
UNCLASSIFIED 
SECURITY CLASSIFlCAflON OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 

UNCLASSIFIED 
lb. RESTRICTIVE  MARKINGS 

2a. SECURITY CLASSIFICATION AUTHORITY 

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE 

3. DISTRIBUTION/AVAILABILITY OF REPORT 

Approved for public release; distribution 
unlimited. 

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 

TR  7511 
5. MONITORING ORGANIZATION REPORT NUMBER(S) 

6a. NAME OF PERFORMING ORGANIZATION 
Naval Underwater Systems 
Center 

6b. OFFICE SYMBOL 
(If applicable) 

7a. NAME OF MONITORING ORGANIZATION 

6c ADDRESS {Cty, State, and ZIP Code). 

New London Laboratory 
New London, Connecticut 06320 

7b. ADDRESS <Cty, State, and ZIP Code) 

3a. NAME OF FUNDING/SPONSORING 
ORGANIZATION 

■8b. OFFICE SYMBOL 
(If applicable) 

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 

8c. ADDRESS (Cty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS 

PROGRAM 
ELEMENT NO. 

PROJECT 
NO. 

ZROOOOlOl 

TASK 
NO. 

WORK UNIT 
ACCESSION NO. 

11. TITLE (Include Security Classification) 

SPECTRAL ANALYSIS VIA LAG-RESHAPING OF THE CORRELATION ESTIMATE; PRORRAMS AND 
SIMULATION RESULTS 
12. PERSONAL AUTHOR(S) 

Albert H.   Nuttall 
13a. TYPE OF REPORT 13b. TIME COVERED 

FROM "  TO 
14. DATE OF REPORT (Year, Montft, Oay)    hS. PAGE COUNT 

16 August 1985  
16. SUPPLEMENTARY NOTATION 

17 COSATI CODES 

FIELD GROUP SUB-GROUP 

18. SUBJECT TERMS {Continue on revene if necessary and identify by block number) 

Effective Window  Lag Weighting 
FFT Processing   Minimum Execution Time 
Lfiq-Rf^fihfinina Minimum y^rJAY^cp. ,  

19  ABSTRACT {Continue on reverse if necessary and identify by block number) 

The possibility of achieving maximally stable, low-sidelobe spectral estimates, 
without the need for temporal overlapping or weighting, is investigated and confirmed 
via simulation.  In particular, the (frequency domain) power spectral estimates of each 
of a sequence of abutting, rectangularjijgated, time data segments are averaged and then 
Fourier transformed into the lag (or correlation) domain. This correlation estimate is 
then reshaped, by dividing out the undesirable triangular autocorrelation of the rectangu- 
lar temporal weighting, and by multiplying by a desirable lag-weighting function with low 
sidelobes and adequate decay. Another Fourier transform yields the final spectral esti- 
mate of interest. Multiple spectral analyses with different resolution bandwidths are 
easily achieved by changing just the final lag weighting and doing one additional FFT for 
each case of interest. 

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 

CT UNCLASSIFIED/UNLIMITED      D SAME AS RPT. D DTIC USERS 

22a. NAME OF RESPONSIBLE INDIVIDUAL 
Albert H. Nuttall 
DO FORM 1473,84 MAR 

21. ABSTRACT SECURITY CLASSIFICATION 

UNCLASSIFIED 
22b. TELEPHONE (Include Area Code) 

203-440-4618 
83 APR edition may be used until exhausted. 

All other editions are obsolete. 

22c. OFFICE SYMBOL 
Code 3314 

SECURITY CLASSIFICATION OF THIS PAGE 

UNCLASSIFIED 



IINri A.S.ST FT Fn 
SECURITY  CLAaSIFICATION  OF  THIS  PAGE 

18. (Cont'd) 

Normalized Quality Ratio Spectral Analysis 
Resolution vs. Stability Stable Spectral Estimates     .       '' 
Segment Averaging Temporal Weighting 
Sidelobe Control Tones in Noise - 
Simulation Wrap-Around 

19. (Cont'd) 

The mean of the spectral estimate is equal to the convolution of the true spectrum 
of the data with an effective window. In the case of lag-reshaping, the effective window 
corresponds directly with the desirable lag weighting function above, with its low side- 
lobes. More generally, the effective window is equal to the convolution of the lag 
window with the magnitude-squared temporal window. Previous analytic results for the_ 
variance of the spectral estimate with rectangular temporal weighting indicate that, if 
the length of the temporal weighting is selected to be somewhat larger than the length of 
the lag weighting, the variance is at a near minimum. Furthermore, in this situation, 
the possibly deleterious sidelobes of the temporal weighting can be exactly compensated 
by proper choice of lag weighting, resulting in low sidelobes and good decay of the 
overall effective spectral window. 

Programs for achieving lag-reshaping spectral analysis are presented for complex 
data as well as for real data. Tiiiring results and reconrimendations for minimizing execu- 
tion time, subject to a specified frequency resolution, are given. Simulation results 
that confirm all the effects predicted theoretically are presented. The possibility of 
detecting a weak tonal via lag-reshaping is demonstrated, both for a nearby frequency as 
well as a distant tonal. 

 UNCLASSIFIED  
SECURITY CLASSIFICATIOM OF  r i^. ■;  ;.-4,;E 



LIBRARY 
RESEARCH REPORTS DIVISIOIf 
NAVAL POSrTGRAQUATE SCHOOL 
MONTEREY, CALIFORNIA 939-W 

NUSC Technical Report 7511, 
16 August 1985 

{      ' Spectral Analysis via Lag-Reshaping 
of the Correlation Estimate; 
Programs and Simulation Results 

Albert H. Nuttall 
Surface Ship Sonar Department 

Naval Underwater Systems Center. 
^Newport, Rhode Island / New London, Connecticut 

Approved for public release: dir.trlbutiori jnllmited. 



PREFACE 

This research was conducted under NUSC Project No. A75205, Subproject 
No. ZR0000101, "Applications of Statistical Communication Theory to Acoustic 
Signal Processing," Principal Investigator Dr. Albert H. Nuttall (Code 33), 
Program Manager Gary Morton, Director of Navy Laboratories. 

The author would like to acknowledge several helpful discussions with 
the Technical Reviewer of this report. Dr. G. C. Carter (Code 3314). 

Reviewed and Approved: 16 August 1985 

e ' 
Associate'Technical Director for Technology 

/    W. A. Von Winkle 

The author of this report is located at the 
New London Laboratory, Naval Underwater Systems Center, 

New London, Connecticut 06320. 



TR 7511 

TABLE OF CONTENTS 

Page 

LIST OF ILLUSTRATIONS .  iii 

LIST OF SYMBOLS  v 

INTRODUCTION    1 

ULTIMATE STABILITY ATTAINABLE FROM A GIVEN RECORD LENGTH   4 

SPECTRAL ANALYSIS PROCEDURE   7 
First-Stage Estimates   7 
Second-Stage Estimates '  11 
Scaling  14 
Lag Weightings  15 

CHOICE OF PARAMETERS    17 
Stability of First-Stage Correlation Estimates   17 
Selection of N-]  18 
Execution Time  19 
Direct Calculation of Correlation   21 

SIMULATION RESULTS    22 
Single Tone, Noise Free   22 
Two Separated Tones in White Noise   28 
Two Close Tones in White Noise   31 

VARIANCE OF SPECTRAL ESTIMATE   34 
Theoretical Results     34 
Simulation Results   35 
Approximation to NQR  37 

