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ABSTRACT

The use of sensors configured into various geometrical shapes called
arrays are important in extracting signal information in many applications.
This paper explores the effectiveness of a two-dimensional or planar array in
extracting signal information from digitized data when additive 6aussian noise
and additive impulsive interference are present. Based on the likelihood
ratio approach the data output of each sensor is first passed through a
zero-memory device. The zero-memory device is either a nonlinearity or
linearity depending on whether the interference is present or not present,
respectively. Further processing utilizes a receiver which converts the data
at the output of each zero-memory device into frequency components using a
discrete-Fourier transform. ,The frequency components are then weighted and
summed over all spatial sensors. The weights are chosen by maximizing a
defined performance measure. It is shown that this optimization procedure
does not take into account the debilitating effects of impulsive
interference. In order to treat theoretically the inclusion of a
nonlinearity, to combat impulsive interference, the concept of an ideal

. nonlinearity is introduced.
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I. INTRODUCTION

... '.%

In many applications an array of sensors is employed to extract useful

Information from a signal propagating in a medium. The information to be

extracted may be the temporal, spatial, or spectral properties of the signal.

Recently, the probability distribution information of received data were also

shown to be of interest [1]. It seems natural to assume that the optimum

processor would be configured based on the desired information to be

extracted. One approach to design an optimum processor would be to specify, a

priori , the information to be extracted from an expected signal and

configure a receiver accordingly. If the signal is embedded in noise this

complexity must also be taken into account. In this paper an array processor

is defined and then optimized by choosing certain unspecified parameters by

maximizing a performance measure.

-C:. The array of interest is configured as a rectangle. Although the initial

mathematical details do not require an array configuration to be specified,

the performance results do. Therefore, the array configuration is specified

at the outset. As shown in figure (1), there are N sensors in each horizontal

row and N sensors in each vertical column. In the paper, all mathematical

relationships will be with respect to the top left corner sensor and cartesian

coordinates will be utilized. Examples will be given for a plane wave

arriving in the plane of the array.

c./ -. Z ,,- , ,- , . .. ; ":-... . .. . . . . . . . . . . . .-. .-- ,--.. . . ..-. . -.-. . '. . .. -,.. -..... . . -.. -...,... . ,. .-. . ..-;- ': .,'-
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In environments where the non-Gaussian noise, limiting signal detection,

is impulsive theroetical predictions suggest that detection performance can be

significantly improved by incorporating nonlinear zero-memory devices as

preprocessors to the standard receiver optimum for Gaussian processes.

However, in order to derive optimum tractable results from a likelihood ratio

formulation somewhat restrictive assumptions are needed. Nevertheless, the

usefulness of nonlinear preprocessors are clearly indicated in these analyses

[2, 3, 4, 5, 6, 7]. A processor was discussed in references [8] which

utilized a nonlinear preprocessor based on the estimation of quantiles (2].

This paper discusses the performance of a two-dimensional array processor

which incorporates either a linearity or an ideal nonlinearity [9] at each

sensor as a preprocessor.

The concept of an ideal nonlinearity is introduced in the time-domain to

facilitate deriving the theoretical performance of the resultant receiver in

the frequency-domain. A similar problem was discussed by Martin and Thompson

[10]. They introduced a technique to improve spectrum estimation of a signal

embedded in impulsive noise. But they did not theoretically evaluate its

performance. The advantage of introducing an ideal nonlinearity is that this

concept allows a theoretical performance prediction to be derived.

From its nature impulsive interference tends to produce a broad

spectrum. For this type of process classical filtering methods are

ineffective if the signal is contained in the same band as the impulsive

interference. However, based on the principle of the likelihood ratio, under

the assumption of independent and identically distributed samples, the optimum

processor to combat impulsive noise is one which utilizes nonlinearities as

6
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preprocessors [2, 3, 4, 5, 6, 7]. In this paper several examples are

presented which clearly show the benefit of using nonlinearities as

preprocessors over classical filtering when impulsive interference limits

,'+signal detection. The impulsive interference is modeled based on measurements

from a certain physical phenomenon which is shown later.

Before presenting the processing required for a two-dimensional array,

frequency-wavenumber spectrum estimation for a line array will be discussed.

This will reveal some advantages of a two-dimensional array over a line array

and also justify the array processor to be defined in the next section.

