AD-A162 234 ASSOCIATIVE NETHORKS ON A MASSIVELY PARALLEL COMPUTER
(U) DUKE UNIV DURHAM NC DEPT OF COMPUTER SCIENCE
G JACKOWAY OCT 85 AFOSR-TR-85-1858 AFOSR-83-0205
UNCLASSIFIED F/G 9/2

x
-

1S 28 W25
o i
== 5 s 22
il i
= | EX
IL2s s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3

-

o~

T T L2 DL

. = -
.

3

IR

-
pl

I LD PR

[A e A A

-y

w v s o
s Yt

ki

AD-A162 234

ASSOCIATIVE NETWORKS ON A MASSIVELY

PARALLEL COMPUTER

GARY JACKOWAY

 “praiy

REPRODUCED AT GOVERNMENT EXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

* REPRODUCE LEGIBLY.

"4 ad

PRSI - AR OMCW A CReha] - | u P i b e sa i an ot i ot
.
.

RaREEIMERS S LoD SRR IR ol 8 P Shad- sl i atic o7 o pot weiita' . v g g g p gt i g i i g o B A orde et i G e

R R I S SR S

UL TR NN . . P e T TR P S . .

RS DO R T TR P B TS I . P R T o . o . B s e

PO L. . e A I L I S TR ST . T . R Ct e ., . S o
L‘J.:.mem:a_ DEATNEOR Y R B Wi AR VA P L S T S M IR IWIURA SIS W § A T S U W S VNN IR AR WAL A AT T P |

S e T - N rt’ﬁ-" A N W T W T P VORI W W o W
O - - - - - - - - - - - - - - - - - - - e

SECURITY CLASSIFICATION OF A Qm Enisred)

REPORT DOCUMENTATION PAGE BEFORE O oo RM
T REPORT WUMBER 2. GOVY ACCESSION uo1 L RECIPIENT'S CATALOG NUMBER
. - < it 7 6 23‘1‘

6. TITLE (and Subtitle) S. TVYPE OF REPOAT & PEMOD COVERED

Associative Networks on a Massively Parallel Technical paper

C ter

ompute 6. PERFORMING OXG. REPORT NUMBER

7. AUTMOR(s) - 8. CONTRACT OR GRANT NUNMBENRs)

Gary Jackoway ' AFOSR~-83-0205
9. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAI ELEMENT, ’ROJEC'T TASK

Computer Science Department : REA & BORX UNIT WuM

Duke University anoaw

Durham, N.C. 27706 2304 /A7
1. CONTROLLING OFFICE NAME AND ADODRESS - 12. REPORY DATE

October 1985
t3. NUMBER OF PAGES
. 85
Ta. MONITORING AGENCY NAME B ADORESS(!! differant from Cantrolimg Olfice) | 18. SECURITY CLASS. (of thie report)
Air Force Office of Scientific Research ' -

Air Force System Command 3 “’ET’
Bolling AFB ’ s oecLa WNGRADING
Washington, D.C. 20332 scuEouLE
. OISTRIBUTION STATEMENT (of thip Roepors)

A'wmv“d for pu'*lr reicazs,
istribution unlimited

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, It ditfierent from Report)

'8 SUPPLEMENTARY NOTES

19 «KEY WORDS (Continue en reverse side If necessary and identily by blochk mn‘,r)

Associative nets, semantic nets, parallel computation, knowledge structures

20 ABSTRACT (Cantinue en reverse side I neceseary and identtly by Block number)
A generalization of semantic networks, called an associative network

(Findler {1979}), is mapped onto & massively parallel processor which is
currently under development. The results show:

-

- The time required to process -a query is dependent strictly on the pattern
of the query, not on the size of the classes being processed. A system
built using this knowledge representation will give consistent semantic

processing performance. - (cont inued)

”
- .

[00) ‘:2:"" 1473 «oimion oF t wOv 63 18 OBSOLETE

FWY WPy
SECURITY CLASSIFICATION OF ?""'FW'“’

AP RAE AP .. .
. s ~ - . . .
“ _‘,._ _...A AN -

ST ,‘-.‘-.>\~ . AT e e e e

- Ve T i " e t Lt ~" - el N . e e . PR

L 'l (Y ! L(4 S| * . N v -t . . * . . LR DR P T TR - NN ‘o s ~. - . .
~ MA e L-‘ iaais YA ERE RS SALR T SRR W IR TR € S ST T W

| iR A R PR A SR R M St e " 5 B et N A it et b M et el e i e Rl S Dsanh mdiesi

RO. Abstract (continued)

b

- The order of processing a query does not affect the speed. Thus there is no
need for heuristics and monitors to determine the most efficient way to pro-
cess a query. ’

- Although we do not receive anywhere near an n-fold speedup by using n pro-
cessors, we still receive significant performance benefits over a single pro-
cessor. .

- The associative network may be used not just as a semantic network, for
example, it also allows some problems involving numerical minimizations to
be solved efficiently.

The primary result of this work is that a large number of simple processors,
each responsible for a small piece of information, can work in unison to answer
queries significantly faster than a single, highly complex processor can.

=

This paper has the following structure. The first chapter introduces
associative networks by first describing semantic networks and then formalizing
assoclative networks. The second chapter describes the parallel processor
upon which we will implement associative networks. Chapter three describes
this implementation in detail. In chapter four, examples are given and expected
timing results are compared to a sequential method. Chapter five considers
numerical calculations. Finally, chapter six discusses limitations and pos-
sible extensions of this method.

e P e

AR S S e s _-.._-;'__:'.‘,:. ST ..‘,\-,\",:..l-.’-‘._:. S e
5 .._'.-.-‘_-4'.-‘.'-.-_‘}J}Jp“‘rJ§An_-.4.-

ORI
LI BV

2

ASSOCIATIVE NETWORKS ON A MASSIVELY

PARALLEL COMPUTER

GARY JACKOWAY

AIR rorcx
¥OoTICR or ?.,.]:?Z:'? B 6.1 L

L0 Fodiat 2NN
Thiy ¢ :

L
v ¢
L‘ RN

KA THgs v

O (A

Chior, ?colmlcai In
PYT Vs r'.".'ﬁﬁtl;;

«Uivisioeg

~r. RO S e Tl . -l e N el e
SRR . e . RIPEE AN T T N PILIIL I e .. I AN -
T T T e i I G ALY A ORI G T

n PN O I P N N o PP O P P eI RTIRE S S A SR S B PP T P TS st dtba e cn daa s da

T FmE R el WA e T e Y. -
T AT AN T e R N ey _ N e T R W W ey (it et Jhas deun isan o4 4
Rl o« e

- R T N T N ey e, It fintofiar e Ealh olia® o

[}
\-
Associative Networks on a Massively Parallel Computer
Gary Jackoway
Department of Computer Science
r:l:‘t
o
(-7 I
Jccession For o
NTIS C7rgl
DIIC T8
Unannourrad]
Date: Justificatizn
) By . i
Approved: -DE'L_;tributi nn/ N
Availability Codes
Alan ¥. Biermann, Supervisor © lAvail ast/or N
B Dist | Special -
e 8 QUALITV)
R INSPEQTED
Al 25 NS
* .
oS
~
:
g 4 thesis submitted in partial tulfillment of
£ the requirements for the degree of Master
o ©of Arts in the depariment of Computer
" Science in the Graduate School
. of Duke University
'."z] 1984
g
P
¥
-
Lh
'
e L e A o e oA e N T T e e e T e s o

el i

TABLE OF CONTENTS
Introduction ..
Chapter 1: Assocxatxve Networks eesesesnssnsnrararesanens
1.1 Semantic Networks and Naturel Languagecciecivrenicninccneencaees
1.2 AsSOCIAtiVE NELWOIKS ..o iectrireccreenacesernns e vasaesseseensnesonasesessasaassans
1.3 Associative Networks: A Numerical Exampleoicenncncecnvenscnnens
Chapter 2: The Boolean Vector Machine ctossuserseassessarase orenssnastessatsanen
2.1 Massive Parallelism teeenesaterearesss senanenns sasene san asasestrseressasannssates
2.2 Organization of the Boolean Vector Mackine
2.2.1 A Typical Processor of the BVMccc......
2.2.2 The Interconnection Network of the BVMccconenicvmcccvcirenennes
2.2.3 Programming Aspects of the BVM ... ercnvccrrcrceeicinesesnennen
Chapter 3: Implementation of an Associative Network on the BVM
8.1 SOME OPlIONS ittt st tee s scsstssas ot st onennasss emstesassre sasocssnssssnsse
3.2 The Implementation Choice ... e
3.3 The Share AlZOTithIm ..c.civieeiecisirncctessttcns e cercvanassmsescasansesancansesanssassans
3.4 Timing Resultls for Selected Operationsccicinniccccssnnsennn
Chapter 4: Implementing Data Bases Ceeeeeesssennens
4.1 A Query Programming LANGUAZE ...ccccvvivciisimiacssnessnanisnsss fonernenssesans
4.1.1 The BYK, as the Language Sees itccucmreccnvnniinncncneneenans
4.1.2 The Language Definitionccccinicicrcnromennssmsnsassssnssen
4.1.3 Specialized Procedures and Functionscceveceeemen...
4.1.4 Network-Specific Constants
4.2 The Family Data Base
4.2.1 What i3 John's JOB?ivccmrmernmmenoniinsinresmecssmessssssenssensnaane
o 4.2.2 Who are John's children? ..o
o~ 4.2.3 Who is the son of John? .
::’_':' 4.2.4 Who are the parents of a tan dog ovner"
o2 4.2.5 What cers are tan? ...
] 4.2.8 Who are Joe's ancestors? weesreessesmeereresaasens
4.3 Anima! Kingdom Data Base: A Hierarchyc.ccomeveeseeroneee
::' 4.3.1 Marking a Hierarchy - .
T €.3.2 Property IDBeritance ..o cermeeesssmmenssesssssssesseseesesssemomnsces
s ¢.3.3 Timing Results for MARKALL and INEERIT —....orovo e
. 4.4 Timing Comparisons with a Sequential Methodevcnenncnccnccens
L od
¢
n
i
4
fres, e :
R P AT A st e N ‘.‘:;‘:’. - o LL; ___;‘- L-; n .

W W re

s
vVNOoOODODOOD

[

13
13
14
15
18

N v b e
- O © ©

BRI NNNNEN

[

Chapter 5: Numerical Data

" 8.1 Representing Number Attributes
5.2 Nurnerical Procedures

$.3 Numerical Queries

5.4 A Map Data Base

$.5 Timing Considerations for the Map Data Base

P L T T T T R T P PR P PR R LAY 2L Y
P T T I R TR YT Y SY P TP PP IY PR e Y LRI L2 2
...

T T e Y T T TR YT PE ¥ L O e P T PRI LT Y]

--

Chapter 6: Extensions And Limitations
6.1 Tabular Output
8.2 Molecules: Complex Object Representation
€.3 Some Practical Questions
8.4 Conclusioncueecesneserenses vonstuastaststanmtans srsssesesaseeRassR et sT nT saseronnereae

Appendix A: The SHARE Algoritbm
A-1 Delinitions
A-2 Theorems for Permuations and Meppingsccuvevvvccrnscvvicnesnnennnns
A-3 Emulating the binary n-cube on the BVM

...
.......................................

S mePEr et s ORI oI estas sV esLsratecBteetEpncasn edosctuserR Rt Sens

..

L T T T T T P P T e L YT PP YPPY

Appendix B: Simulation of Parallel Associative Networks
B-1 A High-Leve! Simulator for the BVMimnncivicinerensnrcnenns
B-2 Control Bit Calculstion
B-3 Implementation of the SEARE Algorithm

.........................

...

T e LR L L LR R LT T

".h ’ ‘s .‘

RIS |~ X ‘.'L"'-“ifs"ﬁ‘l . ".:-;.,:.1; : : N ,;\,“..,‘-. i{ a‘:;.;--

er
[

W R T Wt e L
PR P S Y A SR

T T T sy s gt AT T R T TR W WY
v Ty "y - - hvvwW
B4 r T T T T
M ANERA B A i - il S o had g
- e

SN LN,

e

sr98849

85
85

68

WY W Y e

-

Lol aan o\
Vo v werere Ty -r—w.‘(iVH'vr-vr---[v-vvJvﬁ- """'-’""'V'"'F‘“*“-\. Sovap "_“
e ﬂvm
PN

ACKNOWLEDGEMENTS

1 would like to express my thanks to Hewlett-Packard Company, whose
fellowship program made this work possible.

] also thank Professors Biermann and Wagner for their many hours of
discussions and their strong belief in striving for excellence. Professors
Biermann and Wagner were supported by the Air Force Office of Scientific
Research, Air Force Systems Command under USAF grant 81-0221, thus
giving them the time to belp me.

Sberri Tomboulien bas worked in tandem with me on these problems,
and her endiess enthusiasm has helped me keep going. i
] would also like to thank my wife, Ingrid, for her support and for ber
belp in humanizing my work.

Finally 1 would like to thank Carly, our dog who has laid patiently at my
feet through long nights in front of the computer.

.................

I P L B TR I S] "f T T -
- | e, . S e T N YR CROACR! 3 g \.
" € a -"..- - et - U . -, K “ .‘ e "]-".‘ .'- S - X
i PR RS “"‘ i din it “‘ﬂ“-“"—*““ ‘-"M \A-'lhn_ A_’i.n; AR TR \..u\.\; M A:‘A..'\\L'Lx'i__ - \.L\.

T T e TR TS VY

AR S M A e S~ S e e A e i 8 S £ g 8 e oy
e oy . A L W | T ST RSN S S ity 5 N~ LWL AR R A ~h heta

- INTRODUCTION

Many natural language projects in the past ffteen years bave used
semantic networks as their underlying knowledge representation (Brachman
[1878], Bendrix [1979]). In & separate realm recen! breakthroughs in
very-large scale integration (VLS]) bave lead to designs for machines with
wast numbers of processors (Schwartz [1980], Wagner [1983]). In this paper
we will marry these two technologies. A generslization of semantic
petworks, celled an associative network (Findler {1979]). will be mapped
onto 8 massively parallel processor which is currently under development.

The results shall show:

o The time required to process a query is dependent strictly or
the pattern of the gquery, not on the size of the classes being
processed. A system built using this knowledge represeptstion
will give consistent semantic processing performance,

« The order of processing a query does not atfect the =peed. Thus
there is no need for heuristics and monitors to determine the j
most elficient way to process a guery.

= Altbough we do not receive anywhere near an n-fold speedup by
using n processors, we still receive significant performance
benelits over a single processor.

< Tbe associative network may be used not just as a semantic
network; for example, it also allows some problems involving
numerical minimizations to be solved efficiently.

The primary result of this work is that a large number of simple

processors, each responsible for a small piece of information, can work in

unison to answer queries significantly faster than a single, highly complex

processor can.

i i Al Mt S i D S i 0 s o e - o @ g g o Al gl G 0* B tait e oo 4 D el aade
g e AN e Ne VW woreey
. RACE SN e .

- This paper has the following structure. Tbe first chapler introduces
associative networks by first describing semantic networks and then
formalizing associative networks. The second chapter describes the parallel
processor upon whicth we will implement associative networks. Chapler
three describes this implementation in detzil. In chbapter four, examples are
given and expected timing results are compared to a seguentia! method.
Chapter five considers numerical calculations. Finally, chapter six discusses

limitations and possible extensions of this method.

[s - . wa

E S R . Coe LT) . . [N . -
o*.' LA R Lt . . LI . P . - . e ST S
PR NP NPT W, G G R WA . . . B T T T S PO -

e G PRTOR RY — . - Y ; P AP ST
™ PETT SN, B, PP VAT LY LA P VA SRR SR SR T * i S

e A A A AR B A S 2 LA A o o PR aAde il skl el M e Al D e Ju—
PP AN Ay s T T, . = -

et - PR A |

CHAPTER 1

Associative Networks

Associative networks are a gereralization of semantic networks (Findler
[1878]). Semantic networks have been s common metbod for knowledge
representation in natural language systems {Brachman [1978]). Kendrix
[1879]). Associative networks may be used for virtually any application

whose knowledge base may be represented in network form.

1.1. Semantic Networks and Natural Language

Figure 1.1 shows a par! of a semantic network for a "family" data base.

