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INTRODUCTION

In the original research proposal that is being
reported on here there were essentially three distict, albeit
related, projects. This report, for ease of writing, reading,
and evaluation is built around these three projects in the
following fashion.

For each project I have included a brief recapitulation
of what was presented in the original proposal. (A reader
who is familiar with, and still remembers the details of,

- - the original proposal can bypass the recapitulation.)
Following this is, in each of the three cases, a report on
the progress made towards realizing the goals of the proposal.
The reports are generally rather brief, since they merely
summarize results already presented in research papers to
which the reader can turn for more details.

Following each report is a brief comment on further
avenues of research (if any) opened up by the work done to
date.

During the year I commenced work on a fourth project,
that was not mentioned in the original proposal, but that
grew out of it in a natural fashion. This work, on the
theory of generaliaed processes, is described in a fourth
section.

At the end of the reports-,is a list of research
papers that resulted from the research described, as well
as a list of conferences attended and visits made to
American universities.

For the sake of completeness, we start by includina
some general background material on random fields.

.
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SOME BACKGROUND ON RANDOM FIELDS
p.°

Random fields are simply stochastic processes, X(t),
whose "time" parameter, t, varies over some rather general
space rather than over the more common real line. The simplest
of these occur when the parameter space is some multi-
dimensional Euclidean space, and it is these fields that will
be at the centre of our study. Of these, the most basic arise
when the parameter space is the two-dimensional plane, so
that we are dealing with some kind of random surface. When
the parameter space is three-dimensional then we have a
field (such as ore concentration in a geological site) that
varies over space, while when the dimension increases to four
we are generally dealing with space-time problems.

More complicated examples of random fields arise as
the parameter space becomes more esoteric. Typical examples
are parameter spaces of classes of sets, such as arise in
the statistical theory of multi-variate Kolmogorov-Smirnov
tests and set indexed empirical processes. Another common
example is provided by fields indexed by families of functions.
Although these arise, once again, in the theory of empirical
processes, they are much more famous for their appearence
in Quantum Field Theory in Mathematical Physics. There they
appear, among other guises, as continuum limits of such
well known discrete parameter random fields as the Ising
model of Statistical Mechanics.

In the introduction to the original research proposal,
written some three years ago, as well as in the introduction
to the proposal being reported onhere,. there was a disclaimer
pointing out that fields of the type described in the
previous paragraph lay outside the interests of our research
program. This is no longer strictly true, as the reader will
see for himself as he continues further. The reasons as to
how and why such seemingly abstract objects entered a project
that was essentially concerned with more practical things
should also then become clear.

For now, however, let us return to the simple setting
of continuous parameter random fields defined on a Euclidean

-space. (Note that discrete parameter fields, such as the Ising
model, are still not within our domain of interest.) The theory
of these fields is now quite substantial, with four separate
monographs on various aspects of the subject having appeared
in the past four years. (Adler (1981a), Rozanov (1982),
Vanmarcke (1983) and Yadrenko (1983).) Roughly speaking, the
theory breaks quite naturally into two quite distinct parts.

In the first case, we assume that the sample functions
(realisations) of the random field satisfy certain basic
regularity conditions, such as continuity, differentiability,
etc.. It is then possible to study problems such as the

-p .. . - .. ..
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structure of the field in the neighbourhood of extrema,
and the rate at which the field "crosses" (a term which
requires careful definition) various levels. These problems
turn out to be very important in the application of random
fields to the study of rough surfaces, as discussed in the
following section.

The second class of problems in the study of continuous
parameter random fields arises when the regularity conditions
mentioned above are not imposed. Conventionally, one then
studies such sample path properties as the (Hausdorff)
dimension of various random sets generated by the field.
Although these fields, despite their somewhat esoteric
properties, are both theoretically interesting and of applied
importance, (as the current theory of fractal geometry due
to Mandelbrot (1982) and his colleagues has shown beyond
any shadow of doubt), they are only of peripheral concern to
the main thrust of the current project.

Although, as just noted, the theory of continuous
parameter random fields is well developed, it is important
to note that in one respect at least it is still very
restricted. This is a consequence of the fact that
throughout the literature, both theoretical and applied,
there is an almost universal assumption of normality.
This is an assumption that has a substantial simplifying
affect on the mathematics of random fields, but is
undesirable for- two- quite distinct reasons. The first,
which comes from purely practical considerations, is
that real life fields to which one might like to apply
the theory are very often non-Gauspian. For example,
the rough metallic surfaces described in the following
section are known to be highly non-Gaussian (Adler (1981b)).
Assuming, incorrectly, that they are Gaussian leads to the
development of a theory of surface structure that invariably
fails to tie in with experiment. The second difficulty
with the Gaussian assumption is that it hamstrings the
Mathematician by limiting the phenomena available for his
investigation to that case only.

