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- Although we do not receive anywhere near an n-fold speedup by using n pro-
cessors, we still receive significant performance benefits over a single pro-
cessor.

- The associative network may be used not just as a semantic network, for - - .
example, it also allows some problems involving numerical minimizations to
be solved efficiently. "AL

The primary result of this work is that a large number of simple processors,
each responsible for a small piece of information, can work in unison to answer
queries significantly faster than a single, highly complex processor can.

This paper has the following structure. The first chapter introduces
associative networks by first describing semantic networks and then formalizing
associative networks. The second chapter describes the parallel processor
upon which we will implement associative networks. Chapter three describes
this implementation in detail. In chapter four, examples are given and expected
timing results are compared to a sequential method. Chapter five considers
numerical calculations. Finally, chapter six discusses limitations and pos- ZIE -
sible extensions of this method.
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ITRODUCTION

Mfany natural language projects in the past fifteen years have used

semantic networks as their underlying knowledge representation (Brachnan

[1979], Hendrix [1979)). In a separate realm, recent breakthroughs in

very-large scale integration (VLSI) have lead to designs for machines with

vast numbers of processors (Schwartz [1980]. Wagner [1983]). In this paper

we will marry these two technologies. A generalization of semantic

networks, called an associative network (Findler [1979]). wi!l be mapped

onto a massively parallel processor which is currently under development.

The results shall show:

* The time required to process a query is dependent strictly on
the pattern of the query, not on the size of the classes being
processed. A system built using this knowledge representatiop
will give consistent semantic processing performance.

0 The order of processing a query does not affect the speed. Thus
there is no need for heuristics and monitors to determine the
most efficient way to process a query.

* Although we do not receive anywhere near an n-fold speedup by
using n processors, we still receive significant performance
benefits over a single processor.

The associative network may be used not just as a semantic
network. for example, it also allows some problems involving
numerical minimizations to be solved efficiently.

The primary result of this work is that a large number of simple

processors, each responsible for a small piece of information, can work infunison to answer queries significantly faster than a single, highly complex

processor can.
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This paper has the following structure. The first chapter introduces

associative networks by first describing semantic networks and then

formalizing associative networks. The second chapter describes the parallel

processor upon which we will implement associative networks. Chapter

three describes this implementation in detail. In chapter four. examples are

-' given and expected timing results are compared to a sequential method.

Chapter five considers numerical calculations. Finally. chapter six discusses

limitations and possible extensions oT this method.
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CHAPTER 1

Asociative Networks

Associative networks are a generalization of semantic networks (Findler

[1979]). Semantic networks have been a common method for knowledge

representation in natural language systems (Brachman [1979]. liendrix

[1979]). Associative networks may be used for virtually any application

whose knowledge base may be represented in network form.

1.1. Semantic Networks and Natural Language

Figure 1.1 shows a part of a semantic network for a "family" data base.

Nodes are labeled with the names of individuals, classes of individuals2 and

attributes of individuals (such as "tan"). An arc is labeled with the

vvlatianship that holds between the nodes it connects. Most arcs are

idirected: "job" points from "John" to "engineer". (Note that, in the text.

words In double quotes are labels of arcs and nodes.) But other arcs, such as

"married" are undirected; one may represent an undirected arc by two arcs

both labeled the mame, one pointing in each direction. Queries are answered

by wrrg the network. "What is Jane's spouse's job?" may be answered

by traversing the "married" arc from "Jane" to "John" and then the "job" arc

oThmare are epWelowca! problems with iz the use of indiiduals and clases o! in
vJdacls. Even in th gumple data Ue we can env on problems V we try to repesent the fac'.
%oa't tbee are "ots o! dogse by mely attaching rich a !act to the dog node. Rather than get-
tingnvolwed in ient problems, it is ra'cient to remenbe7 that ve awe bud!zg an wwddwty*Lg
SeFmdatirI upon wh~ib systems of various kinds may be but. Drac-an [1979] give a

od summary a! the ioes srrounding the representation used in this pape. e VC we it
amue it Is taitive. not because we behave ft to be theo?eUca.y best.

.- _' : . _:_. __. _.._ -. . - ;. . ., . ... ., .. .. _-_ __ ... ".. .- . . ... . . . . . ...... ...-. .. ,.. . ... ..-. .. ,. .... . . ...
• ~~~~... . . . . . .. . . . . . ......... .. ..--. "". .-...-..-.-. .. ,.
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F'~gure 1.1 A small semantic network

to the answer, "engineer".

ComputaLional complexity rises quickly as the queries become more

Involved and larler groups of nodes must be processed. Consider a

-. mantic network for a company having ten thousand employees. several

pieces of ibormation stored concerning each employee, and a hierarchy of

bosses leading from a dock worker to the president of Lbe company. A query

such as "which female employees have a boss whose boss is female" would

require accessing tens of thousands of records and following at least as

* -- -- __ .' . ,. ." , ,. ,-- - - --. - - - - - - - - - - - - - - - - - - - - -



many links.
The possibility of employing a parallel computer to improve the query

processing performance appears fruitful since queries may be processed by

working on sets of nodes at a time. Consider, for example. "Tho are the

grandchildren of John?" We can think of gathering together the nodes which

•. are the children of John, giving each of them to a separate processor, and

" then having these processors simultaneously find the grandchildren. We will

see in chapter three that our implementation actually goes a bit farther

than this in building a parallel associative network.

12. Asuciative Networks

A semantic network is loosely defined as a network whose arcs and

nodes are labeled with words. This dependence on words to give meaning to

the network is both a positive and negative trait (Bracliman 11979)). The

definition we give of associative networks eliminates words and meanings

altogether in favor of numbers. It is assumed to be a function of a higher

level of the systemn (e. g. a natural language front end) to assign meanings to

-, these numbers.

In the forward to his book. Associatie .Nefuois: Rprese&ation and

'"e of KswwUie by Cbputwrs. rindler [1979] describes the difference

between semantic networks and associative networks as follows:

The -ain theme of this book i amociativ ?iehorts. I have deliberately
voided the term sewwntlc uetr oe.... to indicate that the former are moregeneral in objectles and, possibly. in structure than the latter. Semantic

networks atm, I believe, at furnishlng a representation for lfnguistic utter-
ances to capture underlying relations of words and to produce the inorms-
rion contained in text... Indirectly, they also reveal the intricacies and use
e!language.., Associative networks, or, the other hand, could, but need not.
be language-independont... Associative networks are constructed to serve

,* ,
- 'S'*,* p', .



as the kno¢Wdge bart of progra=z that exhibit some operational aspects of
underst.anding

An associative network can be defined formally as a set of todes and a

set of arcs. A node is simply a positive integer. An arc has three parts: the

from-node, the relation and the to-node. The from-node is the number of

the node from which the arc emanates. The to-node is the number of the

node to which the arc points. The relation is the object that labels the are;

for now we will assume that it is an integer. Given the following piece of a

semantic network:

JD~ / WMarld-to

and the following dictionary:

2fe t inneber node or are
engineer I node
Jane 2 node
job 3 OM
John 4 node
wmrried-to a arc

the associative network is:

nodes: 1.2,41

a'cs: |(4.5.2).(4.3.1)3

lithin this simple framework we can represent semantic networks as

well as other types of information.

• '.,,,,+,, -.. ,,-. .+. ... .,..-, • . ... . . . . . . . . . . . . . . . . . . .



1.. Asociat*v Networks: A Numerical IPxample

As an example of an associative network which involves numerical

*-processing, suppose one wishes to use a computer to find optimal trips

between cities in the United States. Optirnma might meanfastest or shortet.

An associative network may be used to build such a data base. Consider an

associative network where the nodes are cities and the relation of an arc is

a triple which has three parts: a highway number, a distance in mles. and a

travel time in minutes. (American Automobile Association maps include

estimated times for each major route.) This associative network will allow us

to answer queries such as:

* What is the fastest route from Baltimore to Richmond?

a What is the shortest route from Raleigh to Washington DC.
* How long does it take to get from Boston to each city?
- Does the shortest route from Philadelphia to St. Louis use

highway 40?

Section 5.4 discusses this data base in greater depth.

rL.

I•

[° . . .. .~~
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CHAPTER 2

The Boolean Vector Machine

2.1. Massive Parallelism

In years past, "parallel processing" referred to a few processors

working simultaneously on a relatively short vector of numbers to speed up

numerical calculations. Recent advances in VLI technology allow us to

consider building computers which consist of thousands or even millions of

processors, and lead to new ways of thinking about computing (Mago 11950].

Snyder 11982)).

To achieve this massive parallelism, one must use simple processors.

One method employs a single controller responsible for decoding the

machine instruction. Once decoded, the instruction is broadcast to all

processors at the same time. and each processor executes this instruction

on its local data. 7bis machine organization is called Single Instruction

Multiple Data (SflW) (Flynn [1972J). The processors which make up such a

Iystem are generally called Processing Elements (PEs).

Having a million PEs each of which can only operate on its isolated data

is a grave limitation in functionality. Instead an nterc nection iwnhwk

needs to be designed which allows processors to share information. Many

Interconnection patterns have been suggested; A good overview is presented

in Pcng [1961] which describes mesh. thuffle-exchange, flip. and Benes as

well as other interconnection alternatives.

=, ,~~~~~~~~~~~~~~~~~~.-..+ .. .. .. .. ..... .... , .,+. .. - . . .- ,. ,+ .,...



With the combination of large numbers of processors and a powerful

interconnection network, significant time improvements can be achieved

(Schwartz [1980]).

2,2. Organzaton of the Boolean Vector Machine

The Boolean Vector Machine (BVM) is one such massively parallel

computer (Wagner 11951]. Vagner 11983]). The design of the BVM calls for

lone million PEs interconnected using cube connected cycles (as shown

below). The next section describes a typical PE and following that the

interconnection network will be described.

22.1. A Typical Processor of the M

A processor in the EVM is very simple. Each PE has about 2O bits of

local memory. The only calculation a PE may make is a boolean function of

three variables. (Addition, for example, must be handled bit-wise.) Of the

three input variables, two must be from a PE's local memory while the third

may be from one of three PEs to which the PE is connected (see the next

section).

A psly w N lthb 3046 Ph is c-ren'ly mide: couM.-uacon.

S
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22Z The hneronnecUon Network of the M

The interconnection network used on the BVYM is called rube conected

cjcles (Preparata [1981]). It is an outgrowth of the bwmry n-cube. In a

binary n-cube, the PEs are numbered from 0 to N-i for some N = 2'. Each

processor may access the n PEs whicb differ in exactly one of the n bit

positions of the processor number. For example, with N=5. PE 0 has a

lateral connection to PEs 1, 2 and 4; PE 5 is connected to PEs 4, 7 and 1.

Unfortunately, a binary n-cube is too expensive to build. Each PE in a one

miMion PE machine would need twenty interconnections. Instead the BVM

uses cube connected cycles (CCC).

To understand the CCC interconnection network, consider each PE to

be defined uniquely by a pair of integers <cycle-number, element-number>.

Cycle-number ranges from 0 to 2C-1. while element-number ranges from 0

to K-I. for some fixed K. The PE numbered <ij> is said to be in the ith cycle

"*' and to be in position j within the cycle. There are N = K x eI processors in

the machine. For a machine with one million processors. we have K=16.

The PEs can be seen as residing in an array where each cycle is a row.

The interconnections within a row are cyclical: PE <ij> is connected to a

Uwccssr PE number <i.0+I) mod K> and a predecesmor PE number <j0-)

mod X>.

Unlike a mesh-connected system. where each PE would also have

connections "north" and "south" (Barnes 11968]). the CCC interconnection

ues a single connection to the lateral PE. The lateral to a given PE <ij> is

that FE in cycle position j of the cycle whose cycle number differs from i in

the Jth bit position. Examples: PE <0.0> is connected to PE <1.0>; PE <0.1>

b. connected to PE (2.1>; and PE <15,3> is connected to PE <7.3>. FAgure

S

3- -



2.1 shows a 64 PE BVM with all of its interconnections. The advantage of this

interconnection pattern is that every PE is no more than 2xX connections

away from any other PE. instead of 2  as it would be if only mesh

connections were supported. Each PE has exactly three connections, no

matter what size machine is being built. Note that the CCC has the same

S. interconnection pattern between cycles as the binary n-cube has between

PEs. This equivalence allows the M to emulate algorithms for the binary

- Tvnt Nwmbf-

0 1 2 3 0 1 2 3

11

C-4

Nu--bw ; I / -
4 ,

6L~~214

KUM did- b Pmew Lb' duoS Ufl

Figure 2.1 A BV vith N=54 (X=4)

a -• .
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M-cube efficiently (as shown in appendix A).

