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* Abstract

* ;In many robotic applications, manipulation planning for an object free to slide on a surface is an important

* problem. Physical analysis of the object's motion is made difficult by the absence of information about the

* distribution of support of the object, and of the resulting frictional forces. This paper describes a new

approach to the analysis of sliding motion.

The instantaneous motion of the object can be described as a pure rotation about a center of rotation (COR)

- somewhere in the plane. In this paper we find the locus of CORs for all possible distributions of support

forces. We assume zero friction at the pusher-object contact, and we assume that the support force

* distribution is confined to a disk.

* In one application to robotic manipulation, bounds on the distance an object must be pushed to come into

* alignment with a robot finger or a fence are determined..



* 1. Background

Sliding operations are encountered in several facets of robotics. It is almost inevitable that when the

- position of an object that is to be acquired by a robot is not perfectly known, a sliding phase will occur

-. before the robot can acquire the object. This phase need not be considered an undesirable but

* unavoidable fact of life. The examples which follow show how sliding operations can be used

* constructively to manipulate and acquire objects, without sensing, and despite uncertainty in the

* orientation and position of the object. In each example, properties of sliding are used to reduce the

uncertainty in position and orientation of an object.

In a typical grasping operation, the robot opens a two-jaw gripper wide tLiough to accommodate both

* the object to be grasped, and any uncertainty in the object's position. Then the gripper closes. If the

object happens to be exactly centered between the jaws initially, both jaws will make contact the

object simultaneously, and there will be no sliding phase. But this is unlikely. Usually, the object will

* be closer initially to one jaw than to the other, and the closer jaw will make contact first.

* There follows a sliding phase until the second jaw makes contact. During the sliding phase the object
is likely to rotate, especially if the face of the jaw is in contact with a corner of the object rather than a

flat facet. Once both jaws come into contact with the object, sliding on the table becomes less

important than slipping of the object with respect to the faces of the jaws. The behavior of an object

during both phases is discussed in (Brost, 1985). Brost finds grasp strategies which bring the object

into a unique configuration in the gripper, despite substantial uncertainty in its initial configuration.

- Another example of the use of sliding is the interaction of an object on a moving belt with a fixed,

* slanted, fence across the belt. (Equivalently, the object may be stationary on a surface and the fence

moving, under control of a robot.) One of many possible behaviors of the object when it hits the fence

is to rotate until a flat edge is flush against the fence, and then to slide along the fence (if the fence is

sufficiently slanted) until it reaches an obstruction at an edge of the belt. Another behavior is to roll

along the fence instead of sliding. Or it may stop rotating and simply stick to the fence.

The hehavior of objects on encountering a fence has been considered in (Mani, 1985) and (Brost,

1985). In (Mani, 1985), strategies for manipulation are developed which can orient an object on a

table by pushing it in various directions with a fence. Each push aligns a facet of the ob~ject with the

* fence.

Bowl feeders, too, rely on sliding operations, as parts interact with fences while they move along a

.
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ramp.

R. P. Paul demonstrated a clever grasping sequence on a hinge plate, illustrated in figure 1-1. The
strategy makes use of sliding to simultaneously reduce the uncertainty of a hinge plate's

configuration to zero, and then to grasp it (Paul, 1974) (Mason, 1985). To understand this and similar
operations, Mason determined the conditions required for translation, clockwise (OW) rotation, and
counter-clockwise (CCW) rotation of a pushed object (Mason, 1985). Mason's results are used
extensively in both (Mani, 1985) and (Brost, 1985), and also in this work.

All of the work discussed above may be called "qualitative" in the best sense of that term: the authors

find the exact conditions determining which of various qualitatively different behaviors will occur. The
behavior in question may be that of rolling along a fence vs. slipping along a fence, or it may be that of
rotating COW vs. rotating OW as an object is pushed.

The work presented here is complementary to the work discussed above. One result of this work is
* quantitative bounds on the rate at which the predicted motion occurs.- Without rate information the
* algorithms found in (Mani, 1985) cannot oroduce guaranteed manipulation strategies. In some cases,

an object may have to be pushed a great distance before it will align with the fence pushing it. To
produce a guaranteed strategy we need an upper bound on the distance an object must be-pushed to

align.

Brost's work is less dependent on rate information because the second phase (slipping relative to the

jaws) is relatively insensitiva to the interaction with the table (sliding). However certain of the grasp
strategies analyzed in (Brost, 1985) do rely on sliding. Since pushing distances are finite these
strategies can only be guaranteed if rotation rates are known.

Mason and Paul's hinge grasp (figure 1.-1) works only for a certain range of initial hinge orientations.
For orientations outside of this range, the jaws will be closing too fast for the hinge plate to complete

* its CW rotation into alignment, before the jaws close. To find the range of orientations for which this
* grasp will work, for a given convergence angle of the jaws, we need to know the slowest possible

rotation rate of the hinge plate as it is pushed.

Figure 1-2 illustrates an application of the results of the present work. In the figure, a fence is pushing
a rectangular object, which may slide on the table. The rectangle will rotate clockwise (CW) (Mason,

1985), and will cease to rotate when the long side becomes parallel to the fence (Brost, 1985) (Mani,

1985). So we can orient the rectangle by pushing it in this way. But how far do we have to push it?

