"MO-A162 224 WASKDOCCU) BEDFORD RESEARCH ASSOCIATES MA J STEVEMS
AUG 85 SCIENTIFIC-1 AFGL-TR-3-€169 F19628-83-C-0098

UNCLASSIFIED F/G 9/2

A SRR RO DAL NG A

o

s

ff"'rEEEE

EEEE
]

» BEE

.

==
=
e
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURE AU OF STANDARDS - 1963~ A

R I i o
P "N
AL

XY

SRS EE CHANA

AR A

CAa Bt A B uapaen

AFGL-TR-85-0169

MASK.DOC

J. Stevens

Bedford Research Associates
4 DeAngelo Drive
Bedford, MA 01730

Scientific Report No. 1

August 1985

AD-A162 224

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

OTIG FILE COPY

. .
CHIP SN0 ST Yl SIS Y S I 2N

85 12 -9 073

- . B
L r

Bl

)
B) ‘
™ e %0

ot et et . .
I W i YT YA G ST T S S U]

it i JAEU e i el S - i G S S

This rcport has been reviewed by the ESD Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS).

F This technical report has been reviewed and is approved for publication. -

PAUL TSIPOURAS
Contract Manager

7-71'_'7-4 (ha

FOR THE COMMANDER

VS}%—C({ Sty

LT COL J.E. Holdner, Director

Research Services Division

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical
Information Service.

If your address has changed, or if you wish to be removed from the mailing
list, or 1f the addressee is no longer employed by your organization, please
noti{y AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining
a current mailing list,

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

- . » - . =T e '\'-'.‘.‘ - T -~
L " STt PR A a e w LR ERPRER .) R
c N e - - . - - - . - - . .. ‘e . * LR Te -~ . . ~ LR
T A P ST P . SIS S AP S S, S . S ﬁ‘ ORI B S L LT PP

T I T —_— T T ™ W T W o ey

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

READ INSTRUCTIONS
_____ REPORT DOCUMENTATION PAGE pEp EAD INSTRUCTIONS
f. REPORT NUMBER .- 2. GOVY ACCESSION NO.| 3. RECIPIENTY'S CATALOG NUMBER
AFGL-TR-85~0169
4. TITLE (and Subtitle) S. ‘(VPE OF REPORT & PERIOD COVERED
MASK. DOC Scientific Report No. 1
6. PERFORMING ORG. REPORY NUMBER
7- AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
J. Stevens F19628-83-C-0090
3. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK
BEDFORD RESEARCH Associates
4 De Angelo Drive 62101F
Bedford, MA 01730 999 3XXAI
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Air Force Geophysics Laboratory August 1985
Hanscom AFB, MA 01731 13. NUMBER OF PAGES
Paul Tsipouras, AFGL/SIA 38
14. MONITORING AGENCY NAME & ADORESS(/! different from Controlling Ollice) 1S5. SECURITY CLASS. (of this report)
Unclassified
15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)

189. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side {f necessary and identily by block number)

MASK

CIF (Caltech Intermediate Form)
Cornell Format

Electromask Code

20 ABSTRACT (Contlnue on reverse side If necessary and identily by dlock numbet)

4

P MASK. DOC is a description of the MASK Programming System for designing micro-

wave integrated circuits. It is divided into six major parts!

1) Part 1 is an introduction to the MASK program. It describes briefly the
function of all the modules and related programs of MASK;

2) Part 2 describes how a user goes about creating a MASK layout, converting it
to CIF, and translating it to either Cornell or Electromask code. It also
explains how to transfer the code to a magnetic tape and how to verify the tape;’)

DD ,an'ss 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Ders Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

// Block 20 (continued from previous page)

-1 3) This section explains how to add a new MASK structure to the structure.
It tells which modules to change and how to go about it,

4) This is a programmer's description of MASK. It explains the function of
each subroutine in all modules and related programs,

5) This section informs the user how to compile and link all the modules and
related programs so as to ready the programs for executionm, g n i

6) Special structures are described here. This section describes the
structures that are limited to translation to either Electromask or
Cornell format but not both.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS P AGE(When Date Entered)

t-“" T e T T Y R T W T T T Sy padiat ot et e Bt e et bt S it st St Mt it S i S et i N R G S A d
-
0
|-
FV

INTRODUCTION TO THE MASK PROGRAMMING SYSTEM 1
HOW TO GENERATE AND CHECK A MASK TAPE ., 3
HOW TO ADD A NEW STRUCTURE TO THE LIBRARY 5
PROGRAMMER'S DESCRIPTION OF THE MASK PROGRAM . . . 16
COMPILING AND LINKING OF THE MASK SYSTEM 30

LIST OF STRUCTURES THAT CANNOT BE TRANSLATED
TO BOTH EMASK AND CORNELL . . ¢« ¢« ¢ « ¢« « ¢ s o o« « 33

DTIC

%%ELECTE i~
 DECO 1985 ; %

AI‘ '

e e

iii

...

e i At et 2 et e Tt i - " B R T T T —— e Rl Rad S dhat Sedh et Siad e d andl S e d St et 2

MASK.DOC is a description of the Mask Programming System and its re-

lated programs and files., It is informative to both the user and the pro-
grammer .

1. INTRODUCTION TO THE MASK PROGRAMMING SYSTEM

3 A, MASK3xx ~ MASK3xx is the main module of the Mask Programming
i System. It ocontains all the general subroutines used in creating
‘ a MASK layout. It also controls the activity of the three other
modules (CIF3xx, SERV3xx, and OOLR3xx) which make up the MASK
system. This module is described in detail in the programmer's
section {Section 4).

B. OOLR3xx - This module contains all the structure display routines,
Each structure has its own display routine. The structures are
all displayed in oolor using a Tektronix 4100 series terminal.
This module is invoked whenever a structure is displayed in the
ocourse of designing a MASK layout,

C. SERV3xx - This module contains all the structure service and user
help routines. Each structure has its own service routine. These
routines allow the user to create, oconnect, scale, change and move
any available structure.

D. CIF3xx -~ This module oontains all the Caltech Intermediate Code
(CIF) generation routines, As in SERV3xx and OOLR3xx, all
structures have their own CIF routine, The conmand CIFILE in MASK
invokes this module. Structure by structure, the entire source
file oontaining the MASK layout is translated to CIF and placed
into a file called SOURCE.CIF, where "SOURCE" is the name of the
current MASK source file.

..........................

...... - O Tt e LU N
............ PRSP S T .

et T e O O T e LI e e T I P e S Y A I \...':' '.'-\:‘.
N DO RSN RS G S AR VS OV PR O Ry v PR NP RANE. P YR WAL W PR U WA o ;*;kg o o

........................

