/(37.) + (1,1 - 2 (I/QG/(33, ) + [1,1) +
(1M 12 3,5 ¢ 1,2 ((2/Q=1) = 0 . (270)
Taking the total derivative of this equation with respect to /32*

and rearranging, we obtain

921* =A , (271)
ad,lcrc B
where
- * * - #*
A=6VJ, + 2/3 [Illi - 2/3 I, + 2 {(Q1)/N }% /J,
Q
and

B=2/3/3, +21, (1-2/Q)} + 2 [1,] .
q 3
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These calculations can be carried out in a similar manner for the
dilatation portion of the bounding surface (see equation 186), and the

result is

o = A (272)
dvJ, |CTC %%
where i
- * -~
A=2[3+Db+/34A,]/J, + [Izji {2/3 + A} + ':
. 3
(1 -V38 Ja, 1,, .
* - * =
B =S Az[I,]i-/Jz{Az—/3S A, Y}, ;
where -
% % ]
A, =[S -2 -30b], -
. %
N 2 N ~2
and '-.:\
*
A, = (1/Q[1 -bN ] . o
* 5]
N ~
*
The function f(I,,/J, ) must now be chosen. Recall from equation
269 that the equation of the CTC path is
- - *
I = /(3Jz )+ [Il]i ’ v

* !

and we can conveniently re-write this expression in the form

- % [
/(3d; ) =1 . (273) o

(1,1 -(1,], )

-

Observe that when the left hand portion of equation 273 is raised e

to an arbitary exponent n, this quantity is still equal to one along .
the CTC. This leads us to propose the general relationship 25

n
{ /(3Jz*)} X (274)
[11] - [Il]i

F(I, /I, ) = 1 -

One may observe that this expression is equal to one whenever vJ,

*
(= g(8) vJ, ] is equal to zero, and therefore satisfies the requirement

e ML

148




for pure volumetric hardening along the hydrostatic consolidation path.
But, is this equation valid for general loading programs? For a
monotonic CTC test on a normally consolidated sample, [I,] is always
greater than [Ilji, and, as a result, the denominator of the power term
is always positive for the calibration path. This, however, may not be
true for general paths and if the quantity ([I,] - [I‘]i) is in fact
negative while the exponent n is an odd integer, the expression for f
can be greater than one., Since we are seeking our range of f(Il,/Jz*)
to vary from zero to unity, we will need to allow for this possibility

by modifying equation 274 to the following form:

n
£(I, /I, ) = 1 - { /(34,0 S (275)

I[Igj = [Iljll
McVay and Taesiri (Reference 6) set n equal to one but wanted

further to decouple completely from the volumetric hardening, 31, ,
23

when the combined deviatoric/hydrostatic stress state resided above the
trajectories of the CTC and Reduced Triaxial Extension (RTE) stress
paths. The CTC and RTE stress paths are 120 degrees apart in I, - VJ,
space. This requirement can be met by introducing the Heaviside step
function in equation 275,
£(1,,3,5) = <1 - { /(30,0 o (276)
(1,1 - [11]i|

A schematic illustration of this hardening is depicted in figure
10; note that in the regions A and C, combined shear and volumetric
hardening is assumed while the hardening in the region B is controlled

solely by the shear strain.
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lj We are now furnished with all the information we need for the
consistency condition of 268 except for 3I, ; this hardening can be

[, &

‘ assumed to take the form of equation 246. For this third hardening

option, the plastic modulus on the bounding surface can then be

computed as:

K =-3F (4o a/J: 1 - 1m,2)]
P - * Fl 3
I, dv/J,|CSP an
© ORI 3Ly m (277)

dg

J. LINK BETWEEN THE PLASTIC MODULUS (Kp) AND Rp AT THE BOUND
The most conspicious feature of the bounding surface formulation is

the definition of the plastic modulus, Kp, in terms of the plastic

modulus at the image point Rp. The generalized plastic modulus, Kp, can
be taken as an experimentally determined function of: i) Rp, ii) the

Euclidean distance between § and g (say §), iii) the Euclidean distance

between § and §° (say 6,) and iv) a discrete memory parameter (say a)
which distinguishes among loading (a = 1), reverse loading (a = -1},
and reloading (a = 0) events. In the six-dimensional Cauchy stress
manifold, we can compute the Euclidean distances, § and §,, between the
various pairs of stress coordinates as /[(3ij - cij)2] and /[{Eij -
(oij)o}zj respectively, and recollecting from equation 222 the 'simple’
mapping relationship 5 = 8 g , we determine

§ = /[(Soij - oij)z] = (8 =-1) /(oijoij) ' (278)
and

8o = /[(soij -0)%] = 8 /(o ) . (279)

13%
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N We can now postulate a relationship of the form (see, for example, -
%- Reference 83) &=
198
. - = Y
K =K + [(K)g - K §
- P p [ p’° p] {c_}
: 0 L
A -
e z = Y
=K +[(K)y ~K1 {g=1}", (280) _'
. P p p 3 ;3
- where "
- %
(-~ K = K at § =6 T
- ( p)° p o ,_':?
K =K at§ =20
p D ’ -
and Y is a constant parameter; we may express the relationship in an Aﬂ
;, equivalent form (see, for instance, Reference 84):
= = — = ) _ ‘
: Kp = Kp + H(g, q.) § = Kp +H{g, ¢ ) B-1) , (281)
. § -8 .
. 0 ,.'
where H is a positive 'shape' hardening function of the state. The !
adjective "shape hardening” describes the role of H in defining the e
o
A shape of the stress—-strain curves during plastic hardening. In equation <
i? 280, we can see that Kp = Rp when the stress point and its image fi
. [
: coincide (i.,e, when a = 1) so we need only concern ourselves further
a7 with the differences (if any) that arise from using equation 280 ﬁ’
t{ instead of equation 281 in simulating the reload (a = 0) plastic .
‘2 modulus, It is also important to note that the continuity condition is .
3 satisfied in both constitutive relations (equations 280 and 281) when a "
) “.:~
AL loading program proceeds from a reloading to a virgin loading phase. h
o .
‘f- In both instances in the literature where the bounding surface jf
QT plasticity model has been used for sand (References 6 and 74), the .
. semi-empirical relations for modeling the unload (a = -1) plastic o

modulus have not included Rp as an independent variable, and as a
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result, the general relations presented above are not applicable to
this event. Nevertheless, the reverse loading modulus has been modeled
as a function of § and §, and these relations will be presented after
the reload modulus is discussed.

Aboim and Roth (Reference TU4) adopted a form of equation 281 in
their bounding surface constitutive equations for the reload (a = 0)
plastic modulus; they assumed that H(g, gn) was equal to a constant
Hr1’ and hence their representation was simply

K, = Rp *H,B=1) . (282)

For the reloading path (a = 0), McVay and Taesiri (Reference §)
assumed that Y was equal to unity in equation 280 and that the term
[(Kp)o - Rp] was a constant (say Hrz) such that the generalized plastic
reload modulus relationship could be expressed as:

K= K+ H, {E%l} . (283)

We can now assume an empirical relationship for the reverse loading
plastic modulus which is proporticnal to the relative distance between
the stress state and its image stress point. The key differences

between the stress reversal modulus and the unload modulus are: i) the

continuity requirement is not applicable for reverse loading, and ii)

the unload modulus decreases with distance from the bounding surface

while we have already shown that the reload modulus decreases as it

approaches its image point on the bound. Possible empirical

relationships for the case when the discrete memory parameter a is

equal to -1 (reverse loading) arise naturally in the forms:

153




1 -1 1

K o« {8} = {g=1}" =#H_ {8=1}" . (284)
PSS 5 W g
or
« Tl - I . - Y
K {5 EG} (8 =1 H, (8= 1) , (285)

where Hu1 and Hu2 are constants to be determined, together with Hm and

Hrz' by heuristic curve fitting of the experimental hysteresis loops.