Consider the coordinate system shown in figure (2). Distributed in the

plane are several sensors. Their positions are given by the vectors r3, j -

1, 2, ... , N. In addition a plane wave is propagating in the plane at a

velocity and direction described by the vector ;o" This vector is called

the slowness vector [11, 12, 13, 14]. It points in the direction of

propagation and has a magnitude equal to the reciprocal of the velocity of

propagation, ie, I o 1/0, where is the velocity of propagation of

the plane wave. The wavenumber is related to through the formula, =

00
~2wf . where f is frequency.

The data received at the J-th sensor is given by

. x(t, J) - s(t + •.

where t represents time and 4- 0 r3 is the scalar product [15].

7
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The information needed in this papa- is contained in the

cross-correlation function

E[(x(t, J x(t2, 2)] E[s(t1 + o r) s(t+ ao r]r
1 92]0 0 2

" Rs[t 1 - t 2 + a 0o" (r - 2rJ

where it is assumed that the sensor output is space stationary (12, 16], E

represents expectation, and Rs ] is the autocorrelation function of the

signal.

If the sensors are located only in the x-direction then,

E~x(tl, J1) x(t2, J2)1 = Rs[t1 - t2 - d sine/ul0

where d is the separation of the sensors and e is the arrival angle of the

plane wave with respect to the array.

In this paper it is assumed that the output of each sensor is available

in sampled form and the uniform sampling interval is one. In addition all

time delays will be integral multiples of the sampling interval.

Given a line array, i.e., sensors located in one-dimension only, the

frequency-wavenumber spectrum estimate for the discrete case can be defined as

a two-dimensional discrete Fourier transform (OFT) as follows [12, 17, 18, 19,

20],

8
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A(%. K) ( 11/ )  Wl, J) e- j t x e-JJN -1)

where, J -X 2-vr/N 0 is the normalized frequency [11]. r = 0, 1, 2,

... , o-1, and K is the normalized spatial frequency. Here, the coordinate

system is defined with the line array along the x-axis and the first sensor at

the origin.

The normalized spatial frequency is represented as

K = 21 K'/N,

where K' is defined as the discrete wavenumber component with respect to the

.f" array, and

K'/N = (r/N0) (d/c) sine K ,

=dr sinOK,

where dr is the sensor separation measured in wavelengths and c is the speed

of propagation of the wavefront. Therefore the arrival angle is given by

s -1( -KI-

and the following relationship must hold

K'
- drN < (2)

9

". " ... . . -,-. . . :.f ." . .' f ...- ft.t..: ,' . .. f -. t- --.- .-.. "- '-,".- . ".,', - -" .- -,.-



TH No. 851054

From the property of the DFT both positive and negative components, ie,

frequencies or spatial frequencies, can be defined. But negative frequencies

are redundant. However, both positive and negative spatial frequencies,

associated with positive frequencies are meaningful. Therefore, K' will take

on both positive and negative values according to equation (2).

An example of the frequency-wavenumber spectrum is shown in figure (3).

This type of presentation of the frequency-wavenumber spectrum has been

considered in reference (21]. A two-dimensional fast Fourier transform (FFT)

- . was employed to produce the plot in the figure. Specifically a 128 point FFT

and 64 point FFT were used to generate the frequencies and wavenumbers,

respectively.

One disadvantage of the line array is that Its beamwidth at end fire

(e = t 900) is broader than its beamwidth at broadside (e = 00) [22]. This

can be seen in figure (3) by counting the number of wavenumber bins for each

300 increment starting at broadside. There are 16 bins from broadside to 30°,

12 bins from 300 to 60°, and only 4 bins from 600 to end fire. The same

relationship holds for the negative wavenumbers. In addition, as frequency is

reduced the number of bins between the two end fire positions also reduces

according to equation (2).

In the next section the array processor for a two-dimensional array will

be defined. It will be a generalization of the discrete frequency-wavenumber

spectrum estimate discussed above. However, the defined processor is also

based on the work developed in the reference [23, 24, 25, 26].

10

. . . . ..

. . . . . . . . .. .



-~~~~~~~~~. . . . . . .% ' .-- . .J...- - - ~ r - V .

TM No. 851054

II. ARRAY PROCESSOR

A two-dimensional array of omnidirectional sensors is shown in figure 1.

The elements are designated as XLU, L - 1, 2, ..., N, J = 1, 2, ..., M and

the spacing between elements is denoted by d in the horizontal direction and

denoted by A is the vertical direction.