Of the four reports that follow, two are intimately
concerned with non-Gaussian processes. The first involves
the development and study of a model that can often be used
in place of a Gaussian one without too great an increase in
the level of difficulty of the mathematics. The second
involves the development of a procedure for testing whether
or not a particular set of data is consistent with an
assumption of normality. The remaining two reports are
concerned primarily with Gaussian processes, although the
last, via its concern with Wick powers, also has a distinctly
non-Gaussian side to it.

Overall, the common thread that runs through the
project is the extension of both the theory and applications
of random fields, with the aim of increasing our
understanding of the Gaussian situation while at the same
time attempting to extend our horizons beyond it.
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ROUGH SURFACES AND CHI-SQUARED PROCESSES

It is now a well established fact that all surfaces
used in engineering practice are rough when judged by the
standards of molecular dimensions. This fact has played a
major role in the development of Tribology, a science that,
among other problems, is concerned with the nature of contact
between two surfaces under load and its relationship to
problems such as wear, friction, and the conduction of heat
and electricity between two surfaces in contact.

Because of the difficulties inherent in observing
what happens when two surfaces are in actual physical contact
Tribology has made substantial use of mathematical models. The
basic idea underlying this has been to develop models of surface
structure (at the microscopic level) and then apply these
together with, say, a theory of surface deformation, to predict
observable (macroscopic) phenomena. Although there has been
an enormous amount of activity in this area over the past
twenty years (see Thomas (1982) for a recent exhaustive
survey) there is still very often disconcerting disagreement
between theory and practice. This is despite the fact that
very sophisticated random field models have been used for the
rough surfaces.

The reason for this is very simple. Almost without
exception, rough surfaces have been modeled as Gaussian
fields, when, in fact, they are highly non-Gaussian. This
point was emphasised in Adler and'Firman (1981), following an
analysis of both old and new rough surface data. Consequently,
irregardless of the sophistication of the model, it is not
surprising that the current models fail to yield a theory
that squares with practice.

It was precisely this problem that initiated the
current study of chi-squared processes and fields. Chi-squared
processes can be easily defined via a representation as a
sum of squared Gaussian processes. This simple trick yields
a family of fields that are at the same time substantially
different to Gaussian fields in their sample path behaviour
and yet mathematically close enough to their Gaussian parents
to be analytically tractable. Furthermore, it yields a family
of fields that turn out to model rough surfaces very closely,
and to generate a theory that yields results akin to those
observed in the laboratory (c.f. Adler (1981b)).

It was from this background that it was decided that
a systematic study of chi-squared processes and fields be
undertaken. This study has progressed very satisfactorily,
and a reasonably complete picture of the sample function
behaviour of chi-squared processes and fields is now available.

"•*o.
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Our approach to this study has been two phased. Due
to the extreme difficulty of the algebra involved in handling
chi-squared fields, in the first phase we concentrated on
a detailed study of chi-squared processes. Our intention, which
has fortunately turned out to be realisable, was that the
experience obtained, and intuition developed, in the case of
processes would make the treatment of fields somewhat easier.

As far as processes go, a reasonably complete picture,
is now available. For example, in the paper Aronowich and
Adler (1985a) we obtained the distribution of various quantities
associated with local extrema of chi-squared processes.

.Examples include the distribution of the height of local
* maxima and minima, as well as the curvature of the process at

such extrema. All of these quantities are of substantial
interest in the rough surface setting. These results were
mentioned in the last annual report, where we also indicated
that they seemed to imply that chi-squared extrema, while
being almost as mathematically tractable as their Gaussian
counterparts, behaved in a quite different fashion.

He have taken this point considerably further over
the past year, in the development of (Slepian) model processes
for chi-squared processes in the neighbourhood of local extrema
and level crossings. These model processes show that while
chi-squared maxima behave in a fashion not too different to
their Gaussian counterparts, their minima show remarkably
different behaviour. These are, in general, much flatter than
in the Gaussian case. (This is, clearly, an "obvious"
consequence of the fact that chi-squared processes are bounded
from below.)

L'.

ts One of the important consequences of the development of
these models is that they enable a comparatively easy study of
what the high and low parts of the process look like, and this
is precisely where the action is when one applies these models
to study contact between surfaces.