From equations 284 and 285, we can observe that the reverse loading
plastic modulus goes to infinity at the first load decrement following
a virgin loading phase; at this point, 8 is equal to unity but the
discrete memory parameter, a, is now equal to -1, This case is

important since it represents the sole instant when we theoretically

have purely elastic strains, thus making it possible to calibrate the

elastic constants.
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SECTION V

LABORATORY INVESTIGATION OF SOIL ANISOTROPY

A. INTRODUCTION

Although soils are known to exhibit significant stress—-strain-
strength anisotropy, detailed quantitative measurements of anisotropic
properties have been severely restricted by the limited stress
conditions that can be applied with conventional test equipment. The
greatest limitation to a detailed study of anisotropic behavior is the
inability to have controlled changes of principal stress directions
(Reference 10).

Inherent anisotropy studies, using samples prepared in tilted
molds, have, in the past, provided quantitative as well as qualitative
indications of the influence of anisotropy on the load-deformation
response of cohesionless materials (References 35, 43, and 85). It has
been pointed out, however, (Reference 86) that the use of tilted
samples may lead to non-uniform stresses or strains, depending on the
flexibility of the boundary; this potential test flaw suggests a need
for alternative test procedures,

Recently, specialized devices, in which the direction of the
principal stress axes can be controlled, have shown significant
stiffness and strength variation with the relative orientation of the
principal stress axes to the material's fabric (References 9, 86, and
87). The hollow cylinder apparatus (HCA) and the directional shear cell

(DSC) are the two key types of non-standard equipment presently used in
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the controlled exploration of more general stress spaces, These
apparata are by no means ideal or capable of subjecting specimens to
completely general stress states, and, with the ever increasing use of
supposedly generalized stress-strain models in finite element analysis,
the development of improved devices to probe the whole stress-strain
spectra takes on added importance,

In this section, attention is devoted to very briefly describing
the following experimental devices which provide the source of the
measured stress-strain curves: 1) the hollow cylinder apparatus, 2) the

directional shear cell, and 3) a series of in-house 'triaxial' tests.

B, HOLLOW CYLINDER TEST

In their state of the art paper on Laboratory Strength Testing of
Soils, Saada and Townsend (Reference 5) discussed in great Jdetail a
large number of static testing devices; included in that paper is an
excellent review of the theoretical and practical aspects of the hollow
cylinder apparatus.

As part of the data collection phase of this research effort, the
results of a series of HCA tests, aimed at investigating inherent
anisotropy, on Reid-Bedford sand (at a void ratio of 0.67) were
obtained. This test environment is most conveniently described by
referring to figure 11 which depicts the state of stress in the "thin",
"long" hollow cylinder, The main feature that distinguishes the hollow
cylinder test from the conventional solid cylinder test is the

application of the shear stress t which effectively controls the

9z

directions of the major and minor principal stresses (o, and g,) acting
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in the vertical plane of the cylinder (i.e., 8z plane), In all these
tests, the internal and external cell pressures were always equal, and
this suggests that the potential non-uniformities in the radial and
circumferential normal stresses were mitigated across the thickness of
the specimen. With this special test scenario, note that the cell
pressure (Ur = 06) is always equal to the intermediate principal stress
Oz

From figure 11, we see that the change in principal stresses and

their directions are given by

Ag, = % [Acz + Aoe] + /[ {% (Aoz - Aoe)}z + Are; 1, (286)

Ag, = % [Aoz + Aoe] - /L {% (a0, - Aoe)}2 + Are; 1, (287)
and

] tan 28 = Aty + (40, = Adg] . (288)

2

In the first series of tests, the intermediate principal stress and
the angle between the major principal stress and the vertical (B8) were
held constant while the samples, inherently possessing an axial axis of
rotational symmetry, were monotonically sheared to fallure. The angle 8
varied over the range 0° to 90°; more specifically, the nominal values

of B were 0%, 15°, 31.75°%, 4s5°, 58,25°, 75°, and 90°, For this
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particular series of tests, note that equations 286-288 simplify to the

following:
Ao, = % Ao, (1 +/700 +UK%) 1, (289)
Ag, = % bo, L1 -V + 4K? 1, (290)
Ao, = 0, (291)
where
K=1 tan 28 = a7, + A0, . (292)

2

The second series of tests were similar to the first except, now,
the mean normal pressure was kept constant. In this case, equations

286-288 reduce to

Aoy =1 Ag, (1 +3 /(1 + 4K?)],
2 2 2
Aoy = 1 Aoz (1 =3/ + 4K?)],
2 2 2
and
A02="%AOZ,
where
K= 1 tan 28 = Ax + 3 Ag .
> 0z 5 z

Again, B assumed the same range and magnitude of values as the
constant intermediate principal stress tests.

When dealing with such a variety of tests, it is always convenient
to introduce a compact but unmistakably clear notation, and here there
is no exception. Adopting Saada's convention (Reference 9), the tests
are designated by letters with the following meaning: "D" refers to

constant intermediate principal stress; "G" to constant mean normal

pressure; "C" and "T" to compression or extension depending on the
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‘7f direction of ¢,; and "R" to indicate if the shear stress (rez) was
applied. The numbers refer to nominal values of B during the test.
Therefore, a GTR 75, for example, is a mean normal pressure extension
;5. test with the major principal stress inclined at an angle of 75° to the
0 vertical. Further, observe that a DC 0 and DT 90 in this classification
#5? system are equivalent to the CTC and RTE stress paths respectively of
i;” figure 3. Figure 12 shows the stress paths for all tests in the so—

van called "M,I,T." p—q space (where p = ¢ ; d;, and g = 9; = g3).

2

R Although not indicated on this figure, all tests started at an

effective confining pressure of 30 psi,

{Q\

W C. DIRECTIONAL SHEAR CELL

e

-1 The Directional Shear Cell (DSC) is a plane strain, flexible

0% boundary stress controlled device which applies varying amounts of

’E;: normal and shear stresses to the sides of a cubical specimen, thus, in
::Q. effect, controlling the magnitude and direction of the major and minor
ﬂf. principal stresses., Figure 13 presents a diagram of the method used to
;iﬁ apply these normal and shear stresses to the sand sample, but, for a
{i} more detailed explanation of this device and its operation, the reader
J; is referred to Bekenstein's thesis (Reference 10).

?; A comprehensive series of DSC tests were carried out at M,I.T.

Ei' (Reference 10) to investigate: 1) the reproducibility and reliability
ﬁ:. of the device in simulating supposedly "isotropic shear" tests, and 2)
e
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the influence of stress—induced as well as inherent anisotropy on the
stress-strain—-strength behavior of both loose and dense Leighton—
Buzzard sand.

Isotropic shear tests are defined as monotonically loaded tests
wherein the principal stress direction and the minor principal stress
(0;) are held constant until failure; the depositional direction is
normal to the plane strain sides to negate any effects of inherent
anisotropy. This test is schematically illustrated in the monotonic
loading phase at the top of figure 14, and, from a theoretical
standpoint, it is useful in defining the isotropic stress-strain-
strength behavior of the material, Before proceeding further with the
discussion, it should be noted that there is never a continuous
rotation of principal stress directions during these loading or
unloading paths; the mention of this implicit assumption is therefore
suppressed in the following.

Induced anisotropy is investigated in two general ways; in the
first method, step #1 involves an initial loading, with ¢, constant, to
a relatively high, but pre-peak stress ratio R (= ¢;/0,). This is then
followed by a monotonic unloading to an isotropic stress state (R = 1),
and finally, with a single jump rotation of the major principal stress
direction (wB), reloading until failure takes place. This sequence of
events is depicted in figure 14, The second method for studying induced
anisotropy is illustrated in figure 15 where we note that the principal
stress directions (wA) during the initial monotonic loading (or

induction) phase is not perpendicular to the sides of the specimen,
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Tests; ¥y 0° (Reference 10).
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During the reload to failure, however, these principal directions are

kept normal to the sides of the cube specimen.

