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To understand something as a specific instance of a more general case--
which is what understanding a more fundamental principle or structure
means--is to have learned not only a specific thing but also a model for
understanding other things like it that one may encounter. (Bruner, 1960)

Abstract
'- A broad range of well-structured problems-embracing forms of diagnosis, catalog selection,

and skeletal planning-are solved in expert systems'by the method of heuristic classification.
These programs have a characteristic inference structure that systematically relates data to a

pre-enumerated set of solutions by abstraction, heuristic association, and refinement. In

contrast with previous descriptions of classification reasoning, particularly in psychology, this

analysis emphasizes the role of a heuristic in routine problem solving as a non-hierarchical,
direct association between concepts. In contrast with other descriptions of expert systems, this
analysis specifies the knowledge needed to solve a problem, independent of its representation in
a particular computer language. The heuristic classification problem-solving model provides a
useful framework for characterizing kinds of problems, for designing representation tools, and

for understanding non-classification (constructive) problem-solving methods. _

1. INTRODUCTION
Over the past decade, a variety of heuristic programs, commonly called "expert systems," have

been written to solve problems in diverse areas of science, engineering, business, and medicine.

Developing these programs involves satisfying an interacting set of requirements: Selecting the

application area and specific problem to be solved, bounding the problem so that it is

computationally and financially tractable, and implementing a prototype program-to name a
few obvious concerns. With continued experience, a number of programming environments or

"tools" have been developed and successfully used to implement prototype programs (Hayes-
Roth, et al., 1983). Importantly, the representational units of tools (such as "rules" and

"attributes") provide an orientation for identifying manageable subproblems and organizing
problem analysis. Selecting appropriate applications now often takes the form of relating

candidate problems to known computational methods, our tools.

Yet, in spite of this experience, when presented with a given "knowledge engineering tool,"

such as EMYCIN (van Melle, 1979), we are still hard-pressed to say what kinds of problems it
.' can be used to solve well. Various studies have demonstrated advantages of using one

representation language instead of another-for ease in specifying knowledge relationships,
- - . control of reasoning, and perspicuity for maintenance and explanation (Swartout, 1981, Aiello,

1983, Aikins, 1983, Clancey, 1983a, Clancey and Letsinger, 1984). Other studies have
characterized in low-level terms why a given problem might be inappropriate for a given
language, for example, because data are time-varying or subproblems interact (Hayes-Roth, et

al., 1983). While these studies reveal the weaknesses and limitations of the rule-based

.o ,.: .-: ., . .. . .. . , ,S . . .". _...*. . - ...•.-..; .* .
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formalism, in particular, they do not clarify the form of analysis and problem decomposition

that has been so successfully used in these programs. In short, attempts to describe a mapping

between kinds of problems and programming languages have not been satisfactory because they

don't describe what a given program knows: Applications-oriented descriptions like "diagnosis"

are too general (e.g., solving a diagnostic problem doesn't necessarily require a device model),

and technological terms like "rule-based" don't describe what kind of problem is being solved

(Hayes, 1977, Hayes, 1979). We need a better description of what heuristic programs do and

know-a computational characterization of their competence-independent of task and

independent of programming language implementation. Logic has been suggested as a basis for

a "knowledge-level" analysis to specify what a heuristic program does and might know
(Nilsson, 1981, Newell, 1982). However, we have lacked a set of terms and relations for doing

this.

In an attempt to characterize the knowledge-level competence of a variety of expert systems,

a number of programs were analyzed in detail.1 There is a striking pattern: These programs

proceed through easily identifiable phases of data abstraction, heuristic mapping onto a
hierarchy of pre-enumerated solutions, and refinement within this hierarchy. In short, these

programs do what is commonly called classification, but with the important twist of relating

concepts in different classification hierarchies by non-hierarchical, uncertain inferences. We

call this combination of reasoning heuristic classification.

Note carefully: The heuristic classification model characterizes a form of knowledge and
reasoning-patterns of familiar problem situations and solutions, heuristically related. In

capturing problem situations that tend to occur and solutions that tend to work, this knowledge
is essentially experiential, with an overall form that is problem-area independent. Heuristic

classification is a method of computation, not a kind of problem to be solved. Thus, we refer

to "the heuristic classification method," not "classification problem."

Focusing on epistemological content rather than representational notation, this paper proposes

a set of terms and relations for describing the knowledge used to solve a problem by the

heuristic classification method. Subsequent sections describe and illustrate the model in the

analysis of MYCIN, SACON, GRUNDY, and SOPHIE II. Significantly, a knowledge-level
description of these programs corresponds very well to psychological models of expert problem

solving. This suggests that the heuristic classification problem-solving model captures general

principles of how experiential knowledge is organized and used, and thus generalizes some,

cognitive science results. A thorough discussion relates the model to schema research; and use

1 ncluding: Ten rule-based systems [MYCIN, PUFF, cLo'r, HEADMED. SACON from the EMYCIN family (Buchanan and

Shortliffe, 1984). plus WINE, BANKER, The Drilling Advisor, and other proprietary systems developed at Teknowledge.

Inc.]. a frame-based system (ORUNoy), and a program coded directly in LISP (SOPHIE III).

I..........
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of a conceptual graph notation shows how the inference-structure diagram characteristic of
heuristic classification can be derived from some simple assumptions about how data and

solutions are typically related (Section 4). Another detailed discussion then considers "what

gets selected," possible kinds of solutions (e.g., diagnoses). A taxonomy of problem types is

proposed that characterizes solutions of problems in terms of synthesis or analysis of some

system in the world (Section 5). We finally turn to the issue of inference control in order to
further characterize tool requirements for heuristic classification (Section 6), segueing into a

brief description of constructive problem solving (Section 7).

This paper explores different perspectives for describing expert systems; it is not a

conventional description of a particular program or programming language. The analysis does

produce some specific and obviously useful results, such as a distinction between electronic and

medical diagnosis programs (Section 6.2). But there are also a few essays with less immediate

payoffs, such as the analysis of problem types in terms of systems (Section 5) and the
discussion of the pragmatics of defining concepts (Section 4.5). Also, readers who specialize in

problems of knowledge representation should keep in mind that the discussion of schemas

(Section 4) is an attempt to clarify the knowledge represented in rule-based expert systems,
rather than to introduce new representational ideas.

From another perspective, this paper presents a methodology for analyzing problems,
preparatory to building an expert system. It introduces an intermediate level of knowledge

specification, more abstract than specific concepts and relations, but still independent of

implementation language. Indeed, one aim is to afford a level of awareness for describing

expert system design that enables knowledge representation languages to be chosen and used

more deliberately.

We begin with the motivation of wanting to formalize what we have learned about building

expert systems. How can we classify problems? How can we select problems that are

appropriate for our tools? How can we improve our tools? Our study reveals patterns in
knowledge bases: Inference chains are not arbitrary sequences of implications, they compose

relations among concepts in a systematic way. Intuitively, we believe that understanding these

high-level knowledge structures, implicitly encoded in today's expert systems, will enable us to

teach people how to use representation languages more effectively, and also enable us to design

better languages. Moreover, it is a well-established principle for designing these programs that

the knowledge people are trying to express should be stated explicitly, so it will be accessible to

auxiliary programs for explanation, teaching, and knowledge acquisition (e.g., (Davis, 1976)).

Briefly, our methodology for specifying the knowledge contained in an expert system is based

on:

• a computational distinction between selection and construction of solutions;
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. a relational breakdown of concepts, distinguishing between abstraction and heuristic

association and between subtype and cause, thus revealing the classification nature
of inference chains; and

e a categorization of problems in terms of synthesis and analysis of systems in the

world, allowing us to characterize inference in terms of a sequence of classifications
involving some system.

The main result of the study is the model of heuristic classification, which turns out to be a
common problem-solving method in expert systems. Identifying this computational method is

not to be confused with advocating its use. Instead, by giving it a name and characterizing it,

we open the way to describing when it is applicable, contrasting it with alternative methods,

and deliberately using it again when appropriate.

As one demonstration of the value of the model, classification in well-known medical and

electronic diagnosis programs is described in some detail, contrasting different perspectives on

what constitutes a diagnostic solution and different methods for controlling inference to derive

coherent solutions. Indeed, an early motivation for this study was to understand how

NEOMYCIN, a medical diagnostic program, could be generalized. The resulting tool, called

HERACLES (roughly standing for "Heuristic Classification Shell") is described briefly, with a

critique of its capabilities in terms of the larger model that has emerged.

In the final sections of the paper, we reflect on the adequacy of current knowledge

engineering tools, the nature of a knowledge-level analysis, and related research in psychology

and artificial intelligence. There are several strong implications for the practice of building

expert systems, designing new tools, and continued research in this field. Yet to be delivered,

but promised by the model, are explanation and teaching programs tailored to the heuristic

classification model, better knowledge acquisition programs, and demonstration that thinking in

,"'. "terms of heuristic classification makes it easier to choose problems and build new expert

l2 -- systems.

2. THE HEURISTIC CLASSIFICATION METHOD DEFINED
.- -'.- We develop the idea of the heuristic classification method by starting with the common sense

notion of classification and relating it to the reasoning that occurs in heuristic programs.

2.1. Simple classification

As the name suggests, the simplest kind of classification is identifying some unknown object

or phenomenon as a member of a known class of objects, events, or processes. Typically, these

classes are stereotypes that are hierarchically organized, and the process of identification is one

of matching observations of an unknown entity against features of known classes. A

p
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paradigmatic example is identification of a plant or animal, using a guidebook of features,
such as coloration, structure, and size. MYCIN solves the problem of identifying an unknown
organism from laboratory cultures by matching culture information against a hierarchy of
bacteria (Figure 2-1).2

BACTERIA

GRODS 3 +R0C3 G-COCCI 1 + CC , C

'N'N

7' .
EMNTER:OB.ACTEIPIIA CEE,. E MIF, ILU~ N I'N: I he IE ER I:IIA T 4PHYLOCOCGU~ i 5TPEP>T'COCCU

ECOLl .LE -IELLA PGOU " U-IOCOCC1JS MErINJG! COCCUS

Figure 2-1: Mycin's classification of bacteria

The essential characteristic of classification is that the problem solver selects from a set of
pre-enumerated solutions. This does not mean, of course, that the "right answer" is necessarily
one of these solutions, just that the problem solver will only attempt to match the data against
the known solutions, rather than construct a new one. Evidence can be uncertain and matches
partial, so the output might be a ranked list of hypotheses. Besides matching, there are several
rules of inference for making assertions about solutions. For example, evidence for a class is
indirect evidence that one of its subtypes is present.

2.2. Data abstraction
In the simplest problems, data are solution features, so the matching process is direct. For

example, an unknown organism in MYCIN can be classified directly given the supplied data of
Gram stain and morphology. The features "Gram-stain negative" and "rod-shaped" match a
class of organisms. The solution might be refined by getting information that allows subtypes

to be discriminated.

For many problems, solution features are not supplied as data, but are inferred by data

abstraction. There are three basic relations for abstracting data in heuristic programs:

2 For simplicity, we will refer to classification hierarchies throughout this paper, though in practice these structures

are not trees, but almost always "tangled" structures with some nodes having multiple parents.
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definitional abstraction based on essential, necessary features of a concept ("if the
structure is a one-dimensional network, then its shape is a beam");

J qualitative abstraction, a form of definition involving quantitative data, usually
with respect to some normal or expected value ("if the patient is an adult and white
blood count is less than 2500, then the white blood count is low"); and

.generalization in a subtype hierarchy ("if the client is a judge, then he is an
educated person").

These interpretations are usually made by the program with certainty; belief thresholds and
qualifying conditions are chosen so the abstraction is categorical. It is common to refer to this
knowledge as being "factual" or "definitional."

2.3. Heuristic classification
In simple classification, data may directly match solution features or may match after being

abstracted. In heuristic classification, solutions and solution features may also be matched
heuristically, by direct, non-hierarchical association with some concept in another classification
hierarchy. For example, MYCIN does more than identify an unknown organism in terms of
visible features of an organism: MYCIN heuristically relates an abstract characterization of the

- • patient to a classification of diseases. We show this inference structure schematically, followed

by an example (Figure 2-2).

Basic observations about the patient are abstracted to patient categories, which are
heuristically linked to diseases and disease categories. While only a subtype link with E.coli
infection is shown here, evidence may actually derive from a combination of inferences. Some
data might directly match E.coli features (an individual organism shaped like a rod and
producing a Gram-negative stain is seen growing in a culture taken from the patient).
Descriptions of laboratory cultures (describing location, method of collection, and incubation)
can also be related to the classification of diseases.

The important link we have added is a heuristic association between a characterization of the

patient ("compromised host") and categories of diseases ("gram-negative infection"). Unlike
S•- definitional and hierarchical inferences, this inference makes a great leap. A heuristic relation

is uncertain, based on assumptions of typicality, and is sometimes just a poorly understood
correlation. A heuristic is often empirical, deriving from problem-solving experience;

-•heuristics correspond to the "rules of thumb," often associated with expert systems
(Feigenbaum, 1977).

Heuristics of this type reduce search by skipping over intermediate relations (this is why we
don't call abstraction relations "heuristics"). These associations are usually uncertain because
the intermediate relations may not hold in the specific case. Intermediate relations may be

* omitted because they are unobservable or poorly understood. In a medical diagnosis program,
heuristics typically skip over the causal relations between symptoms and diseases. In Section
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HEURISTIC MATCH

Patient Abstractions Disease Classes

DATA REFINEMENT
ABSTRACTION

Patient Data Diseases

HEURISTIC

Compromised Host => Gram-Negative Infection

GENERALIZATION SUBTYPE

Immunosuppressed E.coli Infection

GENERALIZATION

Leukopenia

DEFINITIONAL

Low WBC

QUALITATIVE

WBC < 2.5

Figure 2-2: Inference structure of MYCIN

• . .
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4 we will analyze the nature of these implicit relations in some detail.

To summarize, in heuristic classification abstracted data statements are associated with

specific problem solutions or features that characterize a solution. This can be shown

schematically in simple terms (Figure 2-3).

HEURISTIC MATCH

Data Abstractions Solution Abstractions

DATA REFINEMENT
ABSTRACTION

Data Solutions

Figure 2-3: Inference structure of heuristic classification

This diagram summarizes how a distinguished set of terms (data, data abstractions, solution

abstractions, and solutions) are related systematically by different kinds of relations. This is
the structure of inference in heuristic classification. The direction of inference and the

relations "abstraction" and "refinement" are a simplification, indicating a common ordering

(generalizing data and refining solutions), as well as a useful way of remembering the

classification model. In practice, there are many operators for selecting and ordering
inferences, discussed in Section 6.

3. EXAMPLES OF HEURISTIC CLASSIFICATION
Here we schematically describe the architectures of SACON, GRUNDY, and SOPHIE III in terms

of heuristic classification. These are brief descriptions, but reveal the value of this kind of

analysis by helping us to understand what the programs do. After a statement of the problem,

the general inference structure and an example inference path are given, followed by a brief

discussion. In looking at these diagrams, note that sequences of classifications can be

composed, perhaps involving simple classification at one stage (SACON) or omitting

.. "abstraction" or "refinement" (GRUNDY and SACON).