22 .3 . P .-r-m - .Aspects ol the DM

For our purposes, one can think of programin g the 3VM as writing a

program which is executed simultaneously, statement by statement, by each

*- processor. (We wifl ignore input/output issues. granting that 1/0 is a

serious question which deserves further study.) We wil assume that all

ancillary procedures are available for such standard operations as addition.

multiplication, minimum and maximum In our timing results, of course, we

will take Into account the bit-wise nature of the MV. fI..THEN.EISE

constructs may be used, but, given the parallelism, both the TIN and ELSE

clauses must be executed serially.

N



CHAPTER 3

hImplementation of an Associative Network on the BVM

Fahlman [1978] gives an in-depth description of how a semantic

network could use specialized massively parallel hardware to achieve

dramatic performance improvements. Fahlman [1982] submits a hardware

design for such a machine. This paper attempts a different approach.

Instead of building a machine explicitly for processing networks, we will

adapt the BVIL, a general purpose, massively parallel computer.

3.1. Some Options

So far we have seen that associative networks provide a tramework for

problem-solving. We have described the BVM. a computer with one million

processors. Now. how can we implement the former on the latter?

A first attempt might be to give to each processor one node of the

asoclative network. This fails for several reasons. First, the number of arcs

emitting from and pointing to a given node is not fixed. Given the limited

=ize of a processor's local memory. there is no guarantee that all of the

Information about a node will fit in a single processor. Second. bow does

one traverse the network? Since each processor has only three links, one

annot use hardware links for arcs.

Another possibility Is to give a single are to each processor. This solves

the previous problem of limited space. Each processor maintains its from-

13

-" "e



4.

node and to-node numbers as well as its relation. Once again, however, it is

not at all clear how queries may be processed. Again consider the query

.'Who are John's grandchildren?" To start, it is easy to find "John's children".

Those processors with "John" as the from-node and parent as the relation

have a child as the to-node. At this point, however, one would have to

sequentially step through each child to find their children. This defeats the

purpose of introducing parallelism. (Tomboulian [19B4J shows a possible

'way around this probler.)

3.2. The ]nipeientation Choice

Our implementation of an associative network on the BVM splits

information down to the lowest level. Instead of having one processor per

node or one processor per arc, we will have one processor per from-node

and to-node in each arc. Thus. a processor only maintains its node number

and relation. The two processors whicb make up an arc are connected in

hardware by their lateral link (described in section 2.2.3). Thus "job of John

is engineer" consists of two. processors: one is a "John" processor with

relation "job"; the other is an "engineer" processor with relation "inverse

job". (We think of a processor as belonging to the node it contains

information about; thus we say a "John" processor, or a processor with type

"John".) There will be many "John" processors and many "Jane" processors.

etc. Further, they will be scattered throughout the machine due to the

lateral connection requirement.

Let us look again st the query "Who are John's grandchildren?" Using

our new layout, It is easy to turn on a child processor in each of John's

--------- 2 * --- .
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children. (We use ftrn an a processor to mean set a bit to true in the

processor.) If all of the children processors were on, it would be simple to

find the grandchildren. The missing step, then, is an algorithm which turns

on all the processors of a particular type if any of that type are already on.

:-2. We call this algorithm shzre since it shares information among processors of

the same type.

3.3. The Mae hisorith

Share uses the CCC interconnection scheme of the EVIU to

simultaneously bring together a piece of information from all processors of

each type. Figure 3.1 shows snapshots of a small associative network as it

-answers "Who are John's grandchildren?" The sequence of steps needed to

find John's grandchildren are listed. Note that the triangles in the figure

represent each of the processors and only the bits of information used in

the calculation are listed.

If we wish to handle 'That is owned by John's grandchildren?" we use

what we have done, appending another share and another "turn on" step

which we will call a vna tch step. These match-share pairs allow a wide range

of queries to be processed (as shown in chapter 4). In section 4.1.2 we will

formalize the match statements.

- The uhare algorithm works by simultaneously bringing information

together from all processors of each type. In step two of the figure above,
'p..