Inherent shear tests were monotonically loaded to failure, but,
unlike the induced tests, the samples were oriented so that shear
occured in a plane containing the direction of deposition. Several
variations on these tests were carried out, and detailed information
regarding this rather comprehensive study of anisotropy in granular

materials can be found in Bekenstein's (Reference 10) work.

D. IN-HOUSE 'TRIAXIAL' TESTS3

Triaxial testing at the University of Florida initiated with the
investigation of the shear strength of Reid-Bedford sand at void ratios
of 0.57 and 0.67 respectively., The tests were performed at initial
effective cell pressures of 25, 35, and 45 psi to bourd the pressure
range used in the hollow cylinder tests (of the previous subsection).
The tests consisted of either increasing or decreasing the axial load
while maintaining a constant cell pressure (i.e., CTC and RTE tests
respectively of figure 3), Vertical deformation, volume change, and
vertical load were measured with a dial gauge, a burette, and a
calibrated load cell respectively. Figure 16 is a photograph of a
typical apecimen after shearing to failure along an RTE path.

In the determination of the strength properties of the Reid-Bedford
sand, localized failure modes were predominant for 3ITE testing (see
figure 16). This suggests that the overall strain measurements may not
have been representative of the deformation in the local zone. It is

postulated that the inherent anisotropy (caused by pluviation through
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air) coupled with the fact that dilation occurs only along the small
mobilized zones resulted in a net volumetric compression during these
unloading tests. This gross behavior, therefore, may not have been
representative of the stress-strain response in the region of interest,
To correct this problem of possible strain inhomogeniety, the specimen
was constructed with a height to diameter ratio of u..ty while end
friction was minimized by coating the bearing caps with teflon spray.
These modified RTE tests were deemed acceptable,

Following the conventional strength testing, inherent anisotropy
was investigated in the triaxial cell by subjecting '"unstrained”
samples to spherical loading paths. Owing to the high relative density
of the sand, the resulting volumetric compression during consolidation
was too small to be accurately measured by the usual burette and dial
gauge means; also, the errors introduced by end cap friction may have
obscured the volumetric strain measurements, After reviewing
alternative corrective measures, linear variable differential
transformers (LVDTs) were attached at the top and bottom one-third
points of the specimen; this, it was hoped, would eliminate the end
effects. The photogrsoh in figure 17 shows a sample with the LVDTs in
place prior to testing; figure 18, on the other hand, is a schematic of
the test set up used in the chamber. All LVDTs were calibrated to
record deformations to the nearest +0.0001 inch; the electrical
connections were set up to record the average response of the
horizontal pair and the vertical pair of LVDTs.

The second phase of the 'triaxial' anisotropy investigation focused

on the observation of the development and demise of stress—induced
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Figure 17.

Photograph of Specimen fitted with LVDT Deformation

Measurement Devices.
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anisotropy. These tests simply entailed an axial loading to a prepeak
deviatoric stress level, followed by a monotonic unloading back to the
original hydrostatic state of stress. The prepeak stress levels
selected were 20%, 40%, and 60% of the ultimate shear stress. Finally,
after the induction phase, the specimens were loaded spherically while
recording the vertical to circumferential strain ratio (i.e., ez/ee).
Deviation of this ratio from unity gave an indication of the evolution
of the directional stiffness with continued isotropic locading. Again,
as in the inherent anisotropy study of the dense sand, sensitivity in
deformation measurements was of the essence. To achieve this objective,
simultaneous deformation readings were measured using the LVDTs,
vertically installed dial gauges, and burette readings. Figure 19
depicts the rather elaborate setup which includes a special (non-
conducting) transformer oil in place of water in the chamber. As an
aside, it should be mentioned that this series of tests provided
considerable insight into the influence of anisotropy, especially as it
applies to the cyclic moving wheel stress path (Reference 6).

At the time of this writing, approximately thirty of the above
mentioned tests have been ccrried out. The problems encountered in
deformation measurements were unexpected, and consequently, the
laboratory testing schedule is somewhat behind. This present series of
tests were inaugurated solely for the purpose of gaining insight into
the qualitative and quantitative influence of anisotropy. The
complexity of the observed behavior suggests that seve~al more basic
tests should be carried out before attempting to approximately model

the moving wheel stress path in the triaxial chamber. Also., a parallel
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Figure 19. Photograph of Test Apparatus with LVDTs att@ched to
Specimen in Confining Chamber Filled with 011.

y 172

~ PR PN - [ . . . T . L M. . . —

.
\'-_‘. - .“l_‘. N : .'_'A._'.'_ . _‘.‘.'."' " ey ~'... .-.'. R N BRI - . - . .
POCPRN S S, PR TR ST VIR TR AR U6, W SR ¥ WS I VIS PNF. SO A0 VIR, TG TG WU oW S -

WINPT P U T W VWL A WL AP U0 W W




A

[, L

v
et e

.

»

v

series of tests will have to be performed for the Leighton Buzzard sand

to supplement our data base; these data will be requisite in the
initialization of the constitutive models prior to predicting the

directional shear cell test results.
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SECTION VI

DISCUSSION OF RESULTS

A. GENERAL

The main analytical tasks now completed include: a) the computer
coding of the Prevost and Bounding Surface elasto-plastic models which
were presented in sections III and IV respectively, and b) a
supplementary numerical study of the successive stress states in a soil
supporting structure subject to a quasi-static moving wheel load. The
Prevost model has been calibrated and used to predict the entire series
of measured hollow cylinder test results, but, while the model
parameters for the Bounding Surface theory have also been calculated,
the present form of its hardening rule has restricted predictions to a
limited class of stress paths, Modifications to the hardening rule of
the latter are presently under way, however, to permit simulation of a
universal plastic stress—strain curve under arbitrary linear loading
paths.

Also, secondary computer codes have been written to assist in model
calibration and in reduction of both the hollow cylinder and solid
cylinder experimental data; the reduction routines also provide
information on the influence of principal stress axes rotation on
strength as defined by some of the more popular failure criteria for
granular media. Finally, study of the stress—strain—strength data
obtained from the hollow cylinder test series and some simple

exploratory in-house solid cylinder tests has provided insight into how
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the presence, relative influence, and evolution of inherent as well as

stress—-induced anisotropy of sand can be captured in a constitutive

model.

B. IN~-HOUSE 'TRIAXIAL' TESTS

Table 1 is a summary of the physical characteristics of the well-
known Reid-Bedford sand which was used for the tests in both the in-
house solid cylinder apparatus (SCA) and in Saada's (Reference 9)
hollow cylinder apparatus (HCA). In all cases, the nominal void ratio
of the specimens was equal to 0.67 (which corresponds to a relative
density of 75%), and this parallel study of granular media behavior
provides a unique opportunity for comparing and evaluating the
influence of these devices on observed response. Accordingly, at
approriate junctures in the ensuing discussion, reference will be made
to the differences or similarities which arise from the specimen's
shape (i.e., hollow cylindrical or solid cylindrical).