. 1. . . - ... .
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Figure 1.-1: Hinge grasp strategy
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Figue 1.: Th fene mst advance 2.02 inches to assure that the rectangle is aligned
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In the example shown, we must push at most 2.02 inches to assure alignment. This result is

independent of the mass of the object, the coefficient of friction between the object and the table, and

of details of the bottom surface of the object (e.g., screw heads, cut-out sections, etc.). However it
depends on the assumption that the coefficient of friction between the pusher and the object is zero.

2. Overview

2. 1. The Center of Rotation

An object sliding on a plane has three degrees of freedom. Its position may be specified by the (x,y)

displacement and angle 6 of a coordinate frame fixed in the object relative to a coordinate frame fixed
in the plane. The instantaneous motion of the object may be described as infinitesimal changes in the

* displacements and rotation.

In this paper we will treat the object as a two-dimensional rigid body, since we are only concerned

with the interaction of the object with the plane on which it is sliding. All pushing forces will be

restricted to lie in the plane. The results may be applied to three-dimensional objects, so long as the

vertical component of the pushing force is negligible, and so long as the point of contact is near the

table.

In the general case, when an object is being pushed there is only one point of contact between the

object and the pusher. The contact may be where the front edge of a pushing fence touches a corner
of the object (figure 1-2), or it may be where a pushing point touches an edge of the object (figure

2-1). In most of this paper we will assume that the pusher is a point in contact with an edge of the

object. The analysis applies equally well if the pusher is a fence in contact with a corner of the object.
In many figures (e.g., figure 2-3) an 'edge' will be drawn, and it will be left ambiguous whether this is

the pushed edge of the object or the front edge of a fence.

It is assumed the pusher will move along a predetermined path in the plane, i.e., it is under position

control. The object retains two degrees of freedom, with the third degree of freedom of its motion
* fixed by the contact maintained between the pushe.' and the object.

These two degrees of freedom are most conveniently expressed as the coordinates of a point in the

plane called the center of rotation (COR). Any infinitesimal motion of the object can be expressed as

a rotation 65 about some COR, chosen so that the infinitesimal motion of each point W of the object is

perpendicular to the vector from the COR to the point W. If the object is a disk, and the motion it
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FIgure2-1: An object being pushed has two degrees of freedom

.



... =V

7

performs is pure rotation in place, the COR is at the center of the disk. Motions we might describe as

mostly translation" correspond to CORs far from the point of contact. In the extreme case, pure

translation occurs when the COR is at infinity.

This paper is concerned with finding the COP.

2.2. The Support Distribution

Finding the COR is complicated by the fact that changes in the distribution of support forces under

the object substantially affect the motion. Intuitively, if the support is concentrated near the center of

mass (CM), the object will tend to rotate more and translate less than if the support is uniformly

distributed over the entire bottom surface of the object. With support concentrated near the CM,

much less energy is expended in rotating than with more dispersed support.

The distribution of support may be changed dramatically by tiny deviations from flatness of the bottom

surface of the object (or of the surface it is sliding on). Indeed, if the object and the surface are

sufficiently rigid and not perfectly flat, they may be expected to make contact at only three points.

The three points may be located anywhere on the object's bottom surface, but like the legs of a

three-legged stool, the triangle formed by the three points at support must enclose the projection of

the CM onto the surface. Otherwise the object is unstable. This observation perhaps gives some

intuitive justification to a theorem proved by Mason (Mason, 1985) which states that all extreme values

of the location of the COR may be attained by considering only support distributions consisting of

* three points of support (a "tripod").

* Since any assumption we could make about the form of the support distribution (for instance that it is

uniform under the object as in (Prescott, 1923)) would not be justified in practice, our goal is to find

the locus of CORs under a/l possible support distributions. Let the CM be at the origin, and V be a

point in the plane. All that is known about the support distribution S(-w) is that

9 S(-w) is zero outside the object,

K * S(-w) a 0 everywhere,

* the total support force f S0') d# Mg, the weight of the object, and

o the first moment of the distribution, f Swh) 'P i" = 0. (i.e., the centroid of the
distribution is at the CM of the object, which is at the origin.)
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2.3. Overview

The coefficient of friction with the supporting surface (p.~) does not affect the motion of the object if

we use a simple model of friction. We assume that Nis constant over space, that it is independent of

* normal force magnitude and tangential force magnitude and direction, and that it is velocity

* independent. In short, we assume Coulomb friction.

Initially we consider onlyuc., = 0, wherep is the friction coefficient between the edge of the object

and the pusher. (in a subsequent paper we will do the analysis needed to treat ic> 0.) We assume

that the contact between the pusher and the object is restricted to a single point.

It is also assumed that all motions are slow. This quasi-static approximation requires that frictional

forces on the object due to the coefficient of friction with the surface 1L. quickly damp.out any kinetic

energy of the object:

M2

*where v is the velocity of the object and X is the precision with which it is desired to calculate

distances.

In this paper we will assume the object being pushed is a disk with its CM at the center. Given another

object of interest (e.g. a square), we can consider a disk centered at the CM of the square, big enough

to enclose it. The radius a of the disk is the maximum distance from the CM of the square to any point

on the square. Since any support distribution on the square could also be a support distribution on

* the disk, the COR locus of the disk must enclose the COR locus of the square. The locus for the disk

* provides useful bounds on the locus for the real object.