As shown in figure 1, a plane wave propagating in the plane of the array,

is coincident with the first sensor and its wavefront makes an angle of 0

degrees with respect to the horizontal direction. The time it takes the

fq wavefront to reach sensor X with respect to X can be computed from the
LJ 11

equation

kLJ= A(L - 1)cose/c + d(J - 1)sine/c (3)

One advantage of a two-dimensional array over the line array is

immediate. For example, let L = 1, then

= d(J - 1)sine/c

If e - 0° or 1800 the same value is obtained namely, 0 0. In

general there is an ambiguity associated with predicting the direction of

arrival, e, of a plane wave with a line array. For this case,

4lJ " d(J - l)sine/c, the ambiguous angles are denoted by the set

(9, 180 - e). For the other case, L1' the ambiguous angles are denoted by

the set (0,-0).

11
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These ambiguous angles are completely resolved using equation (3) because

an unique set of time delays are obtained for all arrival angles within the

plane of the array. However, an ambiguity will again arise in predicting the

direction of arrival if the plane wave is propagating out of the plane, say at

some angle 0. Where, when o = 900 the plane wave is propagating within the

plane of the array. Then the right side of equation (3) will be multiplied by

sine. As is well known, this amibiguity can also be resolved by utilizing a

3-dimensional array. But this generalization will not be needed in this

paper. However, this ambiguity may also be resolved by utilizing additional

information concerning the possible propagating direction [27].

As stated in the last section the data are assumed in digital form. Let

the signal and noise be wide sense stationary, mutually independent and

zero-mean processes. The interference will be a zero-mean deterministic

process. The data at the output of each sensor are modeled in the form

x(i, L, J) = s(1, L, J) + n(i, L, J) + I(i, L, J)

1 ,= , ...,N-1

L 1, 2, ...,N

" ': ;J 1 , 2, .. . M

where n(i, L, J) is spatially independent Gaussian noise, I(1, L, J) is

impulsive interference propagating from a specific direction which may

coincide with the arrival direction of the signal. The interference is

modeled as an impulse function of the form

12
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w-1

I(1, L. J) E =&i k g LJ)1 -611 (1 9+1 + k'r +- yLJ)")

where w is the number of impulse functions occurring in the data interval,

is the separation of impulse functions, and TLU represents the appropriate

time delays for the interference. The symbol &C is the Kronecker delta

function, and ig is the temporal location of the first impulse.

The information needed is contained in the cross-correlation function,

[I 1I 1J11  L 2J12

+Rn (111 2~ d(L 1 L 2 321

+ A~ Ak 1~6[il (ig + k T +- y 61 [l(1 + 14+ kr T +
k 1=0 k 2=0 k 1 L111 1 L

x 6[l ( + k2T+~ 6(1 + 1 + k 2 2+'

The array processor is defined in the following way [23, 24, 25, 26],

N M N0-1 2
A(k) A Z L(X) (l/NTf0) X(i, L, J) e-JX (6)

13
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where the symbols are as defined previously. Here we utilize complex weights

AUX)which differ from the frequency-wavenumber spectrum estimate

discussed in the introduction. The weights will be chosen to maximize a

performance measure. But, clearly they should include the proper phase shifts

needed to steer the array toward a signal source. If the signal is not a

plane wave equation (3) will not give the proper time delays. In this case a

search for the appropriate time delays can be madje by choosing the weights

which maximize a performance measure. This procedure is sometimes called

focusing the array [22].

Later we will include a nonlinearity in equation (5) to combate impulsive

interference.

For this paper only the expected value of equation (5) will be

considered. The expectation of equation (5) reduces to

E[ A(k)J E E z, AL ~ A* M

-xil j~i2
(1/N ) , E[X(i1, Lit J~ 1i L )] e e (7)0 1 ~29 212

where hrepresents complex conjugate.

The term in the bracket represents the cross-power spectral density.

This will be derived first for the three components of equation (5). They are

as follows:

14
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1) Signal,

Fr o N° 12 Rs[11 - t2 L 1J - 2  )] e
2

From the transformation of variables, 1= 2 u = 1- 2 and

D= LJ - L2J we obtain,

N -1

(1 -ID/No) Rs(w - 0) ev--(No-1

No-1-0
.0

- e - 0  m-(NE (1" - v + DI/No) RS(v) eJxv
9 --(No0-1)-D

-j-7LD -J1  L2J2- e S()- Si) e e (8)

where S(x) is an estimate of the spectrum of the signal and converges to the

true spectrum as N -co (28, 29]. Therefore. the frequency properties have
0

been separated from the spatial properties in the limit as N .a

2) Noise,

15
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:. )

!'::: (l/N0 )  : Eln(i.I,  Ll ,  ,,l )  n(i2  L ,  12 e 2

,1 t2

-. , N(x.) 6[L, - L2J2] (9)
N 0

where N(x) is the spectrum of the noise.