At this point, it is convenient to highlight some useful relations
which are applicable to the 'triaxial' environment and to clarify the
meaning of the notation used on the axes of the graphs as well as the

tables in the sequel. We use

q /(3 d,) ,

€

Y(3 x 2nd invariant of the strain deviator e) ,

p = 1,/3 = mean stress or mean normal pressure ,

©
L)
L}

initial effective mean stress ,

o
[}

atmospheric pressure |,

—
w
[}

third invariant of g ,
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TABLE 1. PHYSICAL DESCRIPTION OF REID-BEDFORD SAND

CHARACTERISTIC DESCRIPTION

Color and Type Light brown, clean, fine,
uniform sand

Grain Shape Varying from subrounded to
subangular

Mineralogy 89% quartz, 9% feldspar,
2% ferromagnesians and
"heavies"

Maximum Dry Unit Weight 104.0 pef

Minimum Dry Unit Weight 86.6 pef

Granulometric Curve see figure 20

D¢o (from figure 20) 0.29 mm

D,, (from figure 20) 0.16 mm

Coefficient of Uniformity, Cu 1.8

Specific Gravity, Gy 2.65 (ASTM D854-58)

Unified Soil Classification SP

Maximum Void Ratio, e 0.9 (ASTM D-2049)

Minimum Void Ratio, e, 0.59 (ASTM D=-2049)

in
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g, = tr (¢) = total volumetric strain

Integral of effective strain increment

Note that

€ =g, - €,
for the stress paths in the 'triaxial' chamber (see figure 3) since
either 0, = g, (and ¢, = ¢,) or g, = g; (and g, = €;). In the context
of the following discussion, the term 'shear' stress 1is taken to mean a
constant multiplied by the octahedral shear stress while an analogous
definition holds for the term 'shear' strain.

A series of drained axial compression loading and axial extension
unloading tests (i.e., CTCs and RTEs of figure 3) were first carried
out to establish the strength of the sand. Initial effective confining
pressures of 25, 35, and 45 psi were selected for both the loading and
unloading paths. The corresponding series of HCA tests started at 30
psi, and, wherever possible, results of both tests are superposed for
comparison,

Figure 21 shows the measured stress paths in p—q subspace for the
axial loading tests. The strength parameters computed using the stress
states at the end of these trajectories appear as the first four rows
in tables 2 and 3; as can be seen, correlation of the strength between

the SCA and HCA axial loading tests is excellent,
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TABLE 2. INFLUENCE OF PRINCIPAL STRESS AXES ROTATION ON STRENGTH

TEST I.D.

Constant Intermediate Principal Stress Tests:

CTC @25 psi
CTC 830 psi
or

DC 0O

CTC @35 psi
CTC @45 psi
RTC

DCR 15

DCR 32

DTR 58

DTR 75

DT 90

DRUCKER-PRAGER'S
FAILURE
CRITERION
(V32/10),

.306

.287
291
.287
.287
.298
.294
212
.201

212

Constant Mean Normal Pressure Tests:

GC O
GCR 15
GCR 32
R 45
GTR 58
GTR 75

GT 90

.295
.315
.317
.250
.205
.185

.204

180

MATSUOKA'S
FAILURE
CRITERION
[‘(I,Iz)f'9]

I,

5.23

4,45
4.59
4,42
4.43
5.00
7.74
5.81
5.34
6.64

u.73
5.83
11.22

8.22

MOHR-COULOMB'S
FAILURE
CRITERION

(¢, degrees)

38.97

36.71
37.14
36.61
36.67
40.39
49.69

2,74

39.49

u2,34

A%
-

37.57

L

3
el e

42,89

55.02
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TABLE 3. SIMPLE MODEL OF FABRIC'S INFLUENCE ON STRENGTH :;
ANGLE BETWEEN ANGLE BETWEEN >
LADE'S FAILURE 2ND SLIP LINE 1ST SLIP LINE o
TEST CRITERION AND WEAK AXIS AND STRONG AXIS
3 -
I.D. [(h)f 271 (1) (degrees) (degrees) a
I, Pa o
G
Constant Intermediate Principal Stress Tests: ﬁi
CTC @25 psi 37.06 65 25 -
S
CTC @30 psi 3
or ‘
DC 0 30.62 65 25 T
CTC @35 psi 32.07 65 25
CTC @45 psi 31.05 65 25 y
o2
RTC 28.20 65 25 -
DCR 15 34.69 50 10 3
DCR 32 45,87 33 7 ;
DTR 58 26.70 7 33 =
DTR 75 23.90 10 50 ii
DT 90 29.61 25 25 i
*h
"
Constant Mean Normal Pressure Tests: <
GC 0 31.72 65 25
.
GCR 15 40.19 50 10
GCR 32 66.06 33 7 -
R 45 40.42 20 20 .
GTR 58 23.91 7 33 ?j
GTR 75 17.93 10 50 él
GT 90 25.58 25 65
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1
ii Figures 22 and 23 show plots of the shear stress (q) vs. shear
] strain (e) and volumetric strain (sv) vs. mean stress (p) respectively
Ei for the CTC tests; a comparison of these graphs with the typical
’ behavior depicted in figure 2 indicates that this material behaves like
‘!! a dense sand, as it should. Inspection of figure 22 shows that there is
no apparent difference in the shear stress—-shear strain response
L: recorded in the SCA and HCA tests, but, by looking closely at the
" volume strain vs. mean stress plots in figure 23, we see that the
2 volumetric strains measured in the HCA test are somewhat larger than

those in the SCA tests. This difference will become more apparent when
the bounding surface predictions of these tests are discussed in a
later subsection. Overall, however, there appears to be no significant
influence of the specimen's shape on material response for the axial
loading tests.

Unlike the loading tests, the response - i.e., stress-strain
behavior, volume change characteristics, and strength - of axial
unloading tests (RTEs) on sand is significantly affected by the
predominant failure mode occuring in the specimen; these may be classed

as line failures or zone failures,

In a zone failure, uniform conditions of stress and strain produce
multiple failure planes traversing the specimen at angles of +(45 +
$/2) degrees to the g,~ direction. This mode of failure was typical of
all the axial loading tests. If the strains are non-uniform however,
line failure occurs in which two practically solid bodies slide past
each other along a single failure plane which is oriented at 45 + §/2

degrees to the ¢,- direction. The photograph in figure 16 of the
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previous section is a typical example of an RTE line failure obtained

2.k

using specimens with height to diameter (H/D) ratios of 2.1. As pointed

out by Lade (Reference 88),

by
Suidudemal

The stress-strain behavior of a line failure
specimen is governed by the relative

‘this proportions of elastic and plastic deformation,
N After initiation of dilation along one or two
(2 narrow planes in an extension specimen, failure
:- will eventually occur along these relatively
-

&

RPUTR - -]

Y weak planes, and the specimen will only

B compress elastically. Therefore, the greater

o the height to diameter ratio of the specimen,

N the smaller is the percentage of the total fi

fiﬁ volume of sand which is involved in the failure .

i}; and the larger is the percentage of the volume

Ly which will undergo primarily elastic ij
. compression. Thus, the average value of strains J

- in line failure specimens depend on the shape
o of the specimen,

e
o
nladal

Y
)
;ff Although the tests in question are unloading tests, one should note

$ that it is possible for anisotropic samples to undergo elastic

L,

v\ compression; this will occur, for example, in cross—anisotropic

cylindrical specimens if

" '... 'd;
s

. E/E > 1 ’ ‘
3 yo'r' sy ii
A where Ey and Er are the elastic tangent modulii in the axial and radial '

‘Hb (or circumferential) directions respectively, and v is Poisson's ratio,.