Nodes are labeled with the names of individuals, classes of individuals,! and
attributes of individuals (such as “tan"). An arc is la'b'e'led witk the
velationship that bolds between the nodes il connects. Most arcs are
directed: “job" points from “John" to "engineer”. (Note that, in the text,

words in double quotes are labels of arcs and nodes.) But other arcs, such as

“married” are undirected; one may represent an undirected arc by two arcs
botb labeled the same, one pointing in each direction. Queries are answered
by trguersing the network. "What is Jane's spouse's job?"' may be answered
by traversing the "married” arc tfrom "Jane” to "John” and then the "job" arc

There are epistetmological problems with mixing the use of individunls and clesses o indi-
viduals. Bven in this simple deta base we can envigion prodlerrs If we try to represent the fact
that there are “lots of dogy” by merely attaching such 8 fact to the dog node. Rather than get-
ting involved in these probiems, it is sufficient to remezber Ltha: we are building an underiying
vepresentation upor which systems of warious kinds may be buit. Brachman [1879] gives a

od summary of the issues rurrounding the represeatation used in this paper. We wil use it
s:nne 1t is Intuitive, DOt Decause we believe it to be theoretically bes:.

NAMR - SN S P 5.0 - fale oy secn

‘‘‘‘‘‘‘‘ R I T I T
Ce " Ll R PR O - T TN

......
tele T .- S . - S T
A ~ PR , R R P IV UL PR B
PSP, L 0 B I S I D LA T Y o e e et e e
el —— R] FPRE_JY U AN SRRy T T N _'._'.‘_‘-~__.-_

N
N
v
-
LIS
L
Ay

-‘
%

SIS

[SR AR S
n_‘q_x- P

3

2ntl |

Y 2wy
r,
2 RT

e WS

PP R R R S S .
L VR TV i N I Y)

Figure 1.1 A small semantic network

to the answer, "engineer”.

Computational complexity rises quickly as the queries become more
involved and larger groups of nodes must be processed. Consider a
semantic network for a company having ten thousand employees, several
pieces of information stored concerning each employee, and a hierarchy of
bosses leading from e dock worker to the president of the company. A query
such as "which female employees have a boss whose boss is female” would

require accessing tens of thousands of records and following at least as

...............

» 0 e "= T AR AL A A N el " B el HI A Sl “Jhedh gl o
by & A T T o o oy T W o W o Wy W g Tog ™y
- e e e e RTRENTR Y

many links.

The possibility of employing a parallel computer to improve the query
processing performance appears fruitful since queries may be processed by
working on sets of nodes at a time. Consider, for example, “¥ho are the
grandchildren of John?" We can think of gathering together the nodes which
are the children of John, giving each of them to & separete processor, and
then baving these processors simultaneously find the grandchildren. We will
see in chapter three that our implementation actually goes a bit farther

tbhan this in building a parallel associative network.

12. Associative Networks

A sgmantic network is loosely defined as a petwork whose arcs and
podes are labeled with words. This dependence on words to give meaning to
the network is both a positive and negative trait (Brachman [1979]). The
definition we give of associative networks eliminates vorci's_ and meanings
altogether in favor of numbers. 1t is assumed to be a function of a higher
level of the system (e. g. a natural language front end) to assign meanings to
these numbers.

In the forward to his book, Associative Networks: Represenlation and
Use of Knowledge by Computers, Findler [1879] describes the difference

[

R e
.

between semantic networks and associative networks as follows:

The main theme of this book b associative networks. [have deliberately
avoided the term semondic networks.... to indicale that the former are more
general in objectives and, possibly. in structure thas the latter. Semantic
metworks aim, 1 believe, st furnishing e representation for linguistic otter-
ances to espture underlying relations of woerds and to produce the informa-
tiop contained in text... Indirectly, they also reveal the intricacies and use
f' . «f language... Associative networlas, or the otker hand, eould, but need not,

be language-independent... Associstive petworks are constructed to serve

: o
e IR
RO

Y Y v vy«
e B
PR IR N R

L]
¢ 0y
-l

y Y e W wm W W T . g Ealk WAt Eani —_— I T
N ETERETES R TE T W TN T W N e W W Saflatolias Jhan Last Sast Bav Ao Bo* et sav DAL= e Cali® S i e b * NS A M AR AR etae e CANE® A airedar oRe" ohad N abac sy |
LA IR IR DL S e R Y

RN

R
7

as the knowledge dase of programs that exhibit some operationa) aspects of
understanding

An associative network can be defined formally es a set of nodes and a
set of ares. A node is simply e positive integer. An arc has three parts: the
from-node, the relation and the to-node. The from-node is the number of
the node from which the arc emanates. The fo-node is the number of the
node to which the arc points. The velation is the object that labels the arc;
for now we will assume that it is an integer. Given the following piece of a

|
semantic network: :]\
|

and the following dictionary:

engineer 1 node
jane 2 node
job 3 arc
john 4 node
married-to S5 arc

the associative network is:

podes: §1,2.4}
arcs: 1(4.5,2),(4.3.1)}
VWithin this simple framework we can represent semantic networks as

well as other types of information.

¥ AT PRSP : .
..Lxg'kitw__. RO -;-_‘-A\;._L: - \{--kA‘; e

ERA

. . 13. Associative Networks: A Numerical Example

As an example of an eassociative network which involves numerical
processing, suppose one wishes to use a computer to find optimal trips
) between cities in the United States. Optimal might mean fastest or shortest.
_ An associative network may be used to build such a data base. Consider an
: .. associative network where the nodes are cities and the relation of an arc is

a triple which bas three parts: a highway number, a distance in miles, and a
. travel time in minutes. {American Automobile Association maps include

estimated times for each major route.) This associative network will allow us

to answer queries such as:

; e What is the fastest route from Baltimore to Richmona?

e« What is the shortest route from Raleigh to Washington DC.

» How long does it take to get from Boston to each city?

e Does the shortest route from Philadelphia to St. Louis use
highway 407 .

Section 5.4 discusses this date base in greater depth.

‘ol e el

Y

________ T T vy e e

\"'"""*‘.r"“'v"‘r*rw--vv—; T TI T Lana

. CHAPTER 2

The Boolean Vector Machine

2.1. Massive Parallelism

In years past, "parallel processing” referred to a few processors
working simultaneously on a relatively short vector of numbers to speed up
pumerical calculations. Recent advances in VLS] technology allow us to
consider building computers which consist of thousands or even millions of
processors, and lead to new ways of thinking about computing (Mago [1980),
Snyder [1982]).

To achieve this massive parallelism, one must use simple processors.
One method employs a single controller responsible for decoding the
machine instruction. Once decoded, the instruction is broadcast.to all
processofs at the same time, and each processor executes t:his instruction
on its local data. This machine organization is called Single Instruction
Muitiple Data (SIMD) (Flynn [i972]). Tbe processors which make up such a

system are generally called Processing Elements (PEs).

Having a million PEs each of which can only operate on its isolated data
is a grave limitation in functionality. Instead an inferconnesction network

peeds to be designed which allows processors io share information. Many

interconnection patterns have been suggested; A good overview is presented
in Feng [1981] which describes mesh, shuffle-exchange, flip, and Benes as

] . well as other interconnection alternatives.

.
-

..,,
y "t Ty
« 27

e . . a
ts, -
LI N

.
sl

’

. - - I R AN B .-
NI I T I RS T , .
,-'.'-':-' N '(et B L Y ¥ .
- " T LN} ™ \1' x ._ A _' e - S S - . . - .
YR N P R T T, T e T e e e e,

14.,1‘1..IL. N ¥) . a3 N
ey VA A VI VLV VL T S T 51 TR

ianiadtaskian bl Al Ahab bt v ta M "Ala itiie il - - < ahe v 4~ v
TR TR Ty T a T hCACS e A% A AN g |
™ e 4 .‘,1....~1_\‘...1x_x~. 2 e S = 4 N A

With the combination of large numbers of processors and a powerfu!

interconnection network, significant time improvements can be achieved

(Schwartz [1980]).

2.2. Organization of the Boolean Vector Machine

The Boolean Vector Machine {BVM) is one such massively parallel
computer (Wagner [1981), Wagner [1883]). The design of the BVM calls for
vne million PEs’ interconnected using cube connected cycles (as shown
below). The next section describes a typical PE and following that the

interconnection network will be described.

22.1. A Typical Processor of the BV

A processor in the BVM is very simple. Each PE has a\;out 200 bits of
local memory. The only calculation a8 PE may make is a bool.ean function of
three variables. (Addition, for example, must be handled bit-wise.) Of the
three input variables, two mx.)'st be from a PE’'s local memory while the third
may be from one of three PEs to which the PE is connected (see the next

section).

1 5 prototype BVM with 2048 PEa is currently unde® coasruction.

e e . .
. A .
PP T e PN &0

......
.....

L e .
L q‘

RIS . e
DR R IR
[P LA S R A

D S . T UL S |

10
222. The Interconnection Network of the BVN

The interconnection network used on the BVM is called cube connected
tycles (Preparata [1881]). It is an outgrowtb of the binary n-cube. In &
binary n-cube, the PEs are numbered from 0 to N-1 for some N = 2% Each
processor may access the n PEs which differ in exactly one of the n bit
positions of the processor number. For example, with N=8, PE O bhas a
lateral connection to PEs 1, 2 and 4; PE 5 is connected to PEs 4, 7 and 1.
Unfortunately, & binary n-cube is too expensive to build. Each PE in a one
million PE machine would neéd twenty interconnections. Instead the BVM

uses cube connected cycles (CCC).

To understand the CCC interconnection network, consider each PE to
be defined uniguely by a pair of integers <cycle-number, element-number>.
Cycle-number ranges from 0 to 2X-1, while element-number ranges from 0
to X-1, for some fixed K. The PE numbered <i,j> is said to be in the ith cycle
and to be in position j within the cycle. There are N=K x 2K process.ors in

the machine. For a machine with one million processors, we have X=186.

The PEs can be seen as residing in an array where each cycle is a row.
The interconnections within ll row are cyclical: PE <ij> is connected to a
successor PE number <i,(j+1) mod K> and a predecessor PE number <i(j-1)

mod K>,

Unlike a mesh-connected system. where each PE would also bhave
connections “north” and "south” (Barnes [1968]), the CCC interconnection
uses 2 zingle connection to the lateral PE. The lateral to a given PE <ij> is
that PE in cycle position j of the cycle whose cycle number differs fromi in
the jtb bit position. Examples: PE <0,0> is connected to PE <1,0>; PE <0,1>
fa connected to PE <2,1>; and PE <15,3> is connected to PE <7,3>. Figure

o PR -

- D o o e s T T T S P P UL UL S S S
MR P

........

S S T e RO P O T AR R LIV SN
o b o B sl o s B

e O T Y L - e - -
- il i g T I T L T N L R T Ty AR DA SULAM S

11

2.1 shows a 64 PE BVM with all of its interconnections. The advantage of this
interconnection pattern is that every PE is no more than 2xK connections
away from any other PE, instead of 2X as it would be if only mesh
connections were supported. Each PE bhas exactly three connections, no
matter what size machine is being built. Note that the CCC has the same
interconnection pattern between cycles as the binary n-cube has between

PEs. This equivalence allows the BVM to emulate algorithms for the binary

Bemant Number

o 1 2 3 °o 1 2 3
° ar-Q—-Q—(;)—Q-
00 A

Eoch circle s 0 processor Une Hordware Link
——— Predecesscr/Succeapor

e Lotarel Unk

Figure 2.1 A BVM with N=84 (K=4)

12

n-cube efficiently (as shown in appendix A).

823. Programming Aspects of the BVM

For our purposes, one can think of programnming the 3VM a§ writing a
program which is executed simultaneously, statement by statement, by each
processor. (We will ignore input/output issues, granting that 1/0 is a
serious gquestion which deserves further study.) We will assume that all
ancillary procedures are available for such standard operations as addition,
multiplication, minimum and maximum. In our timing results, of course, we
will take into account the bit-wise nature of the BVM. [F.THEN ELSE
constructs may be used, but, given the parallelism, both the THEN and ELSE

clauses must be executed serially.

................

- L. .

Vo & a % aar e A
TN Al i b Sl Sl e s s &4 b 8 0t anaion W T T o IR W N TN T g v
. R R p AR Jat g e -

e L A L S Vi ik A drat el “d

RN SMIC AN - ge At [SalcAuRoA & Sadeie 2 0o)]

CHAPTER 3

Implementation of an Associative Network on the BVM

Fahlman [1978] gives an in-depth description of how a semantic
network could use specialized massively paralle] bardware to achieve
dramatic performance improvements. Fahlman [1982] submits a hardware
design for such a machine. This paper attempts a different approach.
Instead of building a machine explicitly for processing networks, we will

adapt the BVM, a general purpose, massively parallel computer.

3.1. Some Options

So far we have seen that associative networks provide a framework for
problem-solving. We bave described the BVM, 2 computer with one million

processors. Now, how can we implement the former on the latter?

A first sttempt might be. to give to each processor one node of the

associative network. This fails for several reasons. First, the number of arcs

) emitting from and pointing to 8 given node is not fixed. Given the limited
wize of a processor’'s local memory, there is no guarantee that all of the
information about & node will fit in a single processor. Second, how does
il one traverse the network? Since each processor has only three links, one
T cannot use hardware links Yor arcs.

Another possibility is to give s single arc to each processor. This solves
H the previous problem of limited space. Each processor maintains its from-
Kl

13

<~
Z
Oy

Ty

Ty LA e N
i . .
. o PP e

'
.

L.

.®

“‘\4 '\ "‘v

DA - DRRES

s ‘_‘A'vk("‘:.:‘—.

H __IJH: X

e S~

. Y -
AR . :
PRTRNS A YRR

A i A AL AN £ i i S ey

R R R R e B T a L

e e e
-'*.- AN e

el Nt adh Mib Dhit i i 2o Ay

14

node and to-node numbers as well as its relation. Once again, however, it is
not at all clear how gueries may be processed. Again consider the query
*Who are John's grandchildren?" To starl, it is easy to find "John's children".
Those processors with "John" as the from-node and parent as the relation
have a child as the to-node. At this point, however, one would bave to
sequentially step through each child to find their children. This defeats the
purpose of introducing parallelismi (Tomboulian [1984] shows a possible

way around this problem)

32. The Implementation Choice

Our implementation of an associative network on the BVM splits
information down to the lowest level. Instead of baving one processor per
node or c;ne processor per arc, we wili have one processor per from-node
and to-node in each arc. Thus, 8 processor only maintains its node number
and relation. The two processors which make up an arc t.a're connected in
bardware by their lateral link (described in section 2.2.3). Thus "job of John
is engineer” consists of two processors: one is & "John" processor with
relation "job”; the other is an “engineer"” processor with relation "inverse
job". (We think of a processor as belonging to the node it contains
information about; thus we say a “John" processor, or a processor with type
"John".) There will be many "John" processors and meny “Jane” processors,
etc. Further, they will be scattered throughout the machine due to the

lateral connection requirement.

Let us look again at the guery "Who are John's grandchildren?’ Using

our new layout, it is easy to turn on a child processor in each o! John's

L e

L T T T VS - . . . -
e X - . R TR T TR AT . I o
IS TR I . U VR T TR TRV VA T T N

SRS A S

LI TLoeT - W e .
WY WL PPN DI Pl % CO N G L SR IR i

RS A A er it et i, he* Jhaivlin’ Shav jiad dabudait te U/ Tow.

< REARFIN .,
S

n]
A

[y e . .
s v v o »
PR T
e’ C ML
e a0 0"t

~r
w

.

L ath aak gl

—r
)

¥

T
.

a v b N T -
. r . . -
o LR

R L A N

-—..-..r-r-l'.r-...‘xsu—.r'--\d".'.”-.\"-.--"

children. (We use furn on e processor to meen set g di? to #rue in the
processor.) If all of the children processors were op, it would be simple to
find the grandchildren. The missing step, then, is an algorithm which turns
on all the processors of a particular type if any of that type are alfeady on.
We call this algorithm share since it shares information among processors of

the same type.

33. The Share Aigorithm

Share uses the CCC interconnection scheme of the BVM to
simultaneously bring together a piece of informatior from all processors of
each type. Figure 3.1 shows snapshots of a small associative network as it
answers "Who are John's grandchildren?" The sequence of steps needed to
find John's'grandchildren are listed. Note that the triangles in the figure
represent each of the processors and only the bits of information used ir

the calculation are listed.

If we wish to handle "What is owned by John's grandchildren?" we use
what we have done, appendih; another share and another "turn on" step
which we will call a match step. These match-share pairs aliow a wide range
of gqueries to be processed (as shown in chapter 4). In section 4.1.2 we will

formalize the match statements.

The share algoritbrn works by simultaneously bringing information
together ftrom all processors of each type. In step two of the tigure above,
one “Jack” and one "Jill" processor have bit A on; no other processors have
bit A on. When we use algorithm share on bit A, the system simultaneously

determines that all "Jack” processors and all "Jill" processors are to bave dbit

________ N T "
" . " N Gt

- . - - - - - - - . M . N
N - Lt ~ - » .. - . - - B . R - N
s " it e o e B K T e A A A e R T e T e L.

e e e T L R T TGP S A S e R I — R —— o~
Cula T TS T T T e T v

AR i it Manh

18

(1) Turn on bit A in processors with relation "inverse parent-of” and whose
lateral is of type "John".

