
7 .AD-RI62 224 RSKDOC(U) BEDFORD RESERRCH ASSOCIRTES MR J STEY VENS
AUG 85 SCIENTIFIC-i RFOL-TR-95-0169 F1962S-63-C-OM

UNCLRSSIFIED F/6 9/2 ML

I hchLRhEE

.1.

*I2 11111 j0 6
miii-__ m.U-0

-:Uo - - ,E32

pl ' a Il'

LirCP 13O. 6iNTETCIIR

..-. ,,... . .-. ,..- .. -, i.'. . . .- -

AFGL-TR-85-0169

MASK.DOC

J. Stevens

Bedford Research Associates
4 DeAngelo Drive
Bedford, MA 01730

* N
- Scientific Report No. 1

NCo

< August 1985

< APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
CELECT EODEC 9 1985i

' B

" AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

0 FIL COP

8.5 12 -9 073
.- --L . .

This report has been reviewed by the ESD Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

PAUL TSI OURAS
Contract Manager

FOR THE COW1MANDER

LT COL J.E. Holdner, Director

Research Services Division

Qualified requestors may obtain additional copies from the Defense Technical
Information Center. All others should apply to the National Technical

Information Service.

If your address has changed, or if you wish to be removed from the mailing
li-;t, or if the addressee is no longer employed by your organization, please
notify AFGI./DAA, lanscom AFB, MA 01731. This will assist us in maintaining

a current mailing list.

I)o not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

"" " ... "...."" "' '''" ' " '" " " " '" " '"' * ' " " " ' ." " ".. . '

.- .-- .. .-. . .-. *. - . . - . .: . . . :i -. :

UNCI Ag-TTED
SECURITy CLASSIFICATION OF THIS PAGE (*%on Does Entered)I

RE.R DOITLEAIO PAGEd SubDtitle)ION

B.EFORE OPEING OR.OEPRTNME

7. AUTHOR(a) 9. CONTRACT OR GRANT NUMBER(s)

J. Stevens F19628-83-C-0090

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

BEDFORD RESEARCH Associates AREA & WORK UNIT NUMBERS

4 De Angelo Drive 62101F
Bedford, MA 01730 9993XXAI

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory August 1985
Hanscom AFB, MA 01731 13. NUMBER OF PAGES

Paul Tsipouras, AFGL/SIA 38
14. MONITORING AGENCY NAME & ADORESS0tI different from Conttrollting Office) IS. SECURITY CLASS. (of this report)

Unclassified

1s. OECL ASSI FICATION/ DOWNGRADING
SCHEDULE

6.DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abst ract entered in Block 20, Of different from. Report)

IS. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side it necesary and identify by block number)

MASK
CIF (Caltech Intermediate Form)
Cornell Format
Electromask Code

MASK.DOC is a description of the MASK Programming System for designing micro-
wave integrated circuits. It is divided into six major parts:
1) Part 1 is an introduction to the MASK program. It describes briefly the

function of all the modules and related programs of MASK;
2) Part 2 describes how a user goes about creating a MASK layout, converting it

to CIF, and translating it to either Cornell or Electromask code. It also
explains how to transfer the code to a magnetic tape and how to verify the tap

DD JAN 3 1473 UNCLASSIFIED
CSECURITY CLASSIFICATION OF THIS PAGE (*hen rflae Entered)

...

UNCLASSIFIED
St (URI TY CLASSIFICATION OF THIS PAGE(Whln Datea Enterd)

(Block 20 (continued from previous page)

'-3) This section explains how to add a new MASK structure to the structure.

It tells which modules to change and how to go about it)
4) This is a programmer's description of MASK. It explains the function of

each subroutine in all modules and related programs;
5) This section informs the user how to compile and link all the modules and

related programs so as to ready the programs for execution; 2,))-

6) Special structures are described here. This section describes the

structures that are limited to translation to either Electromask or

Cornell format but not both.

UNCLASSIFIED
SECuRITY CLASSIFICATION OF THIS PAGE(wh

I
f Data Enta)

2...""

