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ABSTRACT

Hybrid state estimation problems are statistical estimation problems in
R! which both continuous-valued and discrete-valued states and parameters occur.

The hybrid state model provides both a natural formulation for many types of

ES surveillance and tracking problems and a powerful framework for deriving theo-~
“ retically optimal and practical suboptimal tracking algorithms. This report
= describes research in developing tools for evaluating the performance of opti-
is mal hybrid state estimation problems.
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SECTION 1

INTRODUCTION

!! Although the mathematical structure of the optimal solution of the multi-
v object tracking problem is well understood, the excessive computational com-
ES plexity of the optimal tracking algorithm prohibits its practical realization
- using even the largest and fastest computers available in the foreseeable

?; future. For this reason, many different tracking algorithms have been devel-
3 oped which sacrifice optimal performance for the sake of computational feasi-
2

- bility. Intuition suggests that some suboptimal approximations to the optimal
3 algorithm result in little performance loss, but there exists no reliable

o quantitative analysis of suboptimal performance that shows this is, in fact,
. the case.

i} To a limited extent, it is possible to compare one suboptimal algorithm
s to another suboptimal algorithm by numerically simulating the performance of
!! both. Such simulations provide useful information about the relative perfor-
. mance of different suboptimal algorithms, but they do not give reliable quan-
ii titative measures of performance without extensive simulation. In all but the
[ ol simplest multiobject tracking scenarios, it is expensive and time-consuming

- to compute an adequate number of simulation samples for reliable Monte-Carlo
Ei: analysis. For this reason, it is difficult to use simulation to investigate
- how an algorithm's performance depends on algorithmic and environmental

z parameters.

-
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. While simulating relative performance of suboptimal algorithms is diffi-
'%: cult, simulating optimal performance to determine the absolute performance of
!g a suboptimal algorithm is effectively impossible. In all but the simplest !
cases, it is computationally impossible to compute even one simulation sample
%z of the optimal tracking algorithm, let alone an adequate number of samples for
- Monte-Carlo analysis. Although one can obtain some insight by comparing simu-
bﬁ lated performance of optimal and suboptimal algorithms for a small number of
0 very limited cases, it is not possible to obtain quantitative measures of per-
K formance in this way.
Ef What are lacking are analytical methods for analyzing the quantitative
Ai performance of optimal and suboptimal multiobject tracking algorithms. Because
;; of the excessive computational requirements of simulating such algorithms,
C? there is no feasible alternative to analytical methods of performance analysis.
R Such analytical methods do exist and have proven useful for analyzing per-
ii formance in other, much simpler types of hypothesis testing and estimation
problems. There, efficient analytical performance analysis techniques have
:j greatly facilitated the design of practical algorithms. The basic research
II problem here is to find similarly effective analytical techniques for the more
- difficult hypothesis testing and estimation problems of multiobject tracking.
?; We base our approach to this problem on studying multiobject tracking
" problems as a special case of the general class of hybrid state estimation
55 problems [1],[2]*- Hybrid state estimation problems are statistical estima- ]
tion problems in which both continuous-valued and discrete-valued states and ‘
;; parameters occur. Thus, hybrid state estimation includes both classical .
*Reference are indicated by numbers in square brackets. The list appears at )
the end of the main body of this report. 1
= 4
M
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parameter estimation and hypothesis testing as special cases. In our previous

work [1],[2], we have found that the hybrid state model provides both a nat-
ural formulation for all types of multiobject tracking problems and a powerful

framework for deriving optimal and suboptimal tracking algorithms. The im-

A

portance of the hybrid state system viewpoint in the research described here

;}.I

is that it gives us a bridge between the simpler estimation and hypothesis

s |

testing problems for which effective performance anmalysis techniques exist
and the more difficult estimation and hypothesis testing problems of multi-

4 ) object tracking for which effective techniques have yet to be developed.

A

Our overall approach 1is to consider a hierarchy of hybrid state estima-

P
2
’

tion problems of increasing difficulty, starting at relatively simple problems

v e
L

iﬁ whose solutions are readily obtained and leading to more difficult multiobject

:; tracking problems. To carry this out, it is convenient to study three dif-

R ferent types of hybrid state estimation problems. In the first type (Type I)

.' of problem we are interested only in estimating continuous-valued states and
discrete-valued states enter the problem only as measurement noise. Type I

;% problems include those in which the number of targets is known but the associ-

Il ation of measurements with targets and false alarms is not known. Since Type

o I problems are continuous state estimation problems, one can try to extend many

&: different available methods of performance analysis to this type of problem.

- What {is unconventional about such problems (and tends to make performance

5; analysis difficult) is that the discrete-valued noise is non-Gaussian (being

- a point process in nature) and nonadditive (often being multiplicative).

o The second type (Type II) of hybrid state estimation problem generalizes

:ﬁ the Type I problem in the following way. In this problem we are still inter-

ested in estimating continuous states, but the discrete states enter into the
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problem in a much more fundamental way than in Type I problems. In partic-
ular, the discrete states are assumed to form a Markov process. Note that we
" assume that the continuous states cannot affect the discrete states, although
the discrete states can affect the continuous states. Problems of tracking

targets which can maneuver, or estimating parameters in a system whose dy-

b
namics change abruptly (e.g., due to failures) can be formulated as Type II v
!3 hybrid state estimation problems. Finally, we identify a third type of hybrid -4

- state estimation problem (Type III) which are the same as Type II problems
) except that the estimation problem includes the estimation of discrete states

as well as continuous states. Type III problems include the most realistic -

<
e

and most difficult multiobject tracking problems in which the number of tar-

. ’" A

[+ gets is unknown and one is interested in both tracking and detecting targets
T entering and leaving a surveillance area.

€

=

This report describes the results of our research in analyzing the per-

l\:! .'-',n"'

ii formance of hybrid state estimation problems. Section 2 describes the gen-
. eral hybrid state model of interest and several concrete examples relavant %ﬁ
Ei to tracking problems; it also defines a classification (Types I, II, III} of ;%
gt
hybrid state estimation problems. Section 3 analyzes a simple hybrid state %;
» estimation problem in detail - indicating the difficulties inherent in deter- N
i; mining optimal performance for this class of problems. Section 4 describes a E;
“ Cramer-Rao lower bound on mean square error for a large class of Type I hybrid 't
EE state problems. In Section 5 we discuss a rate distortion approach for Type ;ﬁ
K I1 problems, and in Section 6 we describe a Monte-Carlo approach based on the ;y
- representation theorem which applies to very general hybrid state problems. -
:Q' The results of Sections 3 through 6 apply to finite dimensional hybrid state 'Ef
- .
- 4
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problems described in Section 2. Extension to hybrid state problems of multi-

object tracking 1is the subject of Section 7. There we introduce a random

IE point process model of multiobject tracking and discuss its application to
tracking and performance analysis. Section 8 concludes the report and dis-

L cusses some further research problems.
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SECTION 2

HYBRID STATE ESTIMATION

2.1 GENERAL HYBRID STATE MODEL

Multiobject tracking problems involve both the estimation of continuous-
valued parameters such as target positions and velocities, and the the testing
of discrete hypotheses such as the association of measurement data with targets.
Thus, it is natural to pose the problem of multiobject tracking as a hybrid
state estimation problem —- that is, estimation for a partially observed Markov
process with discrete- and continuous~-valued states. In our previous work [1],
(2] we have shown that the hybrid state viewpoint provides a powerful frame-
work in which to formulate all types of multiobject tracking problems. The
research reported here is continuing this approach by developing performance
analysis techniques for several types of hybrid state estimation problems
relevant to multiobject tracking.

To focus our research, we will consider a particular class of hybrid
state system, which we call Gauss-Markov hybrid state systems. This is the

class of systems which can be described by the equations
x(t+1) = Aq(t) )x(t) + B(q(t) )w(t) (2-1a)
y(t) = C(q(t) )x(t) + D(q(t) Jv(t) (2-1b)

where the variables are defined so that

. P PR PR EUR e ar LT . - P . . PRV
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q(t) = finite state Markov chain with time invariant
transition probabilities;
x(t) = n-dimensional state process;

w(t) = p-dimensional white Gaussian state process noise;
y(t) = m—-dimensional measurement process;

v(t) = r-dimensional white Gaussian measurement noise.

For a fixed value of q of the Markov chain, A(q), B(q), C(q), and D(q) are
matrices with dimensions corresponding to the vectors described above. One

important point to note about the model described by Eq. 2~-1 is that the dis-

crete state process q(t) may drive the continuous state x(t) but not conversely.

This assumption simplifies analysis and still permits the treatment of many
(but not all, see [2]) realistic multiobject tracking problems.

We have assumed that the state and measurement equations are linear in
the continuous state variable x in order to focus on the essential hybrid
state aspects of our problem. Some of the methods we discuss will extend to

nonlinear hybrid state problems of the general form
x(t+1) = £(x(t),q(t) ) + B(q(t) Jw(t) (2-2a)
y(t) = h(x(t),q(t) ) + D(a(t) Jv(t) (2-2b)

where B(q) and D(q) are matrices as above, but f(x,q) and h(x,q) are now
allowed to be nonlinear functions of x for each fixed value of q. The non-~
linear model of Eq. 2-2 allows the treatment of range~azimuth measurement
nonlinearities and passive tracking measurement nonlinearities, but the re-
sulting performance analysis problem will include all the usual difficulties

of analyzing nonlinear estimation problems in addition to the difficulties of

ST
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analyzing hybrid state problems. In the next subsection we consider several

examples of Gauss-Markov hybrid state models relevant to tracking.

2.2 TRACKING EXAMPLES OF HYBRID STATE MODELS

We will give four examples in this subsection to illustrate how one may
use the Gauss-Markov hybrid state equations of 2-1 to model tracking problems.
These models are simplifications of real tracking problems; in particular,
they approximate complex transducers and signal processors with simple hybrid
state statistical models. We have chosen this type of approximation to focus
our attention on the “backend” tracking problem (which is the object of our
research) and to avoid less important details of "frontend” processing.

The first example is a simple model of a sensor and a single target. The
sensor produces one measurement per time period; each measurement is either a
measurement of the target's state together with background noise, a measure-
ment of independent random clutter, or a measurement of ambient background
noise alone. The target moves according to a simple linear Gaussian stochas~-

tic difference equation. The hybrid state model for this example is given as

follows.
x1(t+l) = x3(t) + xa(t) (2-3a)
x2(t+l) = xo(t) + w(t) (2-3b)
y(t) = qu(t)[x1(t) + vi(e) ] + (1-q1(t) Jaa(t)va(t) (2-4)

Eq. 2-3 is the state equation and is the usual random acceleration model in

which x) denotes the target position and x2 denotes the target velocity. The

white noise w 1s thus an assumed random acceleration. Eq. 2-4 is the measure-

ment equation for this example and contains all the discrete state dependences.
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-~ We assume that qi(t) and qp(t) are independent discrete state random variables
(N
- taking variables taking the values 0 or 1. Assume that qj(t) equals 1 with
! probability pj. Then for each time period t, the measurement y(t) is either
. a target measurement x)(t) with some errvor vi(t) with probability p;;
R
N
- a clutter measurement vy(t) with probability (l-pj)p2;
:! or the 0 measurement with probability (l-p;)(1l-p3).
e Thus, p; 1s the probability of detecting the target, (l1-pj)pz is the proba-

bility of detecting a false alarm, and (1-p;)(l-p2) is the probability of

detecting nothing at all. These probabilities might be selected to correspond

]
PRl |

to the receiver operating characteristics of a particular sensor and signal

.
alal gt .

vt

processor frontend. The problem of this example is to estimate x3(t) and

. x2(t), the target position and velocity states. As we will see below, the

discrete variables q;(t) and q2(t) are not desired and do not have to be esti-

l' mated in this example although a practical tracking algorithm might in fact
have a detector that would estimate these discrete variables. This point will

e be discussed in the next subsection where we classify hybrid state estimation

‘I problems more precisely into three types (Types I, 1I, and III).

The second example is a variation of the first to include data associa-

o tion ambiguities in the measurement model. 1In this example there are two

targets with states x],x2 and x3,X4, respectively. The sensor observes two

§; returns y}; and y2, but it does not observe the origin of the measurements.
- The Gauss-Markov hybrid state model is given by

x1(t+l) = x3(t) + xp(t) (2~-5a)

x2(t+l) = x7(t) + wy(t) (2-5b)
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x3(t+1) = x3(t) + x4(t) (2-5c)
x4(t+l) = x4(t) + wa(r) . (2-54)
y1(t) = q(e)xp(t) + (1-q(t) Jxp(t) + vi(t) (2-6a)
Yo(t) = (1-q(t) Jx)(t) + q(t)xp(t) + vo(t) (2-6b)

Equation 2-5 is the usual state model for two independent targets. In
Eq. 2-6 we assume that q(t) takes the values 0 or 1, both with probability
1/2. Thus, the sensor measures both target positions, but the ordering of
these measurements 1s randomly permuted.

The third example 1s an extension of the first to allow the target to
make significant maneuvers at unpredictable times. The measurement model Eq.