F.

G.

H.

I.

J.

B3xx -~ This module is the black and white version of QUOLR3xx.

ETRN3xx and CTRN3xx - These programs are translators from CIF to
ELECTROMASK code and CIF to EBMF OORNELL format respectively.
Both the ELECTROMASK and QORNEIL format can be copied to tape and
sent to a MASK manufacturer to fabricate the actual MASK. The
input file to both programs is SOURCE.CIF, which is created by the
MASK program. The output from ETRN3xx is SOURCE.EM, which is the
ELECTROMASK code. The output from CIRN3xx is SOURCE.CR, which is
the EBMF CORNELL format.

BCHK3xx and OCHK3xx - These two programs are tape verifiers., The
ELECTROMASK code SOURCE.EM, created by ETRN3xx, or the COORNELL
format file SOURCE.CR, created by CTRN3xx, is first oopied to
magnetic tape which will be sent to a MASK vendor. To verify that
the data on the tape is ocorrect, BCHK3xx or OCHK3xx is run., These
programs take the contents of SOURCE.EM or SOURCE.CR, which are on
tape, and translate them back to the MASK layout. The layout is
then displayed to the screen flash by flash in black and white.
This way you can check to see whether any of the flashes are
incorrect.

TOTAPE.COM and TODISK.QOM - These two command files ocopy a CORNELL
or EMASK format file from disk to tape and tape to disk re-

spectively.

CIFA3xx, OOLRA3xx, SERVA3xx - These are oontinuations of the
modules CIF3xx, OOLR3xx, and SERV3xx respectively. They exist to
provide faster compilation when debugging. 3xx is the version
number and A, B... is the continuation number.

HELP3xx - This module oontains the user help subroutines., The
HELPME command in MASK invokes this routine and provides the user
with a complete list and description of all MASK cammands, opera-
tions, available structures, and related programs and files. The
HELPME structure will also display the structure by levels.

DAMCANLACE A IOA A ARSI AC AL A AL AL AN A St Al Al A Sl Al S T A Sk dnfl A fads St Al Wl St el S el el Sl el sdiowe Saocd g anld |

K. OIHER FILES USED - Three files are used with the MASK program:

MESSAGE.TXT - This file oontains messages used with MASK and
ETRN3xx.

HELPMES.TXT - This file oontains all the help information used
by the command HELPME in MASK.

LOOKUP.TAB - This file ocontains the flash table for numbers
and letters to be entered into a CIF file.

2. HOW TO GENERATE AND CHECK A MASK TAPE

A. RUN MASK - The first step in generating a MASK tape is to design
. the MASK using the graphics layout program, Structure by
i structure, the MASK can be designed on the Tektronix 4100 series
5 color graphics terminal. Once the MASK is created, it must be
- translated to Caltech Intermediate Form (CIF). This is done with
the command, CIFILE. This translates the MASK layout into CIF and
places it into a file called SOURCE.CIF, where source is the name
of the current source file.

B. RIJN ETERN3xx or CIRN3xx - Once the CIF file is created, it is time
to choose which data translation you want., If you desire CIF to
elecktromask code (EMASK), run program ETRN3xx. If you choose CIF
to EBMF QORNELL format, run program CTRN3xx.

EIRN3xx - The only input file needed for ETRN3xx is the CIF file
called SOURCE.CIF. The program will prompt you for the name of
the CIF file. The output files will automatically be the
defaults. The first one is the user-readable EMASK code file
(default is SOURCE.ER), and the second one is the machine-readable
EMASK file (default is the SOURCE.EM)., Once these files are
opened, the program will prompt you on which levels of the mask
you would like to omit from translation to EMASK., Enter the
levels and then "99" to start execution. The program will display
information such as the mask size and number of flashes per level.

F“ilt.'
[

When the program terminates, files SOURCE.ER and SOURCE.EM are
entered into your default directory. “SOURCE" is the aurrent
source file,

oy
[R Y
) R]

Ty
v e

CIRN3xx - The input file for CIRN3xx is also SOURCE.CIF. The
output file is automatically opened as SOURCE.CR. This file will
oontain the CQORNELL format. As in ETRN3xx, the program will
prompt you for levels to be amitted from translation. E nter the
levels and then "99" to start execution. The file SOURCE.CR is
F entered into your default directory as the program terminates.

A A ‘ad ’
LN
[

Now that SOURCE.EM or SQURCE.CR is created on disk, it must be
copied to magnetic tape, which will be sent to a mask vendor.

Instructions for copying an EMASK or CORNELL file to tape: First
execute the command file TOTAPE.COM. The program will prompt you
to mount and load the tape physically on the tape drive. Then it
will prompt you for the file to be copied. The .EM extension will
automatically tell the program it is an EMASK file while a .CR
will identify it as a CORNELL file. The file is oopied to tape;
then it is rewound and turned off-line for dismounting.

BCHK3xx and CCHK3xx - Now that the EMASK or CQORNELL files are on
tape, they must be verified before they are sent to the vendors.
The verification is done using the program ECHK3xx for checking
SQURCE.EM, or CCHK3xx for checking SOURCE.CR. First, the files
have to be oopied back to disk., This is done by running the
command file TODISK.QOM. The program will prompt you to mount and
load the tape which has the CORNELL or EMASK file on it. It will
then prompt you for the file name of the file to be created on
disk. This will be either SOURCE.EC or SOURCE.CC. The extension
will automatically signal the program whether the file is EMASK or
QORNELL format. The file is copied to disk; then it is rewound
and turned off-line for dismounting.

..
........................

BCHK3xx - The input file is the EMASK file oopied off the tape
called SOURCE.EC. The program will prompt whether you want to
verify the mask level by leve), clearing the screen in between, or
to display all levels of the mask on one screen. The program will
then begin displaying the mask flash by flash. When the display
is finished, the program prompts if you want to scale the display
to check areas that appear small on the screen. Select a scale
factor and the screen will expand the area chosen by the cross-
hairs. You can go back and forth between the plot and expand
menus until you have plotted and verified all the levels you
wanted, The program will also prompt you to send the screen to
the copier after each display. To terminate the program, choose
"99" in the plot menu.

CCHK3xx - CHCK3xx takes SOURCE.CC, the QORNELL format file, from
tape as input. The program also starts by proapting the user for
levels to be displayed on the screen, Like ECHK3xx, this program
will display the mask layout flash by flash for the chosen levels.
The display is autamatically scaled so the mask will use the
entire screen for claritv. A user scale is also available. After
each display, you are prompted for the option of a hardccpy and
then sent back to the Levels Menu. Once you have display, checked
or copied all the levels you desire, enter "99" in the Levels Menu
to exit the program.