SUMMARY  39 

APPENDIX A — SUM OF POWER SPECTRAL ESTIMATES  41 

APPENDIX B — PROGRAMS FOR LAG-RESHAPING SPECTRAL ANALYSIS    43 

REFERENCES  51 

i/ii 
Reverse Blank 



TR 7511 

LIST OF ILLUSTRATIONS 

Figure Page 

1 Power Transfer Function of Narrowband Linear Filter H(f) .... 5 

2 Wrap-Around in the Lag Domain  9 

Z Allowed Lag Weighting to Suppress Wrap-Around   10 

4 Pure Tone Analysis for N2 = 16384; Negative Lobes Also   23 

5 Pure Tone Analysis for N2 = 16384; Positive Lobes Only   23 

6 Pure Tone Analysis for N2 = 1024  25 

7 Pure Tone Analysis for N2 = 512  25 

8 Pure Tone at Frequency .25 Hz; Lag-Reshaping  27 

9 Pure Tone at Frequency .25 Hz; No Lag-Reshaping  27 

10 Two Complex Tones plus White Noise; Lag-Reshaping   29 

11 Two Complex Tones plus White Noise; No Lag-Reshaping   29 

12 Two Real Tones plus White Noise; Lag-Reshaping  30 

13 Two Real Tones plus White Noise; No Lag-Reshaping  30 

14 Two Close Tones plus White Noise; Lag-Reshaping, L2 = 250 ... 32 

15 Two Close Tones plus White Noise; No Lag-Reshaping, L2 = 250 . . 32 

16 Two Close Tones plus White Noise; Lag-Reshaping, L2 = 200 ... 33 

17 Two Close Tones plus White Noise; Lag-Reshaping, L2 = 150 ... 33 

18 NQR for L2 = 1000 and Window C1    36 

19 NQR for L2 = 250 and Window Cl    36 

iii/iv 
Reverse Blank 



TR 7511 

LIST OF SYMBOLS 

h 
t 

x(t) 

f 

G(f) 

w^(f) 

H(f) 

P 

0 

Av(P) 

Var(P) 

overbar 

NQR 

^t 

K 

h 
n 

(k) 

„(k) 

'^1 

\ 

available record length in seconds ■ 

effective frequency resolution in hertz, (1) and (18) 

time 

data record 

frequency 

true (unknown) spectrum of x(t) 

spectral window 

filter voltage transfer function 

estimate of power 

quality ratio, (2) 

average value of random variable P 

variance of random variable P 

ensemble average 

normalized quality ratio 

sampling increment (= 1 second) 

number of pieces of data 

length of each data segment 

time sample number 

k-th data segment at time n, (5) 

k-th FFT at frequency bin m, (6) 

size of first-stage FFT 

first-stage spectral estimate, (9) 



TR 7511 

LIST OF SYMBOLS (cont'd) 

a first-stage correlation estimate, (10) 

w lag weighting, figure 3 

L- lag weighting length, figure 3 and (12) 

b second-stage correlation estimate, (12) 

w^ desirable lag weighting, (13) 

B^ second-stage spectral estimate, (15) 
In 

N- size of second-stage FFT 

P- sample power of total data record, (20) 

o. lag weighting coefficient, (21) 

Cl continuous first derivative, (22) 

L (max)   maximum lag weighting length o*f interest 

f frequency m/N_ 

I dimensionless constants, (39) 

T auxiliary constants, (41) 

v1 



TR 7511 

SPECTRAL ANALYSIS VIA LAG-RESHAPING OF THE CORRELATION ESTIMATE; 

PROGRAMS AND SIMULATION RESULTS 

INTRODUCTION 

The fundamental performance of the generalized spectral analysis 

technique employing quadratic frequency-smoothing of Fourier-transformed, 

overlapped, weighted data segments was thoroughly investigated analytically 

and reported in [1]. One attractive possibility pointed out there was that of 

doing lag-reshaping of the first-stage correlation estimate, and thereby 

realizing effective spectral windows with low sidelobes and good decay rates, 

without the need for overlap or any temporal weighting at all. However, no 

programs or simulation results for this particular technique were presented at 

that time. We rectify this situation here by presenting programs for 

achieving maximally stable low-sidelobe spectral estimates via the 

lag-reshaping procedure [1, pages 36-40] and then employ these routines to 

exhibit some simulation results for data with tones and noise. 

Spectral analysis techniques have received a great deal of attention in 

the past"[2 - 13], ranging from the original autocorrelation approach of 

Blackman-Tukey [3] to the more recent weighted, overlapped, segment-averaging 

FFT approach [8 - 13]. These two apparently disparate approaches are limiting 

special cases of a generalized framework [1] for spectral analysis; thus 

consideration of this general technique elucidates the fundamental behavior 
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and perfonnance of a rather wide variety of spectral approaches and their 

tradeoffs. This generalized framework was originally presented in [14 - 16], 

where a brief summary of some of the main features was mentioned. The 

analytical results, detailed derivations, and quantitative results were given 

in [1]. 

There are two fundamental parameters that critically affect the 

performance of any spectral estimation technique. They are the available 

record length, T, of the stationary random process under investigation, and 

the effective frequency resolution, B , of the technique under consideration. 
e 

We would like to be able to attain fine resolution (small B ) with short e' 
data   lenath^   a"'^   <:tnrano   /email    T^ •    hniJo\/pr      c + ahlo   r-ociilfc    /email 

fluctuations) are achievable only if the product TB is much larger than 

unity. The problems of interest are how to make optimum use of a given 

limited amount of data, in order to realize a specified desired resolution 

with maximum stability, and to determine what tradeoffs are available 

regarding windowing and weighting at different stages of the spectral analysis 

procedure. It is assumed that the reader is familiar with the tradeoffs 

presented in [10] for the weighted, overlapped, segment-averaging FFT 

procedure, and with the concepts and results of the generalized framework in 

[1]. 

In this report, we will confine attention solely to the case of abutting 

rectangular temporal weightings with no overlap; this procedure, with 

appropriate lag-reshaping, has been shown [1, pages 48-50 and 58] to have 
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excellent effective spectral windows (low sidelobes and rapid decay) and 

virtually ideal variance reduction capability, under proper choice of the lag 

weighting and the ratio of weighting lengths. Furthermore, it requires no 

temporal multiplications whatsoever on the given data, and it avoids the 

additional manipulations associated with overlapped data segments. Thus it is 

a strong candidate for consideration in spectral analysis. 

Separate programs for spectral analysis of complex data as well as real 

data are presented here. Also, the programs are written in such a fashion 

that if multiple frequency-resolution bandwidths are desired, they can be 

easily accommodated without re-doing the bulk of the required data processing; 

in fact, one new lag weighting and one FFT will suffice for each different 

required resolution. 

Although the present programs and study are limited to auto-spectral 

analysis, they can be easily generalized to incorporate cross-spectral 

analysis if desired, both for complex as well as real data. The present 

conclusions on execution time and stability should carry over directly to this 

more general case. 
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ULTIMATE STABILITY ATTAINABLE FROM A GIVEN RECORD LENGTH 

Suppose a stationary (complex) data record x(t) of length T seconds is 

available and that we wish to estimate its power density spectrum G(f) at 

frequency f, with an effective frequency resolution of B Hz, where W (f) 

is the narrowband window through which the power density spectrum is to be 

observed. These two frequency-domain quantities are related according to 

[fdf W (f)] 
Be= -^r f-^    • (1) 

jdf W^(f) 

This bandwidth measure, B„, is called the statistical bandwidth of W (f) 
e 0^ ' 

in [6, page 265]. The relation of effective bandwidth B to the half-power 

bandwidth is considered in [1, appendix A]; it is shown that for good windows, 

the ratio of the two bandwidths is relatively independent of the exact window 

shape. Thus it is possible to translate results to other bandwidth measures 

without significantly affecting the essential quantitative aspects. 

