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Nearly Optimal State Feedback Controls for

:j "Stochastic Systems with Wideband Noise Disturbances

by

Harold J. Kushner and W. Runggaldier

Abstract

-- Much of optimal stochastic control theory is concerned with diffusion

models. Such models are often only idealizations (or limits in an appropriate

sense) of the actual physical process, which might be driven by a wide bandwidth

(not white) process or be a discrete parameter system with correlated driving

noises. Optimal or nearly optimal controls, derived for the diffusion models,

would not normally be useful or even of much interest, if they were not also

'nearly optimal' for the physical system which the diffusion approximates. It

turns out that, under quite broad conditions, the 'nearly optimal' controls for the

diffusions do have this desired robustness property and are 'nearly optimal' for

the physical (say wide band noise driven) process, even when compared to

controls which can depend on all the (past) driving noise. We treat the problem

over a finite time interval, as well as the average cost per unit time problem.

Extensions to discrete parameter systems, and to systems stopped on first exit from

a bounded domain are also discussed. Weak convergence methods provide the

appropriate analytical tools. <

7.. . . . .. . . . . . .... . . . . .. . . . . . . . . . . . . . .
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1. Introduction

The paper is concerned with "approximately optimal" controls for a wide

variety of systems driven by wide band-width noise, and their discrete

parameter counterparts. Consider a system of the type

(1.1) xE = FE(xE,kIE,u), x E Rr, Euclidean r-space,

where 6 (.) is a wide band-width noise process (the band-width -, e as E -. 0),

and the cost is

(1.2) RE(u) = E fo k(xE(s),uE(s)),

for some T, < O. When we wish to emphasize the control, we write the

solution to (1.1) as x,(u ,).

For the moment (and loosely speaking) suppose that (1.1) is 'close' to a

controlled diffusion process, modelled by (1.3), in the sense that if u(.) is a

sequence of 'nice' controls for (1.1), then there is a control u(.), and a

corresponding controlled diffusion x(u,.) defined by (1.3), such that as E -. 0,

xE(uE,-) => x(u,.), where => denotes weak convergence (see the next section).

Let u(.) denote an optimal control for the limit diffusion (1.3), and u6 (.) a

'smooth' 6-optimal control, where 6 > 0.

(1.3) dx = b(x,u)dt + o(x)dw

Now apply u6(.) to (1.1). Under fairly broad conditions, it is shown that

(1.4) inf R6(u) ) RE(uB) - S
u ERC

for small e > 0, where RCE are the admissible (relaxed) controls for (1.1)
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(see Section 3). Since ur(.) is only a function of x and t, it would be

considerably simpler than an optimal control for (1.1).

The methods also work well for the discrete parameter case

(1.5) n. = Xn + EF(xG, ,un)"

The (k} and t6(.) can be state dependent, and there are straightforward

extensions to the discounted cost problem, to the problem where the process is

stopped on first exit from a set, to the impulsive control problem, and to the

average cost per unit time case.

The basic technique is that of weak convergence theory [1], [2], [3], which

will be seen to provide a very natural and relatively simple basis for results
of the type presented here. The relevant background results are listed in

Section 2. In Section 3 the problem on a finite interval [0,T11 for a form of

(1.1) is set up, and the assumptions stated. For convenience in dealing with

the weak convergence, as well as to minimize detail and the number of

hypotheses, we work with relaxed controls. The relevant estimates and

approximations (the "chattering" lemma, etc.) are also stated in Section 3. In

Section 4, the results for the finite interval are proved. Section 5 concerns

the discrete parameter case. The average cost per unit time problem is in

Section 6, and extensions are discussed in Section 8.

A related problem is discussed by Bensoussan and Blankenship in [41, (5].
They deal with the particular non-degenerate system

dxE = f(xE,yE,u)dt + eidw

(1.6)

Edyl = g(xE,yEu)dt + .4- dB,

where w(.) and B(.) are mutually independent standard Wiener processes. The

technique in [4,51 concerns an asymptotic expansion of the Bellman equation

associated with the optimal control of (1.6). These expansions are hard to

.. . ..
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carry out, and rely heavily on various non-degeneracy properties associated

with (1.6). In a "linear-quadratic" problem, they show that applying the

.. optimal control for the limit problem to the pre-limit problem gives a cost

increase of O(e). There is negligible overlap in methodology with the ideas

here. We can treat (1.6) if g(.) does not depend on u(.).

The results in [4,5] seem to require an analytical approach, rather than

I our purely probabilistic approach. The methods used here seem quite simple

in comparison, and cover a broader collection of problems. Expansions of the

value functions do not seem to be obtainable by ur methods. On the other

hand, we can show, for many typical problem formulations, that the optimal

or 6-optimal control for the limit system is a good (nearly optimal) control for

the system which is driven by wide band-width noise. Such robustness is an

important part of the statement of the control problem. In fact, the optimal

or nearly optimal controls for diffusion models would not usually be of

interest, were they also not good controls for the actual physical system which

is 'idealized' by the diffusion model. The general ideas carry over to more

general spaces (e.g., to measure valued processes).

,-j

/'o

.5. . .. 5



,-.

-4-

2. Weak Convergence

Let Cr[O,- ) denote the space of Rr-valued continuous functions with the
sup norm topology on bounded intervals, and let Dr[O,m) denote the space of

Rr-valued functions which are right continuous and have left hand limits.

Endow Dr[O,m) with the Skorohod topology [2]. Our processes (except for the
discrete parameter case) have values in Cr, but it is easier to prove tightness in

Dr , and then to show that all limits are continuous.

Let F denote the minimal a-algebra over which {xc(s),tE(t), s < t) is

measurable, and let El denote expectation conditioned on F6 Let f(.) be

progressively measurable with respect to (F6 }. We say that f(.) is in D(Ak),

the domain of the operator k and MEf = g if for each T < *

sup EIg(t)j < *, EIg(t+6) - g(t)l - 0 as 6 1 0, each t,
tT

s EEf(t+s) - f(t)
sup E It <gt) 05,T~st B

6>0

lim El f(t) - g(t)j -. 0, each t.
6 o 6

If f(.) E D(Ae) then ([3], [6])

pt

% (2.1) f(t) - AEf(s)ds is a martingale

and

(2.2) Et f(t+s) - f(t)= EI AE f(u)du.
"t A"" f (du

The following condition for tightness in Dt [0, - ) (Theorem 3.4, [3]) is a

• sufficient condition for a criterion of Aldous and Kurtz [2]. Let , dcnote

. - the continuous real values functions on R" with compact support, and k the
0

, J •



subset of functions all of whose mixed partial derivatives of order up to k are

continuous.

