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Nearly Optimal State Feedback Controls for

Stochastic Systems with Wideband Noise Disturbances
by

Harold J. Kushner and W. Runggaldier

Abstract
\\”‘) Much of optimal stochastic control theory is concerned with diffusion
models. Such models are often only idealizations (or limits in an appropriate
sense) of the actual physical process, which might be driven by a wide bandwidth
(not white) process or be a discrete parameter system with correlated driving
noises. Optimal or nearly optimal controls, derived for the diffusion models,
would not normally be useful or even of much interest, if they were not also
’nearly optimal’ for the physical system which the diffusion approximates. It
turns out that, under quite broad conditions, the ’nearly optimal’ controls for the
diffusions do have this desired robustness property and are ’'nearly optimal’ for

the physical (say wide band noise driven) process, even when compared to
I

re Geliag

controls which can depend on all the (past) driving noise. We treat the problem
over a finite time interval, as well as the average cost per unit time problem.
Extensions to discrete parameter systems, and to systems stopped on first exit from

a bounded domain are also discussed. Weak convergence methods provide the

appropriate analytical tools. e
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1. Introduction

The paper is concerned with "approximately optimal" controls for a wide
variety of systems driven by wide band-width noise, and their discrete

parameter counterparts. Consider a system of the type

(1.1 x€ = Fe(x‘,ge,u), x € Rf, Euclidean r-space,

where £€(.) is a wide band-width noise process (the band-width - @ as ¢ - 0),

and the cost is

T
(1.2) R€(u) = E I

0

" k(x€(s),u€(s)),

for some T, < ®» When we wish to emphasize the control, we write the
solution to (1.1) as x€(u€,.).

For the moment (and loosely speaking) suppose that (l1.1) is ’close’ to a
controlled diffusion process, modelled by (1.3), in the sense that if u€(.) is a
sequence of ’nice’ controls for (1.1), then there is a control u(.), and a
corresponding controlled diffusion x(u,.) defined by (1.3), such that as € - 0,
x€(u€,.) => x(u,.), where => denotes weak convergence (see the next section).
Let E(-) denote an optimal control for the limit diffusion (1.3), and 38(-) a

'smooth’ §-optimal control, where 6 > 0.

(1.3) dx = b(x,u)dt + o(x)dw

Now apply ;8(_) to (1.1). Under fairly broad conditions, it is shown that
1.4 inf €(u) > R€(u®) - 5

(1.4) inf R€(u) > Ré®)

for small ¢ > 0, where RC€ are the admissible (relaxed) controls for (1.1)
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(see Section 3). Since Hs(-) is only a function of x and t, it would be
considerably simpler than an optimal control for (1.1).

The methods also work well for the discrete parameter case
(1.5) xgﬂ =x&+ eFE(xs,gg,un).

The “:} and ¢€(.) can be state dependent, and there are straightforward
extensions to the discounted cost problem, to the problem where the process is
stopped on first exit from a set, to the impulsive control problem, and to the
average cost per unit time case.

The basic technique is that of weak convergence theory [1], [2], [3]), which
will be seen to provide a very natural and relatively simple basis for results
of the type presented here. The relevant background results are listed in
Section 2. In Section 3 the problem on a finite interval [0,T,] for a form of
(1.1) is set up, and the assumptions stated. For convenience in dealing with
the weak convergence, as well as to minimize detail and the number of
hypotheses, we work with relaxed controls. The relevant estimates and
approximations (the "chattering" lemma, etc.) are also stated in Section 3. In
Section 4, the results for the finite interval are proved. Section 5 concerns
the discrete parameter case. The average cost per unit time problem is in
Section 6, and extensions are discussed in Section 8.

A related problem is discussed by Bensoussan and Blankenship in [4], [5].

They deal with the particular non-degenerate system

dx€ = f(x€,y€,u)dt + vz dw
(1.6)
edy€ = g(x€,y¢,u)dt + vZe dB,

where w(.) and B(.) ar¢e mutually independent standard Wiener processes. The
technique in [4,5] concerns an asymptotic expansion of the Bellman equation

associated with the optimal control of (1.6). These expansions are hard to
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: carry out, and rely heavily on various non-degeneracy properties associated

,,. with (1.6). In a "linear-quadratic" problem, they show that applying the

B optimal control for the limit problem to the pre-limit problem gives a cost
increase of O(e). There is negligible overlap in methodology with the ideas

,E:j.' here. We can treat (1.6) if g(-) does not depend on u(.).

,_ The results in [4,5) seem to require an analytical approach, rather than

j our purely probabilistic approach. The methods used here seem quite simple

) in comparison, and cover a broader collection of problems. Expansions of the

value functions do not seem to be obtainable by ur methods. On the other

hand, we can show, for many typical problem formulations, that the optimal

7‘;: . or 6-optimal control for the limit system is a good (nearly optimal) control for
the system which is driven by wide band-width noise. Such robustness is an
important part of the statement of the control problem. In fact, the optimal
or nearly optimal controls for diffusion models would not usually be of
interest, were they also not good controls for the actual physical system which

: is 'idealized’ by the diffusion model. The general ideas carry over to more

-_:S general spaces (e.g., to measure valued processes).
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2. Wcak Convergence

Let C'[0,0) denote the space of Rf-valued continuous functions with the
sup norm topology on bounded intervals, and let D[0,») denote the space of
Rf-valued functions which are right continuous and have left hand limits.
Endow D'[0,») with the Skorohod topology [2). Our processes (except for the
discrete parameter case) have values in C%, but it is easier to prove tightness in
D', and then to show that all limits are continuous.

Let F§ denote the minimal c-algebra over which {x€(s),t€(t), s ¢ t} is
measurable, and let E§ denote expectation conditioned on FE Let f(.) be
progressively measurable with respect to {(F§}. We say that f(.) is in D(AF),

the domain of the operator A€ and A€f = g if foreach T < o

ig’lp Elg(t)l < @, E|g(t+8) - g(t)) -0 as 6 1 0, each t,

IEf f(t+8) - f(1) )
ppEE s s0] <o
$>0
E(t+8) - f(t
lim E Ef(t+8) - £() - g(t)l -0, each t.
610 ]

If f(.) € D(Af) then ([3], [6))

t
(2.1) £(t) I A€f(s)ds is a martingale
0
and
t4s A
(2.2) EEf(t+s) - f(1) = I EE A€ f(u)du.
t

The following condition for tightness in D'[0,®) (Theorem 3.4, [3]) is a
sufficient condition for a criterion of Aldous and Kurtz [2]. Let Q dcnote

the continuous real values functions on RT with compact support, and 'C"; the
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subset of functions all of whose mixed partial derivatives of order up to k are

continuous.

Theorem 0.

Let x%(.) have paths in Df[0,«) and lct

(2.3) lim lim P{suplxe(t)l > K]= 0, each T <o,
Ko ¢ t<T

For _each f(.) € (“1‘;’ and T < o let there _be a sequence f€(.) € D(Af)
such that either I or II below hold. Then {x€(-)} is tight in D[0,=).