2-4 remains the same ,but the state model becomes the hybrid state equation
x1(t+l) = x3(t) + xo(t) (2-7a)
x2(t+l) = x9(t) + q3(t)w(t) (2-7b)

In Eq. 2-7b the discrete state process q3(t) is a Markov chain taking two
values Qi and Q2 with transition probabilities P13 of jumping from discrete
state Qi to state Qj- The new discrete state models two types of random
acceleration distinguished by different covariances. For example, the covar-
iance Q) might have a small value representing small perturbations of essen-
tially coanstant velocity motion and the covariance Q2 might have a large
value representing occasional significaant target maneuvers. By appropriately
selecting the transition probabilities P14, one can adjust the average time
between maneuvers. Note that the problem in this example is to estimate xj(t)
and x7(t). It may be necessary to estimate q3(t) also, but that is only

10
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" incidental to the main tracking objective. 1In a sense, q3(t) is a nuisance j
E{ parameter as far as tracking is concerned. Note that in a different version
.‘ of this problem, q3(t) might also be desired (e.g., this would be the case 1if
’ detecting maneuvers implied significant tactical information such as that a Zg
E§ missile launch was about to occur). ;3-
The final example is another extension of the first example in which we :.
!3 now model the appearance and disappearance of the single target. Let q3(t) E}
%? denote a Markov chain taking two values O and 1 with transition probabilities Ei
H Pij of jumping from discrete state i to state j. When q3(t) = 1, we consider ?
§ that the target is present and when q3(t) = 0, we consider that the target is iﬂ
1. absent. The state equation for this example is the same as Eq. 2~3; the mea- 'é'
i surement equation becomes the following. i;
? y(t) = q1(e) [a3¢eIx1(e) + vi(e) ] + (1-q1(t) Jq2(e)Iva(t) (2-8)
ii The problem in this example, unlike the preceding two examples, 1s to estimate =
) q3(t), as well as x3(t) and x2(t). That is, it is desired to know whether E;
‘é the target is present (i.e., observable) as well as what are its position and i\
!! velocity. Indeed, in some cases the position and velocity may only be rele- r;
A vant if q3(t) = 1. 3

-
=

I3 . .,

»
4

::J
s

2.3 CLASSIFICATION OF HYBRID STATE ESTIMATION PROBLEMS

It is convenient to define three types of hybrid state estimation prob- ﬁ

; NG
3 >

lems based partly on the structure of the hybrid state model and partly on the *e

2

Eg desired estimation criterion. Type I problems are modeled by hybrid state ¢§

B equations of the form of Eq. 2-1 where the discrete state process q(t) is a ;J

t< sequence of independent finite state random variables. The estimation problem 13
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is to estimate the state x(t) given measurements y(s) up to time t. The
important point to note is that q(t) plays the role of a nuisance parameter
or an additional noise process analogous to w(t) and v(t). It is not neces-
sary to estimate q(t) any more than it is necessary to estimate w(t) or v(t)
to obtain an estimate of x(t). This is not to say that some estimation algo-
rithm may, in fact, estimate q(t) as an intermediate step in obtaining an
estimate of x(t).

The significance of Type 1 problem lies in the fact that they are essen-
tially continuous state estimation problems and therefore, many classical per-
formance analysis techniques (such as Cramer-Rao type methods) apply to this
type of problem, at least in theory. As we will see later in this report,
there is a considerable difficulty in applying the theory because the distri-
butions are non-Gaussian (being a mixture of Gaussian distributions).

We will often consider a subclass of Type I problems for which the con-
tinuous state dynamics are independent of the discrete variables, namely

Eq. 2-1 1s replaced by
x(t+l) = Ax(t) + Bw(t) (2-9a)
y(t) = c(q(t) )x(t) + D(q(t) Jv(t) (2-9b)

Even within this subclass of Type I problems it is possible to consider many
different tracking examples of interest. The first and second examples of
the previous subsection are members of this class of Type I problem. Omne can
easily generalize these examples to model problems with multiple targets and
multiple returns per time period, provided that the number of targets is con-
stant and known (i.e., detecting a target's presence or absence 1s not a part
of the problem).

12
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Type 1I problems are given by the same equations (namely Eq. 2-1), but
the discrete state process q(t) is allowed to be a finite state Markov chain
rather than a sequence of independent finite state random variables. Never-
theless, it is still desired to estimate only the continuous state x(t) in
Type II problems, although even more so than in Type I problems will it be
necessary to estimate the discrete state q(t) as an intermediate step in
obtaining the estimate of x(t). The second example of tracking a maneuvering
target is a Type II hybrid state estimation problem.

Let us make the distinction between Type 1 and 11 clear. In Type I prob-
lems the joint process <x(t),y(t)> is Markov. In Type II problems this is
no longer true; the Markov process 1s the jolunt process <x(t),y(t),q(t)> (or
at least some component of q(t)). This property of Type II problems compli-
cates performance analysis considerably. However, the estimation criterion
depends just on x(t); for example, it is a mean square error criterfon for
estimating x(t). This assumption at least gives us a simple measure of per-
formance to consider.

A subclass of Type 11 problems has the property that q(t) is equal to
q(0) for all times t. These are the so-called multiple model problems some-
times used in adaptive estimation. We will not study this class of problems
and refer to reader to [3] for further information.

Type I1II problems generalize the Type II problem by allowing the estima-
tion criterion to depend on both x(t) and on q(t). This type of hybrid state
estimation problem also has the model of Eq. 2-1 in which q(t) is allowed to
be a general finite state Markov chain. The third example of tracking a single
target which appears and disappears at random times is a Type III problem if

we are interested in knowing when the target is present and when it is absent.

13
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Type II1 problems include the most realistic multiobject tracking prob-
lems in which the total number of targets is unknown and in which one is

interested in some aspect of the identity of the target (if only to know that
an object being tracked at the current time is the same as an object that was
being tracked at an earlier time; that is, if track continuity is an issue).

In such problems it is difficult to define meaningful measures of performance,
especially if they are to be amenable to analysis. 1In the rest of this paper

we will discuss performance analysis for different hybrid state estimation

problems.
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SECTION 3

ANALYSIS OF A SIMPLE PROBLEM

3.1 INTRODUCTION
A simple hybrid state estimation problem of interest is described by the

measurement equation

y =x+ qvy + (1-q)vg (3-1)

where x, v] and vg are normal random variables and q = 0 or 1. Assume that

x, V], vgp and q are independent and assume tht the distributions are

x  ~N(x, o)
vi ~N(0, 02)
vo ~N(0, 092)

P{g=1} = ¢

We are interested in approximating the minimum mean square error of estimating
x given the measurement y. Equation 3-1 presents an example of estimation
with non-Gaussian measurement error. This is true in general for hybrid state
estimation problems.

The measurement error

qvy + (1-q)vg

is a random mixture of two different random variales (v] and vg). For example,

this model might represent the problem of estimating x given a probability e

15
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of taking a bad measurement (with large variance 012) and probability 1 - ¢ of
taking a good measurement (with small variance 002).

Suppose x is the conditional mean of x given by
X = E{xly} .
Then the minimum mean square error V is given by
v = E{(x~%)2} .

Our general goal is to develop good methods for approximating V in hybrid
state estimation problems. In this section we discuss several approximations
to develop some feeling for different methods' computability and accuracy.

In the following subsections we consider direct calculation of V, asymptotic
expansion of V (for small ¢), the Cramer-Rao lower bound of V, and a rate
distortion lower bound of V. We also consider numerical examples of the dif-

ferent approximations to study their relative accuracy.

3.2 ASYMPTOTIC EXPANSION OF OPTIMAL PERFORMANCE

3.2.1 Exact Expression of Minimum Mean Square Error

For the class of Gauss-Markov hybrid state systems defined in Section 2,
it 1s easy to describe the minimum mean square estimator; namely the condi-~

tional mean. For this simple problem we have
x(y) = E{x|y, q=0} P{q=0|y} + E{x]y, q=1} P{q=1]y}

where E{xly, q=0} and E{x[y, q=1} are the solution of linear least squares
problems, and P{q-Oly} and P{q=1|y} are easily obtained from Bayes' rule. For

the problem at hand

16
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{ } 012 X + oly P
- Eix|y, q=i} = ————— ]
“? | o + o2 4]
¢ [2n(02 + 0;2) | V2 xol = 1/2 (y-02(c? + 012)71} P{g-1} o
- Ple=ily} = =
2 - 1/2 - o
3 [27(02 + 012) ] exp{ = 1/2 (y-x)2(o% + oo2)"1} Pg=1} )
- 1/2 - .:
x + [2n(a? + 0p2) ] exp{ - 1/2 (y-x)? s

(o2 + 092)"1} P{q=0}

Thus, we can write x as

(1-e)bp ¢o(&) + € by ¢1(8)

X=XxX+§ (3-2) R
- (1-€) $0(E) + € 41(8) s
where 'E
= — -\N
¢ E =y-x o
’ -1 S
by = 02(a? + 012) (3-3) -
2 2T /2 2( 2 2y-1 ]
$1(8) = [2m(0? + 032)] exp{ - 1/2 €2(o? + 032)"1} (3-4) -
However, we are not interested in x itself, but in its mean square performance i;
. V. This is found from -
P )
N
- v = E{(x~x)2} - E{(x-x)?} e
- (3-5) .
= 02 -1 =
- where I = E{(x-x)2} is the integral f;f
- @ [(1-e)by 40(E) + € by 41(8) |2 -
1= g2 dg . (3-6) o
- - (1-€)90(&) + € 01(8) -
17 -
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Even for this simple problem, the integral I does not have a closed form solu-
tion and we must resort to numerical or analytic approxmation of it. This
type of integral, in which a sum of Gaussian distribution appears as a denom-
inator of the integrand, is common to all Gauss—-Markov hybrid state problems.
It occurs in the exact expression of minimum mean square error and in the ex-
pression for the Cramer-Rao bound as we will show later. Thus, it is impor-
tant that we learn to approximate such integrals well. In the next subsection

we consider asymptotic expansions of I for small values of €.

3.2.2 Asymptotic Expansion of Minimum Mean Square Error

By rewriting the numerator in Eq. 3-6 as

[(1-e)by o0 + € by ¢1]% = [bol(1-)4o + € ¢1] + e(br-b) ey ]2 .
ve find that
I=bo? [ E2[(1-€)¢0(E) + € ¢1(E) JdE
+ 2e bg(by-bg) [ &2 ¢1(€)de (3-7)
£2 41082

+ €2(b1-bg)2 dg
A(br-b)® (1-€)90(E) + ¢ ¢l(E)

The first two integrals in Eq. 3-7 can be computed exactly; the third cannot.
Equation 3-5 and 3-7 give us the following asymptotic expansion of the minimum
mean square error V.
2
o? g2 a2 - 2] | d[a? - o?]

vV = + ¢ - € > J
o2 + 002 (02 + 002]2 (02 + o02]2 (02 + 012]

(3-8)

18
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where

w £2 (82
J=]

dg . (3-9)
o (1-€)4o(8) + € $1(8)

Since the third term of Eq. 3-8 is negative, we immediately obtain an upper

bound of V which we denote by Vi+:

02 gg2 *[o12 - op?]
W= —+c¢ (3-10)
o2 + gg2 [0 + 0,2 G

A lower bound is obtained by noting that

1 0
J<— « [ & ¢1(8)de = a2 + 012] . (3-11)
€ -00
Thus, the lower bound is
02 002 04[012 - 002] gy - 002
Vi~ = + € " 1 - — . (3-12)
2 2 2 2 2 2
s + oo [o + 00 ] oc + 01

Let us now study the third term of Eq. 3-8. First note that if
002 < 02 + 2012

then the integral

= (6?2 .
52 dg = o
“w T 00(E)

diverges and
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On the other hand, from Eq. 3-11 it is clear that

lim € J =0 . (3-14)
€0
Equations 3-13 and 3-14 imply that the higher order term €2 J in Eq. 3-8
decreases more slowly than €2 but more rapidly than €. In Appendix A we show

that in the case ¢ = 07 >> ogp, the correction term has an asymptotic behavior

like
€2 J ~ | g|1/2 elty (3-15)
for small e, where
02 + 002
Y = ——, (3-16)
012 - o02

Appendix A also gives expressions for a second-order upper bound V2+ and a
second-order lower bound V2~ . As Appendix A makes evident, detailed analytic
approximation of V can be difficult for even very simple hybrid state estima-

tion problems.

3.3 CRAMER-RAO LOWER BOUND
Van Trees' [4]) extension of the classical Cramer—Rao bound provides
another method of approximating the minimum mean square error V. This lower

bound, which we denote by V., is given by
- -23-1
Ve~ = (1 + 072) (3-17)

where I is the Fisher information given by
3p 2
I=E{p2|— (3-18)
ax
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8 and p is the conditional demnsity of the measurement y given the state x:
-

b
' Pp=p(ylx) .

h In this simple example, p is the Gaussian sum distribution

o

p(y[x) = (1-€)yp(E) + € ¥ (&) (3-19)

< where

:::' 13 =2y-x ,

['4

- Pi(E) = (27 0g2)” 1/2 exp{ - 1/2 ;=2 €2} .

It 1s easy to see that the Fisher information is given exactly by the integral

» £2[(1-€)og~2 ¥(E) + € 01=2 ¥ (&) ]?
. 1= dg . (3-21)
o — (1-e)¥g(&) + e (&)

" This is the same type of integral that occurred in the exact calculation of V.

Although we cannot express this integral in closed-form, we can approximate it

“ in the same way we approximated V. Thus, we find that

-. 1= 00‘2 - € 00‘4(012 - 002) + ez(ol“z - uo'z)zK (3-22)

o £2 y(6)?
K=/ de
ﬁ lo (1=) W(E) + € (&)

Just as before (Eqs. 3-9 and 3-11) we can derive an upper and lower bound

of K:

0 <K < ¢l 012 .

21
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W Thus, we obtain the corresponding bounds on V.7:

#[012 - op?)

" A

Ve~ < - (3-23)
- Aro?  Rlal- o]
1‘\- -~

£
092 [ap? + 2]

L
Ny [012 - 002] o2
.- e *
_ 0% og? [+ 022 o2
Ve~ 2 - (3-24)
v o? + 0'02 [012 - 002] o2
r,j l -¢ -_—
' [ + o2] 02
- From the inequality Eq. 3-23 we also see that
oY
A 2o a2 - w?]
Vo™~ = + € + o(¢g) (3-25)
o + 002 [02 + 002 ]2

where o(e) is an error term for which

lim ¢l o(e) =0 .

l' €0

Thus, we see that the first order in €, V.~ agrees with V1+, the upper bound

of Eq. 3-10 and also the first order expansion of V (as seen from Eq. 3-8).