If we take the original data record and pass it through a narrowband 

linear (complex) filter with power transfer function equal to the window, 

|H(f)l  = W (f), and which is centered at a frequency, f , of interest, 

we will have lost no relevant information about the process in the frequency 

band of interest, because we have filtered out information of no use. We can 
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now estimate the power in the narrowband filter output process and use it as a 

measure of the spectrum of the input process in the neighborhood of frequency 

f ; see figure 1 

iH(f)r=WoW 

-f 

Figure 1. Power Transfer Function of Narrowband Linear Filter H(f) 

A quality ratio can be defined for the power estimate P at the filter 

output as 

Q^yarlPi 

Av(P) 

2  -^ 
P^ - P (2) 

where the overbar denotes an ensemble average. Under the assumptions that the 

filter input spectrum G(f) does not vary rapidly with respect to bandwidth 

B , that the observation-time resolution-bandwidth product TB is large, 
e e 

and that the filter output is approximately Gaussian, it is shown in 

[1, pages 3-5] that 

Q = TB:- 
(3) 



TR 7511 

This is the smallest value of quality ratio 0, for specified resolution B 
e 

and available record length T; no other spectral analysis procedure can 

outperform this benchmark. Thus (3) serves as a very useful comparison 

standard for any technique and willbe employed here in the stability 

investigation. Specifically, the normalized quality ratio (NQR) for a 

particular technique is defined as the quotient of the quality ratio of that 

technique, (2), relative to the minimum value in (3). Thus NQR is always 

greater than unity, with small values being desirable. 
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SPECTRAL ANALYSIS PROCEDURE 

The available stationary data process x(t) is presumed to be sampled at 

unit time increment, for convenience; that is, A. = 1 second in [1, (24) et 

seq.]. There should be no problem in scaling these results to a general time 

sampling increment a^. Thus the observation time T measures both the 

available data record length and the number of available data points. 

This total of T data points is broken into K abutting non-overlapping 

data segments each of length L,; thus 

T = K L^ . (4) 

where L^ is the length of the (rectangular) temporal weighting. The data points 

in the k-th piece, 1 < k < K, are labeled ^x^*^^] for 0 < n < L, - 1, where n 

is a time index; thus in terms of original process x(t), we have (since A. = 1) 

xj*^^ = x(n+(k-l)L^)  for 0 < n < L^ - 1 ,  1 < k < K .       (5) 

Notice there are no common data points in any of the different pieces. 

FIRST-STAGE ESTIMATES 

According to the procedure described in [1], we perform a forward 

N^-point (first-stage) FFT of each piece of data (N, = power of 2): 
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,(k) _ 
m 

h-1 

n=0 

exp(-i2irnm/NJ x^*^^ In for 0 < m <-h - 1, 1 < k < K, (6) 

where m is a frequency bin index. Observe that no temporal weighting is 

employed on the available data. We presume that FFT size N, and segment 

length L-j are chosen to satisfy constraint 

NT >h (7) 

However, we will discover shortly that N, must be chosen even larger than 

constraint (7); thus some zero-filling is required in (6), namely, N, - L, 

zeros, prior to taking the FFT dictated by (6). The spacing of the frequency 

domain components |X|1 ^} in (6) is 

J__l_ HZ (8) 

and they cover a total band of 1/a = 1 Hz. Thus the m-th frequency 

component in (6) is at frequency m/N^ Hz. 

The frequency components in (6) are now subjected to a magnitude-square 

operation and segment-averaging over the available K pieces of data, yielding 

the first-stage spectral estimates 

^ = k=l 
r(k) for 0 < m < N^ - 1 (9) 
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(Scale factors will be accounted for later, at the end of the spectral 

procedure description.) These power spectral estimates also occur at the 

frequency spacing indicated in (8), and cover a total band of 1 Hz. 

We now inverse Fourier transform (9) back into the lag domain, obtaining 

first-stage correlation estimates defined as 

N-1 

a   = ^   exp(i2irnm/NJ A       for all n. 

m=0 

(10) 

This is an N,-point transform; however, we let it define the sequence {a } 

for all n, with period N . The spacing of correlation estimates [a "j in 

the lag domain is A. = 1 second. A typical representative plot of {a \   in 

figure 2 reveals an important property of correlation estimates obtained via 

the forward-and-inverse discrete Fourier transform procedure of (6)-(10): 

n 

Figure 2. Wrap-Around in the Lag Domain 
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Namely, {aj^ equals the periodic correlation of a data sequence of length 

L-; unless N, > 2L-, {a 1 will suffer wrap-around, since each a is 

the sum of all the displaced periodic versions of the desired aperiodic 

correlation (the triangle centered at n = 0). However, we can still tolerate 

some wrap-around, if the lag weighting length L. is chosen small enough, as 

indicated in figure 3: 

Figure 3. Allowed Lag Weighting to Suppress Wrap-Around 

Thus, if 

4 ^ ^1 - h • i.e.,  N^ > L^ + L2 . (11) 

then the lag weighting w goes to zero before any undesired overlap occurs 

from the aliasing lobes centered at n = ±N,. This ability to get unaliased 

correlation estimates via an FFT approach was also pointed out and utilized in 

10 
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[1, page 12, (41) et seq.] and [17, (15)]. The constraint in (11) will be 

developed even further when we discuss execution time and stability of the 

final spectral estimate. 

The constraint in (11) is not an upper bound on L-, and Lp, as much as 

it is a lower bound on N-|. That is, if we want to estimate the correlation 

of the input data via this forward-and-inverse FFT approach (for minimum 

execution time reasons), we must choose the first-stage FFT size, N, > L, + L^, 

in order to circumvent the inherent wrap-around associated with the 

procedure. By contrast, recognize that if we calculated the correlation of 

the available input data by the brute force delay-multiply-add procedure 

(Blackman-Tukey), no such limitation would arise; we would simply compute 

correlation estimates to the maximum lag L of interest. Since finer 

frequency resolution of the final (second-stage) spectral estimates is 

achieved by making lag L2 larger, the size N, of the first-stage FFT will 

have to be increased accordingly; in fact, it must accommodate the largest 

L of interest in the second-stage estimation procedure. 

SECOND-STAGE ESTIMATES ' 

The second-stage correlation estimates are obtained by lag weighting the 

first-stage estimates in (10): 

bp = w^ a^ for 0 < n < L2 < L^ . (12) 

11 
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Here lag weighting coefficients w  are selected according to 

\ =   r       for 0 < n < L2 < 4 . (13) 

' ■ h 

where the numerator is a desirable lag weighting with low sidelobes and 

adequate decay, while the denominator is the autocorrelation of the 

rectangular temporal weighting employed in transform (6); see [1, (36)-(40)]. 

Actually, since transform (10) will be accomplished via an FFT, the 

values of ^a^  for 0 < n < N^ - 1 will be stored and available, while 

values for n < 0 will not be. Accordingly, the weighting in (12) and (13) 

must be augmented to account for a symmetric weighting about n = 0. This is 

accomplished by also weighting the upper end of the [a_^ sequence near 

n = N,, as indicated by the dashed curve in figure 3. The same constraint 

(11) suffices to guarantee no effect due to aliasing from the tail of the 

correlation lobe which is centered at n = 0. 

Although we only need to compute {a \  up through L„, since lag 

weighting w is zero beyond there, the FFT will yield N, values of a 

via (10). The excess values not required in figure 3 are simply discarded. 

Also, advantage can be taken of the conjugate symmetry of a about n = 0, 

* 
±N,, etc.; i.e., a „ = a„ since a„ is a correlation estimate. 

I -n   n      n 

The application of lag weighting (13) in (12) can be accomplished in two 

steps: 

12 
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''n = "n*^^ ~ZI1       for 0 < n < L2 < L^ . (14) 

' " h 

The reason for this separation of effort is that the division of a by 

1 - n/L, can be done once, prior to knowledge or selection of Lp and w  , 

stored, and then re-used for several different desirable lag weightings w  , 

which can have different lengths Lp and/or sidelobe character and decay, for 

whatever frequency resolution is of interest. Good candidate lag weightings 

in this respect are the optimum ones presented in [18]. The restriction that 

Lp < L, in (14) is necessary to avoid a division by zero at n = Lp. 

Finally, the second-stage spectral estimates are obtained by transforming 

(12) into the frequency domain (Np = power of 2): 

4 
B^ = _^ exp(-i2irnm/N2) b^  for 0 < m < N2 - 1 .        (15) 

n=0 

The size of this final FFT dictates the frequency spacing of these spectral 

estimates, namely, 

Thus the m-th frequency component in (15) is at frequency f = m/N„ Hz. 
m    2 

In order to be able to observe all the detail of the second-stage estimate, we 

should choose 

N2 » 4 • (17) 

13 
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However, N- has no effect on the stability or resolution capability of 

spectral estimates {B ]; rather, the stability depends on L^/L, and 

L /T, while the frequency resolution is [1, (101) and table 1] 

«e = 2c{w,}L„-r: "^ • (18) 

(The exact factor depends on the particular weighting employed.) The maximum 

value of the lag weighting length, L (max), should therefore be chosen to 

achieve the finest frequency resolution required; smaller values of L„ will 

then result in coarser, but more stable estimates. 