Theorem 0.

Let xE(.) have paths in Dr[0,,*) and let

'- (2.3) lim lira P suplx (t)J > K =0, each T < .
K

-  
E I.; IT

"For each Q(.) E t and T < w* let there be a sequence f'(.) E D(;Ii)

Ssuch that either I or 11 below hold. Then {xc-(.)} is tight in Dr[0,m).

r" I. For each T < **, ()kfl(t), e > 0, t T) is uniformly integrable and for

each cc > 0

S(2.4) lim P'suplfIE(t) - f(xII(t))l > 0t .

11. (2.4) holds and for each T < *There is a random variable B(f)

',2 such that
i sup~ If(t)J <, B'(f)

- (2.5)

" lim lim P{BI(f) > K) = 0.

"Consider a discrete parameter case

P.

x E~~ = x En + FE(Xn', kn).

ubLet F denote the minimal o-algebra over which (xa, i n is measurable,
nnwith E denoting th associated conditional expectation. We say that inu)u

nD(e ) if it is constant on each [n, ne+E) interval, lnt) is FE-measurable, and

ji iWpfulEtI ~ 0

(2 3.-~E L ( each . .. . .-. T .< --.- £. _..,.. . . .,-m. . _. .... .- -.
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sup Elf(nE) < **. Then we define
n

"f(nE) = [Enf(nE+E)- f(nE)]/c,

and the discrete parameter analogs of Thcorem 0 and (2.1), (2.2) hold. In

particular for f E D(A1E),

n4tn- 1 Ef(ie).

Enf(nE + mE) - f(ne) E . Ee Af"n i::n n

Let M(-) denote the collection of measures (m(.)} on the Borel subsets of U

x [0,-), where U is compact and m([O,t] x U) = t, for all t ) 0. We will be

working with weak convergence of a sequence of M(co)-valued random

variables. Topologize M(-) as follows. Let ffni(.), i < -) be a countable dense

(sup norm) set of continuous functions on [0,n] x U. Let (m,f) f f f(s,.)m(ds

x dt), and define

d(m ,m");. 2-nn(m ',m"),
n=1

where

d ( m ', m " ) = l _ ' -h i "2"i1=1 1+I(m '-m"f ")

When we say that m(.) => m(.) for a sequence of random measures, we

always mean weak convergence in M(co).

iA r

r

[ ' . . . . . . . . .. . - • " + ' + + . . . .. . " . . . .. . . . . . . 7 ' ' ] - .' -.- . . ' " l
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3. Assumptions and Rclaxcd Controls

We adopt a particular noise model which is a standard way of modelling

wide band-width noise. The model can readily be generalized, since only a

few properties of the processes are used. The model is convenient also because

the relevant weak convergence results can be easily referred to. A control

* "u(.) for (1.1) is said to be admissible if it takes values in U, a compact set,

and it is progressively measurable with respect to the a-algebras a{kl(s), s

t).

A random measure m(.) with values in M(-) is said to be an admissible

relaxed control if J' f(s,a)m(ds x da) = (f,m) t is progressively measurable with

respect to (F'} for each bounded continuous f(.). If m(.) is admissible, then

there is a measure valued function mt(.) of ((,t) such that for smooth f(.)

f f(s,a)m(ds x d w)= f dt f f(s, )m.(da),

and mro(.) is (weakly) progressively measurable in the sense that ds

-f(s,*)m,(da) is progressively measurable. Let ACE and RCE denote the class

of admissible and admissible relaxed controls, repsectively, for (1.1).

Assumptions

Al_. 0(t) = L(t/e 2 ), where k(.) is a stationary zero mean process which is

either (a) strongly mixing*, right continuous and bounded, with the mixing

rate function o(.) satisfying Mo ¢ 1 /2(s)ds < - or (b) stationary Gauss-Markov

with an integrable correlation function (which thus must go to zero

exponentially).

* .e., for A a(,(v), v . s, B a(k(v), v >, s+t), supIP(BIA) - P(B) 4)(s).
A,B

.o,
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A2. FE(x,ku) = b(x,u) + b(x,t) + g(x,t)/e, where Eb(x,t) = Eg(x,t) = 0 under

(Ala), and j(x,t) = g(x)t, 5(x,t) = 1(x)t under (Alb). k(.,.) is bounded and

continuous, and b(.,.), B(.,.), g(.,.) are continuous. The derivative gx(,t) is

continuous (in x,t). Also b(.,a) satisfies a linear growth condition and a

Lipschitz condition in x, uniformly in a E U. Under (Ala), 1(.,O) g(.,k),

gx(,t) satisfy the same uniform Lipschitz and growth condition, and under

(Alb), 15(.), g(.) and gx(.) do.

Define

{a i(x)} = J Eg(x,t(t))g'(x,t(O))dt = a(x),

bi(x,u) --bi(x,u) + E gi, x (x,t(t))g,(x,t(0))dt, i ( r.

A..3. Suppose that (aij(.)) has a Lipschitz continuous square root u(.).

For the problem on [0,T 1], the boundedness condition on k(.,.) can be

replaced by a polynomial growth condition. For the average cost per uliit time

problem, the stability methods and assumptions of Section 7 can be used for

the same purpose.

The weak convergence and existence (of an optimal control) arguments

are easier if one works with relaxed controls. It is convenient to work with

relaxed controls on [0,*). If the control problem is of interest on [0,T 1 ] only,

then define u(.) or m(.) in any admissible way on [T,*).

Admissible controls for (1.3) pr (3.1) below. An admissible control for

(1.3) is any U-valued function u(.) which is non-anticipative with respect to

w(.). An admissible relaxed control for (1.3) or (3.1) below is any M(-) valued

random variable m(.) such that for any collection {ffi()) of bounded

continuous functions ffi(.), and each t > 0, {f fp(sa)m(ds x da)) is

independent of (w(t+s) - w(t), s >0). If m(.) is an admissible relaxed control

1V

'I..