HOW TO ADD A NEW STRUCTURE TO THE LIBRARY

To add a new structure to the library, four modules have to be
updated:

A.

MASK3xx - The only addition to MASK3xx is in the function ISTCOD.
ISTOOD takes the character name of a structure and codes it into
an integer. For example, ISTQOD codes the structure MICROS, a
microstrip, as Structure 1. The programmer must enter the new
structure name into the array of strings called NAME. This is

P S I o

Y v vy T~
PR .'W‘ v

done in the Data Statement. The structure name must be 6
characters long. Remember to change the number of blank strings
in the Data Statement. The placement of the string in array NAME
determines its structure number. For example, the structure
BONDPD, a bond pad, is the 23rd string in NAME, thus its structure
code is 23. That is all for MASK3xx.

SERV3xx - All structures are created and serviced in this module.
The easiest way to add a new SERVE routine is to search for an
existing SERVE routine of a structure with a similar design, then
oopy this routine and change the necessary parameters to fit the
new structure. It is good to have printout to look at. For
faster ocompilation while debugging the new structure, the new
service routine should be written into one of the smaller service
continuation files, SERVA3xx.

Start by changing the name to SERVxx, where xx is the integer
structure code defined in ISTOOD. The parameters passed to this
subroutine must be in the following order:

(IFLAG, ONNODX, CNNODY , ZETA, NODE , NSO INQ , NCHAIN)

All these parameters are used by this routine., If the structure
is multi-level, then the level array LAYS(NLAY) must be defined.
NLAY is the number of levels in the structure. Next ocome the
parameter and common blocks. The following must be present:

PARAMETER (ISRC=3, IXCODE=xX)
PARAMETER (NTYPES=6 4, NEACHT=99)
PARAMETER (NUMVCS =200, NTWO=2)

COMMON /INDEXT/ LAYTAB(NTYPES, NEACHT)
COMMON /POLYV/ V(NUMVCS, NIWO)

~— T e

e

The format statements are next. They should contain all the
prompts for the creation of the structure, All structures have a
placement X, placement Y, and an angle prompt. The remaining
format statements should be prompts for the important size
parameters of the structure. The last two formats (usually 95 or
96) are used with the LISTEM command and will be described later.

The next statement is an implicit GO TO statement using IFLAG.
IFLAG is a variable passed to this routine which decides what
operation to perform on the structure. IFLAG can be an integer
from 1 to 18, The GO TO statement is as follows:

GO TO (109,200,300, 460,500,600,700,800,900,1000) IFLAG
CALL MESSAGE(1) IBAD IFLAG, END ROUTINE
GO TO 900060

Now the creation of the structure begins,

At label 100 (IFLAG=1), the structure angle is prompted and
read in,

At label 200 (IFLAG=2), the registration point RX,RY is
prompted and read in. IFLAG is then checked if equal to 2. If
yes, then set angle theta = 0.0.

At label 300 (IFLAG=3), the rest of the structure's
parameters are prompted and read in. The subroutines AREAD and
IREAD should be used for reading in reals and integers, since
defaults can be specified. Next, the layers of the strucutre have
to be set. For a single layer structure, just a prompt and an
IREAD call are needed. For a multi-layer strucutre, subroutine
LYRSET must be called, passing the array LAYS and the number of
layers. This routine will return the layer numbers for all layers
of the structure in the array LAYS. Now set ICHAIN (the
structure's chain number) to 0.

E ——w Padiai b i e s o L vl uul oot e ek Shah Sudh Aum Aagt o - a4 v B Svie AR AR A A SR Ak St el it Sl ek Sl Tk s AP SR B
v S, e A NG PN o . v TR TR T AT N PRI N N -

Now check if IFLAG=3. If it does, then this structure is
being connected to the node of another structure. First set
ICHAIN = NCHAIN., NCHAIN is the chain number of the structure
being connected to. The angle and registration point of the new
structure must be calculated relative to the position of the
oonnect node QNNODX,CNNODY. ZETA is the angle of the oonnect
structure. For example, for the varactor diode, structure number
15, the registration point is calculated by:

IF(NODE .BQ. 1) THEN
THETA = ZETA - 180.
RX = CNNODX + (@.7*WMESA) *SIND(ZETA-1886.)
{ RY = CNNODY - (@.7*WMESA) *COSD (2ETA-188.)
. ELSEIF (NODE .EQ. 2) THEN
L THETA = ZETA
RX = CNNODX - (W3 + 2.8*ELGATE) *SIND(ZETA-180.)
RY = CNNODY - (W3 + 2.8*ELGATE) *COSD(ZETA-180.)
ENDIF

g This is all calculated using geametry. It is easiest done by
F drawing a sketch of the structure connected to another and finding
. the X and Y distances to the registration point from the oonnect
’ node. Once this is done using all the structure's nodes as
3 reference, the IFLAG=3 condition ends. Now the following three
- subroutine calls are made:

CALL GETIDC (INOODE,NSH), INDEXF)
CALL CPOSIT(INDEXF, ICHAIN)
CALL CLRDAR (ISRC, INDEXF)

GETIDC takes the structure ocode IXOODE, assigns it a sequence
number (NSEQ), and assigns an index number (INDEXF) to the source
file., CPOSIT assigns the structure a chain number and returns it
in ICHAIN. CLRDAR clears the source file record, INDEXF, where
the structure's parameters will be stored. ISRC is the logical

A SEASR JRait s Mbie_inde el 20 Jea 4 - nd v P v — —— >
L T T W e — Ty

unit number for the source file. The next move is to write the
parameters to the source file, The first six parameters must be
in the following order, followed by the layers and the size
parameters:

WRITE (ISRC, REC=INDEXF) IXOODE,NSEQ,RX,RY,THETA, ICHAIN,
LAYS(1) y...,LAYS(NLAY) ,PARAM],. .. ,PARAMN

To display the newly created structure, call DISFONE (INDEXF, ISRC).
G0 TO 99000 will end creation of the structure.

At labe)l 400 (IFLAG=4) designates that this structure is the
one being connected to. Therefore, the X,Y value of the connect
node must be calculated. First, the parameters of this structure
have to be read from the source file as follows:

READ (ISRC, LAYTAB(IXOODE,NSQINQ)) NSTR,NSEQ,RX,RY,THETA, ICHAIN,
LAYS(1) ;... ,LAYS(NLAY) ,PARAM1, . . . , PARAMN

The array LAYTAB is the layout table of the entire mask. Each
structure is entered into LAYTAB when created. The two subscripts
IXOODE and NSQINQ will located the record number of the structure
in the LAYQUT table.