- In the Section 4, we will reconsider these examples, in an attempt to understand the heuristic

classification pattern. Our approach will be to pick apart the "inner structure" of concepts and

to characterize the kinds of relations that are typically useful for problem solving.

t . - - - -. , *, - , o- - . - - . - - -- . . *,.f l• r .. . . - - - .. .
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3.1. SACON

Problem: SACON (Bennett, et al., 1978) selects classes of behavior that should be further
investigated by a structural-analysis simulation program (Figure 3-1).

Discussion: SACON solves two problems by classification-heuristically analyzing a structure
and then using simple classification to select a program. It begins by heuristically selecting a
simple numeric model for analyzing a structure (such as an airplane wing). The numeric
model, an equation, produces stress and deflection estimates, which the program then
qualitatively abstracts as behaviors to study in more detail. These behaviors, with additional
information about the material, definitionally characterize different configurations of the MARC

simulation program (e.g., the inelastic-fatigue program). There is no refinement because the
solutions to the first problem are just a simple set of possible models, and the second problem
is only solved to the point of specifying program classes. (In another software configuration
system we analyzed, specific program input parameters are inferred in a refinement step.)

3.2. GRUNDY

Problem: GRUNDY (Rich, 1979) is a model of a librarian, selecting books a person might like

to read.

Discussion: GRUNDY solves two classification problems heuristically, classifying a reader's
personality and then selecting books appropriate to this kind of person (Figure 3-2). While
some evidence for people stereotypes is by data abstraction (a JUDGE can be inferred to be an
EDUCATED-PERSON), other evidence is heuristic (watching no TV is neither a necessary nor

sufficient characteristic of an EDUCATED-PERSON).

Illustrating the power of a knowledge-level analysis, we discover that the people and book
classifications are not distinct in the implementation. For example, "fast plots" is a book
characteristic, but in the implementation "likes fast plots" is associated with a person
stereotype. The relation between a person stereotype and "fast plots" is heuristic and should be
distinguished from abstractions of people and books. One objective of the program is to learn
better people stereotypes (user models). The classification description of the user modeling
problem shows that GRUNDY should also be learning better ways to characterize books, as well
as improving its heuristics. If these are not treated separately, learning may be hindered. This
example illustrates why a knowledge-level analysis should precede representation.

It is interesting to note that GRUNDY does not attempt to perfect the user model before
recommending a book. Rather, refinement of the person stereotype occurs when the reader
rejects book suggestions. Analysis of other programs indicates that this multiple-pass process
structure is common. For example, the Drilling Advisor makes two passes on the causes of

. drill sticking, considering general, inexpensive data first, just as medical programs commonly
consider the "history and physical" before laboratory data. The high-level, abstuact structure of

A.A.J1
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Analysis Program

I DATA
ABSTRACTION

Quantitative Prediction
of Material Behavior

= I DEFINITIONAL

HEURISTIC MATCH

Abstract Structure = Numeric Model

DATA
ABSTRACTION

Structure Description

Inelastic-Fatigue
Program

DEFINITIONAL

Fatigue,. Deflection + Material

I QUALITATIVE

Stress and Deflection
Magnitude

DEFINITIONAL
HEURISTICI

* . Size
Beam + Support = Specific Equation

A Distribution

DEFINITIONAL

One-dimensional

and Network

Figure 3-1: Inference structure of SACON
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HEURISTIC MATCH

Self-Description People Book
and Behavior Classes Classes

REFINEMENT

Books

HEURISTIC HEURISTIC

Watches No TV = Educated Books with Intelligent
Person Main Character
Stereotype

SUBTYPE

* "Earth Angels"

Figure 3-2: Inference structure of GRUNDY
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the heuristic classification model makes possible these kinds of descriptions and comparisons.

3.3. SOPHIE III
Problem: SOPHIE III (Brown, et al., 1982) classifies an electronic circuit in terms of the

component that is causing faulty behavior (Figure 3-3).

Discussion: SOPHIE's set of pre-enumerated solutions is a lattice of valid and faulty circuit

behaviors. In contrast with MYCIN, SOPHIE's solutions are device states and component flaws,
not stereotypes of disorders. They are related causally, not by subtype. Data are not only

external device behaviors, but include internal component measurements propagated by the

causal analysis of the LOCAL program. Nevertheless, the inference structure of abstractions,
heuristic relations, and refinement fits the heuristic classification model, demonstrating its

generality and usefulness.

4. UNDERSTANDING HEURISTIC CLASSIFICATION
The purpose of this section is to develop a principled account of why the inference structure

of heuristic classification takes the characteristic form we have discovered. Our approach is to

describe what we have heretofore loosely called "classes," "concepts," or "stereotypes" in a more

formal way, using the conceptual graph notation of Sowa (Sowa, 1984). In this formalism, a

concept is described by graphs of typed, usually binary relations among other concepts. This
kind of analysis has its origins in semantic networks (Quillian, 1968), the conceptual-
dependency notation of Schank, et al. (Schank, 1975), the prototype/perspective descriptions of

KRL (Bobrow and Winograd, 1979), the classification hierarchies of KL-ONE (Schmolze and

Lipkis, 1983), as well as the predicate calculus.

Our discussion has several objectives:

to relate the knowledge encoded in rule-based systems to structures more commonly

associated with "semantic net" and "frame" formalisms,

* to explicate what kinds of knowledge heuristic rules leave out (and thus their

advantages for search efficiency and limitations for correctness), and

to relate the kinds of conceptual relations collectively identified in knowledge

representation research (e.g., the relation between an individual and a class) with the

pattern of inference that typically occurs during heuristic classification problem

solving (yielding the characteristic inverted horseshoe inference structure of Figure

2-3).

One important result of this analysis is a characterization of the "heuristic relation" in terms

of primitive relations among concepts (such as preference, accompaniment, and causal

..A-
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HEURISTIC MATCH
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enablement), and its difference from more essential, "definitional" characterizations of

concepts. In short, we are trying to systematically characterize the kind of knowledge that is

useful for problem solving, which relates to our larger aim of devising useful languages for

encoding knowledge in expert systems.

4.1. Schemas vs. definitions

In the case of matching features of organisms (MYCIN) or programs (SACON), features are

essential (necessary), identifying characteristics of the object, event, or process. This

corresponds to the Aristotelian notion of concept definition in terms of necessary properties.3

In contrast, features may be only "incidental," corresponding to typical manifestations or

behaviors. For example, E.coli is normally found in certain parts of the body, an incidental
property. It is common to refer to the combination of incidental and defining associations as

a "schema" for the concept.4 Inferences made using incidental associations of a schema are
inherently uncertain. For example, we might infer that a particular person, because he is

educated, likes to read books, but this might not be true. In contrast, an educated person must,

by definition, have learned a great deal about something (though maybe not a formal academic

topic).

The nature of schemas and their representation has been studied extensively in Al. As stated

in the introduction (Section 1), our purpose here is to exploit this research to understand the

knowledge contained in rules. We are not advocating one representation over another; rather
we just want to find some way of writing down knowledge so that we can detect and express

patterns. We use the conceptual graph notation of Sowa because it is simple and it makes

basic distinctions that we find to be useful:

* A schema is made up of coherent statements mentioning a given concept, not a list

of isolated, independent features. (A statement is a complete sentence.)

* A schema for a given concept contains relations to other concepts, not just

"attributes and values" or "slots and values."

* A concept is typically described from different points of view by a set of schemata

(called a "schematic cluster"), not a single "frame."

(Sowa, 1984) provides a good overview of these well-known philosophical distinctions. See also (Palmer, 1978) and

% (Cohen and Murphy. 1984).

4 Here we use the word "schema" as a kind of knowledge, not a construct of a particular programming language or

notation. See (Hayes, 1979) for further discussion of this distinction.

..............................................
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. The totality of what people know about a concept usually extends well beyond the

schemas that are pragmatically encoded in programs for solving limited problems.

Finally, we adopt Sowa's definition of a prototype as a "typical individual," a specialization

of a concept schema to indicate typical values and characteristics, where ranges or sets are
described for the class as a whole. Whether a program uses prototype or schema descriptions

of its solutions is not important to our discussion, and many may combine them, including

"normal" values, as well as a spectrum of expectations.

4.2. Alternative encodings of schemas

To develop the above points in some detail, we will consider a conceptual graph description

and how it relates to typical rule-based encodings. Figure 4-1 shows how knowledge about the

concept "cluster headache" is described using the conceptual graph notation. 5

Concepts appear in brackets; relations are in parentheses. Concepts are also related by a type

hierarchy, e.g., a HEADACHE is a kind of PROCESS, an OLDER-MAN is a kind of MAN.

Relations are constrained to link concepts of particular types, e.g., PTIM, a point in time, links

a PROCESS to a TIME. For convenience, we can also use Sowa's linear notation for

conceptual graphs. Thus, OLDER-MAN can be described as a specialization of MAN, "a man

with characteristic old." CLUSTERED is "an event occurring daily for a week." EARLY-

SLEEP is "a few hours after the state of sleep."

We make no claim that a representation of this kind is complete, computationally tractable,

or even unambiguous. For our purposes here, it is simply a notation with the advantage over

English prose of systematically revealing how what we know about a concept can be (at least

partially) described in terms of its relations to concepts of other types.

For contrast, consider how this same knowledge might be encoded in a notation based upon

objects, attributes, and values, as in MYCTN. Here, the object would be the PATIENT, and

typical attributes would be HEADACHE-ONSET (with possible values EARLY-MORNING,

EARLY-SLEEP, LATE-AFTERNOON) and DISORDER (with possible values CLUSTER-

HEADACHE, INFECTION, etc.). A typical rule might be, "If the patient has headache onset

during sleep, then the disorder of the patient is cluster headache." The features of a cluster

headache might be combined in a single rule. Generally, since none of the features are

logically necessary, they are considered in separate rules, with certainty factors denoting how

strongly the symptom (or predisposition, in the case of age) is correlated with the disease. A

5One English translation would be: "A cluster headache is a headache that occurs with a frequency in clusters,
experienced by an older man, accompanied by lacrimation, with characteristic severe, of location unilateral, occurring at

a point in time of early sleep."

M1 -
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[UNILATERAL] [EARLY.SLEEP]

(LOC) (TM

[SVEE] <- (HR).-I4

[SEVERE) (CHRC) [HEADACHE] - (FREO) > [CLUSTERED]

(ACCM) (EXPR)

[LACRIMATION] [OLDER-MAN]

[EARLY-SLEEP] Is
[TIME: [STATE: [SLEEP]] -> (AFTER) -> [TIME-PERIOD: @few-hrs]]

[CLUSTERED] is
[DAILY] <- (FREQ) <- [EVENT] -> (DURATION) -> [TIME-PERIOD: @*week]

[OLDER-MAN] Is
[MAN] -> (CHRC) -> [OLD]

Figure 4-1: Schema describing the concept CLUSTER-HEADACHE and some related

concepts

primitive "frame" representation, as in INTERNIST (Pople, 1982), is similar, with a list of

attributes for each disorder, but each attribute is an "atomic" unit that bundles together what is

broken into object, attribute, and value in MYCIN, e.g., "HEADACHE-ONSET-OCCURS-
EARLY-SLEEP."

The idea of relating a concept (such as CLUSTER-HEADACHE) to a set of attributes or

descriptors, is common in Al programs. However, a relational analysis reveals marked

differences in what an attribute might be:

An attribute is an atomic proposition. In INTERNIST, an attribute is a string that is

only related to diseases or other strings, e.g., HEADACHE-ONSET-EARLY-SLEEP-

EXPERIENCED-BY- PATIENT.

. o. . . . . . . . . .
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• An attribute is a relation characterizing some class of objects. In MYCIN, an attribute

is associated with an instance of an object (a particular patient, culture, organism,

or drug).

• An attribute is a unary relation. A MYCIN attribute with the values "yes or no"

corresponds to a unary relation, (<attribute> <object>), e.g., (HEADACHE-

ONSET-EARLY-SLEEP PATIENT), "headache onset during early sleep is

experienced by the patient."

o An attribute is a binary relation. A MYCIN attribute with values corresponds to

a binary relation, (<attribute> <object> <value>), e.g., (HEADACHE-ONSET

PATIENT EARLY-SLEEP), "headache onset experienced by the patient is

during early sleep."

An attribute is a relation among classes. Each class is a concept. Taking the same

example, there are two more primitive relations, ONSET and EXPERIENCER,

yielding the propositions: (ONSET HEADACHE EARLY-SLEEP), "the onset of

the headache is during early sleep", and (EXPERIENCER HEADACHE PATIENT),

"the experiencer of the headache is the patient." More concisely, [EARLY-SLEEP]

<- (ONSET) <- [HEADACHE] -> (EXPR) -> [PATIENT]. These relations and

concepts can be further broken down, as shown in Figure 4-1.

The conceptual graph notation encourages clear thinking by forcing us to unbundle domain

terminology into defined or schematically described terms and a constrained vocabulary of

relations (restricted in the types of concepts each can link). Rather than saying that "an object

has attributes," we can be more specific about the relations among entities, describing abstract

concepts like "headache" and "cluster" in the same notation we use to describe concrete objects

like patients and organisms. In particular, notice that headache onset is a characterization of a

headache, not of a person, contrary to the MYCIN statement that "headache onset is an attribute

of person." Similarly, the relation between a patient and a disorder is different from the

relation between a patient and his age.6

Breaking apart "parameters" into concepts and relations has the additional benefit of allowing

them to be easily related, through their schema descriptions. For example, it is clear that

HEADACHE-ONSET and HEADACHE-SEVERITY both characterize HEADACHE, allowing

6The importance of defining relations has been discovered repetitively in Al. Wood's analysis of semantic networks

(Woods, 1975) is an early, well-known example. The issue of restricting and defining relations was particularly

important in the development of OWL (Martin, 1979). Researchers using rule-based languages, like MYCIN'S, felt

curiously immune from these issues, not realizing that their "attributes" were making similar confusions.

.,' -11.
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us to write a simple, general inference rule for deciding about relevancy: "If a process type
being characterized (e.g., HEADACHE) is unavailable or not relevant, then its characterization
(e.g., HEADACHE-ONSET) is not relevant." As another example, consider a discrimination
inference strategy that compares disorder processes on the basis of their descriptions as events.
Knowing what relations are comparable (e.g., location and frequency), the inference procedure
can automatically gather relevant data, look up the schema descriptions, and make comparisons
to establish the best match. To summarize, the rules in a program like MYCIN are implicitly
making statements about schemas. This becomes clear when we separate conceptual links from
rules of inference, as in NEOMYCIN.

4.3. Relating heuristics to conceptual graphs

Given all of the structural and functional statements we might make about a concept,
describing processes and interactions in detail, some statements will be more useful than others
for solving problems. Rather than thinking of schemas as inert, static descriptions, we are
interested in how they link concepts to solve problems. The description of CLUSTERED-
HEADACHE given in Figure 4-1 includes the knowledge that one typically finds in a

diagnostic program. To understand heuristics in these terms, consider first that some relations
appear to be less "incidental" than others. The time of occurrence of the headache, location,
frequency, and characterizing features are all closely bound to what a cluster headache is. They
are not necessary, but they together distinguish CLUSTER-HEADACHE from other types.