Other parameters of the problem are the point of contact C between the pusher and the object, and

the angle a between the edge being pushed and the line of pushing, as shown in figure 2-2. The

values of a and shr-vn are useful in considering the motion of the five-sided object shown inscribed

it' the disk. We do not require the point of contact to be on the perimeter of the disk, as this would

eliminate applicability of the results to objects inscribed in the disk. Indeed, for generality we do not

even require the point of contact to be within the disk. Similarly, we will not require a to be such that

the edge being pushed is perpendicular to vector C", as it would be if the object were truly a disk. The

disk (with radius a), a, 2' and the CM, are shown in figure 2.2. A particularly simple distribution of

support forces S(W), in which the support is concentrated at just a "tripod" of points (www)is

W1W2W
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Figure 2-2: Parameters of the pushing problem
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* indicated, along with the COR for that distribution of support.

In section 3, we derive the energy E rlost to friction when the pusher advances a distance ax. This is

- a function of the presumed location of the COR F.I The system will rotate about the COR which

* minimizes E., as proved in the appendix. We will find the COR by setting V Er =0.

- Using hundreds of thousands of randomly selected tripods satisfying the conditions listed in section

2.2, we can find the COR by numerically minimizing E. for each tripod. Plotting the resulting CORs

* gives a rough idea of the COP locus, for a single choice of 'And a (figure 2-3).

While Mason's theorem 5 states that extremal values (i.e., the boundary) of the COR locus may be

found by considering only tripods of support, we see that in fact all values interior to the locus are

* attained in this way as well. The dense central region of the numerically generated locus in the figure

* has been replaced by hashing to facilitate printing.

* In section 4, we express the equation*V Er =0 in terms of a new construction called the quotient

locus. Each element of the quotient locus is a quotient of two moments of the support distribution S.

A surprising discovery is that all elements of the quotient locus for the disk may be attained by

considering only pairs of points of support (dipods), instead of tripods. This statement therefore

applies to the COR locus, as well. Using this information we calculate the analytic form of the

boundaries of the quotient locus.

* Once the quotient locus is found for a given object and pushing geometry, we calculate (in section 5)

* the boundaries of the COR locus from it. The greatest distance from any point in the COR locus to the

CM, and its direction, are found analytically. These results, all that are needed for many applications,

are of simple form and have a convenient graphical interpretation.

In section 6 we solve some sample problems using the results. One result is a simple formula for the

maximum distance an object must be pushed by a fence to assure that it has rotated into alignment

with the fence.

2.4. Notationk e Vectors are indicated by an arrow, e.g., V.
* rh is the vector from the CM to the COR. r is the magnitude of that vector, iLe., the
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Figure 2-3: COR locus found by iterative minimization (dots)
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distance from the CM to the COR.

. A Greek letter is used to represent both an angle and a unit vector which makes that
angle with respect to the x-axis (measured CCW). An arrow is used to indicate the unit
vector: a = (cos a, sin a).

- We indicate functional dependence with subscripts. Er is a function of r (the COR).

a All integrals are over the area of the disk.

. Curly brackets indicate a locus of values of a quantity.

3. Minimizing the Energy

In this section we compute the energy that is dissipated due to friction when the pusher advances a

distance 8x, for a given center of rotation I', and for a given distribution of support S(W"). (figure 2-2).

It may help to imagine the disk "pinned" at the COR. This is not difficult to imagine if the COR

happens to fall inside the perimeter of the disk, and one's intuition can be extended to include the

case where the COR is outside the perimeter. Either way, the disk is free to rotate only about the

-_ COR, and the COR itself stays stationary.

Given the COR, the motion of the disk is fully determined when we apply one more constraint: the

edge being pushed (at C) must move out of the way of the advancing pusher, but stay in contact.

3.1. Relation between Motion of Pusher and Rotation of Object

In order to accommodate the advance 85x of the pusher, the disk will rotate an amount 88 about the

center of rotation . A rotation of 88 allows an advance of the pusher 8x consisting of two parts, as

shown in figure 3-1.

8x= 80 1t- cos= 8 (c,- (2)
Y Y

8= 8x-=8-tana tana

x=8 1 +5 2 = 8(c-
8X~~~~ SX X28 tan a

Note that 8x 2 corresponds to slipping of the point of contact along the object edge.

Defining the unit vector a = (cos a. sin a) we can write

.-
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Flgu re 3-1: Relation between advance of pusher (8x) and rotation about the COR (80)
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SX = sin a a c- r (3)

To avoid proliferation cf absolute value signs, henceforth a". (c'-"3) will be taken to be positive.

Considerations of symmetry will allow application of the results to cases where a .(c - 7) is negative.

Physically, -. ( -- "1)>0 corresponds to clockwise rotation of the object as it is pushed.

3.2. Energy Lost to Friction with the Table

NAn element of the disk at -supports a force S("W) d normal to the table. The element will slide a

distance

so I -1- IF (4)
rp

due to the rotation 8. about the center of rotation IF, and in the process will dissipate an amount of

energy

SdE, = IL= S(-W) d-W 80 V -"1 (5)

"- Integrating over the area of the disk, the total energy dissipated due to rotation So is

E= 8, ,f S( I-tld- (6)

- where we write E to remind ourselves that the energy is a function of the presumed location of the

,- -center of rotation ". Substituting for 80, we have

ax its n a
"T f S.O_.: S -' . (7)

The system will find a location for r whiich minimizes E . At this minimum the derivatives of Er with

. respect to both 7 and I must be zero. Evaluating the derivative of Er with respect to tand setting itx Y
equal to zero we find

V E 8xpsin a = 0 (8)L we- r

" where
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d= f S(V)IV Id-W (9)

a scalar, can be physically interpreted as the weighted distance from the COR to the support

distribution, and

W- r
V a ( W) d-&(10)

rf 1wo I
a vector, can be interpreted as the weighted direction from the COR to the support distribution.