F? This suggests that V.~ might be an accurate estimate of V, if we could compute
) Ve~ exactly. Note that theory tells us that V1+ >V > V.". Thus, V1+ is, in
;g fact, an upper bound of V.~ and it is tighter than the upper bound in Eq. 3-23

as one can easily see.
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One could develop an approximation of the integral K appearing in Eq.

3-22 and so develop second-order upper and lower bounds of I and thus V.~ in
the same way we do for V in Appendix A. We will not do so, but let us note
that such analytic approximations of the Fisher informatiom in Gauss-Markov
hybrid state estimation problems are difficult to obtain even for simple
problems. In Section 4 we will consider the Cramer-Rao lower bound for more
general, dynamic hybrid state problems and find that there are good reasons

to work to develop better methods to approximate the Fisher information.

3.4 RATE DISTORTION LOWER BOUND

The last method we will consider is based on rate distortion theory [16]},
a branch of information theory. Rate distortion theory allows us to derive an
analytic, closed-form lower bound VR~ of the minimum mean square error V. The
basic approach 1s straightforward. The theory [16] tells us that the minimum

mean square error V satisfies the inequality

R(V) < I(y;x)

where R(V) 1s the rate distortion function of the state x and I(y;x) is the
mutual information between x and the measurement y. For a scalar Gaussian

state, the rate distortion is simply

- ()
R(V) = — fn| — .
2 v

vV > o2 exp{- 2 I(y;x)} .

This gives the lower bound

We cannot compute the mutual information I(y;x) exactly, but we can find a
simple upper bound It of I(y;x) and thus obtain a lower bound of V, namely

23
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V>VR~ = o exp{- 2 I*} . (3-26)

R

To find an upper bound of mutual information, note that®

I(y;x) = h(y) - h(y|x) (3-27)

where h(y) is the differential entropy of the random variable y and h(ylx)
!' is the conditional differential entropy of y given x. The measurement y is a

sum of the state x and the independent noise v which has a probability density

p(n) = € p1(n) + (1-€)pg(n)

..‘rhl
o]

where

LS

1/2

pi(n) = (2m 032)” ' exp{- 1/2 W 012} .

n-‘-}
P
4° 2

Because x and v are independent,

s

h(y|x) = h(v) .

The differential entropy h(v) is , by definition,

h(v) = [ p(y) 4n p(y) dy .

The function f(p) = -p n p is concave in p, and application of Jenson's

inequality yields the inequality
= h(v) > € h(vy) + (1-€)h(vg)

where vi{ has density pj. Because vi{ is Gaussian,

- 1
i h(vy) = T n(2me 012) .
ii *See [15]) or [16] for the basic definitions and results of information theory.
24
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Thus, we have the lower bound

F R e

1 1
h(y|x) » T € &n(2me 012) + 5 (1-€)2n(2me o0g2) . (3-28)

'-

Another basic result of information theory gives us an upper bound on the

&
i differential entropy of a random variable in terms of its variance. In par-
! ticular, we have
S 1
h(y) < T in(2ne A) (3-29)
” where A is the variance of y, given by
. A=o2+ ¢ 02 + (1-€)op2 -
P(I‘
hA.v
- Subgtituting this expression in Eq. 3-29 and using it together with Eq. 3-28
N in Eq. 3-27, we obtain the upper bound It

1
- I(y;x) < It = -2— 2n(2ne[02 + ¢ 012 + (1~e)002])
1 1
- —5— € n(2mne 012) - —2- (1~€) 4n(2ne 002) .

Using this expression for I* in Eq. 3-26 gives us the rate distortion lower
n bound

\ 02 oy2¢ og2(1-¢€)
& Vg~ = (3-30)
N o2 + ¢ 012 + (1-¢) 0g?

Note that to first order in €, the bound VR~ is given by

< 2 gp2 0?2 ag2 01
- VR~ = + € » Zln(—)[co2+02]—[012-002] + 0(e) -
2 2 2 2 o0
o2 + o (0,2 + o ]
(3-31)
[
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3.5 NUMERICAL EXAMPLE

9% _
(- o
b Figure 3-1 shows the mean square error predictions made by the different -
l' performance analysis methods discussed in this section. The statistical

parameters of the variables in Eq. 3-1 were chosen so that

x =0,
0?2 =100 , e
0?2 = 100 ,

002 =1 . ;

The false alarm probability ¢ = P{q=1)} was varied from 0 to .5.
Figure 3-1 shows performance predictions obtained from a direct first-
order expansion (an upper bound Vit in Eq. 3-10 and a lower bound Vi~ in

Eq. 3-12), a direct second-order expansion (an upper bound V2+ and a lower

bound Vo~ in Eq. A-25 of Appendix A), and a rate distortion bound (a lower
bound VR~ in Eq. 3-30). Note that the direct first-order expansion Vit is
equal to the first-order expansion of the Cramer-Rao lower bound V.~. Mean
square error in Fig. 3-1 is normalized by dividing by the initial variance a.
For small € the direct second-order expansion should give tight upper and
lower bounds of mean square error. As can be seen in Fig. 3-1, for € > .3 the

second-order expansion becomes less accurate than the first-order expansion.

Note that the rate distortion lower bounds for this example is less accu-

L rate than the other performance predictions. This appeared to be true in all
. numerical examples we considered.

- 1‘1
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Figure 3-1. Mean Square Performance Bounds
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3.6 REMARKS

In this section we have considered several performance analysis techniques
applied to a simple static Type I hybrid state estimation problem. Exact
closed-form evaluation of minimum mean square error is impossible to achieve :
even for this simple problem. Typically, one encounters integrals which have J
as integrands the ratio of two Gaussian sum distributions. These integrals
appear in the exact error, the Cramer-Rao lower bound, and in the second-order
asymptotic approximation (Appendix A). Approximating these integrals is dif-
ficult even for the simple problem of this section. Generalization to dynamic
problems of interest seems unlikely.

On the other hand, the rate distortion lower bound is easy to compute,
but its accuracy seems very poor compared to the other approaches described
in this section. The first-order asymptotic approximations are both easy to E
compute and reasonably accurate. Unfortunately, this type expansion does not
appear to generalize to dynamic problems of interest.

In the following sections we will consider performance analysis techniques
for more general dynamic hybrid state estimation problems. Section 4 discusses
a Cramer-Rao approach for Type I problems, Section 5 discusses a rate distor-

tion approach for Type II problems, and Section 6 discusses a Monte~Carlo

approach that potentially applies to any hybrid state problem.
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SECTION 4
EE CRAMER-RAO LOWER BOUND FOR TYPE I PROBLEMS
!’ 4.1 INTRODUCTION
‘; Because Type I problems can be formulated as a partially observed Markov
i' process <x(t),y(t)> for which x(t) is continuous, it is theoretically possible
R to apply classical performance analysis techniques to such problems. In this
a section we will examine the applicability of Cramer—-Rao methods to Type I
:é problems, and particularly to the subclass of Type I problems described by
. Eq. 2-9.
*
~ The Cramer—Rao method as presented in Van Trees [4] provides a lower
., bound of the estimation error covariance (for which lower is interpreted in
I' the sense of symmetric matrix inequalities) in Bayesian estimation problems
:} in which both state aud measurement are modeled as random variables. Thus,

the Cramer-Rao method gives us an estimate of mean square error. Although the
bound is given for static problems in [4], it has been extended to various dy-
namic filtering problems in [5]-[7] (Bayesian framework) and [8] (non-Bayesian

framework). The method is useful because it gives us a computable performance

:2 measure for a large class of nonlinear estimation problems. In particular,
) the computational complexity of the bound for the filtering problems described
Ei in [5]-[8] 1is comparable to that required to compute the error covariance for
. a linear Gaussian filter and is proportional to the number of time periods
- under investigation. This is significantly less complexity than that of the h
. optimal filters for most nonlinear problems.
B
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- We will show here that the Cramer-Rao method applies similarly to Type 1

hybrid state estimation problems described by Eq.2-9. Actually, we show more
ll generally that this method applies to any estimation problem for which the
state process satisfies Eq. 2-9a and the measurement process y(t) is such

f' that all y(t), t=1,2,..., are conditionally independent and identically dis-

" tributed given the state process. We also assume that the conditional dis-
:i tribution of y(t) depends just on x(t) and that this distribucion p(y(:)lx(t)) !
53 is a continuously differentiable function of x(t) which vanishes as |x(t)] ;
A tends to infinity.
N
n Let J(t) denote the information matrix given by ;
= 3(e) = E{p(y(t) | x(t) J"Zpye (y(e) |x(£) JTpx (y(t) | x(t) ) } (4-1)
x where E{ } denotes taking the expectation with respect to the joint measure-
& ment and state processes, Px(Y|x) is the partial derivative of p(ylx) with R
ii respect to x (a row vector if x is a column vector), and pr denotes the

transpose of py (a column vector if py is a row vector). In terms of J(t)

the Cramer—-Rao lower bound on the average error covariance P(t) is given by
l’ the linear filtering update equations, namely
. R
. P(t+1) = [(AP(t)AT + Q)1 + J(r) ]! (4-2) 3

where Q is the covariance of the process noise w(t) in Eq. 2-9a. We will

present only a sketch of the proof here. One expresses the filtering problem

3
A
SRR 3| AR

of Eq. 2-9 as a large dimensional static estimation problem of estimating

the entire state trajectory X given the measurement trajectory Y. Using the
‘J static result of [4], note that the Cramer-Rao bound for this problem is
equal to the bound (indeed, equal to the exact error covariance) for a linear
-
]
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) Gaussian estimation problem for which Eq.2-9a holds and Eq. 2-9b is replaced
b

e by the linear equation

! y(t) = C(t)x(t) + v(r) (4-3)

§ in which C(t) and the covariance R(t) of v(t) are chosen so that
og J(t) = c(e)Tr(e)~lece) . (4-b)

i This is always possible for any informatlon matrix J(t) (note that it is not
\.

necessary to compute C(t) or R(t)). It follows that the filter estimation
El error covariance of the hybrid state problem is bounded below by the corre-

sponding error covariance for the linear problem given by Eqs. 2-9a and 4-~3,

pun——1

[ (S

and therefore, the bound can be computed according to Eq. 4~-2.

4.2 COMPUTATION OF INFORMATION MATRIX FOR GAUSSIAN MIXTURES

=]

From above we see that applying the Cramer—-Rao approach depends on com-

puting the information matrix J(t) in Eq. 4-1 for static problems of the form

of Eq. 2-9b, namely

ilgl Ly
2722

y = C(q)x + D(q)v , (4-5)

.

where x and v are Gaussian distributed and q takes the discrete values

1,2,...,N with probabilities by for each value q = k. We will assume without

S0

loss of generality that v has 0 mean and an identity covariance matrix. Let

1

Ry denote the covariance matrix of D(k)v, that is Ry = D(k)D(k)T. 1In this

G

case, the conditional probability distribution p(y|x) needed in Eq. 4-1 is

7~
o .

Lo
,..l s

N
(:- p(y|x) = kzl biepk (¥ %) (4-6)
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u

b where px is the Gaussian density

e
P

Pr(y|x) = (det 2m Ry )"1/2

m T (4=7)
» exp(-1/2[y-C(k)] "R~l{y-c(k)]) .
b
;;: The corresponding derivative px(y|x) is
N T
Pr(y|x) = I brly-C(k)) R lc(k)pe(y|x) - (4-8)
< k=1
ié Define J(x) for each x as
: 3(x) = E{p(y]x)"2px(y|x) Tpx(y|x) | x} (4-9)

h where the expectation E{ |x} 1s conditioned on x. Thus, the information matrix
J is found by integrating J(x) with respect to the Gaussian distributed x.
The expectation in Eq. 4-9 involves integrating the ratio of two sums of
- Gaussian densities given by substituting Eq. 4-7 and 4-8. 1In general it is
not possible to do this integration in closed form (in terms of elementary
functions), nor is J(x) integrable with respect to the Gaussian density of x
in closed form. Thus, one must resort to some type of numerical integration
!! to evaluate J(x) and J. Since the integrals are multidimensional and have
infinite domains of integration, we have chosen to use the control variate

Monte~Carlo method of approximating integrals [9],[10].

) o
)
- 4.3 REMARKS ON CRAMER-RAO APPROACH
L The advantage of the Cramer—Rao approach is that the complexity of the )
1
- computation is essentially limited to the complexity of a static problem q
. depending on the dimensions of the state vector x(t), the measurement vector

y(t), and the number of discrete states q(t). Once this static problem is
&
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solved (namely the computation of J(t) in Eq. 4-1), the dynamic problem is
easily solved by the familiar recursion in Eq. 4-2.
l' The disadvantage of the Cramer-Rao approach for hybrid state performance
analysis is that the information matrix J(t) of Eq. 4-1 may be difficult to
E: compute even for small dimensional static problems. In general this computa-

tion requires integrating a ratio of two sums of Gaussian density functions,

:? and thus, the integral has no closed form expression in terms of elementary

A functions. This is in marked contrast with the situation for nonlinear fil-

= tering problems in Gaussian white noise where J(t) can be computed in closed

" form for a large class of nonlinearities [11],[12]. As noted above, we have

) employed Monte-Carlo methods to compute these integrals, but even these meth-

é ods become very computationally expensive if the static dimensions of the
problem are large. This would be the case for realistic multiobject tracking
problems with many targets and many returns per measurement period.