- 1.. That is, these relations discriminate this headache from other types of headache.

On the other hand, accompaniment by lacrimation (tearing of the eyes) and the tendency for
such headaches to be experienced by older men are correlations with other concepts.7 Here, in
particular, we see the link between different kinds of entities: a DISORDER-PROCESS and a
PERSON. This is the link we have identified as a heuristic-a direct, non-hierarc ical
association between concepts of different types. Observe that why an older man experiences
cluster headaches is left out. Given a model of the world that says that all phenomena are
caused, we can say that each of the links with HEADACHE could be explained causally.
Whether the explanation has been left out or is not known cannot be determined by examining
the conceptual graph, a critical point we will return to later.

When heuristics are stated as rules in a program like MYCIN, even known relational and

definitional deti are often omitted. This often means that intermediate concepts are omitted

as well. We say "X suggests Y, or "X makes you think of Y." Unless the connection is an

7What discriminates is relative. If kinds of headache tended to be associated with different ages of people, then this

might be a CLUSTER-ELDERLY-HEADACHE and we would consider the age of the experiencer to be a

discriminating characteristic.

. .
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unexplained correlation, such a statement can be expanded to a full sentence that is part of the

schema description of X and/or Y. Thus, the geologist's rule "goldfields flowers -- > serpentine

rock" might be restated as, "Serpentine rock has nutrients that enable goldfields to grow well."

Figure 4-2 shows the conceptual graph notation of this statement (with "enable" shown by the
relation "instrument" linking an entity, nutrients, to an act, growing).

[GOLDFIELDS] -- (OBJ) - [GROW]

(INST) - [NUTRIENTS]

(CHRC) k- [SERPENTINE]

Figure 4-2: A heuristic rule expanded as a conceptual graph

The concepts of nutrients and growing are omitted from the rule notation, just as the causal

details that explain the growth process are skipped over in the conceptual graph notation. The
-- rule indicates what you must observe (goldfields flowers growing) and what you can assert

S.-(serpentine rock is near the surface). It captures knowledge not as mere static descriptions, but

as efficient, useful connections for problem solving. Moreover, the example makes clear the
essential characteristic of a heuristic inference-a non-hierarchical and non-definitional

connection between concepts of distinct classes.

Heuristics are selected statements that are useful for inference, particularly how one class

choice constrains another. Consider the goldfields example. Is the conceptual graph shown in
. - Figure 4-2 a schema for serpentine, goldfields, nutrient, or all three? First, knowledge is

something somebody knows; whether goldfields is associated with nutrients will vary from

person to person. (And for at least a short time, readers of this paper will think of goldfields
when the word "nutrient" is mentioned.) Second, the real issue is how knowledge is practically

ndexed. The associations a problem solver forms and the directionality of these associations
will depend on the kinds of situations he is called upon to interpret, and what is given and
what is derived. Thus, it seems plausible that a geologist in the field would see goldfields

(data) and think about serpentine rock (solution). Conversely, his task might commonly be to
find outcroppings of serpentine rock; he would work backwards to think of observables that he

might look for (data) that would indicate the presence of serpentine. Indeed, he might have
many associations with flowers and rocks, and even many general rules for how to infer rocks

- (e.g., based on other plants, drainage properties of the land, slope). Figure 4-3 shows one

possible inference path.

* * "In summary, a heuristic association is a connection that relates data that is commonly
available to the kinds of interpretations the problem solver is trying to derive. For a

• . . - + . . . . . . , . . ... • . J
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data solution

(3) recall FLOWERS ROCKS (2) generalize
general rule

(4) specialize. GOLDFIELDS SERPENTINE (1) goal: find rock
recal l
specific rule

Figure 4-3 Using a general rule to work backwards from a solution

physician starting with characteristics of a person, the patient, connections to diseases will be

useful. It must be possible to relate new situations to previous interpretations and this is what

the abstraction process in classification is all about (recall the quotation from Bruner in
Section 1). The specific person becomes an "old man" and particular disorders come to mind.

Problems tend to start with objects in the real world, so it makes sense that practical

problem-solving knowledge would allow problems to be restated in terms of stereotypical

objects: kinds of people, kinds of patients, kinds of stressed structures, kinds of malfunctioning

devices, etc. Based on our analysis of expert systems, links from these data concepts to

, solution concepts come in different flavors:

. agent or experiencer (e.g., people predisposed to diseases)

@ cause, co-presence, or correlation (e.g., Symptoms related to faults)

* preference or advantage (e.g., people related to books)

. physical model (e.g., abstract structures related to numeric models)

These relations don't characterize a solution in terms of "immediate properties"-they are not

definitional o, type discriminating. Rather, they capture incidental associations between a

solution and available data, usually concrete concepts. (Other kinds of links may be possible;

these are the ones we have discovered so far.)

The essential characteristic of a heuristic is that it reduces search. A heuristic rule reduces a

conceptual graph to a single relation between two concepts. Through this, heuristic rules
reduce search in several ways:

1. Of all possible schemas that might describe a concept, heuristic connections are

those that constrain a categorization on the basis of available data (e.g., the strength

of SERPENTINE rock may be irrelevant for inferring the presence of hidden

deposits).
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2. A heuristic eliminates consideration of intermediate (and often invariant) relations

between the concepts it mentions, associating salient classes directly (e.g., the

goldfields rule omits the concept NUTRIENT).

While not having to think about intermediate connections is advantageous, this sets up a

basic conflict for the problem solver-his inferential leaps may be wrong. Another way of

saying that the problem solver skips over things is that there are unarticulated assumptions on

which the interpretation rests. We will consider this further in the section on inference

strategies (Section 6).

4.4. Relating inference structure to conceptual graphs

In the inference-structure diagrams (such as Figure 3-2) nodes stand for propositions (e.g.,

"the reader is an educated person"). The diagrams relate propositions on the basis of how they

can be inferred from one another: type, definition, and heuristic. So far in this section we

have broken apart these atomic propositions to distinguish a heuristic link from esse, tial and

direct characterizing relations in a schema: and we have argued how direct, accidental

connections between concepts, which leave out intermediate relations, are valuable for reducing

search.

class/concept

"heuristic"D class schemas

"definition" type definition

and discriminating

schema relations

(generic class to generic subclass)

class subclass

Figure 4-4: Conceptual relations used in heuristic classification

Here we return to the higher-level, inference-structure diagrams and include the details of the

kinds of links that are possible. In Figure 4-4 each kind of inference relation between

, . 4 % % 7 yt. .- . .- - -
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concepts is shown as a line. Classes can be connected to one another by any of these three
kinds of inference relations. We make a distinction between heuristics (direct, non-

hierarchical, class-class relations, such as the link between goldfields and serpentine rock) and

definitions (including necessary and discriminating relations, plus qualitative abstraction (see

Section 2.2)). Definitional and subtype links are shown vertically, to conform to our intuitive

idea of generalization of data to higher categories, what we have called data abstraction.

It is important to remember that the "definitional" links are often non-essential, "soft"

descriptions. The "definition" of leukopenia as white blood count less than normal is a good

example. "Normal" depends on everything else happening to the patient, so inferring this

condition always involves making some assumptions.

Note also that this is a diagram of static, structural relations. In actual problem solving

other links will be required to form a case-specific model, indicating propositions the problem
solver believes to be true and support for them. In particular, surrogates (Sowa, 1984) (also

called individuals (Brachman, 1977), such the MYCIN "context" ORGANISM-i) will stand for
unknown objects or processes in the world that are identified by associating them with a class

in a type hierarchy. 8

Now we are ready to put this together to understand the pattern behind the inference

structure of heuristic classification. Given that a sequence of heuristic classifications, as in

GRUNDY, is possible, indeed common, we start with the simplest case by assuming that data

classes are not inferred heuristically. Instead, data are supplied directly or inferred by
-.". definition. When solution classes are inferred by definition, we have a case of simple

classification (Section 2.1), for example, when an organism is actually seen growing in a
laboratory culture (like a smoking gun). In order to describe an idealized form of heuristic

81t is not often realized that each MYCIN "context" has a distinguished attribute called its "name" that corresponds to

the link between the surrogate (entity to be classified) and a classification hierarchy. The pattern was only evident to

system designers to the extent that they realized that each "context" type has some identifying attribute that allows it to

be translated. For example, after identifying an organism, the program says "the E.coli" rather than ORGANISM-i (or

whatever its number was), referring to the object/context hierarchy if there are more than one, "the E.coli from the

blood culture of 3/14/77." Thus, we have the identity of the organism, name of the infection, site of the culture, etc.

Corresponding to each of these identifying attributes is a hierarchy of "values" with static properties. Thus, there are

tables of organisms, infections, culture sites, etc. It is in such a table that MYCIN stores the information that E.coli is a

gram-negative rod. A single, general rule uses the table to identify the unknown organism. These tables are also

called "grids"; we were unaware at the time (1974-1977) that we were recording the same kind of information other Al

programmers were storing in "frame hierarchies." The pattern was partially obscured by our use of special-case rules,

for example, to allow for incorrect data, making the grids appear to be a convenient computational short-hand for

collapsing similar rules, rather than a notation for describing classes.

[.
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classification, we leave out definitional inference of solutions. Finally, inference has the

general form that problem descriptions must be abstracted (proceeding from subclass to class)

and partial solutions must be refined (proceeding from class to subclass).

If we thus specialize the right side of the inference diagram in Figure 4-4 to a data class and

a solution class and glue them together, we get a refined version of the original inverted

horseshoe (Figure 2-3). Figure 4-5 shows how data and solution classes are typically inferred

from one another in the simplest case of heuristic classification. This diagram should be

contrasted with all of the possible networks we could construct, linking concepts by the three
most general relations (subtype, definitional, incidental). For example, all links might have

been definitional, all concepts subsumed by a single class, or data only incidentally related to

* other concepts. Furthermore, considering knowledge apart from how it is used, we might
imagine complex networks of concepts, intricately related, as suggested by Figure 4-1. Instead,

we find that diverse classification structures are often linked directly, omitting relational

details. Clearly independent of programming language, this pattern is very likely an essential

aspect of practical, experiential models of the world.

data class solution class

"heuristic"
schemas

type definition"definition"

and discriminating

schema relations

data class data subclass solution subclass

Figure 4-5: Typical conceptual relations in simplest form of heuristic classification

"..
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4.5. Pragmatics of defining concepts

In the course of writing and analyzing heuristic programs, we have been struck by the
difficulty of defining terms. What is a "compromised host?" How is it different from
"immunosuppression"? Is an alcoholic immunosuppressed? We do not simply write down

descriptions of what we know. The very process of formalizing terms and relations changes
" "what we know, and itself brings about concept formation.

In many respects, the apparent unprincipled nature of MYCIN is a good reflection of the raw

state of how experts talk. Two problems we encountered illustrate the difficulty of proceeding
without a formal conceptual structure, and thus, reflect the unprincipled state of what experts

know about their own reasoning:

Twice we completely reworked the hierarchical relations among immunosuppression

and compromised host conditions. There clearly is no agreed-upon network that we

can simply write down. People do not know schema hierarchies in the same sense

that they know phone numbers. A given version is believed to be better because it
makes finer distinctions, so it leads to better problem solving.

",--,The concepts of "significant organism" and "contaminant" were sometimes confused

in MYCIN. An organism is significant if there is evidence that it is associated with

a disease. A contaminant is an organism growing on a culture that was introduced
because of dirty instruments or was picked up from some body site where it

normally grows (e.g., a blood culture may be contaminated by skin organisms).

Thus, evidence against contamination supports the belief that the discovered

organism is significant. However, a rule writer would tend to write "significant"
rather than "not contaminant," even though this was the intended, intermediate

interpretation. There may be a tendency to directly form a general, positive

categorization, rather than to make an association to an intermediate, ruled-out

category.

To a first approximation, it appears that what we "really" know is what we can conclude
given other information. That is, we start with just implication (P -> Q), then go back to

abstract concepts into types and understand relations among them. For example, we start by
-- knowing that "WBC < 2500 -> LEUKOPENIA." To make this principled, we break it into the

following pieces:

1. "Leukopenia" means that the count of leukocytes is impoverished:

[LEUKOPENIA]- [LEUKOCYTES] (CHRC)- [CURRENT-COUNT]->

(CHRC) -> [IMPOVERISHED]

IF. 
I

, t-Z
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2. "Impoverished" means that the current measure is much less than normal:

[IMPOVERISHED: x] =

[CURRENT-MEASURE: x] -> ( << ) -> [NORMAL-MEASURE: x]

3. The (normal/current) count is a kind of measure:

[COUNT] < [MEASURE]

4. A fact, the normal leukocyte count in an adult is 7000:
[LEUKOCYTES] -> (CHRC) -

[NORMAL-COUNT] -) (MEAS) ->

[MEASURE: 7000 /mm3].

With the proper interpreter (and perhaps some additional definitions and relations), we could
instantiate and compose these expressions to get the effect of the original rule. This is the

pattern we follow in knowledge engineering, constantly decomposing terms into general types

and relations to make explicit the rationale behind implications.

Perhaps one of the most perplexing difficulties we encounter is distinguishing between

subtype and cause, and between state and process. Part of the problem is that cause and effect
are not always distinguished by our experts. For example, a physician might speak of a brain-

tumor as a kind of brain-mass-lesion. It is certainly a kind of brain mass, but it causes a
lesion (cut); it is not a kind of lesion. Thus, the concept bundles cause with effect and

location: a lesion in the brain caused by a mass of some kind is a brain-mass-lesion (Figure

4-6).

[MASS] -> (CAUS) -> [LESION] -> (LOC) -> [BRAIN]

Figure 4-6: Conceptual graph of the term "brain-mass-lesion"

Similarly, we draw causal nets linking abnormal states, saying that brain-hematoma (mass of

blood in the brain) is caused by brain-hemorrhage (bleeding). To understand what is
happening, we profit by labeling brain-hematoma as a substance (a kind of brain-mass) and

brain-hemorrhage as a process that affects or produces the substance. Yet when we began, we
thought of brain-hemorrhage as if it were equivalent to the escaping blood.

It is striking that we can learn concepts and how to relate them to solve problems, without

* understanding the links in a principled way. If you know that WBC < 2500 is leukopenia, a

form of immunosuppression, which is a form of compromised host, causing E.coli infection,

you are on your way to being a clinician. As novices, we push tokens around in the same

non-comprehending way as MYCIN.

V .-
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Once we start asking questions, we have difficulty figuring out how concepts are related. If
aimmunosuppression is the state of being unable to fight infection by mechanisms, then does

impoverished white cells cause this state? Or is it caused by this state (something else
affected the immunosystem, reducing the WBC as a side-effect)? (Worse yet, we may say it is

an "indicator," completely missing the fact that we are talking about causality.) Perhaps it is
one way in which the immunosystem can be diminished, so it is a kind of immunosuppression.
It is difficult to write down a principled network because we don't know the relations, and we
don't know them because we don't know what the concepts mean-we don't understand the

processes involved. Yet, we might know enough to relate data classes to therapy classes and
save the patient's life!