It can be seen from the above considerations that FFT sizes N, and Np 

in (6) and (15), respectively, play subordinate roles insofar as the 

fundamental capabilities of this spectral analysis technique are concerned; 

they are parameters of the "tool" (i.e., the FFT) being used to obtain the 

spectral estimates, and must satisfy constraints (11) and (17), but are 

otherwise arbitrary. The fundamental parameters are T, L,, and L-. 

SCALING 

If we sum up the power spectral estimates ^B ] in (15) over all m, we m* 

find (appendix A) 

14 
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«m=Ni N2KL^ w^'^) P, . (19) 

ni=0 

where Pj is the sample power of the total data record: 

T-1 

PT = T5 K1' • . (20) 
n=0 

Thus if we adopt the reasonable rule to maintain the total sample power, we 

-1 
re should scale all the {BJ by the factor /N^ ti^  K L^ wJ^^M  : this featu 

is incorporated in the program listings here. 

LAG WEIGHTINGS 

A class of lag weightings that encompasses a broad and useful selection, 

including the rectangular. Manning, Hamming, Blackman [3], Harris [19], and 

Nuttall [18] windows, is given by the form 

w^ = ^ ttj^ cosCirnk/Lg)  for jnj < L^ (21) 

k=0 

The particular example we will concentrate on here is the'Cl window in 

[18, figure 12], where Cl denotes continuous first derivative,and 

[<x^  Q = .355768. .487396, .144232, .012604 . (22) 

15 
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Since the lag weighting appears linearly in the correlation domain, (see 

(12)-(14)), the power response of the window is directly proportional to the 

Fourier transform of (21), and not its square. Thus, as noted in [18, (18) 

and footnote], the sidelobe level is half that depicted in [18, figure 12]; 

namely, we have 

-46.66 dB peak sidelobes,  9 dB/octave decay. (23) 

Other examples are available in [IS] and can be used if deeper sidelobes or 

faster decay rates are required; however, the main lobe width must also be 

considered in these tradeoffs. 

16 
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CHOICE OF PARAMETERS 

In this section, we discuss some of the considerations that go into the 

selection of L , L , N , and N . We find that there is no absolute optimum, 

but there are useful guidelines to observe in order to minimize the 

fluctuations and execution time. 

STABILITY OF FIRST-STAGE CORRELATION ESTIMATES 

Because of the sectioning of the total of T data points into K abutting 

pieces, each of length L,, first-stage correlation estimates fa 1 in (10) 

employ 

K L, = T ■     data points for zero delay; 

K (L^-1) = T - K   data points for unit delay; 

K (L^-n) = T - n K  data points for delay n. (24) 

This consideration alone would say that to minimize the loss of stability, 

choose K small, i.e., segment length L^ large. However, since lag weighting 

(12)-(14) will only use delays up through l^,  the loss in stability will be 

relatively insignificant if L2 < L^/2, approximately; see [1, page 49, 

figure 15B] for specific quantitative results. For example, the stability for 

window Cl, as measured in terms of quality ratio (2)-(3), deteriorates by 

about 9 percent at L2/L^ = 1/2, compared to the absolute optimum. Thus we 

will impose the limitation 

17 
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L^ > 2 L2(max) . (25) 

where lag weighting length L-(max) corresponds to the narrowest frequency 

resolution of interest, in order to hold random fluctuations at an acceptably 

low level. 

SELECTION OF N^ 

We have already seen in (11) and figure 3 that we must have N, > L, + Lp, 

in   order   t*^   a^O'''^   ur>an—amimrl Mnwov/oi~      thofo   ic   nn   nood   foi"   nirUnn   Kl 

larger, since the FFTs of size N are used only as a computing shortcut to 

getting the desired correlation of the averaged L -long data segments, which 

are then used for lag weighting. The N^-point forward and inverse FFTs in 

(6) and (10) have no spectral spacing requirements whatsoever, nor do they 

affect the stability of the final spectral estimates {B "^ in (15). Thus we 

will be interested in choosing N-j as small as possible, subject to both 

limitations (11) and (25); this will also reduce storage and increase the 

speed of execution for each of these FFTs. 
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EXECUTION TIME 

The time required to execute one full-precision N,-point FFT on the 

Hewlett-Packard 9000 Model 520 computer has been determined empirically as 

N^ (.14 In N^ + .396) msec (26) 

to a high degree of accuracy, over the range N, = 2 = 64 to N, = 2^^ = 16384. 

The particular constants in (26) will change for a different computer, but the 

general rule can be expected to hold quite well over this most useful range of 

values of N^.  „. , . .. ...  ...    ,.., .-....^..^  »..*«.,- ,., . ..,.^ ... 

• The total time to execute all the K first-stage FFTs in (6) and the 

single inverse FFT in (10) is then 

(K+1) N^ (.14 In N + .396) msec. (27) 

To minimize (27), we should make N^ and K small. Since, from (4), 

T = K L^, and since we want to use all available T data points, we should 

make L^ large. However, we are subject to the limitation (11), 

L ■'■'-< N (in order to avoid wrap-around), and we are interested in 

keeping N, small also, as noted above, in addition to being a power of 2. 
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A reasonable procedure for meeting these constraints and conflicting 

requirements is as follows: for given data length T and maximum lag length 

LpCmax) of interest, choose starter value 

L^ = 2 LjCmax)   (for good stability), (28) 

Then take the smallest integer n satisfying the constraint 

N, = 2 > L-i + L2(max)   (to avoid wrap-around). (29) 

Then choose the largest L^ satisfying 

L-i < N^ - L2(max) (30) 

and a corresponding K such that equality 

K L^ = T   (to use all the data) (31) 

is met (or approximately met). 

An example is informative at this point. Suppose T = 10,000 and we want 

L2(max) = 250. Then (28)-(30) yield,in order, L^ = 500, N^ = 1024, L^ < 774. 

Then if we take L = 774, we must have K = 12, yielding < L = 9288, 

which is significantly below the allowed value 10,000 for this example. 

However, if we take L = 769, then K = 13 yields K L = 9997, which means 
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discarding only 3 of the available 10,000 data points. Thus a little juggling 

of the value of L, between the limits given by (28) and (30), coupled with 

the desire of meeting (31) as closely as possible (but not exceeding T), is 

recommended. 

This procedure, (28)-(31), minimizes execution time (27) and realizes 

near-optimum stability of the spectral estimate. However, the particular 

choices are not critical. For example, if we Instead took L, = 714 and K = 14 

above, we get K L-i = 9996, and the execution time (27) increases above that 

for K = 13 by the factor (14+1)7(13+1) = 1.071, while the stability degrades 

very slightly; see [1, figure 15B]. 

DIRECT CALCULATION OF CORRELATION " 

For T available data points, the number of multiplies and adds required 

to directly estimate the correlation at delays 0 and I   are T and T - I , 

respectively. Therefore a total of 

\-^J[^2^'^) (32) 

multiplies and adds are required for all delays in the range [0, L„]. For 

the example above of T = 10,000, L2 = 250, this is 2.5E6 operations. This 

direct approach takes 70 seconds on the Hewlett-Packard 9000 Model 520 

computer, versus 20 seconds via the FFT approach presented above. Thus the 

advantage of employing the FFT technique is a significant reduction in 

execution time. 
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SIMULATION RESULTS 

The results in this section are based on the two program listings in 

appendix B for complex and real data, respectively. An explanation of their 

use is given at the beginning of that appendix. 