3) Interference,

(I N o0) E[I(i l ,  Lit ,.I)  I(12 ,  L 2 ,  J2
)  e -j i1 e j

1~i 2il
ii 12

1I(X) e-J).YLi 3 1 eJLYL2J2  (10)

where

I(x) - (2 A2 w2/No) [sin(wXrT/2) 2IM ( I 1wslnlXT1/i) [ cos(k.)]

and we let Ak = A. I(x) is the power spectrum of impulsive interference.

It depends on the amplitude A and the number of impulse functions occurring

over the interval. Since the impulse function was defined to have zero mean

value, the term (1 - cos(x)] is present. At X 0, 1(%) = 0 due to this term.

16

!S..



TM No. 851054

The other term

Fstn(VA T/2) 1 2

wsinlXT /2)]

has maxima and minima occurring over the frequency band. The maxima can be

found from the equation

sin(vt/2) = 0, which has solutions at

- 21 Io/ 0 - 1, ±1, ±2, etc.

When the'denominator is zero in equation (11) so is the numerator. The

value of equation (11) at the solutions can be found using L' Hospital's

rule. At the solutions equation (11) is equal to one. An example of this

function will be given later in the paper. Since a model for the impulsive

interference is available, it may be possible to estimate the parameters A, W,

and t and substitute them into I(A) to obtain an estimate of the spectrum of

the impulsive interference directly. But it will be clear from the examples

that this can't be done without error. However, this paper considers the

A performance of using nonlinearities only.

Using the above results equation (17) reduces to

17
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ECA(.)I (XE__E r A L A L j (') e L1 1 e L2 12
L 1  J 1  L 2  1 2 11 2 2

+ N(.) ~2~ A M) 2
L 3

V+IO) M AU (X) A*J M e -JXlie J- 2 12 (12)E L1 E11 L2  2 2

The weights can now be chosen to maximize a performance measure. But

before this is done let,

ALJ()X) = e

Then,

2E( A(k)] = S(X) (NM) + N(k) NM

e-.1 (YL1 ) Jk,(yf L -

• 1  L2  32

2
In the above equation the signal is amplified by (NM) and the noise is

amplified by NM. Whereas, the amplification of I(X) depends on its direction

of arrival. If the interference is coming from the same direction as the

signal, then

18
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YL1 j1  L1J1  , T L2,]2  L2,]2

and

E[A(k)] - [S() + I(.)] (NM)2 + N(k) NM

Therefore, when the interference is coming from the same direction as the

signal the array passes both equally.

These ideas can be stated more precisely if we define a performance

measure.

Let the performance measure (PM) be defined as follows:

PM- E[A(k)IH 1 ] - E[AIk)IHo] (13)E[ A(%) Ho]

where,

H1: x(, L, 1 = s(1, L, J) = n(i, L, 3) + I(i, L, J)

H 0 x(i, L, 3) - n(i, L, 3) + I(1, L, 3)

Rewriting equation (13) in a form convenient for optimization [25, 26] we

obtain

A*T V _v*TA
N(PX) A*T Q A

19
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where the term in the bracket is the gain of the array and its components are

defined as follows,

:17 AT- (All(},), A 12(X), .. ANM(X))
.'

_*T (e 1 1  e 1 2  NM
(e ej 2  ...

+ IX u U* T

*T iky I J J Yl 2 J 'YNM)
IL (e ,e .. e

where T represents transpose and I is an (NM x NM) identity matrix.

As is well known [25, 26, 30] the optimum gain is given by

Go .,V T Q-I V

and the optimum weight vector is

- [ I(X) u u*T -1 V

20 Now,20
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I(00 *T

- N() + I(.) NM _u u

Therefore, the optimum weight vector reduces to

10.)_____ *T
NMN().) I()) NM uu V

and

G NM- IMX V * T uUu* T V
GO  NM N().) + IMX NM . .

Before interpreting the function V*T u uiT V, let it equal NM. Then
if I(.) NM > N(.), 0 - NM - 1. On the other hand f V*T u u V ~

(N-I) . then Go -0.

Therefore, the optimum gain depends on the value of the function

ViT u u V. This function can be interpreted as the array beam pattern (BP),

*, since

BP V u u*T V =J(1/NM) 2 e-I (BD) 2(14)
;L-1 J=l

21
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where,

B - A(L-1) COS B /c d(J-1) sineOB/A

0 - A(L-1) case/c + d(J-1) sine/c

and,

B-D A(L-1) (case8 B cose)/c + d(J-1) (sine 8  sine)/c

In this formulation the array is steered in the direction e but the

signal arrives from the direction e.