I. For each T < o, (;\‘f‘(t), e >0, t ¢T) is uniformly integrable and for
each «> 0

(2.4) lim P{suplf‘(t) - f(x€() 2> a] = 0.
€ t<T

II. (2.4) holds and for each T < e There is a random variable B%(f)
such that

Aefe t \< BG f
l."l l'lll P BE f ) K = 0.
1 é ( 'I‘( ) }

Consider a discrete parameter case

€ - € € ;€
Xpp = X5 t Fe(xn’gn)‘

Let FE denote the minimal g-algebra over which (x§, ¢£,, i ¢ n) is measurable,

with E: denoting thc associated conditional expectation. We say that f(.) €

D(Af) if it is constant on each [ne, ne+e) interval, f(ne) is FE-measurable, and
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sup E[f(ne)] < . Then we define
n

Aff(ne) = [Eff(ne+e) - f(ne)l/e,

and the discrete parameter analogs of Thcorem 0 and (2.1), (2.2) hold. In
particular for f € D(4€),

-1 A
ESf(ne + me) - f(ne) = ¢ " T ES ASf(ic).
1=

Let M(®) denote the collection of measures {m(-)} on the Borel subsets of U
x [0,2), where U is compact and m([0,t] x U) = t, for all t > 0. We will be
working with weak convergence of a sequence of M(e)-valued random
variables. Topologize M(=) as follows. Let {f,;(-), 1 < =} be a countable dense
(sup norm) set of continuous functions on [0,n] x U. Let (m,f) = I f(s,a)m(ds

x da), and define

d(m',m") = [ 27d,(m',m"),

where

@ 2°i|(m'-m"f )|
d 'm") = ni
oM’ m") i£1 1+|(m'-m"f )|

When we say that m (-) => m(.) for a sequence of random measures, we

always mean weak convergence in M(=),
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3. Assumptions and Rclaxced Controls

We adopt a particular noise model which is a standard way of modelling
wide band-width noise. The model can readily be generalized, since only a
few properties of the processes are used. The model is convenient also because
the relevant weak convergence results can be easily referred to. A control
u(-) for (1.1) is said to be admissible if it takes values in U, a compact set,
and it is progressively measurable with respect to the o-algebras o{£€(s), s ¢
t).

A random measure m(.) with values in M(®) is said to be an admissible

relaxed control if R) f(s,0)m(ds x da) = (f,m), is progressively measurable with

respect to (Ff} for each bounded continuous f(-). If m(.) is admissible, then

there is a measure valued function my(.) of (wt) such that for smooth {(.)
[ fs,00m(ds x dw) = [ dt [ f(s,0m (de),

and my-) is (weakly) progressively measurable in the sense that J’g ds
J‘f(s,q)m!(dq) is progressively measurable. Let AC€ and RC€ denote the class

of admissible and admissible relaxed controls, repsectively, for (1.1).

Assumptions

Al tE€(0) = L(t/ez), where §(-) is a stationary zero mean process which is
cither (a) stronely mixing*, right continuous and bounded, with the mixing
rate function &(-) satisfying J’: o!/%(s)ds < ® or (b) stationary Gauss-Markov
with an integrable correlation function (which thus must go to zero

exponcntially).

*le., for A o(E(v), v €s\ B a(E(v), v 2 s+t), sAuglp(BlA) - P(B)| € &(s).
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= A2 F(x,8u) = b(x,u) + b(x,t) + g(x,8)/e, where Eb(x,t) = Eg(x,8) = 0 under
‘:t (Ala), and g(x,t) = g(x)t, B(x,t) = B(x)¢ under (Alb). k(.,.) is bounded and
' continuous, and b(-,-), B(-,-), g(-,-) are continuous. The derivative g (-,t) is
: continuous (in x,t). Also b(.,x) satisfies a linear growth condition and a
::\,“ Lipschitz condition in x, uniformly in « € U. Under (Ala), B(-,t), g(-,t),
».: 8,(-,¢) satisfy the same uniform Lipschitz and growth condition, and under
s

(A1b), B(-), g(-) and g,(-) do.
G Define
\T‘ o
- (a(0)) = [ _ Eg(x,&()g' (x,4(0)dt = a(x), _
A = © .
™ bi(x,u) =by(x,u) + J'o E E g, (x,£(1))g;(x,£(0))dt, i €. .
1_:
A3 Suppose that {aij(-)} has a Lipschitz continuous square root o(-).
-x For the problem on [0,T,], the boundedness condition on k(.,.) can be
replaced by a polynomial growth condition. For the average cost per unit time
.:;t problem, the stability methods and assumptions of Section 7 can be used for
7 the same purpose.
,_ The weak convergence and existence (of an optimal control) arguments
‘_-A.': are easier if one works with relaxed controls. It is convenient to work with
3
o relaxed controls on [0,®). If the coatrol problem is of interest on [0,T,] only,
; then define u(-) or m(-) in any admissible way on [T, ®).
,‘ Admissible controls for (1.3) or (3.1) below. An admissible control for
";j"_“ (1.3) is any U-valued function u(.) which is non-anticipative with respect to
- w(.). An admissible relaxed control for (1.3) or (3.1) below is any M(®) valued
l-:j', random variable m(.) such that for any collection {fﬂ(-)) of bounded
' continuous functions fg(-), and each t > 0, {Ig fg(s,m(ds x da)) is
ef‘_:j independent of {w(t+s) - w(t), s >0}. If m(.) is an admissible relaxed control
.
o
S




o ‘>
: .'."".‘J

T

(4

-9-

then there is a (wt-dependent) measure my(-) on the Borel sets of U such that

j‘; [ f(s.0m(ds x da) = j; ds [ f(s,00m,(de), t <o,

for each bounded and continuous f(-) and almost all w. When working with
(1.3) or (3.1), we assume that E(-) and o(-) have the continuity, growth and
Lipschitz conditions ascribed to b(-) and o(.) in (Al1)-(A3). Let AC and RC

denote the class of admissible and admissible relaxed controls, respectively.

Theorem 1.
Let m(.) be_an admissible relaxed control (with respect to a Wiener proces
w(.)). Then there exists a non-anticipative solution to

(3.1) dx = dt [ b(x,my(da) + o(x)dw, x(0) = x,
and
(3.2) E sup Ix(t)]> € K[1 + |x|?],

t¢T

where K depends only on T and on the growth rates and Lipschitz constants
on b(-) and o(.). The multivariate distributions of x(-) depend only on the
multivariate distributions of the random variables {m(B), Borel B}, and on the
fact that m(.) is 'non-anticipative’ (thus if m(-) is replaced by another such
process with the same multivariate distributions, then the multivariate
distributions of x(.) will remain the same).

Define (xﬁ} by x€= xf= x and forn > 1,

nA -
(3.3) xB =xb+ pn 8 [ (xBam,(da) + o(xD)[w(na+a) - w(na)).
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Define x8(.) to be the piecewise constant interpolation (interval A) of {xﬁ}.
Then ther¢ isa K, - 0 as A » 0 (and depending only on T and on the Lipschit
z and growth constants) such that

(3.4) E sup Ix8(0) - x()" ¢ Ky(1 + i)

(KA does not depend on m(-).)