.4,

.3"
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then there is a (wt-dependent) measure m,(. on the Borel sets of U such that

ft f f(s,ct)m(ds x da) = f ds f f(s,a)m.(da), t <

for each bounded and continuous f(.) and almost all uL When working with

(1.3) or (3.1), we assume that b(.) and a(.) have the continuity, growth and

Lipschitz conditions ascribed to b(.) and a(.) in (A1)-(A3). Let AC and RC

denote the class of admissible and admissible relaxed controls, respectively.

Theorem 1.

Let m(.) be an admissible relaxed control (with respect to a Wiener oroces

w(.)). Then there exists a non-anticipative solution to

*(3.1) dx =dt f bNx,a)mj(da) + a(x)dw, x(O) x,

and

(3.2) E sup Ix(t)12 4 K[1 + 1X12],
t(T

where K depends only on T and on the erowth rates and Lipschitz constants

Qn b(.) and a(.). The multivariate distributions of x(.) depend only on the

multivariate distributions of the random variables (m(B), Borel B), and on the

fact that m(.) is 'non-anticipative' (thus if m(.) is reolaced by another such

torocess with the same multivariate distributions, then the multivariate

distributions of x(.) will remain the same).

Define (xA) by~ xA = 4- x and for n >, 1,

(3.3) xA1 =I + f ds f b(O*~M,(dct) + a(xA)[w(nA&+A) - w(nA&)].
n + n nA- A
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Define xA.) to be the piecewise constant interpolation (interval A) of (xnA}.

Then there is a KA - 0 Us A -- 0 (and depending only on T and on the Lipschit

z and growth constants) such that

(3.4) E sup Ixh(t) - x(t)A2 4 K,&(1 + Ix12)t(T

(K. does not deoend on m(.).)

Let m'(.) => n(.), where the m"(.) are admissible with respect to some

Wiener process. and let xn(.) satisfy (3.1) with m(.) = m n. The.n (xn(.),mn(.))

=> (x(.),nl.)) where x(.),g(.) satisfy (3.1) for some Wiener process w(.) and

m(.) is admissible with restect to w(.).

Proof. The existence and uniqueness proof for the relaxed control case

follows the same (standard) lines as when an admissible control u(w t) is used,

and is discussed by Fleming [7] and Fleming and Nisio [8]. The proofs of the

estimates (3.2), (3.4) also follow the classical lines. To get the weak

convergence in the last paragraph, it is sufficient to work with the discrete

parameter case (3.3), in view of the uniformity (in m(.)) of K and K A. But

* the result is obvious for the discrete parameter case, owing to the continuity

of b(.,.) and the Lipschitz conditions and linear growth conditions. Q.E.D.

For (3.1), define

R(m) = k(x(s),a)m,(da)ds

where x(.) corresponds to m(.) via (3.1). We sometimes write the solution to

(1.3) or (3.1) as x(u,.) or x(m,.).

Theorem 2. In the class of admissible relaxed controls for (3.1), there is an

optimal control.

i~i~ 7



-11-

Proof. The theorem follows from Theorem I. Simply choose a weakly
convergent subsequence m 6 (.), 6 -. 0, such that R(m 6 ) - inf R(m) R. Denote

m ERC

the limit of (x(m,.),m6 (.)) by (x(m,.),m(.)). Then by Theorem 1, m (.) is

admissible for some Wiener process w(.) and (x(m,.),m(.),w(.)) solve (3 .1).

By the weak convergence,

E f fk( x(s),-)m(dsxd -, E f Jk(x(s),a)n(dsxdt)= R= R(m)

Q.E.D.

Since we wish to show (in the following sections) that any smooth and

nearly optimal feedback control for (1.3) is a nearly optimal control of (1.1)

for small e > 0, it is important to know that there is a smooth nearly optimal

control for (1.1). This is shown in the next two theorems.

The chattering lemma.

Theorem 3. For each 6 > 0, there is a viecewise constant admissible control

u6 (-) foLr (1.3) such that

R(u 6 ) 4 inf R(m) + S.
m E RC

Remark. A proof is in [7], [8]. We only give a rough outline of the

construction. Let m(.) be an optimal admissible relaxed control. Let uP

uP be a p-grid in U. Define AP by AP = {a E U: la-ulg ( p). For k >, n > 1,

define

n-1

AP =(ae U:ra-Un(P p) U AP.
n n

. . . . .
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For A> 0 and i 0, define

iA

the total integrated time that the optimal relaxed control 'takes values' in the

set AP in the time interval [iAiA+A&). Define the piecewise constant admissible

control Ur(.) by u6 (t) up for t ( A, where ug is any value in U; in general,

set 0(t) = uP on

TAP), i;A0, n1 k.

Then, for small p and A, Uir(.) satisfies our needs, even though the intervals of

constancy are random.

We can also get a control whose intervals of constancy are non-random. Let

A1 > 0 be such that A/A, k is a large integer, and write 0 P = [T /AII.
Then define ur(.) as was defined but with k4i replacing AP , and

on the non-assigned set, simply set u6 (t) - ugP, where ug is any value in U. For

small 1, and p, and large K, 6(.) also satisfies our needs.

Theorem 4. For each 6 > 0, there is a piecewise constant (in t) and locally

Lipschitz continuous in x (uniformly in t) control u(.) such that

R(u 6 ) ( inf R(m) + 6.
m E RC

Proof. Fix 6 > 0. By the previous theorem, we can find a A > 0 and an

admissible control u6 (.), constant on each interval [iA,iA+A), and such that

R(u 6 ) 4 inf R(m) + 6/4.
mE RC

By examining the imbedded Markov chain (x(iA), iA T4), we see that there is

an admissible control 6 (t) which is piecewise constant and has the form uP(t)

V .'

4.?,

;...,.,,. .. .. ,...-.. •...-".. ... .. ,.... . . •..... . . -... .......... . , .
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= u6 (x(iA), iA) for t E [iA, iA+A) for some function url(x,t), and is such that

R( 6 ) ( R(u 6 ).

-A In fact we can suppose that the P6 (t) take only a finite number of values

up ..... uk, where k might depend on s but not otherwise on A. Let x(.)

denote the process corresponding to the control u6(.). Define B'i = (x:

U6(x,iA&) = u,). There are open sets B'with smooth boundaries (say, unions of a

finite number of spheres) and whose closures are disjoint and such that (8B

denotes the boundary of the set B)

P(x(iA) E O8') = 0, all ij, iA 4 T11

(3.5)
T1 /A- 1

r P{x(iA) E U (B'AB 1)) - /[I + suplk(x,a)J]
i=o x, at

For each i, define i6(x,iA) to equal u. on B , and use any locally Lipschitz

continuous interpolation for x (7 U B' . Thus the costs with use of U6(.) (on

one hand) and use (on the other hand) of i 6(x(iA),iA) for t C [iAiA+A) and each

i differ by at most s/2. In fact the latter control and u6(.) differ on a set

whose probability is less than 6/2 plus the right side of (3.5). Define U6(x,t) =

9i6(x,iA) for t (iAiA+A).