-- "ne "Jack" and one "Jill" processor have bit A on; no other processors have

bit A on. When we use algorithm share on bit A. the system simultaneously

determines that all "Jack" processors and all "Jill" processors are to have bit

( .. . . . . * .* * * .. . *. . .~. *~

~~~~~~~~~~~~~~~. ..... !. . .. /............. ... ,..... ...... .,,'.' - .""'....
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(1) Turn on bit A in processors wit relation "inverse parent-o' and whose
lateral is of type "John".

(2) Apply the share algorithm to bit A.
(3) Turn on bit B in processors with relation "inverse parent-or, and whose

lateral bas bit A on.

Figure 3. 1: Calculating "John's grandchildren" (the triangles are processors)

A on, while "John". "Joan". "Jakce" and "Joe" processors are to have bit A off.

The algorithm works in two steps. Thst we concentate information about

each node. In this case, we OR together a&U bit A values for each node as

they are concentrated. The second step returns the concentrated value to

',

each PE of each type. Since the problemn above involves sending a single bit

of inlormation, operation OR is the natural choice. Share may also be used

K on integers, in which case one must determine what operation to perform.

K The most useful operations are ADD. MiN and WAX.

I,

-. -
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Figure 3.2 Ilustrates the steps necessary to calculate share with

operation ADD. In the initial position, each of the processors assigned to a

node have initial values. 1n step one, these values are added, the result

being placed in the tenter of the node to indicate that, at this point, there is

exactly one value per node. Step two copies this value into each processor

assigned to that node. The share algorithm is developed in full along with

proofs concerning its optimality in appendix A. The next section describes

expected run times for share and other operations.

Initial Setup Step 1 Step 2

p.V

I

I

Figure 3.2 The steps in *bare with operation AID
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34 lming Results facr Selected opertions

As proved in appendix A. the share algorithm takes 24lo&2(N) BVM

operations per bit in the object to be shared. Since the BVM has a cycle time

of 250ns (Wagner [1954]), and log2(N) is 20 for the one million PE machine,

the share algorithm will take 120ps, per bit.

Since the BVM is a bit-oriented machine, the size of integers effects the

results we will achieve. Throughout we wfl use 20 bit integers. This unusual

-hoice is made for several reasons. First, 20 bits is sufficient to range to one

million; the nodes may be represented uniquely in 20 bits for otherwise the

metwork would not fit in the machine. Second, 20 bits is a natural number

for this machine since it equals log2 (N). which appears in many standard

Stiming results. Thus if an egorithm takes log2?(N) steps per bit, it will take

loge(N) steps per word. Finally. on a machine with a 250ns cycle time, we

will get results which are multiples of 5As per word, which are particularly

>5 easy to manipulate.

The operations to be performed on words are numerical comparisons

(less than, equal, greater than), mininun and ma.imum, and addition. Each

of these operations will take 5j.s if only one address calculation is necessary.

This is the case if the input and output variables are at the same position in

the processor, but the values may be in a processor connected by a

hardware link. Thus doubling a number in place may be accomplished in 5As

by adding it to itself (.-x+x). Also two numbers may be added in 5ss if they

are in the uame place in connected processors (x'-x+connectedx); this is

the case in the share algorithm. Other forms of numerical operations will

*take 10 and 15ps for two and three address computations respectively.

'i's



~. f l v r w r ~ v7- . - -

CHAPTER 4

Implementing Data Bases

In this chapter we will describe two data bases and formally define bow

queries may be processed. A simple language will be developed first which

allows us to "program" queries for the BY..

4.1. A Query Prograin-g language

To control the flow of information through the network requires some

formal specification of what the network is to do at each step. This section

describes a language that allow- us to describe bow a query may be

resolved. The language below is procedural in nature: the system executes a

series of statements, each of which performs some manipulation upon the

network as a whole. It should be remembered that one would generally build

a natural language processing system, such as Thompson's POL system

(Thompson [1981]). whose input would be user queries and whose output

would be a series of statements in this Linguage.

4.1.1. The UVM. a the Language Be it

From the language's vantage. the system consists of a set of PE's, and

each PE contains: a set of warrk bits which are boolean toggles and can be

met or read; a set of stoage uvrds which may be set and manipulated using

arithmetic; a type ,.ld, which is an integer whose value defines the node in

19
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the associative network to which this processor belongs; and finally a

•vu5 tionfild. which is an integer whose value defines the relation arc in the

metwork to which this processor is connected.

A processor (PE) may access its own local information and the

information stored in the PE on the other end of its relation arc, the

=soc4iafed processor. (On the BV'M the associated PE is connected to this PE

* .by its lateral link.) If a relation arc is directed, the sign of the relation field

deteramines the direction of the arc: positive, away from this node; negative.

toward this node. Consider the following example data base which contains

the two pieces of information "John loves Mary" and "The job of John is

engineer" with the following numerical assignments:

Mne-e number node orarc
engineer I node

. job 2 arc
john 3 node
loves 4 arc
mary 5 node

and the following processor assignments:

thr-_rmeticr fror--PI - tc-PE
John loves lary A-B
Job of John i engineer C - D

The information in each processor would be as follows:

PE 7voe field Jelation Field
A 3 4
B 5 -4
C 3 2
D 1-2
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4.12. The Languge Debmnition

Returning to our language, we shall assume a st.andard pseudo-

-" language similar to Pascal. limit the set of variables, and add a few

specialized procedures. Then we will be able to write "programs" which are

executed on every PE within the syste.

The variables we allow are: MD-M9 for ten mark bits; SO-S4 for five

storage words; TYP for the type field; and REL for the relation field. (The

choice of ten mark bits and five storage words is arbitrary.) Further, any of

these variables may be preceded by the letter "A" to refer to information in

the Associated PE. Now, the language will allow assignments to the (local)

variables using the 4- symbol. Mark bits are assigned boolean expressions,

which may include integer comparators such as "less then" (<). as well as

the boolean operators such as "and" (&). Storage words are assigned

integer expressions involving operators such as "plus" (-) and "mmd" (Ml).

The storage word assignment expressions may be preceded by an IF clause

specifying a mark bit such that only those storage words are assigned if the

appropriate mark bit is on. (A WHILE construct is also available, but

requires a specialized function as its predicate. See the next section.) The

following is a list of sample statements:

DMO M & (AM5 V A2);
"M4 (NOT AM1) V (SO < AS2);
94 -- 0;
S1 .- AS3:
83-S1 + (AS2 -3);
IF M2 H.N S2 -S3;
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4.12. Specialized Procedures and funetiow

The additions necessary to use this language for querying are

implemented as built-in procedures and functions. The share algorithm is

executed by a SHARE procedure which takes as a parameter the bit or word

* upon which the algorithm is to be executed. If SHARE is executed on a word,

the operation to be applied to the values as they are brought together must

* be specified. The followLng are sarnple uses of the SHARE procedure.

SHARE(M2).
SHARE(SO,ADD).
SHARE(S2.ADN);

An important function is AN. Passed a bit in the BVM. ANY sets the

mark bit which is its parameter to true if any processor has this bit on, and

false if none does. ANY can also be used as a function which returns the

true or false value; this value may be used withthe control structure ITF or

WI-LE. We will see that this function is critical when traversing hierarchies.

A PRINT statement is provide as well. This procedure executes the

concentrate portion of SHARE. just to the point where the value for each

node has been determined. Instead of then spreading the concentrated

values among processors. PRNT displays the value each node has. When

PRI'T is called with a mark bit, the names of those nodes which have the bit

on are printed out. (This is the extent to which we will handle 1/0.)

Other functions will be introduced as they are needed.



23

4.1A. Iietwork-Speclfic Constants

An associative network is built of numbers, but for our purposes we

care little what number is assigned to each node. We don't care whether

"John" is mapped to 32 or 30172, as long as this value is unique to "John".

To make our programs readable and flexible, we will assume that constants

are defined for each node and arc label in the data base. The constant will

be the label preceded by a pound sign (*). Thus if we wish to set MO to true

in all processors with node "John" and relation "parent-of", we say:

M - (TYP = #John) & (REL = #parent-of);

Our language is now independent of the exact numerica! assignments

chosen.

42. The Family Data Sae

The "fami.ly" data base describes a fictitious fanf.'- and their

relationships with other people, animals and objects. This simple data base

will allow us to explore the breadth of queries which may be answered and to

deal with some of the difficulties that arise.

Although the data base is small, a diagram of the whole network is

unwieldy. Instead the data base is described using lists of relations. Figure

4.1 describes the entire data base. Each relation ix named, followed by the

list of pairs which have that relationship. From the line

job((john.emgineer).(jane.doctor)....)

we discern that John's job is engineer. Jane's job is doctor, etc. Figure 1.1

fmsplaTs a portion of the data base as a network.

,- 7 . . . . . .... . . . . . . . . . . . . . . . . . .



24

is(obn,!Tan).ack.man),(miarknman).(joe,rnan),(jeke,man).(pete.mn))
isa('an~womn)(may~wrnan.Oil~w~ma).Oan~oma),(pat.wornan))

isa((rnanxuale).(wornan?ezal e), (man.b uman).(wonian.buman))
isa((buman,anirnal))

*job((john~eng ine er).(mary, doctor). ac kwvel der),(ma rk~do ctor))
boss((john.pete).0ack.pat))
Ssalary is in thousands of dollars
Waary(Ujohn.30).(iosepb40).(nantred. 100v) .(rnry.45))
s&ary((pete40).(pat_45))

parent(bobnjaclk).anejack)(john,jU),ane.ji1l))
parent((mnary.joan),Uackjoan).(mary,jake),(jackjake))
parent((jdlljoe).(xnarkjoe))
married ((job njane)(jaok.rnary), (jill~mark))

own(oobn.porsbe).(niary.corvette).(rnark.rnercedes))
own (0 ake~fid o).(jak e~fluffy).(jilpoop sy))
isa((porsbe .car).(corvette.car).(merc-e des. car))
ise ((fid od og). (poopsy. dog). (fluffy. at))
isa((dog.pet).(catpe.)
is((tido,Tnale).(poopsy.femTale).(fhuatfy.femfale))
color ((porsbe,blu e).(mercedes.blue).(corvet-'te~tan))
color (Cpoopsy~tan).(fido.tan).(tluffy.grey))

Figure 4.1 Tbe family data base

What sort of questions can be answered using this data base? 'We may

ask questions tonerning familal relations, jobs and salaries, possessions

and colors. 7he list of queries below vill be used to demonstrate some of the

features of the system.

aWhat is John's job?
aWbo are John's children?

* *Wbo 12the ion of ohn?
* Who are the parents of a tan dog owner?
a What cars are tan?
% Who amr Joe's ancestors".)

4t
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42.1. What in John's job?

To answer this simple query requires marking those names which are

the values of relation "job" applied to "John". In network terminology, we

need to return those nodes to which "John" has a job arc. In our language

we can achieve this as follows:

*-;MO - (REL- -#job) & (ATYP = jjohn);
Print~mo);

Note the use of -fjob. since the result is the node toward which the relation

arc points.

422. Who are John's children?

This query is processed analogously to the previous one except that we

expect severa responses.

WD - (REL = -#parent) & (ATYP = #john);°
Print(M o);

. 4=-. Who 12 the son of John?

Since "son" means "male child". we will first rimd all children of John.

and then ferret out those who are not male.

NO (REL = -#parent) & (ATYP = fjobn);
Share( O);
|We now heve all procesors for children of John turned on.1
M1 - NO & (REL fisa) & (ATYP - finale);
Print(W 1);

o.* .-- * -;~,:~ ~ :::
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42.4. Who are the parents of a tan dog owner?

Note that this query is ambiguous. In the program listing below, "(tan

dog) owner" is on the left "tan (dog owner)" is on the right. Code com-non to

% both meanings is on the left. It would be up to the natural language front

end to determine which query is meant, or to run both and respond with

* both results.

lFirst set MC to dogs {
NO - (REL fisa)& (A.P =do&);
ShareC(O);

Find tat dogsi iFind do& ownersi
3ll 10 & (REL= color) U I.- AMC & (REL - rown);

& (AYP = et.an).
Share(lI); Sbare(M !)
lFind owrers of tat dcgsj iFind dog owner who are tat3

2 32.- AI! & (REL =#owns) M2 - I & (REL = fcclcr)
- (A YP = #tat);

-". Share(2). Stare(M2).

IFind parents of codes with M2j
U3- AI2 & (REL = fparett);

Prirt(MZ).

42.5. What can are tan?

Although humans automatically know that "tan" i a color and thus only

color arcs are of interest in solving this query, no such generalization is

made by our query system Instead. a search wl be performed for any cars

,hib have a connection to "tan". The parallel nature of the search is

completely exploited by our machinery. It takes no longer to respond to

"What cars are tan?" than to the less elliptical "What cars have color tan.'

The following blind search solves "What cars are tan?":

C, ' , ... -. :. ,. . .4 . . • .. .**. .... ........ . -
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4.2 4. Who are the parents of a tan dog owner?

Note that this query is ambiguous. In the program listing below, "(tan

i dog) owner" is on the left "tan (dog owner)" is on the right. Code common to

both meanings is on the left. It would be up to the natural language front

end to determine which query is meant, or to run both and respond with both

results.