Another result that we managed to obtain for chi-squared
processes was that of the asymptotic Poisson nature of their
point processes of minima. This result, which complements a
similar result of Sharpe (1978) and Lindgren (1980) for
the maxima of these processes, can be combined with the model
processes to give a reasonably accurate picture of the low
levels of a chi-squared process as being made up of a number of
parabolic disks sited on the points of a Poisson process.
This work has been written up in the paper Aronowich and Adler
(1985b).
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All of the above work was carried out jointly by
myself and Michael Aronowich, a Technion doctoral student

,* who was supported by the Technion while working on this
project. Following the completion of the first phase of our
study of chi-squared processes, Aronowich continued, by
himself, to investigate the field situation. This work has
been written up in his thesis (Aronowich (1985a)) and in a
paper (Aronowich (1985b)).

The algebra required for a full analysis of the
random field case would seem to be of an order of difficulty
that makes it basically unmaneagable. However, it turned out
that, while it was impossible to describe exactly the form
of the Slepian model process for chi-squared fields, it was
possible to obtain information on this at asymptotically
high and low levels. Again, one sees that at extrema the
chi-squared field adopts a parabolic form generally much
flatter than that adopted by its Gaussian counterpart. This
ties in very well with what is actually observed for rough
surfaces.

We have thus more or less completed the proposed
theoretical analysis of chi-squared processes and fields. The
next class of problems to be tackled here is the application of
these models to actual problems in the theory of rough
surfaces. We hope to carry this out during the next year
or so. Preliminary-work in this area seems to indicate
that the application should be both interesting and useful.

I.
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DIFFERENTIATING BETWEEN GAUSSIAN AND
NON-GAUSSIAN PROCESSES AND FIELDS

A very simple problem that arises as soon as one starts
to think about non-Gaussian processes and fields is how to
determine if a particular set of data, either from a field or a
process, is actually consistent with a Gaussian hypothesis.
Despite the simplicity of this problem, and the ubiquity of
Gaussian models, it is rather surprising that there is no truly
satisfactory answer to this question in the statistical
literature other than that based on poly-spectra.

The poly-spectra approach to this problem (see, for
example, Rao and Gabr (1984) for a full account of this
procedure) is based on testing for departure from normality
via the cumulant structure of the process. My own feeling is
that this is a particularly uninteresting and uninformative
aspect of any process, since it is not at all clear how the
cumulant structure of a process influences its sample function
behaviour. It is this latter aspect of the process that

-* is usually the most interesting in practical situations.

Another problem with the poly-spectra appraoch, that
is perhaps more important from our point of view, is that it
seems to be almost impossible to use it for random fields.
For example, the bi-spectrum of a single parameter process
is a two-parametee creature, that generally has to be viewed
at some time during its estimation. The bi-spectrum of a
two-parameter random field is a four-dimensional creature,
and thus somewhat difficult to observe even with the most
modern of computer graphics.

Consequently, we proposed a procedure for
differentiating between Gaussian and non-Gaussian processes
and fields via their level crossing rates. The basic idea
was that since Gaussian processes and fields have character-
istic level crossing rates, departures from these by data
should provide a simple test of normality.

At the time of the proposal only preliminary work had
been completed on this project. Since then, considerable
progress has been made.

As with the previous project, our attack was in two
distinct phases. Initially we considered only processes,
leaving fields for later. The process problem has now been
essentially solved, and the results have been written up in
Adler and Feingold (1985). (Ms. Feingold was employed under
the grant as a research associate/programmer, and did a fine
piece of computational work.)

. .
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Basically, the results in the paper involve the
development of two statistics, both based on level crossings,
for testing for normality. Since in both cases it is quite
clear that the distribution theory of these statistics is
impossibly difficult, there are a substantial number of
numerical calculations and simulations in order to establish
the power of the procedure suggested.

The random field problem has not, as yet, been fully
investigated. In principle, it works much like the single
parameter situation. However, in order to develop it fully
it will be necessary to carry out further numerical work
as well as simulations to determine its efficiency. Ne propose
to do this in the near future
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MAXIMA OF GAUSSIAN FIELDS

Unlike the case for their Markov counterparts, very
little is known about the precise distribution of the maxima
of Gaussian processes. In fact, if attention is restricted to
the stationary case, then there are only six Gaussian processes
on the line for which this distribution is known exactly.
A fortiori, the situation is worse for Gaussian fields, and
in fact, there is not a single Gaussian field, neither
stationary nor non-stationary, for which the precise
distribution of the maximum is known.