For small A, the Ur'(.) satsify our needs. Q.E.D.

...........................................
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4. Weak Convergence of and Approximation of the Optimal Controls

for xE(.)

In this section we work with the control problem on [0,T1 ] and prove

(Theorem 5) that the weak limit of any (weakly convergent) sequence of

admissible relaxed controls for (4.1) is an admissible relaxed control for (3.1)
and that the corresponding costs converge. Then, in Theorem 6, we show that

any smooth 'nearly optimal ' feedback control for (3.1) also is 'nearly

optimal' for (4.1) for small e.

Let ro -. 0, and let ( be a 6 -optimal admissible relaxed control for

the process defined by

(4.1) x- Jb(xE ,)mt(d*) + b(xe,ke) +

with cost function (1.2). For convenience, we define all m(.) on [0,-). In the

analysis below it is convenient (but not necessary) to have j b(x6 (s),.)mt(da)

right continuous (in order to be able to readily evaluate AE). Owing to the

Lipschitz, continuity and growth conditions, for each E we can suppose

(w.l.o.g.) that in t (.), is, in fact, constant on intervals [iAE,iAE+AE) for small

enough A.

. Define Lm, the infinitesimal operator of x(m,.) defined by (3.1), by

Lmf(x) = f,(x) xa)m(dc) + -i f (x)a.(x)

J~XU~m~UJ 2 ,j~ XiXj

Theorem 5. Assume (AI)-(A3). Then {xE(nf,.),f(.)} is tight in Dr[0,w) x M(-).

Let E(.) > m(.). There is a w(.) such that mn(.) is admissible with respect
-. '.-. to w(. an_d (x ( ,) mf( ) => (im., (.)), wher..... e

(4.2) dx = dt f b(x, )iit(da) + a(x)dw.

Also

. . .".

-. ...
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RE(miE)= E J Jk(xE(s),)n'E(ds xdo)

-. E k(x(s),a)m(ds x da) = R m)

Proof. We first work with a truncated system, since tightness is easier to

prove if the x(.) paths are all bounded (see, e.g., [3], Chapter 3.3 or 4.6.4 or

[9]). Let qN(') be a twice continuously differentiable function satisfying qN(x)

= I for Ixi ( N, qN(X) = 0 for Ixj ; N+I and qN(X) [0,1] for all x. Define

bN(X,o) = b(x,o)qN(x), g(x,) = g(x,t)qN(x), etc., and let x1EN(.) denote the

solution to (4.1) corresponding to the use of bN, bN, gN, and n(

Part I. Tightness of {x, N(-))

Since U x [0,tj] is compact for each t 1 < , { f(.)) is tight in M(-). To

prove the tightness of {xeN(.)}, we use the first order perturbed test function

method of [3, Chapter 3] (see also [9]). Let f(.) E ' . Then (write x for

xe , N(t) for convenience)

x f(X (x)[ Ld bN(X, ) N(x,(t)) + gN(x,(t)/,

For arbitrary T < and for t ( T, define f6(t) = fE(XEN(t),t), where

f (x,t) = J f,(x)EtE (s))ds/6

t

= jT/E fx(X)Et€ gN(x,t(s))ds.
t/ E

Under (Ala), f6(t) = O(E). Under (Alb), f"(t) = O(E)Itc(t)I. In either case

sup f[(t)l-. O as -. 0.

t(T

:- : : .: . " : : • • • - -. . " : . .'. , . " '" , " :-" - -- . :- - ' -.- :: ' ' : .. ' .': ' .' -'.
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We have

Arfff(t) - -f-(xE. N(t)) gN(xE. N(t),tE(t))/,E

df + - t))EgN(x e xEN (t).
1E t

Define fE(t) = f(XE N(t)) + fl(t). Then, writing x for x ' N(t) , using the above
results and a scale change s/F 2 -. s,

(4.3) Aefe(t) = f(x) fbN(xa)m (d) + fxX)bN(x,lt(t))

+ f T /G 2 ds E"[ u(~NXtS,'9(l'~

2
j ds E[f,,x)g (x, (s))],, gf (x, , a(t))

t/

+ J d + b(x,) (t))

Under (Ala), the second and third terms in (4.3) are 0(1). Under (Alb), they

are O(l)[l + It 6 (t)12 ]. Under (Ala), the last term is O(F), and under (Alb) it is
O(C)[1 + Ie(t)12 ]. In either case the conditions of Theorem 0 hold. Hence

{xE N(.)) is tight in Dr[O,.).

Part 2. The martingale nroblem satisfied by the limit

Let t index a weakly convergent subsequence with limit denoted by x N(),
• .), i.e., (xEN(.), f(.)) => (xN(.), n(.)). There is an (wt)-measurable Int(.)

such that mt(U) = I and

"i Jf(sa)r '̂ (da)ds = fo Jf(s' a)mi(ds x da)

0° .
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for each continuous f(.). This is a consequence of the fact that mCA x [O,t])

is absolutely continuous for each Borel A, uniformly in uiA, which implies

that the (measurable) limit

lir [m(A x [0,t]})- m(iA x [0,t-A])]/A - mr(A)
A

exists for a.a. (wt) for each Borel A.

- Define Lm as Lm was defined, but with the use of bN and gN instead of

and g. Let f(.)E t 2 and define MN(.) by

MN(t) = f(xN(t)) - f(x(O))- LM f(xN(s))ds.

We next show that MN(.) is a martingale with respect to BN(t) = axN(s),

-m(A x [O,s]), Borel A. s t.