I' The Cramer-Rao method produces a lower bound to the minimum mean square
estimation error; however, this lower bound may be much lower than the minimum

-% mean square error —— that is, the bound can be very loose. In principle, the

l! bound becomes tight as the measurement covariance tends to zero. More pre-
cisely, the conditional covariance of y in Eq. 4-5 given x must be small. 1In

:: practice, one must determine how small by numerical computation and comparison

- to more accurate performance measures.

;{ We wish to mention two previous applications of Cramer-Rao methods to

.. hybrid state estimation problems. If the measurement is purely discrete or

;t is the sum of a continuous and discrete component, one can compute Cramer-Rao

SE type bounds fairly easily in a large number of cases {5],[13]. In fact, in

" this case it is possible to deal with a discrete process q(t) that is dependent
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on the continuous process x(t). These computations depend crucially on the
fact that the discrete state enters only additively in the measurement equa-
tion. The multiplicative dependence we have assumed severely complicates the
problem.

The work reported in [1l4] is much closer to the problems presented here.
That work studies a specific hybrid state parameter estimation problem using
the Cramer-Rao method for unknown, nonrandom parameters (see [4]). The
approach in [14] 1is somewhat different as the state x(t) 1s nrt random as it
is here, and the approach is a batch procedure rather than the recursive pro-
cedure presented here. Furthermore, uniformly distributed continuous input

noise variables are used while we only use Gaussian distributed input noise.
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) SECTION 5 7
3 RATE DISTORTION LOWER BOUNDS \
‘!1 5.1 RATE DISTORTION METHOD .':'.
§ Information theory provides another approach to bounding estimation per- .
E&-} formance based on Shannon's theory of rate distortion [15]),[16]. The basic \
mathematical idea behind that approach is that the mean square error D of any b
E: estimator of a random variable X given measurement Y is constrained by the A
:L inequality '
5 .
Rx(D) < I(X;Y) (5-1) )
{ -]
h where Ry is the rate distortion function of X and I(X;Y) is the mutual infor-
i mation between X and Y [16]. Solving Eq. 5-1 for the largest D satisfying ~
' the inequality gives a lower bound of the minimum mean square error of esti- u_‘
: mating X given the measurement Y. In a filtering problem one would let X be '_5.'_
l the current state component xj(t) of interest and let Y be the measurement
sequence <y(t),y(t-1),...,y(1)> up to the current time. This method has been ::
*L',_' applied to nonlinear filtering problems with continuous states and measure- \‘
;
- ments generated by Gaussian noise inputs in [17]-{20]. We will apply the
t_r/ method to Type I and II hybrid state estimation problems in this section.
i-‘: 5.2 RATE DISTORTION BOUND FOR TYPE II PROBLEMS -
- The difficulty of applying the rate distortion method depends on the
'C:: difficulty of calculating the rate distortion function Ry and the mutual ‘
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information I(X;Y) in Eq. 5-1. 1In general (and this is true for the hybrid
state estimation problem), these expressions cannot be computed in closed

form. Therefore, we look for an upper bound Iy of the mutual information and

a lower bound R; of the rate distortion function. The Eq. 5-1 is replaced by
R(D) < Iy . (5-2)

Solving Eq. 5-2 for the largest D that satisfies the inequality gives a lower
bound of the minimum mean square estimation error which is lower than the
bound given by Eq. 5-1.

Let us first find a lower bound for the rate distortion function.

Shannon's lower bound of the rate distortion function Ry is
Rx(D) > h(px) - 1/2 log(2x eD) (5-3)

where h(py) denotes the differential entropy of the probability density pyx
of X [16]). To avoid notational complexity but without loss of generality
(as will become evident), let x(t) be a scalar process. The density py(t)
is a Gaussian mixture, and although we cannot compute h(px(t)), we can find

a lower bound for it, namely

h(px(t)) > I h(px(r)|q) Pla,t) (5-4)
q

vhere q denotes the discrete sequence <q(t),...,q(1)>, p(q,t) denotes the
probability of this sequence occurring, and Px(t)lq is the Gaussian density
of x(t) conditioned on the sequence q. This gives us a lower bound of the
rate distortion function. For reference below let P(th) denote the condi-

tional covariance of x(t) given the sequence q.
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Next we find an upper bound for the mutual information. The basic rela-

Lk SN
D
s 05

tion is
E I(x(t);Y(t)D"’vY(l)) < I(x(t).---»x(l)»Q(t);---,q(l);Y(t),-“.Y(l))
. (5-5)
S The right side of Eq. 5-5 is given by
E I(x(t), e, x(1),q(t), -0 «,q(1);y(t), -+ -,y(1))
- - h(Y(t))"'nY(l)) (5_6)

e ]

= h(y(et), e,y (1) x(t), eee,x(1),q(t), «..,q(1))

where the expression h(Y]x) denotes the conditional differential entropy of Y

with respect to X [16]). Let M(t]q) denote the covariance matrix of the mea-

surement sequence <y(t),...,y(l1)> conditioned on knowing the discrete sequence
E; q = <q(t),...,q(1)>. Then the differential entropy is bounded above by
. h(y(t),...,y(1)) < 1/2 log[det(27e § p(q,t)M(t|q))] (5-7)
q
;i and the conditional differential entropy is given exactly by
) h(y(t),eee,y(1)]x(t),e0e,x(1),q(t),«.,q(1)) (5-8)
= = 1/2 § p(q,t) log[det(2neR(t]|q))]
‘-L q
ﬁ' where R(th) denotes the covariance matrix of the noise sequence D(q(t))v(t)
-~ given the discrete sequence q(t). Eqs. 5-7 and 5-8 give us an upper bound of
- the mutual information.
:;: Using the lower bound of the rate distortion function and the upper bound }
e I
of tue mutual information, we obtain the following lower bound of the mean |
square estimation error D; of estimating x(t) given the measurements up to
s time t.
iE
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D¢ > exp(Fy + G - Ht) (5-9)

-~
FRO S
N

where Fy, G, and Hy are given by

Fe = ] p(q,t)log(P(t]q)) (5-10)
v q

Ge = ] p(q,t)log(det[R(t[q)]) (5-11)
b q
o Hy = log(det[] p(t,q)M(t|q))) (5-12)
he q
ﬁ- Note that if the noise random variables v(t) are independent, standard
B Gaussian random vectors, then R(t]q) 1s the block diagonal matrix
Y
=

R(t|q) = dtag{p(q(k)) D(q(k))T} (5-13)

and
t
. det R(t|q) = N det{p(q(k)) p(a(k))T} . (5-14)
k=1
ﬁf If the gq(k) are independent and identically distributed, then
! Gy = t « E{log det(D(q(1)) D(q(1))T} . (5-15)
}; 5.3 REMARKS ON RATE DISTORTION METHOD
Ll
it
Note that no assumption was made about the statistics of the discrete

state process q(t) except that they are independent of the continuous states.
Thus, the rate distortion bound allows us to treat Type II problems in which
: q(t) is a finite state Markov chain. In theory, one could treat more general

problems (Type III) using the rate distortion theory approach provided that
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one can compute or bound the corresponding rate distortion function for the
state component and the performance criterion of interest. For example, one
can do this if one is interested in just estimating discrete states and the
average probability of error criterion is used. See [16] for the general
theory of rate distortion with general error criteria.

The rate distortion method has a different kind of computational complex-
ity from the Cramer—-Rao method presented above. Omne can compute this bound
exactly (i{.e., no numerical integrations are required), but the complexity
increases exponentially as the number of time periods t considered. The com-
putations are similar in nature to the computations occurring in the optimal
hybrid state estimation algorithm {1],[2) -- that 1is, for each sequence of
discrete states one computes M(t|q) and P(t|q) from the corresponding linear
filter equations. Of course, these computations are exact and no simulation
or Monte-Carlo averaging is involved. Still, if there are N discrete values
of q(t), then this computation will involve Nt filter computations to consider
a time period of t steps. Furthermore, the covariance M(th) has dimension
mt where m is the dimension of y(t) and t is the number of time periods con-
sidered. Computing the determinants needed in Eqs. 5-11 and 5-12 requires
on the order of (mt)3 operations (see [20],{21] for an efficient method for
doing this in the context of rate distortion problems). Thus, although the
rate distortion method is easier than the Cramer—Rao method to compute for
short periods of time, the rate distortion computation quickly overtakes the
Cramer—Rao in complexity as the number of time periods increases. This method
has a similar sensitivity to the number of discrete states and the dimensions

of the state and measurement vectors.
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The rate distortion method gives a lower bound of minimum mean square

- error, and in some cases that lower bound may be very loose. In principle,
I! the bound becomes tight as the measurement covariance increases, but in prac-
tice (as with the Cramer—-Rao method) one has to check the bound with more

accurate performance measures computed for some simple test cases in order

to get a feel for the rate distortion bound's accuracy.
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SECTION 6

o MONTE-CARLO PERFORMANCE ANALYSIS
BASED ON THE REPRESENTATION THEOREM

"
: 6.1 INTRODUCTION

Lg A major disadvantage of the rate distortion method described in Section 5

- is that it can be inaccurate unless measurement noise is very high. 1In [28]
we faced a similar problem in applying rate distortion methods to nonlinear

o filtering problems such as occur in passive tracking problems. In this sec-

- tion we will extend a Monte-Carlo method discovered in {28] to include hybrid

:ii state estimation problems. Note that this method is based on a rate distor- ;

- tion approach due to Galdos [18],[19]. This method uses the representation i??

I'i theorem of nonlinear filtering theory to obtain an approximation of a rate %i

distortion lower bound on estimation error. Galdos presented both a pertur- Ei
bation approximation and a Monte-Carlo approximation for his method in ([18]. ;

ln In [19] he clarified, extended, and simplified the Monte-Carlo approach. 1In i’

b this section we show that one can use the Monte-Carlo approach directly to .j

Eé approximate the minimum mean square estimation error without invoking any rate 1ﬁ
distortion theory. As we will see, this direct method not only avoids the

lower bound aspect of rate distortion theory, but is also is simpler to imple-
ment and more generally applicable than the indirect rate distortion approach
of Galdos. In subsection 6.2 we will generalize Galdos' method to general
hybrid state systems. 1In subsection 6.3 we will present our direct method,

and in subsection 6.4 we will make some concluding remarks.
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6.2 GALDOS RATE DISTORTION METHOD

The problem of [19] is that of estimating optimal performance in discrete

time nonlinear filtering problems described by equations of the form
x(t+l) = £t,x(t)) + g(t,x(t) Jw(t) (6-1)
y(t) = h(r,x(t)) + v(t) (6-2)

where w(t) and v(t) are zero wean Gaussian white noise sequences. In partic-
ular, if d(x(t)) is a scalar function of the state x(t), it is desired to
approximate the minimum mean square error for estimating d(x(t)) given mea-~
surements y(s) for s = 1,...,t.

The method of [19] 1is not limited to systems of the form of Eqs. 6-1 and
6-2. As we will show, one can consider any problem such that the measurements
y(s) are conditionally indcpendent given the state process x(s), 1<s<t, and
the conditional density that y(s) = y given x(s) = x is p(ylx,s). One also
needs to be able to simulate independent samples of measurement and state

processes — we will explain more precisely what is needed below.

Rate Distortion Approach [16],[19]

One can consider the problem of estimating the minimum expected value
of p(d(x(c)),&(t)) where p is some arbitrary error criterion. The minimum
is taken over all estimates 3(:) which depend only on the measurements

y(1),...,y(t). The rate distortion approach is based on the inequality
R(ep) < I(d(x(t));Ye) (6-3)

where
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R(D) rate distortion function with respect to p;
ee = E{o(d(x(£)),d(0))};

&(t) = estimate of d(t) based on Y;;

Ye = measurement sequence y(l),...,y(t);

p = error criterion;j;

1 = mutual information between d(x(t)) and Y.

To use Eq. 6-3 you must be able to compute R (or rather its inverse function

R-1) and the mutual information I(d(x(t));Yt). Then
er > R-L(1(d(x(t));Ye)) -

If we cannot compute the rate distortion function or the mutual information,
then we must approximate by means of a lower bound on the rate distortion

function,

RpL(D) < R(D)
and an upper bound on the mutual information.
Iy(t) > T{d(x(t));Ye) -
This gives the looser inequality
er > R~ (Iy(t)) (6-4)

for the estimation error.
Galdos uses the usual lower bound R|, on the mean square distortion func-~

tion R for the error criterion p(d,&) = (d-&)2 and the source d(x(t)] given by

1
RL(D) = h{pacx(t))) - - log(2meD) (6-5)
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where PA(x(t)) denotes the probability density of d[x(t)) and h(p) denotes the
differential entropy of a probability density p. Note that Ry, (and R also)

depends on t implicitly through this differential entropy of d(x(t)]. Note

that i{f d is a linear functional of x(t) and if x(t) is Gaussian distributed

(as it is for the subclass of Type I hybrid state systems described in Eq. 2-9,

for example), then the differential entropy is easily computed as a function

m

o of the variance V of d(x(t)), namely

n:: 1

- h(pd(x(t))) = Ty log(2wev) . (6-6)

f} The mutual information is not so easy to approximate, and this 1s where
Galdos resorts to Monte-Carlo approximation. By definition, the mutual infor-

= mation is

> py|d{¥eld(x(e))}

o I(d(x(t));Y) = E {log (6-7)

Py{Yt}

In the right-hand side expression of Eq. 3-7, we use py|d to denote the con-

s ditional density of the measurement sequence Y. given d(x(t)), and we use Py

to denote the unconditional density of Y;.