In this section, the X,Y location of each node is calculated
relative to the registration point. Also, the normal angel (ZETA)
] of the structure is calcualted at each node. For the varactor
? diode, the calculation is as follows:

N IF(NODE .EQ. 1)THEN
3 ZETA = THETA + 180,
i' v(1,1) =0.0
V(1,2) = 0.7*WMESA
ELSEIF (NODE .EQ. 2)THEN
ZETA = THETA + 180,
v(1,1) = 0.0
V(1,2) = -W3 ~ 2.8*ELGATE

IR AP A A

The array V is the vertice array where the first subscript is the
vertice number and the second subscript is 1 for the X coordinate,
and 2 for the Y coordinate, For example, V(1,1) is the X
coordinate of the first vertice, and V(3,2) is the Y ocoordinate of
the third vertice. Now the vertices of the nodes have to be
transformed to virtual coordinates using subroutine XFORM,

CALL XFORM(RX,RY,THETA,1)
OWNODX = V(1,1)

CNNODY = V(1,2)

GO TO 90000

The 1 in XFORM means only one vertice ina rray V is transformed,
ONNODX, CNNCDY are the coordinates of the connect node n question,
IFLAG=4 is completed.

At label 500 and 600 (IFLAG=5 and 6) are not currently used.
CALL MESSAGE(l) and GO TO 90000 should be written at both these
labels,

At label 708, the new structure is allowed to be scaled.
First, MESSAGE(56) is called. This prompts the user to enter a
scale factor for each scalable parameter. Now read in the
parameters using LAYTAB identical to the READ at label 400. The
next step is to prompt the user and read in each scale factor for
each parameter. Use AREAD to read in the factor giving 1.8 (NO
SCALE) as a default. Next, check if any factors were @ by
multiplying them together and testing for @ result. Now scale the
old parameters by multiplying them with the scale factors. Next,
call CLRDAR using LAYTAB to clear the old record.

CALL CLRDAR (ISRC,LAYTAB (IXOODE,NSQINQ))

Then write the new scaled parameters back to the source file. End
the scale with GO TO 900606.

..

...................

..
..

T A N T Y T N T W TR T W U YWY Y IV v w W e, v w, '—'1

At label 800, the structure is changed. First, «call
MESSAGE(19), then read in the parameters from the source file
using LAYTAB as at label 408. Now prompt for all changeable
parameters using AREAD and IREAD to read in the new ones. Use the
old ones as default. This includes RX, RY, and THETA. Now change
the layers using subroutine LYRSET and array LAYS for multi-
layers. Call CLRDAR using LAYTAB as at label 760 and write the
new parameters back to the source file,

At label 900, the LISTEM command is invoked. The important
parameters of the structure are printed either to the screen or to
a list file called LISTEM.LST. Start by reading in the parameters
using LAYTAB. Then check the passed parameter NCHAIN., If NCHAIN
=1, then write to a file using the passed parameter NODE as the
logical unit number. Otherwise, print to the screen. The
parameters are printed according to a format (either 95 or 96).
Format 95, which prints to a file, prints all parameters on one
line., Format 96, which prints to the screen, forms a new line
after every 80 characters., This is so all parameters fit on the
screen, The important parameters include the character hame of
the structure, then NSEQ,RX,RY,ICHAIN, all layers and all size
parameters. For the varactor diode, LISTEM is as follows:

IF(NCHAIN .EQ. 1)THEN
WRITE(NODE, 95) NSED,RX,RY,LAYS(l) ,LAYS(2),LAYS(3),
ICHAIN, ELGATE, DGATE,, EL.OHM, WMESA, W3
ELSE
WRITE(*, 96) NSHQ,RX,RY,LAYS(1),LAYS(2),LAYS(3),
ICHAIN, ELGATE, DGATE , ELCHM, WMESA, W3
ENDIF

End LISTEM with GO TO 90008,

11

...................
.............
.............

TR T e S S e P S [
...............................
... T AN T T A . RS
TP AL W P A P R S A S S S AR AR A AR AT P A0 v oS P O, Y ._‘t UMWY

C.

Label 1000 (IFLAG=10) is used to change an existing
structure's X,Y location. All that is done here is that the old
parameters are read out using LAYTAB, The record is cleared by a
call to CLRDAR. and the parameters are read back in substitutting
CNNODX, ONNODY for RX,RY. Label 90008, return, and end finish of
the service routine. Now go to the first routine of this module
called SERVER. In SERVER, add the ocondition for IQODE=xx where xx
is the structure number of the new structure. The code will be as
follows:

ELSEIF(ICODE .BEQ xx)THEN
CALL SERVxx(IFL,X,Y,A,NODE, NSEQ, NCHN)
Make sure all the parameters present are passed.

QOLR3xx - This module contains all the structure display routines.
Like the SERVE routines, the DISPLAY routines are identified by
their structure number, and each structure has its own. To add a
new structure display routine, first copy one from an existing
structure of similar design. A hardoopy to look at is helpful.
For faster oompilation while debugging the new structure, the new
display routine should be written into one of the smaller display
continuation files, CQOLRA3xx.

First change the name to DISPxx, where xx is the structure
number. The passed parameters should be INDEX and IFILE., Make
sure the following parameter and common blocks are present:

PARAMETER (NUMVCS=200, ITWO=2)
PARAMETER (NL.YRS=1 4)

COMMON /PLOYV/ V(NUMVCS, I'TWO)
OOMMON /RELAYS/ LAYERS(@:NLYRS)

Next, read the parameters from the source file using IFILE as the
logical unit number and INDEX as the record number.

U e S et I - v bl i Sl Sndh Biede g A A A Sl A S angt it Sl Mt Sk (it S di-Ra g

,,,,,,,,, LR el el S A Al il el Ak Sefl ek Sal Sod Andl ShA aud St Sud Aeds ol

Now the display is set up layer by layer. A layer will be
displayed only if it is set to 1 in the LAYERS array. For each
layer, LAYN, the value of LAYERS(LAYN) is tested for 1. If yes,
then display; if ELSE, do not. Also, LAYERS(9) is the universal
display setting., Sometimes a structure does not display well when
all the layers are shown simultaneously. It is up to the

programmer to set which layers are to be displayed when LAYERS(®)
is 1.