Let m™(.) => m(.), where the m"(.) are admissible with respect to some
Wiener process, and let x"(.) satisfy (3.1) with m(.) = m"™, Then (x(-),m"(.))
=> (x(-),n(-)) where x(.),n(-) satisfv (3.1) for some Wiener process w(.) and
m(-) is admissible with respect to w(-).

Proof. The existence and uniqueness proof for the relaxed control case
follows the same (standard) lines as when an admissible control u(wt) is used,
and is discussed by Fleming {7] and Fleming and Nisio [8]. The proofs of the
estimates (3.2), (3.4) also follow the classical lines. To get the weak
convergence in the last paragraph, it is sufficient to work with the discrete
parameter case (3.3), in view of the uniformity (in m(-)) of K and K, But
the result is obvious for the discrete parameter case, owing to the continuity

of 5(-,-) and the Lipschitz conditions and linear growth conditions. Q.E.D.

For (3.1), define
Ty
R(m) = ,[0 Ik(x(s ),a)m'(dq)ds

where x(-) corresponds to m(-) via (3.1). We sometimes write the solution to
(1.3) or (3.1) as x(u,-) or x(m,-).

Theorem 2. In the class of admissible relaxed controls_for (3.1), there is an
optimal control.
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Proof. The theorem follows from Theorem 1. Simply choose a weakly

convergent subsequence ms(-), 6 - 0, such that R(ms) - inefml:{(m) = R. Denote
m

the limit of {x(mB5,.),m8.)) by (x(m,.)m(.)). Then by Theorem 1, m (.) is
admissible for some Wiener process w(.) and (x(_rﬁ,-),r_n(-),w(.)) solve (3 .1).

By the weak convergence,

T1 Tl
E I Ik(xs(s),q)ms(deda) - E I

Ik(x(s),q)ﬁ(dsxda) = R = R(m)
0

0

Q.E.D.

Since we wish to show (in the following sections) that any smooth and
nearly optimal feedback control for (1.3) is a nearly optimal control of (1.1)
for small ¢ > 0, it is important to know that there is a smooth nearly optimal

control for (1.1). This is shown in the next two theorems.
The chattering lemma.

Theorem 3. For each 6 > 0, there js a piecewise constant admissible control
u®(.) for (1.3) such that

R(u® inf R 5.
(u)(mu€1RC (m) +

Remark. A proof is in [7], [8]. We only give a rough outline of the
construction. Let 'r;l(-) be an optimal admissible relaxed control. Let u{’,
uf be a p-grid in U. Define AP by AP = (a € U: Jcuf] € p). For k 2 n > I,

define

-1
AP = (a€U:(euP€p}- U AP
1

n

o«
»
.

. . P .
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7
1
j;'j For A> 0 and i 2 0, define
' P -
7P = I m (AP)ds,
] iA
,\,,
:‘_ the total integrated time that the optimal relaxed control ’takes values’ in the
,'\ . . . . . . . . . -
A set A,‘l’ in the time interval [iA,iA+A). Define the piecewise constant admissible
Y

control ﬁs(-) by ﬁs(t) = ug for t € A, where ug is any value in U; in general,
set T8(t) = uf on

- n-1 n
E : A : A .
- [(1+1)A + LTt P, (i+1)A + G5 it P], i20, n<k

< Then, for small p and A, ﬁs(-) satisfies our needs, even though the intervals of

constancy are random. )
e We can also get a control whose intervals of constancy are non-random. Let
A, > 0 be such that A/A; = k is a large integer, and write kiA’" = [-riA!"/Al].
Then define ﬁs(-) as #%(.) was defined but with kiA!" A, replacing .,.iA!p, and
on the non-assigned set, simply set u8(t) = uf, where uf is any value in U. For

small A;, A and p, and large k, ﬁs(-) also satisfies our needs.

Theorem 4. For each 6 > 0, there is a piecewise constant (in t) and locally
Lipschitz continuous in x (uniformly in t) control Es(-) such that

< R@®) ¢ inf R(m) + 5.

= (u?) m € RC (m)

o Proof. Fix 6 > 0. By the previous theorem, we can find a A > 0 and an
ﬁj:-f admissible control u®(.), constant on each interval [iA,iA+A), and such that

” R(u® ¢ inf R(m) + 8/4.
m€ RC

N By examining the imbedded Markov chain {x(iA), iA € T,}, we see that there is
_: an admissible control ﬁs(t) which is piecewise constant and has the form ﬁs(t)
B,
End
hSe
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= ud(x(ia), iA) for t €[iA, iA+A) for some function ﬁs(x,t), and is such that
R(u%) ¢ R(u®).

In fact we can suppose that the ﬁs(t) take only a finite number of values

u , U, where k might depend on & but not otherwise on A Let x(.)

P
denote the process corresponding to the control ﬁs(-). Define Bi! = {x:

ub(x,ia) = u,}. There are open sets }Ei‘with smooth boundaries (say, unions of a
finite number of spheres) and whose closures are disjoint and such that (8B

denotes the boundary of the set B)

P(x(ia) € 8Bi} = 0, all i,e, ia € T,

(3.5)

T/ gt P{x(iA) € U (BLAB")} ¢ & /[t + supk(x,a))
i=0 g T T x.g el

For each i, define ﬁs(x,iA) to equal u, on ﬁll’ and use any locally Lipschitz
continuous interpolation for x Lxl ﬁ“ Thus the costs with use of {;8(_) (on
one hand) and use (on the other hand) of ﬁs(x(iA),iA) for t € [iA,iA+A) and each
i differ by at most 6/2. In fact the latter control and 65(.) differ on a set
whose probability is less than §/2 plus the right side of (3.5). Define ﬁs(x,t) =
%(x,ia) for t  (iAia+A).

For small A, the ﬁs(-) satsify our needs. Q.E.D.
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N
w 4. Weak Convergence of and Approximation of the Optimal Controls

for x€(-)

- In this section we work with the control problem on [0,T,] and prove
:}.'_:‘.:j (Theorem 5) that the weak limit of any (weakly convergent) sequence of
“‘h{‘ . . » . .

{ admissible relaxed controls for (4.1) is an admissible relaxed control for (3.1)
l’"\'s and that the corresponding costs converge. Then, in Theorem 6, we show that
any smooth ‘'nearly optimal ' feedback control for (3.1) also is ‘'nearly k

- optimal’ for (4.1) for small e.