Representation Theorem

g The representation theorem (for discrete-time estimation, this 1is just

Bayes' rule) is used to represent the ratio

Ex|d{exp(ze) |d(x(t))]

(6-8)
Ex{exP(Ct)}

-
Py[d{Yeid(x(t))}
1; Py {Ye}
?E where f{, is the random variable defined by
‘i

.";. N

Py L < .L.‘L..J- Lot g ot
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. t
:1.'- e(Yp,Xe) = leog[p(y(s)lx(s),s)] . (6-9)
- s:
ll Thus, ¢ is a function of the measurement sequence Yy and the state sequence

Xe = (xl,...,xt]. The expectations Exld and Ex integrate over the state
sequence only, leaving the measurement sequence alone. To be precise, let p,

denote the probability density of the state sequence X;. Then E, is inter-

o
£
i
4
K

o
E B

pre.ed to mean

- Y
) :
3 Ex{exp(ze) } = [ exp(ge(¥e,Xe) ) px{Xe} axe . (6-10) ]
E: Thus, this expectation produces a function of Yy. If Px|d denotes the condi- ?
tional density of the state sequence given the variable d(x(t)), then Exld is '
ii interpreted to mean
<
Ex|d{exp(ze)} = [ exp(ge(¥e,Xe)) px|d{Xeld(x(e) )} axe . (6-11) .
i This expectation produces a function of Y, and d(x(t)). #
- Indirect Monte-Carlo Approximation
) The approach of [19] is to approximate the integrals in Eqs. 6-10 and
!! 6-11 by Monte-Carlo methods, and then use Monte-Carlo methods again on the
- approximate ratio corresponding to Eq. 6-8 to obtain the final approximation
o for the mutual information in Eq. 6-7. We will now outline a simple Monte-
= Carlo algorithm similar to [19] for approximating the mutual information.
%.

Note that the integers n and m control the number of simiulations used in the

Monte-Carlo approximation.
Step 1. Initialize Iy « 0 and 1 + 1.

Step 2. Simulate d(x(t)) and the measurement sequence y(l),...,y(t)
from the jolnt state and measurement model.
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Step 3. 1Initialize Ny + 0, Dy « O, and j « 1.

Step 4. Simulate the state sequence x'(s), 1<s<t, conditioned on
d(x'(t)) = d(x(r)).

h| 1 t
St 5. Nt + — N¢ + — exp log|ply(s)|x'(s),s .
5 Ne St = ep) T leslplye)|x'(),s)]

Step 6. Simulate a new state sequence x'(s), 1l<s<t, without
conditioning.

h| 1 t
7. Dy + —— D¢ + — 1 (s), .
Step t e ¢ + ey exp szl og[p(y(s)lx (s) s)]

Step 8. If j = m, then go to next step, else j « j+l and return to
Step 4.

i
Ste 90 I "—'—I +_1°
P Ean Y g[: :}
Step 10. If {1 = n, then stop, else 1 « i+l and return to Step 2.

When the algorithm stops, the value of I, will be an approximation of the
mutual information in Eq. 6-7. Using this with Eq. 6=5 in the inequality of

Eq. 6-4 gives the approximate lower bound

1
e > 5= exp{2[h(pa(x(t))) = It]} (6-12)

for the mean square error ¢ of estimating d(x(t)).

Remarks on Indirect Monte-Carlo Approach

A few remarks are in order at this point. The algorithm consists of an
outer loop that iterates n times (Steps 2 through 10) and an inner loop that
iterates m times (Steps 4 through 8) for each iteration of the outer loop.

Thus the algorithm requires of the order of nm simulations (it requires n
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unconditional simulations of the state and measurement sequences, nm uncondi-
tional simulations of the state sequence, and nm conditional simulations of
the state sequence). As n,m * =, the approximation I, couverges to the mutual
information. However, the rate of convergence is not clear. For some numer-
ical experiments, n and m must approach 1000 for reasonable accuracy. Thus,
the simple Monte-Carlo approach outlined above can be very time-consuming,
although the algorithm is very simple to implement.

A more difficult problem is simulating the conditional state sequence in
Step 4. Theoretically, this involves simulating a time reversed state x(t)
process [19],[29] from a terminal condition specified on d(x(t)). If the
state process 1is Gaussian and d is a linear functional of the state vector,
then the reversed process can be simulated by a linear Gaussian model as out-
lined in [19] and derived in [29. 1If the state is non-Gaussian or nonlinear,
or d is nonlinear, then the backward simulation problem 1s considerably more
difficult. Galdos suggests an approximate approach in [19].

Computing the differential entropy h(Pd(x(t))) is easily accomplished by
using Eq. 6~6 if the state process is Gaussian and d is linear. Note also
that in the linear case the approximation Ry in Eq. 6-5 is exact: Ry = R.

If one or the other {s nonlinear, then the differential entropy may also have
to be approximated.

Finally, the method is fundamentally limited by the fact that, at best,
it is a lower bound on performance. There Is no guarantee that the rate dis-
tortion lower bound will be a good approximation of the estimation error.

Despite these limitations, the method has some appeal because it poten-
tially applies to a very general class of filtering problems and requires

little special analysis once the basic algorithm is set up. In the next
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section we will show how to use the representation theorem in a direct Monte-
Carlo approach that avoids many of the problems inherent in the indirect rate

distortion approach.

6.3 DIRECT MONTE-CARLO PERFORMANCE ANALYSIS

The direct method we propose is based on the observation that the repre-
sentation theorem used in [19] essentially gives the conditional probability
density w; of x(t), and this density allows one to compute the exact minimum

mean square error £ in estimating d{x(t)) via the formula

€¢ = E3 [ a(®)2ne(8)de ~ ([ d(&)me(£)dE)2 i . (6-13)

To see how this is done, consider the representation theorem of Eq. 6-8 again.
Let py(t) denote the unconditional density of x(t) and let Ex|x(t) denote the
conditional integral defined in Eq. 6-11. Then the conditional density mg is

given by

Ex|x(t) {exp(ze) | &}
Ex {exp(z¢e) }

me(E) = Px(t) (€8} . (6-14)

Thus, the conditional integrals in Eq. 6-13 can be expressed as

Exlx(t){exP(Ct)lg}
Ex{exP(Ct)}

[ d(e)me(e)de = [ d(&) px(t) {EXE (6-15)

which is same as

Ey {d (x(t) Jexp(ze) }
[ d(E)me(E)dE = . (6-16)
Ex{exP(Ct)}

Similarly, we have
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Ex {d(x(t) )2exp(zy) }
[ d(&)2n(E)dE = . (6-17)
Ex {exp(zt) }

We will now use these formulas to derive a direct Monte-Carlo approach to

approximating minimum mean square error.

Direct Monte—-Carlo Algorithm

We describe a simple Monte-Carlo algorithm analogous to the one given
for the rate distortion approach. As above, the integers n and m determine
the number of simulations used by the Monte-Carlo approximation.

Step 1. 1Initialize ¢ «+ 0, 1 « 1.

Step 2. Simulate a measurement sequence y(s), 1<s<t. y

Step 3. Initialize Vp « 0, My « O, P « 0, j + 1.

Step 4. Simulate the state sequence x(s), l<s<t.
t

Step 5. ¢ + Ellog[p(y(s)lx(s),s)] .
s’

A
Step 6. V¢ ¢ — V¢ +
t §+1 t

J

1
— d(x(t))? .
proy (x(t) )2 exp(gy)
1
Step 7. My + — Mg + — d(x(t)) exp(ge) -
i+l
1

j+1

3
Step 8. Py ¢+ — P + exp(t;t) . |

j+1 i+l :

Step 9. If j = m, then go to next step, else j « j+1 and return to
Step 4.

i 1 | Ve My )2
Step 10. € = — g + — _— - . .
i+1 i+l | P P¢
Step 11. If { = n, then stop, else 1 « i+l and return to Step 2.

The final value of € will be an approximation to the minimum mean square

filtering error for estimating d(x(t)).
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Remarks on Direct Monte-Carlo Approach

The direct Monte-Carlo approach outlined above also requires of the order
of nm simulations (n simulations of the state and measurement sequences, and
nm simulations of the state sequence alone). Furthermore, the direct method
can converge slowly just as the indirect method, and n and m may have to be
very large to obtain sufficient accuracy.

However, in other respects, the direct method is an improvement over the
indirect method. The direct does not require conditional simulation of the
state sequence; only forward time simulations are needed, nor does the method
require any entropy calculations. Consequently, the direct method is easy to
apply to problems with non-Gaussian noise and nonlinear state dynamics. In
fact, the type of state model is irrelevant to the application of the algo-
rithm, provided one can simulate the state sequence and provided that the mea—
surement model is given the probability density function p(y|x,s). Thus, it
is possible to apply the direct method to very general non-Gaussian, non-
Markovian state processes.

Finally, the direct method approximates the actual minimum mean square
error and not a lower bound of this error. Thus, as the Monte-Carlo parameters
n and m increase, one obtains better approximations of the optimal performance.
For the indirect method, the performance approximation may be poor no matter

how large n and m are.

6.4 CONCLUSIONS

In [18],[19] Galdos had the innovative idea of using the representation
theorem of nonlinear filtering theory for computational rather than theoret-
ical purposes to obtain a rate distortion lower bound of optimal filtering
error approximations for a large class of filtering problems. In this section
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we have shown how to apply the representation theorem directly without having

to use rate distortion theory, thus obtaining a simpler, more accurate approx-
imation of optimal filtering error which applies more easily to a larger class
of hybrid state filtering problems.

The technique outlined in the previous subsection has the advantage that
it is very easy to use for almost any filtering problem. 1Its major disadvan-
tage is due to the slow convergence of the crude Monte-Carlo methods employed.
This suggests a problem for further work. The paper [30] of LeGrand is of
interest in studying this problem as he has investigated the problem of accel-
erating Monte-Carlo convergence for conditional expectation type calculations
using importance sampling. Note also that the algorithm described in subsec-
tion 6.3 can be partly decomposed into parallel computations, so the algorithm
is a good candidate for array processing.

Any simulation technique, such as the one described in this section, has
the fundamental limitation that it only indicates performance for a single set
of parameters defining the statistics of the underlying model. Thus, such
methods cannot easily provide insight into how performance is affected by
parametric variations. Unfortunately, accurate analytic methods which might
provide such insight are lacking for most non-Gaussian, nonlinear filtering
problems. The method discussed here offers a viable approach to accurate
optimal performance analysis which may at least help determine when practical
nonlinear filters are near-optimal. If the computational problems described
above can be solved by algorithmic or computer processing improvements, it is
also possible that the technique might give useful insights into hybrid state
estimation comparable to what is possible with analytic techniques available

for simpler problems.
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SECTION 7

A RANDOM POINT PROCESS APPROACH TO MULTIOBJECT TRACKING

7.1 INTRODUCTION

This section presents a new theoretical approach to multiobject tracking
problems which might provide a framework for developing effective analytical
tools for multiobject tracking problems. The approach is based on a random
spatial point process model of measurements and a Laplace transform method for
calculating the likelihood formulas that are essential to deriving tracking
algorithms and to analyzing tracking performance. The model includes the one
described above, but it is much more compact to express and simpler to under-
stand (once easy, but unfamiliar mathematics is grasped). Moreover, we show
how to use simple Laplace transform arguments to analyze this model and avoid
some of the notational headache inherent in previous approaches.

Theoretically, our approach is close to and was inspired by the random
space~time process work of [22],[{23]. However, the space-time processes and
the problem described in this section are different from [22],{23]. This
section considers only spatial point processes and time 1is discrete.

In the next subsection we present the mathematical model and background
concerning random point processes needed to understand and analyze the model.
In subsection 7.3 we state and derive the likelihood ratio formulas for such
random point process measurements using a simple Laplace transform approach.
Subsections 7.4 and 7.5 illustrate the use of the resulting likelihood ratio

formula by deriving the (optimal Bayesian) hypothesis tree type algorithm
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(subsection 7.4) and showing how to compute Cramer—-Rao lower bounds of mean

cel s
P INE a |
»

square estimation error covariances (subsection 7.5). Subsection 7.6 con-

cludes the section.

>
7.2 RANDOM POINT PROCESS MODELS i;
Conceptually, the approach of this section is to consider the observa- :
tions occurring in one time period or scan of data as an image of points =
rather than as a list of measurements. The approach is intuitively appealing i;.
because it corresponds to one's natural idea of radar and sonar displays — s
devices that provide two-dimensional images of each scan of data. We will 5
show in this section and the next that the approach 1s also technically '
appealing because it allows more compact and clearer formulation of models 33
and derivation of estimators. The approach uses the basic ideas of abstract
measure theory but only the simplest results. The reader can find the neces- d f
sary theory in [24],[25]. .
Following {22],{23], we formulate the image mathematically in terms of

a random point process. The precise way to do this is to use random measures

[22],[23]),{26]). It is mathematically convenient to represent an image of S;

points in terms of a measure taking nonnegative integer values. If u is such E%

a measure defined with respect to the measure space Y, then u(B) is the num— %i

ber of points falling inside a measurable subset B of Y. We will call such ;3
integer-valued measures counting measures. An important example of such a
measure is the Dirac delta measure denoted Gy for a given point y of Y and
defined so that Gy(B) = 0 if y is not in B and Gy(B) =1 if y is in B. If

y(k), 1<k<n, is a sequence of points in Y, then the sum ‘:

n t%

u = Z Sy(k) (7-1) :%

k=1 o
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is also a counting measure. We will use such sums to represent all the
counting measures we need to deal with. Note that the representation of u
[ by the sequence y(k) is unique except for arbitrary ordering of the sequence
of points y(k).