We know that xN(-) has paths in Dr[O,*), but we haven't yet proved that

the paths are in Cr[O,*). There are at most a countable set of t-points such

that P(xN(.) is discontinuous at t) > 0. Denote this set by 51= (Ti. In what

follows, until continuity is established, the t i, t, t+s do not take values in -51

Let h(.) be bounded and continuous and let t i < t < t+s. Let q, and q2 be

arbitrary integers and kj(.) arbitrary bounded and continuous functions. By

(2.1), (2.2), and a change of scale (s/e 2 -, s) for one of the terms, we have

(4.4) Eh(xE, N(ti),(l., m )i C ( 1' J 2){f ( x 1'N( t + s) )

- f(XEN(t)) + fE(t+S) - fe(t)

- f (X , NN())b(X, N(-r, )rE(d-r x da)

- E J f,'(xE N(.r))bN(X' (T),Q'N(T))d'rt

- ItG dT EErj T/ . 1E2 f',(X 1, ( -r))gN(xE N (Tr),

t(v))]xlgN(X I' N(T),k, €(-r))dv

+ terms which go to 0 in mean as e -. 0) = 0.

,- .- 5... =~ 1. . - - .



Owing to (2.1) and (2.2), (4.4) holds with or without the E' term on the right

hand side. Recall that (f,m)t -t f(s,a)m(ds x da).

Now take limits (e -, 0) in (4.4) and use Skorohod imbedding (110],

Theorem 3.1.1). The imbedding allows us to define the probability space so

that the weak convergence becomes w.p.1. in the topology of the space Dr[0,m)
x M(-). We use the imbedding without changing the notation, where

convenient. The fE terms in (4.4) disappear as e - 0. Also by the weak

convergence and Skorohod imbedding,

46 tirb N(X (T),c) i(dT x da) iteJJ b,,(xN (T), C)r~~~ A

(kjriE)t -- (kj, )t,
.- .,

w.p.l., uniformly on each finite interval. Next consider the second integral

term in (4.4). We will show that

(4.5) lim E I Eb xN(XN ( T ), te(r))dT = 0.

Since {xE.N(.)) is tight in Dr[0,0) it is essentially a right equicontinuous set in

the following sense. Given p > 0 and T < *, there is a compact set n C
Dr[O,T] such that

pj("xe , N E ( p
,P P{ N(.) E }) l - p.

For y(.) E Dr[O,T], define w [a,b) = sup(ly(s) - y(t)j: s,t [a,b)) and define

w (5) = inf max Wy[ti,ti+,),
(ti)  i<q

q

where 0 -t0 < ... < tq = T and ti+ - ti > 6.

Then [I, p. 116]

.. .
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(4.6) 1rn sup w'(6) =0

6 Y( ) E %

Because of this 'equi rightcontinuity' characterization, to get the limit (4.5)

it is sufficient to evaluate

Ifn urn ,I bN,(xE.N (T-A), k'E(T))dTI

li firn lrEEI EA~E(~)~1)dI lr r ~

A10O C A10 E

*There are constants CN and CNI depending only on N such that, under

(Ala)

* IE- b(xE, N(T..A), t"(T))I C )

and under (Alb)

IEE_ b(xE, N(T-,A),tE())I CNI[exp - AC]t(_j

where (-) is the mixing rate (Ala) for t(.), and exp - xt is a bound on the
norm of the correlation matrix (under (A Ib)). Thus, under (AlIa), I rn K E-

6 A

0 for each A > 0. Under (Alb) Kr: < O(exp - )XA/e 2) ft~IE(r)dT. Thus (4.5)

holds. 
f

By a very similar technique we can show that, as e 0, the double integral

term in the brackets in (4.4) converges (in mean) to

The expectation in (4.7) is over the t(.) only. The xN(T) is considered to be a

fixed parameter when taking the expectation. This last limit result is, in fact,
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a special case of [3, Theorem 5.1 1]. Thus

(4.8) Eh(XN(t i),(k j, ~ti i q1, 4 q2) . f(X N(t+S)) -f(XN(t))

t-.

- .
-

.fx (r)r

Since q1, q2, h(.) and the kj(.), ti, t, s are arbitrary (with ti, t, t+s 3 (T))

the assertion that the MN(.-) are (BN(t)) martingales is proved.

It follows from the fact that xN(.) solves the martingale problem in

Dr[0,m) associated with the local operator Lmthat xN(.) has continuous paths

w.p.l.

*Part 3. Representation of the limit

Define UN(X) G(X)qN(x). Since the MN(.) are martingales with respect to
* BN(t), there is a standard Wiener process wN(.) (augmenting the probability

space if necessary, via the addition of an independent Wiener process if a(.)
* is degenerate) such that wN(t) is BN(t) adapted, XN(.) is nonanticipative with

A A2

Also, since wN(.) is BN(t) adapted, the rn (A x [0,tJ) and rn t(A) are non-
anticipative with respect to wN(.). Henc CC m(.) is an admissible relaxed

pcontrol for the problem with coefficients bN, aN.

-Define TN = min(t: Ix N). Let w(.-) be any Wiener process such that

m(-) is non-anticipative with respect to w(.). For this pair (4.2) has a unique
solution whose distributions do not depend on the particular w(.) (and with no

explosion w.p.s. on an, bounded time interval). So does the system (4.9) with

A A

(".D[,) rpascied by t thN(ca oprao ) ta N.) ha(cntnuuspt

S.r N . Repesntaio Reple in(49myi(tTe hcst

SBTn(t), (A x [Ot), Borel A, t < and wt n T (A x [t]), Borcl A, t <

spac ifnecssar, va te aditin o anindeendnt ienr prces iFa(.
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have the same distributions. Since P(TN T) -- 0 as N -. m for each T < *, we

then have that (xE(,), n(.)) is tight and converges weakly to a solution of

(4.2).

The last assertion of the theorem follows from the weak convergence

(xE(.),nE(.)) => (x(.),rn(.)), and the continuity of the process x(.). Q.E.D.

Remark. With a simpler proof (not requiring working with (M^n(.)}) we

have the following. Let u(.) be a (time-dependent) feedback control which is

continuous in x, uniformly in t on each bounded (x,t) set, and for which the

martingale problem associated with (1.3) has a unique solution. Then xE(u,.)

=> x(u,.). Also RE(u) - R(u).

Theorem 6. Assume (AI)-(A3). Then for each 6 > 0, there is a Linschitz

continuous (uniformly in t) control Ur(.) such that

(4.10) lim[RE(US) - inf RE(m)] , .
E m ERCE

Proof. Use the u6(.) of Theorem 4. By the weak convergence argument

of Theorem 5, x"(u 6 ,-) => x(u 5 ,.) and RE(uB) -. R(u 5 ). The theorem follows

from this since

RE(n^E) .R(nm) > inf R(m) > R(i 5 ) -r
m E RC

Q.E.D.