SINGLE TONE, NOISE FREE 

The first example is a noise-free pure complex tone at zero frequency, 

Ulth   A      =   1    <:e^rnnti      T   =   Tfl   nnf)   rlata   nnintc       I       =   7AQ      If   =   IT   nioroc 

N = 1024, and the Cl weighting given in (21)-(23). The resulting spectral 

estimate for L_ = 250, N- = 16384, obtained via the programs* in appendix 

B, is given in figures 4 and 5, for frequencies f = m/N- in the range 

[0, S/L^]; the first null is at frequency 4/(2L2) = 2/L_. (Compare this 

spectrum with the ideal result in [18, figure 12].) The difference in figures 

4 and 5 is that the dB measure 

10 log |B^| (33) 

♦Observe that constraints (11), (17), and (28)-(31) have been observed, both 

in this example and in the programs. 
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1s plotted on the ordinate in figure 4, whereas the negative lobes (B <0) 

are not plotted in figure 5. The latter procedure, not (33), is the correct 

one and is adopted henceforth. The reason for the negative lobes in the 

spectral estimate is that the lag weighting and lag window appear linearly, not 

quadratically, in the equations; see (22) et seq. and [1, (50)-(51), (97)-(100)], 

The presence of negative spectral estimates for some frequencies, i.e., B < 0 

for some m, can actually be useful as an indicator of the presence of strong 

narrowband components, as noted by Blackman and Tukey [3, pages 13, 92, 115]. 

Of course, the addition of noise would fill in the deep valleys in figures 4 

and 5, 

The danger of using too small a value of N for the second-sta^e FFT is 

depicted in figures 6 and 7 for N. = 1024 and 512, respectively. The only 

difference in figures 5, 6, and 7 is the value of N2;(generally, any 

parameters not mentioned are maintained at the same values as for the previous 

figure). The frequency spacing, (16), becomes progressively coarser, to the 

point that the linear interpolation between frequency components (15), 

employed in all the figures, can lead to some questionable conclusions; hence 

we should observe requirement (17) on N.. Since only one FFT of size N 

need be performed, for each choice of lag length L^, this is not a severe 

computational load; the bulk of the first-stage processing, using several 

small-size (N ) FFTs is done only once and saved for as many second-stage 

spectral estimates of different resolutions as desired. Of course, for the 

coarser frequency resolutions, L. is smaller, thereby alleviating the 

requirement (17) on N . 
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Since there is no additive noise in this particular example, there is 

really no need to observe constraint (28) here. If we keep L fixed at 250, 

we can decrease L^, still subject to (12)-(14), and also decrease N^, 

subject to (11), and realize the same spectral estimate as in figure 5. An 

example for L^ = 256, K = 39, K L^ = 9984, N^ = 512, N2 = 16384, yielded 

a result indistinguishable from figure 5, and is not plotted here. This 

confirms the earlier conclusion that the effective window depends only on the 

desirable weighting [y^ 'j  in (13)-(14), and not on the particular choices of 

In figure 8, the frequency of the pure tone is changed from zero to 1/4 

Hz, and the entire spectral estimate over frequency range (- 1/2, 1/2) Hz is 

plotted, with N returned to value 16384. The rapid decay and deep 

sidelobes, (23), associated with the Cl weighting in (21)-(22) are quite 

evident. The darkened portion of the plot is caused by the detailed sidelobe 

structure of the Cl window. 

On the other hand, if we simply eliminate the division of the first-stage 

correlation estimates by the autocorrelation of the temporal weighting, i.e., 

eliminate the triangular 1 - n/L^ term in (13) and (14), then the spectral 

estimate in figure 9 is obtained. Despite the retention of the desirable 

weighting in (13) and (14), there is a significant fill-in of the deep valleys 

and a less rapid decay of the estimate in figure 9. 
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TWO SEPARATED TONES IN WHITE NOISE 

A similar comparison of the effect due to lack of lag-reshaping, i.e., 

removal of division by 1 - n/L,, is displayed in figures 10 and 11 for two 

well-separated pure tones plus white noise. The strong tone at frequency .25 

Hz has a power level 47.8 dB stronger than the total white noise power, while 

the weak tone at frequency .0625 Hz (indicated by an arrow) has a power level 

-12.2 dB relative to the noise. Thus the ratio of signal powers is 60 dB. 

Whereas there is an indication of the weak tone in figure 10, at the correct 

level, there is none in figure 11, because of the poor sidelobe structure in 

the latter procedure. In fact, the sidelobes dominate the noise spectrum 

completely in figure 11, 

In figures 12 and 13, the exact procedures are repeated for the same 

parameter values, except that the data are restricted to be real and the 

spectrum is only plotted over frequency range (0, 1/2) Hz. (The second 

program listing in appendix B, for real data, was employed for these two 

figures.) Again, the weak signal is indicated only for the case of 

lag-reshaping in figure 12. 
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^    . ,,   ' , ■, 

TWO CLOSE TONES IN WHITE NOISE 

In figures 14 and 15, a strong complex tone at frequency .25 Hz has a 

power level 17.8 dB stronger than the total white noise power, while the weak 

tone at frequency .265 Hz has a power level of -12.2 dB relative to the 

noise. Thus the ratio of signal powers is 30 dB. Whereas the lag-reshaping 

spectral estimate in figure 14 succeeds in resolving the two close tones at 

frequency separation .015 Hz, the result in figure 15, for no lag-reshaping, 

indicates only one of the tonals. It may be observed that the detailed 

wiggles in the two spectral estimates are virtually identical, e;xcept for 

frequencies near the tone locations. 

Finally, in figures 16 and 17, the effect of decreasing lag weighting 

length Lj is demonstrated. Specifically, figures 14, 16, 17 all employ 

lag-reshaping, the only difference in the three figures being that L„ = 250, 

200, 150, respectively. Whereas the weak close tonal is well-resolved in 

figure 14, it is lost in figure 17; the estimate in figure 16 is intermediate 

and on the border of being resolved. The familiar tradeoff of resolution 

versus stability is well demonstrated in figures 14, 16, 17. Namely, as the 

resolution degrades (mainlobe widens), the fluctuations in the spectral 

estimate decrease; figures 16 and 17 are progressively smoother versions of 

figure 14. Which case to prefer depends on the particular situation under 

investigation, including factors such as the proximity of tones with widely 

different strengths, and on the particular colored noise spectrum 

encountered. Quantitative evaluation of the stability is considered in the 

next section. 
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VARIANCE OF SPECTRAL ESTIMATE 

THEORETICAL RESULTS     . 

The variance of the spectral estimate obtained via the generalized 

technique including temporal and lag weighting was derived and evaluated in 

[1, pages 41-57]. In particular, for abutting rectangular temporal weighting, 

the NQR, defined in (2) et seq. above, is given by [1, (138)] as 

J dTw^(T) (1 -T^/L^) ^   Jdx w^CL^x) (1 - X L2/L^)~'' 

/dVw^Cr) j^dxw^ 
NQR = -^ -r ■■ ~ \        (34) 

.^(L^x) 

in the case of lag-reshaping, where w.(x) is the continuous analog of the 

(d) discrete desirable weighting w   employed here in (13) and (14). 

For the class of continuous weightings (compare (21)) 

w^(r) = ^<»|^ cos(irkT/L2)  for ]r|< L2 , (35) 
k=0 

the NQR in (34) becomes 

a^ C0S(irkx)j  (1 - X Lj/L^)"^ 

a. COS(irkx) 
=0  "^       / 

34 



TR 7511 

which depends only on the ratio Lp/L, and coefficients fa-^l- This 

quantity was plotted in [1, page 49, figure 15B] for various windows. The 

special case of the Cl window, (22), is replotted here in figures 18 and 19 as 

the solid curve. 

SIMULATION RESULTS 

In order to corroborate these theoretical results, white Gaussian noise 

was generated for 25 independent trials, each of length T = 10000 samples. 

The data were spectral analyzed for lag length L- = 1000 and for a variety 

of temporal lengths L^. The results for the NQR, determined by using alj. 

frequency bins on all the trials, are shown as crosses in figure 18. The 

optimum quality ratio, as given by (3), is 

1   ^4 "^Hl  2 * 1000 * .2558 
Q - TB ~    T    "    10000     " '"^^^ • (^^' e 

where we employed [1, (11), (101), and Table 1]. Keeping Lp fixed is 

tantamount to holding the frequency resolution constant, while varying L, 

corresponds to different segment lengths (all subject to L, > L_, of 

course). 