Equation 8 expresses the physical principle that the system will execute that instantaneous motion

which minimizes energy. Energy is not always minimized in dissipative systems: However it is

possible to show that Newton's laws require the numerator of equation 8 to be zero at the correct

COR (see Appendix.) The energetic derivation above is simpler.

3.3. Iterative Numerical Solution

Minimization of E, can be carried out in an iterative manner to find the COR for a given support

distribution S(-). Figure 2-3 shows the locus of CORs obtained in this manner. Each point is the

COR for a randomly chosen three-point support distribution. Only support distributions consisting of

three points (a tripod) need be considered since according to Mason's theorem 5 three points are

sufficient. Weights were computed for the three points in such a way as to satisfy the constraint that

the CM be at the center of the disk. (If this required any of the weights to be negative, the tripod was

discarded.) An initial guess was made for the location of the center of rotation T, and V E. evaluated

at that point.

The minimization technique used requires computatioi of V (V E.), the second derivative of E;, a

two-by-two matrix, which can be obtained analytically. A new guess for I is then made by adding to

the old guess

rrA -VE (11)
V(VE,)

This method usually converged quickly if the initial guess was sufficiently close to the correct answer.

By moving only one leg of the tripod at a time, and by only a small amount, the value of 1 found for

L. . . ......
h" * ' *' " ". . . . . . . . ." ./ ' "' ,' '.' ;, -" " ' ,,' " .- ',. . .-.- '-.-.- ""''.....-". -".o..-. --- ,' . .' . .'." .
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one tripod could be used as an initial guess for the next. Figure 2-3 represents 590000 tripods, taking

4 CPU hours on a VAX-780. Similar figures, done with four points of support instead of tripods, are

identical.

Numerical methods may converge to a local rather than a global minimum, if more than one minimum

exists. Here V E = 0 if and only if Newton's laws are satisfied for a given value of the COR, i.e., if

the forces balance. Distinct locations of the COR correspond one-to-one with distinct motions of the

pushed object. There can be only one motion of the object satisfying Newton's laws, so there can be

only one minimum of E,.

4. The Quotient Locus

Resuming our analytical discussion from section 3.2, we set V = 0 in equation 8. The constant

* terms drop out leaving

2r a qb [a. (c- r)] (12)

where we define the quotient moment, a vector, as

V
r 2 -(13)

rr d

It is a function of r and the distribution S(w), and has units of distance. In this section we hold the

center of rotation "Ffixed, and analyze the quotient moment for all support distributions S().

* The quotient locus { ,} is the set of "" for all possible choices of the distribution S consistent with

the requirements listed in section 2.2. It is still a function of r, but the dependence on S has been

removed.

We will always plot the quotient locus displaced by 7, i.e., based at the COR. {'} may be plotted as
a region of space, if we remember tha' given q- {-} is a vector with its tail at the COR and its head

anywhere in that rcqion.

We will find the boundary of the quotient locus. The results will allow us to find the boundary of the

COR locus in section 5.

To simplify discussion, we take the total weight of the object Mg = 1, that is

...........................
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Mg = S(V) d = 1. (14)bf

Since multiplying the support distribution S by a constant factor changes both numerator and

* denominator of q by that same factor, the assumption is harmless. Physically, the mass of the disk

* has no effect on the motion, so we can choose it arbitrarily.

4.1. Extrema of the Quotient Locus

Since -V (equation 10) can be interpreted as a weighted average of unit vectors from the COR to the
support distribution, the greatest magnitude' - can have will be 1, and will be attained when the

support distribution is concentrated at the CM. In all other cases the direction to elements of the

support distribution varies, and so some cancellation is inevitable. When the magnitude of . is

maximal, it must be directed from the COR to the CM.

The smallest magnitude V can achieve depends on whether the COR is inside or outside the disk,

i.e., on whether r > a or r < a, where a is the radius of the disk. In either case we wish to achieve the

maximum amount of cancellation of direction possible. If r>a this occurs when the support

distribution consists of two points at opposite edges of .the disk, providing the minimum possible

agreement on direction between the two vetors, as shown in figure 4-1.

If r(a, we can arrange for to be zero. Indeed we can arrange for V. to point from the COR

maximally away from the CM by making a two-point support distribution as shown in figure 4-2. (In

the figure the distance from w to the COR is infinitesimal.) The two vectors - and " point in

opposite directions. To maintain the centroid of the support distribution at the CM, we find the

weights of V and 0 are

S, r

s =--+-a, and (15)

r-a
S2r+a*

Therefore is more heavily weighted than , and

V~-~ S-S~~tL i (16)S V+ S

points from the COR away from CM.

31

* 31
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Figure 4-1: Dipod responsible for the smallest value of for r >a
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Figu re 4- 2: Dipod responsible for a negative value of Yfor r <a
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Now consider dr (equation 9). Clearly if the support distribution is concentrated at the CM, the

weighted distance from the COR to the support distribution is just r. In fact r is the smallest value

which dr can attain. In the configuration shown in figure 4-2,

dr =S 1 (a+ r)+S2 . = r. (17)

dr takes on its maximum value when the support distribution consists of two points as in figure 4-1.