(2) Apply the share algorithm to bit A

(3) Turn on bit B in processors with relation "inverse parent-of” and whose
laterz) bas bit A on.

Figure 3.1: Calculating "John's grandchildren” (the triangles are processors)

A on, while "John", "Joan”, “Jake" and "Joe" processors are to have bit A off.
The algorithm works in two steps. First we concenfrate information about
each node. In this case, we OR togetner all bit A values for each node as
they are concentrated. The second step returns the concentrated value to
each PE of each type. Since the problem above involves sending a sgingle bit
of information, operation OR is the natural choice. Share may also be used
on integers, in which case one must determine what operation to perform

The most useful operations are ADD, MIN and MAX.

LI . T - . » - - .

~ L » C T e et . - - Nt ., v .

PP A S I s R I D PV [P L IPUR SRS S .. et e e e -

[SRR P R R e S T A e T A T N TR 2r A A S - T - . .-

[R IR S A N A LS i S R R R ST . . ST T e S G RN D (e L SR SRR
3 i LIPS) " - .

TP P V. PRI I AP L VO W R e)

B RN SMCaAG o i iyt gt M ard s SFEL B o e o n s g o g na
- - . R < el ol ate - Bl S0 LA Sl sl agll tal vad Sel Red MRSl sk ek e v ~r
oy pred oo Pl A" Sl ? A R "R e 2 o la) el o ms in L nal bal | raiesa |
LI REath el ahaAdean — e e e

17

Figure 3.2 illustretes the steps necessary to calculate share with
operaticn ADD. In the initial position, each of the processors assigned to 2
node have initial values. In step one, these vzlues are esdded, the resull
being placed in the venter of the node to indicale that, at this point, there is
exactly one value per node. Step two copies this value irto each processor
assigned to that node. The share algorithm is developed in full along with
proofs concerning its optimality in appendix A. The next section describes

expected run times Yor share and other operations.

-
N
r
L g
»

Figure 3.2 The steps in share with operation ADD

‘e YT v,

TLTIEE ... T, T,

o m e, S e e, -

T e T ettt . PRRPAPS T S YT S -

e e e e AT NI SR S R S A R, R N L N PR R

LI I S N N . e . .. - e P T A P SR . ot L T A S I I R) BN P P W W . . . -

O P P R VA Y P A R T O T T I e IR I 3 [T AT L T L T T) AR
Y Lt " Dl AN et N N "s'{r-‘ AR TS e K K VR i‘h's.'. ; - CIL LT T 2 Y S % _\\,‘-_.

AR S At B B b A =Rt M b a £ § S0 0 o ‘A AL AARE 2 B AN S A v e - T 2 D" i Ml e

18 i

3.4. Timing Results for Selected Operations , :

As proved in appendix A, the share algorithm takes 24log(N) BVM
operations per bit in the cbject to be shared. Since the BVM has a cycle time
of 250ns {Wegner [1984]), and logz(N) is 20 for the one million PE machine, '
the share algorithm will take 120us, per bit.

Since the BVM is a bit-oriented machine, the size of integers affects the

results we will achieve. Throughout we will use 20 bit integers. This unusual
choice is made for several reasons. First, 20 bits is sufficient to range to one

million; the nodes may be represented uniquely in 20 bits for otherwise the

network would not fit in the machine. Second, 20 bits is a natural pumber
for this machine since it equals logs(N), which appears in many standard
timing results. Thus if an egorithm takes log,3(N) steps per bit, it will take
logs4(N) steps per word. Finally. on a machine with a 250ns cycle time, we
will get results which are muiltiples of 5us per word, which are particularly
easy to manipulate. " X

The operations to be performed on words are numerical comparisons
(less than, equal, greater than), minimum and maximum, and addition. Each
of these operations will take Sus if only one address calculation is necessary.
This is the case if the input and output variables are at the same position in
the processor, but the values may be in a processor connected by a
bardware link. Thus doubling a number in place may be accomplished in Sus
by adding it to itself (x+x+x). Also two numbers may be added in Sus if they

ferr et m S e pm et o = . me S ———————— s =

are in the same place in connected processors {x+x +connectedx); this is
the case in the share algorithm. Other forms of numerical operations will
take 10 and 15us for two and three address computations respectively.

ALI‘:{'::LA ;:r__.'“;AJ" ;‘l NNy i’\i\i ﬁ%{&m{&{ymljﬁxlhﬁ\)»\\'ﬁi_\ _X‘\ At

CHAPTER 4

Implementing Data Bases

In this chapter we will describe two date bases and formally define bow
gueries may be processed. A simple language will be developed first which

allows us to “program"” gueries for the BVM.

4.1. A Query Programming language

To control the flow of information through the network requires some
formal specification of what the network is to do at each step. This section
describes a language that allows us to describe bow a querj may be
resolved. The lenguage below is procedural in nature: the system exec_utes a
series of statéments, each of which performs some mnnipx.iletion upon the
network as a whole. It should be remembered that one would generally build
a natural language processing system, such as Thompson’s POL system
(Thompson [1881]), whose inéut would be user queries and whose output

would be a series of statements in this language.

4.1.1. The BV as the Language Sees it

From the language's vantage, the system copsists of & set of PE's, and
each PE contains: a set of mark bits which are boolean toggles and can be
set or read; & set of storage words which may be set and manipulated using

arithmetic; a type Neld, which is an integer whose value defines the node in

1%

el g B R -2 22 ¢ 1 Gt o ARl R Y LV % R YT N Mtk e M A ¥
p‘r R SRR S A 4 s e Ve LIRASMA AN RS SAte T A NS o St s Kol Al A AR AN AL AR A SN N RS AR A ” q
- v - - - . . - ~ LI L ..- Y. . Y .t '.' LR

- V

L .
-

20

the associative network to which this processor belongs; and finally a
relation field, which is an integer whose value defines the relation arc in the

petwork to which this processor is connected.

A processor (PE) may access its own local information end the
information stored in the PE on the other end of its relation arc, the
gssociated processor. (On the BVM the associated PE is connected to this PE
by its lateral link.) If a relation arc is directed, the sign of the relation field
determines the direction of the arc: positive, away from this node; negative,
toward this node. Consider the following examnple data base which contains
the two pieces of information “John loves Mary" and "The job of John is

engineer” with the following numerical assignments:

zame xumber podeorarc
engineer 1 node

job 2 arc

jotr 3 node
loves 4 are

mary S pode

and the following processor assignments:

Iiormeticr froxm-PE = tc-PE
Johr loves Mary A-B
dob of Jokr is engivreer C =D

The information in each procéssor would be as Tollows:

PE I field Relatior Field
A 3 4
B 5 ~4
c 3 -
D 1 -2

"
l\
L}
)

i

)

y

-

-

[Ny Sy %

P L TEE WU
.

i: ST T T e P R P S S e S RS U s N R R e LI PG SRR I SR ot
R I I e I I S O U R P N S SN AN ICUEIN DAL B N G T, e T - RS
- s T NS I I DR D I S G Dy Sy Au.-_.‘r x_!..'_.b Tty e Soa s ‘_A_.:- LTt A

DR i i A i A M R S A NSl Al SCATa NS aid e Rat h o pa < ARm Ao tp 2 -
(il i e T

21

4.1.2 The language Definition

Returning to our language, we shall assume a standard pseudo-
language similar to Pascal, limit the set of variables, and 2dd a few
specialized procedures. Then we will be able to write “programs” which are

executed on every PE witkin the system.

The variebles we allow are: MO-MS for ten mark bits; S0-S4 for five
storage words; TYP for the type field; and REL for the relation field. (The
choice of ten mark bits and five storage words is arbitrary.) Further, any of
these variables may be preceded by the letter "A" to refer to information in
the associated PE. Now, the language will allow assignments to the (local)
wariables using the « symbol. Mark bits are assigned boolean expressions,
which may include integer comparators such as "less than” (<), as well as
the boolean operators such as "and” (&). Storage words are assigned
integer expressions involving operators such as "plus” (+) and "min* (MIN).
The storage word assignment expressions may be preceded by an IF c'lause
specifying a mark bit such tbat orly those storage words are .a.ssigned if the
appropriate mark bit is on. (A WHILE construct is elso available, but
requires a specialized !uneti;xi as its predicate. See the next section.) The

following is a list of sample statements:

MO « M1 & (AMS V AM2);

M4 « (NOT AM1) V (SO < AS2);
S4 +0;

S1 « AS3;

83 « S1 + (AS2 -3);

IF M2 THEN S2 « S3;

« %

AR ANL A A A At R Bl ek et e AR e ™ oL Aol i Sl h ™ o Mt =art - g SARCEVA 00 B AAR I L i dri - B S). Aol e oBa b Aek e b Al feclh Sadh A vvw

|
|

22

4.13. Specialized Procedures and Functions

The additions necessary to use this language for guerying are
implemented as built-in procedures and functions. The share algorithm is
executed by 2 SHARE procedure wkick takes as a .parameter the bit or word
upon whick the algorithm is to be executed. }f SHARE is executed on a word,
the operation to be applied to the values as they are brought together must

be specified. The following are sample uses of the SEARE procedure.

SHARE(M2);
SHARE(S0,ADD);
SHARE(S2,MIN);

An important function is ANY. Passed a bit in the BVM, ANY sets the
mark bit which is its parameter to true if any processor has this bit on, and
false if none does. ANY can also be used a2s e function which returns the
true or false value; this value may be used with the control structure IF or

WEILE. We will see that this function is critical when traversing hierarchies.

A PRINT statement is provide as well. This procedur'e' executes the
concentrate portion of SHARE, just to the point where the value for each
node has been determined. Instead of then spreading the concentrated
values among processors, PRINT displays the value each node has. When
PRINT is called with a mark bit, the names of those nodes which have the bit

on are printed out. (This is the extent to which we will handle 1/0.)

Other functions will be introduced as they are needed.

§ i . .
R e I S R - e T . P P . - ISR
PSP GIPRRE 4 ST G NN R E R A A A Y P S PN ey e e e L s

ANl g i il b

.t @ et e T .
PR AR N, U R

IR
. - . N T - - DY - - T L. . .
_'.\.tu"“ M. R Y p'-':"L__"\ B e a

4.1.4. Network-Specific Constants

An associative network is built of numbers, but for our purposes we
care little what pumber is assigned to each node. We don’t care whether
“Jobn” is mapped to 32 or 30172, as long as tkis value is urnique to "Jobn".
To make our programs readable and flexible, we will assurne that constants
are defined for each node and arc label in the data base. The coastant will
be the labe] preceded by a pounad sign {#). Thus if we wish to set MO o true
in all processors with node “John™ and relation "parent-of", we say:

MO « (TYP = #Jobn) & (REL = #parent-of);
Qur languege is now independent of the exact numerica! assignments

chosen.

42. Tbe Family Data Base

Tbe “family” data base describes 8 fictitious family and their
relationships with other people, animals and objects. This simple data base
will aliow us to explore the treadth of queries which may be answered and to

deal with some of the difficulties that arise.

Although the data base is small, ¢ diagram o! the whole petwork is
unwieldy. Instead the data base is described using lists of relations. Figure
4.1 describes the entire data base. Bach relation is named, followed by the
list of pairs which have that relationship. From the line

job((john.engineer).(jane.doctor),...)
we discern that John's job is engineer, Jane's job is doctor, etc. Figure 1.1

@lisplays a portion of the data base as 2 network.

. IR I RS B
e e - VORI
FOE IR S . A . [S LR S SR - W S ST Sl Y

R R P Ra= fai g At M i ettt Rt Sage on Sob s ORI A TN AN TN W -'7\‘ e g g ! 5 il Sty

PR NS

TN R T T U WU WU TV TR T
S R A A% A%t A e b sk v A el e d a &
onl 0 b Skt Aed aad aud ses il o a o r
R T S N A A AR ad- o d

isa((john,man).(jeck.man),(mark,man).(joe.man),(jeke, man),(pete,man))
isa((jane.woman).(mary woman),(jill,woman),(joan,woman),(pat.woman))
isa((man,male).(woman,.female),(man,buman).(woman human))"
isa{(buman,animal))

job{{john,engineer).(mary,.doctor).(jack.welder),(mark,doctor))
boss((john,pete),(jack,pat))

{ salary is in thousands of doliars }
salary((john.30),(joseph,40).(mantred,100),(mary.45))
salary((pete,40).(pat.45))

parent{{john jack),(jane, jack),(john,jill).(jane,jill))
parent((mary,joan),(jack,joan).(mary,jake),(jack jake))
parent((jill.ioe).(mark, joe))
married((john,jane),(jack,mary),(jill mark))

own({john,porsbe).({mary.corvette),(mark.mercedes))
own((jake.fido).(jake ftuffy),(jili,poopsy))

isa((porshe car),(corvette,car).(mercedes,car))
isa((fido,dog).(poopsy.dog).(Flutfy.cat))
isa((dog.pet).(cat,pet))
isa((fido,male),(poopsy,.female),(fluffy.female))
color&porshe.blue).(mercedes.blue).(corvette.tan))
color((poopsy.tan).(fido tan).(fluffy.grey))

color((jake, white),(jill.tan),(mark.tan).(jack wkite))

Figure 4.1 The family data base

What sort of guestions can be answered using this date base? We mey
ask guestions concerning familial relations, jobs and salaries, possessions
and colors. The list of queries below will be used to demonstrate some of the

features of the system.

« What is John's job?

s Who are John's children?

o Who is the son of John?

« Who are the parents of a tan dog owner?
o What cars are tan?

s Who are Joe's ancestors?

CEEHR

111
L]

N [ares

a0

R

Ll i o hail Al ie ol A Y e s diach et Aas e od dou 2y o L ERE At d Sud Sod 208 A4 B Sl 4
5t A Sat v A

Iy
.....

42.1. What is John's job?

To answer this simple gquery reqguires marking those names which are
the values of relstion “job” applied to "John". In network terminology, we
need to return those nodes to which “Jobn" has a job arc. In our language

we can achieve this as follows:

MO « (REL = -#job) & (ATYP = #john);
Print(M0);

Note the use of -§job, since the result is the node towsrd which the relation

arc points.

422 W%Who are John's children? |

i
This query is processed analogously to the previous one except that we

expect several responses.

MD « (REL = -§parent) & (ATYP ;“#jObD); ,l: E
Print(M0):

423. Who is the son of John? : e

Since "son” means "male child”, we will first find all children of John,

and then ferret out those who are not male.

MO « (REL = -gparent) & (ATYP = §jobn);

Share(M0);

{We now have all processors for children of Jobhn turned on.}
M1 « MO & (REL = #isa) & (ATYP = #male);

Print(M1): |

~ %
PR
-

L4

2.
e ea"a",",

F I
;.;‘r‘r__-
PAAN

2l

-
P

- - .

R S A R e N TS V' - - -

T s T L (30 T N A T U c e -

Kilogrl, "'AII{MM.A‘”‘";(..A'-.-‘J{'K"' :(’“ "o - T u"'-"-""- et "-. -..- s .N.,'A '-._'-'. "-".' : < -_'-“'~ T T L R R ..i
R » _— P P R f

" - e T,
ST W WU S WL . W R P W a o
- - » "

A T TN T RN T O UV YT Y e TR T T Bt ARa e e Rin ity i el cal il v~ wan S o uth o an on) hd LA Bt S = Ay
j v Rakis W L - e

26
. 424. Who are the parents of a tan dog owner?

Note that this query is ambiguous. In the program listing below, “(tan
dog) owner” is on the left "tan (dog owner)" is on the right. Code common to
botk meanings is on tbe left. It would be up to the patural language front
end to determine which guery is meant, or {o run both and respond witk

both results.

fFirst set M0 to dogs]
N0 « (REL = gisa) & (ATYP = §dog).;
Share(M0);

fFind tar dogsi

H1 « M0 & (REL = gcolor)
& (ATYP = jtar),

Share(M1);

{Ficd owrers of tar degs]

{Find dog owners]
M1 « AMC & (REL = gowns);

Share(M1)
fFind dog cwoers wto are tar)

M2 « W] & (REL = gccler)
& (ATYP = gtar);
Steare(M2).

N2 « A¥] & (REL =gowrs)
Share{M2);

{Firé parects of codes witk M2
N3 « AM2 & (REL = gparert);
Prici(M2),

425. What cars are tan?

: Although humans -utoxﬁnticmy know that “tan” is 8 color and thus only
"‘ color arcs are of interest in solving this query, no such generalization is
"'4 made by our query systern Instead. s search will be performed for any cars
. which bave a connection to "tan”. The parallel nature o! the search is
% completely exploited by our machinery.]t takes no longer to respond to

"What cars are ten?” than to the less elliptical "What cars have color tan?"