'i'{': Let 8, - 0, and let ﬁf(.) be a se-optimal admissible relaxed control for
e the process defined by
=T (4.1) x€ = J‘b(xe,a)m,(da) + b(x6,2€) + g(x&,8%)/ e, H
~Z'-jj.- with cost function (1.2). For convenience, we define all m(.) on [0,»). In the
' analysis below it is convenient (but not necessary) to have I b(x‘(s),a)mt(dq)
:'_ljf' right continuous (in order to be able to readily evaluate AS). Owing to the
\ Lipschitz, continuity and growth conditions, for each e¢ we can suppose
;::‘;::: (w.l.o.g.) that ﬁlf(.), is, in fact, constant on intervals [iag.iag+A,) for small
‘7) enough A
SN Define L™, the infinitesimal operator of x(m,.) defined by (3.1), by
u}_.i-

.':;::- — 1
o L™ (x) = f)(x) Ib(x’“)mc(d“) ts i[j fxixj(x)aij(x).

. ) )

:::-j: Theorem 5. Assume (Al)-{(A3). Then {x‘(ﬁf,-),ﬁf(.)) is_tight in DF0,®) x M(e).
w Let m€(.) => m(.). There is a w(.) such that m(-) is admissible with respect
S to w(-) and (x€(af,.), Af(-)) => (x(m,-),m(-)), where
o
o (4.2) dx = dt I b(x,e)m (da) + o(x)dw.

"(t::’ Also
o
"M'J';'b
.’_:4-2
Y
oo
e Ty
‘\ 4 rY
rar. ":“ PRI .;A.. ..‘;J.A' L < ';;:::‘}-:::1:;::::-‘_» S ':p;‘.:;';" - '.2-“ ,.L;‘;;.'I“;:._- " A.-LAA:— .'- n; .:L:-\.-“\...A;L..; L.. A_L_. s..“ PRSP AAJ




TR

Y

-15-
T

R‘(r?le) =E I II k(x‘(s),a)ﬁl‘(ds x da)
0

T
-E J II k(x(s),e)m(ds x da) = R(f)
4]

Proof. We first work with a truncated system, since tightness is easier to
prove if the x€(.) paths are all bounded (see, e.g., [3), Chapter 3.3 or 4.6.4 or
[9]). Let qy(-) be a twice continuously differentiable function satisfying qy(x)
= 1 for |x] € N, qy(x) = 0 for |x| > N+1 and qu(x) [0,1] for all x. Define
by(x,6) = b(x,adan(x), gy(x.b) = 8(x,8)an(x), etc., and let x€:N(.) denote the

solution to (4.1) corresponding to the use of by, BN, 8y» and m €C.).

Part I. Tightness of {x€ N(.))

Since U x [0,t;] is compact for each t; < =, (ﬁf(-)} is tight in M(=). To
prove the tightness of {x€ N(.)}, we use the first order perturbed test function
method of [3, Chapter 3] (see also [9]). Let f(.) € ¢ g. Then (write x for

x€ N(t) for convenience)
Act(x) = f,:(x)“ by(X,0)ME (da) + by (x,£5(1)) + s;N(x,a‘(t»/eJ1

For arbitrary T < o and for t ¢ T, define f§(t) = f§(x€ N(t),t), where

ff(x,t)

T
I fUX)EE gn(x,8€(s))ds/ €
t

T/e2
e [ U0 ayxt(onas.
t/e?

Under (Ala), f§(t) = O(e). Under (Alb), f&(t) = O(e)lt€(t). In either case

P
sup If§(t)) =0 as e - 0.
t$T

........

________

A aran ke o '""T
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\
s
o We have
g AELE(t) = - 1(x€ N() gy(x & N(1),E6(1))/ e
- 1 ¢T .
i3 + < [ oSt NOES B MO O XN ).
o t
n Define £€(t) = f(x€ N(t)) + f§(t). Then, writing x for x€ ™(t), using the above
results and a scale change s/e? s,
(4.3) AEFE(t) = f)(x) IbN(x,a)rﬁ‘t(da) + f;(x)EN(x,g‘(t))
T/€?
R (K TNERTEY IE NN
s t/€
- 'l‘/e2 .
- + € I \ ds Ef[f;(x)gN(x,g(s))];[I b(x,a)mé(da)
. t/e
+ E(x,c‘(t))].
j' Under (Ala), the second and third terms in (4.3) are O(l). Under (Alb), they
are O()[1 + [£€(t)]?]. Under (Ala), the last term is O(e), and under (Alb) it is
) O(e)[! + |t€(t)?]. In either case the conditions of Theorem 0 hold. Hence
T (x€N(.)} is tight in DT[0,®).
- - Part 2. The martingale problem satisfied by the limit
Let € index a weakly convergent subsequence with limit denoted by xN(),
* n(-), ie, (x&N(), af(.)) => (xN(-), M (-)). There is an (wt)-measurable m ()
| S such that m(U) = 1 and
t A t A
> I If(s,a)m.(da)ds = I If(s,a)m(ds x da)
S 0 0
o
"j:.
L
..:;:
'_'u

. . . N . ) - - vl C

e . .- - - P - R R S . T S - L . - T e s o

. R P R R S et e el s R o A AR Y R AR RS
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for each continuous f(-). This is a consequence of the fact that m{A x [0,t]}
is absolutely continuous for each Borel A, uniformly in wA, which implies
that the (measurable) limit

lkm (M{A x [0,t]} - M{A x [0,t-A]}]/A = m (A)

exists for a.a. (wt) for each Borel A.
Define LY as L™ was defined, but with the use of EN and gy instead of b
and g. Let f(.)€ Cg and define MF(-) by

t

MI(t) = f(xR(D) - £(x(0)) - I Lé f(xN(s))ds.

0

We next show that M?(-) is a martingale with respect to BN(t) = c(xN(s),
m(A x [0,5]), Borel A,s ¢ t).

We know that xN(.) has paths in D'[0,®), but we haven't yet proved that
the paths are in Cf[0,®). There are at most a countable set of t-points such
that P(xN(.) is discontinuous at t} > 0. Denote this set by 7= (r). In what
follows, until continuity is established, the t, t, t+s do not take values in 7.
Let h(.) be bounded and continuous and let t, <t < t4s. Let q, and q, be
arbitrary integers and kj(-) arbitrary bounded and continuous functions. By

(2.1), (2.2), and a change of scale (s/e? - s) for one of the terms, we have
(4.4) Eh(x€: M), (M), . i €y § € @) N(t+5))

- f(x& N (1) + £E(t+s) - £E(D)