A conceptual graph or logic analysis suggests that the relations among concepts are relatively
few in number and fixed in meaning, compared to the number and complexity of concepts.
The meaning of concepts depends on what we ascribe to the links that join them. Thus, in
practice we jockey around concepts to get a well-formed network. Complicating this is our
tendency to use terms that bundle cause with effect and to relate substances directly, leaving
out intermediate processes. At first, novices might be like today's expert programs. A concept

is just a token or label, associated with knowledge of how to infer truth and how to use
information (what to do if it is true and how to infer other truths from it). Unless the token
is defined by something akin to a conceptual graph, it is difficult to say that the novice or
program understands what it means. But in the world of action, what matters more than the

. functional, pragmatic knowledge of knowing what to do?

Where does this leave us? One conclusion is that "principled networks" are impossible.

Except for mathematics, science, economics, and similar domains, concepts do not have form!.i
definitions. While heuristic programs sometimes reason with concrete, well-defined
classifications such as the programs in SACON and the fault network in SOPHIE, they more often
use experiential schemas, the knowledge we say distinguishes the expert from the novice. In
the worst case, these experiential concepts are vague and incompletely understood, such as the
diseases in MYCIN. In general, there are underlying (unarticulated or unexamined) assumptions

in every schema description. Thus, the first conclusion is that for concepts in nonformal
domains this background and context cannot in principle be made explicit (Flores and
Winograd, 1985). That is, our conceptual knowledge is inseparable from our as yet

ungeneralized memory of experiences.

An alternative point of view is that, regardless of ultimate limitations, it is obvious that

expert systems will be valuable for replacing the expert on routine tasks, aiding him on
difficult tasks, and generally transforming how we write down and teach knowledge. Much
more can be done in terms of memory representation, learning from experience, and
combinating principled models with situation/action, pragmatic rules. Specifically, the problem
of knowledge transformation could become a focus for expert systems research, including

. . .* .
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compilation for efficiency, derivation of procedures for enhancing explanation (Swartout,

1981), and re-representation for detecting and explaining patterns, thus aiding scientific theory

formation. Studying and refining actual knowledge bases, as exemplified by this section, is our

chief methodology for improving our representations and inference procedures. Indeed, from

the perspective of knowledge transformation, it is ironic to surmise that we might one day

decide that the "superficial" representation of EMYCIN rules is a fine executable language, and

something like it will become the target for our knowledge compilers.

5. ANALYSIS OF PROBLEM TYPES IN TERMS OF SYSTEMS
The heuristic classification model gives us two new angles for comparing problem-solving

methods and kinds of problems. First, it suggests that we characterize programs by whether

solutions are selected or constructed. This leads us to the second perspective, that different

"kinds of things" might be selected or constructed (diagnoses, user models, etc.). In this section

we will adopt a single point of view, namely that a solution is most generally a set of beliefs

describing what is true about a system or a set of actions (operations) that will physically

transform a system to a desired description. We will study variations of system description

and transformation problems, leading to a hierarchy of kinds of problems that an expert might

solve.

5.1. What gets selected?
This foray into systems analysis begins very simply with the observation that all classification

problem solving involves selection of a solution. We can characterize kinds of problems by

what is being selected:

. diagnosis: solutions are faulty components (SOPHIE) or processes affecting the device
*, (MYCIN);

e user model: solutions are people stereotypes in terms of their goals and beliefs
(first phase of GRUNDY);

. catalog selection: solutions re products, services, or activities, e.g., books, personal
computers, careers, travel tours, wines, investments (second phase of GRUNDY);

. model-based analysis: solutions are numeric models (first phase of SACON);

. skeletal planning: solutions are plans, such as packaged sequences of programs and
parameters for running them (second phase of SACON, also first phase of
experiment planning in MOIGFN (Friedland, 1979)).

Attempts to make knowledge engineering a systematic discipline often begin with a listing of

kinds of problems. This kind of analysis is always prone to category errors. For example, a

naive list of "problems" might list "design," ",.onstraint satisfaction," and "model-based

reasoning," combining a kind of problem, an inference method, and a kind of knowledge. For

example, one might solve a VLSI chip design problem using constraint satisfaction to reason

C . C C .C - . .
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about models of circuit components. It is important to adopt a single perspective when
making a list of this kind.

In particular, we must not confuse what gets selected-what constitutes a solution-with the
method for computing the solution. A common misconception is that there is a kind of

problem called a "classification problem," opposing, for example, classification problems with

design problems (for example, see (Sowa, 1984)). Indeed, some tasks, such as identifying

bacteria from culture information, are inherently solved by simple classification. However,
heuristic classification as defined here is a description of how a particular problem is solved

by a particular problem solver. If the problem solver has a priori knowledge of solutions and

can relate them to the problem description by data abstraction, heuristic association, and
refinement, then the problem can be solved by classification. For example, if it were practical

to enumerate all of the computer configurations R1 might select, or if the solutions were
*restricted to a predetermined, explicit set of designs, the program could be reconfigured to

solve its problem by classification. The method of solving a configuration problem is not
inherent in the task itself.

.7 With this distinction between problem and computational method in mind, we turn our
- attention to a systematic study of problem types. Can we form an explicit taxonomy that

includes the kinds of applications we might typically encounter?

5.2. Background: Problem categories

One approach might be to focus on objects and what can be done to them. We can design
them, diagnose them, use them in a plan to accomplish some function, etc. This seems like

one way to consistently describe kinds of problems. Surely everything in the world involves

objects.

However, in attempting to derive such a uniform framework, the concept of "object" becomes
a bit elusive. For example, the analysis of problem types in Building Expert Systems (hereafter

BES, (Hayes-Roth, et al., 1983), see Table 5-1) indirectly refers to a program as an object.
Isn't it really a process? Are procedures objects or processes? It's a matter of perspective.
Projects and audit plans can be thought of as both objects and processes. Is a manufacturing

assembly line an object or a process? The idea of a "system" appears to work better than the

more common focus on objects and processes.

By o ganizing descriptions of problems around the concept of a system, we can improve upon
the distinctions made in BES. As an example of the difficulties, consider that a situation

description is a description of a system. Sensor data are observables. But what is the

difference between INTERPRETATION (inferring system behavior from observables) and
DIAGNOSIS (inferring system malfunctions from observables)? Diagnosis, so defined, includes

interpretation. The list appears to deliberately have this progressive design behind it, as is

..
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INTERPRETATION Inferring situation descriptions from sensor data
PREDICTION Inferring likely consequences of given situation
DIAGNOSIS Inferring system malfunctions from observables
DESIGN Configuring objects under constraints
PLANNING Designing actions
MONITORING Comparing observations to plan vulnerabilities
DEBUGGING Prescribing remedies for malfunctions
REPAIR Executing a plan to administer a prescribed remedy
INSTRUCTION Diagnosis, debugging, and repairing student behavior
CONTROL Interpreting, predicting, repairing, and monitoring system

behaviors.

Table 5-1: Generic categories of knowledge engineering applications.
From

(Hayes-Roth, et al., 1983) Table 1.1, page 14

particularly clear from the last two entries, which are composites of earlier "applications." In

fact, this idea of multiple "applications" to something (student behavior, system behavior)

suggests that a simplification might be found by adopting more uniform terminology. As a

second example, consider that the text of BES says that automatic programming is an example

of a problem involving planning. How is that different from configuration under constraints

(i.e., design)? Is automatic programming a planning problem or a design problem? We also

talk about experiment design and experiment planning. Are the two words interchangeable?

We can get clarity by turning things around, thinking about systems and what can be done to

and with them.

5.3. A system-oriented approach

We start by informally defining a system to be a complex of interacting objects that have

some process (1/O) behavior. The following are examples of systems:

a stereo system

a VLSI chip

an organ system in the human body

a computer program

a molecule

a university

an experimental procedure

Webster's defines a system to be "a set or arrangement of things so related or connected as to

form a unity or organic whole." The parts taken together have some structure. It is useful to

think of the unity of the system in terms of how it behaves. Behavior might be characterized

simply in terms of inputs and outputs.

Figures 5-1 and 5-2 summarize hierarchically what we can do to or with a system, revising

the BES table. We group operations in terms of those that construct a system and those that

. . . . *. . . . ** *. . . . . . . .
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interpret a system, corresponding to what is generally called synthesis and analysis. Common

synonyms appear in parentheses below the generic operations. In what follows, our new terms

appear in upper case.

CONSTRUCT

(synthesis)

SPECIFY DESIGN ASSEMBLE

(constrain) (manufacture)

CONFIGURE PLAN MODIFY

(structure) (process) (repair)

Figure 5-1: Generic operations for synthesizing a system

INTERPRET

(analysis)

IDENTIFY PREDICT CONTROL

(recognize) (simulate)

MONITOR DIAGNOSE

(audit) (debug)

(check)

Figure 5-2: Generic operations for analyzing a system

INTERPRET operations concern a working system in some environment. In particular,

IDENTIFY is different from DESIGN in that it requires taking I/O behavior and mapping it
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onto a system. If the system has not been described before, then this is equivalent to (perhaps
only partial) design from I/O pairs. PREDICT is the inverse, taking a known system and
describing output behavior for given inputs. ("Simulate" is a specific method for making
predictions, suggesting that there is a computational model of the system, complete at some
level of detail.) CONTROL, not often associated with heuristic programs, takes a known

*[ system and determines inputs to generate prescribed outputs (Vemuri, 1978). Thus, these three
*" operations, IDENTIFY, PREDICT, and CONTROL, logically cover the possibilities of problems

in which one factor of the set {input, output, system} is unknown.

Both MONITOR and DIAGNOSE presuppose a pre-existing system design against which the

behavior of an actual, "running" system is compared. Thus, one identifies the system with
respect to its deviation from a standard. In the case of MONITOR, one detects discrepancies
in behavior (or simply characterizes the current state of the system). In the case of
DIAGNOSE, one explains monitored behavior in terms of discrepancies between the actual
(inferred) design and the standard system.

To carry the analysis further, we compare our proposed terms to those used in Building
Expert Systems:

"Interpretation" is adopted as a generic category that broadly means to describe a
working system. The most rudimentary form is simply identifying some unknown
system from its behavior. Note that an identification strictly speaking involves a
specification of constraints under which the system operates and a design
(structure/process model). in practice, our understanding may not include a full
design, let alone the constraints it must satisfy (consider the metarules of HERACLES
(Section 6.1) versus our vague understanding of why they are reasonable). Examples
of programs that identify systems are:

o DENDRAL: system = molecular (structure) configuration (Buchanan, et al., 1969)

(given spectrum behavior of the molecule).

o PROSPECTOR: system = geological (formation) configuration (Hart, 1977) (given
samples and geophysics behavior).

o DEBUGGY: system knowledge (program) configuration of student's subtraction
facts and procedure (Burton, 1982) (given behavior on a set of subtraction
problems).

* "Prediction" is adopted directly. Note that prediction, specifically simulation, may
be an important technique underlying all of the other operations (e.g., using

simulation to generate and test possible diagnoses).

7 -
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" "Diagnosis" is adopted directly as a kind of IDENTIFICATION, with some part of

the design characterized as faulty with respect to a preferred model.

* "Design" is taken to be the general operation that embraces both a characterization

of structure (CONFIGURATION) and process (PLANNING).

* "Monitoring" is adopted directly as a kind of IDENTIFICATION, with system

behavior checked against a preferred, expected model.

* "Debugging" is dropped, deemed to be equivalent to DIAGNOSIS plus MODIFY.

"Repair" is more broadly termed MODIFY; it could be characterized as

transforming a system to effect a redesign, usually prompted by a diagnostic

description. MODIFY operations are those that change the structure of the system,

for example, editing a program or using drugs (or surgery) to change a living

organism. Thus, MODIFY is a form of "reassembly" given a required design

modification.

" The idea of "executing a plan" is moved to the more general term ASSEMBLE,

meaning the physical construction of a system. DESIGN is conceptual; it describes

a system in terms of spatial and temporal interactions of components. ASSEMBLY
is the problem of actu:ily putting the system together in the real world. For

* i example, contrast Ri'S problem with the problem of having a robot assemble the

configuration that Ri designed. ASSEMBLY is equivalent to planning at a different

level, that of a system that builds a designed subsystem.

. "Instruction" is dropped because it is a composite operation that doesn't apply to

every system. In a strict sense, it is equivalent to MODIFY.

In addition to the operations already mentioned, we add SPECIFY-referring to the separable

* . operation of constraining a system description, generally in terms of interactions with other

systems and actual realization in the world (resources affecting components). Of course, in

practice design difficulties may require modifying the specification, just as assembly may

constrain design (commonly called "design for manufacturing").

5.4. Configuration and planning
The distinction between configuration and planning requires some discussion. We will argue

that they are two points of view for the single problem of designing a system. For example,

consider how the the problem of devising a vacation travel plan is equivalent to configuring a

*t. . . . S * * . . . .- . .. $
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complex system consisting of travel, lodging, restaurant, and entertainment businesses and

specifying how that system will service a particular person or group of people. "Configure"
views the task as that of organizing objects into some system that as a functioning whole will

process/transform another (internal) system (its input). "Plan," as used here, turns this around,
viewing the problem in terms of how an entity is transformed by its interactions with another

(surrounding) system. Figure 5-3 illustrates these two points of view.

Configuration

-------------------

I System I
I described as

Input ----- > J interacting .------ > Output
I objects I

-------------------

Planning

----------------- + ----------------- +

I I Transformation I I
IJI process described I Transformed J

System J ... > J SystemI(input) as sequence of I (output) I
I operators I I

----------------- +-----------------+

Figure 5-3: The design problem seen from two perspectives

VLSI design is a paradigmatic example of the "configuration" point of view. The problem is

to piece together physical objects so that their behaviors interact to produce the desired system

behavior.

The "planning" point of view itself can be seen from two perspectives depending on whether

a subsystem or a surrounding global system is being serviced:

1. We service some system by moving it around for processing by subsystems of a
surrounding world. Paradigmatic examples are experiment planning (e.g., MOLGEN

(Stefik, 1980, Friedland, 1979)) and shop scheduling (e.g., ISTS (Fox and Smith,
1984)). ASSEMBLY always involves planning of this form, and strictly speaking

Stefik's MOLGEN solves an assembly problem, designing a system that physically
constructs a DNA/cell configuration (a pre-designed subsystem). Equivalent

examples are errand planning (1-layes-R-,th and Hayes-Roth, 1979), vacation, and

education plans. Here there is a well-defined object that is transformed by a well-

defined sequence of interactions. In general, we do not care how the surrounding

system is modified by these interactions, except that there are resource constraints

affecting planning when many systems are being serviced.
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"F-' 2. We specify how a well-defined object system will service a larger system in which

" ' it is contained. Servicing is done by "moving the object system around." The

paradigmatic example is the traveling salesman problem. Most realistic problems

are hybrid because the "service subsystem" is resource limited and must be

"restocked" and "refueled" by the surrounding system. Truck in' the game used for

teaching LOOPS (Stefik, et al., 1983), makes this clear. The traditional traveling

salesman problem takes this form when allowance is made for food or fuel stops,

etc.