2 200 aie
LR o 8
POy

Since the samples used in all experiments were prepared by a

v »
4

combination of pluviation and tapping, it is expected that Ey will

}{é initially be greater than Er'

N‘ t ]

Figure 24 i{s a plot of the effective stress paths for the series of

four RTE tests, each starting at confining pressures of 25, 30, 35, and
45 psi respectively; note that the test at 30 psi had an H/D ratio of

unity while the others were at the typical H/D ratio of about 2.1, The
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test with the H/D ratio of one was characterized by a zone type failure

() . :j
f,’ while the other specimens experienced line failure modes upon =
2

. unloading. There was considerable scatter in the observed strength for E}
: ) .1:. ..\

these unloading tests, and the test with an H/D ratio of unity was the

only one considered acceptable. Further evidence of the marked

S

;\g influence of specimen shape on the observed RTE test response can be .
;{: seen in the plots of shear stress vs. shear strain (figure 25) and ﬁ}
vios volumetric strain vs. mean normal pressure (figure 26). It is apparent .?
$§ that, because of the severe non-uniformities of strain in the line -

failure specimens, almost any stress-strain relation can be produced

-
»

from such specimens depending on their height to diameter ratio, and we

- e

e
.

s

:: therefore recommend extra care in the analysis of the results of

;g unloading tests on solid cylindrical samples of sand.
o The stress paths used for the next series of tests were selected
;zi primarily for the purpose of providing qualitative and quantitative
'ig data on inherent and stress-induced anisotropy. It is anticipated that
;J. these simple tests can somehow form a fundamental basis for

E;E mathematically modelling the influence of anisotropy on the direction
Eg of the plastic flow rate vector. The first test consisted of a
i;‘ spherical loading on a virgin sample which was prepared by pluviation
:i; in conjunction with vibration in the direction of deposition. A plot of
:ii the axial (or vertical) strain (sy) versus the circumferential (or
:;: horizontal) strain (ee) for this test is presented in figure 27.
i%ﬁ Superimposed on this graph are the results of a similar test carried
SSﬁ out in the HCA; both tests started at a mean normal stress (p) of 10
;L?’ psi and terminated at p = 100 psi. Agreement between the two tests is
o
:Ef
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remarkable, The ratio ee/ey is, as expected, greater than unity due to
the inherent stiffness anisotropy, and its magnitude actually starts at
about 6 and decreases to about 3 at the end of the test. It is clear
from these results that continued spherical loading of a specimen
prepared in this manner does not completely wipe out the influence of
inherent fabric on flow.

By using instead a rodding technique during specimen preparation,
it may be possible to create a random structure (with a random
orientation of the contact normals) which should produce aa/ey ratios
close to unity. But, since most natural deposits of sand do possess
some anisotropy due to their natural or artificial formation process,
investigation of nearly isctropic specimens may prove to be only of
academic interest.

Figure 28 is a plot similar to figure 27 except now the samples
have been subjected to some level of deviatoric loading (more
specifically, CTC loading) prior to the hydrostatic consolidation.

Anisotropy was stress—induced in the specimens up to 15%, 40%, and 60%

respectively of the peak deviatoric stress level; at this point, the
specimens were unloaded back to an all-round pressure of 10 psi where
they were then all subsequently reloaded spherically to p = 100 psi.
The results of the last phase of the loading path are plotted in figure
28 together with the data of figure 27 and an idealized isotropic
response line to serve as a reference. Again, it is obvious from this
graph that the intensity of induced and inherent anisotropy does not

diminish significantly under continued spherical loading.
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C. HOLLOW CYLINDER TEST RESULTS

The hollow cylinder apparatus (HCA) data has been reduced using the
shear stress distribution assumptions outlined by Saada and Townsend
(Reference 5); axial displacements, volume change, and twist are
converted to the components of the small strain tensor (g) while the
generalized stresses (axial load and torque) and the confining pressure
are represented by the components of the Cauchy stress tensor (g).

Strength parameters for each of the fourteen shear tests have been
computed using four different isotropic failure criteria for sand;

these yield envelopes were presented earlier in SECTION II and include

those of

1). Drucker-Prager (Reference 48) in which it is assumed that 3

failure is governed by the ratio of octahedral shear stress to a

octahedral normal stress;

2). Lade (Reference 55) which is an empirically fitted criterion

using the first and third invariants of stress;

3). Matsuoka (Reference 56) in which he proposes the spatial
mobilized plane concept or a limiting value of shear to normal
stress on the the plane on which soil particles are on average
most mobilized;

and
4). Mohr-Coulomb (Reference 49) which is based on a limiting value

& of shear to normal stress on the plane on which particles are

oo most mobilized (or the plane of maximum obliquity).

:::j The results of this analysis are summarized in tables 2 and 3 using
Ya

l the compact hollow cylinder test identification nomenclature of the
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previous section. The exponent "m" used in the calculation of the Lade
strength constant was estimated to be equal to ,056 (Reference 89),.

Before attempting to isolate the influence of inherent anisotropy,
it is instructive the explore the following list of possible variables
on which the strength constants of tables 2 and 3 may depend:

1). the test apparatus is not ideal and there may be varying
degrees of non-uniformity in stress and/or strain for the
different paths of loading;

2). the strength criterion may not be a good representation of
yield in that it may not be able to realistically capture the
influence of intermediate principal stress and/or bulk stress;

and

3). induced and inherent anisotropy may produce directional
strength and stiffness properties as a result of the relative
orientation of the symmetry axes of the applied stress with
respect to symmetry axes of the existing fabric. It also seems
intuitively reasonable to assume that the extent of this
variation will depend on the "deviatoric" intensity of the
fabric.

For this preliminary evaluation, we can assume that experimerts
were perfect and that Lade's failure criterion provides a satisfactory
representation of the isotropic failure locus on the octahedral plane.
These two assumptions allow us to isolate the variation in strength due
to anisotropy by studying the constant mean stress tests. Casual
inspection of table 2 reveals that, with the above-mentioned

assumptions, inherent anisotropy is clearly an important independent
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variable. The general trend in strength variation shows a peak when the
maximum compressive stress makes an angle of 32 degrees with the axial
(or strongest) direction of the specimen while a minimum strength is
observed when this angle is 75 degrees. The discussion in the following
paragraph is an attempt to explain this behavior, and this approach, we
hope, will provide the framework for mathematically incorporating the
strength variation in the Bounding Surface plasticity model.

A crude but preliminary explanation for the observed strength
variation was conceived by using a simple slip-line field for materials
with friction. Following the usual convention (see, for example,
Reference 90), the directions of the first and second slip lines are
identified by rotating anti-clockwise and clockwise respectively
through an angle of 45 - ¢m/2 from the direction of the major principal
stress, where O is the mobilized friction angle. Since the inherent
fabric anisotropy was created by gravity pouring and a small vertical
vibration, we naturally expect the vertical direction to initially be
stronger than the horizontal direction owing to the non—spherical
density distribution function of contact normals (or any other fabric
measure)., The postulated model of strength variation then suggests
itself: the slip plane which is closer to the weaker direction
predominates and this can henceforth be called the critical plane. By
completely neglecting the non-critical slip plane, a correlation
between the strength and the angle between the critical plane and the
weak direction can then be sought. Table 3 presents the data which
compares this angle with the Lade strength parameter for an assumed

mobilized friction angle (¢m) of 40 degrees. Remember that we are
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focusing only on the mean normal pressure tests and it is implicit that

the initial fabric does not change during loading.

This simple sliding picture accounts for the minimum strength we
observe at the 58 to 75 degree rotations, and with the plot of figure
29 as an example, there is considerable experimental evidence to
support this explanation (References 86, 87, 91, 92, and 93). The data
in table 3, however, suggests that angle between the 1st slip line and
the strong axis should also be included in the sliding model in order
to interpret the peak strength at the 32 degree rotation.

In closing the discussion on observed strength, one should also
take note of the deviation of the shear strength as accounted for by
pure Coulomb friction; it is common knowledge that the measured
friction angle is a combination of surface friction and interlocking
friction, the latter decreasing as the confining stress increases

because: a) the particles become flattened at contact points, b) sharp

corners are crushed, and ¢) particles break. Of those used herein, only

the Lade failure criterion takes into account the curvature of the
failure locus on the meridional plane.