lFirst set UO to dogsl
1O.- (REL = #isa) & (A-'YP #dog);
Share(UO);

Wind tan dogsl |Fird dog ownersi
MI *- MO & (REL = #color) UI - AMC & (REL= s);

(A"YP = #tar);
Share (M I); Share(M 1);
IFind owners of tan dos; IF-nd dog owners who are tLa
12-- AM I & (REL =# owns); U2 .- MI & (REL = #colcr)

& (A YP = #tar);
Share(M1); SharreM2).

)Find parents of todes with M2
13 .- AM2 & (REL= #parent);
PrintM2).

4.5. Which man is married to Jane?

This query is as simple to implement as the ones before it, but it serves

to point out one of the powerful features of the parallel implementation. A

sequential processor evaluating this query from left to right might search

thousands of men, selecting only the one with a "married" arc to "Jane'. A

sequential processor evaluating from right to left, on the other hand. starts

from Jane and checks through the elements in the (singleton) set of nodes

with a "married" arc connection to Jane, finding which of the nodes has an

"isa" arc to "man". The processing time will be drarnatically affected by the

order of processing. The parallel implementation, however, takes the exact

.- ' ',, . -',,- , . : '..',.'..- , ., , .-, ...' .". - .- .- .. .. ..-.. .... .
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,O .- (REL f isa) & (ATYP =car);~S'ARE(M 3):

M 1-W o (ATYP = #tar);
PRINT(M I);

This search is blind in that no mention is made of what arc is found between

"tan" and "car". In this case only relation "color" was possible, but consider

the query '"hich New York sm.esrn.en drive corvettes?" This elliptical phrase

may refer to salesmen whose sales district includes New York. whose home is

in New York or perhaps whose favorite city is New York. Thus a method is

desired which returns not just the mame but also the arc used to make the

connection. The response might be:

New York %sales district) salesmen
Joe
Carl

New York (bome) salesmen
Pete

New York (favorite city) salesmen
Ed

A mechanism of this form is available in Thompson's POL systerr. (Thompson

[1951]). For our system to reply in this form the following program works:

MO - (REL = fjob) (ATYF = #salesman):
S -ARE(M 0);
SO - 0
5 SO will remain 0 in salesmen nodes not connected to New York nodesl
M1 -- MO & (ATYP = iNew-York);
IF MI TI N SO - REL:
PJNT(SO):

To handle this situation in a more complete manner. sorting should be used.

This extension ia described in section 6.1.

,. .............................................
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same time in eitber case as demonstrated in the side-by-side comparison

below.

let to right analysis rfght to left analysis
Ifind men. Itind those married to Janel
MO0'- (REL -#isa) 1104- (REL =#ma-ied) &(A-YP Xaze);

&(ATYP = #maen);
SHARE(MO); SHARE(MC);
Inow find those married to JaneI jrow find those which are menj
MI - MC & (REL---#married) MI - MO & (REL a=#isa)

Sk(ATYP = jane); & (A7YP = jman);
PRINT(M 1); PRIN-T(M 1);

The parallel method is independent of processing order and the size of

intermediate sets: this is one of the most significant features of the system

and guarantees consistent performance.

4.2.6. What cars are tan?

Although hurnans automatically know that "tan" is a color and thus only

*" color arcs are of interest in solving this query, no such generalization iL

made by our query system. Instead, a search will be performed for any cars

which have a connection to "tan". The parallel nature of the search is

*" completely exploited by our machinery. It takes no longer to respond to

"What cars are tan?" than to the less elliptical "What cars have color tan?"

The following blind search solves "What cars are tan?":

MO - (REL = isa) & (ATP = fcar);
SHAREM(o);
M1 - MO & (ATYP = ftan);
PRINT(id 1);

This search is blind in that no mention is made of what arc is found between

"tan" and "car". In this case orly relation "color" was possible, but consider

the query "Wbich Neu Yaolr* as sm n drive corvettes?" This elliptical phrase

may refer to salesmen whose sales district includes New York, whose home is

€V.

i ' ;..< .; .. ,.. ', .'.. .: . .. ..- .,.. .. .. '. •..... -. .: .. . .. . .-.-
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422. Who are Joe's ancestors?

Although we could proceed, much as we have so far, and build a

program which will solve this query, it is far better to consider some related

queries. For instance, consider "Who are the mercedes owner's ancestors?"

How many times do we need to follow the parent arcs up the family tree? We

don't know until we know who the mercedes owner is. But it is clear that no

matter who that person is. we want to follow the parent arcs until there are

no more. In many instances we need to process trees of information like

"ancestors". We say that the "parent" arcs form a hierarchy. There is also

on "isa" hierarchy which has four levels, "John" -. "man" -. "human" .

"animal" for example. The next section will introduce a framework in which

queries inv-,oing hierarchies may be bandled gracefully.

There are many other queries of equal and higher complexity that =ay

be asked of the family data base. In other sections of this paper we wil

revisit this data base nnd explore it further.

42' . Anima Kingdom Data Base: A 1lerarchy

There are over '00.000 species of animals (Newman [1957]). The animal

kingdom is divided into seven phyla, and these phyla are divided into

classes, classes into orders, and orders into families. Families are divided

Into genuses and rmally genuses into species. At each level of this enormous

hierarchy vsrious features or properties distinguish each group. For

Instance, the animal kingdom is differentiated from the plant kingdom by

'I : . , .. , & , - ,. . , .. '. , . ,, . .. . : . , , . .
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power of locomotion, nonpbotosynthetic metabolism and other properties.

Animas of the order perissodactyla (which includes horses) have an odd

number of toes, while artiodactyla (which includes deer) have an even

number (Lane [1984)).

If we wish to design a data base of zoological facts, we could list for

each species all of its attributes. This is most inefficient, however, since we

would be ignoring the power of the hierarchy and data would be repeated

many times. Instead, let us attach information as high up the tree as

possible. Since "animals move" we will say this once, at the top level, instead

of attaching this piece of information to each species (or, worse yet, each

animal). We can take this concept one step further and include

generalizations which are "almost al-ays" true. We might include "birds fly'

in our data base. Then it will be net -isary to crcel this inforrnation where

it is incorrect ("penguins and ostriches don't fly").

Figure 4.2 shows a part of an associative network for this information.

Our query processor will accept questions such as 'That animals fly and lay

eggs?" We need to build machinery so that parrots will be listed, penguins

will not be. and perhaps flying, fish will be.

45.1. Markina a fierarcay

Let us start with a slightly simpler problem. How can we mark all of the

species under a given node in the hierarchy? This method will handle

queries such as "What species of animals are vertebrates?" Assume that the

hierarchy is built using wisa" arcs up the tree: "carnivore 'isa' mammal." Also

asume that relation "level" exists which determines what level in the
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Using the very same technique, we can now answer the query

"ancestors of Joe" from the family data base (section 4.2.5). The changes

necessary are: the starting node ND should be set to TYP = #Joe; M2 should

be assigned REL = #parent-of instead of REL = fisa; at the end we will set W3

- if VD and (TYP 90 #Joe). since Joe is generally not considered to be an

ancestor of himself.

We can formalize the marking of a tree by defining a procedure

MARXALL This procedure accepts two parameters, a mark bit and a

relation number. On input the mark bit will be true for the starting values

in the tree ('vertebrate" or "Joe"); on output the mark bit will be true in the

entire subtree built of the relation number. The relation number thus tells

which hierarchy we are trying to use and in which direction. The parent-of

hierarchy may be used either "up" for ancestors or "down" for descendants.

We may rewrite our program for '"hat species of a.nimals are vertebrates"

as:

MO.- TYP #vertebrate;
MARKALL(MO.#isa);
Ml - MO & (REL = #level) & (ATYP #species);
Print(I );

A program for "ancestors of Joe" is now-

MO ' TYP = VJoe:
0ARKALL(MO.#parent-of).

M2 - NO & (NOT (TYP #Joe));
Print(M 1);

.

. o o.. . .. . . . . . . . ......o ..
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4.32. Property Inheritance

As an extension of MARKLL, the IN1MR]T procedure passes a property

down a tree as opposed to just marking a tree. INI{ERIT is called by:

INHER(WORD.RELNAME);

The code for INHERIT is slightly more complicated than MARKALL since it is

important that we block information from moving down the tree if a value is

already assigned to that subtree (Tahlman [1981]). For example. a relation

Mwly" might have values "Yes" and "No" and we want "birds fly yes" but

"penguins fly no". If we simply used MARXALL to start from "birds fly yes".

penguins would inherit the trait from birds. (In a sense we have a three-

-,-* valued logic. Some nodes are marked "Yes". some "No" but most are marked

*"hatever I inherit from above.") Assuming parameter WORD is a word set to

the starting values and RELN.ME is some relation, we can implement

INMERIT as follows:

t We will use MAX on our shares, though in generall
there will be only one non-zero valuet

SMARE(WORD.MAX):
ISO holds the frontier of the treel

0 So .WORD;
WHUX (MAX(SO) > 0) DO

"There is some value in the frontierl
MO marks nodes to be added to the frontierl

MO a- (ASO > 0) & (REL R,NAME) & (WORD = 0);
1If MO is on. transfer the value of the connected nodelSI .- 0;
IF MO THEN S1 *- ASO;
SHARE(SL.MAX);
IM1 marks nodes which have obtained WORD valuesl
IF Ml TN WORD .- S1;
SO - 31; |The new frontier)

With KARKAL and INHRIT in place we can handle queries such as:

Z ',

ir
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What animals fly and lay eggs?
Which vertebrates have tails?
Are there any birds that swim?
'What is the order of penguins?
To what category do both ostriches and horses belong?

4.32. 71ming Results for MARKAU. and MUHKIT

An instruction count for MARXALL and INHERIT is dependent on the

number of levels in the hierarchy. MARKALL will take approximately 135ps

per level of the hierarchy, most of that time being the cost of the MARE

statement. DM= will take approximately 2.Srns per level, most of that

time for the expensive integer SF-.RE statement. If one knows that there

are less than 255 different properties of this type (for example. colors) and

also that these properties have been assigned numbers such that the final

eight bits are different for each property, then IN']-.7ERT may be used on

eight bit quantities and the execution timne is only Inms.

4.4. Ttaing Czsseriaons uith a Sequential Method

In order to determine bow successful the parallel implementation is, a

sequential method needs to be developed for comparison. One feature of

any method for comparison is that it should be possible to determine

general timing results easily. The method described below has this feature

and is also reasonably efficient.

An associative network is based on a set of arcs which describe all of

the interrelations in the network. An arc has three parts: a from-node, a

relation and a to-node. We can thus think of an associative network as an

', ':'--- *:& :.* "'*:-:.K--:K' r ". I ' . " &-K.- . . . ..



arc table with three columns. To implement the queries efficiently, we want

fast access to all of the arcs which have a particular value in a particular

Column. One method is to build a sorted binary tree for each column. A leaf

in this tree is a linked list of pointers to those elements of the table with a

given value in that column. Figure 4.3 shows an arc table and a sample tree

necessary for access to the to-node column.

Let us assume that our sequential machine can execute a basic

operation (numerical or boolean comparison, pointer dereference or

assignment) in 250ns, the same cycle time as the DVM. Given information

-about the data base. we can determine the time to execute a query using

for a-node

.-- 3

I..fo Io-noel no

Agure 4.3 Data Structures for Sequential Method
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* 100.000 animals in 2000 species
* 40% birds. 30% mannals. 30% others
e 500,000 arcs. 125.000 nodes

Now let us look at a sample query. Consider 'hich birds have red

wings?" For the sequential method. the final step will take most of the time,

wherein 40.000 birds are input and a test will be made which requires three

comparisons (relation = "wing-color". to-node = "red" or inherited color =

'red"). Even though we have used the hierarchy, at the last stage all birds

must be checked since there may be cancellations and exceptions (perhaps

a bluebird flew into some red paint!). Using the formula above with n,

40.000, b = 4 (500.000 / 125,000). c = 3. and n0 = 1000 (an approximate), the

timing result for this final step is 630ms.

The parallel implementation must inherit wing color to each bird.

Assuming there are four levels of hierarchy between "bird" and each specific

bird, the total time to execute the IN{-RT" statement according to section

4.3.3. will be loss, a sixty-fold speed-up over the sequential method. -If we

use the method suggested in that section and assume no more than 256

colors, the run time will be only 4 ms, a 150-fold speed-up. Finally, if wing-

color is only stored at the individual bird level, we can use MARKALL to turn

on the birds and then only need a single integer counand to find those

birds with red wings. Tming for this method is 55/O s, which is a thousand-

fold speed-up over the sequential method.

1 * . .'. .
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CHAPTER 5

Numerical Data

In Thompson's POL natural language system there are "attributes" and

"ni tmber attributes" (Thompson [1982]). These correspond to arcs that

point to nodes and arcs that point to numbers respectively. POL has

distinct syntax and semantics for these two cases. There are a number of

reasons to make distinctions between numeric and non-numeric data.

(1) Attributes may be chained, one after another. wbereas number
attributes may not. Compare "the boss of the boss of John" and "the
salary of the salary of John."

(2) Number attributes may have comparators applied to them whereas
attributes may not. An example is the query "Which employees of John