That value is

d = (r2 + a2)1 / 2. (18)

Since q" is the quotient of V and dr , extreme values of IqI occur when v is maximal and d
minimal, and when V is minimal and dr maximai.

4.2. Numerical Solution for the Quotient Locus

Having found the extreme values of ' above, we can find the locus of all possible quotients
numerically. It is much easier to find the { } locus (for a given value of ") than it is to find the COR

locus. No iteration is required; for a given tripod, Y and d, can be calculated immediately. Figures
4-3 and 44 show typical {4.} loci for r <a and r > a, respectively. The dots are values of found

* numerically, while the solid curve is the empirical boundary of the locus as described below.

The dots in figures 4-3 and 4-4 represent over 3,000,000 and 500,000 randomly chosen tripods,

,- respectively. The solid curves which appear to bound the dots are generated by two classes of

* dipods, discussed below. Since dipods are a special case of tripods, the solid curve is in {-,}. On

Sthe basis of numerical studies such as shown in these figures, we believe that no value of

generated by a tripod falls outside the dipod curve. Therefore the dipod curve is the exact boundary

* of { r}. We have not been able to prove analytically that no tripod value of falls outside the dipod

curve, so the boundaries should be considered empirically justified only.

4.3. Boundary for ICORI < a

•  We observe that for r <a the boundary of the locus is a circle. This empirical boundary can be

-o-" generated by two-point support distributions (dipods) of the type shown in figure 4-5, where the angle

. w can vary. These dipods are a generalization of the one shown in figure 4-2. (The distance from 'to

* is infinitesimal.) We can then calculate a parametric form for the boundary in terms of w:
o.

-o ... . . . .. . . .. . . .
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a

Figure 4-4: Quotient locus {q} (dots), arnd empirical boundary (solid), for r >a
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Figure 4-5: Dipods contributing to the boundary of {}, for r<a
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qr =  -- aa  (19)

where " = (cos w, sin w)

This generates a circle cf radius

b= r (20)r+a

4.4. Boundary for ICORI > a

For r > a, the empirical boundary of the locus {r} is generated by dipods of the type shown in figure

4.6, where w is allowed to vary. These dipods are a generalization of the dipod shown in figure 4-1.

Again, the boundary can be calculated parametrically from w (via intermediate terms d d-, y and

fas

d= (r + a2 : 2a rcos V) (21)

sin = asin*

cosy¥ = (1 -sin 27*)/

cos y+ + cos y- sin y+ - sin -f"
2 2

d d + d-

2

,= r

It is the boundaries of {a} that will be used rin section 5) to determine the boundaries of the COR

locus. Therefore the boundaries of the COR locus, too, can be found by considering only dipods.

This is a stronger statement than Mason's theorem 5, which requires tripods. Additionally, we have

found the two points constituting the dipods. Howevw.., it should be noted that the sufficien.;/ of

tripods holds for any object, whereab elipods are sufficient only for a disk.

Figures 43 and 4-4 demonstrate that the twO classes of dipods considered above, and illustrated in

figures 4-5 and 4-6, generate extremal quotient moments. In other words, the locus {-q%} of values of

q'b for all distributions of support S(") satisfying the conditions of section 2.2 fall inside the empirical

boundary generated by the above dipods. The boundaries themselves are, of course, part of { }

.. .. . ... . . I- . .
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since the boundaries are generated by acceptable distributions of support.

5. The COR Locus

Having found a parametric representation of the {'q} locus, we can find the COR locus. Recall the

requirement for minimizing the energy lost to friction (equation 12):

r = [ ".A( 
- r). (22)

The COR locus is the set of all 7"for which there exists a q, {e } satisfying equation 22.

Equation 22 is a vector equation. The left side obtains its direction from -. The right side obtains its

direction from q, since a. (21- "r) is a scalar. To satisfy the vector equation ' must have direction

'. We can rewrite equation 22 in scalar form, retaining the direction constraint on 'q separately:

'r ' = r I [ a .( c ' r ) 1 ( 2 3 )

where q' eq

an d a

We wish to find the locus of t for all distributions S(w. It is best to imagine -'to be an independent

* variable. Each value of I yields a locus {r}, with one element E'r e {'r} corresponding to each

distribution S(). For some values of -Pthe value of -q- required to satisfy equation 23 is in { }; for

other values it is not. The former values constitute the COR locus.

* .It is confusing, but unavoidable, that the locus {'q} shifts as we consider different locations of the

center of rotation P. In figure 5-1 we have plotted several {q"&} loci for different values of '. Note that

varying the magnitude of 1"continuously changes the shape or size of the {-} loci. But changing the

direction of r only causes a corresponding rotation of the {1r} locus.

The variables of equation 23 are shown geometrically in figures 5-2, 5-3, and 5-4. In each figure we

have plotted a value of "F and the locus {qr} for that 1. We then calculate and plot the value of -&

required to satisfy equation 23. In figure 5-2, the value of q' required does not fall in {q}, so the

value of rshown is not in the COR locus. In figure 5-3, the value of qr required does fall in {q}, so

* the value of shown is in the COR locus.

In figure 5-4, the value of required to satisfy equation 23 happens to be on the boundary of the
...