To formulate a statistical measurement model we must define random

counting measures. Random counting measures can be defined precisely as

et e

random variables taking values in M(Y), the collection of counting measures
- defined with respect to the measure space Y [26]}. In particular, if y is a
7 random variable with respect to Y then Gy defines a random counting measure
‘é with respect to M(Y). One can generate other random counting measures by
- summing several such Dirac delta measures as in Eq. 7-1.
' The most familiar and important example of a random counting measures
,; 1s the Poisson measure. This i{s called a Poisson process in [26] because {t
h generalizes the conventional Poisson process defined on the real line. The
v Poisson measure can be defined generally as follows. Let A be a finite (non-
- negative, real-valued) measure with respect to Y. Let N denote a Poisson
;; random variable with mean value equal to A(Y), and let y(k), 1<k, denote an
infinite sequence of independent random variables with re. :ct to Y which are
independent of N and which all have the probability distribution given by
:' A(Y)'lk. The summation
N
- ve Lo (7-2)
z defines a Poisson measure with intensity measure A. The conventional Poisson

process N(t) 1s related by n(t) = v([0,t]) to the Poisson measure v whose

intensity measure is the Lebesgue measure on the real line.
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A Poisson measure has the property that for each measurable subset B of

N Y, the integer-valued random variable v(B) is Poisson distributed with mean
' value A(B). 1In particular, one has that

w

.- E{wW(B)} = Ax(B) . (7-3)

Note that a Poisson measure also has the property that the raandom variables

?! v(By) and v(By) are independent if the sets B; and By are disjoint. These
e properties make the Poisson measures a reasonable model for clutter in multi-
8 object tracking problems. The Poisson distributed random variable v(B) models
ﬁ? the number of false alarms appearing in the subset B of the observation space
f in one scan of data. The intensity A(B) is thus the expected number of false
Eﬁ alarms appearing in B in one scan.
- We can now specify the random point process model we use for multiobject
< tracking. Let x(t) denote the joint vector of iandividual target states xy(t), )
ii 1<i<n,. For simplicity we will assume that there is a known finite number n
of targets and that the joint process x(t) is a Markov chain taking values in
-S the measure space X. In subsection 7.4 we will further assume that the chains
Il x3(t) are independent, but no such assumption is needed in subsection 7.3.
B The exact nature of these chains does not affect the results obtained here;
fj for example, one can suppose that they are independent, Gaussian processes !
i generated by finite dimensional linear, Gaussian systems. H
=
o The measurement process 1s a sequence g of random counting measures

which are conditionally independent given the state process x(t) and whose :

conditional distribution at time t depends only on x(t). Define u. as the sum

we = Tt Ve (7-4)
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where vy is a Poisson measure with intensity XA, and 1, is a random counting

measure of the form

n

= I zi(t) &y (r) - (7-5)

i=1 1
In Eq. 7-5 the random variable zj(t) is 1 or 0, depending on whether the ith
target is observed (i.e., has a return) in scan t or not. The random variable
yi1(t) takes values in Y and is the observation one receives in scan t from the
ith target provided that it is detected. We assume that the Poisson measures
vy are Independent of each other and of the processes x(t), zj(t), and yj(t)
for all 1 and t. The random variables zy(t) and yj(t) are conditionally inde-
pendent for all i and t given the state process x(t). Furthermore, the con-
ditional distribution of yi(t) is given by the measure B + Hi(le(t)) with
respect to the measure space Y, and the conditional probability that zy(t) =1

is given by Gy(x(t)). We will make further assumptions concerning these dis- ;
tributions in subsections 7.3 and 7.4. a

The model in Eq. 7-4 succinctly represents a scan of data that consists

of false alarms (modeled by v¢) and target detections (modeled by Tp). The
false alarms are modeled appropriately by the Poisson measure vy which assumes
as a reasonable approximation that false alarms are spatially independent of
each other. Note that the intensity measure A allows us to vary the expected
rate of false alarms over the observation space Y. For example, the observa-
tion space Y might simply be the plane and A might be a constant multiple of
the uniform distribution over a disk representing the area of coverage of the
sensor. This implies a constant rate and density of false alarms over the

sensor's area of coverage. The target detections are modeled by the random
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counting measure 1. given in Eq. 7-5. This model assumes that the group of
targets produces, at most, n measurements. In subsection 7.4 we will assume
additionally that

Hi(B|x) = H(B|xi) (7-6)
and

Gi(x) = G(x4) (7-7)

so that each target produces, at most, one observation and each observation
comes from, at most, one target. The probability distribution H(lei) corre-

sponds to the observation of a detected target; for example, it might be a

multivariate Gaussian distribution whose covariance is constant and whose mean

is a linear function of xy(t). The quantity G(xj) is the detection proba-
bility for a target in state xi; for example, this might be a constant inde-

pendent of xj.

In the next section we will derive a likelihood function for the measure-

ment up given the state x(t). Before doing so, we need to present a few more

basic mathematical results about random counting measures. Following [26], it

is convenient to denote by u(¢) the ordinary Lebesgue-Stieltjes integral of a
real-valued, integrable function ¢ with respect to a measure p. That is, we

define

wo) = [ ¢du . (7-8)

If uw is a counting measure given by Eq. 7-1, then this integral is just the

finite sum

n
uw(e) = ¥ o(y(k)) . (7-9)
k=1
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If the function ¢ is nonnegative, the integral u(¢) is always well-defined,

- although it may be infinite. If ¢ is a bounded real function and u is a

!l finite measure, then ¢ is also integrable. If u is a random counting measure,
i a stochastic integral can be defined just as in Eq. 7-9. In our examples, all
;; random counting measures are finite so that u(¢) is a well-defined integral
for bounded real functions ¢.
&: Stochastic integrals such as u(¢4) are important because we use them to
{t: define the Laplace transform of the random measure u by
o
o Lu(¢) = Efexp(-u(®))} (7-10)
&
for all nonnegative real function ¢ [26]. The Laplace transform L, uniquely
ii determines the distribution of the random measure p and is often easier to
work than the probability distribution of a random measure. An important
special case is the Laplace transform of the Poisson measure v given by
. Lu(9) = exp(-A(1-exp(-¢))) (7-11)
ﬁ: where A is the intensity measure of v and A[l-exp(—¢)) is the integral of
|; 1 - exp(—-¢) with respect to A. Note that if A is a finite measure, then v is
‘ almost surely a finite counting measure and Eq. 7-11 is true for bounded ¢ as
Ej well as nonnegative $. As a final example, suppose that t is the Dirac delta
-: measure Sy and y 1s a random variable with probability measure H. Then the
{E Laplace transform of 1 is

L¢(¢) = H(exp(-9)) - (7-12)

In the next subsection we will use the results (Eqs. 7-11 and 7-12) to derive
»y likelihood function for the multfiobject tracking measurement model as expressed
in Eqs. 7-4 and 7-5.
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7.3 LIKELIHOOD RATIO FUNCTIONS

.4

et
1y

r v

The key to developing an estimation algorithm for the measurement model

given in Eqs. 7-4 and 7-5, is to express the likelihood p(utlx(c)) of observing

Bt glven the true state is x(t). Since uy is a rather complicated mathematical

I _-.__l

[

object (namely a counting measure), {t is not obvious what the likelihood

v,r

function p(ulx) should be. Precisely defined, the likelihood or likelihood
ratio function is a Radon-Nikodym derivative of the observation probability
measure with respect to another probability measure, usually of an observation
noise [27]. 1In our case, the other probability measure will be the clutter
measure V.

Let Pl(le) denote the conditional probability that the observation ug
lies in the measurable set F of M(Y) given that the true state x(t) = x, and
let Po(F) denote the probability that the Poisson measure vy lies in F. We
are looking for the Radon-Nikodym derivative of P} with respect to Pg. That
is, the likelihood function p(ulx) is a real-valued function of the set M(Y)

of counting measures y and the set X of states x which satisfies the relation

PI(F|x) = [ p(&|x) dPo(E) - (7-13)
F

Because the distribution P} is uniquely determined by its Laplace transform

[26], proving Eq. 7-13 is equivalent to proving

[ exp(-£(4)) dP1(E) = [ exp(-E(¢)) p(&|x) dPy(E) (7-14)

for all nonnegative, measurable ¢. Written in terms of expectations, Eq. 7-14

is equivalent to

E{exp(=ue($))]|xCt)} = E{p(ve]|x(t)) exp(-ve(®))(tD} . (7-15)
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We can rewrite the left side of Eq. 7-15 using Eqs. 7-4, 7-5 and the Laplace
transform relations (Eqs. 7-11 and 7-12). Note also that the random measure
ve is independent of x(t), and the random variables zjy(t) and yj(t) are con-
ditionally independent of each other and v, given x(t). Thus, we have
n
E{exp(-ue(#))|x(e)} = 1 [1-61 + GiHy(exp(-4))] exp(-M(1-exp(-4))) -
« (7-16)
In Eq. 7-16 we have suppressed the dependence on x(t) of the conditional
detection probabilities Gj and the conditional observation probabilities Hj.
We will continue to do this to simplify our notation.
Our objective is to find a function p(u|x) such that
n
I [I—Gi + Giﬂi(exp(-¢))] exp (-A(1-exp(-¢)) )
k=1 (7-17)
= E{p(ve|x(t) Jexp(-ve(9))[x(e) }
We will do this in a series of increasingly more complicated results, beginning
with the case of a single target with perfect detection (i.e., for which n =1
and Gj(x) = 1 for all x). In this simple case, the basic ideas are clearest.
The treatment of imperfect detection is a simple corollary. Next follows the

case of n targets with perfect detection and finally the general case.

Proposition 1

Assume that the conditional probability H} has a density kj with respect

to the intensity measure A; that is, assume that
H1(B]x) = [ ki(y|x) dM(y) - (7-18)
Then for n = 1 and G} = 1, p(u|x) is given by

pCulx) = u(ky) - (7-19)
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Note that Eq. 7-19 means that

n
pCulx) = [ ki(y|x) du(y) = | ky(y(3)|x) (7-20)

) "
if the counting measure u is given by the sum in Eq. 7-1.
The assumption about the measurement density in this proposition is
- basically that the conditional observation probability distribution H; is ab-
solutely continuous [24],[25] with respect to the clutter measure A. In more
-, physical terms, we are assuming that no measurements will occur where there
- are not some false alarms. 1In many cases, the measures Hj} and A will have
densities h] and n with respect to Lebesgue measure defined on the observa-

- tion space Y = RB. For example, this is the case if one's observations have

continuous values and false alarms occur uniformly over the area of sensor
coverage. Then k; is given by the ratio 5
'. hi(y]x)
ki(y|x) = —— , (7-21)
n(y)
-
i~
provided that hl(y|x) = 0 whenever n(y) = 0 so that the ratio is well-defined
!’ (this condition is the substance of the assumption in Proposition 1l).
Proof of Proposition
Suppose that ¢(y) and kj(y|x) are bounded as functions of y for each x
:} and define
N oe(y) = o(y) - € ky(y|x(t)) (7-22)
for all real €. From Eq. 7-11 and the independence of x(t) and v¢ note that
exp(-A(1-exp(-$¢))) = E{exp(-ve(oe) )|x(t)} - (7-23)
]
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Under the boundedness conditions we can differentiate Eq. 7-23 with respect

to €. Doing so at € = 0 gives

A(ky exp(~¢)) exp(-A(1-exp(~¢))) = E{vg (k1 exp(-ve($)))]|x(t)} (7-24)

which gives the desired result upon noting A(kl exp(-¢)) = Hl(exp(-¢)). The
result for unbounded, nonnegative ¢ and k; follows from standard application

of Legesgue's dominated and monotone convergence theorems [24],[25].

Corollary 1

Assume the same hypothesis as in Proposition 1 but do not assume that

G1(x) = 1. Then p(u|x) is given by
plulx) = 1 = G1(x) + G1(x) u(ky) (7-25)

Proof of Corollary 1

Note that from Eq. 7-24 in Proposition 1 we have

GyHy (exp(-4)) exp(-A(1-exp(=9))) = E[Gyve(ky)exp(-ve(#) )|x(t)}
(7-26)

From the basic formula (Eq. 7-23) we have
(1-G1) exp(-A(l-exp(-4))) = E{(1-Gp)exp(-ve($) )|x(t)} . (7-27)

Adding Eqs. 7-26 and 7-27 together gives the desired result (Eq. 7-17) for the
case n=1.

The result for multiple targets is more complicated and requires some
preliminary notation and definitions. For any counting measure u on Y define
the new counting measure u(“) on Y? as follows. For each bounded real func-

tion f on Y" define the integral
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. w(®(£) = § aq(dy,e--,1n) £(y(11),.-.,¥(4in)) (7-28)

where the sum is over all sequences 1y,...,1i, of integers such that 1<ij<n, N

!l and ay = 0 1f 1j = i} for j # k, ay = 1 otherwise. Note that oy(y(1)) = 1
N for all y(1). The sequence y(k) 1is the one used to represent y in Eq. 7-1.
Y
'
"\

)

It should be clear that the definition does not depend on the order of the

g! y(k). The sum in Eq. 7-28 defines the integral of a counting measure on YN. i
i Note that the expression in Eq. 7-28 can be interpreted as the sum over all "
2{ sequences 1},...,in such that no ij appears twice in the same sequence. Also
w note that u(l) = y,
: Finally, if f},...,f, are function of Y, define the product by
-i f1xeeaxfn(yrseee,yn) = £1(y1) - fnlyn) - (7-29)
i{ We are now ready to state and prove the results for multiple targets, first
for the perfect detection case. .
Proposition 2
Assume that the conditional probability Hj has a density ki with respect .
to the intensity measure A for each i=1,...,n. Assume also that the detection
probability Gj(x) = 1 for all i and x. Then the likelihood function p(u|x) is }f
given by
pCulx) = u(m) (kg x..uxiy) (7-30) '
Note that Eq. 7-30 means that r
n :
pCufx) = [ 1 kj(yj]x) du(™(yy,...,yq) ]
= n (7-31)
82%(11)""1\1) I kj()'(ij)lx) . .
j=1 :
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Proof of Proposition 2

We need to prove Eq. 7-17 is true when Gj = 1 and p(u|x) is given by Eq.
7-30. As in the proof of Proposition 1, it suffices to prove this for the >
case when ¢ and k4 are bounded functions with respect to y. We have proven
the case n = 1 in Proposition 1. We will prove the general case by induction E‘
on n. Thus, assume that Proposition 2 is true for n, and let us deduce the 5-
result for n + 1. =

The result for n states that

n -
i n [Hi(exp(-¢)]] exp(—k(l-exp(-¢))) =
" 1=1 (7-32) R

g
= E{vt(ﬂ)(klx...xkn)exp(—vt(¢))|x(t)} s

ks o
. As in Proposition 1, substitute the perturbation ¢, 3
N $c = ¢ ~ € kntl (7-33) NS
for ¢ in Eq. 7-32 and take the derivative with respect to €. This gives the ~

.
following result when € = O: §ﬁl

,{. n ‘:
T [Hy exp(-¢)] exp(-r(1-exp(-¢))) i

1=1 o3
= E{vt(n)(klx...xkn) ve(kpt1) eXp[-vt(¢)|x(t))} :?i

. n n -
- 1 A(kjkp+r exp(=¢)) T [Hy(exp(-¢))] exp(-A(1-exp(-¢))) . _

j=1 1#j N
(7-34) A

Substituting kjkn+1 for kj in the result (Eq. 7-32) for n gives ﬁi

: :

A(kjkar1 exp(-9)) t [H1 (exp(-9))] exp(-A(1-exp(-4)))
#j
(7-35)
= E{vt(ﬂ)(klx...xkjkn+1x...xkn) exp(—vt(¢))|x(t)} .
; 64 2
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Finally, note that for any counting measure p and functions kj defined on Y

defined on Y we have that

p(oHD) (e xe v exknyr) = (™) (kpxe oo xky) w(kpty)
a (7-36)
- z p(n)(klx...xkjkn.,.lx...xkn) .
j=1
Putting Eqs. 7-35 and 7-36 in Eq. 7-34 gives the desired result for n + 1.