+8
- r I £1(x& N(r)by(x€ N(7),0mé(d T x da)
t

t4s -
- EEJ £21(x€ N())by(x€ N(7),8 ¢ N(a)dr

t

t4s T/e2
- I dr Eij [F2x € NDgy(x € M)
t t/e2
E(vV)'en(x€ N(1),8€(m))dv

+ terms which go to 0 in mean as ¢ - 0} = 0.
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. Owing to (2.1) and (2.2), (4.4) holds with or without the Ef term on the right
]
L hand side. Recall that (f,m), = L‘ [ f(s;,0)m(ds x da).
. Now take limits (¢ - 0) in (4.4) and use Skorohod imbedding ([{10],
‘.1&..-' 3 . .
ol Theorem 3.1.1). The imbedding allows us to define the probability space so
'_::f:: that the weak convergence becomes w.p.l. in the topology of the space D[0,®)
x M(®). We use the imbedding without changing the notation, where
convenient. The ff terms in (4.4) disappear as € = 0. Also by the weak
B convergence and Skorohod imbedding,
t4s r a t+s A
I | by(x€ N(7),0)m(d T x da) -I I b(xN(7),00m(dT x da),
- t t
N (kj®), = (kjm),,
D . I : .
:\Q w.p.l,, uniformly on each finite interval. Next consider the second integral
I term in (4.4). We will show that
t4s -
m (4.5) lim E |I EEb \(x€ N(7), £4(m)dr| = 0.
b o
r,.:\:)
?:-';:: Since {x€'N(.)} is tight in DT[0,®) it is essentially a right equicontinuous set in
J the following sense. Given p > 0 and T < o, there is a compact set Qp c
s D[0,T] such that
P(x&N() €0 > 1- 5.
-_:""-:j For y(.) € D'[0,T), define wy[a,b) = supfly(s) - y(t)|: s,t [a,b)} and define
r wy(6) = ‘{?§ inggx wltptiyg)s
A q
-.l_'--j'» where 0 = t; < .. <t, =Tand t;,; - t; > 6.
o Then [1, p. 116]
(o
A
Y
e
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4.6 lim su 6) =0
“o " (VB o W®

Because of this 'equi rightcontinuity' characterization, to get the limit (4.5)

it is sufficient to evaluate

t4s
. - T ,N
lim Tim E It EE by(x€ N(r-8), £4(v)d7|

t4s - -
¢ lim lim E E€ b(x€ N(7-A),t€(7))dr| = lim lim KE.
AL € l L 7- 40 (r-8).8 (1) | Alo e &

There are constants C, and Cl{. depending only on N such that, under
(Ala)

[E€_ pb(x€ N(7-8), tE(T)| € Cyela/e?),
and under (Alb)

[EE_zb(x€ N(7-4),£ ()] € Cllexp - a8/t E(r-a),

where ¢(-) is the mixing rate (Ala) for ¢(-), and exp - Xt is a bound on the
norm of the correlation matrix (under (Alb)). Thus, under (Ala), lim ¢ KZ =
0 for each A > 0. Under (Alb) K§ < O(exp - 2/ €?) Iz*‘lt,‘(-r)ld-r. Thus (4.5)
holds.

By a very similar technique we can show that, as € - 0, the double integral

term in the brackets in (4.4) converges (in mean) to

t

t4s @
(4.7) J' drj ELf ((xN()gn(xN(7), 8(5)) e n(xN(1),£(0))ds.
0

The expectation in (4.7) is over the §(-) only. The xN(7) is considered to be a

fixed parameter when taking the expectation. This last limit result is, in fact,
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a special case of 3, Theorem 5.11]. Thus

S (4.8) RGN, (), L € a5, 5 € ag) - [FGN(4s)) - £(xN()

B - . t46 A

e - I LR f(xN(r)dr] = 0

- t

Since q,, q,, h(.) and the kj(-), t, t, s are arbitrary (with t, t, t+s ¢ I= {r),
*i‘}l‘ the assertion that the M?‘(.) are (BN(t)} martingales is proved.

It follows from the fact that xN(.) solves the martingale problem in

Df0,») associated with the local operator LY that xN(.) has continuous paths
w.p.l.

'.” . ..
v Part 3. Representation of the limit

Define oy(x) = o(x)ay(x). Since the MY (.) are martingales with respect to
BN(1), there is a standard Wiener process wN(-) (augmenting the probability
space if necessary, via the addition of an independent Wiener process if a(.)
is degenerate) such that wN(t) is BN(t) adapted, xN(.) is nonanticipative with

respect to wN(-) and

(4.9) dxN = dt J'BN(XN,a)r?'nt(dq) + on(xM)dwN.

Also, since wN(.) is BN(t) adapted, the m (A x [0,t]) and m (A) are non-
anticipative with respect to wN(.). Hence ﬁ)(-) is an admissible relaxed
s control for the problem with coefficients by, oy,

- Define 7y = min{t: XNty 2 N}. Let w(-) be any Wiener process such that
ﬁl(-) is non-anticipative with respect to w(.). For this pair (4.2) has a uniquec
solution whose distributions do not depend on the particular w(.) (and with no

explosion w.p.l. on any bounded time interval). So does the system (4.9) with

:.’:.E: wN(.) replaced by w(.). Replace wN(.) in (4.9) by w(.). Then the scts {xN(t
',-:::- N ) m(A x [0,t]), Borel A, t < @} and {x(t N Ty), m(A x [0,t]), Borel A, t < =)
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have the same distributions. Since P{ry ¢ T} 0 as N » o for each T < o, we
then have that {x‘(.),ﬁ]‘(-)} is tight and converges weakly to a solution of
(4.2).

The last assertion of the theorem follows from the weak convergence

(x€(.),m€(.)) => (x(-),m(.)), and the continuity of the process x(-). Q.E.D.

Remark. With a simpler proof (not requiring working with {f\n‘(-)}) we
have the following. Let u(-) be a (time-dependent) feedback control which is
continuous in x, uniformly in t on each bounded (x,t) set, and for which the
martingale problem associated with (1.3) has a unique solution. Then x€(u,.)
=> x(u,-). Also R€(u) » R(u).

Theorem 6. Assume (Al1)-(A3). Then for each & > 0, there is a Lipschitz

continuous (uniformlv in t) control UB(.) such that

Lo €6y _ €
(4.10) llem[R (u®) mlgt;{CER (m)] ¢ s.

Proof. Use the u®(.) of Theorem 4. By the weak convergence argument
of Theorem 5, x€(u®,.) => x(u®,.) and R€(u®) - R(u®). The theorem follows

from this since

R€(m€) - R(m) > inf R(m) > R(T%) - &
m € RC

Q.E.D.

(NSO
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5. The Discrete Paramcter Case

An advantage of the weak convergence point of view is that the discrete
parameter case can be treated in almost the same way as the continuous
parameter case. '

Let the system be given by

(5.1) xE =xE+e Jb(xg,q)mn(da) + eb(xE8,) + ve 8(x&L,),

where (¢} satisfies the discrete parameter form of (Ala) or (Alb) and the
conditions on g(-), b(-), B(.) and k(-) in (A2)-(A3) hold. Also, assume that the
discrete parameter relaxed control m (-) depends on {gj_l,xj, j € n) only. For

any admissible relaxed control m(.) for (3.1), define the infinitesimal operator

L™ by (which implicitly defines b(-) and o(-))
L™f(x) = f)(x) J‘ b(x,a)m,(da)
] ®
(52) +5 L EIL8(E,)1 8,ko)

- 1
= fl(x) J‘b(x,cx)mt(dq) + -2-i,£j f"i"j (x)aij(x).

The discrete parameter case can easily be put into the framework of the
last section. The optimal policy for the discrete parameter case would not
usually be 'relaxed’, but it is convenient to represent it as a relaxed control,
since the limit controls might be relaxed. Define x®(.) by x€(t) = x& on

[(ne,ne+e), and define m(-) by

(53) m(A x[0]) = ¢ “:g)'lmn(A) + e(t - e[t/eDm, ) (A).
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= Lets, ~0 and let m €(.)bea se-optimal control for (5.1).