. . . .. . . . . . . . . . . . . . . . . . . .

f i: ;:: ,: i: :i-i~i :- ? :,;- :: :::: ::: ::::: :: :: ?:: : : --;: ::: : : : : ; ::: :? -.: :: , -:°: ::, ; -: -: : : : : : :: :: :::- : -: : : ': :-:: .; -
.. * .* : ;;
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FIgu re .5-1: Boundaries of quotient loci {"q} for variousr
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Figure 5-2: Variables of equation 23, for a value of not in the COR locus
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Figure 5-3: Variables of equation 23, for a value of r-in the COP locus
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Flgure 5-4: Variables of equation 23, for a value of on the boundary of the COR locus
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{i locus. The boundary of the COR locus is generated by such cases. Interior points of the COR
locus are generated when the q required is interior to the {} locus, as in figure 5-3. Since we are

interested only in the boundary of the COR locus, we will consider only values of which are on the

boundary of the {q} locus, as shown.

5.1. ICORI < a

It will be convenient to represent the COR by its polar coordinates (r, e), and to define the relative

angle i?. Both angles are shown in figure 5-4. We have

e = v+a-ij. (24)

If r < a, the boundary of {} is a circle. The condition that " lie on the circle can be expressed

"I1 '+ (r -b)e'l = b. (25)

where b is the radius of the circle, from equation 20. Equation 25 can be expressed in terms of the

angle 7 as

(I I -(r - b)cos q) 2 + ((r - b )sin 11)2 = b. (26)

Solving this quadratic equation for I q I we find

- q,1 r - b)cosq ±(b2 - ((r - b)sin ij)2)Y2. (27/)

Inserting this value of " into equation 23 and eliminating the square root we obtain

2 (r - b)cos ) = b2 - ((r - b)sin -q)2. (28)
a .(F- F)

Substituting b from equation 20 and simplifying we find

r2(a + r) + (r - a) a". (c- 'J]2 - 2 r2 ( -")]cos11 = 0 (29)

where [ "a- ( )] = a.t"+ rcos-Q.

Equation 29 is a cubic in rand quadratic in cos 11. The solution for cos nq is

. . ..":." " " -i" '" " -."." ."' " :'" ""... " ".- "'" ., x .. ,.......,.. -.. , .',"'""'''.- .'.' ." ...
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r(( r+ a)' + -. ,,2_a( a .Y)
Cos 11 = -(30)

r(r+ a)

The other quadratic root is invalid. Since 71 is related by equation 24 to the polar angle e, equation 30

describes the boundary of the COR locus in the polar coordinates r, e, for r< a. A typical COR locus
generated using equation 30 is shown in figure 5-5.

5.1.1. Extremal Radius of the COR Locus Boundary for ICORI<a

The minimum radius of the COR locus boundary occurs at e = a, which corresponds to 71 -r. From

equation 29 we find

r = 2a + ('-') (31)

Note that r. is not the minimum distance from the CM to an element of the COR locus; that distance

is zero. rm,n is the minimum distance from the CM to the boundary of the COR locus. r..an is indicated

in figure 5-5.

It will also be useful to have the angles at which the COR locus boundary intersects the disk

boundary. From equation 30 we obtain

((a" t)
2 + 4aZ2 - (" )(32)

C03 r-_a -2a

5.1.2. Curvature of the COR Locus Boundary at rrn

From equation 29 we can find the curvature of the COR locus boundary at rin:

d r = 2a ( - -)(( h- c) 2 + 2 a( . ) + 2a) 33)
de ((a'. c) + 2a)

which is equivalent to a radius of curvature of
a( '((.) + 2a)2

s =. ( 3 4 )

( .t)' + 4a( ". )2 + 8 a2( .) + 4a3
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Figure 5-5: COR locus boundary for r<a
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5.2. ICORI > a

If r > a, we cannot find a simple equation analogous to equation 25 constraining q to the boundary of

{q'}. An effective approach is to parametrize the boundary of the { r) locus by the angle w of

equation 21, and solve for both e and r by binary search.

For each w the following procedure is used: We guess a value of r, in the range a < r < r p , where rtip

is an upper bound to be found in section 5.2.1. Equation 21 is then used to calculate a value of q'

Angle -q is related to the terms of equation 21 by

V,= arctan .--  (35)

y

and so can be computed from w. Equation 23 can be written in terms of the angle -q as

r .I ('- + rcos 'q (36)

which is easily tested. If it is satisfied, we have found angle -q and magnitude r describing a point on
the boundary of the COR locus. e is then obtained from -q using equation 24.

If the left-hand side of equation 36 is greater (resp. less) than the right-hand side, we increase (reasp.

decrease) the value of r guessed above. In this way we perform a binary search, quickly converging

on a solution for r and a.

Figure 5-6 shows the boundary of the COR locus for various 'tand a. The part of the boundary inside

the disk was computed using equation 30, while the part outside the disk was found by binary search

as outlined here. Calculation of each locus required about 2 CPU seconds on a VAX-780.

5.2.1. Tip Line

We can calculate the extremum of the COR locus analytically. For many purposes this may be all that

is required. Additionally, it gives us a range within which to conduct the binary search discussed in

section 5.2. By symmetry, r takes on an extremal value when qj * 0. In figure 4-6 this correspinds to

V 0, which in turn occurs only when = 0 or w-.x 2

At 0 we find from equation 21

q a r. (37)

_ = .° , . = . .m~ = ._. =° _. . = °. = d' = t ' " . -. q• . .- - ... ,. , - .
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Substituting this into equation 23 we obtain

r=-. (38)

This extremum has no apparent meaning.