,% .- C - .-

. . . . . . . .
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5. The Discrete Parameter Case

An advantage of the weak convergence point of view is that the discrete

parameter case can be treated in almost the same way as the continuous

parameter case.

Let the system be given by

(5.1) x+ 1  n + e Jb(xn'a)mn(d t) + eb(xn') + VIE g(Xn'l

where { n) satisfies the discrete parameter form of (Ala) or (Alb) and the

conditions on g(.), b(.), b(.) and k(.) in (A2)-(A3) hold. Also, assume that the
discrete parameter relaxed control m(.) depends on , j n) only. For

any admissible relaxed control m(.) for (3.1), define the infinitesimal operator

Lm by (which implicitly defines b(.) and a(.))

Lmf(x) = f I(x) fb(x,ct)mt(dc)

(5.2) + - _E E[fQ(x)g(x,[n)]J, g(xA o)2 c

a f I(X) X mt(da) + -2 f xix (x)a.j(x).

The discrete parameter case can easily be put into the framework of the

last section. The optimal policy for the discrete parameter case would not

usually be 'relaxed', but it is convenient to represent it as a relaxed control,

since the limit controls might be relaxed. Define xE(.) by xE(t) xE on

[nE,nE+lE), and define m(.) by

[t/E1-I
(5.3) m(A x [O,t]) = n mr(A) + E(t - E[t/E])m t / . (A).

n -. "

4". ,
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Let 5E -. 0 and let Mn E(.) be a 6 E optimal control for (5.1).

Theorem 7. Under the conditions of this section, Theorems 5 and 6

hold for the discrete parameter case.

Remark. The proof is nearly identical to that of Theorems 5 and 6. One

uses the discrete parameter versions (in [3]) of the theorems which were cited

to that reference and the definition of kEf(ne) and EcE given in Section 2.

Ln

0

. V -VN
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6. Average Cost Per Unit Time

In this section, (xE(.),kE(.)) will be a Markov-Feller process with a

stationary transition function when the control is of the feedback form u(x,k),

and i(.) is a Markov-Feller process. Let PM denote the class of U-valued

functions of x for which (1.3) has a unique (weak sense) solution for each

initial condition, and let PME denote the class of U-valued continuous

functions of (x,k) for which the corresponding (xE(.),lE(.)) is a Markov-Feller

process (e.g., PME includes all U-valued locally Lipschitz continuous

functions). We work with (6.1), the same system dealt with in the previous

section.

(6.1) xE = b(xE,u) + b (x , 6) + g(x', )/e.

Let SR denote the class of stationary admissible relaxed controls for (3.1) such

that for each m(.) E SR, there is a process x(m,.) where the pair (x(m, .),m(.))

is stationary, and define SR6 analogously for (6.1). When writing
*:: infm £sRF(x(.)) for some function F(.), we infimize the functional values

over these stationary pairs (x(m,.),m(.)).

The cost function (for a relaxed admissible control) is

lim - Ek(x6(t),*)mt(da)dt y(m)

and, for a feedback control,

- rT
lim - Ek(xE(t),u(x1(t),c(t))dt y(u).

T T

We define the costs y(u) and y(m) for the controlled diffusion x(.) in the
analogous way.

It is convenient to start our analysis with some additional assumptions.

They will be discussed and sufficient conditions given for them in the next

-.
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section.

(Cl)-(C4) hold in very many cases of interest. (Cl) and (C3) are basically

uniform (in the control) recurrence conditions. They certainly hold if the

xE(t) are confined to a compact set. But, more generally, if the system has a

stability property for large IxI, then it can often be exploited to get (Cl) and

(C3). See Section 7.3. Also, a nearly optimal stabilizing control for (1.3) is

often a stabilizing control for (6.1).

CJ. There is co > 0 such that for each 6 > 0, there are 6-optimal controls

uE(.,.) E PME such that {xE(u6,6,t), t < a, ( E ) is tight in R'.

C2. For each 6 > 0, there is a continuous 6-optimal control uj6(.) in PM for

(1.3) for which (1.3) has a unique invariant measure i'(.), and such that

u6 (.) E PMe for small e.

C3. For the u6 (.) in (C2), (xE(u6,t), t < e, e > 0) is tight in R".

C4.

inf y(u)=m nf y(m).

Theorem 8 says that if u0(.) is a 6-optimal control for the diffusion, then

its use with the x"(.) gives a nearly (36-optimal) result for small e.

Theorem 8. Assume (AI)-(A3) and (C1)-(C4). Then for each 6 > 0, and small

(6.2) yE((u6) upfMEY6(U) + 36.

Proof. Fix 6 > 0. u6(.) will be the function defined in (C2), and uE, 6(.)

will be the function defined in (CI). Let PEA(x, ,t,.) denote the transition
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function for the Markov-Feller process (x16(-), k1E(.)), under the control uE,6(.).

Define the measures

PE6 = IE PE1(x1E(O),tE(O),t,.)dt,
T T f

where the average E is over the possibly random initial condition (xE (0),

t"( 0 )). Then

(6.3) Y 6(UE, 6 ) = li7m f Pl.'8(dx x dk)k(x,u' 6(x,t)).

Let ItE(t) take values in R k, and let M(O) denote the set of probability

measures on Rri with the weak topology. By (Cl), the set of M(O)-valued

measures {PE,' 6(.), T < -) is in a compact set in M(O). It follows from BeneX-

[111 that the limit of any weakly convergent (in the topology of M(O))

subsequence is an invariant measure for (x"(.), tc-) with the controluE()

used.

Let Tn be a sequence such that it yields the Ii m T in (6.3) and also

converges weakly to an invariant measure ;LE,6(.) for (x"(-), tE(-)).
Tn

Thus

C- IE,S) -Jk(x,uE,6(x,t))LE~r(dx xdt).

Let (X^E(-), ^'E(.)) denote a stationary Drocess corresponding to the invariant

measure ge' (.).

Write the control uE~rB(.) for (x() ) in the form of a relaxed

control, which we call mE, 6(.), with derivative m' 6 (.). Let m1EA6 denote the

measure valued process which is the time derivative of m", 6(. x[O,t]). Then

the pair (state, relaxed control derivative) of processes (x E(_),ME~rB) is

stationary. Alternatively, for any sequence (ti) and set of increasing numbers
the ditribuions f{E(t+ti), mIE,( . x[S+t. s ++tI),ij} do not depend on t.