The tollowing blind search solves "What cars are tan™":

26

4.2 4. Who are the parents of a tan dog owner?

Note that this query is ambiguous. In the program listing below, "(tan

dog) owner” is on the left "tan {dog owner)" is on the right. Code common to
both meanings is on the left. 1t would be up to the natural language front
end to determine which query is meant, or to run both and respond with both
results.

f{First set MO to dogs]
MO « (REL = fisa) & (ATYP = #dcg);

Share(M0);
fFind tar dogs! {Fird dog owners] .
M1 « M0 & (REL = Jeolor) U1 « AMC & (REL = fowns);

& (ATYP = $tar);
Share(M1); Skare(N1);
{Find owners of tar dogs| {F.nd dog owcers who are tac]
M2 « AM1 & (REL =jowns); M2 « M1 & (REL = gcolor)

& (ATYP = #tarc);

Share(M2); Skare{M2),
{Find parents of nodes witk Mz2|
M3 « AM2 & (REL = §parert);

Print(M2). .

4.2 5. Which man is married to Jane?

This query is as simple to implement as the ones before it, but it serves

to point out one of the powerful features of the parallel implementation. A
2 sequential processor evaluating this query from left to right might search
. thousands of men, selecting only the one with & "married” arc to "Jane”. A
sequential processor evaluating from right to left, on the other hand, starts
from Jane and checks through the elements in the (singleton) set of nodes
with a “married” arc connection to Jane, finding which of the nodes has an

"isa" arc to "man”. The processing time will be dramatically affected by the

- order of processing. The parallel implementation, however, takes the exact
J
:-.'-'\‘ "‘-. ‘. DIRTRE P N R ..
e Y U P L T A SR LIPS A SRR o i J

27

M0 « {REL = #isa) & (ATYP = §car);
SHARE(MD):

M1« MO & (ATYP = #tan);
PRINT(M1);

This search is blind in that no mention is made of what arc is found between
"tan" and “car”. In this case only relation "color” was possible, but consider
the query "Which New Yerk sclesmen drive corvettes?" This elliptical phrase
may refer to salesmen whose sales district includes New York, whose home is
in New York or perhaps whose favorite city is New York. Thus 2 method is
desired which returns not just the name but also the arc used to make the

connection. The response might be:

New York ,sales district) salesmen
Joe
Car!

New York (home) salesmen
Pete

New York (favorite city) salesmen
Ed -

A mechanism of this form is available in Thompson's POL syster (Thompson

[1981]). For our system to reply in this form, the following program works:

MO « {(REL = £job) & (ATYP = #salesman);

SHARE(MO);

S0 « 0;

§{ SO will remzin 0 in salesmen nodes not connected to New York nodes}
M1 « MO & (ATYP = §#New-York);

IF M1 THEN SO « REL;

PRINT(SO)

To bandle this situation in @ more complete manner, sorting should be used.

This extension is described in section §.1.

.............

27

'same time in either case as demonstrated in the side-by-side comparison

below:
§ lelt to right analysis | { right to left analysis |
$find mer| {find those married to Jane]
M0 « (REL = #isa) M0 « (REL = #married) & (ATYP = giare);
& (ATYP = gman);
SHARE(MO); SHARE(MC);
inow fird those married to Jane} {row find tkose whick are mer]
M1 « MC & (REL = §married) M1 « MC & (REL = fise)
& (ATYP = gJane); & (ATYP = §rmar);
PRINT(M1); PRINT(M1);

The perallel method is independent of processing order and the size of
intermediate sets; this is one of the most significant features of the system

and guarantees consistent performance.

4.2.6. What cars are tan®?

Although humans automatically know that "tan” is a color and thus only
color arcs are of interest in solving this query, no such generalization is -
made by our query systemn. Instead, e search will be performed for ariy cars
which have a connection to "tan”. The parallel nature of the search is
completely exploited by our machinery. It takes no longer to respond to
"What cars are tan?”’ than to the less elliptical "What cars have color tan?”

The following blind search solves "What cars are tan?"

MO + (REL = gisa) & (ATYP = fcar);
SHARE(MO);

M1 « MO & (ATYP = ftan);
PRINT(M1);

Thie search is blind in that no mention is made of what arc is found between
“tan” and "car”. In this case only relation "color" was possible, but consider
the query "Which New York salesmen drive corvettes? This elliptical phrase

[
h
v.h,
b
..
» -
-'.
'. .
1y
n
E'

may refer to salesmen whose sales district includes New York, whose hcme is

KR
. v .

RN - S

e e T A Pt e A . - . . s B N
5. e e R R Tt T e <o e P B S e . - T e . .
o 2N RN BRSPS PN P RNy Sal waw . el s et . o ~ . IR o a e et R e
— A = S I SUUEL WS Sy SV S Sl St Yl YU I SO R SO SR A

v T ey
Y B A N A R]

AR

28

428. Who are Joe's ancestors?

Altbough we could proceed, much as we have so far, and build »
program which will solve this query, it is far better to consider some related
queries. For instance, consider "Who are the mercedes owner’s ancestors?
How many times do we need to follow the parent arcs up the family tree? We
don't kimow until we know who the mercedes owner is. But it is clear that no
matter who that person is, we want to follow the parent arcs until there are
no more. In many instances we need to process trees of information like
“ancestors”. We say that the "parent” arcs form a hierarchy. There is also
an "iss” hierarchy which bas four levels, "John" -« "man” - "buman" -
"animal” for example. The next section will introduce a framework in which

queries involving hierarchies may be bandled gracefully.

There are many other gueries of equal and higher complexity that may
be asked of the family data base. In other sections of this paper we wil!

revisit this data base and explore it further.

43. Animal Kingdom Data Base: A Hierarchy

There are over 700,000 species of animals (Newman [1967]). The animal
kingdom is divided into seven phyla, and these phyla are divided into
classes, classes into orders, and orders into families. Families are divided
into genuses and finally genuses into species. At each leve! of this enormous
hierarchy various leatures or properfies distinguish each group. For

instance, the animal kingdom is differentiated from the plant kingdom by

DO e A i S I Sl Rl B ol S il Sk A A el Mo tadh Gal el Gain b el Vil pad, -of
L L T A LA .
.........

ZOAR-Si e Sie bes hin A St 4 N RN N v B oy

power of locomotion, nonphotosynthetic metabolism and other properties.
Animals of the order perissodactyla (whiéh includes horses) have an odd
number of toes, while artiodactyla (which includes deer) have an even |
pumber (Lane [1884]). 1

I we wish to design & data base of zoological facts, we could list for
each species all of its attributes. This is most inefficient, however, since we
would be ignoring the power of the hierarchy and data would be repeated
many times. Instead, let us attach information as high up the tree as
possible. Since "animals move” we will say this once, at the top level, instead
of attaching this piece of information to each species (or, worse yet, each
animz]). We can {ake this concept one step further and include
generalizations which are “almost al~ays” true. We might include "birds fly"
in our data base. Then it will be nec .ssary to cancel this information where
it is incorrect ("penguine and ostriches don't fly™).

Figure 4.2 sbows & part of an associative network for this information.

Our guery processor will accept questions suck as “What animals fly and lay
eggs?” We need to build machinery so that parrots will be listed, penguins

will not be, and perhaps flying fisb will be.

43.1. NMarking a Hierarchy

Let us start with a slightly simpler problem. How can we mark all of the

species under a given node in the hierarchy? This method will handle

queries such as “What species of animals are vertebrates?’ Assume that the
hierarchy is built using "isa” arcs up the tree: “carnivore ‘isa’ mammal.” Also

i"' . assume that relation "level” exists which determines what level in the

T T T e e M T e SR TR LY Y

30

—— love Uniks
——ce- Hisraraly Linia

Figure 4.2 Part of the Animal Kingdom Associative Network

bierarchy this node is at: "the ‘level' of carnivore is order.” Given this

information, we write the following program:

fMO will be true in all nodes under vertebrate}
M0 « TYP = fvertebrate;

§M1 will bold the frontier of the tree we are marking)

. M1 « MO;
P WHILE ANY(M1) DO
A §M2 is true for all new nodes to be marked]
e M2 « AM1 & (REL = #isa);
C el SHARE(M2):
oY MO « MO v M2,
oo {These nodes become the new rontier of the tree}
ORe M1 e M2
:.'_-_'..'- m;
oy {Now set M3 to just those nodes in the subtree which are species]
s . M3 « MO & (REL = #level) & (ATYP = gspecies).
< Print(M3):
:"r;::
» Jl.
o
)
"

TN LR RS r"‘_“"‘-“ R LAl A s Sen Ak Saicand A AR S Sl AR Ai e Ae 010 Sl ot i i et At an ™

31

Using the very same technigue, we can now answer the query
“ancestors of Joe” from the family data base (section 4.2.5). The changes
pecessary are: the starting node MO should be set to TYP = #Joe; M2 should
be assigned REL = #parent-of instead of REL = fisa; at the end we will set M3
if MO and (TYP # #Joe). since Joe is generally not considered to be an

ancestor of himself.

We can formaealize the marking of & tree by defining a procedure
MARKALL. This procedure accepts two parameters, e mark bit and a
relation number. On input the mark bit will be true for the starting values
in the tree (“vertebrate” or "Joe"); on output the mark bit will be true in the
entire subtree built of the relation number. The relation number thus tells
which hierarchy we are trying to use and in which direction. The parent-of
bierarchy may be used either "up” for ancestors or "down" for descendants.
We may rewrile our program for “"What species of animals are vertebrates”
as: .

MO « TYP = gvertebrate;

MARKALL(MO, #isa);

M1 « MO & (REL = fFlevel) & (ATYP = #species);
Print(M1);

A program for "ancestors of Joe" is now:

MO « TYP = gloe;

MARKALL(MO,#parent-of);
M1 « MO & (NOT (TYP = gJoe)):
‘ Print(M1);

%

A

‘»-.-{

i

v

P

L'_:

-

'''''''

432. Property Inheritance

As an extension of MARKALL, the INKERIT procedure passes a property

down e tree as opposed to just marking a tree. INHERIT is called by:
INEERIT(WORD,RELNAME);

The code for INEERIT is slightly more complicated than MARKALL since it is
important that we block information from moving down the tree if a value is
already assigned to that subtree (Fahlmen [1981]). For example, & relation
“fly” might have values “Yes"” and “No" and we want "birds fly yes” but
“penguins fiy no". If we simply used MARKALL to start from "birds iy yes",
penguins would inherit the trait from birds. (In & sense we have a three-
wvalued logic. Some nodes are marked *“Yes", some “No” but most are marked
"whatever] inherit from above.") Assuming parameter WORD is a word set to
the starting values and RELNAME is some relation, we can implement

INEERIT as follows:

We will use MAX on our shares, though in general}
tbere will be only one non-zero value]

SHARE(WORD,MAX);
{SO bolds the frontier of the tree}
S0 « WORD; .
WHILE (MAX(S0) > 0) DO .
e There is some value in the frontier]
Sy MO marks nodes to be added to the frontier]
; MO « (ASO > 0) & (REL = RELNAME) & (WORD = 0);
3 {1f MO is on, transfer the value of the connected node}
. S1«0;
IF MO THEN S1 « ASO;
o SHARE(S1,MAX);
A M1 marks nodes which have obtained WORD values!
E"! IF M1 THEN WORD « S3;
e S0 « S1; {The new frontier}
- :jh' m;
‘-
e With MARKALL and INHERIT in place we can handle queries such as:
e
=
HCR
v
28

e e e e e s e e
. . CJ -t e - -.-‘ ‘. * . - - -'

[N WV N P W P R R R A S, e -

. o PR

—TT Y - T b ol aad Wy -l Y —
b " N S ol & Pl Ll "Silaiaian i a2 ™ e il Win dey E Al e s | e e - a4}

...........

33

What animals fly and lay eggs®

Which vertebrates have tails?

Are there any birds that swim?

What is the order of penguins?

To what category do both ostriches and horses belong?

43.3. Timing Results for MARKALL and INHERIT

An instruction count for MARKALL end INEERIT is dependent on the
number of levels in the hierarchy. MARKALL will take approximately 135us
per level of the hierarchy, most of that time being the cost of the SHARE
statement. INHERIT will take approximately 2.5ms per level, most of that
time for the expensive integer SEARE statement. lf one knows that there
are less than 256 different properties of this type (for example, colors) and
also that 't.bese properties have been assigned numbers such that the final
eight bits Qre different for each property, then INKERIT may be used on

eighbt bit quantities and the execution time is only ims. .

4 4. Timing Comparisons with a Sequential Method

In order to determine how successful the paralie! implementation is, a
seguential method needs to be developed for comparison. One feature of
any method for comparison is that it should be possible to determine

general timing results easily. The method described below has this feature

and is also reasonably efficient.

‘::: An associative network is based on a set of arcs which describe all of

the interrelations in tbe petwork. An arc has three parts: a from-node, &

LA TN
Sy
‘o a

! Re

relation and a to-node. We can thus think of an associative network as an

/l

T

t

T,
y

1]

AR

x

A NI AT TP Rt
. -\“-_'u*- . -'4'....4".,_ EAE RN T -

W e T A L A S PSR . . .
1N RN P T e P A I I e e ST R R . R AR A RN T L T L e e . N
FRTS. 63,V L.‘—"-f‘-‘h‘-*L‘t‘- CRTAFAR R RATHYTN PR PSS S PN Y ':r)‘:h..‘b\}i Na :A\’ ',‘i :-ﬁﬁﬁ-ﬁ‘\i‘n':'- L\}\‘-.‘.l'n“\'\‘:-b “w kS -‘\':‘."‘\"

Ty
LA A Aa e o th sy aee oo sl RN

34

arc table with three columns. To implement the queries efficiently, we want
fast access to all of the arcs which have 2 particular value in a particular
column. One method is to build a sorted binary tree for each column. A leaf
in this tree is a linked list of pointers to those elements of the table with a
given value in that column. Figure 4.3 shows an arc table and a sample tree

necessary for access to the to-node column.

Let us assume that our sequential machine can execute a basic
operation (numerical or boolean comparison, pointer dereference or
assignment) in 250ns, the same cycle time as the BVM. Given information

about the data base, we can determine the time to execute a query using

binary tree
for to—node

arc table AT7 ATY AT2 AT3
Indicee

ATS AT4 ATS

!

ATS

Pigure 4.3 Dats Structures for Sequential Method

R W W " "
. . -'.‘.-."-‘_‘L‘“‘m_ R A AR A AR A Aal dad Ak wad g a-n
. < - T WY

36

e 100,000 enimals in 2000 species
o 40% birds, 30% mammals, 3C% others
e 500,000 arcs, 125,000 nodes

Now let us look at a sample guery. Consider “Which birds bave red
wings?" For the sequential method, the final step will take most of the time,
wherein 40,000 birds are input and a test will be made which requires three
comparisons (relation = "wing-color"”, to-node = “red" or inherited color =

. “red”). Even though we have used the hierarchy, at the last stage all birds
must be checked since there may be cancellations and exceptions (perbaps
8 bluedbird flew into some red paint!). Using the formula above with n, =
40,000, b = 4 (500,000 / 125,000), ¢ = 3, and n, = 1000 (an approximate), the

timing result for this final step is 830ms.

The paralle] implementetion must inberit wing color to eacb bird.
Assuming tpere are four levels of hierarchy between "bird"” and eacbh specific
bird, the tota! time to execute the INHERIT statement, according to section
4.3.3, will be 10ms, a sixty-fold speed-up over the sequential method. If we
use the method suggested in that section and assume no r'nore than 256
colors, the run time will be only 4 ms, a 150-fold speed-up. Finally, if wing-
color is only stored at the individual bird level, we can use MARKALL to turn

on the birds and then only need a single integer command to find those

birds with red wings. Timing for this method is $50us, which is a thousand-

fold speed-up over the seguential method.

..... . . -
LR . PR " . - PR .- PRI . . - .t et - e " M e L. - - .
I T T AT SN U N PO TP PN TR
o - Vel Lt ST e 5
ol - PP PRI e ST S S ST S et W

- Ll e " vadh San s o '.V\Y"‘.“qv‘kq‘I.'.r.vl'.‘*'\‘ Ao adidie e o+ e —r
DG A AR S e

CHAPTER S

Numerical Data

In Thompson's POL natural language system, there are “attributes” and
“pumber attributes” (Thompson [1982]). These correspond to arcs that
point to nodes and arcs that point to numbers respectively. POL has
distinct syntax and semantics for these two cases. There are a number of

Teasons to make distinctions between numeric and non-numeric data.