At . we find from equation 21
2

rr = a- (39)

rl + a2

At this value equation 23 yields

a2

p a (40)

This is the greatest distance "T may be from the CM, and it occurs at polar angle e = w + a. In figure

5-7 we plot r., vs. contact angle a, for a given value of C. As a is varied, the tip of the COR locus at

. distance r. from the CM traces out straight line, the tip line.

The use of this graphical construction is illustrated in figure 5-7. For a given value of a, as shown, r.

is at the intersection of the tip line descnbed above with a ray from the CM at angle v + a.

An interesting case occurs when -a becomes perpendicular to C" (Note that this does not require

a = M.) As "- --* 0, we have r. * co. The COR at infinity corresponds to pure translation
2

perpendicular to 'at

Mason (Mason, 1985) showed that if "a. t= 0, pure translation is assured. In that case the entire COR

locus (not just its farthest'point) must go to infinity. In all other cases -,. t 3 0, and the CM (for one)

remains in the COR locus. Figure 5-6c shows a case in which a" is almost perpendicular to c,

illustrating the transition from a COR locus entirely at infinity to one which includes the CM.

* We now have the ability to quickly compute the COR locus for any tAnd a.

• 5.2.2. Curvature of the COR Locus Bound at the Tip

The radius of curvature of the COR locus boundary at the tip can be found analytically, and will prove

useful.

... ...'.. ..'.. ... '. .... ..'. .. .. ... ..- . .. .. . , ., ' ;. " / .. ", ". ... .. ". ..-. ". .. - . ... .-. .."..,... -..-.. .. ...-..-. .-,.-,,.... .... , .. -... .. -. .-.., ... .



37

42,

Figure 5*7: r,,(a) vs. a, and construction of the tip line
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From equations 21 and 35 we compute taylor expansions for -q and qh to lowest order W 2, at W = -.

The expansions are substituted into equation 36, and the result expanded about ( = - to lowest
2

order w 2. Finally we expand about r = r,,p to order r'.

We find

4

d=r (41)
de 2 2 a 4

which corresponds to a radius of curvature

r
s 4 . (42)

2 a4

5.3. Summary

In this .section we have found the boundary of the COR locus for any choice of tand a. Within the

disk the boundary is given by a simple formula relating rand e, the polar coordinates of the boundary

(equation 30). Outside of the disk, the polar coordinates of the boundary are found by binary search

as outlined in section 5.2. We have found the minimum and maximum distances from the CM to the

boundary (ra and r ), and the curvature of the boundary at those points. And we have found the

polar angles at which the boundary of the COR locus intersects the boundary of the disk (equation

32).

6. Applications

A useful application of the results found above Is to the problem of aligning an object by pushing it. In

figure 1-2 a misoriented rectangle is being pushed by a fence. The fence is moving in a direction

perpendicular to its front edge. Evi' .ly the rectangle will rotate CW as the fence advances (Mason,

1985), and will cease to rotate when the Pdge of the rectangle comes into contact with the front edge

of the fence (Brost, 1985). The problem is to find how far the fence must advance to assure that the

CW motion is complete.

The geometry of this problem differs from the geometry used in previous sections. Previously a point

pusher made contact with a straight object edge. Here the straight edge of the pusher makes contact

with a point (corner) of the object. But since the coefficient of friction between the pusher and the

K" :"~ -. " "" ." - "-":- *" -- ". """ " L . . •" ' - '. .- ." . . . . . . ... . . . ... ..
F -": " " : " ";' ,'" , "*," ." ' ""' "."- , '-"- :' " " - ;""-" - " .' -" .'"-": :'" -: % " "' " - ' --' ." - -"'-:." :" ." A-"- .: .', ,
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*edge of the object (Ijc) is zero, we know that in either case the force exerted by the pusher on the

* object is normal to the edge, regardless of whether the edge is that of the pusher or that of the object.

* Since the motion of the object can depend only on the force applied to it, the angle of the fence takes

the place of the angle of the object edge (a), and all the results derived above remain unchanged.

In this section we will generalize the problem slightly, relative to the problem illustrated in figure 1-2:

*The object pushed is arbitrary, not a rectangle.

*The motion of the fence is not necessarily perpendicular to its face.

First we circumscribe a disk of radius a about the object. The disk is centered at the CM of the object

* (figure 6-1). Note that the contact point need not be on the perimeter of circumscribed disk.

* We know (Mason, 1985) that the object will rotate CW, and will cease to rotate when the final

configuration shown in figure 6-2 is reached.

We now ask the rate of rotation of the object about the COR, with unit advance of the pusher. Let the

* angle of the CM from the direction of motion of the pusher be f6. This is also the angle between the tip

line and the perpendicular to the line of motion. (Both angles are indicated in figure 6-.1). We have

dx y d.8 (43)

where y is the distance from the line of motion to the COR. To find the minimum rate of rotation we

must find the maximum value of y for any COR in the COR locus.

Figures 6-1 and 6.2 also show the COR loci for the pushed disk. The COR furthest from the line of

motion is at point A in figure 6-2. The tip of the COR locus is at point B. The maximum value of y for

any COR in the locus is the distance from the line of motion to point A. It is well approximated by the

vertical distance from the line of motion to point B. We will first solve the fence- push problem using

this approximation, and then bound the difference between the answer thus obtained and the exact

answer.