Having completed strength, we now proceed to a discussion of
stress—-strain. Figures 30 and 31 are the shear stress vs. shear strain
and volume strain vs. mean stress plots respectively for the constant
intermediate principal stress tests in compression space. The shear
stress—-shear strain plots can be easily fitted with hyperbolas, and
this suggests that the simple, but yet powerful, hyperbolic function
should be harnessed in a hardening rule which permits modification of

the limiting asymptote to model the influence of principal stress axes
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Figure 29. Strength Variation due to Relative Orientation of Eigenvectors -
of Stress With Respect to those of Fabric (Reference 92).
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rotation on strength. The volume change characteristics depicted in

figure 31 support the critical state locus hypothesis, which defines a
zero dilatancy curve in stress space. For reference, the remainder of

the HCA experimental data plots are included in Appendix A.

D. PREDICTIONS OF HCA TESTS USING PREVOST'S MODEL

The Prevost isotropic/kinematic model has been calibrated for Reid-
Bedford sand using procedures outlined in section III. Although this
feature is exactly what this type of model should thrive on, volumetric
compression recorded during an unloading test prevents initialization
of the Prevost model, This peculiarity, in fact, motivated the study of
the sensitivity of the volume change response to the aspect ratio (H/D)
of the solid cylindrical samples. The sample of height to diameter
ratio of unity dilated from the start of the test until failure (see
figure 26), and it was thus selected as the unloading calibration path.
The parameter, A, controlling the isotropic hardening process was
determined from the results of an extensive series of one dimensional
consolidation tests carried out at the U.S. Army Waterways Experiment
Station in Mississippi (Reference 94). Table 4 is a summary of the
Prevost model parameters which were computed.

Before proceeding with the presentation, the distinction between
the terms "prediction" and "postdiction", as implied in this context,
must be emphasized. A postdiction will refer to the numerical
simulation of a test which was used in deriving the model parameters,
so if the model initialization scheme was precise, the experimental

data should be reproduced almost exactly. A prediction, on the other
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G = 13500 psi, K = 17680 psi, n = 0.5, C = 3/v2, A = 130,
initial effective confining pressure = 30 psi,

initial void ratio = 0,67,

number of yield surfaces used to characterize field = 20

10
11
12
13

14

17
18
19

20

(m)

[+ 3

6.408

8.813
12.345
12.867
15.796
19.500
20.001
20.106
23.111
25.289
27.572
29.333
33.178
35.950
39.355
46.289
51.052
63.695
65.566

B(m)

31.27
30.94
31.45
32.02
32.43
34.19
34.60
35.26
37.66
38.74
40.47
h.m
4y,29
46.11
ug.ou4
54,03
59.62
70.81

77.95

k(m)

6.951
12,002
18.028
21.778
27.317
34,345
36.257
38,34
44,265
48.304
53.206
56.713
63.402
68.734
75.509
89.040

101.946
129.011

144,322
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h(m)

25800
22918
12205
8084
5225
2873
2404
1963
1324
1075
878
736
562
465
388
293
236
143

95

B(m)

~U4766
=7282
~-u379
-2904
-2183
=1206
=998
=783
-468
-380
=300
-246
-179
=148

-121
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TABLE 4., PREVOST MODEL PARAMETERS FOR REID-BEDFORD SAND

A(m)

-.3538
-.5238
-.5792
-.7157
=-.7133
-.8528
-.8677
-.9433
-1.085
=-1.118
-1.179
-1.230
-1.317
-1.364
=1.434
-1.510
-1.6312

=1.7759

-1.8658
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hand, refers to the simulation of a loading path other than those used
in calibration.

As discussed in section III, the CTC and RTE loading path starting
at the same initial confining stress are used to establish the model
constants. Postdictions of both these test paths are presented in
figures 32 and 34 while the movement of the surfaces during these tests
are depicted in figures 33 and 35; each of these loading path recreates
its measured response to a reasonable degree of accuracy. In order to
minimize numerical discrepancies, 800 load steps were used for each
simulation although most solutions were found to be stable when as
little as 200 load steps were used.

The true test of the general applicability of a constitutive model,
however, is its ability to predict (and not regurgitate its input
data). All of the hollow cylinder tests (excluding, of course, the two
used in calibration) have been predicted with the Prevost model, and,
wherever possible, plots of the initial and final configurations of
field of yield surfaces (in Cp'-q subspace) accompany each prediction,
Predictions of the stress paths easily visualized in p-q stress space -
i.e., TC (or GC 0), RTC, and TE (o« GT 90) of figure 3 - are shown in
figures 36-41 while the remainder have been appended (see appendix B).
It is apparent that the model predictions are generally stiffer than
the actual response, but it is only fair to point out that the

postdictions were also somewhat stiffer than the input data. The
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;" writers believe that the general trend of stiff predictions is due to ﬂQ
\ ~

the lack of an explicit incorporation of the failure locus in the

formulation. -
Further examination of all the plots show that as: a) the principal

™~ stress axes of the stress path rotate away from those of the

< calibration paths, or b) when the stress path itself deviates -

significantly from either of the calibration paths, the predictions B

3 worsen. This statement is best illustrated by inspecting the DCR 15 23
Ei' prediction which is remarkably good because, perhaps, the stress path "
_i: is, of all tests, the least different from the calibration DC 0 path; 23
X the discouraging predictions of the DCR 32 and GCR 15 tests, however, -
g reflect the previous assertion. ?;

. E. PREDICTIONS OF SOME TESTS USING THE BOUNDING SURFACE MODEL

§? The bounding surface model used for the predictions herein is still f§
i; in the embryonic stage of its development. At present, the McVay- B
_i Taesiri hardening rule (Reference 6) has been implemented in the model éq
‘éz to generate prediction along the conventional triaxial compression and on
Sf hydrostatic compression stress paths (i.e., the CTC and HC of figure iﬁ
i 3). This rule, however, only guarantees that the "universal" plastic

’
.

'.‘l-l

A .

shear stress—-shear strain curve and the traditional density hardening

x

L relation are satisfied for the CTC and HC paths respectively., A

v

modification has been derived, but not yet implemented, which will

o ¥
'i% permit greater flexibility in simulating arbitrary paths. Nonetheless, &z
:Ei with a minimum of effort, we show that this adaptable model provides a {i
';; simple framework for generating rational predictionsf 1
i

;
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The model parameters were estimated using procedures set forth in

section IV, and these parameters are summarized in table 5. All

parameters - except the "locking" hardening parameter A and the unload

b ars
At s

modulus Hu which were reckoned from the load-unload HC test - were

E

-
3

o calculated from a single test: the CTC starting at an effective

confining stress of 35 psi. Postdictions of both the load-unload HC

Yy
M

test and the calibration CTC are plotted in figures 42 and 43

respectively; the curve-fitted experimental data had high correlation

3

coefficients which is apparent from these graphs.

Predictions of the other three CTC stress paths, starting it Z5,

=

30, and 45 psi respectively, are displayed in figures 4lL-u45, The

T
DL I
P

agreement between the experimental and calculated stress-strain points

is remarkable, except for two slight deviations: a) the peak of the

simulated CTC test starting at 25 psi falls slightly below the

experimental data, and b) the observed volumetric strains for the CTC

vy
DA

test 830 psi were somewhat larger than the predicted magnitudes. The

apparent discrepancy in the predicted asymptote of the CTC test at €25

psi should, however, be no surprise because, as one may observe from

| A

table 2, the measured strength of this test is conspiciously higher

i |

':".
4

than the other CTC tests. On the other hand, the {i-~parity in the

volumetric strain prediction of the CTC test 830 psi can be attribate

ey
LI P

to the device-dependency of the volume change characteristics; recall

that the results of a solid cylinder test was used in model

— T~
PR
PRan

initialization while this CTC test @30 psi was carried out in the

hollow cylinder apparatus.
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rf TABLE 5. BOUNDING SURFACE MODEL PARAMETERS FOR REID-BEDFORD SAND
“' ,
.V.
:5. MAGNITUDE at
PARAMETER DESCRIPTION e = .67
= Elastic Shear Modulus, G 13500 psi
Elastic Bulk Modulus, K 17680 psi
Isotropic "Locking" Hardening Parameter, i 325.73
*
Slope Of Critical State Line, N .1900
*
Isotropic "Shear" Hardening Parameter S .h369
-3
isotropic "Shear" Hardening Parameter A 3.2178 x 10
5 Parameter used to control the Unload Modulus, H 1.4000 x 107
Shape controlling parameter of ellipse, Q 5.00
Shape controlling parameter of dilation surface, b -10.00
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Figure 42. Postdiction of the Load-Unload HC test using the Bounding
{.- Surface Model.
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In closing, it can be said that this series of Bounding Surface

postdictions and predictions is good evidence that the characteristic
state (or zero dilatancy) line is well defined in stress space, and its
inclusion adds considerably to the predictive capability of the model

along the CTC.