While we appear to have laid out three perspectives on design, they are all computationally

equivalent. It's our point of view about purpose and structuredness of interactions that makes
it easier to understand a system in one way rather than another. In particular, in the first

form of planning, the serviced subsystem is getting more organized as a result of its

interactions. The surrounding world is modified in generally entropy-increasing ways as its
resources are depleted. In the second form of planning the serviced world is getting more

organized, while the servicing subsystem depletes its resources. Without considering the entropy

change, there is just a single point of view of a surrounding system interacting with a
contained subsystem.

"Configuration" is concerned with the construction of well-structured systems. In particular,

* if subsystems correspond to physically-independent components, design is equivalent to

organizing pieces so they spatially fit together, with flow from input to output ports producing
the desired result. (Note that RI is given some of the pieces, not the functional properties of

. the computer system it is configuring. The functional design is implicit in the roster of pieces
it is asked to configure-the customer's order.) It is a property of any system that can be

described in this way that it is hierarchically decomposable into modular, locally interacting

subsystems-the definition of a well-structured system. As Simon (Simon, 1969) points out, it
is sufficient for design tractability for systems to be "nearly decomposable," with weak, but

non-negligible interactions among modules.

Now, to merge this with the conception of "planning," consider how an abstract process can

be visualized graphically in terms of a diagram of connected operations. The recent
widespread availability of computer graphics has revolutionized how we visualize systems
(processes and computations). Examples of traditional and more recent attempts to visualize

the structure of processes are:

* Flowcharts. A program is a system. It is defined in terms of a sequence of

operations for transforming a subsystem, the data structures of the program.

Subprocedures and sequences of statements are subsystems that are structurally

blocked and connected.

o Automata theory. Transition diagrams are one way of describing finite state

* i**

.. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. .. . .
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P. machines. Petri nets and dataflow graphs are other, related, notations for describing

computational processes (see (Sowa, 1984) for discussion).

Actors. A system can be viewed in terms of interacting, independent agents that

pass messages to one another. Emphasis is placed on rigorous, local specification of

behaviors (Hewitt, 1979). Object-oriented programming (Goldberg and Robson,

1983) is in general an attempt to characterize systems in terms of a configuration,

centering descriptions on objects that are pieced together, as opposed to centering

on data transformations.

** Thinglab. (Borning, 1979) emphasized the use of multiple, graphic views for

depicting a dynamic simulation of mutually constrained components of a system.

Borning mentions the advantages of visual experimentation for understanding

complex system interactions.

* Rocky's Boots. In this personal computer game 9, icons are configured to define a

program, such as a sorting routine that operates on a conveyor belt. Movement

icons permit automata to move around and interact with each other, thus describing

"planning" (how systems will interact) from a "configuration" (combination of

primitive structures) point of view.

. FLIPP Displays. Decision rules can be displayed in analog form as connected

boxes that are interpreted by top-down traversal (see Figure 5-4). Subproblems can

be visually "chunked"; logical reasoning can be visualized in terms of adjacency,

blocking, alternative routes, etc. Characteristic of analog representations, such

displays are economical, facilitating encoding and perception of interactions

(Mackinlay and Genesereth, 1984).

- Streams. The structure of procedures can be made clearer by describing them in

terms of the signals that flow from one stage in a process to another (Abelson, et

al., 1985). Instead of modeling procedures in terms of time-varying objects

(variables, see "planning" in Figure 5-3), we can describe procedures in terms of

time-invariant streams. For example, a program might be characterized as

ENUMERATE + FILTER + MAP + ACCUMULATE, a configuration of connected

subprocesses. Stream descriptions, inspired by signal processing diagrams, allow a

programmer to visualize processes in a succinct way that reveals the structural

9The Learning Company, Menlo Park, CA.
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similarity of programs.

----------------------------- A ID I
---------------------B C I

------ +----------------------

Figure 5-4: Simple FLIPP display, encoding rules A->B, A->C, and
-> D->C. (From (Cox, 1984).)

These examples suggest that we have not routinely viewed "planning" problems in terms of
system "configuration" because we have not had adequate notations for visualizing interactions.
In particular, we have lacked tools for graphically displaying hierarchical interactions and
movement of subsystems through a containing system. Certainly a large part of the problem is

that interactions can be opportunistic, so the control strategy that affects servicing (in either
form of planning) is not specifiable as a fixed sequence of interactions. The inability to
graphically illustrate flexible strategies was one limitation of the original Actors formalism
(Hewitt, 1979). On the other hand, control strategies themselves may be specifiable as a
hierarchy of processes, even though they are complex and allow for opportunism. The
representation of procedures in HERACLES (Section 6.1) as layered rule sets (corresponding to

tasks) (with both data-directed reasoning encoded as a separate set of tasks and inherited
"interrupt" conditions) is an example of a well-structured encoding of an opportunistic

strategy. More generally, strategy might be graphically visualized as layers of object-level

operations and agenda-processing operations,

In general, a configuration point of view is impossible when physical or planning structures

are unstable, with many global interactions (Hewitt, 1979). It is difficult or impossible to plan
in such a world; this suggests that most practical planning problems can be characterized in
terms of configuration. It is interesting to note that replacing state descriptions

(configurations) with process descriptions has played an important role in scientific

understanding of the origins of systems (Simon, 1969). As illustrated by the examples of this
section, to understand these processes, we return to a configuration description, but now at the
level of the structure of the process instead of the system it constructs or interprets.

5.5. Combinations of system problems
Given the above categorization of construction and interpretation problems, it is striking that

expert systems tend to solve a sequence of problems pertaining to a given system in the world.

Two sequences that commonly occur are:

* The Construction Cycle: SPECIFY + DESIGN {+ ASSEMBLE}

An example is RI with its order processing front-end, XSEL. Broadly speaking,
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selecting a book for someone in GRUNDY is single-step planning; the person is
"serviced" by the book. Other examples are selecting a wine or a class to attend.
The common sequence of terms in business, "plan and schedule," are here named
SPECIFY (objectives) and PLAN (activities).

The Maintenance Cycle: {MONITOR + PREDICT +} DIAGNOSE + MODIFY
This is the familiar pattern of medical programs, such as MYCIN. The sequence of
MONITOR and PREDICT is commonly called test (repeatedly observing system

behavior on input selected to verify output predictions). MODIFY is also called

therapy.

This brings us back to the BES table (Figure 5-1), which characterizes INSTRUCTION and
CONTROL as a sequence of primitive system operations. We can characterize the expert

systems we have studied as such sequences of operations:

* MYCIN = MONITOR (patient state) + DIAGNOSE (disease category) + IDENTIFY

(bacteria) + MODIFY (body system or organism)

e GRUNDY IDENTIFY (person type) + PLAN (reading plan)

0 SACON = IDENTIFY (structure type) + PREDICT (approximate numeric model) +
IDENTIFY (classes of analysis for refined prediction)

* SOPHIE = MONITOR (circuit state) + DIAGNOSE (faulty module/component)

When a problem solver uses heuristic classification for multiple steps, as in GRUNDY, we say

that the problem-solving method is sequential heuristic classification. Solutions for a given
classification (e.g., stereotypes of people) become data for the next classification step. Note
that Mycin does not strictly do sequential classification because it does not have a well-
developed classification of patient types, though this is a reasonable model of how human
physicians reason. However, it seems fair to say that MYCIN does perform a monitoring

operation in that it requests specific information about a patient to characterize his state; this

is clearer in NEOMYCIN and CASNET where there are many explicit, intermediate patient state
descriptions. On the other hand, SOPHIE provides a better example of monitoring because it
interprets global behavior, attempting to detect faulty components by comparison with a
standard, correct model (discrepancies are violated assumptions).

It should be noted that how a problem is characterized in system terms may depend on our

purpose, what "problem" we are attempting to solve in doing the system analysis or in building
an expert system. For example, the OCEAN program (a product of Teknowledge, Inc.) checks

configurations of computer systems. From a broad perspective, it is performing a MONITOR
operation of the system that includes the human designer. Thus, OCEAN's inputs are the

,... . . . .
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constraints that a designer should satisfy, plus the output of his designing process. However,
N unlike DEBUGGY, we are not interested in understanding and correcting the designer's reasoning.

Our purpose is to determine whether the computer system design meets certain specification
. constraints (e.g., power and space limitations) and to make minor corrections to the design.

Thus, it seems more straightforward to say that OCEAN is doing a CONFIGURATION task, and

we have given it a possible solution to greatly constrain its search.

Finally, for completeness, we note that robotics research is concerned chiefly with

ASSEMBLY. Robotics is also converting CONTROL of systems from a purely numeric to a
symbolic processing task. PREDICT in systems analysis has also traditionally involved numeric

models. However, progress in the area of qualitative reasoning (also called mental models)
(Bobrow, 1984) has made this another application for heuristic programming. Speech

understanding is a strange case of identifying a system interaction between two speakers,

attempting to characterize its output given a partial description (at the level of sounds) and
environmental input (contextual) information.

Heuristic classification is particularly well-suited for problems of interpretation involving a

system that is known to the problem solver. In this case, the problem solver can select from a

set of systems he knows about (IDENTIFY), known system states (MONITOR), known system
faults (DIAGNOSE), or known system behaviors (PREDICT/CONTROL). The heuristic

classification method relies on experiential knowledge of systems and their behaviors. In
contrast, constructing a new system requires construction of new structures (new materials or
new organizations of materials). Nevertheless, we intuitively believe that experienced problem

solvers construct new systems by modifying known systems. This confluence of classification
and constructive problem solving is another important area for research.

Another connection the reader may have noticed: We made progress in understanding what

expert systems do by describing them in terms of inference-structure diagrams. This vividly
demonstrates the point made about streams, that it is highly advantageous to describe systems
in terms of their configuration, structurally, providing dimensions for comparison. Gentner

points out (Gentner and Stevens, 1983), that structural descriptions lie at the heart of analogy
formation. A structural map of systems reveals similar relations among components, even

though the components and/or their attributes may differ. This idea has been so important in
research in the humanities during this century that it has been characterized as a movement

with a distinct methodology, termed structuralism (De George and De George, 1972). The

quotation by Bruner at the front of this paper describing the advantage of classification for a

problem solver, applies equally well to the knowledge engineer.

. .. -"o
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6. INFERENCE STRATEGIES FOR HEURISTIC
CLASSIFICATION

The arrows in inference-structure diagrams indicate the flow of inference, from data to
conclusions. However, the actual order in which assertions are made is often not strictly left
to right, from data to conclusions. This process, most generally called search or inference

control has several aspects in heuristic classification:

. How does the problem solver get data? Is it supplied or must it be requested?

. If data is requested, how does the problem solver order his requests? (Called a

, -question-asking strategy.)

. Does the problem solver focus on alternative solutions, requesting data on this

basis?

• When new data is received, how is it used to make inferences?

* If there are choices to be made, alternative inference paths, how does the problem

solver select which to attempt or which to believe?

In this section we first survey some well-known issues of focusing including data gathering,
hypothesis testing, and data-directed inference. In this context, we introduce the HERACLES

program, which is designed to solve problems by heuristic classification, and discuss its
inference strategies. After this, we consider a kind of heuristic classification, termed causal-
process classification, in order to understand the problem of choosing among inference paths.
This discussion finally serves as a bridge to a consideration of non-classification or what we

call constructive problem solving.

6.1. Focusing in heuristic classification
Focusing concerns what inferences the problem solver makes given new information or what

inferences he attempts to make towards finding a solution.

The idea of a "triggering" relation between data and solutions is pivotal in almost all
descriptions of heuristic classification inference (see (Rubin, 1975), (Szolovits and Pauker,
1978), (Aikins, 1983)). It is called a constrictor by Pople in recognition of how it sharply
narrows the set of possible solutions (Pople, 1982). We say that "a datum triggers a solution"
if the problem solver immediately thinks about that solution upon finding out about the
datum. However, the assertion may be conditional (leading to an immediate request for more

data) and is always context-dependent (though the context is rarely specified in our restricted-
-domain programs) (Clancey, 1984a). A typical trigger relation (from NEOMYCIN) is "Headache

and red painful eye suggests glaucoma"-red, painful eye will trigger consideration of headache
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and thus glaucoma, but headache alone will not trigger this association. In PIP (Pauker et al.,
1976), there is a two-stage process in which possible triggers are first brought into working

memory by association with solutions already under consideration. In general, specificity-the

fact that a datum is frequently associated with just a few solutions-determines if a datum

triggers a solution concept ("brings it to mind") in the course of solving a problem.

Triggers allow search to non-exhaustively combine reasoning forwards from data and

backwards from solutions. Simple classification is constrained to be hierarchically top-down
or directly bottom up from known data, but heuristic triggers make search opportunistic.

Briefly, a given heuristic classification network of data and solution hierarchies might be

interpreted in three ways:

1. Data-directed search: The program works forwards from data to abstractions,
matching solutions until all possible (or non-redundant) inferences have been made.

2. Solution- or Hypothesis-directed search: The program works backwards from
solutions, collecting evidence to support them, working backwards through the
heuristic relations to the data abstractions and required data to solve the problem. If
solutions are hierarchically organized, then categories are considered before direct
features of more specific solutions.

3. Opportunistic search: The program combines data and hypothesis-directed reasoning
(Hayes-Roth and Hayes-Roth, 1979). Data abstraction rules tend to be applied
immediately as data become available. Heuristic rules trigger hypotheses, followed
by a focused, hypothesis-directed search. New data may cause refocusing. By
reasoning about solution classes, search need not be exhaustive.

Data- and hypothesis-directed search are not to be confused with the implementation terms

"forward" or "backward chaining." R1 provides a superb example of how different the
implementation and knowledge-level descriptions can be. Its rules are interpreted by forward-

chaining, but it does a form of hypothesis-directed search, systematically setting up

subproblems by a fixed procedure that focuses reasoning on spatial subcomponents of a

solution (McDermott, 1982).

The degree to which search is focused depends on the level of indexing in the

implementation and how it is exploited. For example, MYCIN'S "goals" are solution classes (e.g.,
types of bacterial meningitis), but selection of rules for specific solutions (e.g., E.coli
meningitis) is unordered. Thus, MYCIN'S search within each class is unfocused (Clancey, 1983b).
Generalized heuristics, of the form "data class implies solution class" (e.g., "compromised host
implies gram-negative rods" or "flowers imply underlying rocks") make it possible to focus

search on useful heuristics in both directions (e.g., if looking for serpentine rock, recall that

I
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flowers identify rocks; if describing area and see flowers, recall that flowers identify rocks). 10

Opportunistic reasoning requires that at least some heuristics be indexed so that they can be

applied in either direction, particularly so new data and hypothesized solutions can be related
to previously considered data and solutions. The HERACLES program (Heuristic Classification
Shell, the generalization of NEOMYCIN) cross-indexes data and solutions in several ways that
were not available in EMYCIN. HERACLES' inference procedure consists of 75 metarules
comprising 40 reasoning tasks (Clancey, 1984a). Focusing strategies include:

" working upwards in type hierarchies before gathering evidence for subtypes:

" discriminating hypotheses on the basis of their descriptions as processes;

" making inferences that relate a new hypothesis to previously received data;

" seeking general classes of data before subclasses; and

" testing hypotheses by first seeking triggering data and necessary causes.