Theorem 7. Under the conditions of this section, Theorems 5 and 6
o hold for the discrete parameter case.

Remark. The proof is nearly identical to that of Theorems 5 and 6. One

uses the discrete parameter versions (in [3]) of the theorems which were cited

to that reference and the definition of f\‘f(ne) and E: given in Section 2.
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6. Average Cost Per Unit Time

In this section, (x€(-),t€(.)) will be a Markov-Feller process with a
stationary transition function when the control is of the feedback form u(x,}),
and §(.) is a Markov-Feller process. Let PM denote the class of U-valued
functions of x for which (1.3) has a unique (weak sense) solution for each
initial condition, and let PM¢ denote the class of U-valued continuous
functions of (x,t) for which the corresponding (x€(.),t€(-)) is a Markov-Feller
process (e.g., PM€ includes all U-valued locally Lipschitz continuous
functions). We work with (6.1), the same system dealt with in the previous

section.

(6.1)  x€ = b(x€u) + b(xE€) + g(x&,8)/e.

Let SR denote the class of stationary admissible relaxed controls for (3.1) such
that for each m(.) € SR, there is a process x(m,-) where the pair (x(m,-),m(-))
is stationary, and define SRE€ analogously for (6.1). When writing
inmeSRF(x(-)) for some function F(.), we infimize the functional values
over these stationary pairs (x(m,-),m(.)).

The cost function (for a relaxed admissible control) is

T
En- -lT— L IEk(x‘(t),q)mt(da)dt = y¢(m)

and, for a feedback control,

T
i IT— j EK(x€(t),u(x E(8),£ )t = y&(u),

0
We define the costs y(u) and y(m) for the controlled diffusion x(.) in the
analogous way.

It is convenient to start our analysis with some additional assumptions.

They will be discussed and sufficient conditions given for them in the next

" lad” Sl V‘Y‘WT
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section.

(C1)-(C4) hold in very many cases of interest. (Cl) and (C3) are basically
uniform (in the control) recurrence conditions. They certainly hold if the
x€(t) are confined to a compact set. But, more generally, if the system has a
stability property for large |x|, then it can often be exploited to get (Cl) and
(C3). See Section 7.3. Also, a nearly optimal stabilizing control for (1.3) is

often a stabilizing control for (6.1).

Cl. There is e, > 0 such that for each & > 0, there are $-optimal controls
u®8(.,.) € PM€ such that {x¢(u®5t), t < ®, € ¢ ¢/} is tight in R".

C2. For each & > 0, there is a continuous &-gptimal control Es(-) in PM for
(1.3) for _which (1.3) has a unique invariant measure u8(.), and such that
ub(.) € PME€ for small e.

C3. For the u®(.) in (C2), {x€(u1), t < ®, ¢ > 0} is tight in R".

inf = inf .
u énPM ¥(u) m é%f( y(m)

Theorem 8 says that if ;8(_) is a 6-optimal control for the diffusion, then

its use with the x€(.) gives a nearly (36-optimal) result for small e.

Theorem 8. Assume (A1)-(A3) and (C1)-(C4). Then for each & > 0, and small

€,

(62)  y€(ud) ¢ Ly + 38,

Proof. Fix & > 0. uB(.) will be the function defined in (C2), and u€38(.)
will be the function defined in (Cl). Let P"f’(x,g,t,-) denote the transition
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function for the Markov-Feller process (x€(-), £€(-)), under the control u€5(.).

Define the measures

T
PS8(.) = l——E I P€5(x€(0),€(0),t, - )dt,
0

~

where the average E is over the possibly random initial condition (x€(0),
£€(0)). Then

63 v4u®) = im [ PeSx x dpkouu®Senp)

Let t€(t) take values in R¥ and let M(0) denote the set of probability
measures on R with the weak topology. By (Cl), the set of M(0)-valued
measures (P%S(-), T < ®} is in a compact set in M(0). It follows from Bene¥
[11] that the limit of any weakly convergent (in the topology of M(0))
subsequence is an invariant measure for (x€(.), £€(-)), with the control u"8(~)
used.

Let T, - = be a sequence such that it yields the lim ¢ in (6.3) and also

PS B(.) converges weakly to an invariant measure p€8(.) for (x€(.), £€(-)).
n
Thus

y€(u€%) = J k(x,u®8(x,£))n®8(dx x de).

Let (x€(-), E‘(-)) denote a stationary process corresponding to the invariant
measure u€8(.).

Write the control u€8(.) for (x€(.), £€(-)) in the form of a relaxed
control, which we call m®9(.), with derivative mf’f’(-). Let mf’s denote the
measure valued process which is the time derivative of m"s(- x[0,t]). Then
the pair (state, relaxed control derivative) of processes ()?‘(-),mf*s) is
stationary. Alternatively, for any sequence {t} and set of increasing numbers
{s,}, the distributions of ()’E‘(t+ti), m"s(.x[sjﬂ, sj+1+t]),i,j} do not depend on t.

By the stationarity, we can write
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(64)  y€(u®® = E r dt I k(x€(t),a)m&8(de).
0

By (C1), the collection of invariant measures {(u%(.), ¢ > 0} lies in a compact
set in M(0). Thus, by Theorem 35, {)?‘(.),m"s(-)) is tight in DF[0,®) x M(»). Let
¢ index a weakly convergent subsequence with limit (§(~),m5(-)). The limit is
of the form (4.2), with the admissible m8(.) replacing the n(.) there. Let m"_"
denote the measure-valued process which is the time derivative of ms(- x

[0,t]). By the stationarity of (x€(.), mf’s), the limit pair (state, relaxed control #

derivative), (ﬁ(-), m?) is also stationary, and by the weak convergence

1
6.5)  y€(u®% - E J dt I k(x(1),0)myd ).
]

Owing to the stationarity of (§(.),m§), the right side of (6.5) equals

T
(6.6)  y(m® = lim _lr—E I dt I k(x(t),)m§da).
0

We now apply u®(.) to (x€(.), t€(.)). Define I’.‘r's(.) as P%s(.) was
defined, but with (x€(ub,.), ¢4(-)) used. Choose T - = such that PS8(.) =>
n

#€8(.), an invariant measure for (x€(u®,.), t€(-)), and such that
y€(u®) = lim I PS8 (dx x dE)k(x,uB(x)).
n n

Let (X€(.),T€(-)) denote the stationary process corresponding to the invariant
measure 5i€8(.) and control u8(.).

By (C3), {ﬁ"s(.), € > 0} lies in a compact set in M(0). Then, by Theorem
5, {X€(.)) is tight in DT[0,®). Let e index a weakly convergent subsequence
with limit X(.), and control 55(-). Then X(.) is stationary and is, in fact, the
unique stationary process of the form (1.3) corresponding to the control 35(-).
We have, by Theorem 5,
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1 1 _
(6.7) y€(u® = E I k(XE(t),uB(XE(1)))dt = E f k(X(1),uB(X(1)))dt = y(ub).
0 0

Also by the definition of Es(-) and (C4),

-5 .
y(u®) € uéngM y(u) + 8,
(6.8)
. _ » 1)
uempr y(u) = o 1€nsz y(m) € y(mP).