have salaries greater thnz John's."

(3) N umber attributes may have statistical and numerical functions applied
to them whereas attributes may not. Consider 'What is the average
salary of female engineers."

(4) Attributes, when unqualified, refer to their range and can be used as
such in a query. For instance "bosses" means "bosses of anyone" and
the query "Which bosses are overweight?" is understandable. "Salaries"
might be thought of in the same lgbt (as a group of numbers, in this
case), but this only leads to sensible queries when a statistical function
is applied: "What is the largest salary?"

In our system, we will find that new methods are necessary for

numerical calculations. In this chapter we will explore these methodL

37
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5.1. 3.pm io WunherAttributes

In our stated method for implementing associative networks on the

UVM, we would require a processor to be allocated to "$20,000" if there is a

fact "John's salary is $20,000." The rationale for separating "John" and

-S20,000" into separate PEs was so that the SMARE algorithm would work on

each. It is inconceivable. however, that a S"ARE is needed for "$20.000" or

any other number. Instead we will allocate a single PE to this fact and add a

VAL field in the processors to bold the value to which this arc points. Now a

query like "Who has $10,000 as salary?" may be evaluated by:

uD.- (REL #salary) & (VAL= $10,000);
Print(MO),

Compare this to the non-numeric query of the same form. "Who has John as

parent?" which is solved in section 4.2.2. In this query the value "John" is

stored in ATYP. the type field in the associated processor. For numeric

queries, we store this number directly in the processor. Thus. numeric facts

require only a single processor.

* -52. Nume"rIcal ftoonduivs

It was noted earlier that procedure SHPARE could be executed on words

usig any of the operations MWN. XlAX or ADD. These yield much of the

necessary numerical power. M, MAX and ADD may also be used as

procedures over the entire machine. In this case they are simlar to ANY,

but work on words. Thus MAX(S1) finds the maximum value of S1 in any PE

and places that value in each PE's S1 word. Further, just like AnY. MAX can

be called as a function which returns this value to be used in an IF or 1HM

+,,',, ,,, . - +- .+... . .*.*- . * * .- .. . . - -,- - . - .--. .. . .> . ... . . . . . .* .*-
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statement or to be PRigred. The timing result for MIN and MAX is 2 C.s. ADD

takes 3Oss due to the carry propagation. SHARE with MVN or MAX takes

2.4ms, with ADD 3.6ms.

A peculiar feature of the system is that 1MAX(SI) takes significantly less

time than SIiARE(S1,M.AX). even though the number of maximums is the.

same. MAX is homogenous (all values may be MAXed in any order), while

SHARE with MAX requires that numbers be MAXed with specific others. On

parallel processors, homogenous processes tend to be faster.

B.. Numerical Queries

In a previous example we saw a simple numerical comparison. Another

query of importance is 'Those salary is greater than John's?" We can use

MAX to replicate "John's salary" into all of the PEs. The following program

i plements the query.

MO - (REL = #salary) & (TYP = #John);
50. 0;
IF Uo THEN SO .- VAL;
[Exactly one processor has a non-zero value for SOI
MAX(SO);

.Now all SO's have that value]
M .- (REL = #salary) & (VAL > SO);
PRIT(MI);

IM may be used to answer "Who has the smallest salary?" Note the care

necessary in the following program to make sure only people with salaries

are considered. There is assumed to be some value which stands for infinity

;';i:..... ........ " ........ -..
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NO'- (REL = bsalary);

IF MO TNSO -VAL
ISO has non-infinite values only in REL = salary processors
MIN (So).
INow SO has the smallest salaryl
I"l - MO & (VAL = SO);
PEJNT(Il 1);

A variety of queries require that the system to be able to count.

Consider the query "How rmny employees does each boss have?" S}.ARE with

operation ADD will suffice. We wil have I's in only those processors which

have a "boss" relation pointing toward them. (If "boss of John is Paul" holds.

some "Paul" processor will have value 1.) Adding them will give us the

correct count for each boss.

NO - (REL = -#boss);
SO - 0;
IF MO THEN SO - 1;
SHARE(SO,.DD);
PRINT(So);

-: To handle "Wbich boss has the most employees?- it is necessary to add the

following lines:

SI - SO;
UA X (SO = S);

PmNT(MuI);

A variety of more complex numerical queries can be imagined. Lost of

them involve the basic ingredients already described, with perhaps new

procedures for other basic operations.

"=tz' . . 'i -. . . . . . .- -- - " . .. . . .' "" - - - , ' " - "
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5.4. A NAp Data Base

In this section we pursue the numerical data base from section 1.3. The

primary arcs in the system are "highway" arcs which have three parts: a

highway number. a distance in miles. and a travel time in minutes. Frgure

" 5.1 shows the representation of part of a time-distance map as an

associative network. Note that along vith "highway" arcs, there are "state"

arcs which give the state associated with each city. Other information such

as population. rest stops and road condition could also be included.

This data base can handle queries such as 'What cities are in

Maryland?" and "What cities on highway 40 have more than 500.000 people?"

but our prima-y interest in this data base is to calculate trip information. A

typical query migbt be "How far is ill from BaltL-nore to each city in

Virginia?". Much as INI-ERIT works, we will solve this by st.arting with selected

information and then emanating information from the starting points. The

frontier of this growing tree will be those cities which have a new minimum

value. Using SP-ARE with operation MIN. the routine will give to a city which

is on more than one route its minimum value. 'We call this routine MTI,'flZE

for obvious reasons. To make the program for MfIN]DZE easier to read, we

will use variable names which make sense and then "declare" them to be

words or bits. We will also take a rew liberties with the language. recognizing

this procedure as a sketch of the solution. A leading "A" is Btil used to

specify the associated processor. The three parameters are: INWORD. a

word which is already set to the initial values and will be returned set to the

fnal values: NABLI, a precalculated bit which is on in all processors whose

arcs the procedure is allowed to use; CALCWORD, the word contaning the

kacrement used when traversing arcs, will usually be set to either the

• ,.-+- .. ,+ , . +-, ++ 
o
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MlNIfIZE(Minword.Enable.Calcword);
WORD: Minword. Calcword, Currval, Newval;
BIT: New. Enable;
BEGIN

Currval
Newval 4- -;
IF (Minword it -) TI- N Newval - Minword;
New + (Newval < Currval);
WHM L(ANY(New)) DO

IF New TEN Curr-al - Newval;
IF (New & AEnable) THEN Newval - ACurrval + ACalcword;
SHARE(N ewval. MIN);
New 4- (Newval < Currval);

END.
Minword -- CurrvLd

END;

We can use this procedure to calculate the distance from Baltimore to

each city in Virginia as follows:

O - REL = #highway; I The enable bit
ISO will be set to zero in Baltimore and - elsewbere]
SO '--;
MI 4- WO & (TYP = #Baltimore);
IFMI TEN SO - 0;
MINC1WIZE(SO,M O,Distance);
.We now have the distance to each city. so we need to isolate Virginial
W2 ,-(REL = #state) & (ATYP = #Virginia)-

• . SI '- 0;

IF M2 TI-EN '-SO;
Print(SO);

5.5. Thftg Cciderations for the Map Data Base

To estimate the run time of this problem, we will make the following

mumptions. There are 5500 cities in the United States whose population is

greater than five thousand (Lane [1984]). and we will assume that 450

inuller cities which lie on junctions of highways wil be added. These 10,000

cities will be assumed to lay in a lOOxO grid. each city with highway

connections to the eight surrounding cities.

L e . .
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For the parallel analysis we need an estimate of the number of arcs in

the longest minimum path. Ve will use 200, as this allows connecting

diagonal cities by going straight horizontally and then straight vertically.

The main loop of MINIMIZE will be executed k00 times and the cost of one

execution is about 2.6ms (due primarily to the integer SHARE). Total

execution time will be 0.52 seconds.

Recall from section 4.4 that we define A to be the total number of arcs,

b to be the average branching factor. and N to be the number of nodes. In

our case, A = BO,000. b = 5 and N = 10.000. One good sequential method for

this problem is to build a list of nodes sorted by minimum distance and

expand the minimum distance node that has not already been expanded.

(This method is better than Dijkstra's algorithm (Abo 11974)) when

A log2 (N)< N2. in this case I million < 100 million.) The current node is

visited and its b arcs followed, altering the position in the sorted list of

those nodes with new rminimum values. The expected run time is:

N (t. b(t, +(*tt) x lo".(N)))

where ts is the time to get a new node's arcs, t. is the time to process each

arc, t. is the reinsert cost for a node and tj is the time to look for the new

position for a node in the sorted list. 'We estimate the following values:

2, tP = 5. tP = 3 and t4 - 4. Under these assumptions, the sequential method

will take 7.7 million instructions which is around 2 seconds of processing

time.

The parallel method is only four times as fast as the sequential method.

Why don't we receive better improvement? Flrst, less than one sixth of the

machine is being used. Second. integer operations are 20 times slower on

the VI. Third. the B",AJRE operation takes milliseconds per use. Finally,

pg . . . .
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the parallel machine gains the most when the branching factor is high, when

graphs are "bushy". In the given example the branching factor of eight

significantly limited the available parallelism

Consider the following more favorable problem. Suppose we have a

complet,ly connected graph of 700 nodes, thus 490.000 arcs. Making the

same assumptions as above the results are: the parallel method runs in

7Sms; the sequential method runs in 9 seconds. Now the speedup is 100-

fold. (For this case. however. Dijkstra's algorithm will run in around I

second but we still have an 12-fold increase.)

It is conceded that the constants used throughout this section are

rough. Even though the BVM has an integer speed one twentieth that of the

sequential machine to which it is compared, the BVM still obtains

performance improvements over the sequential method. It is apparent.

however, that the precise form and size of the problem causes significant

changes in the improvement level.

I. 4
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graphs are "busby". In the given example the branching factor of eight

significantly limited the available parallelism.

Consider the following more favorable problem. Suppose we have a

completely connected graph of 700 nodes, thus 490.000 arcs. Makin the

same assumptions as above the results are: the parallel method runs in

.75ms; the sequential method runs in 9 seconds. Now the speedup is 100-fold.

For this problem, however. Dikstra's algorithm will run in around 1

second but we still have an 12-fold increase. Alternative methods will also

improve the parallel timing resulL Consider, for example. the shortest path

method used in Aho [1974]: a connection matrix is manipulated to determine

shortest paths. A parallel version of this method does not rely on Share and

should improve our results since it takes advantage of greater parallelism

It is conceded that the constants used throughout this section are

rough. Even though the BVM has an integer speed one twentieth that of the

sequential machine to which it is compared, the BVM still obtains

performance improvements over the sequential method. It is apparent,

however, that the precise form of the problem and its size in comparison to

the number of processors available to solve the problem cause significant

changes in the level of improvement achieved by a parallel processor.

r



4 CHAPTER 6

Ztensions And limitations

In this chapter we will explore the boundaries of our system. We shall

look at tasks which are very difficult using this framework. Our results will

show that the method is general enough to handle most of the problems. 'We

will also investigate extensions which will allow representation of more

complex objects.

6.1. Tabular Output

The response to a variety of queries is a table of results. Consider the

query "What is the name, age, height and sex of each engineer?" which Inight

produce a table like the one below.

Ezgineers

f" " e aue height .uei
John 31 72 male
JAll 2 94 Female
Peter 47 74 male
IKatby 24 69 Foale

Our ystem can implement this query by PRNTing one column of

information at a time. The following program is a possibility.

M I - (REL = #job) & (ATYP = #en~gineer);
+ ..'.- SN"HARE(IL 1);

PRINT(MI); IPrints the names of engineerul
NZ - M & (REL = #age);
j The age processor for each engineer has 1(2 on
30 a- 0;
IF 2 TM SO. VAL

-v,-, 46
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PR]NT(SO); )Prints the ages]
M2 '- 141 & (REL =#height);
jThe height processor for each en&*Lnee- bas U42 on

IF M2 TIM\SO - VAL;
PRINT(SO); jPrints the heigbtsl
M2 - W I & (REL = #sex);
I The processor connected to the sex of each engineer has W42 on
SO -D;
IF M42 THEN SO - ATYP; Isex is an attribute, not numzber attributel

* PINT(S0); SPrints the sexesl

Another type of tabular output is generated in response to "List the

* children of each child of John." The table might look like:

* hdof jo)hr &L+0 Cy ehll pf .l~r
Jack Joan

Jake
Aill Joe

At first it appears that we may have to use a sequential technique. But

there is an) alternative. If we have a SORT routine available we can use it to

sort p~a'Ws of names. 11 we sort by column one value. all of the information

will be grouped appropriately. A prograrr. like the following will work:

WO - (REL = -#parent-of);
SO 0- 0;
IFMO ThEN SO -ATYP;

* SORT(SO);
PElNTSORT(SO.VAL);'

Were there more than two levels in the clause we would no longer be

able to answer the query in paallel. 'To find 'each son of each daughter 61

each son of John" requires using some sequential step. In relational

* database terms. our system cwat compute a cross-product of relations

'without resorting to sequential processing. Our system can, however, handle

I T)* standar~d PRWT procdure wZ not work since it awjma inle value per mode