In HERACLES, the operators for making deductions are abstract, each represented by a set of
metarules, corresponding to a procedure or alternative methods for accomplishing a task. Such

a representation makes the explicit the inference control that is implicit in MYCIN's rules

(Clancey, 1983b). As an example, Figure 6-1 illustrates how NEOMYCIN's abstract operators use

backward deduction to confirm a hypothesized solution. (The program attempts to test the
hypothesis TB by applying a domain rule mentioning ocular nerve dysfunction; to find this

out, the program attempts to rule it out categorically, discovering that there is a CNS problem,

but there are no focaisigns; consequently, the domain rule fails.)

As a second example, the following are some of the forward-deductive data-interpretation

operators that HERACLES uses to relate a new datum to known solutions.

* Finding out more specific information so that a datum can be usefully related to

hypotheses (e.g., given that the patient has a headache, finding out the duration and

location of the headache).

1OHow human knowledge is indexed plays a major role in knowledge acquisition dialogues. The heuristic-

classification model suggests that it may be efficient to proceed from data classes, asking the expert for associated

solution classes. But it may be difficult to enumerate data classes. Instead, the expert might find it easier to work

backwards from solutions (e.g., book categories) and then use a generate and test method to scan data prototypes (e.g..

people stereotypes) for a match. Knowledge acquisition for heuristic classification is briefly considered in (Clancey,

1984b). See also the discussion of ETS in Section 10.
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4 FINDOUT 6 ASSERT YES
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Figure 6-1: Backward deduction in NEOMYCIN to confirm a solution

- Making deductions that use the new datum to confirm "active" solutions (those

previously considered, their taxonomic ancestors, and immediate siblings), sometimes

called "focused forward-reasoning."

- Triggering possible solutions (restricted to abnormal findings that must be explained

or "non-specific" findings not already explained by active solutions).

In general, the rationale for an inference procedure might be very complex. A study of

HERACLES' inference procedure reveals four broad categories of constraints:

• mathematical (e.g., efficiency advantages of hierarchical search)

* sociological (e.g., cost for acquiring data),

• cognitive (e.g., computational resources), and

• problem expectations (e.g, characteristics of typical problems).

These are discussed in some detail in (Clancey, 1984a). Representing inference procedures so
they can be explained and easily modified is currently an important research topic (e.g., see
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(Clancey, 1983a, Genesereth, 1983, Neches, et al., 1985). Making the assumptions behind these

procedures explicit so they can be reasoned about and dynamically modified is a challenging

issue that AI is just beginning to consider.

In its inference procedure representation, HERACLES brings together the advantages of rule

and frame representations. The "frame" paradigm advocates the point of view that domain

concepts can be represented as hierarchies, separated from the inference procedure-an essential

point on which the generality of the heuristic classification model depends. On the other

-.- hand, the "rule" paradigm demonstrates that much of the useful problem-solving knowledge is

in non-hierarchical associations, and that there are clear engineering benefits for procedures to

be encoded explicitly, as well-indexed conditional actions. In HERACLES domain concepts are

hierarchically related; domain rules represent heuristic, non-hierarchical associations; and

metarules represent an inference procedure that interprets the domain knowledge, solving
" problems by heuristic classification. The architecture of HERACLES, with details about the

encoding of metarules in MRS (Genesereth et al., 1981), the metarule compiler, and explanation
program are described in (Clancey, 1985).

6.2. Causal-process classification
A generic form of heuristic classification, commonly used for solving diagnostic problems, is

causal-process classification. Data are generally observed malfunctions of some device, and

solutions are abnormal processes causing the observed symptoms. We say that the inferred

model of the device, the diagnosis, explains the symptoms. In general, there may be multiple

causal explanations for a given set of symptoms, requiring an inference strategy that does not

realize every possible association, but must reason about alternative chains of inference. In

the worst case, even though diagnostic solutions are pre-enumerated (by definition), assertions

might be taken back, so reasoning is non-monotonic. However, the most well-known programs

that solve diagnostic problems by causal-process classification are monotonic, dealing with

alternative lines of reasoning by assigning weights to the paths. Indeed, many programs do not

even compare alternative explanations, but simply list all solutions, rank-oraered.

In this section, we will study SOPHIE in more detail (which reasons non-monotonically, using

assumption-based belief maintenance), and compare it to CASNET (Weiss, et al., 1978) (which

compares alternative chains of inference without explaining contradictions), and NEOMYCIN

(Clancey and Letsinger, 1984) (which reasons exhaustively, using certainty factors to rank

alternative inference chains). In these programs, solutions are pre-enumerated, but paths to

them must be constructed. Our study serves several purposes: 1) to use the heuristic

classification model to relate electronic and medical diagnosis, revealing that medical programs

are generally trying to solve a broader problem; 2) To describe alternative heuristic

classification inference strategies; and 3) To distinguish between classification and constructive

problem solving.

- -.
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6.2.1. Electronic and medical diagnosis compared
In SOPHIE, valid and abnormal device states are exhaustively enumerated, can be directly

confirmed, and are causally related to component failures. None of this is generally possible
in medical diagnosis, nor is diagnosis in terms of component failures alone sufficient for
selecting therapy. Medical programs that deal with multiple disease processes (unlike MYCIN)
do reason about abnormal states (called pathophysiologic states, e.g., "increased pressure in the
brain"), directly analogous to the abnormal states in SOPHIE. But curing an illness generally
involves determining the cause of the component failure. These "final causes" (called diseases,
syndromes, etiologies) are processes that affect the normal functioning of the body (e.g.,
trauma, infection, toxic exposure, psychological disorder). Thus, medical diagnosis more closely
resembles the task of computer system diagnosis in considering how the body relates to its
environment (Lane, 1980). In short, there are two problems: First to explain symptoms in
terms of abnormal internal states, and second to explain this behavior in terms of external
influences (as well as congenital and degenerative component flaws). This is the inference

structure of programs like CASNET and NEOMYCIN (Figure 6-2).

HEURISTIC HEURISTIC
(CAUSED BY) (CAUSED BY)

Patient * Pathophysiologic = Disease
Abstractions States and Classes Classes

DATA
ABSTRACTION REFINEMENT

Patient Data Diseases

Figure 6-2: Inference structure of causal process classification

A network of pathophysiologic states causally relates data to diseases. States are linked to
states, which are then linked to diseases in a classification hierarchy. Diseases may also be
non-hierarchically linked by heuristics ("X is a complication of Y" (Szolovits and Pauker,
1978)). The causal relations in these programs are heuristic because they assume certain
physiologic structure and behavior, which is often poorly understood and not represented. In
contrast with pathophysiologic states, diseases are abstractions of processes-causal stories with
agents, locations, and sequences of events. Disease networks are organized by these process
features (e.g., an organ system taxonomy organizes diseases by location). A more general term
for disease is disorder stereotype. In process control problems, such as chemical

V
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manufacturing, the most general disorder stereotypes correspond to stages in a process (e.g.,

mixing, chemical reaction, filtering, packaging). Subtypes correspond to what can go wrong at

each stage (Clancey, 1984a).

Structure/function models are often touted as being more general by doing away with "ad

hoc symptom-fault rules" (Genesereth, 1984). But programs that make a single fault

assumption, such as DART, select a diagnosis from a pre-enumerated list, in this case negations

of device descriptions, e.g., (NOT (XORG X1)), "X1 is not an exclusive-or gate." However, a

structure/function model makes it possible to construct tests (see Section 7). Note that it is

not generally possible to construct structure/function models for the human body, aid is

currently even impractical for the circuit SOPHIE diagnoses (IP-28 power supply).

To summarize, a knowledge-level analysis reveals that medical and electronic diagnosis

programs are not all trying to solve the same kind of problem. Examining the nature of

solutions, we see that in an electronic circuit diagnosis program like SOPHIE solutions are

component flaws. Medical diagnosis programs like CASNET attempt a second step, causal

process classification, which is to explain abnormal states and flaws in terms of processes

external to the device or developmental processes affecting its structure. It is this experiential

knowledge-what can affect the device in the world-that is captured in disease stereotypes.

This knowledge can't simply be replaced by a model of device structure and function, which is

concerned with a different level of analysis.

The heuristic classification model and our specific study of causal process classification

programs significantly clarifies what NEOMYCIN knows and does, and how it might be

improved:

1. Diseases are processes affecting device structure and function;

2. Disease knowledge takes the form of schemas;

3. Device history schemas (classes of patients) are distinct from diseases;

4. Pathophysiologic states are malfunctioning module behaviors.

Furthermore, it is now clear that the original (bacteremia) MYCIN system does a combination

of heuristic classification (using patient information to classify cultures as contaminated or

significant) and simple classification (matching features of organisms, such as Gram stain and

morphology). The meningitis knowledge base is more complex because it can infer the

organism class heuristically, from patient abstractions, without having a culture result.

NEOMYCIN goes a step further by dealing with different processes (infectious, trauma,

psychogenic, etc.) and reasoning backwards from internal descriptions of current system states

(e.g., brain mass lesion) to determine original causes (etiologies).
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An important idea here is that medical diagnostic programs should separate descriptions of

people from descriptions of diseases heuristically associated with them. Triggers should suggest

patient types, just as they select diseases. Thus, medica. diagnostic reasoning, when it takes the
form of heuristic classification, is analogous to the problem-solving stages of GRUNDY, the

expert librarian.

6.2.2. Inference control for coherency
As mentioned above, programs differ in whether they treat pathophysiologic states as

* '. independent solutions (NEOMYCIN) or find the causal path that best accounts for the data
(CASNET). If problem features interact, so that one datum causes another (D1 -> D2 in Figure

6-3), then paths of inference cannot be correctly considered independently. The second feature

explains the first, so classifications (alternative explanations) of the former can be omitted;

there is a "deeper cause" (C2 dominates Cl). This presumes a single fault, an assumption

common to programs that solve problems by heuristic classification. CASNET uses a more

comprehensive approach of finding the path with the greatest number of confirmed states and

no denied states. The path des ibes a causal process, with an etiology or ultimate cause at the

head and the path of states linking the etiology to the findings serving as a causal explanation

of the findings.

.- -C1 C2

Figure 6-3: Interacting data in classification

In the simplest rule-based systems, such as MYCIN, search is exhaustive and alternative

reasoning paths are compared by numerical belief propagation (e.g., certainty factors). For
._-. example, Figure 6-4 shows that a datum, D1, is explained by two processes, C1 and C2. MYCIN

and NEOMYCIN would make all three inferences, using certainty factor combination to

determine which of C1 and C2 is more likely.

A more complicated approach involves detecting that one reasoning path is subsumed by

another, such as the conflict-resolution strategy of ordering production rules according to

specificity. HERACLES/NEOMYC1N'S treatment of non-specific and "red flag" triggers is similar.

In this case, assuming that D1 is a non-specific finding (associated with many disorders and

may not need to be explained) and D2 is a red-flag finding (a serious symptom that must be

explained) that triggered C2, NEOMYCIN will not make the inference relating D1 to C1 because

Dl is already explained by C2. Therefore, C1 will not be added to the list of possible

"'S.
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C1 C2

D1 D2

Figure 6-4: Multiple explanations for a datum

solutions.

After finding some single classification that accounts for the most data, a residue of
unexplained findings may remain. The approach used in CASNET and INTERNIST is to remove

the explained data and simply begin another cycle of classification to explain what remains.

In our example, both DI and D2 would be explained by C2, so nothing would remain.

To summarize, when there are multiple causal links for classifying data-multiple

explanations-inference must be controlled to avoid redundancy, namely multiple explanations

where one would have been sufficient. The aim is to produce a coherent model that is

complete (accounting for the most data) and simple (involving one fault process, if possible).
In contrast with the idea of focussing discussed earlier, coherency places constraints on the sum

total of inferences that have been made, not just the order in which they are made.

Of course, for an explanation based on a pathophysiological network to be coherent, it is
necessary that inferences be consistent. For example, if DI and D2 are contradictory, the
network shown in Figure 6-4 will not produce consistent explanations. (C2 would depend on

contradictory facts.) Presumably the knowledge engineer has ensured that all paths are

consistent and that contradictory alternatives are explicit (e.g., by introducing (NOT D1) to the

path including D2).

An ideal way to avoid these problems is to perform the diagnosis using a model of a

correctly working device, in contrast with a network of pathophysiological states. This is the
method used by SOPHIE. A consistent interpretation includes the observed data and assumptions

about the operation of circuit components. A fault is detected by making inferences about
circuit behavior in the case at hand until a contradiction is found. Specifically, SOPHIE uses
assumption-based belief maintenance to detect faults. It propagates constraints (describing
device behavior), records assumptions (about correct behavior of components and modules)
upon which inferences are based, explains contradictory inferences in terms of violated
assumptions, and makes measurements to narrow down the set of possibly violated assumptions

to a single fault. Making assumptions explicit and reasoning about them ensures coherency,
rather than relying on its implicit and ad hoc encoding in the design of a state network.
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6.2.3. Multiple solutions and levels of detail
*The first step beyond selecting single pre-enumerated faults is to dynamically construct sets

of alternative faults, as proposed for CADUCEUS (Pople, 1982). Each set of faults constitutes a
*" differential diagnosis or set of alternative diagnoses. Each diagnosis consists of one or more

faults. A diagnosis of multiple faults is constructed by operators that combine disorders in
terms of subtype and cause. For example, referring to Figure 6-4, one differential diagnosis
would include C1 & C2; another would include C2, but not C1.

The next more complicated approach allows for interactions among disorders, as in ABEL

(Patil, 1981a). Interaction can take the form of masking or subtracting (quantitative) effects,

" summation of effects, or superimposition with neither subtraction nor summation. These
interactions are predicted and explained in ABEL by finding a state network, including normal

- states, that is consistent on multiple levels of detail. Combinatorial problems, as well as

elegance, argue against pre-enumerating such networks, so solutions must be constructed. Each

diagnostic hypothesis is a separately constructed case-specific model-the links describing the
individual case do not all pre-exist in the knowledge base.

A simple way of comparing this kind of reasoning to what occurs in classification is to

consider how concepts are instantiated and related in the two approaches. In a program like
MYCIN, there are case-specific instances, but they are only the most general concepts in the

knowledge base-the the patient, laboratory cultures, organisms, and drugs. Links among these

instances (or individuals), constituting the "context tree," are dynamically created (albeit given
as data) to form a case-specific model. In contrast, in ABEL case-specific, constructed

.- descriptions are also at the level of individual disorders and their causes-disease components
-' are instantiated and linked together in novel ways (thus allcwing for interaction among

diseases).

6.2.4. Constructing implication paths vs. constructing solutions
If all programs construct inference paths, aren't they all solving problems by construction of

solutions? At issue is a point of view about what is a solution.

In NEOMYCTN, CASNET, and SOPHIE, the solutions are single faults, pre-enumerated. Reasoning

about inference paths is a mechanism for selecting these solutions. While an inference path

through the causal network of CASNET or NEOMYCIN is a disease process description, it is only
a linear path, no different from a chain of implication in MYCIN. While links represent

subtype and cause, they are interpreted in a uniform way for propagating weights. We
r *' conclude that if there is only one operator for building inference paths, the program is not

constructing a solution, but is only selecting the nodes at the end points of its reasoning

r chains. All of the programs we characterize as doing constructive problem solving either have
a generator for solutions or must choose among multiple operators for constructing a solution.