The Theorem follows from inequalities (6.8) and the convergence in (6.5) to
(6.7). Q.E.D.
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7. On (Cl) - (C4)

7.1. Consider (C4) first. Let there be an optimal (average cost per unit
time) policy u(-) in PM for (1.3) and such that the associated diffusion x(.)

has a unique invariant measure which we denote by p"(.). Let the potential

C(x) = r E [(K(X(5).5(x(s))) - yIds
0

and constant y satisfy the Bellman equation

(7.1 y = umei?)[L“C(x) + k(x,u)].

See [12] for one set of conditions guaranteeing this. Let m(.) € SR, with the
associaied stationary process x(m,.) = x™(.) and stationary measure p™(-),
where x™(.) satisfies (4.2) for n(-) = m(.). Suppose that for any such m(.)
with finite y(m),

(7.2) IIC(X)Ium(dX) <e

Then (7.1) implies that forany T < o

T
y T ¢ EC(x™(T)) - EC(x™(0)) + E I
0

I k(x™(t),«)m (da).

Then, by the stationarity of x™(.), y ¢ y(m), and (C4) holds. A sufficient

condition for (7.2) will be given in Subsection 7.3 below.
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72. On Condition (C2).

We use results from [13], where the system % = b(x,u) was assumed to have
a stability property, uniformly in u(.) PM. Write E(x,u) = B(x) + ﬁ(x,u),
where B(.) and B(.) satisfy the conditions on b(.) in (A2), and B(.) and o(-)
are bounded, k(-,.-) is bounded and continuous, and (aij(x)} is uniformly
positive definite and satisfies (A3). The model is such that the stabilizing
effects of B(-) overpower the effects of ﬁ(x,u) for large |x|. This, together
with the positive definitiveness, Will esentially guarantee (C4). To quantify
the stability property for large |x|, let there be a twice continuously
differentiable function V(.) such that 0 € V(x) - ® as |x| - «» and, for some
compact set K and B > 0, L"V(x) € -B, for x € K and all u(.) € PM. (LY is the
differential generator of (1.3).) Let there be ¢ > 0, « > 0, q(x) 2 O such that
L"V%(x) ¢ c-q(x), where inf q(x)/V(x) * « Typically V(.) would be a
Liapunov function for the system X = B(x); e.g., if B(x) = Ax where A is stable
and for Q > 0, P can be defined by A'P + PA = -Q, and we use the Liapunov
function x'Px = V(x). Note that our ¢ and V(x) are called ¢, and W (x) in
[13].

Under the above conditions, Theorems 3.1, 4.2, 4.3 and the proof of
Theorem 4.4 of [13] imply the following facts: To any u(.) € PM, there is a
unique invariant measure p%(.) for (1.3) and {(u"(.),u(-) € PM} is in a compact
set in M(0); let us(-) be a 6/2-optimal control in PM, smooth or not, and let

(7.3)  u™(x) »uB(x) in L,(R"), u"(-) PM.
Then for each Borel set A, u“n(A) - u“s(A) and

n 3]
(7.4) I K(x,uh(x)ue"(dx) ~ Ik(X.us(X))u“ (dx).

These facts imply that for any given &/2-optimal u®(.), there is a locally

Lipschitz continuous u®(.) such that
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¥(@P) - y(u®) ¢ 8/2.

Reference [13] uses a convexity condition ((A3) there) on the set (E(x,U),
k(x,U)} and on U. But, this convexity condition was used only to prove the

existence of an optimal control. The §/2-optiml control always exists.

7.3. On thc Assumption (7.2)
Again, we use results of [13]. Let C(.) satisfy (7.1) and assume the
conditions of Subsection 7.2. Then, {13, proof of Lemma 5.1],

IC(x) € K(1 + V(x)),

for some K < o (our C(x) is called V:(x) in [13]). Adapting the proof of [13,
Lemma 5.1) to our 'relaxed' control case and using the ¢ and & of Subsection

7.2, we get for any M < = and relaxed control m(.).

t
c2 wg I «E min[M,V(x™(s))]ds
0

By the stationarity, the integral equals a«E min[M,V(x™(0))]. Since M is
arbitrary and ¢ does not depend on m(.), (7.2) holds.

On (C1), (C3)

Under a suitable stability condition on the limit system x(.), both (Cl)
and (C3) can be shown via a perturbed Liapunov function method. In
particular, we use some of the results of [3, Chapter 6.6] and [14]. We use the
form b(x,u) = B(x) + AHx,u) and

(1.5) x€ = B(x) + B(x,u) + b(x,£€) + g(x,£€)/¢
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and (A2), (A3), (Ala). Assume that B(.) and f3(~) satisfy the conditions on
b(-) in (A2). Analogous results can be obtained under (Alb), via the method
in {3, Chapter 6.8]. We require the existence of a Liapunov function V(.)
satisfying certain inequalities. In applications, the assumptions are essentially
equivalent to B(-) strongly dominating the effects of the other terms for large
]x).

We begin with an adaptation of a perturbed Liapunov function method of

{14], but with a simpler perturbation. Let V(.) be a twice continuously

differentiable non-negative function such that V(x) - o as [x] = « and (D1)-
» (D4) hold. The K below are constants.
F DI1. There are «a > 0, ¢ < o, such _that
[ V(x)B(x) € -aV(x) + ¢ and [V (x)B(x,u)|/V(x) = 0 as |x| + =,

D2 IV)(x)g(x,)l + [V2(0b(x,8) € K(1 + V(x))
D3. [(V(x)a(x))p(x)l € K(1 + V(x)), for the pairs

q(-) = b(.), p(-) = B(.), B(.), b(-) and g(-), and

a(-) = g(-), p(-) = B(.), B&.), b(.).

D4. [V }(x)g(x,8)]}8(x,8)l/V(x) = 0 as |x| + =
Define VE(t) = VE(x€(t),t), where

(7.6) VEx,t) = J‘»V,:(x)l'it€ b(x,E(s))ds + % I V X)ES&(x,£€(s))ds.
t t

By a change of scale s/e? - s and (Ala), (D2), we get that the first term is
O(e®)[1 + V(x)] and the second is O(e)[l + V(x)l. Define the perturbed
Liapunov function VE&(t) = V(x€(t)) + V(1). Then (write x for x&(t) and

-, e e
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x€ for x€(t), where convenient)
A€V(x) = V2(O[B(x) + B(x,u) + b(x,4€(1) + 8(x,8€(1))/e],

AVE(RD) = VIRB(GEED) - = V200 BLEED)
€

+ I ds[V J(XEE b(x,£E(s)]ix €
t
1 ® -
. :I ds[V JOE§(x, L SN x€ .
t

By using the scale change s/e? = s, (Ala) and (D1) to (D4), we get that
there is 2 function h(x) » 0 such that h(x)/V(x) = 0 as [x] = «® and such that

(1.7) AEVE(L) ¢ -aV(xE(1)) + h(xE(1)).