PEMM3ORT, we @MZ ay n. jpmn .ortd ix!. atuon and vC aflow us to pn:as =AMy oobamza

as~~~.,.,, -*~ (ot* I* w)
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PRINr(So); jPrints the agesi
2 *- M1 A (REL = height);

| The height processor for each engineer has 12 on
SO * 0

F M2 TH-N SO - VA14
PRINT(SO); jPrints the heights3, wM2 .- Vl I (MMI = #sex);
" The processor connected to the sex of each engineer has W2 on
SO *- DO
IF 12 THE.N SO I- AY?; |sex is an attribute, not number attributel

PRINT(SO); |Prints the sexesi

Another type of tabular output is generated in response to 'ist the

children of each child of John." The table might look like:

child of ahr child of child of joh
Jack Joan

Jake
All Joe

At nrst it appears that we may have to use a sequential technique. But

there is an alternative. If we have a SORT routine available we can use it to

sort px.irs of names. If we sort by column one value, all of the informatioi

will be grouped appropriately. A program like the following will work:

Me 4- (REL = -#parent-of);
SO - D:

* IF MO THEN SO - ATYP;
SORT(SO);
PEINSORT(SO.VAL);

More than two columns might be necessary in a query such as "Who are

-the contact people for the largest customer of each salesman in each region

of the USA?" The result might be:

M he r.mlard PEN. praced-te M. :W, wok sice it uwme a inge Value ,po node.
PEI"SOR, we hab my, Frmt sorted tfh.-smuon and w.L alow m to p.-= se many moumns an
4wred (m this lne. two).

.,.
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all of the other primitives of the relational algebra (Date [1952). Ullhan

[1992]). The only reason we were able to handle the previous query is due to

its simplicity. Of course sequential methods would work (stepping through

each son of John) but in the cross-product case. and only in this case, the

required processing time is a function of the size of the class being

processed.

62. Molecules: Complex Object Representation

Consider a fact such as 'The ]Waru carries coal from Portland to Tokyo."

In our current scheme, it is necessary to divide this fact into three separate

pieces of information: "cargo of Mearu s coal"; "departure-point of Iaru is

Portland"; and "destination of Maru is Tokyo." This division is not

acceptable, however, since we have lost the comtet of the individual pieces

of information. Consider the following example. "John hit Joe in the back"

and "Pete hit Joe in the stomach" yield the four pieces "J_.r hit Joe". "Joe

was hit in the back". "Pete hit Joe" and "Joe was hit in the stomach." Now it

is not at all clear that the correct response to 'Did Pete it Joe in the

back. ' is "No." Nilsson [1980] gives a method of changing any n-ary relation

into a set of binary relations without loss. There are several reasons we will

choose another method.

W Nilsson's method adds a central node to which each piece of information
is attached. This method adds an unnecessary node type for every
complex fact in the system.

. For both theoretical and efficiency reasons we would like pieces of
information which are Ugbtly coupled to be equally tightly coupled in the
representation. This minimizes the "semantic distance" of the
information (Sowa [1984)).

e There is another method which uses the BVIL efficiently and precisely
represents the facts.
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-1ior lesmW customer contact ipeople
South Joe Southern Bell Carol

Paul
Fred IM Pete

'West George Bank of America Ellen
Ralph

One can extend the sorting technique to sort n-tuples of the necessary

length at a speed cost linear in the size of the n-tuple. Queries of this sort

are computing a cross-product of relations in the machine, and this could

*easily overflow the available number of processors. In the example above.

the word "largest" served to reduce dramatically the number of n-tuples

being considered. If we use this sorting technique we might need to monitor

the size of intermediate structures to avoid overflows. Bidding ourselves of

such monitors, however. is one of the positive features of the system in an

other situations. Thus we have reached one of the limits of the system.

6.2 Molecule. Complex Object Representation

Consider a fact such as "The -Maru carries coal from Portland to Tokyo."

In our current scheme, it is necessary to divide this fact into three separate

pieces of information: "cargo of Maru is coal"; "departure-point of Maru is

Portland"; and "destination of Maru is Tokyo." This division is not acceptable.

however, since we have lost the contezt of the individual pieces of

information. Consider the following example. "John bit Joe in the back" and

"Pete bit Joe in the stomach" yield the four pieces "John hit Joe". "Joe was hit

in the back". "Pete hit Joe" and "Joe was bit in the stomach." Now it is not at

all clear that the correct response to "Did Pete hit Joe in the back. ' is '"No."

Mllsson [1990] gives a method of changing any n-ary relation into a set of

, .. . .", '.". .".,. .. .- - - .-. '... . . w , . .. . * ... - ...... ,. .... '. .. " -. -..-. . .. . .
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Uo. Some Practical Questions

Let us deal with some practical issues. First, bow expensive is this

implementation? How much does a BVM cost compared to a. sequential

machine? Being so simple, each PE in the BVM takes "no more silicon area

than some 512 bits of memory" (Wagner [1953]). Since each PE is given

* around 200 bits of local memory, the BVM takes the silicon area of around

'700 million bits instead of 200 million bits. Thus the cost of the BVM is no

more than three times the cost of memory alone for a sequential machine

with an equivalent amount of memory.

What sort of general improvement does one expect over a sequential

machine? We have looked at timing comparisons in section 4.4. Whet we

have found can be summarized as follows. One can think of processing a

query as processing one set of nodes alter another until a final set is found.

If there are k sets of nodes, the average number of nodes in a set is n, and b

new nodes must be checked from a given node, the sequential machine will

take time proportional to kxbxn, whereas the parallel method will take time

proportional to k. The constant ,or the parallel method is quite large,

around 120 microseconds for selection operations (boolean) and around 2.5

milliseconds for inheritance operations (integer). For large enough queries.

the parallel method will win; further, the parallel method gives results which

are independent on the number of nodes to be processed.

A final question is how transportable is the method described in this

paper? Will it only work on the VM? The limitation of this system is the

ability to implement the SHARE algorithm on a given machine. The only

requirement for implementation of this algorithm is that the

interconnection pattern be one of those which is equivalent to the binary
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* The method we suggest is called waLecules because we wil use hardware

links to chain together all of the pieces of information which make up a fact.

* Again consider -The Maru carries coal from Portland to Tokyo." We may

choose to connect "coal" to "Maru" in the standard way- a processor is

assigned to "Varu" and its lateral is assigned to "coal", with the link labeled

"cargo". Now let's assign to the processor which is the predecessor of tbe

* "Maru" processor the value "Portland" and label the predecessor arc

"departure-point". Further, we assign to the successor neighbor of the

"Maru" processor the value "Tokyo" and label the successor arc

0"destination". We thus have

Ind All the links in the above dia&gram are in hardware. Now a query such as

"who carries coal to Tokyo" requires no SHARE operations.

Athougb we shall leave molecules as a possible extension, one point is

worth mentioning. If "destination" is found via a successor link in this

molecule, it should always be found via the successor link of every molecule

(and single connection) in which it is used. Otherwise all "match" tilngs

will istrease by a factor of three, as the system will have to search the three

arts for each processor.

,-"I . .- ,  . . "'- . - - . - , -
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D-cube. in that one can emulate the other with only a constant delay.

Besides for the mesh, most interconnection patterns are equivalent to the

binary n-cube: these include the important shuffle-exchanse. Denes and

omega patterns (Feng 11951]). The method described in this paper then.

lthbough designed for the MVI, may be used on a number of other possible

mnachine configurations.
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S.4. Concluion

This paper has described a parallel implementation of associative

networks. The BVM. a parallel computer with one million processors, is used

to obtain speedups over a "good" sequential method of up to three orders of

magnitude. The timing results are "smooth", depending only on the

*complexity of the query, not the size of the classes being processed. The

knowledge representation is elegant in its division of information to the

most atomic level. Important concepts from the field of semantic networks,

such as property inheritance and cancellation, have been shown to be

successfully handled by the system This paper has described in detail bow

to build an associative network based querying system which embodies the

* principle "forget about trying to avoid or minimize the deductive search,

and simply do it. employing a rather extreme form of parallelism to get the

job done quickly" (Fahlman [19751).

...................

"°.
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APPENDIX A

The SHARE Algorithm

To implement the share algorithm discussed in the text requires

developing a mapping which concentrates the information for each node of

the associative network into a single processor then returns the

concentrated values to each original processor. The mapping for

concentrating may be used in reverse to disseminate the concentrated

values, thus the proofs below develop only the concentrating mapping. The

proofs determine constraints on the time complexity necessary to reorder

the information according to this mapping. The binary n-cube

interconnection will be used in the proofs and then a constant-time method

will be described which emulates the binary n-cube on the BVM.

A-1 Definitions

N equals 20 is the number of PEs in the parallel computer. The PEs are

numbered 0,1,... N- I. Each PE is assumed to bold a single vlue of interest.

A bit i relati n-hip is an interconnection of PEs which pairs up PEs

differing only in the Ith bit of their PE number. The "larger" PE is the one

with the bit on (it has the larger PE number); the "'smaller" PE is the one

with the bit off. Ve apply a bit i relationship by selecting for each pair of

PEs one of the following four operatiws:

i2"
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STAY: each PE keeps its original value

CROSS: the PEs swap values

ORUP: the larger PE is assigned the value of the OR of the two
values; the smaller PE has undefined value.

ORDOWN: the smaller PE s assigned the value of the OR of the two
values; the larger PE has undefined value.

The operations which may be applied to the PEs can be pictured as

switches (figure A). The OR operations are used on Boolean values, which

are our primary interest. (The operations ADD or IIAX/M]LN might be

considered for integer or floating point values. The actual operation chosen

does not affect the analysis.)

A general mapping assigns to each input PE an output PF The mapping

is said to be applied or tnplemraeed when the values are moved from their

input PE to the assigned output PE. If more than one input PE has the same

output PE. the values of these PEs wifl be ORed together before they reach

the output PE.

A pe rmlati' is a one-to-one mapping: each input PEis mapped to a

unique output PE. For implementing a permutation, operations ORUP and

Ii

STAY CROSS ORUP ORDOWN

ft 1 ure Al: The four operations, pictured as switches

I- - ~ .i~ i . . ,, - - i / - " , , . i ' . " - - ' . " . .' " " .- , . " " " -..
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ORDOWN are not necessary.

A b-tarj i-cube is a parallel computer consisting of a set of N PEs.

Each PE has n direct (hardware) connections to those PEs with which it

shares a bit i relationship, for each i less than n. In a cube with n=3 (N=B),

PE 5 (binary 101) has connections to PE 4 (100), PE 7 (111) and PE 1 (001).

PE 2 has connections to PEs 3. 0 and 6.

A state of the binary n-cube is a list of values assigned to the PEs at a

given moment-

A sneep is a set of n states in which going from state j to state j+1 is

achieved by applying a bit i relationship, for some i. Each value of i from 0

to n-1 appears once within a sweep.

Ascemnd is a -sweep with the bit i relationships applied in order: 0.1 .... n-1.

Descend is a sweep with the bit i relationships applied in reverse order:

n-1,n-2,....

A-Z Theorems for Permuations and Mappings

Thorem 1: A single sweep is not sufficient to implement all permutations.

Proof: There are N! permutations of N items. Since STAY and CROSS are the

only operations which may be applied to each pair in a bit i relationship of a

permutation. each bit i relationship of a sweep allows 27" possible switch

settings. Further. there are n states in a sweep. Thus. a sweep can only

describe ?"' combinations. But this equals N'1 " since n is log2(N). In

other words, there are only NV possible permutations that the sweep can

Me
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describe. M. however, has asymptotic value (.k/e) and is larger than VeT

for all N>2. Thus, a single sweep may not implement all general

permutations.

Theorem 2: An ascend followed by a descend is not sufficient to implement

.* all mappings.

Proof: This proof develops a mapping whicb cannot be implemented for the

case N=B. The mapping that provides the counter-example is

Input PE: 0 1 2 3 4 5 6 7
OutputPE: 0 1 0 2 1 2 3 3

This means that PE 0 sends its value to itself, so does PE 1. but PE 2 sends

its value to PE 0 as well. Thus, at some time in the process, the values from

PE 0 and PE 2 must be ORed together. Jigure A2 shows the switches for an

ascend-descend pair which we claim cannot implement this. permutation.

Note that between the ascend and descend there would be two bit n-1

relationships. Since these compare the same pieces of information we will

remove one of the two redundant steps. The state of the system over time is

described by its initial values and the settings of the switches in each phase

from left to right. To choose a particular mapping, one needs to assign to