The general case with imperfect detection follows Proposition 2 in the
same way that Corollary 1 followed from Proposition 1. The notation, however,
is more complicated. Adjoin a new point 6 to the observation set Y and call
the extended set Y. Extend any counting measure u defined on Y to a counting
measure p defined on Y by defining u(B) if 6 is not in B and w(B) + 1 1if 6 is

in B. The point 6 represents a fictitious measurement indicating a possible

missed detection and is always counted by p. Likewise, extend u(“) to lﬂ“)

" as follows. Define ap as a, was defined before except that a; = 0 1f 15 = 14

for j # k and 1if y(ij) # 8. Note that lf“) can be interpreted similarly to
(). The sum corresponding to Eq. 7-28 is over all sequences i},...,1, such
that no 1j appears twice in the same sequence, except that the index { for
which y(i) = 8 can occur any number of times.

It is also necessary to extend ki to a function ki defined on Y as

follows:
ki(y|x) = G1(x) ki(y|x) (7-37)
for y in Y, and
Ei(elx) =1 - Gy(x) . (7-38)
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Corollary 2

Assume the same hypothesis as in Proposition 2 but do not assume that

Gi{(x) = 1. Then p(u]x) is given by
p(njx) = () (kg xoouxky) . (7-39)

Proof of Corollary 2

The proof follows that of Proposition 2 with minor variations. We have
proven the n=1 case in Corollary 1. To prove the general case by induction,
assume that the following result is true for n and all bounded functions ¢, kj
and detection probability functions Gj.

n
m [1-Gy + GyHy (exp(-4))] exp(-A(1-exp(-¢)))

i=1 (7-40)
= E{ve (™ (kyx..oxky) exp(~ve($))|x(t)} .

Substitute the perturbation

% = ¢ — eGnpirkntl (7-41)

for ¢ in Eq. 7-40. The derivative at e=0 gives

n
Gn+1Hn+1(exp(-¢)]iH1{I-Gi + Giﬂi(exp(-¢))] exp(—A(l-exp(-¢)))

= E{ve(m) (kg %+« e xkp) Gpy1 V(kns1) exp(-ve(9))[x(t)} -42)
=42

n n

= I Gas164H (knerexp(=¢)) T [1-G1+GyHy (exp(-9))]
=1 1#§
exp(-A(1-exp(-¢))) .

Suppose that in Eq. 7-40 we substitute the function By = Gn+1G jkn+1ky for kj

and 1 for Gj. Then we obtain
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E{Xt(n)(klx.o.ggjx...gkn) exp(-ve(¢) )] x(t) }

n
= Gp+1G64H;j(knpr1exp(=9)) T [1-6; + GyHy(exp(=¢))] exp(-A(1-exp(-4))) .

| i

(7-43)
Multiply Eq. 7-40 by 1 = Gp4) to get
n
oy (1-Gne1) T [1-G1 + GyHy (exp(~4))] exp(-M(1-exp(-¢)))
{=1 (7-44)
= E(ve (™) (kp %o oo k) (1-Gpp1) exp(-ve(9) }|x(t)} .
S
v Adding Eq. 7-44 to Eq. 7-42 and using the relation 7-43 gives
n+l
.. n [l—Gi + Giﬂi(exp(-¢)]] exp(-x(l—exp(-¢)))
:u' i=1
e
= E{ e (™ ey x- « - xkq) v (kpt1) (7-45)
¢ n
- lk(n)(klx...ggjx...gkn)] exp(-ve(9) )|x(t)} .
§=1 (7-45)

Finally, let us show that the right side of Eq. 7-45 is what we want. Corre-

sponding to Eq. 7-35 is a recursive expression for o, given by

B .
“ Ont1(11,-0 05 1041) = 31(11:-~o1n)[ - Zl_q(ij,inﬂ )] (7-46)
~ 3

where 8(i,j) = 1 only if i=j and y(i) # 0 (S is O otherwise). This recursion
s
;: impliers that for any counting measure u defined on Y and functions kj defined

on the extended set Y we have

n
Eﬂn+1)(klx...gkn+1) = lén)(klx..-%ﬁn)u(5n+1) -3 iﬁn)(slx"'%éjx"'KEn)
i=1

(7-47)
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where B8j is defined so thatlgj(y) ’.Ej(Y)En+I(Y) for y in Y and sj(e) = 0.
If‘Ej and kpy) are defined as in Eqs. 7-37 and 7-38, then B85 in Eq. 3-37 is
precisely the extension of 8j in Eq. 7-43 to Y. Thus, substituting Eq. 7-47

with u = v into Eq. 7-45 gives the desired result.

7.4 ESTIMATION ALGORITHM

The conditional probability distribution of the state variable x(t),
given all observations up to time period t, contains all the statistical
information about x(t) that exists in the measurements. Let m (x) denote the
density of the conditional probability distribution with respect to some mea-
sure Y (y might be Lebesgue measure, for example). Similarly, let nt+1,t(x)
denote the conditional probability density of the state x(t+l) given all ob-
servations up to the time t. The recursive procedure for computing my41(x)
from a new observation and the predicted density nt+1’t(x) is Bayes' rule.
In terms of a likelihood function p(utlx) for the measurement model, Bayes'

rule is

x Te+1,e(x) pCu|x) 748
n x) = . -
et [ me+1,e(8) pCuel€) dy(E)

In this section we sketch briefly how Bayes' rule applies to the likelihood
function of Eq. 7-39 in the previous subsection leads directly to the measure-
ment update computation found in hypothesis tree type multiobject tracking
algorithms.

Hypothesis tree type estimation algorithms are based on the representa-
tion of the conditional probability density of the state as a weighted sum of

simpler densities, namely,
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me(x) = Z By mj(x) (7-49)
J
where each nj(x) is a product
n
nj(x) = 1 ni’j(xi) . (7-50)
i=1

The density “1,j(xi) represents the conditional probability of the ith target
being in state x§ given that hypothesis j is true. The weight By 1is the
probability that hypothesis j is true. For example, in applications, the
densities LEDR | and LE might be approximated by Gaussian distributions so that
Eq. 7-49 is a Gaussian sum distribution.

Using the likelihood function of subsection 7.3, we will derive the
expression (Eq. 7-49) for #ng41(x). First assume that x(t) is the joint vector
of individual target states xj(t), 1<i<n. For simplicity we will assume that
there is a known finite number n of targets and that the processes xj(t) are
independent Markov chains. Assume that the measurement yr is modeled as in

subsection 7.2 and that the measurement densitites hi(y|x) satisfy
hi(y|x) = n(y]xg) , (7-51)
and the detection probabilities Gi(x) satisfy
Gi(x) = G(xg) - (7-52)

Let n(y) denote the false alarm density, and as in subsection 7.3, assume that

n(y) is not O unless h(y|xj) is 0 for all values of xj. In this case, ki is

given by

G(x1) h(ylxy)
ki(y|x) = k(y|xq) = (7-53)
n(y)
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for y in the observation space Y (i.e., y corresponding to a detection), and

is given by

ki(y|x) = k(y|x4) =1 - 6(xq) (7-54)

For y = 0 (1.e., for y corresponding to a missed detection). The algorithm
for updating Eq. 7-49 1is then given in terms of a prediction step and a mea-

surement step as follows.

Prediction Step

For each hypothesis index j and each target index 1, predict ahead the
density mi,4 one time period to obtain the conditional density ni’j*(xi) of
xi(t+l) being in state xj given measurements up to time period t. The pre-

dicted density is given by the weighted sum of products

n
Te+l,e(x) = } Bj iH m, 5ty . (7-55)
=1

For linear Gaussian target models, this step involves just the prediction of
the conditional mean and covariance. For nonlinear target models, this step
would require propagation of some other statistics describing the conditional
density or an approximation (such as In an extended Kalman filter). Note that
the prediction step does not change the hypotheses j or the probabilities Bj
of the hypotheses. This occurs in the next step when measurements at time
period t+l are processed.

To work out the measurement processing step, one substitutes the expres-
sion 7-55 for w4}, t(x) and the likelihood function 7-39 for p(ut+1|x) into
Bayes' rule (Eq. 7-48). Let us carry this out in detail. Suppose that the

point process measurement up4] consists of the observations y(k), 1<k<m,
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listed in some arbitrary order (compare Eq. 7-1). Let y(mt+l) denote the

VY
PR

fictitious observation y(mt+l) = 6. Then the likelihood function p(ut+1|x) of

Eq. 7-39 is given by the summation

g

Plug+1|x) = e+ (M (Kyx. . k)

= 1 on(dy,--«,in) k(y(11)]x1 ).« -k(y(1n) [xq)

(7-56)

o

v B

where the sum is over all sequence i;,...,i; of integers such that 1<ij<m+1,

\

and an = 0 only if ij = ig for j # k and ij # mt+l, else an = 1. Note that

1' N
(2 %!

a sequence {1,...,1, associates target j with one of the m observations y(ij)

or with the fictitious measurement 8 (to denote the lack of real observation

Enoh

for that target). The coefficient a, indicates which associations are valid,

=

namely, those which associate each real measurement with, at most, one target.

£

Before presenting the update algorithm, it is necessary to introduce some

-
- £

further notation. If measurement k 1s associated with target 1 of hypothesis
i. j, then the conditional density ni’j+ is updated to 1,4,k by
- my, H(x1)6(x1)h(y (k) |x1)

", §,k(x1) = (7-57)
J w1, §7(E1)6CEDR (k) | €1) dv(E)

TE

e if 1<k<m, and
o m1, 57 (xq) [1-6(xq) ]
a T, ,mH1(x1) = " (7-58)
[ mg, e [1-6(E1)] dv(E)
-
il
i for k = m¥l (processing the missed detection). Similarly, the likelihood that
;& the measurement k is associated with target i of hypothesis j is given by
)
s "1, 5FCEDG(EDR (y(k) | £1)
"o 01,4,k = i dy(&y) (7-59)
n(y(k))
!
A
.
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if 1<k<m, and by

of,§,ml = J ™, 5FCEL[1-C(E5)] dv(&y) (7-60)

for k = m+l in the missed detection case.
Using this notation, substitute Eqs. 7-56 and 7-57 to obtain

n
Teel,e(x) PCue|x) = I ] By an(i1,---51n) M ok, 4,1 5,4 (Xk) - (7-61)
ji k=1 k k

Thus, Bayes' rule (Eq. 7-48) gives

n
T IBjon(ig,eeesin) M op 3.4 ™. 4.4 (XK)
j i jgl n k=1 ’j’ k ’j) k

(x) = (7-62)
n
Y I8 (A1yeeepin) T ox 4.1
§ 1 i " k=1 »dody

L
t+l

The update step of the estimation algorithm is then given as follows.

Update Step

For each hypothesis j, each target index i and each measurement index k,
update the density "1,j+ to obtain the updated target densities mj 4 k(xj) of
x4(t+1l) being in state xj given hypothesis j was true up to time t and that
measurement k was associated with target i at time t+l. Similarly, calculate
the likelihood 0i,j,k of measurement k being associated with target i given
hypothesis j was true up to time t. For each hypothesis j at time t and for
each association i;,...,1i, of measurements with targets, generate a new

hypothesis j' at time t+l1 with probability

n
Bj an(ig,-++,1pn) 0 ok’j’ik
g . = k=1 (7-63)
3 n
Z 2 Bj an(iy,..e,ipg) 1 %, j, 1
j 1 k=1 k
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and with target conditional densitities

T, (xKk) = “k,j,ik(xk) . (7-64)

The conditional density of the combined target states at time t+l is then

n
med1(x) = § By Momp je(xg) . (7-65)
i am

Note the tree structure of the hypotheses. At every update step each
hypothesis j generates many new disjoint hypotheses j'. Over time, the
hypotheses can be arranged in a tree with the nodes at one level of the tree
representing hypotheses at one period of time. Branching of nodes at one
level of the tree to nodes at the next level of the tree represents the gen-
eration of new hypotheses. Note also that the number of nodes in this tree
increases roughly as n®t if m is the number of observations per time period,
t is the number of time periods, and n is the (fixed) number of targets.
Several approximations have been developed to limit this geometric growth of

hypotheses (see [1],[2]).