F. ANALYTICAL STUDY OF THE MOVING WHEEL STRESS PATH

An analysis of the stresses in a sandy subgrade was undertaken in
order to approximate the stress history of an element of soil as a
Wwhezl approaches a point directly above the element and then rolls away
from it, This is in the spirit of the stress path method commonly used
in estimating settlements of sand (Reference 27).

Initial study of this boundary value problem revolved around the
use of a finite element discrete analysis technique which has the
flexibility of employing either a linear elastic or the Prevost model
as its constitutive assumptions (Reference 95). The results of this

preliminary investigation showed only a slight variation in the

stresses predicted by both the linear elastic and Prevost models, and

it was thus decided that the added complexity and computer cost
involved in using Prevost's model over the elastic model was not
justified. Consequently, we relied exclusively upon the results of
linear elastic analyses; this allowed us to use a simpler and much more
economical computational solution technique: the BISAR (Bitumen
Structures Analysis In Roads) computer program written specifically for
the analysis of layered systems under normal and tangential surface

tractions (Reference 96). The theory used in this computer code is
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'i based on the selection of an approriate stress function involving =
h Bessel functions (Reference 97); the following simplifying assumptions E;
a apply: 1) the pavement is a multilayered structure and each layer is Q
linear elastic, homogenous, and isotropic; 2) the interface between f
g! layers is continuous (i.e., the frictional resistance between layers is ;ﬁ
3: greater than the developed shear force); 3) the tottom layer is of ;
A infinite thickness; and 4) all loads are circular and uniform over the 5
f? contact area. é
- Figure 47 shows the elastic constants assumed for each layer in the i
E: pavement section (Reference 2) as well as the stresses induced by the tﬁ
- wheel load at various locations in the sand (subbase) stratum. One may 7;
ﬁ also use the sequence of pictures in this figure to visualize the
ii successive stress states in a soil element as the wheel approaches a .
point on the surface directly above it. Although not unexpected, the ?,
EE: most striking feature of this study was the prediction of a continuous :i
rotation of the principal stress axes during the loading and unloading L'
!; sequences, Figure U8 depicts this moving wheel stress path in p-q #
i stress invariant space with the angle between the vertical direction 3
v and the major principal stress axis being used to keep track of the i
f% material directions. For comparison, plots of the slope of a CTC test :?
‘ path and that of a typical failure curve are also sketched on this ia
; figure. i.
.. It is conclusive from this theoretical study of the rolling wheel .
;i that rotation of the principal stress axes is of primary importance in E:
' modelling its effect on pavement rutting. From the writers' point of :E
‘i view, this problem becomes even more provocatively interesting when one F
g 4
L \.
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Figure 48. Moving Wheel Stress Path (Linear Elastic Assumption).
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takes note of the fact that, at a recent workshop, none of the "state-

of-the-art" soil constitutive models performed well in predicting a

}
test in which the principal stress axes underwent continuous rotation -%
(Reference 98). Arthur et al. (Reference 99) and Ishihara (Reference
100) have emphasized that the rotation of stresses presents Ei

experimental and theoretical problems that remain to be solved.
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SECTICON VII

CONCLUSIONS

The conclusions are summarized in the following list:

1. Specimens with line failures yield experimental stress-strain

curves which are both unreliable and show considerable scatter; this
undesirable failure mode occurs in axial extension tests using solid
cylindrical specimens with the typical aspect (height/diameter) ratio

of 2.1, Material response during compression loading tests in hollow

cylindrical and solid cylindrical specimens are, in general,

compatible.

2. Experimental evidence indicates that inherent as well as induced

anisotropy has a significant influence on the stiffness, strength, and

plastic flow rate direction of granular media. This implies that the

isotropy assumption may be too strong for practical problems where it
is known that the symmetry axes of the fabric and the stress tensor do

not always coincide during loading.

3. An analytical study has shown that the major and minor principal
stress axes undergo a continuous ninety degree rotation as a wheel
approaches anc then passes over an element of soil in the subbase of a

pavement structure, In stress invariant space, the slope of this stress
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path is not very different from that of the conventional triaxial

compression stress path.

4, Although the pressure-sensitive Prevost isotropic/kinematic model

reasonably reproduces the response along its calibration paths, the
predictions generated by this model along linear non-calibration
loading paths were disappointing. This result effectively rules out the
use of the Prevost model in simulating the complicated moving wheel

stress path.

5. The Bounding Surface model is much simpler to understand and to

implement than the Prevost model. Preliminary results from this model
are very encouraging, and some possibilities have been proposed as to
how the influence of principal stress axes rotation on stress-strain
and strength can be incorporated in a future version of this

formulation.
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i APPENDIX A

PLOTS OF HCA EXPERIMENTAL RESULTS

The following are computer plots of the experimental stress—-strain
,! data obtained from the Hollow Cylinder Apparatus tests of Saada

(Reference 9). The notation applicable to the axes of these graphs has

——

been previously presented in SECTION VI,

-3

-
3
«
g
-
,'\:‘,-
b
ol
3
7

.

|

v
]

: :

e -
[ ’l‘,-

,,.
-, v,
NI

236

R A - . N . - - - - - - - - - - - N - - - L ‘e ~n . - - . ~ "a
A N - -~ y T om® .»"l " - ‘-.‘ " et e -~ . '-~.. '-. o .-- .A’.‘- - » ’\-. - L -. ‘v- - \ - ) o -~ »
L' ANy *~ - B T P A S S AT s AT N L .‘»\4‘-"-‘3"-..

NN S A W A N DI A A . - 0 W SRV, (O PR RL. TR G PR TY B P W0 U, Py SN




% C e it ol

»ond

L am Bas dav ta ia* ol 4

. et St _dia ]

las Shan-Se A ad 4

et SRS,

’

gl

L aned _Sadh of

)3

3

PURPTT RN e o e T

“(6 90uaud4Y Wo4y elep) 06 LG pue G/ ¥ld
‘G2 8G Y10 ‘St ¥ :S3IS9} VIH HuLMO| (0} dY3 404 ULBUJS JBBYS 'SA SSIUJS JBBYS paziewaoN -y 34nbyy

3
*1°0 FA Y 010 800 90 0 v0 "0 200 00 "0
“ + “ “ - : ~+ 00
O=¢gv 1y
+ =06 LA .
v = SL ¥l1d <0
X =63°8S 4.1Ld
R AL
»
b
2 ]
ol .
el 90
o el
wx @ >
wx o |
X g | 8°0
Y4+ x
v+ @
v v 4+ Y4 N}
v ¥ o+ x... x o
v v v v 4+ +x @ T o°1
v v x ++ tx Q
x x x x e+ 7 @
m ° i
g w = O T 27
a
@ @ @ @
1

LA

237

.
kS

~ P N

B it Sk i

Y

jAs e

PR BV

. _.-'
el A i ek




o

Pale YARL SR B R SRR G A RS AT~ A Rat ARG e Atab e iy M 48 4 A1

- . D h A i
DA ! B v, TR I 2 R R
.............