: To display a layer, you must fill the vertice array V with
i X,Y coordinates of an enclosed polygon. This is best done by
looking at a sketch of the strucutre and, one by one, fill the
array V with oonsecutive points of an enclosed polygon.
§ Coordinates are found relative to the registration point. The
5 polygon must be enclosed in order to fill with color. Once array
P V is filled with the points of the polygon, XFORM must be called
- to translate the points to screen coordinates.

i.- CALL XFORM(RX,RY, THETA, NPTS)

o NPTS is the number of vertices in the defined polygon. To fill
. with the right layer color, call the following:

CALL LOOLCR (LAYN, NUMOOL)
CALL SELPAT (NUMOOL)

IOOLOR takes in the layer number and returns the proper integer

_P color number for that layer. SELPAT then selects that oolor for a
- fill pattern., A call to BOUND draws the polygon on the screen and
- fills it with oolor.

CALL BOUND(VFIRST,VLAST)

13

VFIRST and VLAST are the first and last vertice of the polygon,
Usually, the structure cannot be defined by just one polygon., For
every polygon ,XFORM,LOOLCR,SELPAT, and BOUND must be called,
When one layer is finished, go on to the next layer in the
structure. Once all polygons for all layers are designed, the
subroutine ends.

Go back to the first subroutine in this module, called
DISPLAY., Enter the ocondition to call the new structure display
routine.

ELSEIF(NSTR .BQ. xx) THEN
CALL DISPxx (LAYTAB(NTSR, NSED) , ISRC)

Next go to subroutine DISFONE and add:

ELSE
+ IF(NSIR .BQ. xx) THEN
CALL DISPxx(INDEX, ISRC)

This concludes addition to QOLR3xx.

CIF3xx - This module contains all the routines for CIF generation.
Again, oopy a CIF routine of an existing structure with similar
design, For faster compilation while debugging the new structure,
the new CIF routine should be written into one of the smaller CIF
continuation files, CIFA3xx, Change the name of the routine to
CIFxx. The parameters passed to this routine must be, in order,
INDEX, LEVNUM, GHOMOP. The following parameter and common blocks
must be present:

LOGICAL GEOMOP

PARAMETER (ISRC=3, ICIF=16)
PARAMETER (NUMVCS=20 , TTWO=2)
QOMMON /POLYV/ V(NUMVCS, I'TWO)

N S R SAre AR i S e 2 gk o i RS Bee Sre Aan-Dae tade i Arh St Bl Bath Snd s lad Sl e - S At

b Sy
W ST e,

T

LT vy
T I
Tt

Next, a statement function oconverting meters to hundredths of
microns:

ICON(TERM) = INT(TERM/(0.008000001) + 0.5)

Read the parameters of the structure from the source file using
ISRC as the logical unit number and INDEX as the record number.
The current level being processed is passed to the routine through
LEVNUM. The next statement should check if any of the layers of
this structure equals LEVNUM, If yes, then set GEHOMOP = true.
This tells the main CIF routine that geametric output has
occurred., If no output, then go to the end of the routine.

To produce geametric output (translate to CIF), first derive
a directional vector using structure angle THETA:

IDIRX
IDIRY

INT (COSD(THETA) *1,E-5)
INT (SIND(THETA) *1 . E-5)

Test each layer separately if it equals LEVNUM. If yes, then
translate only that layer.

Each layer must be broken up into CIF rectangles. ‘The width,
length and midpoint of all rectangles must be calculated. The
midpoint ooordinates should be calculated relative to the
registration point and entered into the vertice array V. Then
XFORM is called to transform them to screen ooordinates, For
example, we have a rectangle with width = 8.61, length = 9,02, and
midpoint at X,Y. The following statements occur:

WID = 0,01
LEN = 0,02
v(l,l) =X
v(l,2) =Y
CALL XFORM(RX,RY,THETA,1)

Next, a call to CIFBOX is made. CIFBOX takes the rectangle's
parameters and places them in a CIF file, For the above data, the
call is as follows:

CALL CIFBOX(ICON(LEN), IOON(WID), ION(V(1,1)), IOON(V(1,2)),
IDIRX, IDIRY)

If a polygon is desired, the routine PFOLYGN is called. The
polygon has to be four-sided, and the four points must be defined
in array V. The call is as follows:

CALL POLYGN(IOON(V(1,1)), IOON(V(1,2)), ICON(V(2,1)),
IOON(V(2,2)) , TOON(V(3,1)), IQON(V(3,2)),
JOON(V(4,1)), ICON(V(4,2)),

4 Notice that the parameters are converted to hundredths of microns
using IJCON. Once all rectangles and polygons for all layers are
done this way, the subroutine ends.

Go to subroutine CIFER, Add the following condition:

ELSEIF(NSTRUC .HQ xx)THEN
CALL CIFxx(IDXSRC, LEVNUM, GEOMOP)

T T

,' Addition to CIF3xx is complete. This also completes the addition
of a new structure to the library.

4. PROGRAMMER'S DESCRIPTION OF THE MASK PROGRAM

A, MASK3xx - This is the main module for the MASK system and contains
all the general-purpose subroutines.

Subroutine MAIN - This is the backbone of program MASK. It
opens all necessary files and does most of the initialization.

LA

At label 10070, the LAYERS array is initialized to 8. Then
the chain file, CHAINS.DAT, and the message file, MESSAGE.TXT, are
opened,

At label 10088, the layout table, LAYTAB, is set to 0.

At label 10099, the GRAPICS is initialized by calls to
g CODETEK and INITT. Then the screen is cleared and the banner
X printed., Subroutine SROOPEN is called, which opens the source
' file OLD or NBW. If ESCAPE was entered, the program terminates.

P If the source file was opened NEW, the mask size parameters
. are prompted and read in and placed in the first record of the
source file, If the source file is OLD, a backup copy is made and
the chains and layout table are huilt,

Next, the screen coordinates are set with calls to IWINDO and
CVSCAL. The program now jumps to label 20000 where the mask
prompt is printed and waits for a user ocommand. The next
statement reads in the user command and sends it to subroutine
PARSER, PARSER processes the command and returns. If logical
variable IMDONE is true, then the program closes all files and
terminates. Otherwise, the mask prompt is printed and the program
waits for a new command.

Subroutine PARSER - This routine parses the first command (6
characters) in the mask command line entered by the user. It then
calls the appropriate routines to process that ocommand. The
commands are parsed, in order, as follows:

———— A on
R PRI

ESCAPE - Terminate program,

HELPME - If HELPME XY, then, using the crosshairs
and subroutine VQURSR, find any X,Y screen
location,

SIZEIT, MASIZE - Both print out the mask dimensions to the
screen,

17

EXPAND

PATGEN
ELBEAM

FILEIT

BLOKMV

HELPST

DUPLIC

CIFGEN

LISTEM

LAYTAB
GETSUP

....................
..............................
...............................

..........

With the use of VOURSR and the crosshairs
or user—entered ocoordinates, scale an area
of the screen, ‘The scaling is done by
subroutine CVSCAL.