The solutions aren't explicitly enumerated, so there can be no pre-existing links for mapping

% .o. __-



49

problem descriptions to solutions directly. In ABEL and CADUCEUS, solutions are descriptions

of disease processes, constructed by operators for incrementally elaborating and aggregating

solution components, which is more than just propagating belief (what we commonly call
"implication"). The constructed solution is not simply an inference path from data to solution,

but a configuration of primitive solution components; these programs configure disease

descriptions, they do not select them directly.

It should now be abundantly clear that it is incorrect to say that diagnosis is a "classification

problem." As Pople concluded in analyzing the inadequacies of INTERNIST, only routine

medical diagnosis problems can be solved by classification (Pople, 1982). When there are

*. multiple diseases, there are too many possible combinations for the problem solver to have

considered them all before. The problem solver must construct a consistent network of
interacting diseases to explain the symptoms. The problem solver formulates a solution; he

doesn't just make yes-no decisions from a set of fixed alternatives. For this reason, Pople calls

non-routine medical diagnosis an ill-structured problem (Simon, 1973), though it may be more

appropriate to reserve this term for the theory formation task of the physician-scientist who is

defining new diseases. To make the point most boldly: For GRUNDY, the librarian, to satisfy a
reader by constructing a solution, she would have to write a new book.

7. CONSTRUCTIVE PROBLEM SOLVING, AN INTRODUCTION
In a study of problem solving, Greeno and Simon characterize kinds of problems in terms of

the constraints imposed on the problem solver.

In a transformation problem such as the Tower of Hanoi, or finding a proof for a
theorem, the goal is a specific [given] arrangement of the problem objects, such as a
specific location for all of the disks in the Tower of Hanoi, or a specific expression
to be proved in logic. Thus, the question is not what to construct, as it is in a
problem of design, but how the goal can be constructed with the limited set of
operators available.... (Greeno and Simon, 1984)

While different tasks do impose different constraints on the problem solver, we have argued

that experiential knowledge allows a "design" problem to be solved as if it were a

"transformation" problem. For while design problems may not generally provide the problem

solver with a specific solution to attain, he may from experience know of a solution that will
work. In heuristic classification the solution space is known to the problem solver as a set of

explicit alternatives, and problem solving takes the form of "proving" that one of them is best

or acceptable.
11

lln adopting the heuristic classification model as a psychological theory, we must be more careful about this issue

of explicitness. Human memory has properties different from knowledge base representations, so there is a difference

. between "explicitly known now" and "previously known." In practice, remembering a previous solution may require

P reconstruction, and hence some elements of constructive problem-solving.

' § <:.Cp.*.d .* *~-** . *7 -: ~ -
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For example, in diagnostic programs that assume a single fault, such as NEOMYCIN, CASNET,

SOPHIE, and DART, the inference process is equivalent to finding the most specific and most
likely theorem (solution) that can be proved correct. Thus, the spectrum of problem solving
effort and methodology is aligned at least as much with experience as with the nature of the
task. Amarel makes this point in distinguishing between "derivation" and "formation"
problems (Amarel, 1978), emphasizing that experience provides knowledge for mapping
problem conditions to solutions. Thus, experience moves tasks for a given problem solver to
the "derivation" end of the spectrum-heuristic classification.

Often problems of DESIGN and DIAGNOSIS are not amenable to solution by heuristic

classification because possible final "states" cannot be practically enumerated, exhaustively
learned (from experience or direct teaching), or for some reason a previously used solution is
just not acceptable; solutions must be constructed rather than selected. However, even when

.. solutions are constructed, classification might play a role, for example, in planning the
problem-solving process or in selecting the pieces to be configured.

The essential differences between heuristic construction and classification are the need for
some "data structure" to post the assembled solution and operators for proposing and reasoning
about solution fragments (Erman, et al., 1981). In classification, triggers focus the search, but
may not be necessary; controlled forward-deduction from given data and hierarchical search in
the set of fixed solutions may be sufficient. In construction, triggers may be essential, as well
as knowledge about how parts of a solution fit together.

The following are some examples of heuristic construction operators:

" In HASP, the ocean surveillance signal interpretation system (Nii, et al., 1982), one
operator attaches a new line segment (from the input sensor) to a previous line that
was last heard less than thirty minutes ago (with a certainty of .5), thus extending

the model of the location of a particular vessel.

".ABEL has six "structure building" operators, including projection (to hypothesize
associated findings and diseases suggested by states in the case-specific model) and
causal elaboration (to determine causal relations between states at a detailed level,

°-. -based on causal relations between states at the next aggregate level) (Patil, 1981b).

AM has operators for proposing (syntactic) structural modifications to concepts. For
example, a concept is generalized by deleting a conjunction in its characteristic
function definition in Lisp (Lenat and Brown, 1984). One lesson of Eurisko is that
complex concept formation requires a more extensive set of operators (defined in
terms of conceptual relations, or as Lenat puts it, "slots for describing heuristics").

* MOLGEN (Stefik, 1980) has both assembly-design operators and laboratory-domain

.- - . -
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operators. PROPOSE-OPERATOR is a design operator that proposes a laboratory

operator that will reduce differences between the goal and current state, extending
the plan forward in time. It is "responsible for linking new laboratory steps
correctly to the neighboring laboratory steps and goals." There are four kinds of
physical, structure-modifying laboratory operators: merge, amplify, react, and sort.

In DART, diagnosis is done by classification (and the use of the proof method is
made explicit in the program description), but testing the circuit to gather more

information (MONITOR) is done by construction. The abstract operator (IF (AND
al ... am Ob) THEN (OR (NOT P1) ... (NOT Pn))) serves as a template for
generating tests, where the ai's are achievable settings or structure changes, Ob is
one or more observations to be made, and the Pi's are assumptions about correct
device structure or function. Thus, a particular device setting and observations will
confirm that one or more assumptions are violated, narrowing down the set of

possible faults (similar to SOPHIE). Note that the heuristics used in DART are
general search strategies used to control the deductive process, not domain-specific
links. DART has heuristics and uses classification (for diagnosis), but it does not do
heuristic classification, in the form we have described it. Specifically, it lacks

experiential, schema knowledge for classifying device states and describing typical

disorders.

* MYCIN's antibiotic therapy program (Clancey, 1984c) generates combinations of
drugs from "instructions" that abstractly describe how the number of drugs and

their preference are related. These generator instructions can be viewed as operators

(or a grammar) for constructing syntactically correct solutions.

To summarize the alternative means of computing solutions we have seen:

1. Solutions might be selected from a pre-enumerated set, by classification.

2. Solutions may be generated whole, as in DENDRAL and MYCIN's therapy program.

3. Solutions may be assembled from primitives, incrementally, as in HASP.

As Simon indicates (Simon, 1969), these methods can be combined, sequentially or

hierarchically (as in hierarchical planning), with perhaps alternative decompositions for a single

.. system.

-"p
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8. RELATING TOOLS, METHODS, AND TASKS
In our discussion we have emphasized the question, "What is the method for computing a

solution?" We have made a distinction between data and solution in order to clarify the large-

scale computational issues of constructing a solution versus selecting it from a known set. The
logical next step is to relate what we have learned about conceptual structures, systems
problems, and the classification/construction distinction to the tools available for building

expert systems. Conventionally, the thing to do at this point would be to provide a big table
relating tools and features. These can be found in many books (e.g., (Harmon and King,

1985)). The new analysis we can provide here is to ask which tool features are useful for

heuristic classification and which are useful for constructive problem solving.

While simple rule-based languages like EMYCTN omit knowledge-level distinctions we have

found to be important, particularly schema hierarchies, they have nevertheless provided an

extremely successful programming framework for solving problems by classification. Working
backwards (backchaining) from a pre-enumerated set of solutions guarantees that only the
relevant rules are tried and useful data considered. Moreover, the program designer is
encouraged tu use means-ends analysis, a clear framework for organizing rule writing. EMYCIN

and other simple rule-based systems are appropriate for solving problems by heuristic

classification because inference chains are short (commonly five or fewer steps between raw
data and solution), and each new rule can be easily viewed as adding a link in the mapping

between data (or some intermediate abstraction) and solutions.

With the advent of more complex knowledge representations, such as KL-ONE, it is unclear

whether advantages for explicit representation will be outweighed by the difficulty of learning
to use these languages correctly. The analysis needed for identification of classes and relations

and proper adherence to representational conventions might require considerable experience, or
even unusual analytical abilities (recall the analysis of concepts in Section 4.5). Recent

research indicates that it might be difficult or practically impossible to design a language for

conceptual structures that can be unambiguously and consistently used by knowledge engineers

(Brachman, et al., 1983). Just as the rule notation was "abused" in MYCIN by ordering rule

clauses to encode hierarchical and procedural knowledge, users of KL-ONE implicitly encode

knowledge in structural properties of concept hierarchies, relying on the effect of the
interpreter to make correct inferences. Brachman, et al. propose a model of knowledge
representation competence, in which a program is told what is true and what it should do, and

left to encode the knowledge according to its own conventions to bring about the correct

V.-
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reasoning performance. 12

While many of the conceptual structures and inference mechanisms required to encode a
heuristic classification problem solver have now been identified, no knowledge engineering tool

today combines these capabilities in a complete package. Perhaps the best system for
classification we could imagine might be a combination of KL-ONE (so that conceptual
relations are explicit and to provide automatic categorization of concepts (Schmolze and Lipkis,
1983)), HERACLES (so that the inference procedure is explicit, well-structured, and independent

of domain knowledge representation), and SHRINK (Kolodner, 1982) (to provide automatic
refinement of classifications through problem-solving experience). In this respect, it should be

noted there is some confusion about the nature of heuristic classification in some recent

commercial tools on the market. Close inspection reveals that they are capable of only simple

classification, lacking structures for data abstraction, as well as a means to separate definitional
features from heuristic associations between concepts (Harmon and King, 1985).

Regarding constructive problem solving, the major distinction among tools appears to be the
method for coping with alternative choices in configuring a solution. Tools for constructive

problem solving necessarily include methods for controlling search that go beyond the focusing

operations found in tools that solve problems by classification. For example, well-known
search control methods used in construction include: Least-commitment (Stefik, 1980) (avoiding
decisions that constrain future choices), representing explicitly multiple "hypothetical" worlds

(branching on choices to construct alternative solutions), variable propagation or relaxation
(systematic refinement of solutions), backtracking (retracting constructions), version space
search (Mitchell, 1982) (bounding a solution using variables and constraints), and debugging
(Sussman, 1975) (modifying an unsatisfactory solution).

What have we learned that enables us to match problems to tools? Given a task, such as
troubleshooting, we might have previously asked, "Is this tool good for diagnosis?" Now, we

insert an intermediate question about computational requirements: Is it possible or acceptable
to pre-enumerate solutions? Is it possible or acceptable to rank order solutions? Rather than

matching tasks to tools directly, we interpose some questions about the method for computing

12See (Levesque. 1984) for details. In apparent conflict with our use of inference diagrams to describe what a

heuristic-classification problem solver knows, Levesque says, "There is nothing to say about the structure of these

abstract bodies of knowledge called knowledge bases." One way of resolving this is to say that knowledge content has

structure, but knowledge-level specification is not about structures in the agent (problem solver). This is supported by

Newell's remark, "Relationships exist between goals, of course, but these are not realized in the structure of the system.

but in knowledge." (Newell, 1982) "-his is our intent in separating the abstract characterization of what a problem

solver knows (heuristic classification model) from its encoding in the agent's symbol system (expert system

represent ion).

"" .A -.... .. .... .
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solutions. The basic choice of classification versus construction is the missing link for relating

implementation terminology ("rules," "blackboard," "units") to high-level conceptual structures

and inference requirements.

In summary, we suggest the following sequence of questions for matching problems to tools:

1. Describe the problem in terms of a sequence of operations relating to systems. If
the problem concerns ASSEMBLY or construction of a perceptual system, seek a
specialist in another area of At. If the problem concerns numerical PREDICTION

'. or CONTROL, it might be solved by traditional systems analysis techniques.

2. Do constraints on customnization or naturally occurring variety allow the solution
space to be practically pre-enumerated? If so, use heuristic classification. If not, is

- there a hierarchical or grammatical description that can be used to generate possible
solutions? Are tI .re well-defined solution-construction operators that are
constrained enough to allow an incremental (state-space) search?

3. Are there many uncertain choices that need to be made? If a few, exhaustive
-. generation with a simple certainty-weighing model may be sufficient; if many, some

form of lookahead or assumption/justification-based inference mechanism will be
necessary.

The notation of inference-structure diagrams used in this paper can also be used to form a
knowledge specification that can then be mapped onto the constructs of a particular knowledge
representation language. First, identify and list possible solutions, data, and intermediate (more
general) categories. Examining inference chains, classify links between concepts as definitional,
type categorization, and heuristic. Then, draw an inference structure diagram to arrange
relations within a type hierarchy vertically and show heuristics as horizontal lines. Finally,
map this diagram into a given representation language. For example, subtype links are

- represented as ordered clauses in an EMYCIN rule: "If the patient has an infection, and the
kind of infection is meningitis, and ......

Our study suggests two additional perspectives for critiquing constructive tools. Viewing
, solutions as models of systems in the world, we require means for detecting and controlling the
- coherency (completeness and consistency) of inferences. In describing computational methods

in terms of operators, we need means to construct, record, and relate inference graphs. We
conclude that the method by which inference is controlled-how an inference graph
representing a system model is computed-is a crucial distinction for comparing alternative
knowledge engineering tools for constructive problem solving. Relating the above methods for
constructing solutions (e.g., version space, least commitment, blackboard architecture) to
problem tasks is beyond the scope of this paper. It is possible that the problem categories of
Section 5 will be useful. Though they may prove to be an orthogonal consideration, as we

%"" " "%. ''.''....''.'.',-'..'.............................................................................".-".".""..""...'
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discovered in distinguishing between classification and construction.

9. KNOWLEDGE-LEVEL ANALYSIS
As a set of terms and relations for describing knowledge (e.g, data, solutions, kinds of

abstraction, refinement operators, the meaning of "heuristic"), the heuristic classification model
provides a knowledge-level analysis of programs (Newell, 1982). As defined by Newell, a
knowledge-level analysis "serves as a specification of what a reasoning system should be able to

do." Like a specification of a conventional program, this description is distinct from the
representational technology used to implement the reasoning system. Newell cites Schank's

conceptual dependency structure as an example of a knowledge level analysis. It indicates
"what knowledge is required to solve a problem... how to encode knowledge of the world in a
representation." It should be noted that Newell intends for the knowledge-level specification

. to include the closure of what the reasoning system might know. Our approach to this problem
* -is to characterize the problem solver's computational method and the structure of his

knowledge. What a heuristic classification problem solver "is able to do" is specified in terms
of the patterns of problem situations and solutions he knows and the space of (coherent)

. mappings from raw data to solutions.