. . S . A . . . ;
- o ) . .
L2 N 4' 1 - 3 ILI‘NII-.I N - - - e . 3 b . 4 e « LN A .o A L B O S I B . . . r . d. . P "R | L PR

‘(6 9dusaua4ay wo4j ejep) 06 LQ pue
G/ Y10 “S2°8S LA 53S9} YOH BULMO| |0} 3Y} 40j SSUIS UR3W PIZL|PWIAON °"SA ULRAIS AWNIOA “2-Y 3unbiy

Od /d
SO0t 001 S6 ‘0 08 "0 S8 °0 08 "0 GL'0 0L'0
I } } i 4 i t 210 °-
+ =06 Ld
v = SL 41Ld v
X = 638G ¥.Ld
v T e00°-
x v
x
x ¥ *
[qV]
x v M -
3 x ..v.. 1 Y00°-<
v
< +
v o+
x v +
v .
'Gud.xi«.xﬂ&nfﬂx.a 4, o x v o+ " DOO 0
% z.?ﬂ v +
x +7
Xx x v v +
x +Y, v
i 0% 1 vV .
+.?+.?+
g. ¥00 ‘0
) .,. .H
4 .
4 ‘.
,-\\“ l.m.h.-.bv 1 et ..L.ru .'..lzn. , 7 5 o .D Nuu\.\ r.h. LRy . e




{ Bt Aos Ak Aok Sad -l S aoh A a A A A ] o ha gxa gie 2ty £io 4 |

halieid 4

YR

o Biadh pos

i ad A ui ol

f_!l."."‘-"-"“.;\.l'.".‘-r."—. ol ailie and ANAC)

a Ve s

v

y— v
e TS T

\

~

AN

DY T I
“."-.\-"h

‘(6 9JU24943Y WOJ4 eIBP) GF o Pue G/ LE ¥
‘gL ¥J9 ‘0 29 153591 YOH Buimoi|oy Syl 403 ULRAIS JRIYS “SA $SAU]S JRIYS PaAzZL{eWAON ‘€-Y d4nbLy g
=
.
et o ot ‘o 80 0 800 v0°Q 200 000 L
1 1 ! 1 I 1 . e
r 1 Ll 1 1 T O o .-..ﬂ“
s
"3
O=¢svy 2o o
+ = GL'IE ¥OD ...w“
v = 91 40D
X = 02D m vy0 oK
e 4 S

% "
XT 9°0 s
¥ 9 4
[} ﬂ. T 80 i
@ ¥ 0 7]
o ~ ]
[ o b
@ -+ . -8
o @ o0°t
@ Ul
- a ° +..&w e

] o [n] -+ x - N n“ v ..-
) [ ] [} @ + x .u-
@ + vﬂo
+ x e
+oex Y 4 ‘1 o
+ + * X v v 4 S

+ x :

. . x + x ¥ x x X o v v
v
v v v v Y T 9°1
1l 8°1
. - -\-.u:.~ f.. uH\-uunﬂﬁ K 1\. \\n“\»ﬂlﬂ-“.( ‘%-“.'\ «Hu..i.\\'a u u.-.-..-.-.....q.v...v,“-»..ﬂ ) K .-.-. -~ o Av.»\“.,.x B i i.. g .....--.-..»-H“-lfl




N TW I LW LTELTe L o,

YUYW e T W LT T

A’ §

S5 e e Alac S e A% e ATl a0 A BN AN

P YIRS TR N T i S A Nl SR SR MRS i i AR~ R A, R i & 20n Sl "t i S She " e *A By

N

LR | 1.12.%»1.14 T it ZATRRS i SRR D AN
(6 30uUa4943Y wouy eIBP) Gp Y PUR ‘G/7LE ¥I9
‘GL ¥J9 0 29 53S9 YOH BULMO( |0} 3yl 40j $SOUIS JBIYS PIZLIPUION “SA ULBJIS SWN|OA  “p-¥ unby 4
d/b
g2 "1 9°1 L4 § 2’1 e ¢ 8°0 9°0 ¥ 0 20 0°0
| “ | “ = } | } “ 020 *-
x
O=¢sry
x + =G6L°1g HOD
X = 00D T St0°-
x
<+
x
o <
@ T otw-- €
* @
m
<
v + 'n]
Tox o L
v J.A o S00 *-
v X ]
+x
x nl
v +Wxxvﬁr
v x X
L N v ﬂ X X X % X X X X
+R Vv evve v ¥F¥
.n_n._.a+ + + + + .M.m.m.ah.u..m..m_d «E.M_..«.H{&ﬂ. '.ﬂnﬂ 000 0
EEE_H o
= S00°0




) . e - e - 3l S L4
ACUEEN IR IR § YRR At SO~ B~ 1 IO & OB OO | S IR ) B

*(6 90UdUB43Y wouy elep) Q06 19 pue ‘G/ Yi1v
‘G2"8S Y19 ‘Sh Y :S3IS93 YOH DULMO[ |04 9yl 40 ULBAS UBSYS °SA SSBUIS JBIAYS PAZL|BWJON G-y dunbi4

3
v1°0 21 o o1 °0 80 °0 90 °0 ¥0°0 200 00 "0
[ } | i [ 1 i
4 T L} T T T T 0°0 e
O=sry ..
+ = 06 LD 20 i
¥ = SL YLD A
X = 62'8S LD 4
BRAL e
. ax
_-b\
.w.n‘-
nﬂgnv 0 nc — , ..r
Ax S
w'a S
v Lx @ i,
w oo .
v % % @ 8°0
v ¥ 7 x> o
v Y.V + x @
weve?V M +< + * x X 0]
+ x x o +
+ + + x X 0o°1
>} X X x s+ + T x © :
@ e
@ ¥
m © NG
o @ a @ T e°t %t
@ o [n] @ o H. 3




P i

b -am)

ki o

- gAd st aiMi A e pti pEic e i gt S )

T

a0l g A ot A gul ML S A uini Y g il gl g

Podiar daam o RRtelah et S il " oSt Jig o)

.

-
-

| aa* Bam

(6 90UB4333y WO4S BIEP) 06 19 PUe ‘G/ W19

G2°85 Y19 ‘Gp ¥ :SIS9F YOH Bulmol (04 Y3 40y SSIUIS UBBUS PIZL[RULON SA ULBAIS SUNLOA

"9~y dunbi4

d/b
1AM ¢ 2’1 ot 80 90 v°0 2°0 00
} } } } } — i S10 °-
O=¢vy
+ = 06 LD
@ v = SL 4LY
X = 62°8S YLD T 010°-
Q
@
Q
)
o <
o T S00°-
o
@ %
x
@ x
@ % }
@ * Y -
@ X Bﬂaaaﬂmnmvm.«...xm*wnmﬁuqﬁc 4 000 0
@ v v @ x X 1#.‘...
@ G, @ o @ x X X L eV
) XXXX 4+4+<+<
1 <v~<xxx ¥<+4+<+
1AS 2 A0
++++« ﬁ.
; €00 0

242

Ity '. o
R AN
N N

o
W

- e
RN

- .
- PCNY- .

-
Ly
\

et

.

ok Saa S

ca® .

-t
.. PRSI
RO, WP 5, A S, NS LN,

N

P PR VRSP R

PR




Lo e

APPENDIX B

PREDICTION OF THE HCA TESTS USING PREVOST'S MODEL

h_’ St

This appendix contains plots of the measured Hollow Cylinder

Apparatus data (of APPENDIX A) superposed with predictions generated by

the Prevost Model.
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Prediction of GTR 75 test using Prevost's Model.

Figure B-9.
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