eaeb switch one of the four operations. Our claim is that no such

asignment wi work.

From figure A2, after the first vertical bank of switches, one of PEa 0

and I will have sent its value to the high tier. and one to the low tier.

Similarly witb PEs 2 and 3. and PEs 4 and 5. Either all of the PEs trying to

I:--
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0 0

-- 4

bZt 0 12 1 0

ascend descend

Figure A2: The counter-example proving Tbeorem 2.
[f PEe 0 and 2 are to send values tc PE C, switches 0-2 and 2-3 ?tast be the same. Hf
PEs 3 and 5 are to send values to PE 2. switcEes 2-3 and 4-5 .st be the same. 1f
PEs I and 4 are to send values to PE 1. switehes 0-1 and 4-5 must be different. This
yields a contradiction.

reach PE 0 at the end must be in the samne tier just before the last switch, or

the switch marked * would have to be an oRLrP. This switch must not be an

OR3P. bowever. since then the output to PE 1 would be undefined. Thus. all

of the O's (the values heading for PE 0) must be sent to the same tier. Since,

after the first bank of switches, only the next to last switch allows values to

cross tiers, the switches labeled 0-1 and 2-3 must either both be STAY or

both be CROSS. Now what can the setting of switch 4-5 be? A similar

argument as the one used for the switch marked 0 yields that the switch

marked + must not be ORUP, so the 2's must all be in the same tier. Switch

4-5 must be set the same as switch 2-3 and thus switch 0-1. for otherwise
I-.
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the 2's would be in different tiers. Finally, look at the situation for the l's.

Obviously one of the l's will be in the high tier and one in the low tier if the

three switches are set he same. Thus, the swtch marked would have to be

an ORDOWN to get the I's to PE 1, and we know this cannot be. Therefore no

setting of the switches will allow the mapping to be generated and the

theorem is proved.

Theorem 3: A mapping of the share type may be accomplished in an ascend

followed by a descend followed by a final ascend. Further, the first ascend

and descend implement a permutation and thus require only the STAY and

CROSS operations.

Proo1: n the Share algorithm we only care that the data gets concentrated,

not into which PE it is concentrated. Thus, we will arbitrarily assign the first

PEs the task of holding the concentrated data for the.m nodes of the

associative network.
.)"

'The two lemmas below are sufficient to prove this theorem The first

says that an ascend-descend pair Implements a general permutation. The

second shows that, from a particular permutation oI the input, a sigle

ascend can concentrate the data In the manner described above.

Len= A An ascend-descend pair may implement a general permutation.

Proof of k L This lemna is well known in the literature. The original

proof was by aksman [1958]. Schwartz 11950) gives a proof which does not

use any discussion of "switches" or "connections" but instead builds up the

.................................. .......... ,,+ ... ... ,-.t_'. _%..=+ . . ,.-,.
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solution using mappings. Lev [1981] gives a method which allows the control

bits to be computed on a parallel processor.

"amma B: Consider a mapping in which the first nc PEs all have PE 0 as their

target (output), the next n, have PE I as their target. etc. and each nj is

greater than zero. Assume that there is a Boolean value associated with

each PE and the Booleans are to be ORed together if they have the same

target. Then a single ascend can implement this mapping using the four

operations STAY. CROSS. ORUP and ORDOWN.

r.an-e:

FE: 0 1 234 5 67
Target: 0 0 0 1 1 2 2 3
Value: T F F F F F T F

PE: 0 1 2 3 4 5 6 7
Value: T F T F - - -

Proof of Lenza B: This proof is by induction on the number of initial bits in

the target which agree with the current PE. The claim is that after stage i

each target can be placed in a'PE whose PE number agrees with that target

in the first i bits. Clearly if this is true the theorem is proved, since after

stage n-I the PE number will be exactly the target.

For stage 0, we need to move just those values whose target disagrees

with the current PE number in the bit 0 position. What could stop us from

being able to move these values? Suppose PE 2k and PE 2k+l. for example.

both have odd targets. Then each will wish to place its value in PE 2k+1.

Now if these two targets are the same. we merely use an OR operation. If the

two targets are not the same we have a collision. But note that this can only

II
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occur if both targets are odd and different. Thus, the targets differ by at

least two. 'The initial position, however, requires that PE 2k and PE 2k+1

bold targets that are the same or differ by exactly one. Thus thi is a

contradiction and we can always move the values so that, after stage 0. each

target agrees with its PE number in bit 0.

Now suppose that all targets agree with their respective PE numbers in

all bits from 0 to i-I and we are at stage i. We claim that after stage i we can

guarantee that all targets will agree in the first i bit positions. Once again

consider what it means to have a collision. We will have two targets which

need to agree in the first i bit positions but differ in some higher position

(for otherwise the targets are the same and we would OR them). The targets

for these two PEs differ by at least 21*3. Two targets compared at stage i

started within 21'*-l of each other by the very design of ascend. (For

instance, at bit 1. PE 0 may be compared with the original value from PE 2 or

PE 3 but never PE 4.) Once again we have a contradicticn, since there is at

*-. least one target for each of the first k PEs. So there is no way that two

targets starting within 2'*'-1 of each other can differ by at least *'.

The proof of lemma A in Vaksman [1986] and our proof of lemma B are

both constructive. We may now assign to each node of the assoclative

network a unique number. The many PEs which make up that node will have

this number as their target. We then use lemma A to order those M as

necessary tor input to lemma B. Lemma B then guarantees that if can

concentrate the data into the first k PEs of the system Having completed

this construction it is worth noting that it is reversible. We can start from

the newly concentrated Information and, following the san paths in
reverse. return the DRed bits to their initial location. Thus the *ntire

-. '
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process takes six sweeps to complete.

Further, since we use the same path beck as we used forward, no extra

control information is necessary. The amount needed for the forward

direction is 2n bits per PE. In the permutation. ascend and descend each

use one bit per switch. Since there are n switches per sweep but only half as

many switches as PEs. the ascend-descend system requires only n bits per

PE. In the concentrate sweep each switch is "four-way" and thus requires

two bits. Thus we need another n bits per PE.

In 5 logz(N) logical steps using only 2 log2(N) bits per processor the

share algorithm may be implemented on the binary n-cube.

A-3 Imiating the binary n-cube on the M

Ascend and descend may be implemented on the BVM at a cost of a

constant time factor above that necessary on the binary n-cube. Preparate

[1981] describes this iznplementation in detail we will sketch that method.

A BVI contains 2 k cycles of k PEs each, so we have the same number of

Pts as a binary n-cube with n=k+2k. We define K-2k so ascend will have

k+K phases. The f'rst k phases are Lmw sheaf reorderngs, that is

reorderings within a cycle. The last K phases are high sheaf operations that

bring pairs together across the lateral connection.

UMw sheaf Phases

Preparata [1981] gives an algorithm which, from a position wbere the

PEs have bit i adjacency, a sequence of 21+1-2 steps yields bit i1+ adjacency.

I Ifor cycle length K equal to eight, the algorithm gives:

Mae"
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bit 0 adjacency: 0-- 2--3 4---5 6--?
0 2-2 3 4 5-6 7

bit I adjacency: 0---2 2--S 4-6 5---7
0 2 1 3-4 6 5 7
D 2 124 3-6 5 7
0 2-4 2"6 3-5 7

bit 2 adjacency: 0---4 2---6 1---5 5---7

The arrows in the above diagram denote where swapping takes place.

Instead of using this algorithm each tine Ascend is called, the algorithm is

executed once at startup and shuffle bits are stored in each PE which tell it

what operation to perform at each step. The number of shuffle bits

necessary turns out to be 2x(K-k). For k=3. the 2048 PE machine, 10

shuffle bits are necessary; for k-4.24 bits would be necessary. A small price

to pay to avoid a relatively complex calculation on each step of the Ascend

algorithm.

High Sheaf Phases

Eacb cycle of the BVM has K lateral connections to exactly those dycles

that differ in one of the K high-bit positions. Thus the folhkwing simple-

minded algorithm serves to implement the high sheaf phases of Ascend:

FOR = 0 TO K-I DO BEGINFORJu.O0TO K-I DO BEGIN
apply the necesary operation between the

ith PE in each cycle and Its lateral.
uhift the values within a cycle to the right,

cyclically.
END;

END;

Variable i determines the current high sheaf phase, which is equivalent

to the element number of the PE within a cycle that is active. This method

is easy to implement but obviously yields less than I/K of the binary n-

cube's performance, since only a single PE within a cycle is executing the

4%
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operation each time through the inner loop.

-ioe High Sha

For the cost of a more complex implementation, we can dramatically

improve the high sheaf performance by using a pipelined approach. 'We will

allow a value to proceed througb the phases as it cycles right from the

zeroth PE in the cycle. The following pseudo-code is sufficient:

FOR i .- 0 TO K-I DO BEGIN
Ifill pipeline

rpply the necessary operation between the
0 through Rh PE in each cycle and its lateral.

shift the values withi a cycle to the right.
cyclically.

END;
FOR i -m 0 TO K-2 DO BEGIN

. empty pipeline
. apply the necesary operation betweer the

t 1-th through Kth PE ir each cycle and
its lateral.

shift the values within a cycle to the right,
cyclically.

END;

Now the PEs are kept busy balf the time. The values loop* exactly twice

around the cycle instead of the K times of the previous algorithm

This method seems like a clear winner except that. at any moment.

each value In the pipeline is at a different phase of "ascent". Since the

Soperation depends on the current Ascend phase, this method requires that

the control bits which determine the operation to perform be reordered so

that the operations will occur at the correct time.

An ascend on the ZVM will take four times as long as it would on a

binary n-cube with the same number of PEs. One factor of two comes from

the pipelining, which requires twice as many operations to be performed.

The other factor arises due to moving the data around the machine. Given

'L ..e...........................,.".*"* . •.,.
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the siW~pe operations being used during ascend, each movement step costs

the same as executing an operation. Thus. for a factor of four in speed we

may use the BM. which is easy to layout in VLSI. instead of the binary xi-

cube, which is not.

wo
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APPENDIX B

Simulation of Parallel Associative Networks

'The results described in this paper have been verified by building a

simulator of such a system. In this appendix we will describe the computer

project. The first section gives a brief account of the BVM simulator used.

Section two discusses the program which calculates control bits for the

SHARE algorithm. The third section describes the SHARE program In the

fourth section we look at a program which converts the formal description

of a data base (figure 4.1) into input for the data base simulator. Finally the

data base simulator is described and sample executions shown.

B-2 A fhb-Level 5 Zbdator for the DVY

In Jackoway [1954] a higb-level simulator for the BVM, SAL. is detailed.

This section will give a summary of its properties. SAL allows the user to

write BVII programs in standard Pascal. The user writes a Pascal procedure

which, when passed to SAL, is called with the memory of each PE in turn. To

avoid referencing data in ways not possible on the VM, the procedure is

sent four parameters by SAL a pointer to the local memory of the current

PE and read-only pointers to the memories of the three PEs to which the

current PE is connected. Jackoway [1984] describes rules which eliminate

usage which would not be possible on the BDVI. Basically these rules restrict

the procedures to two or three lines; each procedure does some

fundamental task such as copying a word or ANDing two bits. The user

I
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writes a bank of such procedures and then writes his program, which merely

sends these procedures to SAL in the appropriate order.

The user may place a template over each PE's memory. This template

allows the user to use Pascal integers as well as booleans in the user's

programs. Thus one might decide to treat the first sixteen bits as booleans

and the next 60 bits as three twenty-bit integers. The flexibility allowed by

SAL and the capabilities available from Pascal make algorithm development

easier. Since SAL is not an assembler-level simulator, precise timing results

cannot be obtained. Instead the user must be satisfied with a count on the

number of executions of each user procedure.

-2 Control Bit Calculation

The control bit program takes a mapping as input and outputs the

control bits necessary for the VM to implement a mapping. The rnethod

used is the two step process suggested in the proof of Theorem 3 in

appendix A. The first step follows Waksran's algorithm to compute a

permutation which sorts the information (Waksman [1965]). The second

step uses lemma 'B to determine the final ascend control bits. Thus to

handle the followingi mapping:

InputPE: 0 1 2 3 4 5 6 7
Output PE: 0 1 0 3 1 2 0 1

the rst step will use the following permutation

InputPE: 0 1 2 3 4 5 6 7
OutputPE: 0 3 1 7 4 5 2 5

-- - .- ........ , .... :-. .,.-, -.-... .... , .
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to bring the data to a position where the foUowing mapping needs to be

determined:

InputPE: 0 1 2 3 4 5 6 7
OutputPE: 0 0 0 1 1 1 2 3

Now, lemma B may be applied.

The sorting step is implemented using the method described in

Waksman [196). The control bits are equivalenced to switches in the