From figure 6.3 we find

c,, csin P+ r.,sin a (44)

-a2where r,, c Cos (a +
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We can now integrate dx = y dfl to obtain the indefinite integral

X -C co a2sin a 1og I + sin(a+I)5
X =-cos 2c 1 - sin(a+/) (45)

To find the maximum pushing distance, Ax, required to cause the object to rotate from its initial

configuration shown in figure 6-1 to its final configuration shown in figure 6.2, we simply substitute

the initial and final values of P into equation 45, and take the difference xfT - x

The value of y used (equation 44) is slightly less than the true maximum distance from the line of

motion to any point of the COR locus. Using the construction of figure 6-4 we can approximate the

true distance y from the iine of motion to the lowest point of the COR locus (point A):

yoe = csinfl + (rp -s) sin a + s (46)

Inserting the radius of curvature s from equation 42 in equation 46, we find that dx = y dp cannot be

integrated in closed form. However if we make the approximation

S __ rd a d (47)
i '

• 2 a'

then dx = y dg can be integrated to yield an additional required pushing distance of

= - (1-sin ) (sin(a(a )) (48)

The approximation made in equation 42 slightly overestimates the radius of curvature s, leading to a

slight overestimate of y... and therefore to a upper bound for the required additional pushing

* distance x.

The sum of equations 45 and 48 therefore provides an upper bound for the required pushing

distance. For most purposes equation 45 alone will suffice.

In the case of figures 6-1 and 6-2, if the disk diameter is a, we have a ='70 degrees, c = .8125 a, ,airtu=

= 40 degrees, and ,fij a 60 degrees. equation 45 yields a required pushing distance of 1.0543 a,

and equation 48 yields an additional distance of .0015 a.

F>
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Figu re 6-4: y is a bound for the distance from the line of motion to the true lowest point
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* 7. Conclusion

* We have found the locus of all possible centers of rotation for a pushed object sliding on a level

* surface. A major assumption is the neglect of friction at the point of contact between the pusher and

* the object. A forthcoming paper will show how the effect of such friction can be calculated. It will not

* be necessary to modify the derivations above to incorporate friction.

* Another major assumption is that the support force distribution is confined to a disk. The loci found

above are exact bounds on the center of rotation of a disk with an arbitrary distribution of support

* forces. For objects other than disks, the loci found above are outer bounds on the center of rotation,

but tighter bounds are possible.

An immediate application of the results derived here is to the problem of the distance a sliding object

must be pushed by a fence before it rotates into alignment with the fence. This problem requires us to

find the slowest possible rotation of the sliding object.

One application of the fastest possible rotation would be to find the maximum misalignment of an

* object when it is pushed from a known configuration.

Another possible application is the calculation of the maximum torque a grasp can withstand before

the grasped object slips. Just as the support force distribution is unknown in the sliding problem

treated above, the distribution of pressure exerted by a gripper on a grasped object is unknown. It

may be possible to use similar methods to find the strength of the grasp.
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9. Appendix - V~nlidity of Energy Minimization

Some question has arisen about the validity of the assumption that the system will rotate about a COR

which minimizes the frictional energy loss. (The assumption is known to be valid in conservative

* systems, but the presence of friction makes the sliding system dissipative.) Here we show that the

3ame equation which is obtained from energy minimization (equation 8, 12, 22, or 23) can also be
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obtained from a straightforward application of Newton's laws.

Since the sliding system is assumed to be quasi-static, we have zero acceleration, and Newton's laws

simply require total force and total torque to be zero. In other words the applied force and torque due

to the pusher must be opposed by an equal and opposite force or torque created by frictional forces

between the object and the surface it is sliding on.

Since the coefficient of friction at the pusher/object contact is zero, the applied force is directed

perpendicular to '. Torque may be measured with respect to any origin. We choose to measure it

about the COR. Denoting the applied force PA, the torque is

_= Irx a:) =Irc1a.t- r), (49)

The opposing torque developed by frictional forces is

L= J S( I --l d .'. (50)

Setting the opposing torques equal we can solve for the applied force

IA I = . ( & .&h~ S(n) I ~d#. (51)

We also require translational forces to cancel:

A f F(nwdw (52)

where we know that 7P(), the element of frictional force at W, must be directed opposite to the

direction of motion at . The direction of motion at " is perpendicular to the vector (V - I), where I

is the COR. The magnitude of the element of frictional force at Ois/, 3 S(w). So we have

,-'~ ~ ~ ~~M 1e =s( I-1 +' _-- " s

Integrating over all ew

JA VS(-r)[ + c; Xj (54)PA SMWI- w- r

We also know that the applied force P is perpendicular to a, so
- w.......~.A
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A

rA = lIrAl( -XYaxY' ). (55)

Formally exchanging 7"with ., and equating the right-hand-sides of equations 54 and 55 we have

a W w - (56

Combining the result from consideration of total torque (equation 51) with the result from

consideration of total translational force (equation 56) yields

a f r' ( - ) S( V) I -"W- I d = ) I w-%"--' d'w (57)

which can be cast in a form equivalent to equation 8:

d = '% a(t- (58)

where

= f S(1V) -W- Id-W

and

"= fs(lw-ri

W-.

""": "" -" ; -" '." " .". " " " " ' ;. "",'V " ", .# -.-O.W,) "'W-" e..; 'i- i -' -- ' .'2, -' .. -- ? -.-.ii 2?
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