(1) Attributes may be chained, one after another, whereas number
attributes may not. Compare "the boss of the boss of John” and "the
salary of the salary of John.”

(2) Number attributes may have comparators applied to them whereas
attributes may not. An example is the query “Which employees of John
bave salaries greater than John's."”

(3) Number attributes may have statisticz] and numerical functions applied
to them whereas attributes may nol. Consider "“What is the average
salary of female engineers.” .

(4) Attributes, when unqualified, refer to their range and can be used as
such in a query. For instance "bosses” means "bosses of anyone” and
the query "Which bosses are overweight?" is understandable. "Salaries”
might be thought of in the same light {as a group o! numbers, in this
case), but this only leads to sensible queries when a statistical function
is applied: “What is the largest salary?”

In our system, we will find that new methods are necessary Yor
numerical calculations. In this chapter we will explore these methods.

S et e . . e PN - o B . PR
L TR S N W AP S N T T S TR P U I Uy S

Rult S B M

.........
........

38
5.1. Representing Number Attributes

In our stated melhod for implementing associative networks on the
BVM, we would require a processor to be allocated to “$20,000" if there is a
fact “John's salary is $20.000." The rationale for separating “John" and
*$20,000" into separate PEs was so that the SEARE algorithm would work on
each. It is inconceivable, however, that & SEARE is needed for “$20,000" or
any other number. Instead we will allocate a single PE to this fact and add a
VAL field in the processors to hold the value to which this arc points. Now a
query like "Who has $10,000 as salary?’ may be evaluated by:

MO « (REL = #salary) & (VAL = $10,000);
Print(MO0),

Compare this to the non-numeric query of the same form, “Who bas John as
parent?”’ which is solved in section 4.2.2. In this query the value "John" is
stored in ATYP, the type field in the associated processor. For numeric
queries, we store this number directly in the processor. Tbu_s. pumeric facts

require only a single processor.

$.2. Numerical Procedures

It was noted earlier thet procedure SEARE could be executed on words
using any of the operations MIN, MAX or ADD. These yield much of the
pecessary pumerical power. MIN, MAX and ADD may also be used es
procedures over the entire machine. In this case they are similar to ANY,
but work on words. Thus MAX(S1) finds the maximum value of S1 in any PE
and places that value in each PE's S1 word. Further, just like ANY, MAX can

e called as a function which returns this value to be used in an IF or WHILE

39

statement or to be PRINTed. The timing result for MIN and MAX is 20us. ADD
takes 30us due to the carry propagation. SEARE with MIN or MAX takes
2.4ms, with ADD 3.6ms.

A peculiar feature of the system is that MAX(S1) takes significantly less
time than SHARE(S1,MAX), even though the number of maximums is the
same. MAX is bomogenous (all values may be MAXed in any order), while
SHARE with MAX reguires that numbers be MAXed with specific others. On

paralle]! processors, homogenous processes tend to be faster.

$§.3. Numerical Queries

In a previous example we saw 2 simple numerical comparison. Another
query of importance is “Whose salary is greater than John's?" We can use

MAX to replicate "John's salary” into all of the PEs. The following program

implements the gquery.

go « (REL = #salary) & (TYP = #John);

0« 0;

IF MO THEN SO « VAL;

{Exactly one processor has a non-zero value for S0}
MAX(S0); '

{Now all S0's have that value)

M1 « (REL = #salary) & (VAL > SD);

PRINT(M1);

MIN may be used to answer "Who has the smallest salary?” Note the care

necessary in the following program to make sure only people with salaries

L
o

E! are considered. There is assumed to be some value which stands for infinity
ri-

F._:: (-).

o

-
S
7
I’_‘
W
[":’
B
L'. .. e e B A MEIEE S TR I
[)
[‘.

RO L A R B T e L VI N NEIARY e e e - .
O .-“._-‘...,_...‘.',_,‘. A O . B S PR R . L. e T e - R PO, . MR IR .
. SN A RN - ALt W Ny o e T I P A et o e - e e
*J RS TN N B T, TP S 0 1 T, TR B T Uy DI e nt ¥ P RO T W Ry e PR)

A A S NG W R RO A, PR AL G O A MR SR L R

w Y I w .
‘.‘ww—r\.. ek Ae S e Sl S il M St B Al e AR A e e olle S Sran 4 nn W pie oni At das s e o b g s o0 . et -2 S AR St i ot s s Bae Soas 4 v""”

40

MO « (REL = #salary);-

SO & =;

IF MO THEN SO « VAL; :

§SO has non-infinite values only in REL = salary processors}
MIN(S0);

{Now SO has the smallest salary]

M1 « MO & (VAL = S0);

PRINT(M1);

A variety of queries require that the system to be able to count.
Consider the query "How many employees does sach boss have?" SEARE with
operation ADD will suffice. We will bave 1's in only those processors which
have 8 "boss” relation pointing toward them. (If “boss of John is Paul” bolds,
some “Paul” processor will have value 1.) Adding them will give us the

correct count for each boss.

MO « (REL = -#boss):
SO « 0;

IF MO TEEN SO « 1;
SHARE(S0,ADD); !
PRINT(S0):

To bandle “Which boss has the most employees?” it is necessary to add the
following lines:

S1 « S0;

MAX(S1);

M1 « (S0 = S1);
PRINT(M1);

A variety of more complex numerical queries can be imagined. Most o!
them involve the basic ingredients already described, with perhaps new

procedures for other basic operations.

L e e e e
............
PRI P 8 . N -
A A A e A R . e TS AT T L . . ST T w !
PP A L - f e e e e e . .. e L. S w7, .
PO P S 4 P RN W DR T - W W W W W R R ST WP WA R TR WL L R ‘-:\ PR
PR NI NP NPT N G S P . E R SR T

A e e . S At A Ar Sl e G

T VT T T T
T T T T o o N W e v vy lia® Lhad St goh ol
SN A S Citatuin® Jhad Sai fiah)

41

5.4. A Map Data Base

In this section we pursue the numerical data base from section 1.3. The
primary arcs in the system are "highway” arcs which bave three parts: a

highway number, & distance in rmiles, and & trave) time in minutes. Figure

5.1 shows the representation of part of a time-distance map as an

5 B associative network. Note that along with "highway” arcs, there are “state”

h arcs which give the state associated with each city. Other information such
? . as population, rest stops and road condition could also be included.
oo

This data base can bandle queries such as "What cities are in
Maryland?” and "What cities on highway 40 have more than 500,000 people?"
but our primary interest in this data base is to calculate trip information. A

typical gquery might be "How far is it from Baltimmore to each city in

Virginia?" Much as IN};ERIT works, we will solve this by siarting with selected
information and then emanating information from the starting points. The
frontier of this growing tree will be those cities which have a new mix;imum
walue. Using SEARE with operation MIN, the routine wil] give toa city which
is on more thao one route its minimum value. We call this routine MINIMIZE
for obvious reasons. To maizé the program for MINIMIZE easier to read, we

will use wvariable names which make sense and then "declare” them to be

words or bits. We will also take a few liberties with the language, recognizing
this procedure as a sketch of the solution. A leading "A" is still used to
: specify the associated processor. The three parameters are: MINWORD, a
il word which is already set to the initial values and will be returned set to the
final values; ENABLE, o precalculated bit which is on in all processors whose
arcs the procedure iy allowed to use; CALCWORD, the word containing the

v) increment used when traversing arcs, will usually be set to either the

- . « N U D e IR T - - - - . - -~
S T T R e A S PR AL IIL L N PN IR A ORI
R I D ST c . . L. . L. . . . SR L D
handuseltdasfiondumalntidetinnbeiiiandis doa o w2 2 e e Y BN AR R R T
P ST

o s s ~ A R AL e M e il s e ara g oo

SRl aat e b o 8 e a0 - -
sl 1 IS el Sul Sl Ml Sal Sud el tad ol Al sus it S ol S gtk Pady |

Figure 5.1 Representation of a time-distance map as an associative network

-
.

A.'l‘ S

Distance word or the Time word.

K de e

50

e

R
.
. I‘-

AR R L
()
N

9

L e e A e a e .
. - . . e - ..
A R TAT WA R G RS R RS R R LS

AN

=

R

- T v T,
'S

» -
x

AR

.‘v:.r =
o [y

’E?
r"-

St e N S Sa M 5 0 "l al A Sl et e it s 2 TN LT TR R T e N

T b * N - '-l' » .r‘ P PR v S
............ ,..'..'«.“‘_ ,.\'-; W

-'b.‘

N e T .h).hm“ \’\i\y\qﬁ'}‘) YIRS i\,.\ .-~\.'-.n R

43

MINIMIZE(Minword, Enable,Caleword);
WORD: Minworgd, Calcword, Currval, Newval;
BIT: New, Enable;
BEGIN
Currval «
Newval « =,
IF (Minword # =) TEEN Newval « Minword;
New « (Newval < Currval);
WHILE (ANY(New)) DO
IF New TEEN Currval « Newval;
IF (New & AEnable) TEEN Newval « ACurrval + ACalcword;
SHARE(Newval, MIN);
New « (Newval < Currval);
END;
Minword « Currval;
END;

We can use this procedure to calculate the distance from Baltimore to
each city in Virginia as follows:

MO « REL = #highway; { Tbe enable bit }

{SO will be set to zero in Baltimore and = elsewbere)
SO & o,

M1 « MO & (TYP = ¥Baltimore);

IF M1 TEEN SO « 0;

MINIMIZE(SO,MC,Distance);

{We now have the distance to each city, so we need to isolate Vu-gmm]
M2 « (REL = #state) & (ATYP = #Virginia);

S1+0;

IF M2 TEEN S1 « S0,

Print(S0)

$.5. Timing Conziderations for the Map Data Base

To estimate the run time of this problem, we will make the following
assumptions. There are 5500 cities in the United States whose population is
greater than five thousand (lLane [1984]), and we will assume that 4500
wmaller cities which lie on junctions of highways will be added. These 10,000
cities will be assumed to lay in a 100x100 grid, each city with highway

connections to the eight surrounding cities.

caeen e e

.....

N DT

~ e a.

4
»

< x % vy,
2,
PR A

v v oyom
ATy v
et Ty W o

*T v v ¥
« '_t“-

“e oWy,
3 !
-.1‘. .

[TRy Ty N O WS T

e T

PR

T A T T A T W T N Y T T Y Y T W T N T W T T
. . ML AN A o
<

44

For the parallel analysis we need an estimate of the number of arcs in
the longest minimum path. We will use 200, as this allows connecting
diagonal cities by going straight borizontally and then straight vertically.
The main loop of MINIMIZE will be executed 200 times and the cost of one
execution is about 2.6ms (due primarily to the integer SFARE). Total

execution time will be 0.52 seconds.

Recall from section 4.4 that we define A to be the total number of arcs,
b to be the average branching factor, and N to be the number of nodes. In
our case, A = B0,000, b = 8 and N = 10,000. One good sequentia! method for
this problem is to build e list of nodes sorted by minimum distance and
expand the minimum distance node that bas not already been expanded.
(This method is better tban Dijkstra's algorithm (Abho [1974]) when
Alog,(N) < N2, in this case 1 million < 100 million.) Tbe current node is
visited and its b arcs followed, altering the position in the sorted list of
those nodes with new minimum values. The expected run time is:

N (tg+ bty +(tr+t;) x10g2(X)))

where t; is the time to get a new node's arcs, ¢, is the time to process each
arc, t; is the reinsert cost for_' a node and ¢, is the time to look for the new
position for a node in the sorted list. We estimate the following values: t, =
2,4, = 5.t, =3 and t, = 4. Under these assumptions, the sequential method
will take 7.7 million instructions which is around 2 seconds of processing
time.

The parallel method is only four times as fast as the sequential method.
Why don't we receive better improvement? First, less than one sixth of the
machine is being used. Second, integer operations are 20 times slower on

the BVM. Third, the SHARE operation takes milliseconds per use. Finally,

N W N T WL .

D s N TR SR AR
i IS WG TN W AU W TN W

N T T T T T T T T T e e e e e rw ey) haitt - AR -
r RSl Pt ass s Satt i 08 B 1 Rlib Rk el Al el T B AN A% b e e & a b LB I A S A SR A A L Al 4 |

A

45

the pearallel machine gains the most when the branching factor is high, when
graphs are "busby”. In the given example the branching factor of eight
significantly limited the available parallelism

Consider the following more favorable problem. Suppose we have a
complet=ly connected graph ol 700 nodes, thus 490,000 arcs. Making the
same assumptions as above the results are: the paralle] metbhod runs in
T5ms; the seqguential method runs in 9 seconds. Now the speedup is 100-
fold. (For this case, however, Dijkstra’s algorithm will yun in around 1
second but we still have an 12-fold increase.)

It is conceded that the constants used throughout this section are
rough. Even though the BVM has an integer speed one twentieth that of the
sequential machine to which it is compared, the BVM still obtains
performance improvements over the sequential method. It is apparent,
bowever, that the precise form and size of the problem causes significant

chenges in the improvement level. .

.......
............
o \ PN

46

graphs are "bushy”. In the given example the branching factor of eight
significantly limited the available parallelism.

Consider the following more favorable problem. Suppose we bave a
completely connected graph of 700 nodes, thus 480,000 arcs. Making the
same assumptions as above the results are: the parallel metbhod runs in

. 75ms; the sequential method runs in 9 seconds. Now the speedup is 100-fold.

For this problem, however, Dijkstra's algorithm will run in around 1
second but we still have an 12-fold increase. Alternative methods will also
improve the parallel timing result. Consider, for example, the shortest path
method used in Aho [1974]; & connection matrix is manipulated to determine
shortest paths. A parallel version of this method does not rely on Share and

should improve our results since it takes advantage of greater parallelism.

-

It is conceded thal the constants used throughout this section are
rough. Even though the BVM has an integer speed one twentieth that of the.
sequential machine to which it is compared, the BVM still obtains
performance improvements over the sequential method. It is ;pparent,
however, that the precise form of the problem and its size in comparison to
the number of processors availai:}le to solve the problem cause significant

changes in the level of improvernent achieved by a paraliel processor.

ALt AL L A AR A Bl e St il St S I M et At S i et i et e e Sartt it iet it nid o Sind e R i a Rada W T —pY
e A o r By

‘‘‘‘‘‘‘

CHAPTER 6

Extensions And Limitations

In this cbapter we will explore the boundaries of our system We shall
look at tasks which are very difficult using this framework. Our results will
show that the method is general enough to handle most of the problems. We
will also investigate extensions which will allow representation of more

tomplex objects.

8.1. Tabular Output

The response to a variety of queries is 2 table of results. Consider the
guery "What is the narmne, age, height and sex of each engineer?” which fmight

produce & table like the one below:

Engineers

Dame age height gex
John b} 72 Hale
Ju 28 84 Fernale
Peter 47 74 Hale
Kathy 24 €9 Temale

Our system can implement this query by PRINTing one column of

information at a time. The following program is 2 possibility.

M1 « (REL = #jodb) & (ATYP = fengineer);
SHARE(M1);

PRINT(M1); {Prints the names of engineers}

M2 « M1 & (REL = fage);

| The age processor for each engineer has M2 on }
S50 « 0;

IF M2 THEN SO « VAL;

A P R S e Y

. - . . - - - . . » - - - - .
o« 2 . » e e ettt ’ S e . RPN .
P ISR I D0 ISP Y L AT VR WAL WG L ¥ Besndhanndha) PR P S R N TR R AT S Y P

LA At ol Rt 0t ot aVE DI 0l AVE B o S A0 A MR- B A 4ol Ak mel 2
. - 2 Aad e sl Al cag Al s/ a—" P .
. i Mkt M AR st s pen po R AN SV A A A D A 2 i e gy S i 4 .‘v-v-!

- Le e

"

47

PRINT(SQ); {Prints the ages]

M2 « M1 & (REL = #height);

§ The height processor for each engineer bas M2 on }

S0« 0;

IF M2 THEN SO « VAL;

PRINT(S0): {Prints the heights]

M2 « M1 & (REL = #sex);

{ The processor connected to the sex of ezch engineer has M2 on
S0+« 0;
"IF M2 THEN SO « ATYP; {sex is an attribute, not number attribute]
PRINT(S0); {Prints the sexes]

Another type of tabular output is generated in response to "List the

children of each chiid of John.” The teble might look like:

r.0d of Jo} ri)d of ckild of Job
Jack Joar

Jake
Jil! Joe

At first it appears that we may bhave to use a sequential tecknique. But

tbere is an alternative. lf we bave 2 SORT routine available we can use it to
sort pairs of names. If we sort by column one velue, all of the information

will be grouped appropriately. A program like the following will work:

MO « (REL = -¢parent-of);
SO « 0;

IF MO THEN SO « ATYP;
SORT(S0);
PRINTSORT(S0.VAL);?