Results for L- = 250 are plotted in figure 19, based now on at least 

100 trials for each value of L, considered; now the optimum Q = .0128. The 

simulation results for white Gaussian noise slightly overestimate the 

theoretical results in figure 19, whereas the converse is true in figure 18. 

Also added in figure 19 are simulation results for white input data which are 

not Gaussian, but rather have a flat probability density function over their 
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nonzero extent; see the circles, labeled "rectangular data," in figure 19. 

The discrepancy between the theoretical results for Gaussian data and the 

simulation results for rectangular data is believed to be real (although it is 

only approximately a 2 percent difference), because these results were based 

on 500 trials for each value of L^. In any event, the theoretical results 

predict the stability very well, over the full range of Lp/I-, • At 

L /L = .5, for example, the loss in stability is only about 8 to 9 

percent, as measured by the quality ratio (2). 

APPROXIMATION TO NQR 

For small L^/L , the NQR in (34) behaves approximately as 

ip-h (VH). I, (4/1^)^.13(4/1,)^ 
NUK = T  , (Jo) 

0 

where we define the dimensionless constants 

[ = fdx w n  J   I ̂(L^x) x"   for n = 0. 1, 2, 3 . (39) 

For the class of continuous weightings specified in (35), there follows 

T    2  1,2   2   2, 
^0 = *0 "■ 2 ^*1 "■ *2 "" *3^ • 

I =^I -^T n    2 ^0  2 '1 ' 

T  -IT  +-1-^2.1  2^1  2.   4, ,.„, 
4 - 3 IQ +  2 (**! "■ 4 «2 "■ 9 '^S) ~ "2 ^2 • ^"^O) 

4ir ■» 
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where 

"^1 = *0 **! "• 9 "^O "^S "" 9 *1 *2 "■ 25 "2 '*3 ' 

15 
'''2 = """l " 4 "'O "2 ~ 32 '"l *3 • ^^'^^ 

Equations (38)-(41) enable a simple approximate calculation of the NQR for any 

weighting in class (35). 

When applied to the Cl, C3, C5 windows in [18, figures 10, 11, 12], the 

.3 numerical results for {I_/IQ1 are, respectively. 

.16114, .04036, 

.15362, .03664. 

.14168, .03111, 

.01273 for window Cl; 

.01100 for window C3; 

.00859    for window  C5. (42) 

Substitution in (38) yields results which agree very well with figures 18 and 

19 and, more generally, with [1, figure 158]. 
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SUMMARY 

Programs for spectral estimation of complex data as well as real data 

have been given and exercised under a wide range of parameter choices. They 

allow the data to be generated or made available in abutting blocks of L, 

data points at a time, and th^y employ no temporal weighting at all. The user 

must replace subroutine SUB Data by his own data input routine. The 

subroutine SUB Fftl4z listed in appendix B employs zero-subscripted arrays, as 

14 
encountered directly in the equations, and can handle sizes up to 2 

16384. 

The benefits to be accrued from lag-reshaping have been demonstrated by 

simulation, for a variety of situations including multiple tones in noise. 

The ability to obtain several spectral estimates with different frequency 

resolutions has been incorporated in the programs in such a way that the bulk 

of the first-stage spectral estimates do not have to be recalculated. This 

enables the user to make his own decisions on resolution versus stability, 

without having to do extensive computations repeatedly. 
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APPENDIX A.  SUM OF POWER SPECTRAL ESTIMATES 

The power spectral estimate B is given by (15) for 0 < m < N - 1 

The sum over all m is 

N„-l 

m       2    0 2      0 0 
m=0 

.(d) 
N^-1 N,-l     K 

i^-.-r'^^ = N, w^"'    >    A„ = N_ 2   0     ^^     m       2 
m=0 

^m 
m=0    k=l 

K    N -1 K L -1 

2    0     -<C   ,<^_.       ml 2    0      jiC    1  ..grC 
k=l    m=0 k=l        n=0 

,(k) 

T-1 

"i "2«!'' 1 i^r • 
i»^ 

(A-l) 

by use of (14),  (10),  (9),  (6),  (5),  (4),  in order.    In terms of the sample 

power of the total data record. 

P. = T 

T-1 
1 "\   L  \2 
T 

n? 
hf. (A-2) 

the sum in (A-l) becomes 

N„-l 

m=0 

B„ = N,  N, K L, J^^  P, 
m       12       1    0       T 

(A-3) 
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APPENDIX B.  PROGRAMS FOR LAG-RESHAPING SPECTRAL ANALYSIS 

There are two main programs in this appendix, written for the 

Hewlett-Packard 9000 Model 520 computer. The first is for complex data, while 

the latter accommodates only real data. The following explanation is keyed to 

the complex data program, but applies directly to the real data program as 

well. 

Input parameters T, L,, L-(max), N, are required at the top of the 

program in lines 20-50. The lag weighting coefficients of interest are 

entered in line 60. Constraint (29) is enforced in lines 100-130. The number 

of pieces, K, and the number of data points used, K L^, are computed in 

lines 160 and 180. The input data are entered via SUB Data in line 280, L, 

data points at a time; that is, data values jx^  '[ for 0 < n < L, - 1, as 

given by (5), are accessed by the CALL in line 280 with arguments Ks, LI (= 

piece k, segment length L,). Division by the autocorrelation of the 

temporal weighting is accomplished once, in loop 380-420. 

At this point, the first-stage calculations are complete; the correlation 

domain quantities are stored in arrays Xa, Ya. Input parameters Lp, N- 

must now be entered in lines 440, 450. Constraints (14) and (11) are enforced 

in lines 460-510. The lag weighting is applied in loop 620-680, taking figure 

3 into account, while the scaling considerations of (19)-(20) imply line 730. 
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Finally, the spectral estimate is plotted in dB over the frequency range 

(-1/2, 1/2) Hz in lines 770-860. (For real data, the spectrum is only plotted 

over the range (0, 1/2) Hz, since it is symmetric about the origin.) 

The FFT subroutine in lines 900 - 1710 uses zero-subscripted arrays, just 

as encountered in the usual mathematical definition; it can handle FFT sizes 

up to 2^^ = 16384. The subroutine SUB Data in lines 1730 - 1900 must be 

replaced by the user; however, notice should be taken of lines 1810 - 1830 and 

the storage locations in lines 1860 - 1870, in order to ensure that L data 

points at a time are properly stored in locations 0 through L - 1. 

30    LI=769 
40    L2max=250 
50 ■  N1=1024 

10  ! LAG RE-SHAPING SPECTRAL ANALYSIS FOR COMPLEX DATA 
TOTAL NUMBER OF BATA POINTS 
NUMBER OF DATA POINTS PER PIECE 
MAXIMUM LAG WEIGHTING LENGTH 
SIZE OF FIRST-STAGE FFT N1>=H+L2max 

60 riflTA •. 355763, . 437396, . 144232, .012604   !  LAG . IJE I GHT I NG COEFFICIENTS 
70  I TR 6239, page 1 6 , f i gure 12: -46.66 dE ■£ i de 1 obes, 9 dE■■■■ oc t ave dec ay 
80 DIM X CO: 16383>, YCOJ 16383;:' , Xa<0: 8191 > , YaCO: 8191 > 
90 DOUELE T, L1 , L2ma>::, N1, N1 m , K , Ks , Ns , L2, N2 , N2m     !  I NTEGERS 
100 IF Hl>=Li+L2max THEN 140 
110 PRINT "Nl INCREASED, SO AS TO BE AT LEAST Ll+L2rnax" 
120 N 1 m= I NT ( LOG ( L 1 +L2max ) •■■LOG ( 2 )) +1 
130 ■ Nl=2-Nliri 