7.5 APPLICATION TO PERFORMANCE ANALYSIS

In this section we discuss briefly how the result of subsection 7.3 can
be used to obtain Cramer-Rao type lower bounds of mean square terror in esti-
mating x(t) given a measurement model of the form described in Eq. 7-4 and
7-5. From Section 4, note that the Cramer-Rao bound depends on the Fisher

information defined by
1 apT 3p

I(t) = E{ ——— . (7-66)
P(Utlx(t))z 9x 9x
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The derivatives are computed from

ap n ahj

— (u)x) = T (™| kyxeeox = xeioxky | o (7-67)
Ix =1 9x

It is assumed that the measurement density kj(y|x) and the detection probabil-

ity Gy(x) are both differentiable with respect to x. The expressions needed

to compute I(t) reduce to

p(u|x) = 1-6y(x) + G1(x)u(ky(y|x)) (7-68)
and
3p 3G 3G ok
— (u]x) = = —1(x) + —1(x)u(k(y|x)) + G1(X)u(—1(YIX)) (7-69)
ax IxX ax x

for the case of one target (n=1).

Actually computing I(t) requires taking the expectation in Eq. 7-66 with
respect to the random variable x(t) and the random measure pg. In general,
this expectation is not expressible in closed form and it 1is necessary to
resort to analytical (e.g., perturbation expansion) or numerical approximation
(e.g., perturbation expansion) or numerical approximation (e.g., Monte-Carlo
simulation). Note that once I(t) has been obtained, it is easy to find the
Cramer—-Rao lower bound on the error covariance for estimating a Gaussian dis-

tributed state. Suppose that x(t) satisfies the linear Gaussian equation

x(t+l) = A(t)x(t) + B(t)w(t) (7-70)

where w(t) is Gaussian white noise with covariance Q(t) and x(1l) has prior

covariance Ig. Initialize Pg and Sg to Zg, and compute Py and Sy using the

recursion defined by
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- Pebp *+ [Se71 + 1(e+1) |71 (7-71)
ve. for t>0 and

. St « A(t)PeA(e)T + B(t)Q(e)B(t)T . (7-72)

for t>l. If x(t) is the minimum mean square estimate of x(t) based on the
measurements pg for 1<s<t, then P, is the Cramer-Rao lower bound on the error

.!_ covariance

Py < E{[{x(t)-x(t)][x(t)-x(t)]T} . (7-73)

7.6 CONCLUDING REMARKS
In this section we have introduced a new formulation of multiobject

tracking as an estimation problem with random point process measurements and

r

T
o

-] derived the corresponding likelihood ratio formula using Laplace transform
methods. This new theoretical approach provides a compact formulation and
powerful technique for analyzing multiobject tracking problems. It allows

" easy derivation of optimal tracking algorithms and may prove useful in ana-
lyzing the optimal performance of such algorithms. The approach also extends
easily to other kinds of multiobject tracking problems than the one described

l! in subsections 7.3 and 7.4, such as measurement models in which several re-

turns are received from the same target (e.g., multipath phenomena). Although

much work remains to be done, we believe that the approach presented in this
section provides an effective framework for developing new analytical tools

to understand better the quantitative performance of multiobject tracking

algorithms.
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SECTION 8

NUMERICAL EXAMPLES AND CONCLUSIONS

8.1 NUMERICAL COMPARISON OF PERFORMANCE METHODS i
To understand better the relative accuracy of the different performance
methods presented in Section 4 through 6, we considered the following simple

Type 1 hybrid state estimation problem:
x(t+l) = x(t) + w(t) (8-1)

y(t) = x(t) + q(t)vy(t) (8-2)

+ (1-q(t) vo(t) .

This is a dynamic version of the simple static problem analyzed in Section 3.
We assume that the variance 012 of vi(t) is much larger than the variance ag?
of vg(t). That is, q(t) =1 indicates a bad measurement and q(t) = O indicates
a good measurement. i
We describe two cases whose parameters are shown in Table 8-1. The two
cases differ only by the initial variance of x(0). The initial variance is
small in Case 1 to let us study steady-state estimation performance -- perfor-
mance achieved once the initial uncertainty in the state estimate has been
reduced. The large initial variance in Case 2 lets us study acquisition
performance —— the details of how a very large initial uncertainty is reduced

until steady-state performance is achieved.
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TABLE 8-1. STATISTICAL PARAMETERS FOR NUMERICAL EXAMPLES

CASE 1 CASE 2
var (x(0)) 4.0 104
var (w) 4.0 4.0
Prob (q=1) .1 .1
var (vy) 104 104
var (vg) 4.0 4.0

Figures 8-1 and 8-2 show performance estimates for the two cases. 1In
each figure we have plotted four types of performance: Cramer—Rao lower bound
(CRB), an upper bound given by the best linear estimator (LIN), simulated per-
formance of a simple gating algorithm (GATE), and simulated performance of the
optimal algorithm (OPT). We also computed the rate distortion lower bound of
Section 5 for this problem, but the performance prediction was several orders
of magnitude worse than the other methods, so we omitted the rate distortion
results.

Figure 8-1 shows steady-state performance. The best linear estimator's
performance increases since it assumes measurement noise is Gaussian with

variance equal to the average variance of vi(t) and vg(t),

(.1)10% + (.9)4

€ 012 + (v-e)oo2

103 .

As t + =, the best linear estimate will achieve steady-state performance, but

only for t much greater than the seven time steps considered in Fig. 8-1.
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The Cramer-Rao lower bound, the simulated gate algorithm, and the simu-
lated optimal algorithm all track fairly well in Fig. 8-1. Note that one
expects the gate algorithm to be near-optimal in steady-state: that is, it
performs well once a good state estimate has been achieved.

Figure 8-~2 shows performance when the initial state variance 1s the same
magnitude as bad measurements. Expressed in tracking terms, an estimator must
first acquire the target: that is, reduce the initially large error variance
to steady-state performance. As shown in Fig. 8-2, the optimal estimator
acquires the state after about three measurements. On the other hand, the
gate algorithm never acquires the target and the best linear estimator does
so only very slowly. The Cramer-Rao lower bound optimistically predicts a
quicker acquisition (after 1 measurement), but predicts steady-state perfor-
mance accurately. Note that the poor performance of the gate algorithm is to
be expected. Gate algorithms are designed based on steady-state assumptions
and usually require an auxiliary initialization algorithm to acquire the
steady-state performance.

As a final numerical example, Table 8-2 shows results comparing the
Monte~-Carlo method of Section 7 with the simulated optimal algorithm for Case
2 above over the first five measurement updates. We have considered three
different choices of the Monte-Carlo parameters n and m (see Section 7). Note
that the Monte-Carlo performance method predicts the acquisition phenomena but

tends to be pessimistic about steady-state performance.
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TABLE 8-2. MONTE-CARLO PERFORMANCE METHOD

TIME OPTIMAL MSE MONTE-CARLO METHOD MSE
n 100 100 1000
m 100 1000 10
1 1219 1335 968 3425
2 171 566 292 1989
3 2.9 347 65 1395
4 5.1 184 35 1087
5 3.7 139 26 861

8.2 CONCLUDING REMARKS

Analyzing the optimal performance achievable in multiobject tracking pre-
sents two difficulties: the estimation problems are inherently non-Gaussian
and the dimensions are very large. 1In Sections 3 through 6 we addressed the
non-Gaussian problem and in Section 7 we addressed the dimensionality issue.
Of the different methods we investigated, three appear promising enough to
warrant further research: the Cramer—-Rao method of Section 4, the represen-
tation theorem method of Section 6, and the random point process approach of
Section 7. The Cramer-Rao method of Section 4 has the attractive computational
property that its complexity only decreases linearly with time. Furthermore,
numerical examples suggest the lower bound is an accurate approximation of
steady-state performance in some cases. We need to understand now precisely
what these cases are, and prove the validity of the Cramer-Rao bound as a

steady-state approximation.
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o The Monte-Carlo approach of Section 6 is promising but requires further

work before we can decide conclusively whether or not it is practically useful.

‘ The advantage of this approach is that it can give an accurate estimate of
- optimal performance, whether in acquisition or steady-state phase -— if one
E; computes long enough. The disadvantage is that this may require impractically
- long computation. The computational aspects of the problem require further
1;: investigation and we indicated some promising directions in Section 6. ’
J In Section 7 we presented a new theoretical approach to analyzing the
. type of hybrid state problem arising in multiobject tracking. We also sketched
: how this approach might be used with Cramer—-Rao methods to obtain performance
bounds. We believe the random point process formulation and techniques of
é Section 7 will prove useful in analyzing multiobject tracking problems by
other methods as well. This approach seems especially fruitful for seeking
analytical results as the formulation allows one to represent complex multi- ‘1
. object tracking problems very compactly.
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APPENDIX A

SECOND-ORDER EXPANSION OF MINIMUM MEAN SQUARE ERROR

As shown in subsection 3.2.2 the minimum mean square error V is given by

o2 og? (02 - 0p?] A2 - 02
vV = + € " - € " ; J (A-1)
02 + a2 (62 + 2] (@ + 9,212 [ + 0,2]

where

- g2 $1(8)2
J=] g, (A-2)

-» (1-e)¢o(&) + € $1(§)

$1(8) = (27 Q)7L/2 exp{- 1/2 g2 qs71} , (a-3)
Qg = o2 + 032 . (A-4)
We wish to approximate J in the case that ¢ =~ 0] >> op and € is small.

Reduction of Integral

By making the substitution

Cz R e——
2Q1

we find that

J=al (A-5)

where I is the integral
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WX Ty W O NN

1= ]m 2 expi-e?} dg
-= 1+ p exp{-A;z}

4 Q el

()
~(2)

Using the substitution

u = A;z - fnp

gives us

1

where the integral K is

2np
K = f du
- fnp 1l + e v
and
y=x1 .

The integral K can be written as the sum

K = K1 + Kp
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i

'

" ( 1+ — )1/2 ey

Lnp
K1=I du
0 1 + 7

r »
w s,

and Ky is the integral

K2=f du

The second integral Ky can also be expressed as

1 (1-2)1/2 . ez°B
K2 = 2np » [ dz
0 1+ e24nmp

L where
e
8= (1-Y)%np . (A-12)
In the case of interest to us, vy » 1, fnp >> 1, but 6 is of order 1. We will )
]
'l now approximate Kj and K2 under these conditions. i
A

Approximation of K; and Ky

Write

!! a = 2np

» (A-13)

so that Kjand K7 become

.
.
-
A&
k
\

d 1/2 -
o 0 ( 1-+—1L-) e”Yu
- a
Ky = f du
o 1 + e~u

0 (1-2)1/2 82

- dz
- ® 1 + e72
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where we assume a > 0, Y =1, and 6 ~ 1. We approximate Kj as

K1 = K11 + K2

~ where

f: Ki1 = B(Y) = [ ————— du

is the incomplete beta function and

- 1/2
) . ( 1+ _lL.) -1
a
. K2 =/ du .

0 1 + e~u

- The second term Ky can be bounded by

1 ® 1
0 <Kjg <— [ ue"Y¥ du = .
2a 0 2a y2

Note that

E‘ B(1) = &n2 ,

0 -
c B(l) = —
12

and

. Thus, we have

P

[ "2 1 2

n = n2 - — -1) + — A « (1- N

R B(y) n 2 (vy-1) > (v) - (1-v) :
\
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where
2
Aly) < — if y <1
y3
Aly) <2 if y »1 .
Thus, we approximate Kj by
w2
Ky = &n2 - — (y-1) (A-14)
12
where the magnitude of the error is bounded by
+ (1-v)2 max{y3, 1} . (A-15)
2a y2
For K2 we use the crude bounds
1 2
— < a‘1K2 < — ef (A-16)
3 3
if 8 > 0, or
1 2
— ef <¢algy < — . (A-17)
3 2 3
if 8 < 0.
Upper and Lower Bounds
Let us assume Y > 1; this is equivalent to assuming
012 - 02« 2002 (A-18)

Furthermore, assume that fnp > 0. This 1s equivalent to
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Q 1/2 -1
€ < 1+ e| — .

(A-19)

Note that 6 given by Eq. A-12 is negative. In this case, K is bounded above

and below by

K- <K < Kkt
where

»2 1

K™ = &n2 - — (y-1) - - (1-)2 + — eb a
12 2y2 gnp 3
»2 2

K* = tn2 -~ — (y-1) + + Q-2 +— +ca .
12 2y2 fnp 3

The corresponding bounds on J are then

J<J<Jt

where

Thus, one gets the upper and lower bounds Vzt

2
o2 og? o012 - oo?] @ [012 - og?] i,
V2t = + e " - €2 " " J*
o2 + o2 [02 + 002] [02 + 002] [02 + 012]

Asymptotic Behavior as € + 0

(A-20)

(A-21)

(A-22)

(A-23)

(A-25)

Assume that vy > 1 is maintained as before and let € + 0. Then note that

1 (1-2)1/2 gqp e~2880p 4,

Kgp =
2 IO 1 + e~zink
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where y
§=vy1>0 . (A-26)
Thus,

€0

Furthermore,

lim K3 = B8(y) -«

e+*0
Note that as € + 0 :
' (]
Q1 1/2 }
p~ e-l - ’
Qo ]
fnp ~ M € »
4 Q
a ~ e-l hd . :
p )
It follows that as ¢ + 0
J~c +s¥1 |ga g|1/2 (A-27)
wvhere :
4 q q \~ 1/2v
c = v3/2| — B(Y) - (A-28)
vV = Qo

In this case, J does approach O as € + 0 but not very rapidly since y-1 is

\|

assumed small. :
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