TABLE OF CONTENTS

1. INTRODUCTION TO THE MASK PROGRAMMING SYSTEM 1

2. HOW TO GENERATE AND CHECK A MASK TAPE 3

3. HOW TO ADD A NEW STRUCTURE TO THE LIBRARY. 5

4. PROGRAMMER'S DESCRIPTION OF THE MASK PROGRAM . . . 16

5. COMPILING AND LINKING OF THE MASK SYSTEM 30

6. LIST OF STRUCTURES THAT CANNOT BE TRANSLATED

TO BOTH EMASK AND CORNELL 33

DTIC
I DEC 9 1985

iii

- °

MSK.DOC is a description of the Mask Programing System and its re-

lated programs and files. It is informative to both the user and the pro-

grammer.

1. INRCDUCTION TO THE MASK PROGRAMMI SYSTEM

A. MASK3xx - MASK3xx is the main module of the Mask Programning

System. It contains all the general subroutines used in creating

a MASK layout. It also controls the activity of the three other

modules (CIF3xx, SERV3xx, and (OOLR3xx) which make up the MASK

system. This module is described in detail in the programer's

section (Section 4).

B. (CO3xx - This module contains all the structure display routines.

Each structure has its own display routine. The structures are

all displayed in color using a Tektronix 4100 series terminal.

This module is invoked whenever a structure is displayed in the

course of designing a MASK layout.

C. SERV3xx - This module contains all the structure service and user

help routines. Each structure has its own service routine. These

routines allow the user to create, connect, scale, change and move

any available structure.

D. CIF3xx - This module contains all the Caltech Intermediate Code

(CIF) generation routines. As in SERV3xx and COlR3xx, all

structures have their own CIF routine. The command CIFILE in MASK

invokes this module. Structure by structure, the entire source

file containing the MSK layout is translated to CIF and placed

into a file called SOURCE.CIF, where "SCURCE" is the name of the

current MSK source file.

". 1

E. BW3xx - This module is the black and white version of OOLR3xx.

F. ELRN3xx and CTRN3xx - These programs are translators from CIF to

.'=CTRCNASK code and CIF to EBW ONML format respectively.

Both the ELBCM(CASK and 03RNEL format can be copied to tape and

sent to a MRSK manufacturer to fabricate the actual MISK. The
input file to both programs is SOURCE.CIF, which is created by the

MRSK program. The output from ETRN3xx is SWURCE.El, which is the

ELECTRCASK code. The output from CflN3xx is SURCEoCR, which is

the EB F OOML format.

G. BCHK3xx and CCHK3xx - These two programs are tape verifiers. The
EL CTR(ASK code SOR(E.D, created by EN3xx2, or the CNEL

format file SWRCE.CR, created by CRN3xx, is first copied to

magnetic tape which will be sent to a M1SK vendor. To verify that

the data on the tape is correct, BC=K3xx or (CIK3xx is run. These

programns take the contents of SWJRCE.E or SOCRUR .OE , which are on

tape, and translate them back to the MRSK layout. The layout is

then displayed to the screen flash by flash in black and white.

This way you can check to see whether any of the flashes are

incorrect.

H. TOTAPE.COM and T'I)ISK.Q)K - These two command files copy a OMNEU

or EI'SK format file from disk to tape and tape to disk re-

spectively.

I. CIFA3xx, CRA3xx, SERVA3xx - These are continuations of the
modules CIF3xx, OrLR3xx, and SERV3xx respectively. They exist to

provide faster compilation when debugging. 3xx is the version
number and A, B... is the continuation number.

J. HELP3xx - This module contains the user help subroutines. The

HELIE command in 19SK invokes this routine and provides the user
with a complete list and description of all MRSK cunmands, opera-

tions, available structures, and related programs and files. The

HELR:' structure will also display the structure by levels.

2

.................................

K. OTHER FILES USED - hree files are used with the MSK program:

MESSAGE.TX - This file contains messages used with MASK and

EiRN3xx.

HELPES.TXT - This file contains all the help information used
by the command HELPRE in MASK.

CIMOJI.P.TPB - This file contains the flash table for numbers

and letters to be entered into a CIF file.