Were there more than two levels in the clause we would no longer be
able to answer the query in parallel. To find "each son of each daughter of
each son of John" requires using some sequential step. In relational
database terms, our system cannot compute a cross-product of relations

without resorting to sequential processing. Our system can, however, handle

’The sandard PRNT procedwre wil mot work wnce it assames o mingle value per pode.
PRINTSORT, we anal say, prints soried information and wil allow us to prin: as many columny
s degired (in this ezamxple, two).

48

PRINT(S0): {Prints the ages]

M2 « M1 & (REL = gheight):

{ The height processor for each engineer has M2 on

SO« 0

IF M2 THEN SO « VAL;

PRINT(S0): ZPrinls the heights]

M2 « M1 & (REL = #sex);

t The processor connected to the sex of each engineer has M2 on }
SO0« 0;

IF M2 THEN SO « ATYP; {sex is an attribute, not number attribute]
PRINT(S0); {Prints the sexes}

Another type of tabular output is generated in response to ‘List the
children of each child of John.” The table might look like:

vild of Job bild of child of Jo}
Jack Joar

Juke
Jill Joe

At frst it appears that we may have to use a sequential technique. But
there is an alternative. If we have a SORT routine available we can use it to
sort pairs of names. If we sort by column one value, all of the information

will be grouped appropriately. A program like the following will work:

MO « (REL = -fparent-of);
S0 «0;

IF MO THEN S0 « ATYP;
SORT{(S0);
PRINTSORT(S0,VAL);!

More than two columns might be necessary in & query such as "Who are
the contact people for the largest customer of each salesman in each region

of the USA?" The result might be:

he wtandard PRINT procedire will not work since 1t ssmmes a single value per node.
PRINTSORT, we uhal wsy, prots sorted information and wi allow us 10 prixt as masy colznns as
dexived (in this exarcpie, two).

- e Y
..............

48

all of the other primitives of the relational algebra (Date [1982], Ullman
[1982]). The only reason we were able to handle the previous query is due to
its simplicity. Of course sequential methods would work (stepping through
each son of John) but in the cross-product case, and only in this case, the
required processing time is a function of the size of the class being

processed.

82. NHolecules: Complex Object Representation

Consider a fact such as "The Maru carries coel from Portland to Tokyo.”
Ip our current scheme, it is necessary to divide this fact into three separate
pieces of information: “cargo of Maru is coal”; "departure-point of Maru is
Poriland”;, and "destination of Maru is Tokyo.” This division is not
acceptadble, bowever, since we bhave lost the contezt of the individual pieces
of information. Consider the following example. “John hit Joe in the Back”
and "Pete hit Joe in the stomach” yield the four pieces "Ju.:.;' hit Joe", “Joe
was hit l.n the back”, "Pete hit Joe” and "Joe was hit in the stomach.” Now it
is not at all clear that the correct response to "Did Pete hit Joe in the
back?' is "No.” Nilsson [1980] gives a method of changing any n-ary relation

into a set of binary relations without loss. There are several reasons we will

choose another method.

o Nilsson's metbod adds a central node to which each piece of information
R‘ is attached This method adds an unnecessary node type for every
- complex fact in the system.
‘,: e For both theoretical and efficiency reasons we would like pieces of
information which are tightly couplied to be equally tightly coupled in the
; representation. This minimizes the “semantic distance” of the
= information (Sowa [1884)).

: There is another method which uses the BVM efficiently and precisely
represents the facts.

. ..
S AR

(LI “-a
[]

‘:';VY?“'

~

[

Y |

S o WmAE OF RN L WUNTR WY I

49 ".

Soutk Joe Southerr. Bell Carol
Paul

Fred RT1 Pete

West George Bank of America Eller :
Balpk E

One can extend the sorting technique to sort n-tuples of the necessary
length at a speed cost linear in the size of the n-tuple. Queries of this sort
are computing & cross-product of relations in the machine, and this could
easily overflow the available number of processors. In the example above,
the word "largest” served to reduce dramatically the number of n-tuples
being considered. lf we use this sorting technique we might need to monitor
the size of intermediate structures to avoid overflows. Ridding ourselves of
such monitor"s. however, is one of the positive features of the system in all

other situations. Thus we have reached one of the limits of the system.

8.2. Mdecules: Complex Object Representation . 3 :

Consider a fact such as "The Maru carries coal from Portland to Tokyo."”
In our current scheme, it is necessary to divide this fact into three separate
pieces of information: "cargo of Maru is coal”; “departure-point of Maru is
Portland”; and "destination of Maru is Tokyo.” This division is not acceptable,
however, since we have lost the coniex? of the individual pieces of E
information. Consider the Jollowing example. "John hit Joe in the back™ and
"Pete hit Joe in the stomach” yield the four pieces "John hit Joe", “Joe was hit ”’._-
in the back"”, “Pete hit Joe" and "Joe was hit in the stomach.” Now it is not at :
all clear that the correct response to "Did Pete hit Joe in the back? is "No.”

Nilsson [1980] gives a method of changing any n-ary relation into a set of

ST T T T T T R T TSI TV T SRR R A S A A R At R i Sl vl cal ra el md e anralt hehin Rt A Nl A A tal Al G i A i e oy
- -~ - - . - - - . .

..... ~

50
8.3. Some Practical Questions

Let us deal with some practical issues. First, how expensive is this
implementation? How much does a BVM cost compared to & sequential
machine? Being so simple, each PE in the BVM takes "no more silicon area
than some 512 bits of memory” (Wagner [1983]). Since each PE is given
around 200 bits of local memory, the BVM takes the silicon erea of around
700 million bits instead of 200 million bits. Thus the cost of the BVM is no
more than three times the cost of memory alone for a sequential machine

with an equivalent amount of memory.

What sort of general improvement does one expect over a seguential
machine? We have looked at timing compearisons in section 4.4. What we
bave found can be summarized as follows. One can think of processing a
guery as processing one set of nodes after another until a final set is found.
If there are k sets of nodes, the average number of nodes in a setisn, and b
pew nodes must be checked from a given node, the sequential mch;ne will
take time proportional to kxbxn, whereas the parallel method will take time
proportional to k. The constant .or the paraliel method is quite large,
around 120 microseconds for selection operations (booclean) and around 2.5

milliseconds for inheritance operations (integer). For large enough gueries,

the paralle! method will win; further, the paralle! method gives results which

are independent on the number of nodes to be processed.

o A final question is how transportable is the method described in this
paper? Will it only work on the BVM? The limitation of this system is the
ability to implement the SHARE algorithm op a given machine. The only

T
o

a
.
Ry

reguirement for implementation of this algorithm is that the

s
s

interconnection pattern be one of those which is equivalent to the binary

.Y
y
.

.......

45

The metbod we suggest is called molecules because we will use hardware
links to chain together all of the pieces of information which make up a fact.
Again consider “The Maru carries coa2! from Portland to Tokyo.” We may
choose to connect “coal” to "Maru” in the standard way: a processor is
assigned to “Maru” and its lateral is assigned to “coal”, with the link labeled
"cargo”. Now let's assign to the processor which is the predecesstor of tbe

- "Maru" processor tbe value "Portland” and label the predecessor arc

“departure-point”. Further, we assign to the successor neighbor of the

"Maru” processor the walue "Tokyo" and label the successor arc

“destination”. We thus have

N

:E: and all the links in the above diagram are in hardware. Now a query such as
% “who cnrﬁes coal to Tokyo" requires no SHARE operations.

g Although we shall leave molecules as a possible extension, one point is
“ worth mentioning. 1f “destination” is found via & successor link in this
:::: mpolecule, it should always be found via the successor link of every molecule
" . (and single connection) in which it is used. Otherwise all "match” timings

will izzrease by a factor of three, as the system will have to search the three

arcs for each processor.

Do e e

........

p T TR Y YW ™ T ™
g hRARC RO Al At B 1 o uh e atve e e o o nAaa- s <. o e s e Sn s
....... AR Al A Beal A) o Ao s s

- A

51

n-cube, in that one can emulate the other with only 2 constant delay.
Besides for the mesh, most interconnection patterns are equivalent to the
binary n-cube; these include the important sbuffle-exchange, Benes and
omegs patterns (Feng [1981]). Tbe method described in this paper then,
altbough designed for the BVM, may be used on a number of other possible

machine configurations.

)T
& h]

AR
AL

L4
P T

"‘ "X
o®
e i -

P

SRRl RN

*n
+
»,

N

T
S
L 3 Ty

RN B
. LI
. .

-

- LETRIE 1P U U A S
S ~.-'. R -.,'f.'-' ‘q“- a e -"‘.' '-'.‘.'h.) e
S NS SRR CAL SRS 5N I NI E R P R N

R A A ARSI B2 Sl it b A e~ At aas v S abe o S St A Ao i a o DA Pt Satt .7"’

52

8.4. Conclusion

This paper has described a parallel implementation of associative
networks. The BVM, & parallel computer with one million processors, is used
to obtain speedups over a "good"” sequential method of up to three orders of
magnitude. The timing results are "smooth", depending only on the
complexity of the gquery, not the size of the classes being processed. The
knowledge representation is elegant in its division of information to the
most atomic level. Important concepts from the field of semantic networks,
such as property inheritance and cancellation, have been shown to be
successfully handled by the systemn. This paper has described in detai! how
to build an sssociative network based gquerying system which embodies the
principle “forget about trying to avoid or minimize the deductive search,
and simply do it, employing a rather extreme form of parallelism to get the

job done quickly” (Fahlman [1978)).

DT .
L e,

B N PP AL A P R S ot Te Tl D - . - .
i JT.u'.g;.‘.z) APFAP FV I S A SR P8 RSt PSP VPR L SR N T R S VAR :

T T W W I W NI WIW, WY N A T A T T T T TwwrrerTey A Bie Ate ian s S b ol e aan dhte S oae g 1Y .
- R ASA Ad S N A Ae i S S S Mg ”

83

APPENDIX A

The SHARE Algorithm

To implement the share algorithm discussed in the text requires
developing a2 mapping which concentrates the information for each node of
the associative network into & single processor then returns the
concentrated values to each original processor. The mapping for
concentrating may be used in reverse to disseminate the concentrated
values, thus the proofs below develop only the concentrating mapping. The
proofs determine constraints on tbe time complerxity necessary to reorder
the information eaccording to this mapping. Tbe binary n-cube
interconnectior will be used in the proofs and then &2 constant-time method

will be described which emulates the binary n-cube on the BVM.

A-1 Definitions

N equals 2% is the numbevr' of PEs in the parallel cornputer. The PEs are
numbered 0,1.... N-1. Each PE is assumed to hold a single value of interest.

A vit { relationship is an interconnection of PEs which pairs up PEs
differing only in the ith bit o!f their PE number. The “larger” PE is the one
with the bit on (it bas the larger PE number); the “smaller” PE is the one
with the bit off. We apply a bit i relationship by selecting for each pair of
PEs one of the following four gperations:

o

o« et e T O o S, . TS AR . X

, NS P " Y R R I <L “ ’ Rt : X
IDIPSCOI I NP S TV U R T TN TP NN ~ J L PO . . -
HUSUN. VR TV W PRSI NS A WO U Y Y . U

T

k B el X v 3
'y - D -
o4, f'ldz‘_',n' I

-
A
»

MR e

LA EURE T N L e Y . L.
ORI e } A R P e - L . s - e
W‘ LI W N P S S W O R I I L te « . LT e e _' . A . -
e T P VI TR Y WA U S O WU e e o
'y Sm .l m - - P T I A)

N T T TR T

STAY: each PE keeps its original value

CROSS: the PEs swap values

ORUP: the larger PE is assigned the value of the OR of the two
walues; the smaller PE has undefined value.

ORDOWN: the smaller PE is assigned the value of the OR of the two
walues; the larger PE bhas undefined value.

The operations which may be applied to the PEs can be pictured as
switches (figure A1). The OR operations ere used on Boolear values, which
are our primary interest. (The operations ADD or MAX/MIN might be

considered for integer or floating point values. The actual operation chosen

does not affect the analysis.)

A general mapping assigns to each input PE an output PE. The mapping
is said to be applied or tmplemented when the vaiues are moved from their
input PE tc the assigned output PE. If more than one input PE has the same

output PE, the values of these PEs will be ORed together before they reach

the output PE.

A permutgtion is a one-to-one mapping: each input Pﬁ'{s mapped to &
unique output PE. For implementing a permutation, operations ORUP and

> > -~ >\ ~>
\)< / N\
> > .,-V ® s }-—) Can 24—y
STAY CROSS ORUP ORDOWN

¥igure A1: The four operations, pictured as switches

55

ORDOWN are not necessary.

A tinary n-cubde is a paralle] computer consisting of & set of N PEs.
Each PE has n direct (bardware) connections to those PEs with which it
shares a bit i relationship, for each i less than n. In a cube with n=3 (N=8),
PE 5 (binary 101) bas connections to PE 4 (100), PE 7 (111) and PE 1 (001).

PE 2 has connections to PEs 3, 0 and 6.

A state of the binary p-cube is a list of values assigned to the PEs at &
£iven moment.

A sweep is a set of n states in which going from state j to state j+1 is
achieved by applying & bit i relationship, for some i. Each value of i from 0

to n-1 appears once within a sweep.
Ascend is a sweep wilh the bit i relationships applied in order: 0,1,...n-1.

Descend is a sweep with the bit i relationships applied in reverse order:

n-1, n-2,.... 0.

4-2 Theorems for Permuations and Nappings

Theorem 1: A single sweep is not sulficient to implement all permutations.

Proo!: There are N! permutations of N items. Since STAY and CROSS are the
only operations which may be applied to each pair in a bit i relationship of a
permutation, each bdit i relationship of a sweep allows 22 possible switch
pettings. Further, there are n states in a sweep. Thus, a sweep can only

describe 22%? combinations. But this equals N2 gince n is logy{N). In

other words, there are only VR® possible permutations that the sweep can

S S R e B BN S Boll Sl Bl ol ok

ISR AR S S A At Sl sl tensat tad og van el o] NTTUTO
A *Ba"a ¥ Y AERAat bRl o o o aiia Rty P i et afe ulie Nl

o6

describe. N!, however, has asymptotic value (N/e)* and is larger than VR
for all N>2. Thus, a single sweep ma}’ pot implement all general

permutations.

Theorem 2: An ascend followed by a desceng is not sufficient to implement

all mappings.

Proof: This proo! develops a mapping which cannot be implemented for the
case N=8. The mapping that provides the counter-example is

InputPE: 0123456

OutputPE: D1 02123
This meeans that PE 0 sends its velue to itself, so does PE 1, but PE 2 sends
its value to PE 0 as well. Thus, at some time in the process, the values from
PE 0 and PE 2 must be ORed together. Figure A2 shows the switches for an
ascend-descend pair which we claim cannot implement tbié.permutation.

Note that between the ascend and descend there would be two bit n-1

relationships. Since these cbmpare the same pieces of information we will

remove one of the two redundant steps. The state of the system over time is
described by its initial values and the settings of the switches in each phase
from left to right. To choose a particular mapping, one needs to assign to

each switch one of the four operations. Our claim is that bo such

assignment will work

From figure A2, alter the first vertical bank of switches, one ot PEs O
and 1 will have gent its value to the high tier, and one to the low tier.

Similarly with PEs 2 and 3, and PEs 4 and 5. Either all of the PEs trying to

o

e e vt ad
A
st

-
)
+

-

S

."ﬂ
-

57

//\ . A X v
6
[i s [o o 4
7 = L — L
4 1 2 1 0
b 0 N N
7 7
ascend descend

Figure A2: The counler-example proving Theorem 2.

If PE=s C ard 2 are to serd vaiues tc PE C, switches 0-1 apd 2-3 oust be the same. I
PEs 3 and S are to send values tc PE 2, switches 2-3 and 4-5 must be the same. If
PEs 1 and 4 are tc serd values to PE 1, switckes 0-1 and 4-5 must be different. This
yields a cortradictior. .

reach PE 0 at the end must be in the seme tier just before the lest switch, or
the switch marked * would have to be an ORUP. This switch must not be an
ORUP, however, since then the output to PE 1 would be undefined. Thus, all
of the 0's (the values heading for PE 0) must be sent to the same tier. Since,
after the first bank of switches, only the next to last switch allows values to
cross tiers, the switches labeled 0-1 and 2-3 must either both be STAY or
both be CROSS. Now what can the setting of switch 4-5 be? A similar
argument as the one used for the switch marked ® yields that the switch
marked + must not be ORUP, so the 2's must all be in the same tier. Switch

4-5 must be set the same as switch 2-3 and thus switch 0-1, for otherwise

SRy LN AL L e
N R S LR O St

o “ ” . n' X ..'s~'-'.' A .- A
PSS WSS TN W ST A . WP R |

........