After a decade of "explicitly" representing knowledge in Al languages, it is ironic that the

pattern of heuristic classification should have been so difficult to see. In retrospect, certain
views were emphasized at the expense of others:

* Procedureless languages. In an attempt to distinguish heuristic programming from
traditional programming, procedural constructs are left out of representation
languages (such as EMYCIN, OPS, KRL (Lehnert and Wilks, 1979)). Thus, inference
relations cannot be stated separately from how they are to be used (Hayes, 1977,
Hayes, 1979).

* Heuristic nature of problem solving. Heuristic association has been emphasized at
the expense of the relations used in data abstraction and refinement. In fact, some
expert systems do only simple classification; they have no heuristics or "rules of
thumb," the key idea that is supposed to distinguish this class of computer
programs.

* Implementation terminology. In emphasizing new implementation technology, terms
such as "modular" and "goal directed" were more important to highlight than the
content of the programs. In fact, "goal directed" characterizes any rational system
and says very little about how knowledge is used to solve a problem. "Modularity"
is a representational issue of indexing, how the knowledge objects can be
independently accessed.

Nilsson has proposed that logic should be the lingua franca for knowledge-level analysis
(Nilsson, 1981). Our experience suggests that the value of using logic is in adopting a set of

terms and relations for describing knowledge (e.g., kinds of abstraction). Logic is especially
valuable as a tool for knowledge-level analysis because it emphasizes relations, not just

implication.

-" "7 - . - . • " " . . ' . •. " • ". - - . - . . -, , . -. ' ' - -. .. . "' " ' ' " . ,. . . " "" v . " . . -
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10. RELATED ANALYSES IN PSYCHOLOGY AND ARTIFICIAL
INTELLIGENCE

Only a monograph-length review could do justice to the vast amount of research that relates

to heuristic classification. Every discipline from ancient philosophy through modern

• =psychology seems to have considered some part of the story.

Several Al researchers have described heuristic classification in part, influencing this analysis.
For example, in CRYSALIS (Engelmore and Terry, 1979) data and solution abstraction are clearly

separated. The EXPERT rule language (Weiss, 1979) similarly distinguishes between "findings"

- and a taxonomy of hypotheses. In PROSPECTOR (Hart, 1977). rules are expressed in terms of
relations in a semantic network. In CENTAUR (Aikins, 1983), a variant of EMYCIN, solutions

are explicitly prototypes of diseases. Chandras:karan and his associates have been strong

proponents of the classification model: "The normal problem-solving activity of the

physician... (is) a process of classifying the case as an element of a disease taxonomy"

(Chandrasekaran and Mittal, 1983, Gomez and Chandrasekaran, 1984). Recently,
Chandrasekaran, Weiss, and Kulikowski have generalized the classification schemes used by
their programs [MDX (Chandrasekaran, 1984) and EXPERT (Weiss and Kulikowski, 1984)] to

characterize problems solved by other expert systems.

In general, rule-based research in Al emphasizes the importance of heuristic association;

frame systems emphasize the centrality of concepts, schema, and hierarchical inference. A

series of knowledge representation languages beginning with KRL have identified structured

abstraction and matching as a central part of problem solving (Bobrow and Winograd, 1979).

These ideas are well-developed in KL-ONE, whose structures are explicitly designed for

classification (Schmolze and Lipkis, 1983).

Building on the idea that "frames" are not just a computational construct, but a theory about

a kind of knowledge (Hayes, 1979), cognitive science studies have described problem solving in

terms of classification. For example, routine physics problem solving is described by Chi (Chi,

et al., 1981) as a process of data abstraction and heuristic mapping onto solution schemas

("experts cite the abstracted features as the relevant cues (of physics principles)"). The
inference structure of SACON, heuristically relating structural abstractions to numeric models, is

the same. In NEWTON, De Kleer referred to packages of equations, associated with problem

features, as RALCMs (Restricted Access Local Consequent Methods) ("with this representation,

only a few decisions are required to determine which equations are relevant") (de Kleer, 1979).

Related to the physics problem solving analysis is a very large body of research on the nature

of schemas and their role in understanding (Schank, 1975, Rumelhart and Norman, 1983).
More generally, the study of classification, particularly of objects, also called categorization, has

been a basic topic in psychology for several decades (e.g., see the chapter on "conceptual

thinking" in (Johnson-Laird and Wason, 1977) and (Rosch and Lloyd, 1978)). However, in
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psychology the emphasis has been on the nature of categories and how they are formed (an

issue of learning). The programs we have considered make an identification or selection from
a pre-existing classification (an issue of memory retrieval). In recent work, Kolodner

combines the retrieval and learning process in an expert system that learns from experience
(Kolodner, 1982). Her program uses the MOPS representation, a classification model of memory

that interleaves generalizations with specific facts (Kolodner, 1983).

Probably the most significant work on classification was done by Bruner and his colleagues
in the 1950's (Bruner, et al., 1956). Bruner was concerned with the nature of concepts (or

categories), how they were attained (learned), dnd how they were useful for problem solving. A

few quotes illustrate the clarity and relevance of his work:
To categorize is to render discriminably different things equivalent, to group

objects and events and people around us into classes, and to respond to them in
terms of their class membership rather than their uniqueness. (Bruner, et al., 1956)
(page 1)

...the task of isolating and using a concept is deeply imbedded in the fabric of
cognitive life; that indeed it represents one of the most basic forms of inferential
activity in all cognitive life. (page 79)

...[what] we have called "concept attainment" in contrast to "concept formation" is
the search for and testing of attributes that can be used to distinguish exemplars
from nonexemplars of various categories, the search for good and valid anticipatory
cues. (page 233)

Bruner described some of the heuristic aspects of classification:
regard a concept as a network of sign-significate inferences by which one goes

beyond a set of observed criterial properties exhibited by an object or event in
question, and then to additional inferences about other unobserved properties of the
object or event. (page 244)

What does categorizing accomplish for the organism? ... it makes possible the
sorting of functionally significant groupings in the world. (page 245)

We map and give meaning to our world by relating classes of events rather than
by relating individual events. The moment an object is placed in a category, we
have opened up a whole vista for "going beyond" the category by virtue of the
superordinate and causal relationships linking this category to others. (page 13)

Bruner was well ahead of Al in realizing the centrality of categorization in problem solving.

Particularly striking is his emphasis on strategies for selecting cues and examples, by which the

problem solver directs his learning of new categories ("information gathering strategies").

Bruner's study of hypothesis formation and strategies for avoiding errors in learning is
particularly well-developed, "For concern about error, we contend, is a necessary condition for

evoking problem-solving behavior" (page 210) [compare to "failure-driven menr.--y" (Schank,
1981) and "impasses" (VanLehn, 1983)].

On the other hand, Bruner's description of a concept is impoverished from today's point of
view. The use of toy problems (colored cards or blocks, of course) suggested that

categorization was based on "direct significants"-a logical combination of observable,

* -- . .f r . c
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discriminating (perhaps probabilistic) features. This Aristotelian view persisted in psychology
and psychometrics well into the 1970's, until the work of Rosch, who argues that concepts are
prototypical, not sets of definitional features (Rosch, 1978, Mervis and Rosch, 1981, Cohen and
Murphy, 1984, Greeno and Simon, 1984). Rosch's work was influenced by Al research, but it
also had its own effect, particularly in the design of KRL (Bobrow and Winograd, 1979).

The heuristic clascification model presented in this paper builds on the idea that

categorization is not based on purely essential features, but rather is primarily based on
heuristic, non-hierarchical, but direct associations between concepts. Bruner, influenced by
game theory, characterizes problem solving (once a categorization was achieved) in terms of a
payoff matrix; cues are categorized to make single decisions of actiort, to take. Influenced by
the psychology of the day, he views problem solving in the framework of a stimulus and a
response, where the stimulus is the "significant" (cues) and the response is the action that the

categorization dictates. He gives examples of medical diagnosis in this form.

We have had the advantage of having a number of working models of reasoning to

study-expert systems-whose complexity go well-beyond what Bruner was able to formally

describe. We have observed that problem solving typically involves a sequence of
categorizations. Each categorization can be characterized generically as an operation upon a
system--specify, design, monitor, etc. Most importantly, we have seen that each classification is
not a final consequence or objective in "a payoff matrix governing a situation" (page 239).
Rather it is often a plateau chaining to another categorization. Bruner's payoff matrix encodes

heuristic associations.

Building upon Rosch's analysis and developments in knowledge representation, recent research
" ~ in cognitive science has significantly clarified the nature of concepts (Cohen and Murphy,

1984, Rosch, 1978). In particular, attention has turned to why concepts take the form they do.
While many concepts are based on natural kinds (e.g., MYCIN'S organisms and GRUNDY's
books), others are experiential (e.g., reader and patient stereotypes of people), or analytic (e.g.,

SOPHIE's module behavior lattice and SACON'S programs). Miller (Miller, 1978) suggests that
formation of a category is partly constrained by its heuristic implication. Thus, therapeutic
implication in medicine might serve to define diagnostic and person categories, working

backwards from pragmatic actions to observables. This functional, even behavioral, view of
"* . knowledge is somewhat disturbing to those schooled in the definition of concepts in terms of

essential features, but it is consistent with our analysis of expert systems. Future studies of
*. what people know, and the nature of meaning, will no doubt depart even more from essential

features to consider heuristic "incidental" associations in more detail.

*. Finally, learning of classifications has been a topic in Al for some time. Indeed, interest

goes back to early work in pattern recognition. As Chandrasekaran points out

(Chandrasekaran, 1984), it is interesting to conceive of Samuels' hierarchical evaluation
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functions for checker playing as an implicit conceptual hierarchy. Recent work in
classification, perhaps best typified by Michalski's research (Michalski and Stepp, 1983),

continues to focus on learning essential or definitional features of a concept hierarchy, rather
than heuristic associations between concepts. However, this form of learning, emphasizing the

role of object attributes in classification, is an advance over earlier approaches that used
numeric measures of similarity and lacked a conceptual interpretation. Also, working from the
traditional research of psychometrics, Boose's ETS knowledge acquisition program (Boose, 1984)
makes good use of a psychological theory of concept associations, called personal construct

." theory. However, ETS elicits only simple classifications from the expert, does not exploit

distinctions between hierarchical, definition, and heuristic relations, and has no provision for

data abstraction.

Perhaps the greatest value of the heuristic classification model is that it provides an

overarching point of view for relating pattern recognition, machine learning, psychometrics,

and knowledge representation research.

r11. SUMMARY OF KEY OBSERVATIONS
The heuristic classification model may seem obvious or trivial after it is presented, but the

actual confusion about knowledge engineering tools, problem-solving methods, and kinds of
problems has been quite real in Al for the past decade. Some might say, "What else could it

be? It had to be classification"--as if a magic trick has been revealed. But the point of this
paper is not to show a new kind of trick, or a new way of doing magic tricks, but to demystify

traditional practice.

Sowa's reference to Levi-Strauss' anthropological "systems analysis" is apt:
The sets of features ... seem almost obvious once they are presented, but finding

the right features and categories may take months or years of analysis. The proper
set of categories provides a structural framework that helps to organize the detailed
facts and general principles of a system. Without them, nothing seems to fit, and
the resulting system is far too complex and unwieldy.

Expert systems are in fact systems. To understand them better, we have given high-level

descriptions of how solutions are computed. We have also related the tasks of these programs
to the kinds of things one can do to or with a concrete system in the world. Below is a
summary of the main arguments:

e A broad view of how a solution is computed suggests that there are two basic
problem-solving methods used by expert systems: heuristic classification and

construction.

* Kinds of inference in different stages of routine problem solving vary

1 '-1- systematically, so data are often generalized or redefined, while solutions are more
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often matched schematically and refined. A domain-specific heuristic is a direct,
non-hierarchical association between different classes. It is not a categorization of

a "stimulus" or "cue" that directly matches a concept's definition. Rather, there

may be a chain of abstraction inferences before reaching categories that usefully
characterize problem features. This pattern is shown two ways in Figures 2-3 and

4-5. The inference structure of heuristic classification is common in expert

systems, independent of the implementation representation in rules, frames, ordinary

code, or some combination.

Selecting solutions involves a form of proof that is often characterized as

derivation or planning; constructing solutions involves piecing together solutions in

a manner characterized as configuration. To select a solution, the problem solver

needs experiential ("expert") knowledge in the form of patterns of problems and

solutions and heuristics relating them. To construct a solution, the problem solver

applies models of structure and behavior, in the form of constraints and inference

operators, by which objects can be designed, assembled, diagnosed, employed in

some plan, etc.

-. A broad view of kinds of problems, described in terms of synthesis and analysis of

systems, suggests two points of view for describing a system's design: a

*configuration in terms of structural relations of functional components, versus a

plan for the processes that characterize the system's behavior. From the point of

view of a system, reasoning may involve a limited set of generic operations, e.g.,
MONITOR, DIAGNOSE, MODIFY. In heuristic classification, this takes the form

of a sequence of mapping between classifications corresponding to each generic

operation.

- In a manner analogous to stream descriptions of computer programs, the inference-
structure diagrams used in this paper reveal the patterns of reasoning in expert

,' systems.

12. IMPLICATIONS
A wide variety of problems can be solved by heuristic mapping of data abstractions onto a

fixed, hierarchical network of solutions. This problem-solving model is supported by

psychological studies of human memory and categorization. There are significant implications

for expert systems research. The model provides:

- A high-level structure for decomposing problems, making it easier to recognize and
represent similar problems. For example, problems can be characterized in terms of
sequences of system classifications. Catalog selection (single-step planning)
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programs might be improved by incorporating a more distinct phase of user
modelling, in which needs or requirements are explicitly classified. Diagnosis
programs might profitably make a stronger separation between device-history
stereotypes and disorder knowledge. "Blackboard" systems might re-represent
"knowledge sources" to distinguish between classification and construction inference
operators.

* A specification for a generic knowledge engineering tool designed specifically for
heuristic classification. The advantages for knowledge acquisition carry over into
explanation and teaching.

. A basis for choosing application problems. For example, problems can be selected
using the systems taxonomy (Figures 5-1 and 5-2), allowing knowledge engineers to
systematically gain experience in different kinds of problems. Problems might be
chosen specifically because they can be solved by heuristic classification.

. A foundation for characterizing epistemologic adequacy of representation languages
(McCarthy and Hayes, 1969), so that the leverage they provide can be better
understood. For example, for classification it is advantageous for a language to
provide constructs for representing problem solutions as a network of schemas.

. A focus for cognitive studies of human categorization of knowledge and search
strategies for retrieval and matching, suggesting principles that might be used in
expert programs. Human learning research might similarly focus on the inference
structure of heuristic classification.

Finally, it is important to remember that expert systems are programs. Basic computational

ideas such as input, output, and sequence, are essential for describing what they do. The

methodology of our study has been to ask, "What does the program conclude about? How does

it get there from its input?" We characterize the flow of inference, identifying data

abstractions, heuristics, implicit models and assumptions, and solution categories along the way.

If heuristic programming is to be different from traditional programming, a knowledge-level

analysis should always be pursued at least one level deeper than our representations, even if

practical constraints prevent making explicit in the implemented program everything that we

know. In this way, knowledge engineering can be based on sound principles that unite it with

studies of cognition and representation.
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