Not available,

Not available,

Displays the existing layout by calling
subroutine DISPLAY,

Calls subroutine SRCFILE which allows the
user to save the aurrent mask layout
without exiting program,

Move a structure by calling SERVER with
IFLAG = 10. The distance X,Y to move is
prampted to the user.

Same as MOVEST except the entire chain is
moved.

Not available,

Delete an entire chain of structures with a
call to DELCHN.,

Duplicate a chain of structures with a call
to DUPCHN.

Sets levels of the existing mask layout for
display. This is done in subroutine
LYMENU,

Processes the mask ocommand, CIFILE. Call
GENCIF to generate the mask layout to CIF.
List the contents of the source file, This
is done by calling SERVER with IFLAG = 9
for all structures in the source file.
Print the layout table to the screen,
Implement the super structure utility. Call
SUFER1.

P Dy SR NP Wt |

Fviv.—_'—_'v~ LR A I AL e i aonh toaaar o o

PUC N - g e e el Eadiin* ol Al e S i i e S it Sug S Sl Seen nge Sl St S B Jat Ak g

b
{f If the coomand was a 6-character structure name, ISTOOD is
. called to get the structure code and PARSE2 is called to parse the
structure operations. PARSE2 returns IFLAG which represents the

type of structure operation to be performed.

At label 10000, IFLAG=l, structure connections are performed.
The oonnection commands are ++,H+,V+,A+, ‘These operations are
done in subroutine COMFOS.

At label 200008, IFLAG=2, a new structure is placed at
location X,Y or at angle THETA (AA). This is acocomplished with a
call to SERVER with IFLAG=l and 2 respectively.

At label 30000, IFLAG=3, structure move operations are done
(UP,DN,RT,LF). This is done by calls to MOVACH.

At label 40008, IFLAG=4, structure scale (SC), Change (CH),
and delete (—) operations are performed., Call SERVER, IFLAG=7,
to scale, call SERVER, IFLAG=8, to change, and call DELSTR to
delete a single structure.

At 90000 the routine ends,

Subroutine PARSE2 - This routine parses the command line for
structure operations and returns the desired nodes and sequence
numbers.

Subroutine COMPOS - This routine does all structure connect
operations. First, it calls SERVER with IFLAG=4 to get the
existing structure's oonnect node ooordinates. Then, in order,
the code for A+,H+,++, and V+ are listed. The new strctures being
oconnected are created with a called to SERVER, IFLAG=3.

Below is a list of the rest of the subroutines in MASK3xx.

‘‘‘‘‘‘‘‘‘‘

NEGVEX

- Determines if two structure angles are connect-

compatible,

FUNCTION ISTOOD- Encodes a 6—character structure name to an inte-

FUNCTION ISTSEL-

CVSCAL

XFORM

GETIDC

STRIDEN

DELCHN
DELSTR
CPROSIT
LYMENU
DUPCHN
MOVACH

XLATHZ, XLATVR

LOGICAL FUNCTION

MEMBER

SKIPBL

LOGICAL FUNCTION

ASKQIT
SREAD

LOGICAL FUNCTION

ger code. All structures are entered in the
array name and assigned an integer according to
placement,

Used for selecting choices of a menu.

Scales user space by the specified scale factor.
It uses Plot-10 routine DWINDO.

Translates the points in the vertice array V
relative to the registration point, X,¥, and
angle THETA, of a structure.

This routine enters a new structure into the
layout table, assigns it a sequence number and an
index to the source file.,

Gets the structure code and sequence number of an
existing structure.

Deletes a chain of structures. It calls DELSTR.
Deletes one structure.,

Deposits a new structure into a chain,

Sets the layer display array.

Duplicate a chain of structures.

Move a chain of structures., It calls SERVER,
IFLAG=10,

Translates horizontally or vertically all
structures created after a given structure,

Determines if an operator is a member of a given
set.
Skip all preceding blanks in a string.

Prompts user to quit or not.
Read in a string with the option of a given
default,

NAMEOK

SRCFILE

ESCAPE

BACKUP

SRCOOPEN

SUPER1, SUPERZ,

SUPER3, SUFER4,

SUPERD

MESSAGE

IREAD, AREAD

ASKYNO

LKUFOS

QODETEK

CODEDIT

L ZiaBCERS S AR ts St A et S St i S st dierte i it i i

Checks if a command or name is 6 characters
starting with a letter and the rest alphanumeric,
Returns the integer value of a 2-digit decimal
number .

Returns the integer value of a numeric character.
Allows manipulations to the source file. The
command FILEIT uses it,

Allows you to enter the name of the exit file and
ocopy the working source to it when exiting MASK.
Creates a backup of an 'old' source file to use
as a working oopy.

This routine prompts the user to open an old or
new source file,

These routines get a super structure from an
existing source file and add it to the aurrent
layout.

Reads from the message file, MESSAGE.TXT, the
proper MASK message and prints it to the screen,
Read in integers and reads with the option of a
given default,

Not used,

Prompts the user for a Yes or No response,

Halt the program until a key is struck.

Load array V with proper position vectors.

Read in the flash ©position for inputted
character,

Changes the setting of the TEKTRONIX 4167
terminal to graphics mode,

Changes the setting of the TEKTRONIX 4107
terminal to edit mode.

This oconcludes module MASK3xx.

- W T T e T

« e

B.

SERV3xx and SERVA3xx,SERVB3xx - This module oontains all the
structure service routines,

Subroutine SERVER - This is the driver module for all
structure service routines., It directs the flow of the program to
the proper structure routine.

Subroutines SERVAL through SERVNn - These are all the
individual structure service routines., All existing structures
have their own. To add or modify one of these routines, go to
Part B, Section 3, on how to add a new structure to the library.

This completes module SERV3xx.

QOLR3xx and OOLRA3xx, QOLRB3xx - This routine oontains all the
structure display routines,

Subroutine DSPLAY reads the current source file and displays
each structure one by one by calling the proper structure display
routine. Each structure has its own routine.

Subroutines DISPER, DISFONE display only a single inputted
structure.

Subroutines DISPP1 Through DISPnn are individual structure
display routines. They ae described in detail in Part C, Section
3 (how to add a new structure to the library).

BOUND - Draw the boundary of an enclosed polygon defined
in the vertice array V. Also the polygon is
filled with the right oolor. Plot - 10 routines
are used,

LYRSET - Sets the MASK layers for a multilayered struct-
ure.

D.

T Y

RORSR, 2 g% Sesasne

CLRDAR - Clears a record of the source file.