DA NNE A A DU Sk A it arue o -auar 2 pa i gne

T Ry ——y
- Sl Audiat e S

o8

the 2's would be in different tiers. Finally, look at the situation for the 1's.
Obviously one of the 1's will be in the high tier and one in the low tier if the
three switches are set the same. Thus, the switch marked ® would have to be
an ORDOWN to get the 1's to PE 1, and we know this cannot be. Therefore no
setting of the switches will allow the mapping to be generated and the

theorem is proved.

Theorem 3: A mapping of the share type may be accomplished in an ascend
followed by a descend followed by a final ascend. Further, the first ascend
and descend implement a permutation and thus require only the STAY and

CROSS operations.

Proot: In the Share algorithm we only care that the data gets concentrated,
not intc which PE it is concentrated. Thus, we will arbitrarily assign the first
m PEs the task of holding the concentrated data for the m nodes ;f the

associative network.

The two lemmas below are sufficient to prove this theoremn. The first

says that an ascend-descend peair implements a general permutation. The

second shows that, from a particular permutation of the input, a single

I;::';f ascend can concentrate the data in the manner described above.

['.. Lemma A: An ascend-descend pair may implement a general permutation.

L-':E.} Proof of lemxna A: This lemma is well known in the literature. The original
f:;?',': proof was by Waksman [1968). Schwartz [1980] gives a proof which does not
'f use any discussion of "switches” or “"connections” but instead builds up the

R T P Pt AP S S O I .
s, '.\“'.'\,"' et et T T TN et e e - S R R tae N e s e -
(RPN, P AP PR PR gV VN ..{‘{.‘-‘.‘:‘h-‘, :}‘_._ BRI AR S T o B R e T T v.__{
o, L) Ui RO A I R T N

.....

ey > V. Al e - - - v
-Aj TR TR Bl Snd Sod Salk il A NSEA Al ug e marc et ats-s D —a ————— -

Lok fa st 281 -
x.‘,n.“-_.‘ MM Ja
O A T TS

£y
'

x

E Rt

7 Y
y l: a "-",- g
- S

S Te Ty Tw el
ARk

59

solution using mappings. Lev [1881] gives & method which allows the control

bits to be computed on a paralle! processor.'

Lemma B: Consider a mapping in which the first n; PEs all have PE D as their
target (output). the next n, have PE 1 as their target, etc. and each n; is
greater than zero. Assume that tbere is a Boolean value associated with
each PE and the Booleans are to be ORed together if they have the same
target. Then a single ascend can implement this mapping using the four
operations STAY, CROSS, ORUP and ORDOWN.

Example:
PE: 012 3 45 67
Target: 0 0 0 1 1 2 2 3
Value:. TF F FFFTF
<4
PE: 012 3 4 5 6 7
Valuee: T FTF .- - - -

Proof of Lemmma B: This proo! is _by induction on the number of initial bits in
the target which agree with the current PE. The claim is that after stage i
each target can be placed in ;'PE whose PE number agrees with that target
in the first i bits. Clearly if this is true the theorem is proved, since after

stage n-1 the PE number will be exactly the target.

For stage O, we need to move just those values whose target disagrees
with the current PE number in the bit 0 position. What could stop us from
being able to move these values? Suppose PE 2k and PE 2k+1, for example,
both have odd targets. Then each will wish to place its value in PE 2k+1.
Novw if these two targets are the same, we merely use an OR operation. If the

two targets are not the same we have a collision. But note that this can only

.....................

...... R T —

-
[

S
.'_-:.'_j‘
e
e
b s '
w
;

A
.lA’
S A

LA

Y YA
AN Y
PP A P SR

e

T e S R S .
» » - ., . . " * : - - N * t . N . >

60

occur if both targets are odd and different. Thus, the targets differ by at
least two. The initial position, however, requires that PE 2k and PE 2k+1
hold targets that are the same or differ by exactly one. Thus this is a
contradiction and we can always move the values so that, after stage 0, each

target agrees with its PE number in bit 0.

Now suppose that all targets agree with their respective PE numbers in
all bits from O to i-1 and we are at stage i. We claim that after stage i we can
guarantee that all targets will agree in the first i bit positions. Once again
consider what it means to have a collision. We will have two targets which
need to agree in the first i bit positions but differ in some higher position
(for otherwise the targets are the same and we would OR them). The targets
for these two FPEs differ by at least 2!*), Two targets compared a! stage i
started within 2*1—1 of each other by the very design of ascend (For
instance, at dit 1, PE 0 may be compared with the original value from PE 2 or
PE 3 but never PE 4.) Once again we have 2 contradicticn, since there is at

least one target for each of the first k PEs. So there is no way that two

targets starting within 2'*! =1 of each other can differ by at lea.st 2,

The proof of lemma A in Walksman [1988] and our proof of lemma B are
both constructive. We may now assign to each node of the associative
metwork & unigue pumber. The many PEs which make up thet node will have
this number as their target. We then use lemma A to order t.boseVPEs as
necessary Yor input to lemma B. Lemma B then guarantees that we can
concentrate the data into the first k PEs of the system. Having completed
this construction it is worth noting that it is reversible. We can start from
the newly concenirated information and, following the same paths in

reverse, return the DRed bits to their initial location. Thus the ®ntire

"

-‘,' "

B o ta . - Tm e - -
W WS T PR Y. . % mam 4 Y o e A Al LT

A S vk Sh e e gan oo |
« Te e N . .

61

process takes six sweeps to complete.

Further, since we use the same path back as we used forward, no extra
control informetion is necessary. The amount needed for the forward
direction is 2n bits per PE. In the permutation, ascend and descend each

use one bit per switch. Since there are r switches per sweep but only half as

many switches as PEs, the ascend-descend system requires on)y o bits per
PE. In the concentrate sweep each switch is "four-way” and thus reguires

two bits. Thus we need another n bits per PE.

In 8 logp(N) logical steps using only 21log:{N) bits per processor the

share algorithm may be implemented on the binary n-cube.

A-3 Emmlating the binary n-cube on the BVN

Ascend and descend may be implemented on the BVM 2t & cost of =
constant time factor above that necessary or the binary n-qube. Preparata

[1981] describes this implementation in detail; we will sketch that method.

A BVM contains 2¥ cycles of k PEs each, so we have the same pumber of
PEs as s binary n-cube with n=k+2%. We define X=2F so ascend will have
k+K phases. The first k phases are low shesf reorderings, that is
reorderings within a cycle. The last X phases are high sheaf operations that

bring pairs together across the lateral connection.

Low Shea! Phases
Preparata [1981) gives an algorithm which, from s position where the
PEs have bit i adjacency, a sequence of 2*!~1 steps yields bit i+1 sdjacency.

For cycle length K equal to eight, the slgorithm gives:

AR AN N M RS a0 "0 allla” A RVa- 72" 2 6o AR S Rl are g o va Saogl jalRART Rl “plle alies By e teuny, salilomal, vl Sl vl ~ais et b el ool A e i
_____ . _ - Pald -) A . . -

82

bit O adjacercy: 0---)} 2--83 4---5 6-—-7
0 1«2 3 4 5«6 7
dit 1 adjacency: 0---2 1--3 4~ 5---7
0 2 1 34 6 5 7
0 2 14 3«6 5 7
0D 24 JeuE Se5 7
bit 2 sdjecency: O0-~-4 2---6 1---5 8---7

The arrows in the above diagram denole where swapping takes place.
Instead of using this algorithm each time Ascend is called, the algorithm is
executed once at startup and shuffle dits are stored in each PE which tel it
whbat operation to perform at each step. The number of shuffle bits
necessary turns out to be 2x(K-k). For k=3, the 2048 PE machine, 10
shuffle bits are necessary; for k=4, 24 bits would be necessary. A small price
to pay to avoid a relatively complex calculation on each step of the Ascend

algorithm

High Sheal Phases
Each cycle of the BVM bas K lateral connections to exactly those cycles
that differ in one of the X high-bit positions. Thus the foilbwi.ng simple-

minded algorithm serves to implement the high sheaf phases of Ascend:

FOR i := 0 TO K-1 DO BEGIN
FOR j = 0 TO K-1 DO BEGIN
upply the necessary operation betweer the
ith PE in each cycle and its lateral.
whift the values within a cycle to the right,
cyclically.
END,
END;

Variable i determines the current high sheaf phase, which is equivalent
to the element number of the PE within a cycle that is active. This method

is easy to implement but obviously yields less than 1/K of the bdbinary n-

cube’s performance, since only s single PE within a cycle is executing the

Ry T T €N
T e N T L N

Yo
"-'.‘ ‘* .‘,'._ © o P
N (..K'r Lol l’.i'r“t- (d ._'(J-J"‘“L)&AJ' L l_" &'{.n_'(L\L‘ L.‘-_L- -l “_1_:‘\:;:'4."& ak .'_.‘ _,-' -..’1-.';' 0 1 N J:‘¥mi;

TR TR LWL R URITWITW T U Y WY Y a i - i M
W \‘ I S Sal Sal Sl Sl Gl dad el Ak e b Sl At Attt A Bl Bl . Rl Bt ol a4 hOALALILE & e A aty
"=

N N T T T —

" .
'
b

63
operation each time througb the inner loop.

Pipelined High Sheaf

For the cost of a more complex implementation, we can dramatically
improve the high sheaf performance by using a pipelined approach. We will
aliow a value to proceed through the phases as it cycles right from the

zeroth PE in the cycle. The following pseudo-code is sufficient:

FORi = 0 TO K-1 DO BEGIN
{ 1ill pipeline §
apply the necessary operation betweer the
0 througk itk PE i- eackt cycle and its lateral.
skift the values witkir a cycle to the right,
cyclically.
END;
FORi = C TO K-1 DO BEGIN
{ empty pipelice |
apply the necessary operatior betweer the
i+ 11k threugt Ktk PE ir eack cycle and
its lateral
stift the values witkin a cycle to the right,
eyclically.
END; .

Now the PEs are kept busy half the time. The values loop exactly twice
around the cycle instead of the X times of the previous algorithm

This method seems like a clear winner except that, at any moment,
sach value in the pipeline is at a different phase of "ascent”. Since the

operation depends on the current Ascend phase, this method requires that

N

!-"
E":}f': the control bits which determine the operation to perform be recrdered so
iy
ORe that the operations will occur at the correct time.
i
'-I;:‘fj An escend on the BVN will take four times as long as it would on a
fj;f:j: binary n-cube with the same number of PEs. One factor of two comes from
;};g) the pipelining, which requires twice as many operations to be performed.
"‘”‘ The other factor arises due to moving the data sround the machine. Given
i
v
[
St
»

., - o TR A - O AR - A - il
A AAE S Sl o' Y .-r.nr'l(-rw"rr.wf,"rr‘"-r(r'_‘:"-rv-vvv-vvvvv e bl ol @ of
e ol *af JaSh itk el S e far At “a o giia v ho - ol " aRe “m i, WH LV R

84

the simple pperations being used during ascend, each movement step costs
the same as executing an operation. Thus, for a factor of four in speed we

may use the BVM, which is easy to layout in VLS], instead of the binary n-

cube, which is not.

S

e

b

B!

ala

T A o

R S

[R A
PRSP

A LA L L L 2 e B 0 B N Tl " e " B B o
PO el e BCARC AR S R S Pal PR Vel Ae PR el W iy v
X f

.........

65

APPENDIX B

Simulation of Parallel Assdciative Networks

The results described in this paper heve been verified by building a
simulator of such & system. In this eppendix we will describe the computer
project. The first section gives a brief account of the BVM simulator used.
Section two discusses the program which calculates control bits for the
SHARE algorithm. The third section describes the SHARE program In the
fourth section we Jook at a program which converts the formal description
of a data base (figure 4.1) into input for the data base simulator. Finally the

data base sirnulator is described and sample executions shown.

B-1 A Righ-Level Simulator for the BYM

In Jackoway [1984] & bigh-level simulator for tbe BVM, SAL, is detailed.
This section will give a summary of its properties. SAL allows the user to
write BVM programs in standnrd Pascal. The user writes a Pascal procedure
which, when passed to SAL, is called with the memory of each PE in turn. To

avoid referencing data in ways pot possible on the BVM, the procedure is

sent four parameters by SAL: a pointer to the local memory of thé current
PE and read-only pointers to the memories of the three PEs to which the
current PE is connected. Jackoway [1984] describes rules which eliminate
usage which would not be possible on the BVM. Basically these rules restrict
the procedures to two or three lines; each procedure does some

fundamental task such as copying 8 word or ANDing two bits. The user

K;
Ko
v,
_.
]
E

*

- =
s

T TR S

........
P A R T

rs
-
b
D
v
.
x
3
’
7]
.

.
7
2

-
v

O A A AC RIS At Al i i Al e et ALE" £ 2R a0 i~ et dad atets b e Aee 2os Aok diou b Rl s d a0y o) g Bt A AN B AC Al Abe e o o

PN NI e A e b oSN a4 e o |

66

writes a bank of such procedures and then writes his program, which merely

sends these procedures to SAL in the appropriate order.

The user may place a template over each PE's memory. This template
allows the user to use Pascal integers es well as booleans in the user’s
programs. Thus one might decide to treat the first sixteen bits as booleans
and the next 80 bits as three twenty-bit integers. The flexibility allowed by
SAL and the capabilities available from Pascal make algorithm development
easier. Since SAL is not an assembler-leve] simulator, precise timing results
cannot be obtained. Instead the user must be satisfied with a count on the

number of executions of each user procedure.

B-2 Control Bit Calculation

The control bit program takes a mapping as input and outputs the
control bits necessary for the BVM to implement a mapping. The méthod

used is the two step process suggesied in the proof o!-‘rbeorem 3 in

sppendix A. The tirst step follows Waksman's algorithm to compute e
permutation which sorts tﬁe-information (Waksman [1968]). The second
step uses lemma B to determine the final ascend control bits. Thus to
bandle the following mapping:

InputPE: D 12 3 &
01031

8 7
Output PE. 1

5
20

the first step will use the Iollowing permutation

InpitPEE D 1234567
OutputPE: 031748
u 'f.'.-“ -f " ::':rj' :::i“-f4.;-':‘:;‘:_.‘:-'",-;--'_.h-ﬂ.;-.i:‘;-:é;; -A::‘_:.

el e’ ot S e e St A et et ot = JA0 AR = i o Sl RN i i s e S et e [g i~ e
e NS SN A ey o

87

to bring the date to a position where the following mapping needs to be

determined:

InputPE: 0
0

234567
Output PE: 011123

1
0 1
Now, lernma B may be applied.

The sorting step is implemented using tbhe method described in
Weksman [19688]. The control bits are equivalenced to swilches in the
following manner. The two processors involved in a bit i relationship bhave a
single control bit which, if on means they swap values (switcb CROSS), if off
means they keep their original values (switch STAY). ORUP and ORDOWN are
never used during & permutation. Since the permutation is implemented as
an ascend-descend pair, each pair of processors will meet twice, once during
ascend and once during descend. The smal]er-numbe;ed processor
maintains the ascend control bit, the larger-numbered processor, the

descend control bit.

The second step is achieved using Lemma B, bul runs m reverse. The
control bits for the final stage are determined first. This final stage is the
only one that allows values t.o cross from the lower hal! of the permutation
to the bigher half and vice versa. Thus, we can determine the necessary
switch settings by noting which balf the values must have been on before
the final stage. Consider the mapping we have been using throughout, and
compare the final state to the initial state.
2 3] 5 8 7
0 1j]1 2 2 3
It is clear that D will only come from the 0-3 balf of the target, 1 will come
from both halves, and 2 and 3 from the 4-7 half. Thus, at the final stage, 0

.................

A R A T R SR VR U Wt AR A AR TR A Sk fan S S e S r~—
R M S A A A 4 AT

b MRS S o B g e
~ AN aAACERRCa

88

will need operation STAY, 1 will need operation ORUP (up to the tirst half),
and 2 and 3 will need CROSS. Now we can determine the next-to-final stage

by considering the following two subproblems.

PE: 0 1/2 3 and 4 5|6 7
Next-to-last: D 1}|- - - 1)2 3
Target: 0 0/0 1 1 2|2 3

This process may be continued until all switches have been determined. 1t
takes two control bits to define a switch; one bit is stored in each of the two
processors connected by a bit i relationship. In the bit D relationship, for
instance PEs O and 1 are connected. The four possible switches are defined

as follows:

STAY CROSS ORUP ORDOWN
PE O: 0 1 0 1
PE 1: (8] 1 1 0

-

Figure B1.shows a sample execution of this program.