' 140 Nlm=Nl-l 
150 RED IM X ( 0 : N 1 m > , Y C 0: N1m),Xa< O:N1m),Ya(O:N1m > 
160 K=INT(TxLl ;■ !  NUMBER OF DATA SEGMENTS 
170 PRINT "T =";T;"   LI =";L1;"   L2max =";L2max;"   Nl =";N1;"   K ="; 
180 PRINT "USED";K*L1;"OF THE TOTAL NUMBER OF DATA POINTS,";T 
190 READ A0,A1,A2,A3 
200 A=l ,.■■■<: A0 + A1+A2 +A3 :J !  NORMALIZE LAG WEIGHTS 
210 A0=A0*A 
220 A1=A1*A 
230 A2=A2*A 
240 A3=A3*A 
250 MAT Xa=<0. ':> 
260 MAT Ya=<;0. > 
270 FOR Ks.= l TO K 
280 CALL Dat aa<s, LI , X(*> , Yi::*::0      !  LI DATA POINTS AT A TIME 
290 FOR Ns = Ll TO Nlrn 
300 X'::N£>=Y<:N2. >=0. 
310 NEXT Ns 
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320 
330 
340 
350 
360 
370 
330 
390 
400 
410 
420 
430 
440 
450 
460 
470 
4S0 
490 
500 
510 
520 
530 
540 
550 
560 
570 
5S0 
590 
600 
610 
620 
630 
640 
650 
660 
670 
630 
690 
700 
710 
720 
730 
740 
750 
760 
770 
730 
790 
800 
310 
820 
330 
340 
350 
860 
870 
830 
890 
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CALL Ff t 1 4z < N 1 , X ( * ::■ , Y C # ) >       !  I HTO FREQUENCY DOMFi I N 
FOF^ Ns = 0 TO Nlni 
Xa'::Ns> = ;":a'::Ns::'+X'::Hs)*X(Ns>+Y<:Ns>*Y(Hs::'       !      POWER   flVERflGIHG 
NEXT   Ns ,      . 
NEXT   Ks ' ■ ■■ ' ■ 
CALL   Fft 1 4z au , X.a<: * !:' , Ya'; * > ;■ !       I HTO   LFiG   DOMfl I N 
FOR   Ns=0   TO   Ll-1 
fl = Ll/<Ll-Ns;:' 
Xa';Ns>=Xa<Ns>*fl !  DIVIDE BY CORRELATION 
YaCNs. :>=-Ya'::Ns>*fl '   !  OF TEMPORAL WEIGHTING 
NEXT Ns 
BEEP 
INPUT "L2 =",L2       !  LAG WEIGHTING LENGTH L2<L1, L2<=N1-L1 
INPUT "N2 =",N2        !  SIZE OF SECOND-STAGE FFT N2 (>L2*10 IS GOOD: 
IF L2<L1 THEN 490 
PRINT "L2 REDUCED .TO Ll-1, TO AVOID DIVISION BY ZERO" 
L2=L1-1 
IF   L2<=L2rnax   THEN   520 
PRINT "L2 REDUCED TO L2max, TO AVOID WRAP-AROUND REGION" 
L2=L2max 
IF N2>L2+L2 THEN 560 
PRINT "N2 INCREASED, SO AS TO BE GREATER THAN L2*2" 
N2m= I NT •■:. LOGC L2 + L2+ 1 > •■■LOG < 2) > + 1 
N2 = 2-N2ni 
PRINT "L2 =";L2i"     N2 =";N2 ' , .     •"'     P"^'""  
N2rii = N2-l 
R E D IM X C 0 : N 2 rn >, Y C 0 : N 2 m > 
A = PI.-L2 
X(0)=Xa(0:J 
Y<0)=0. 
FOR Ns=l TO L2 
B=Ns*A 
W = A0 + A 1 *COS '■; B > +A2*C0S < B + B > +A3*C0S < B + B + B > 
X(:N£>=X'::N2-Ns>=Xa'::Ns::'*W !  LAG WEIGHTING 
Y<N£>=B = Ya'::Ns>*W 
Y'::N2-N£)=-B 

NEXT Ns 
FOR   N3 = L2+1   TO   N2rM-L2 
X'::N£;:'=Y(N£)=0. 

NEXT   Ns 
CALL Fft. 14Z'::N2,X<*;', YC*:))       !  INTO FREQUENCY DOMAIN 
MAT X = X.-CFLT':;K::'*L1*H1*N2;' 

Big = MAX<X'::*:j > 
Db = LGT(Bi g)*10. 
PR I NT " B i g =";B1g; "     dE max = "; Db 
PLOTTER IS "GRAPHICS" ,  . 
GRAPHICS ON 
WINDOW -N2.--2,N2.--2,-70. , 0. 
GRID N2.--3, 10. 
FOR Ns = -N2.--2 TO N2.--2 
Ks=N£ MODULO N2 
W = MAX(;XCK£;), l.E-20> 
PLOT Ns,LGT(:W>*10.-Db 
NEXT Ns 
PENUP 
GOTO 440 
END 
I 
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900 
910 
920 
930 
9 4 0 
950 
960 
970 
9S0 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1 0 6 0 
1070 
1080 
1090 
1100 
1110 
1 120 
1 130 
i  1 .-1 r< 
A A -T '-' 

1150 
1 160 
1 170 
1 180 
1 190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
] 420 
1430 
1440 
1450 
1460 
1470 

SUE Fft 14z( DOUBLE N,REflL X< *;■ , V C *::■ ::■ !  N = 2--1 NTEGER< =2--1 4= 1 6384 ; 
DOUBLE H1 , N2, H3 , N4 , Log2n , J , K        !  INTEGERS < 2 •■■3 l = 2,147, 
DOUBLE I 1, I 2, I 3, I 4, I 5, I 6, I 7, I 8, I 9, I 10, I 11, I 1 2, I 1 3 , I 1 4 
Nl=N/4 
flLLOCRTE C(0:N1),DOUBLE L(0:13)      !  QUARTER-COSINE TABLE IN 
fl='::PI+Pi;;'.-N 
FOR J=0 TO Nl ■        . . 
C'::.J>=COS'::R*J::I 

NEXT J 
H2=N1+1 
N3=N2+1 
N4=N3+N1 
Log2n=l. 4427*L0G'::N> 
FOR 11=1 TO Log2n 
I2=2-^<Log2n-Ii::' 
13=12+12 
I4 = N.'I3 
FOR 15=1 TO 12 
16= a 5-1!)* I 4+1 
IF I6<=N2 THEN 1130 
fll=-C'::N4-I6-l> ■> 
fl2 = -C(I6-Nl-i::' 
GOTO 1150 
1=11 =C C 16-1 ;■ 
FI2 = -C';N3-IS-I> 

FOR 17=0 TO N-I3 STEP 13      ' 
13=17+15-1 
19=18+12 

<:I8>-X(I9)     ' 
a8>-Ya9> 

;'=Y< I8>+Y';i9> 
>=fil*fl3-fl2*l=l4 
::'=fll*fl4 + fl2*fl3 

17 
15 
II 

og2n+l 
12=1   TO   14 
-1 > = 1 
2>Log2n   THEN    1320 

■n=2--ai-i2:) 
12 

0 SUB; 

R3 = X 
fl4 = Y 
X C I 8 
Y ■; 18 
X < I 9 
Y ( I 9 
NEXT 
NEXT 
NEXT 
I1=L 
FOR 
L(I2 
IF I 
L (I 2 
NEXT 
K = 0 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 
FOR 

11 = 
12 = 
13 = 
14 = 
15 = 
16 = 
17 = 
18 = 
19 = 
110 
111 
112 
113 
I 14 

1 TO LOS 
I 1 
12 
13 
14 
15 
16 
17 
18 
= 19 

TO 
TO 
TO 
TO 
TO 
TO 
TO 
TO 
TO 

L(12> STEP L 
Lai> STEP L 
L(10::'   STEP   L 

(. y ;■ 

L 

STEP 
STEP 
STEP 
STEP 
STEP 

' STEP 

L'; 
L( 
L< 
L-; 
L<: 
L 

<. 1 
■:: 1 
■; 1 
10: 
9 y 
s> 

J) 
2 y 
i> 

4 
= 110 TO L(.3::' STEP L(4> 
= 111 TO L<2;:' STEP L C 3 ;:■ 
= 112 TO L(l> STEP L'::2> 
= 113 TO L>:ey STEP LU> 
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1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1320 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 