LOOLOR - Assigns the proper ocolor number for the proper
layer,

This completes module COLR3xx,

CIF3xx and CIFA3xx, CIFB3xx - This module oontains all the
structure CIF generation routines,

GENCIF - This is the driver routine for the generation of CIF., It
opens the CIF file, SOURCE.CIF then structure by structure, it

reads from the source file and calls the appropriate CIF genera-
tion routine,

Subroutine CHOGEN prompts the user for type of CIF genera-
tion, The user has the choice of CIF generation for EMASK or
CORNELL format translation,

Subroutines QGENID, OGENID2, OGENID3 generate CIF code for a
MASK ID.

Subroutines CFNEXT, CIFGET, CFSKBL, SHNAME, CFPAS1, ITALBN,
CIFSRT, CIFSRT2 and CIFSRT3 are currently not used.

Subroutine CIFLIM enters the MASK limits to the CIF file.
Subroutine CIFCOM enters comments into the CIF file,
Subroutine CIFBOX enters a CIF rectangle into the CIF file,
Subroutine FOLYGN enters a CIF four sided polygon.

Subroutine CIFLAY enters a change of layer into the CIF file.

Subroutine CIFER is the driver to all individual structure
CIF routines,

Subroutines CIF#l through CIFnn are the individual structure .
CIF generation routines, They are described in detail in Part D,
Section 3. .

Subroutine FRAME draws a frame around the MASK layout.
Subroutine DRWNUM draws a number on the display (not used).
This completes module CIF3xx.
ETRN3xx - This program translates CIF code to ELBCTROMASK code.

Subroutine MAIN opens is the MESSAGE file, MESSAGE.TXT, and
prints the banner. GENPAT is then called.

Subroutine GENPAT prompts and opens the CIF file at Label
1000, At Label 1108, the machine readable EMASK file and the user
readable EMASK files are opened, PRSCIF is called next., This is
vhere the translation takes place. When the translation is
completed, CVRETP is called to create the machine readable file,
This ends the routine,

Subroutine PRSCIF parses the CIF file and translates it to
EMASK code. At label 450, the CIF file is read to find all the
layer numbers available., At label 508, layers are printed and the
user is prompted to enter the layers not to be translated to
EMASK, At 100008, the parsing begins by reading a line of CIF
code. If the line is a CIF box, then the dimensions are converted
to tenths of microns and sent to subroutine EMBOX which creates an
ELECTROMASK box., If the CIF line is a layer, then EMLAYR is
called to process an EMASK layer. If the line is an end state-
ment, then EMEND is called. If the line is a comment, then MASK
size parameters are read in and EMARLN is called. This writes the
comment to the EMASK file.

........................

* R R LT R SR SRt St R S S i P AL A - - - - - - - - - -
et e L e e e L e e e et e Tt T T T To=s .
SR A A I S W WACHR YT ST 3 S L e ML R SIS BV B S | et e g e e A i

e aam am aea L oan o an an anan o ag

T ry

Subroutine PREFIL prefills an 808 character array called
BLOCK, with a beginning and end of block character. This array is
used in creating the machine readable EMASK file which is written
in 800 character biocks.

Subroutine FLUSH prints the entire 808 character array,
block, to the user readable EMASK file., Then it calls PREFIL.

Subroutine CVRETP oconverts the user readable EMASK file to
the 800 character record machine EMASK file,

Subroutine EMARIT writes an EMASK operator and its parameter
to the array block.

Subroutine EMARLN writes a CIF comment into the array block.
The comment is enclosed in quotes.

Subroutine CH6INT converts an integer to a six (6) character
mmeric string.

Subroutine EMLAYR processes a CIF layer command, FLUSH is
called to empty the array block to the EMASK file. That termin-
ates the previous layer. The new layer is started by printing the
level number.

Subroutine EMBOX takes the dimensions of a CIF rectangle and
breaks them down to flashes,

Subroutine EMFLSH writes out a flash to the EMASK file., The
parameters that describe the flash are W,V,U,X,Y which are width,
height, angle, X location and Y location.

Subroutine MESGAGE prints the proper message from
MESSAGE, TXT.

Function ASKQIT prompts user to quit.,

TV

Band FT BT TS
AR I AR A B A A i e R et - vt St~ St Snt vl S Sl At I e il Rl A At A AN A e R - AN 1

Subroutine SREAD reads a string with optional default.

Subroutine SKIPBL skips preceding blanks of a string.

Function SHNAME extracts a short name from
a string. .

This concludes ETRN3xx.

F. BECHK3xx - This program verifies the machine readable ELBCTROMASK
code written to tape.

;_ Subroutine ELCHECK starts by printing the banner at label 25
after all the format statements. Next the EMASK file is opened.
L Then the first 880 character record is read to find the MASK size
parameters., With calls to PLOT - 1@ routines INITT and IWINDO,
the screen size of the Tektronix 4107 is set.

-

h At Label 148, the layers menu is printed. The user can
choose if he wants all layers of the MASK to be verified
E separately or all on one screen.

At Label 199, the user is prompted if a copy of the screen is
wanted. Then the expansion menu is printed. The user can expand
any portion of the screen by a given scale factor. The scaling is
done in routine SCALE.

At Label 280, PARSEM is called. PARSEM parses the EMASK file
and displays the layout flash by flash.

At Label 9100, the routine ends,

T TR _‘ (A Eie e A D et - A St Rl Lt Chat A e ERASC . A i At ity -~ T~ i Al dfe A S0 ake A\e 4 B Sl dse v 4 S S

Subroutine PARSEM parses the EMASK code. In order, it parses
for the following EMASK operators: S(FLASH), Z(END OF LAYER),
« (END OF BLOCK), "(COMMENT), "LEVEL"(NEW LAYER), U,V,W,X,Y.
Subroutine ISUBSTR reads a substring from a string.

Subroutine ERMROR prints EMASK error condition,

Subroutine EMRDTP reads EMASK file from tape to disk (not
used) .

Subroutine WRBLOC writes the 808 character array, block, to
the screen (not used).

T

Subroutine BOX displays an EMASK flash to the screen around

Subroutine DASH is not used.

Subroutine FRAME draws a frame around MASK display.

Subroutine SCALE scales any portion of the graphics screen
using VQURSR and DWINDO.

Subroutines SREAD and IREAD read strings and integers with
the option of a given default.

This concludes ECHK3xx.

G. CIRN3xx - This program translates CIF code to EBMF OQORNELL format.

Program MAIN - This routine contains the CIF parser.

At Label 350, the machine readable QORNELL file is opened.
Then the CIFILE is prompted for and opened.

27

R P T .. . e e e e s .- R T S

. . . . PRI . . e LAY . “ e e e e . .-y

IR S R . I -, . . . R T i R O LI R S P L PR PR SN Y
o, T, P A S A ST N .. N R T R T R U LT

...................................