2. HOW TO GENERATE AND CHECK A MASK TAPE

A. RJN MSK - The first step in generating a MASK tape is to design

the MSK using the graphics layout program. Structure by

structure, the MASK can be designed on the Tektronix 4100 series

color graphics terminal. Once the MSK is created, it must be

translated to Caltech Intermediate Fbrm (CIF). This is done with

the conmand, CIFILE. This translates the MASK layout into CIF and

places it into a file called SWUR(Z.CIF, where source is the name

of the current source file.

B. RUN ETERN3xx or CIfRN3xx - Once the CIF file is created, it is time

to choose which data translation you want. If you desire CIF to

elecktromask code (EKASK), run program E'MN3xx. If you choose CIF

to EBMF CINEL format, run program CIRN3xx.

E'fRN3xx - The only input file needed for EMlN3xx is the CIF file

called SWRCE.CIF. The program will prompt you for the name of

the CIF file. The output files will automatically be the

defaults. The first one is the user-readable EMASK code file

(default is SWRQIEER), and the second one is the machine-readable

EMASK file (default is the SOURCE.EK). Once these files are

opened, the program will prompt you on which levels of the mask

you would like to omit from translation to EASK. Enter the

levels and then 0990 to start execution. The program will display

information such as the mask size and number of flashes per level.

3

When the program terminates, files SOURCE.ER and 3XDC.EM4 are

entered into your default directory. "SOURC" is the current

source file.

C!TRN3xx - The input file for Cf.N3xx is also SCUIRCE.CIF. he

output file is automatically opened as SOURCE.CR. This file will

contain the CORNELL format. As in EfRN3xx, the program will

prompt you for levels to be omitted from translation. E nter the

levels and then n99" to start execution. The file SOURCE.CR is

entered into your default directory as the program terminates.

Now that SOURCE.E4 or SOURCE.CR is created on disk, it must be

copied to magnetic tape, which will be sent to a mask vendor.

Instructions for copying an EMASK or CORNELL file to tape: First

execute the command file TrAPE.OO0M. The program will prompt you

to mount and load the tape physically on the tape drive. Then it
will prompt you for the file to be copied. The .EM extension will

automatically tell the program it is an EMASK file while a .CR

will identify it as a CONELL file. The file is copied to tape;
then it is rewound and turned off-line for dismounting.

C. CHK3xx and CCHK3xx - Now that the ENASK or CNELL files are on
tape, they must be verified before they are sent to the vendors.

The verification is done using the program ECHK3xx for checking

SOURA .4, or (CHK3xx for checking SOURCE.Q. First, the files

have to be copied back to disk. his is done by running the

command file TDDISK.OOM. The program will prompt you to mount and

load the tape which has the CNELL or EMtSK file on it. It will

then prompt you for the file name of the file to be created on
disk. This will be either SOURCE.EC or SOURCE.(C. The extension

will automatically signal the program whether the file is E2RSK or

ORNELL format. The file is copied to disk; then it is rewound

and turned off-line for dismounting.

4
. I..................

ECHK3xx - The input file is the EM1ASK file copied off the tape

called SOURCE.EC. The program will prompt whether you want to
verify the mask level by level, clearing the screen in between, or

to display all levels of the mask on one screen. The program will

then begin displaying the mask flash by flash. When the display
is finished, the program prompts if you want to scale the display
to check areas that appear small on the screen. Select a scale
factor and the screen will expand the area chosen by the cross-
hairs. You can go back and forth between the plot and expand
menus until you have plotted and verified all the levels you

wanted. The program will also prompt you to send the screen to

the copier after each display. To terminate the program, choose

"99" in the plot menu.

OCHK3xx - CHCX3xx takes SUR(E.CC, the (DRNELL format file, from

tape as input. The program also starts by prC14pting the user for

levels to be displayed on the screen. Like ECHK3xx, this program

will display the mask layout flash by flash for the chosen levels.

The display is automatically scaled so the mask will use the

entire screen for clarity. A user scale is also available. After

each display, you are prompted for the opLion of a hardccpy and

then sent back to the Levels Menu. Once you have display, cbhcked

or copied all the levels you desire, enter "99" in the Levels Menu

to exit the program.