Partly, or perhaps primarily, because of this dirth
of results a large amount of effort has been devoted to
studying the asymptotic distribution of these maxima. The basic
result in this area is due to Fernique, Landau, Marcus and
Shepp, and states that for any almost surely continuous, mean
zero, Gaussian process, X(t), where t varies over almost any
parameter set, we have the following result for any a>O and
any x large enough.

PC supEX(t)] > x < ( expf -xxl-a]/2m 3,

where m = supfvar[X(t)]).

'I.. The-suggestion made, implicitly, in the proposal was
that, based on experience from a result in empirical processes,
obtained the previous year with Larry Brown (Adler and Brown
(1985)) it should be possible to remove the rather annoying
factor of a from the right hand side of the above inequality.

That this is in fact the case has now been established
for a wide va i.ety of situations, and the results have been
presented in Adler and Samorodnitsky (1985). (Samorodnitsky is
an exceptionally gifted doctoral student supported by the
Technion while working on this project.)

The examples that we have considered up until now
include all Gaussian fields defined on finite dimensional
Euclidean spaces, as well as a number of fields defined
on classes of subsets of Euclidean space, such as the families
of all half-spaces, all triangles, all quadrilaterals, etc.
All of these examples are of particular interest in the study of

2.+ multi-dimensional empirical processes.

This work is still in a very active phase, with the
next step being the distribution of the maximum of Gaussian
fields defined over families such as the family of convex
sets in the plane. The results are both of pure theoretical
interest and of substantial possible usefulness in the
application of advanced multi-dimensional Kolmogorov-Smirnov
tests.
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GENERALISED CAUSSIAN FIELDS

The probabilist's appeal to the ubiquitous Central
Limit Theorem is his standard procedure for justifying to the
world his not inconsiderable fascination with, and dependence
on, the normal distribution and the Gaussian process. In order
to give a heuristic background to the so-called "free field"
of Quantum Field Theory, Wolpert (1978) proved a delightful
central limit theorem that showed how this generalised process
(i.e. a process indexed by infinitely differentiable functions
rather than time or some other simple parameter) could be
realised as a normalised sum of the self-intersection local
times of an infinite collection of Brownian motions. Although
his method is too long to describe here, let it suffice to say
that his motivation was, essentially, to allow one to think of
the free field as a consequence of the activities of certain
physical particles undergoing Brownian motion.

Wolpert actually went beyond this, for he also showed
how the Wick powers of the free field (which are essentially
the "generalised chi-squared process" generated by the field)
are related to the elementary Brownian particles.

Wolpert's work related only to one generalised Gaussian
process - the free field. From recent work of Dynkin (1980,
1981, 1983) it is reasonably clear that Wolpert's procedure
should work in far greater generality, and that his central
limit theorem should give an alternate representation of
generalised processes and theirifunctionals to that usually
provided by the theory of multiple Wiener-Ito integrals.

I have been working on this idea together with a
. doctoral student, Ms. Raisa Epstein. At this stage we have,

in fact, managed to extend Wolpert's result to arbitrary
Gaussian fields, where the building blocks are now arbitrary
Markov processes rather than Brownian motion.

Work on this project is continuing apace, and once
we have a more complete theory, we hope to do a fair amount
of writing up.

,.'%
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PUBLICATIONS PREPARED UNDER THE GRANT

1. Tail behaviour for the suprema of empirical processes,
(R. J. Adler and L. D. Brown). To appear in the Annals
of Probability.

2. The supremum distribution of the Gaussian process,
(R. J. Adler and G. Samorodnitsky) Submitted.

3. Testing for the normality of a stochastic process,
(R. J. Adler and S. Feingold) Submitted.

4. Multivariate Kolmogorov-Smirnov statistics,
(L. D. Brown and R. J. Adler) In preparation.

5. Extrema and level crossings of chi-squared processes,
(M. Aronowich and R. J. Adler) Submitted.

6. Extrema and level crossings of chi-squared random fields,
(M. Aronowich) In preparation.

CONFERENCES ATTENDED AND VISITS

I attended the 14th Conference on Stochastic Processes and
their Applications in Gotenborg, Sweden, from June 12-16,
1984, and presented an (invited) paper entitled
"Tail behaviour for the suprema of empirical processes".

During the summer of 1984 I visited the following American

institutions, and conferred there with the following colleagues:

1. University of Washington: Pyke, Alexander, Bass (4 weeks)

2. Colorado State University: Resnick, Davis, Tavare (l week)

3. Centre for Stochastic Processes, Chapel Hill: Cambanis,
Leadbetter, Kallianpur (1 week)
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