B-3 kmplementation of the SHARE Algorithm

To implement the SHARE algorithm, 1 started by designing and

implementing Ascend and Descend (A/D). A non-pipelined version o! A/D
exists as well as the pipelined version described in (Preparata [1981]). The

advantage of the non-pipelined version comes in debugging algorithms.
Using the pipelined version, at any point in time each piece of data within a

cycle is at a different phase of ascent or descent. Finding bugs is nearly

fmpossible under this condition. Thus, higher level algorithms may be tested
using the non-pipelined version and then converted to the faster pipelined
wersion.

;

Y

b

:

9

e e -
. i =iy

Ty
e R VTP w
RO - LAk Lo .—-,-'_" ey

o TV

B89

Magping to generate:
¢ L 2 3 4 F & 7 B ¢S W UM B WM I
6 & 7T ¢ 0o ¢ e 4 7 & z % 2 & 7 1

To Decide Switches: ({This js the persvtation for Maksaar's algoriths:
¢ % 13 ¢+ 2 I 1 6 4 It & 4 T 12 15 5

{Results of Maksman’s algorithe}

Switch 8 G STAY STAY STAY STAY STRY STAY STAY
Switeh # 1 STAY CROSS CROSS CRDSS CRDSS STAY STAY
Switch 8 2 STRY CRGES STAY CROSS CROSS STAY §TAY
Swrtch # = CROSS CRCSS CROSE ST (CROSS CROSS CRSSE
Switcn 4 4 CROS3 8T@y SThr CROSE CROSE CTROSS §TA:
Switch 9 & [ROZC STAY CROSS STAY S§TaY STAY CRIOSS
Switch 4 ¢ ETAY BTAY STAY STAY STAY STAY CROSS
Switct &7 STAY CRDSS CKOST CROSS CROSS CROSS CROLS

Te DEzi%: {Lessms B algorithal
¢ 0 .0
¢ 1 2

Ly <

4 5 ¢ 7 -1 -1 -1 -1 - -1 -1 -

{Kesults of lessa B algoriths, the numbers are the lower processer of the tit) reiztionstipl

0:0FUF 0: ORUP . 0:STAY 0:STAY
2:0RUF 1:574Y 1:CROSS 1:STAY
4:DR0DOWN 8:57RY 2:CRODSS 2:STRY
&:0RUF S:STAY 3:STAY 3:0RDCuN
g:CROSS B:0RDDMN B:LROSS 4:LRDSS
10:0RUF 9:5TAY §:5TAY 5:ORDOWY
12:57RY 32:CROSS 10:0RDOWN 6:CROSS
14:0RDOMN 13:0RDOWN 11:STAY 7:CROSS

U I LA A I e &
.'-'."." DLt
s e A [RPEEL B
SE O LT

»
z
. Figure B1: Sample run of control bit calculation program
"
Having routines Ascend and Descend in Place, the next step involved
|'

: \-' h Pal A v -
PR ;2“\&- }‘-ﬁh"l-iiLx._g‘-‘-‘-\'L&}, « b '« .!. _'-_' N S

u's}p.)‘._'\n'(I T T A T

———
P
LN B

f!
. [
v 0
S »

Ll gl o
L

T ¢
2

R
» M

b &

UL
s .
PSSR

v
1

o oo
AL
Loty -)

70

introducing the control bits computed by the program described in the
previcus section. 1t is not sufficient to place the control bits in the
processor to which they are assigned by this program. 1In the low sheaf and
high sheaf, the date is shifted around and so must be the control bits.
Although ope could predetermine where each control bit will be needed, a
simpler method is used. The control bits are sent around the cycle along
the same path that the data will flow during a SHARE and each bit is

“dropped" in the processor where it will be needed.

Due to the cost of simulating a 2048 PE machine on a single processor,
only the concentrate half of SHARE has been implemented. This is sufficient

since the second half involves using the same control bits in reverse.

B.4: The Data Base Simulator

Since SEARE is so expensive to simulate, in the data base simulator an
inexpensive version of SHARE is used. (This version violates BVM constraints,
but it is the only routine used in the data base simulator thal has this trait.)
SHARE may also be used to print out the concentrated values, tbus it

doubles for PRINT.

A MATCH procedure is available which handles niost boolean assignment
statements which depend on TYP and REL values. The parameters to MATCH
are: a TYP field value, a REL lield value, an ATYP field value, an associated
mark bit number, and the mark bit number of the bit to set. Any of the field
values may be set to "ANY" (0 is used); the associated mark bit may be sel to
*NONE" (again O is used). The MATCH routine sets the mark bit in those
processors whose fields match the field values and whose essociated

processor has the associated mark bit on. MATCH can be said to compute

"""" e T T e T T T = e e et
v T AR PR SRS A AR = S ol g g

4':-‘ LLLi f":"l"?f'.»".-"ﬂ..," S A
3 ST

71

the following boolean function:

(TYP = TYF field value) & {REL = REL field value) &

(ATYP = ATYP field value) & (associated mark bit on)

Otber procedures are available for boolean operations, integer
operations, copying integers, and an IF routine. As well as tbese simple
procedures, the procedures described in the text have been written. These

. routines include INEERIT, MARKALL and MINIMIZE. The following pages show

annotated runs of the data base simulatlor.

..A'.','-.‘p,_- T .
TS G S L

T LN e
P VP S TR T NPT L D -
b it P R T T W T WA O [

aBalan_ T

LA e o
F

LN .
e . .

» Y i
. et ""a‘:'
e - 's -

e s

oL o
LIRS
LR R RN
N EE M MU SR

Y

B s e P

gt

.

T
YA
S

-

WELAANN
L] * 2

a

-t owl

DA A R T R S Sl Kol LA A MU A Sl B e ™ s S et - g Ly - T T W ey
. - . - - . - -t .. - -

S

(X @]

71

Having routines Ascend and Descend in place, the next step involved
introducing the control bits computed by the program described in the
previous section. 1t is not sufficient to place the control bits in the processor

to which they are assigned by this program. In the low sheaf and high sheaf,

the data is shifted around and so must be the control bits. Although one

 could predetermine where each control bit will be needed, & simpler method

is used. The control bits are sent around the cycle along the same path that
the data will fiow during a SHARE and each bit is "dropped” in the processor
where it will be needed.

Due to the cost of simulating a 2048 PE machine on & single processor,
only the concentrate half of SHARE has been implemented. This is sufficient

since the second half involves using the same control bits in reverse.

B4 Datz Base Entry Program

The data base ent.ry.program accepts a data base description of the
form shown in figure 4.1. Bach line begins with the name of a relation and
contains the names of pairs of nodes which are to be connected by that
relation. The program alphabetizes all of the words to determine the
numerical value assigned to each node and relation. Once the numerical
assignments are made, the PE assignments are made. Each PE is given the
numnber of the node to which it belongs and the relation in which it is used
These assignments are determined so that the pair of PEs representing an
arc are connected by a lateral link. The numerical and PE assignments are

saved for use by the control bit calculation program and the data base

DA IS N

LANCH 4 aan s

......

D L A N S A Sl 8 o e e o

™
. Y e R T~y

72

{4 printoct of the TVF values #or the first I2 processors
follaws. The first processor has vaiue 15 in hexadecimal
which 1s 24 in decisal. This 1¢ 2 "doh:® processor.i

state of the sachine:
GOLE 0011 OGIR 0017 DI GOZT LU o01D
00if OGI14 OCIS 0CZ1 O01A OC2E (e 0028
000F 00th GQOIE 001D 0011 O0CIE 0025 OQ0i
000: 0625 0018 OC!1 OCIR 001D 0027 O3} !

[¥e wil] calculate "grandchildren of Johr'

First, WATCH 15 called to set Worg 3 to True in all processors
which have INVERSS FARENT link to a JOHM noce.

A1} of the insorsatior which is not in braceets (13! was produced
by the progras. Information in curly trazkete {{if 11}1 15 &
sub-outine call,

Kcte that the nases below were printed by the prograe which losis up
the vilues in the dictionary bulit by the dats base prograg.

The nuaber in parenthecic after a nase 1¢ the value assigned &o that

tyvpe.
Ncte dalso that in thic ispleserntation, all things are storet
in wmords, booieans have value | for TRUE, ¢ for FALSE.] .

~
1S

{0 merd{3) (- REL= [NVERSE PARENT-32 & ATYP= JOHNIZA:
{{{ SNmRE BOrd!Ill 3i:

[children of dohn:l

TYPES Dh: CJATKUIT: JILLiZi: 1) ;

I8randzhildren are found by turning on those nodes which have
an INVERSE PARENT link to a node with word 3 ond
{{{ Mord[4) (- REL= INVERSE PARENT(~32) & AMcrdI3i=True 1)}

- U SHARE Mord(4])0}

. [grandchildren of John:)

TYFES O: IMKE (1B:1) JOAN{21:1) JOE(23:1)

9

]

'

,." ' ‘.,‘-' WL e e g

B M e e T T e -
e - N SR, PR Y l_".':\\i.,-,"v. e T e '”.".'".'_:_n‘..'

AR e R Cah R AR Gl ok el A el el Sal e we e) et

LA S e A= e B4 an fhe b Gra b o

73

[Now we prosees to the examgie *Whe are parents of te~ dog owners®*]
{{{ Wordi2) <- REL= ISAils} & ATYP=DOB(S: i)
{{{ SHARZ Nord[Z])5)
[dogs:)
TYPES ON: FIDO(12:1) POOFSYiJest)
{1l Wordld] (- REi= COLORie: & ATYP= TANIIT, 133
{{! SHnRE Mordl4))))
Itan things:)
TYPES ON: CORVETTE(Z: 1) FIDG 1201t JILL(20:) !
MARY (27:1) |

[First we wil] deteraine {tan dogi owners)
{{{ WordI5] (- Word[3] & Wordl4] }})
[dord § is set true in tan dogsl
{{{ Wordlel <~ REL= OWNI3LI & ANordiSi=T)
{{i SNARE Wordigl 1))
[Jake 15 the {tar dog) owner)
TYF:S aN; JAKE{1B:}:
{ worgl?d <= REL= PARENTISI; & Alcrolel=T i
(‘. SHARE Mord(71 3))
{daie’s parents:]
TYFES Oh: Jask i1l WFPY{de:

[Now we w11} detersine tan (dog owness)] .
{00 dprelS] <= BREL= OWNITHD & ANordidlst I3
{{{ Stn=Z WordIS1 202

[doc owrers:]

TYFES Da: JARE(IB: D JILL{20:1)

oo (00 MoréZ6) (- Wordi4) & Mord[S))
P Iworc & 15 on only in Jill modes, since color of Jake is White)
b ({1 wordl7) <~ REL= PARENT(32) & ANordl&)s? 3))
= (L4 SHASE Word(7) 1))
i 13:1i’s parents:)
4 TYPES Oh: JANEV!19: 1) JORN{24: 1)
o IA susmary of the run follows.
o Be have exezuted B BATCH instructions, 2 Booleans (both L’s)
e and B Binary shares (we used operation OF between values).
[i By the values which are tabulated, this run would take ,
g only one silliseconc on the BVM.) :
’t' 3¢ Maatches: B #bools: 2 #ints: O 8bin shares: B #int shares: 0 Ssteps: 0 83
o
05
!!
)
".‘
-“
-
[
=
NI .
N .
tiw.A-.“-."vl‘!" e "\: e b T e ;.'«'-‘ '-'_",‘]u-. S L L R

CIVIS T TR VRN OVUESC O, W R A0 SN

- Chafi i et S

...............

74

REFERENCES

(1) Barpes, G. E., et. al,, The ILLIAC IV Computer, IEEE Prans. on Camp. Vol.
C-17. No. 8, pp. 746-757, Aug. 1965,

(2) Batcher, X E., Sorting Networks end Their Applications in 1966 Spring
Joint Cbmputer Conf.. AFIPS Conf. Proc., Vol. 32, pp. 307-314, 1868.

(3) Brachman, R J., On the Epistemological Status of Semantic Networks, in
Associgtive Networks: Represeniations and Use of Knouledge by
Computers, ed. Findler, N. V., Academic Press, New York, 1978.

" (4) Date, C. J., An Mntroduction to Database Systems, third ed. Addison-

Wesley, Reading, MA, 1882.

(5) Fahlman, 8. E., NETL: A System for Representing and Using Real- Forld
#nouledge, The MIT Press, Cambridge, Mass, 1879.

(8) Fahlman, S. E., Design Sketch for a Million Element NETL Machine, Proc.
AAAJ Conf., pp. 248-252, 1980.

(7) Fabiman, S. E., Touretzky. D. S., van Roggan. W., Cancellation in a
Paralle] Semantic Network., Proc. of the Seventh Mternational Joint
Conf. on Al Vol. 1, pp. 257-283. Aug. 1991.

(8) Feng. T.. A Survey of Interconnection Networks JEEE Computer, Vol. 14,
No. 12, pp. 12-27, Dec. 1981.

(8) Findler, N. V., ed., Associative Networks: Representations gnd Use of
Knowledge by Computers, Academic Press, New York, 1979.

(10) Flyn, M. J., Some Computer Organizations and Their Effectiveness, JEEE
Trans. Computers, Vol. C-21, No. 8, pp. 948-960, Sept. 1972. .

(11) Hendrix, G. G.. Encoding Knowledge in Partitioned . Networks, in
Associative Networks: Reprasentotions and Use of Knouledge by
Comgputers, ed. Findler, N. V., Academic Press, New York, 1978.

{12) Jackowey, G.. SAL: A Simulator for Algorithms, (not published), Term
Paper, May 1984. .

(13) Lane, E. U, ed., The World Almanac and Book of Fucts 1984, Newspaper
Enterprise Assoc., New York, 1884.

(14) Lev, C. F., Pippenger, N, Valiant, L. G., A Fast Parallel Algorithm for
Routing in Permuatation Networks, JEEE Trans. Computers, Vol. C-30,
No. 2, pp. 93-100, Feb. 1981. _

(15)Mago, G. A, A Cellular Computer Architecture for Functional
Programming, JEEE Spring COMPCON, pp. 179-185, 1880.

{18) Nassimi, D., and Sahni, S., Parallel Permutation and Sorting Algorithms
and a New Generalized Connection Network, JACH, Vol. 29, No. 3, pp.
842-867, July 1982.

(17) Newman, J. R, ed., The Harper Bncyclopedia of Science, Harper and Row,
New York, 1967.

ottt At

R G i st e S e 2t g & Bs oy o o

-~

bl Sal hak Sl Sl e of .V(Yi*iﬂ.w.'."‘\'«."1'."’".".'?

5

(18) Nilsson, N. J., Principles of Artificial Intelligence, Tioga Pub. Co., Palo
Alto, 1980.

(19) Preparata, ¥. P., and Vuillemin, J., The Cube Connected Cycles: A
Versatile Network for Parallel Computation, Comm. ACM, Vol. 24, No. 5,
Pp. 300-309, May 1881.

(20) Schwartz, J. T., Ultracomputers, AC¥ Trans. Programming Languages
and Systems, Vol. 2, No. 4, pp. 484-521, Oct. 1980.

(21) Snyder, L. Introduction to the Configurable, Highly Parallel Computer,
JEEE Computer, Vol. 15, No. 1, pp. 47-56, Jan. 1982.

(22) Sowa, John. F., Conceptual Structures: nformation Processing in Mind
gnd Machine Addison-Wesley, Reading, MA, 1984.

(23) Thompson, B. H. and Thompson, F. B., Shifting to a Higher Gear in a
Natural Language System, Mational Computer Conference, pp. 657-662,
1981.

(24) Thompson, F. B,, Personal Communication, June 1982.

(25) Thompson, C. D., Generalized Connection Networks for Parallel
Processor Intercommunication. JELE Frans. Computers, Vol. C-27, No.
12, pp. 1115-11125, Dec. 1978.

(26) Tomboulian, S. J., A Parallel Implementation of Associative Memory, (not
published),Term Paper, May 1984.

(27) Ullman, J. D., Principles of Database Systems, second ed., Computer
Science Press, Rockville, MD, 1982,

(28) Wagner, R A, A Programmer's View of the Boolean Vector Machine,
Model-2, Tech. Report, CS-1981-8, Dept. of Computer Science, Duke
University, Oct. 1981,

(29) Wagner, R. A., The Boolean Vector Machine (BVM), IEEE Conf. Proc’ 10th
Annual Mnternational Symp of Comp Arch. pp. 59-86, June 1983.

(30) Wagner, R A, Personal Communication, June 1984.

(31) Waksman, A, A Permutation Network, JACM, Vol. 8, No. 1, pp. 159-163,
Jan. 1968.

.....
...............
......