By the stationarity, we can write
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(6.4) ye(uE'B) E E tkx~)oLm~3d)

By (CI), the collection of invariant measures (jLcE,(.), e > 0) lies in a compact

set in M(O). Thus, by Theorem 5, {EA(.),m*, 6(.)) is tight in Dr[O,-) x M(-). Let

iE index a weakly convergent subsequence with limit (()m .).The limit is

of the form (4.2), with the admissible mr3(.) replacing the n(.) there. Let ms

denote the measure-valued process which is the time derivative of m6 (.x

[O,t]). By the stationarity of (xE(.), mErB), the limit pair (state, relaxed control

derivative), (X(.), in!) is also stationary, and by the weak convergence

(6.5) YE(uE,6) - E Jdt Jk((t),)m, d).

Owing to the stationarity of r()m), the right side of (6.5) equals

(6.6) yA 6  r -EJd 0(t),a)m~d)

We now apply u r(.) to (xIE(.), E()*Define PE4r3(..) as P4'6r(.) was

defined, but with (xE(-U6,.), tE.) used. Choose Tn . such that P4~r6(.) =>

iiAan invariant measure for (x6(ur,.), tf(.)), and such that

yE(u) lim JP4'6 (dx x dt)k(x,u6 (x)).

Let (V(.,t() denote the stationary process corresponding to the invariant

measure jje~r(.) and control _Ur(.).

By (03), (4'E,r( > 0) lies in a compact set in M(O). Then, by Theorem
5,(E() is tight in Dr[0,-). Let e index a weakly convergent subsequence

with limit 9(.), and control u6 .. Then 3 (.) is stationary and is, in fact, the

unique stationary process of the form (1.3) corresponding to the control U-6 ()

We have, by Theorem 5,
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(6.7) Y C(U6) =E fk(3ZE(t),u6(xC(t)))dt -. E Jk(R(t),u6(R(t)))dt y(u6).

Also by the definition of u6 (.) and (C4),

iiU n f y(u) + 6,

(6.8)

i nf y(u) = inf y(m) y(m6 ).
uE Pm m ESR

The Theorem follows from inequalities (6.8) and the convergence in (6.5) to

(6.7). QE. D.
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7. On (CI) - (C4)

7.1. .9njider (C4) first. Let there be an optimal (average cost per unit

time) policy u(.) in PM for (1.3) and such that the associated diffusion x(.)

has a unique invariant measure which we denote by Lu(.). Let the potential

CQx) JE.k(x(s),u(x(s))) - y]ds

and constant y satisfy the Bellman equation

(7.1) y = min [LuC(x) + k(x,u)].
uEU

See [12] for one set of conditions guaranteeing this. Let m(.) ESR, with the

associaed stationary process x(m,.) x'(.) and stationary measure Am(.),

where xm(.) satisfies (4.2) for n(.) = m(.). Suppose that for any such m(.)

with finite y(m),

(7.2) JIC(x)Ipzm(dx) < .

Then (7.1) implies that for any T < w

y T % EC(xm (T)) - EC(x m (0)) + E k(x m (t),a)mt(da).

Then, by the stationarity of xm(.), y ( y(m), and (C4) holds. A sufficient

condition for (7.2) will be given in Subsection 7.3 below.

?.,A

-v

*A J ' 'g -
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72 On Condition (C2).

We use results from [131, where the system I b(x,u) was assumed to have

a stability property, uniformly in u(.) PM. Write b(x,u) = B(x) + f(x,u),

where B(.) and A(.) satisfy the conditions on b(.) in (A2), and B(.) and o(.)

are bounded, k(.,.) is bounded and continuous, and {aij(x)) is uniformly

positive definite and satisfies (A3). The model is such that the stabilizing

effects of B(.) overpower the effects of fi(x,u) for large lxI. This, together

with the positive definitiveness, will esentially guarantee (C4). To quantify

the stability property for large Ixi, let there be a twice continuously

differentiable function V(.) such that 0 ( V(x) -. as Ixi * and, for some

compact set K and 0 > 0, LUV(x) -fi, for x [ K and all u(.) E PM. (LU is the

differential generator of (1.3).) Let there be c > 0, a > 0, q(x) , 0 such that

LuV 2(x) 4 c-q(x), where infxq(x)/V(x) , a. Typically V(.) would be a

Liapunov function for the system I = B(x); e.g., if B(x) = Ax where A is stable

and for Q > 0, P can be defined by A'P + PA - -Q, and we use the Liapunov

function x9 Px = V(x). Note that our c and V(x) are called c2 and Wl(x) in

[13].

Under the above conditions, Theorems 3.1, 4.2, 4.3 and the proof of

Theorem 4.4 of [13] imply the following facts: To any u(.) E PM, there is a

unique invariant measure ;Lu(.) for (1.3) and (jLu(.),u(.) E PM) is in a compact

set in M(0); let u6(.) be a 6/2-optimal control in PM, smooth or not, and let

(7.3) un(x) -. u6 (x) in L1 (Rr), un ( -) PM.

Then for each Borel set A, un(A) I j (A) and

(7.4) k(xun(x))u (dx) k(x,u6(x))vu 6 (dx).

These facts imply that for any given 6/2-optimal ur(.), there is a locally
-. Lipschitz continuous u 6(.) such that

.. . . . - .. - .
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y(iU), y(u6) ( 6/2.

Reference [13] uses a convexity condition ((A3) there) on the set {b(x,U),
k(x,U)) and on U. But, this convexity condition was used only to prove the

existence of an optimal control. The 6/2-optiml control always exists.

7.3. On the Assumption (72)

Again, we use results of [13]. Let C(.) satisfy (7.1) and assume the

conditions of Subsection 7.2. Then, [13, proof of Lemma 5.1],

IC(x)l K(I + V(x)),

for some K < m (our C(x) is called V'(x) in [13]). Adapting the proof of [13,
Lemma 5.1] to our 'relaxed' control case and using the c and a of Subsection

7.2, we get for any M < - and relaxed control m(.).

c > lim J E min[M,V(x m(s))]ds

By the stationarity, the integral equals aE min[M,V(x m(O))]. Since M is

arbitrary and c does not depend on m(.), (7.2) holds.