By the bound on V§(x,t) below (7.6), we can write (for small € > 0)

(718)  ASVEQ) ¢ - ;;VE(x‘(t)) + ey,
for some ¢; < . Inequality (7.8) yields, for some ¢, < =,
(19)  EVE(1) € e ®/ZEVE(0) + ¢,

Now use the bound on V€(x,0) obtained from the estimates below (7.6) to

get that (for some ¢, > 0)

sup EV(x€(1)) < =,
e0>e¢

which yields (C1) and (C3).
By using the method and conditions in [3, Chapter 6.8], the conditions
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(D1)-(D4) can be weakened. In particular, V!(x)B(x) € -aV(x) + ¢ can be
replaced by the condition that V)(x)B(x) € -a < 0 for large |x|, and some « > 0.

8. Extensions

Extensions of the results in Sections 4 to 6 to all the standard control
problem formulations are quite possible. Here, we mention only a few

possibilities.

8.1. Stopping Times
Let G be a bounded open set with a piecewise differentiable boundary,
and define

7¢(m)
R€(m) = E I dsI k(x€(s),)m, (da),
0

7€(m) = inf(t: x€(t) € G),

where x€(.) is the solution to (4.1) which corresponds to m. Define R(m), the
cost for (3.1),)in a similar way, with +(m) = inf{t: x(t) € G).

In extending Theorem 5 to this case, only two problems arise. First, is
supeEx-r‘(m‘) < o for the various sequences {m€(.)} which are used? Second,
if (x€(.), m€(.)) => (x(.),m(.)), do the exit times also converge? The answers
arec affirmative under broad conditions, certainly if (aij(x)) is uniformly
positive definite in G. We discuss the questions in the simple case where
t€(-) is Markov and bounded.

Suppose that there are 6 > 0 and p > 0 such that
(8.1) ing P {x(m,t) € Ng(G), some t € T} > p,

x
m€ RC

where Ng(G) is a s-neighborhood of G and P, denotes the probability given

the initial condition x. Then it follows that there is a p, > 0 such that for any
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sequence of m€(.) ¢ RCE,

(8.2) Llem P t{x‘(m‘,t) ¢ G, some t € 2T} 2 p,.

where th denotes the probability given the initial conditions x,¢&.
Suppose that (8.2) is false. Then therc are € - 0, and (bounded) initial

conditions Xe € G and t > SUch that

(8.3) lim P_ ¢ {x€(m€,t) ¢ G, some t ¢ 2T} = 0.
€ €' €

There is a subsequence (indexed by €) and m(-) € RC such that
{x€(m€,.),m€(.)} => (x(m,.),m(-)}. Then (8.3) is contradicted by (8.1). It
follows from (8.2) that there is an ¢, > 0 such that

su €(m) < o
o0 By M) <

x€G,¢

In the non-degenerate case, if {x€(m€,.),m€(.)} => (x(m,.),m(.)), then the
exit times also converge. This follows from the weak convergence and the

fact that x(m,.) crosses the boundary of G infinitely often in [7(m), T(m)+A4],
for any A > 0.

8.2. Statc Dcependent Noise

The results of Sections 4 to 6 can be extended to the case where the
evolution of ¢€(.) depends on x€(.) or {&¢f} depends on {x§}. The technique is
a combination of the control 'representation' results of this paper, and the
weak convergence methods of the (state dependent noise or singular

perturbations sections of [3]). The main problems concern, as before, tightness

and the representation of the limit as a particular control problem.
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One particular case in [3] concerns Markov (x§, ¢€_,), where if x§ is fixed
at x, the (g:) is a Markov process with a unique invariant measure (see, e.g.,
Chapter 5.8.3 of [3])). Systems such as (1.6), or the wide band-noise driven
o forms can also be treated if the g(-) there does not depend on u.




Lindh Sad S 2t ad ol i Ate Al AMOMAMMALEIS AMtaas s p v peir and ot gt ard i gt i I B A T B ittt Sa B a i Sl sa b Sl Sad Aal tal Sul ol ol Nl Pkl Nl S ek,

References

1. P. Billingsley, Convergence of Probability Measures, Wiley, New York,
1968.

2. T.G. Kurtz, Approximation_of Population Processes, Vol. 36 in CBMS-NSF
Regional Conf. Series in Appl. Math,, Soc. for Ind. and Appl. Math,,

Philadelphia, 1981.

3. H.J. Kushner, Approximation and Weak Convergence Methods for

Random Processes; with Applications to Stochastic Systems Theory, MIT
Press, Cambridge, Mass., USA, 1984,

4. G.L. Blankenship, G.C. Papanicolaou, "Stability and control of stochastic
systems with wide-band noise disturbances II," Preprint, Electrical
Engineering Dept., Univ. of Maryland (1978).

S. A. Bensoussan, G.L. Blankenship, "Singular perturbations in stochastic
control,” Univ. of Maryland, Electrical Engineering Dept. Report, April
1985.

6. T.G. Kurtz, "Semigroups of conditioned shifts and approximations of
Markov processes,” Ann. Prob., 4, 1975, 618-642.

7. W.H. Fleming, "Generalized solutions in optimal stochastic control," Proc.
URI Conf. on Control, 1982, p. 147-165.

8. W.H. Fleming, M. Nisio, "On stochastic relaxed controls for partially
observable diffusions,” Nagoya Math. J., 93, 1984, 71-108.

9. H.J. Kushner, "Jump-diffusion approximations for ordinary differential
equations with wideband random right hand sides,” SIAM J. on Control
and Optim., 17, 1979, 729-744.

10. A.V. Skorohod, "Limit theorems for stochastic processes," Theory of
Probability and its Applications, 1, 1956, 262-290.

1.V, Bene!, "Finite regular invariant measures for Feller processes,” J. of
Appl. Prob., 5, 1968.

12, M. Cox and 1. Karatzas, "Stationary and discountcd control for
diffusions," Report, Columbia University, Statistics Department, 1984,
submitted to SIAM J. on Control and Optim.; also in Proc. 3rd Bad
Honnef meeting on Stochastic Systems, Bonn, 1985.

13. H.J. Kushner, "Optimality conditions for the average cost per unit time
problem with a diffusion model,” SIAM J. On Control and Optimization",
16, 1978, 330-346.




I
LI A

FLE
1 e
oY,

SRRV R AP

LS
A
P

14,  G. Blankenship and B.C. Papanicolaou, "Stability and control of
(_' stochastic systems with wide band noise disturbances,” SIAM J. Appl. "
" Math. 34, 1978, 437-476.

L e P I P T I L T T S L Yl ' RPN SRNS Y
g .\.4‘.'! )_f-’/‘x‘_,&”‘_--4- ;.--_ PR ., N . . " w

RN AR LN
» 'o. M \}‘ RN