1560 
J=I14-1 
IF K>.J THEN 
fl = X';K> 

X(:.j::'=fl 
ft=y(.K'> 
YCK>=Y<J> 
Yc.j:)=fl 
K = K+1 
NEXT 114 
NEXT 113 
NEXT 112 
NEXT 111 
NEXT lie 
NEXT 19 
NEXT 18 
NEXT 17 
NEXT 16 
NEXT 15     ■ '   . 
NEXT 14 
NEXT 13 
NEXT 12 
NEXT I 1 
SUBEND 
! 
SUB D.at.a< DOUBLE Ks 
DOUBLE J1,.J2,.J 
Wl=2.*PI*.25 
W2=2.*PI*.265 
Tl=.31 
T2=.77 
Db2=-30. 
R2=10.-CDb2.--20. ') 
J2=Ks*Ll-l 
.J1=J2-L1 + 1 
FOR J = .J1 TO J2 
P1=W1*.J + T1 • 
P2=W2*J+T2 
X'::.j-jn=cos(:pi 
VCJ-Jl ::'=SIN<P1 
'.■:RND-.5;:' + i CRND 
NEXT J 
SUBEND 

LI,REAL X';;*; 

TONE FREQUENi: 
TONE FREi ;iUENi. 
TONE PHfl; :;E  1 
TONE PHfl: 5E   2 
RELATIVE TONE STRENGTH 

:'+fl2 *cos ;P2 •:. + . RND 
:'+fl2 *SIN :P2 ) + ' RND 
-.5> h as power ■    1/ 

:16 
!16 

12+1.--12 •8 dB 
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18 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
130 
190 
2 0 0 
210 
220 
230 
240 
25@ 
260 
270 
•280 
290 
390 
310 
320 
330 
340 
350 
360 
370 
3 8 0 
390 
400 
410 
420 
4 3 0 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 

! LAG RE-SHflPING SPECTRAL ANALYSIS FOR REAL DATA 
T = 1 0 0 0 0 
LI =769 
L2m.=t:::; = 250 
N1=1024 

TOTAL NUMBER OF DATA POINTS 
NUNEER OF DATA POINTS PER PIECE 
MAXIMUM LAG WEIGHTING LENGTH 
SIZE OF FIRST-STAGE FFT N 1 > = L 1+L2m.a::< 

DATA .355768, .487396,. 144232, .012604   !  LAG WEIGHTING COEFFICIENT 
! TR 6239, page 16, figure 12: -46.66 dE sidelobes, 9 d B ■• ■ o c t ay e decai:.' 
DIM ;--;(0: 16383) , YCO: 16383) , :-<a(0: 8191 :;■ 
DOUBLE T,Ll,L2max,Nl,Nlm,K,Ks,N£,L2,N2,N2m     !  INTEGERS 
IF N1>=L1+L2max THEN 140 
PRINT   "Nl    INCREASED,    SO   AS   TO   BE   AT   LEAST   Ll+L2rriax" 
N1 m= I NT ■; LOG (L 1 +L2max > /LOG ( 2) > +1 
Nl=2-Nlrii 
Hlrri = Nl-l 
RED IM   X < 0:N1m),Y C 0:N1m),Xa(0:N1m) 
K=INT(T/L1) !  NUMBER OF DATA SEGMENTS 
PRINT   "T   =";T;" LI   =";L1;" L2riiax   =";L2max;" Nl   =";N1;" K   =" 
PRINT "USED";K*L1;"OF THE TOTAL NUMBER OF DATA POINTS,";T 
READ A0,A1,A2,A3 
A=l. .••■(;A0 + A1+A2 + A3> !  NORMALIZE LAG WEIGHTS 
A 0 = A 0 * A 
Al=Al*fl 
A2=A2*A 
A3=A3*A 

MAT Xa- < 0. ) -"       ....       .. „ 
FOR Ks=l TO K 
CALL Dat a'^ Ks , L1 , X (* )) 
FOR Ns = Ll TO Nlni 
X';NS)=0. 

NEXT Ns 
MAT Y=(0. ) 
CALL Ff t 14Z(:N1 , X<*) , Y(*) ) 
FOR Ns=0 TO Nlm 
Xa';N3)=Xa'::Ns)+X(N£)*X(:N£)+Y<:Ns)*Y'::Ns)  !  POWER AVERAGING 
NEXT Ns 
NEXT Ks 
MAT Y=(:0. ) 
CALL Fft14z(Nl,Xa^*),Y<*)) 
FOR N£=0 TO Ll-1 
XaC Ns ) =Xa<: Ns ) »L 1 x (L 1 -Ns ) 
NEXT Ns 
BEEP 
INPUT "L2 =",L2        !  LAG WEIGHTING LENGTH L2<L1, L2<=N1-L1 
INPUT "N2 =",N2        !  SIZE OF SECOND-STAGE FFT N2 (>L2*10 IS GOC 
IF L2<L1 THEN 480 
PRINT "L2 REDUCED TO Ll-1, TO AVOID DIVISION BY ZERO" 
L2=L1-1 
IF   L2;=L2niax   THEN   510 
PRINT "L2 REDUCED TO L2max, TO AVOID WRAP-AROUND REGION" 
L2 = L2iriax 
IF N2>L2+L2 THEN 550 
PRINT "N2 INCREASED, SO AS TO BE GREATER THAN L2*2" 
N2m=INT':;L0GCL2 + L2+l )xL0G(:2) > + l 
N2 = 2-N2ni 
PRINT   ' L2   =";L2; " N2   =";N2 , ' 
N2m=N2-l 
REDIM   X(0:N2m) , Y(0! N2rn) 

;K 

LI DATA POINTS AT A TIME 

INTO FREQUENCY DOMAIN 

!  INTO LAG DOMAIN 

!  DIVIDE BY CORRELATION 
!  OF TEMPORAL WEIGHTING 

D) 
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530 
590 
600 
610 
620 
630 
640 
650^ 
660 
670 
630 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
300 
310 
820 
830 
840 
850 
360 
870 
1670 
1630 
1690 
1700 
1718 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1320 
1830 
1840 
1350 

S'::B + B>+fl3*C0S(B + B + B) 
Ns::'*W I 

dB   riiitx   =";Db 

fl = PI.'L2 
X'::0;:'=X.ai::0> 
FOR   Ns=l   TO   L2 
B=N3*fl 
W=fl0+Rl*COS(B>+fl; 
X'::H£::'=X(N2-NS::'=X.: 

NEXT   Ns 
FOR Ns=L2+l TO H2m-L2 
X(Ns)=0. 
NEXT Hs 
MAT Y='::0. ':> 

MAT X=X/(FLT(K)*L1*N1#N2 
Bi g=Mfl;«;(;xi;*:J > 
Db = LGT';Bi g)*10. 
PRINT "Big =";Big; " 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW 0.,N2/2,-70.,0. 
GRID N2^-3, 10. 
FOR Ns=0 TO N2/2 
W = NRX';X(Ns) , 1. E-20:) 
PLOT N£,LGT<W;'*10.-Db 
NEXT Ns 
PENUP 
GOTO 430 
END 

SUE Fft. 14z< DOUBLE N,REAL X(*>,Y( 
! This SUB is listed aboye. 
SUBEND 
I 

SUE Dat a( DOUBLE Ks , L 1 , RE AL X •; * > ) 
DOUBLE J1,J2,J 
W1=2.*PI*.25 
W2=2.*PI*.265 
T 1 = . 3 1 
T2=.77 
Db2=-30. 
A2=10. ■•■■•(Db2.--20. ) 
J2=Ks*Ll-l 
J1=.J2-L1 + 1 
FOR J=J1 TO J2 
P1=W1*.J + T1 
P2=W2*J+T2 
XCJ-Jl >=C0S'::P1 )+A2#C0S<P2> + '::RND 

! RND-.5 has power- I'-12 
NEXT J 
SUBEND 

LAG WEIGHTING 

INTO FREQUENCY DOMAIN 

N = 2--1 NTEGER<=2--14=16334; 0 SUBS 

TONE FREQUENCY 
TONE FREQUENCY 
TONE PHASE 1 
TONE PHASE 2 
RELATIVE TONE : :TRENGTH 

316 
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