On (CI), (C3)

Under a suitable stability condition on the limit system x(.), both (Cl)

and (C3) can be shown via a perturbed Liapunov function method. In

particular, we use some of the results of' [3, Chapter 6.6] and [14]. We use the

form b(x,u) = B(x) + BWx,u) and

(7.5) xe = B(x) + B(x,u) + b(x,tE) + g(x,t )/e

.' - " . - ' " - " - " - '- " ' - - . -' - - .. "- " - - - " - -" ' . " - . ."
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and (A2), (A3), (Ala). Assume that B(.) and ~()satisfy the conditions on

b() in (A2). Analogous results can -be obtained under (A Ib), via the method

in [3, Chapter 6.81. We require the existence of a Liapunov function V()

satisfying certain inequalities. In applications, the assumptions are essentially

equivalent to B(.) strongly dominating the effects of the other terms for large

jxj.
We begin with an adaptation of a perturbed Liapunov function method of

[141, but with a simpler perturbation. Let V(.) be a twice continuously

differentiable non-negative function such that V(x) -. mas jxj -. and (D])-

(D34) hold. The K below are constants.

D1. There are a > 0, c < msuch that

V Igx)B(x) 4 -ctV(x) + c and IV.I(x~fx,u)l/V(x) -. 0 as lxi -

D21 JVx'x)g(x,k)I + lVx1(x)b(x,Ol ( K(l + V(x))

D3. f(V,(x)q(x),'p(x)I 4 K(l + *V(x)), for the pairs

q(-) =b(-), p(.) B(.) B(.), b(-) and g(.), and

L4. I[V.'(x)g(x,t)],g(x,t)I/V(x) - 0 n~ lxi-

Define Vf(t) =V"(x6(t),t), where

(7.6) VI(x,t) = V(x)EI b(x,tc(s))ds + - JV(x) E t%(x, k(s)) ds.

By a change of scale s/e 2 _. s and (Ala), (D2), we get that the first term is

O(6 2)[l + V(x)] and the second is O(e)[l + V(x)1. Define the perturbed

Liapunov function V'E(t) V(xE(t)) + VI(t). Then (write x for x'E(t) and
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xE for x6(t), where convenient)

i'.V(x) = Vx(X)[B(x) + B(x,u) + b(x,tl(t)) + g(xt"(t))/F] ,

.AVf(x ,t) = -Vx(x)b(x,W(t)) - -V(X) g(x, E(t))

+ J ds[Vx(x)Et b(x,6 (s))1,x I

+ d [V(x)E g(x,'6(s))]x xf

By using the scale change s/e 2 -. s, (Ala) and (DI) to (D4), we get that

* there is a function h(x) > 0 such that h(x)/V(x) 0 as lxi - and such that

(7.7) MZVE(t) ( -aV(xE(t)) + h(xE(t)).

By the bound on Vf(x,t) below (7.6), we can write (for small E > 0)

(7.8) AEV6(t) - 2VE(x6Et)) + C IS
2

for some c1 < e. Inequality (7.8) yields, for some c2 < *,

(7.9) EVE(t) ( eat/2EVE(0) + c2.

Now use the bound on VE(x,0) obtained from the estimates below (7.6) to

get that (for some co > 0)

sup EV(xE(t)) < *,
EOE,t

which yields (Cl) and (C3).

By using the method and conditions in [3, Chapter 6.8], the conditions

iMIA"

.......................................

. ..

- . .o



-34-

(DL)-(D4) can be weakened. In particular, V,'(x)B(x) 4 -aV(x) + c can be

replaced by the condition that Vx'(x)B(x) -a < 0 for large lxi, and some a > 0.

8. Extensions

Extensions of the results in Sections 4 to 6 to all the standard control

problem formulations are quite possible. Here, we mention only a few

possibilities.

8.1. Stopping Times

Let G be a bounded open set with a piecewise differentiable boundary,

and define
TE~

RE(m)= E o dsj k(xI(s),c)m,(d a),

-rE(m) = inf(t: xE(t) q G),

where x6(.) is the solution to (4.1) which corresponds to m. Define R(m), the

cost for (3.1) in a similar way, with -r(m) = inf(t: x(t) g G).
In extending Theorem 5 to this case, only two problems arise. First, is

supEXT(m ) < - for the various sequences {mE(.)) which are used? Second,•~ XO

if (x6(.), mE(.)) => (x( . ),m( . )), do the exit times also converge? The answers

are affirmative under broad conditions, certainly if {aij(x)) is uniformly

positive definite in G. We discuss the questions in the simple case where
- tk(.) is Markov and bounded.

* Suppose that there are 6 > 0 and p > 0 such that

(8.1) igf Px(x(m,t) € N6(G), some t T) >, p,
*g mE RC

where N6 (G) is a 6-neighborhood of G and P. denotes the probability given

the initial condition x. Then it follows that there is a p, > 0 such that for any

Za -
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sequence of m'(.) E RCE,

(8.2) lir P, {xE(mEt) f G, some t ( 2T) >, pl.

where Px, denotes the probability given the initial conditions x,t.

Suppose that (8.2) is false. Then there are E -. 0, and (bounded) initial

conditions xE E G and t., such that

(8.3) lim P f(xE(mE,t) £ G, some t ( 2T} = 0.E Px .

There is a subsequence (indexed by E) and m(.) E RC such that

(xE(mE,.),mE(.)) => (x(m,.),m(.)}. Then (8.3) is contradicted by (8.1). It

follows from (8.2) that there is an Eo > 0 such that

sup E,t T(m) < W.
•. 0>0

xEG,t

In the non-degenerate case, if {xE(mr,:.),m(.)) => (x(m,.),m(.)), then the

exit times also converge. This follows from the weak convergence and the

fact that x(m,.) crosses the boundary of G infinitely often in [T(m), T(m)+A],

for any A > 0.

8-2. Statc Dcpcndcnt Noisc

The results of Sections 4 to 6 can be extended to the case where the

evolution of 0(.) depends on xE(.) or (t") depends on (x ). The technique is

a combination of the control 'representation' results of this paper, and the

weak convergence methods of the (state dependent noise or singular

perturbations sections of [3]). The main problems concern, as before, tightness

and the representation of the limit as a particular control problem.
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One particular case in [31 concerns Markov (x , n n), where if xnE is fixed
nn

at x, the ([) is a Markov process with a unique invariant measure (see, e.g.,

Chapter 5.8.3 of [3]). Systems such as (1.6), or the wide band-noise driven

forms can also be treated if the g(.) there does not depend on u.

. 2
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