following manner. The two processors involved in a bit i relationship have a

single control bit which, if on means they swap values (switch CROSS), if off

means they keep their original values (switch STAY). ORUP and ORDOWN are

never used during a permutation. Since the permutation is implemented as

an ascend-descend pair, each pair of processors w meet twice, once during

ascend and once during descend. The smaller-numbered processor

maintains the ascend control bit. the larger-numbered processor. the

descend control bit.

The second step is achieved using Lemma B. but runs in reverse. The

control bits for the final stage are determined first. This final stage is the

only one that allows values to cross from the lower half of the permutation

to the higber half and vice versa. Thus, we can determine the necessary

Twitcb settings by noting which half the values must have been on before

the final stage. Consider the mapping we have been using throughout, and

I, compare the final state to the initial state.

PE: 0 12314567
Target: 0 0 0 1 1 2 2 3

It is clear that 0 will only come from the 0-3 half of the target, I will come

from both halves, and 2 and 3 from the 4-7 hall. Thus, at the final stage. 0

,7...,
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will need operation STAY, I will need operation ORUP (up to the first half),

and 2 and 3 will need CROSS. Now we can determine the next-to-final stage

by considering the following two subproblems.

PE: 0 112 3 and 4 516 7
Next-to-last: 0 J- - - I12 3
Target: 0 010 1 1 212 3

This process may be continued until all switches have been determined. It

takes two control bits to define a switch: one bit is stored in each of the two

processors connected by a bit i relationship. In the bit 0 relationship, for

instance PEs 0 and 1 are connected. The four possible switches are defined

as follows:

STAY CROSS ORUP ORDOWN
PE O: 0 1 0 1
PE 1: 0 1 1 0

Figure B1 shows a sample execution of this program.

B-3 implementation of the SHARE Algorithm

To implement the SHARE algorithm. I started by designing and

implementing Ascend and Descend (A/D). A non-pipeUned version of A/D

L 'exists as well as the pipelined version described in (Preparata 11981]). The

advantage of the non-pipelined version comes in debugging algorithms.

Using the pipelined version, at any point in time each piece of data within a

cycle is at a different phase of ascent or descenL Tinding bugs is nearly

impossible under this condition. Thus, higher level algorithms may be tested

using the non-pipelined version and then converted to the faster pipelined

version.

U
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flaging to generate:
O 1 2 3 4 5 7 B 10 11 22 21 14 1!

0 6 7 0 0 6 4 762 126 7 1

To Decide Spitches: (This is the permutation for Vakseaa's alqolithsu
0 9 13 1 2 3 10 6 14 11 6 4 7 12 15 5

(Results of VAksaans aigqrithm)

Svitth 1 0 STAY STAY STAY STAY STAY STAY STAY
Switch # I STAY CROSS CUOSS CROSS CRDOSS STAY SI'

*Svttc . # STAY CROSS STAt CROSS CROSE STAY STAY
S*1tc, # CROSSz CROSE CROSE STM'Y CADE" CROSS cRnOSS.
Sstr 4 4 CROSE STP ST~t CROSS CADE"- CROSS STP
S*:tU I ! CROSS STAY CEDES STAY S!Ai STAY CROSSi
Switch 46 STAY STAV STAY STAY STA! STAY CRDOSS
Skitct 67 STAY CROSS CRUSS CROSS CROSS CROSS CROSS

Ta NEI% (Letinu B i!;oritha,
0 0 1 1 2 2 4 6 6 6 t 7 7 J
0 1 2 3 4 5 6 7 -1 -1 -1 -1 -1.-1 -1 -1

(Results of lemma 0 algoriths, the numbers are the ]owe, processor oi th.e tit reuiiors-.

O:OPUIF O:ORlJP O:STAY O:STAY
2:GRUP 1:STAY M:ROSS 1:STAY
4:0RDOWN WTSAY 2;CRDSS 2:-SIAY
6:DRUr' 5-.STAY 3:STAY 3:0RDN
SICRDSS B:ODDDN I.-CROSS 4:CROSS

10:ORUF 9:STAY 9:S7AY 5. DNh
12:STA) 12:CROSS 10:ORDOWN W:ROSS
l4:fftDN 13;OROWN 11:STAY 7:CROSS

figure Bl: Sample run of control bit calculatijon programx

Moaving routines Ascend and Descend In place, the b~ert tpIvl d

Xtp Inole
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introducing the control bits computed by the program described in the

previous section. It is not sufficient to place the control bits in the

processor to which they are assigned by this program. In the low sheaf and

high sheaf, the data is shifted around and so must be the control bits.

Although one could predetermine where each control bit will be needed, a

simpler method is used. The control bits are sent around the cycle along

the same path that the data will flow during a SPARE and each bit is

"dropped" in the processor where it will be needed.

Due to the cost of simulating a 2048 PE machine on a single processor.

only the concentrate half of SHARE has been implemented. This is sufficient

since the second half involves using the same control bits in reverse.

.,-

B.4: The Data Base Simulator

Since SF.ARE is so expensive to simulate, in the data base si-mulator an

inexpensive version of SHARE is used. (This version violates "BVM constraints,

but it is the only routine used in the data base simulator that has this trait.)

SHARE may also be used to print out the concentrated values, thus it

doubles for PRINT.

A MATCH procedure is available which handles most boolean assignment

statements which depend on TYP and REL values. The parameters to ATCH

are: a TYP field value, a REL field value, an ATYP field value, an associated

mark bit number, and the mark bit number of the bit to set. Any of the field

Ilues may be set to "ANY" (0 is used); the associated mark bit may be set to

"NONE" (again 0 is used). The MATCH routine sets the mark bit in those

processors whose fields match the field values and whose associated

processor has the associated mark bit on. MATCH can be said to compute

= - -S' = , , , W ' , .. - "= , ,. -'"'"" '' , ', " ."..'. , ", .-.-.-. .. :.. ." " . . " •".- .. " .



the folowing boolean function:

(TYP = TYP field value) & (REL = REL field value) &

(ATYP = ATYP field value) & (associated mark bit on)

Other procedures are available for boolean operations, integer

operations, copying integers, and an IF routine. As well as these simple

procedures, the procedures described in the text have been written. These

routines include Ih-ERIT. MARKALL and MJNMIMIZE. The following pages show

annotated runs of the data base simulator.

V .



Having routines Ascend and Descend in place, the next step involved

introducing the control bits computed by the program described in the

previous section. It is not sufficient to place the control bits in the processor

to which they are assigned by this program. In the low sheal and high sheaf,

the data is shifted around and so must be the control bits. Although one

could predetermine where each control bit will be needed. a simpler method

is used. The control bits are sent around the cycle along the same path that

the data will flow during a SHARE and each bit is "dropped" in the processor

where it will be needed.

Due to the cost of simulating a 2048 PE machine on a single processor.

only the concentrate half of SHA.E has been implemented. This is sufficient

since the second half involves using the same control bits in reverse.

B4 Data Base Zay Program

The data base entry program accepts a data base description of the

form shown in figure 4.1. Each line begins with the name of a relation and

contains the names of pairs of nodes which are to be connected by that

relation. The program alphabetizes all of the words to determine the

numerical value assigned to each node and relation. Once the numerical

assignments are made, the PE assignments are made. Each PE is given the

number of the node to which it belongs and the relation in which it is used.

These assignments are determined so that the pair of PEs representing an

arc are connected by a lateral link. The numerical and PE assignments are

saved for use by the control bit calculation program and the data base
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(A printoct of the Tr7 values for the f;rst 32 processors
follows. The first processor has vailue 1E in hexadec;ama

whict. is 24 in decimal. This is a 'Jot7' processor.!

state o the machine:
Oli i ooi0oi 0012 Do:, 001 QOD
00i3 0(114 00-15 00i1 001A Or.? 0 AK
OOOF O01A O01e DOID 0011 001i 00!5 06;!
0c 0025 0016 OWI 001B 001 1,2: 0.O

[be *ill calculate 'grandchildren of Johr'
First, MATCH is called to set lord 3 to True in all processors
which have INVERSE FAPENT link to a SOHh note.

Ail of the informatior which is not in. bra:iets (' 1 was prcduced
by the progra. Wnorsation in curly tri:iet! (( 1")) is a

sub'putmne call.
Note that the names belom ere prnted t !he pro;rhe which looiks ur

the values in the dictionary built b tne data base prograi.
The rumbe- in parenthesis after a nati is the value assicned t- that
type.
Note also that in this impleaeaton, al' things are storet
in uords, bolears have value I for TR6E, 0 ior FALSE.]

[ bcrd[7.3 <- ME: INVERSE PAREN7;-22 &1 ATY~z JOHN!24. 1

ii! SNARE bord!I,4 10

Ichildren oi John:]

TYPES ON: .ACK(17:1) JlLLi2C:I)

[Srand:hi]dren are found by turninc on those nodes which have
in INVERSE PAPEN. link to a node with word 3 on]

00{ Mkrdt41 <- REL= INVERSE PARENT(-32) I Alord:3:True ))}
((H SARE ford[43 ))

I4randchildren of John:)
T.FES ON: 4AKE(19:1) JOANi21:1) JOE(23:1)
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[ow we prc:eet to the exaFle "Wh: are parents of ta dog uners. '
({ ordM < REL= ilo) 6 ATYP: D06(ii 11)

-d SHAE Mordl M
(dogs:3
TYPE. ON; FID(12:1) PO:YiUY6:)
.(C Word14, t- REL OR (61 & ATYP: TANI i D:

-." 1'(f SHARFE Vordr4] )

Itar things:]
TYPES ON: COFRVETTE(7:l) FlDGd2:1' JILL(20:I)

HIAR : 2?7: i)

MFirst me mill determine (tan dog) wners]
{(( Word[5] (- Word(31 & Nord!41 )

[Word 5 is set true in tan dogs)
(MC Wo-44 2 <- REL= OUN(Ii & AWkrdr5]=T ))
((U NHARE Word!661 1

[Jake :! the (tar dog) owmer)
TYPES IN: jAE.. :i
fill' br 7 REL: PAFREKTC;, & --.rr-:- .'
.(( SHA:E kord:72 ))
[Jbae&s parents:

TYFES IQ: X WAUL:lI) MA F yIZ

Ns o t e will deterscne tan (doo wnes),
[:::.' ((( wi,(-.J:, "= - REL: OWN:. I & ANrd 3J:T ,,

[do; ow res:3
TYFES Oh: JX.Etle:i) JILL(2C0:!)
( dWord. -ordC42 & MordID] )))

[Nord 6 is on only in Jill modes, since color of Jake is White)
(C iord:7] <- REL= PARENIM(2) & Aiordl&]:T )))
M({ SHA.E Nor t73 ))
W zli's parents:)
TYPES Oh: JAE09:1) jON(24: )

[A summary of the run follows.
We have exe:uted 8 HATCH instructions, 2 kooleans (both L's)
and 6 Wary shares Ime used operation OR between values).
Dy the values which are tabulated, this run wold take
only one millisecond on the BYV.)
It katches: 8 bools: 2 fints: 0 bir shares: 6 tint shares: 0 #steps: 0 It

.1"

,,v," ,~~~~~.."-:. ' ...... :':.. "......- -.................... .....- *



74

REFERENCES

(1) Barnes. G. H.. et. al., The ILLIAC TV Computer, IEEE t-ans. on Camv. Vol.
C-37. No. 8. pp. 746-757. Aug. 1985.

(2) Batcber, X E., Sorting Networks and Their Applications in 1988 Bpi-in;
Jon Compuer Conf.. AFPIS Conf. Proc., Vol. 32, pp. 307-314. 1968.

(3) Brachman, P. J., On the Epistemological Status of Semantic Networks, in
Associative Networks. Represerdations and Mse of Ahvuledqe byj
Cumpbaters, ed. Findler, N. V.. Academic Press, New York. 1979.

(4) Date, C. J.. An Introduction to Database .9stemw, third ed.. Addison-
Wesley. Reading, MA, 1982.

(5) Fahlman, S. E.. NETL: A System for fRpresetirg and Using ebal- World
Knouiedge. The MIT Press, Cambridge, Mass, 1979.

(a) Fahlman, S. E.. Design Sketch for a Million Element NETL Machine. Proc.
AAAJ Conf., pp. 249-252. 1980.

(7) Fahlman. S. E.. Touretzky, D. S., van Roggan, W., Cancellation in a
Parallel Semantic Network, Proc. of the S&venth Inter .ational Joint
Conf. on Al, Vol. 1, pp. 257-263. Aug. 1951.

(8) Feng. T., A Survey of Interconnection Networks IEEE C'omputer. Vol. 14,
No. 12. pp. 12-27, Dec. 1951.

(9) Fmndler. N. V., ed.. Associative Netucrks: Representations and Use of
Knowledge by Computers. Academc Press, New York. 1979.

(10) Flyn, M. J., Some Computer Organizations and Their Effectiveness. IEEE
? -ns Computers. Vol. C-21. No. 9, pp. 945-960, Sept. 1972.

(11) lendrix, C. G.. Encoding Knowledge in Partitioned . Networks, in
Asociative Networks: Reprsentations and Use of Knowledge by
Cbputers. ed. Fin dler, N. V.. Academic Press, New York, 1979.

(12) Jackoway, C.. SAL A Simulator for Algorithms, (not published), Term
Paper, May 1984.

(13) Lane. H. U.. ed., The WoirldAlmanac and Book of Fazcts 1984, Newspaper
Enterprise Assoc.. New York. 1984.

(14) Lev. G. F.. Pippenger, N.. Valiant. L. G., A Fast Parallel Algorithm for
Routing in Permuatation Networks. IEEE Perits. Cb wputers. Vol. C-30.
No. 2., pp. 93-100. Feb. 1991.

(15)Mago. C. A.. A Cellular Computer Architecture for Functional
Programming. IEEE SirMg COMPCON, pp. 179-185. 1980.

(16) Nassimi D.. and Sahni. S.. Parallel Permutation and Sorting Algorithms
and a New Generalized Connection Network. JACM Vol. 29, No. 3. pp.
$42-867. July 1982.

(17) Newman, J. IL. ed.. The Hmper 2t'&clopedia of .*i.nee, Harper and Row.
New York. 1967.

J%

.' ,,= .-..-... ;.. . *.. -- .-,,-. , , ,. .. . . .. , . ,. . . . .

, ,,,.r.. . _.. , _ ... ..... ,. ,- . . .'L. ? i -- .- . -- ,.'-.L . * ..- *.- . * -.-.. _ . ...



.4.. 75

(18) Nilsson. N. J.. Principles of Artificial InteUgeace, Tioga Pub. Co., Palo
Alto, 1980.

(19) Preparata. F. P., and Vuillemin. J.. The Cube Connected Cycles: A
Versatile Network for Parallel Computation. Comm. ACN. Vol. 24. No. 5.
pp. 300-309. May 1981.

(20) Schwartz, J. T., Ultracomputers. AC Trains. Progrmrnmng Languages
and 9istem.n, Vol. 2. No. 4. pp. 484-521, Oct. 1980.

*.. (21) Snyder. L. Introduction to the Configurable, ighly Parallel Computer.
I""EE Comnputer. Vol. 15, No. 1, pp. 47-55, Jan. 1982.

(22) Sowa. John. F.. CbnLceptual Structures: Jnf-m-,,tion Processmn in 1fi..nd
and Ma.chine Addison-Wesley, Reading, MA. 1984.

(23) Thompson, B. H. and Thompson. F. B., Shifting to a Higher Gear in a
Natural Language System. Mttion2 Cbmpufer Ofenice, pp. 657-562.
1981.

(24) Thompson. F. B.. Personal Communication, June 1982.
(25) Thompson. C. D., Generalized Connection Networks for Parallel

Processor Intercommunication. 1EEE Trans. Cbmputers. Vol. C-27. No.
12, pp. 1119-11125, Dec. 1978.

(26) Tomboulian. S. J., A Parallel Implementation of Associative Memory. (not
publisbed),Term Paper. May 1984.

(27) Uliman, J. D., Prineiples of Database Systems, second ed., Computer
Science Press. Rockville. MD. 1982,

(28) Wagner. R. A.. A Programmer's View of the Boolean Vector Machine.
Model-2, Tech. Report, CS-IgSl-B, Dept. of Computer Science, Duke
University. Oct. 1981.

(29) Wagner, R. A.. The Boolean Vector Machine (BVM). IEEE Conf. Proc" 10th

Annuo2 tnternationl _Ymp of Camp Arch., pp. 59-86, June 1983.

(30) Wagner, R. A.. Personal Communication. June 1984.

(31) Waksman. A.. A Permutation Network, JACM, Vol. 9. No. 1, pp. 159-163.
Jan. 1965.

'S"

;. . . . .. . . . . . . . . . . . . . . . .



141

FILMED

DTIC %4