From these results equation 14 simplifies to

BP sin[Nxla/c ]2[sinr *.b/201]2 (15)

where,

a -case 8 - cose

b - cose8  sine

and the parameters a, b are bounded by

-2 <a <2 and -2 <b <2.

22
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The spatial location of a signal coincides with the maximum value of BP.

Therefore, for a specific signal direction e, the function should have only

one maximum value.

The possible maxima of BP can be found from the solutions of the equations

sin(xla/2c) = 0 and sin(xdb/2c) = 0

which reduce to, respectively,

a =I o ./A and b Io xw/dww

where Io 0=, ±1, ±2, etc, and Xw is the wavelength.

suppose, e= 0 and e Iw
B

Then, a - -2 and b 0 0. Therefore, if the array is not designed properly BP

can have a maximum at 0 - 0 and eB = 1. This phenomenon is called a grating

lobe [22]. It can be prevented if A < XW/2.

-- Similarly at e -/2 ande - 3/2w, then a 0 and b -2. So if8
d < k /2 a grating lob is also prevented from occurring.

These design parameters A < k /2 and d < Xw/2 also prevent the

" optimum weight approach from cancelling the signal due to grating lobes.

23
.do.

- . . . . . ..,,*



TM No. 851054

III. IDEAL NONLINEARITY

From the previous section the complex weights ALJ(X) can be chosen to

maximize the gain of the array processor. But for interference arriving from

the same direction as the signal all that can be done is to allow both signal

and interference to pass. Filtering is also not effective against-impulsive

Interference. This can be seen from the relationship

2 HX122E[IXo(L)1 2] = IH(?)'1  E[IX(X) I2]

where, E[Ix)1 2 represents the spectrum of the data. Since the

interference is impulsive, E[JX(h)J2], has a broad spectrum and a filter

H(.) would operate on the signal as well as the noise. However, from the

likelihood ratio approach for i.l.d. data the correct procedure is to

-., preprocess the data through a nonlinearity [2, 3, 4, 5, 6, 7]. We will employ

a nonlinearity even though the data is not independent. Related work in this

area can be found in references [31, 32, 33, 34, 35].

In order to derive a theoretical relationship for the array processor we

*2 define an ideal nonlinearity as our preprocessor.

Definition: Ideal Nonlinearity

,+ -T,

y(i,L,J) - 0 , at I = i + T+L

y(I,L,J) - 0 , at I - Ig + 1 + k + fLJ

y(i,L,J) = x(i,L,J) , otherwise

24
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This definition can be equivalently expressed in the form

W-1

y(i,L,J) = z(i,L,J) - z(i,L,J) 6(1 - (ig + kT+ yLd)
k=0

+61 -i g + 1 + kt +yL)]

where,

z(i,L,J) = s(i,L,J) + n(i,L,J)

As in the previous sections, the information needed is contained in the

* cross-correlation function

.E[y(t1 L1, 1 ) Y('2,L2 ,J2)]

- E[z(il,L 1 ,31 ) z('2,L2,J2)]

W-1

-E[z(i1,L1,31) z(i2,L2, J2)] (6I - +(g + k+YL

+ 6( 1 - (i g + 1 + kt+ YL

4W-1

-E[z(i,L 1 , 1) z( 2,L2 ,J2)] 61 - g + TYL J

.'- ':+ 6[1 2 -('9 + 1 + ':+YL23J)22

~25
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E(z(11,L1,3i1) Z(i2,12 'J2)]

(i + k A+ 6[11 -(1 + 1 + kt + fZ1_ r+Y 9k 0 2 g0 1 11

x ~[i -(ig + k2  LJ 2  + 611 (ig + k2 t LJ 4

For simplicity we shall let YL J l~e the interference is coming

from the same direction as the signal, in the following analysis.