At Label 450, the CIF code is read through and the available
layers are defined. These layers are printed at Label 500.

At Label 700, the user is prompted to enter which layers are :
to be amitted from translation from CIF to CORNELL format.

At Label 1000, the translation begins. The parser begins by
checking for a CIF comment. The MASK size parameters are defined
in these comments.

The parser then checks for a layer command., Subroutines ENDC
’ and OOMENT are called. These routines end the previous CORNELL
layer and set up for the next one, Next, the parser processes a
CIF End of File statement. Only ENDC is called.

The last condition checked is for a CIF rectangle. The
parameters are read in and OORNELL format is computed. CORNELL
format consists of the X,Y coordinate of the lower left point and
the upper right point of the rectangle. This is easily computed
from the CIF parameters. The OORNELL format is written to the
file by the special format statement at label 400.

When the conversion is complete, all files are closed and the
program terminates.

Subroutine COMENT initializes a new COORNELL format layer.
This is done by writing the following two lines:

DE ROME AIR DEVELOPMENT CENTER
/CORNELL EBFAM LITHOGRAPHY SYSTEM

Subroutine ENDC terminates a CQORNELL format layer. The
string , END, is written to the file,

............

RN AT M
W) A R Py A A LU S A AR A N

...........

Subroutine SKIPBL skips preceding blanks in a string.

Subroutine SREAD reads a string with the option of a default.

This concludes CTRN3xx,

H. OHK3xx - This program verifies a CORNELL format tape file.

Program MAIN - First the banner is printed and the OORNELL
file is opened.

At Label 400, the MAX and MIN of the CORNELL parameters is
defined, Then the graphics screen window is defined with a call
to TWINDO and the virtual scale of the window is set with a call
to DWINDO. This program autamatically scales the window so the
display covers the whole screen,

At Label 650, the number of levels available are printed to
screen, The user is then prompted to enter which layer or layers
to be verified.

b At Label 1000, the CORNELL format is parsed. First a CORNELL
P layer is checked, then an end of layer command is checked.

L No display is done until a OORNELL rectangle is found. Then
b, the rectangle parameters are sent to subroutine BOUND which
? displays it on the screen. Wwhen the display is done, the user can
4 exit or display different levels.

b

Subroutine SKIPBL skips preceding blanks in a string.

Subroutine SREAD reads a string with option of a given
default,

29

..........................
..
...

_____________ S A A B et A RAR A A A B d Aok An S Do A "'T

Subroutine BOUND - Using PLOT-10 commands, a OORNELL
rectangle is drawn to the screen,

Subroutine FRAME draws a frame around the MASK display.

This concludes OCHK3xx.

I. HELP3xx - This module contains the user HELP routines.

. Subroutine HELPER is the driver routine for the MASK HELPME
command.

E Subroutines GIVHLP, HLPMSG, HLPRNT read and print the proper
’F message from file HELPMES.TXT.

Subroutine HELPST displays a given structure by levels to the
i screen,

Subroutine INSYMB inserts a symbol in the display (not used).
Subroutine FOINT draws a point on the screen.

5. OOMPILING AND LINKING OF THE MASK SYSTEM

A, MASK.EXE - To create MASK.EXE, the following modules have to be
compiled,

1. MASK3xx.FOR

2. (OLR3xx,FOR

3. CIF3xx.FOR

4. SERV3xx.FOR

5. All the CIF, SERVE, and COLR continuation modules
6. HELP3xx.FOR

..........................
............

R e Ot e i < A M~ A e A bt it g st St R St i T e B S Yo Y

L A

This is done using the FORTRAN statement as follows:

. s

FORTRAN MASK3xx
FORTRAN CIF3xx
FORTRAN COLR3xx
FORTRAN SERV3xx
FORTRAN HELP3xx
FORTRAN CIFA3xx

TN T T T e
®w v e v o

] $ FORTRAN CIFn3xx
4 $ FORTRAN OOLRA3xx

$ FORTRAN OOLRn3xx
$ FORTRAN SERVA3xx

$ FORTRAN SERVNn3xx

The command FORTRAN can be abbreviated to just F. In oom
piling these FORTRAN modules, object files were created. (With
EXTENSION .0BJ). these object files must be linked together to
Create the executable file (EXTENSION .EXE). This is done as
follows:

$ LINK/EXE=MASK MASK3xx, OOLR3xx, CIF3xx, SERV3xx, COLRA3XX, ...,
QOLRNn3xx, CIFA3xxX, . . . ,CIFn3xx, SERVA3XX, . « . , SERVN3xx, HELP3xx

The executable file MASK.EXE now exists in the default
directory. To run the program type:

$ RUN MASK

B. ETRN3xx and ECHK3xx - The two FORIRAN modules nust be compiled to
create the object files., This is done as follows:

$ FORTRAN ETRN3xx
* $ FORTRAN BCHK3xx

To create the executable files, link both separately:

$ LINK ETRN3xx
$ LINK ECHK3xx

The executable files for both programs now exist in the
default directory. To run the programs, simply type:

$ RUN ETRN3xx
$ RUN BCHK3xx

C. CTRN3xx and CCHK3xx - The two FORTRAN modules must be compiled to
create the object files, This is done as follows:

$ FORTRAN CTRN3xx
$ FORTRAN CCHK3xx

To create the executable files, link both separately:

$ LINK CTRN3xx
$ LINK CCHK3xx

e A e e e R A Rl SRR SR IR S SR

The executable files for both programs now exist in the
default directory. To run the programs, simply type:

$ RUN CTRN3xx
$§ RUN OCHK3xx

6. LIST OF STRUCIURES THAT CANNOT BE TRANSLATED TO BOTH EMASK AND CORNELL
A. Structures available for CORNELL translation only.
1. MESFET - TGATE with air bridge EPI.
B. Structures available for EMASK translation only.
1., MITERB - No miter and bend angle larger than 90.0 deq.

C. Structures available for EMASK and CORNELL translation but require
separate code.

1. LANGEC - Lange ooupler.
2. MITERB - With miter and bend angle at 98.0 deg.

This oconcludes the text file MASK.DOC.

b
;

[

[' .
i
"
.
N
v
v
.
:-.
»
.

33

'l

.

L

.

- L I P L S S S B S . e P O S S e Sate T ottt st e T e e

IO S S Tt e e T T T T T e T e T e s e e T T e T e e T T e LT T I A R A
[i, S, Sk, Sy Sy s g, Sl LA S R AL R S AT YA, U S SR YO SR WL AT SR S0 P SAP L. APUL PR WA P R AT SRR SR S P S

Forx
rat

I
1
|
f

\d

)
Co
™ N