* The cross-power spectral density estimate follows as

(1/N 0) jE(y(i1, Lis J 1) Y(i2 1 L 29 12 e e

1 2

t~ L J ik L3
= S(x) - 2,3 (k.,w) + S 4(x,w)? e 11e 22

+-N(. N 2.3 (,w) + N 4(k~w) 6[L IJ1 I L 2 12 1 (16)

where

26
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w-1 N -1 - 'L2J2
S2,3(X,w)= (I/N0) E [G s(i , k, x) + Gs (1 k, 1, X)]

k=O i3 = C L3'
2 2

N 0 - - L J

+ 13 = CLGJ [Gs(i 3, k, x) + Gs(i 3, k, 1, ,)]

JX.[l 3 - (ig + k-)]G s(i3 , k, ) =Rs[i - (1 + kT)] e

s 3 ,[ 3  (i +13 k ")

G s (13 , k, 1, X) - R - (I + 1 + k)] e 3  (1g + 1 + kt

S4(X, w) (1/N0 ) 2 Rs[(k 1  k2)- ] eiX(k1 -

k1  k2

+ Rs[(kl I k2)T, + 1] e -j(kI - k2)t ejx

+ Rs[(k - k2) - I] e j(k - k2)t eii

N N2,3(.,w) and N4 ( .,w) are of the same form as S2, 3 (X.,w) and S4 (,w),

respectively, but with R ( ) replaced by RN( .
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The terms S2, 3( .,w) and N2, 3( ,,w) are functions of L131 and

L21 2  But as N 0 , their effect can be neglected just as was done

for the cross-spectrum of the signal.

With this assumption the power spectrum can be separated from the spatial

properties of the array. Therefore, the expected value of the array processor

with the ideal nonlinearities included can be expressed as follows.

E( ANL.)] I 2 A j A L J , X,L i L -+ 1 131 L2  2

L1  1 L2 ~2
-- l

(11N o 0 E[y(iILI,3I) vY029,L2, 12) •'Jk e"X i 2

iI~ 12

[S.) S2,3(%,w) S4(Xw)] ALlj1 ('.) AL232 & e

11 11 L2  12

+ (N(k) - N2,3(,w) + N4 (xw)] , ALJ(X) 2  (17)
L J

Several examples will now be given for the power spectrum of a signal in

additive Gaussian noise and additive impulsive interference without and with

the ideal nonlinearity included.
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IV. ILLUSTRATIVE EXAMPLES

Figure 4 shows two Impulse functions occurring In a sample of data. The

first burst in the figure is due to a physical phenomenon but the second burst

appears to be a reflection since it is 180 degrees out of phase with the first

burst.

Our model for impulse functions, equation (4), can clearly represent the

impulses of figure 4. However, the model is more general since other

functions can also be represented. For the following examples a special case

will be considered. Figure 5 shows the time history for our first example.

The data consist of two additive sinusoids in addivitve non-white Gaussian

noise and two additive impulse functions. One sinusoid has a level of 20 dB

below the other. The impulse functions are separated by 25.0 msec and have a

level of 4 volts.

The corresponsing spectra are shown in figure 6. The top plot represents

the spectrum of signal and noise before the impulses are added. Since the

noise is non-white the lower level sinusoid is detectable at a frequency where

the noise level has diminished. The next plot in the middle of the figure is

the spectrum with the additive impulses included. These results are predicted

from equation (10). After the impulses are extracted by employing the ideal

nonlinearity the resultant data have the spectrum shown in the bottom plot of

figure 6. These results can be predicted from the theoretical results of the

previous section.

29
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Even though there is a significant improvement from employing the ideal

nonlinearity in the spectrum there's still a residual degradation. With

additional processing it may be possible to reduce the residual degradation

still further. However, since our results are theoretical they can be used to

compare other methods.

The next example is shown in figures 7 and 8. The time history of the

data is identical except that the impulse functions are separated by

50.0 msec. Since the separation of impulse functions is doubled there are

twice as many maxima and minima occurring over the band as shown in the middle

plot of figure 8.

30
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SUMMARY

The ability of a two-dimensional array with ideal nonlinear elements to

extract spatial and frequency information from a signal which may be

interferred with by impulsive interferepce was discussed. After some

preliminary remarks on discrete frequency-wavenumber estimation the array

processor for a two-dimensional array was defined. It consisted of a set of

frequency dependent complex weights. It was shown that the weights could be

chosen by maximizing a performance measure. This procedure would be

*, advantageous when the wave could not be assumed to be a plane wave and when

interference was present but propagating in a direction other than the signal

direction.

For the impulsive interference considered it was shown that filtering was

ineffective. However, from the results based on the principle of the

likelihood ratio, nonlinearities were effective against impulsive

interference. In order to discuss the effect of nonlinearities on the

spectrum the concept of the ideal nonlinearity was introduced. This allowed

the spectrum to be theoretically derived when ideal nonlinearities were

included. Two examples were given to illustrate the theoretical results.
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