3. HOW TD AD A NEW STRUCIURE TO MiE LIBRARY

To add a new structure to the library, four modules have to be

updated:

A. MASK3xx - The only addition to MASK3xx is in the function ISCOD.

ISTOD takes the character name of a structure and codes it into

an integer. For example, IST(DD codes the structure MICROS, a

microstrip, as Structure 1. The programmer must enter the new

structure name into the array of strings called NAME. This is

5

-W. K - .

done in the Data Statement. The structure name must be 6
characters long. Pbfember to change the number of blank strings

in the Data Statement. The placement of the string in array NAME

determines its structure number. For example, the structure

BONDPD, a bond pad, is the 23rd string in NAME, thus its structure

code is 23. That is all for MASK3xx.

B. SERV3xx - All structures are created and serviced in this module.

The easiest way to add a new SERVE routine is to search for an

existing SERVE routine of a structure with a similar design, then

copy this routine and change the necessary parameters to fit the

new structure. It is good to have printout to look at. For

faster compilation while debugging the new structure, the new

service routine should be written into one of the smaller service

continuation files, SERVA3xx.

Start by changing the name to SERVxx, where xx is the integer
structure code defined in IS7WD. The parameters passed to this

subroutine must be in the following order:

(IFL.W, aNNODX, (NN3DY, ZETA, NODE, NSIND, NCALPN)

All these parameters are used by this routine. If the structure

is multi-level, then the level array LAYS(NLAY) must be defined.

NLAY is the number of levels in the structure. Next coe the

parameter and common blocks. The following must be present:

PARAMETER (ISRC=3, IOODE--xx)

PARAMETER (NYPES=6 4, NEA2I -99)

PARAMETER (UMvCS =200, N1WO=2)
CO0MN /INDEX/ UAYTAB(NrYPESNECHT)

O*?WN /POLYV/ V(NU6S,NO)

I f -.,.

The format statements are next. They should contain all the

prompts for the creation of the structure. All structures have a

placement X, placement Y, and an angle prompt. The remaining

format statements should be prompts for the important size

parameters of the structure. The last two formats (usually 95 or

96) are used with the LISTEM command and will be described later.

The next statement is an implicit GO MO statement using IFLA;.

IFIA is a variable passed to this routine which decides what

operation to perform on the structure. IFIAG can be an integer

from 1 to 10. The GO MO statement is as follows:

GO M1 (100,200,300,400,500,600,700,800,900,1000) IFLA

CALL MESSAGE(l) !BAD IFLAG, END R[JTINE

GO M1 90000

Now the creation of the structure begins.

At label 100 (IFLPG=l), the structure angle is prompted and

read in.

At label 200 (IFLAG=2), the registration point RX,RY is

prompted and read in. IFIAJ is then checked if equal to 2. If

yes, then set angle theta = 0.0.

At label 300 (IFLG=3), the rest of the structure's

parameters are prompted and read in. The subroutines AREAD and

IREAD should be used for reading in reals and integers, since

defaults can be specified. Next, the layers of the strucutre have

to be set. For a single layer structure, just a prompt and an

IREAD call are needed. For a multi-layer strucutre, subroutine

LYRSET must be called, passing the array LAYS and the number of

layers. This routine will return the layer numbers for all layers

of the structure in the array LAYS. Now set IGIAIN (the

structure's chain number) to 0.

7

Now check if IFLA3=3. If it does, then this structure is

being connected to the node of another structure. First set

ICHAIN = NCAIN. NCHAIN is the chain number of the structure

being connected to. The angle and registration point of the new

structure must be calculated relative to the position of the

connect node GMODX,QMCDY. ZETA is the angle of the connect

structure. For example, for the varactor diode, structure number

15, the registration point is calculated by:

IF(NODE .EQ. 1) TE

THETA = ZETA - 180.

RX = CNNODX + (0.7*WESA)*SIND(ZETA-180.)

RY = CNNODY - (0.7*WMES)*C)SD(ZEA-180.)

ELSEIF(NXE .EX). 2) THEN

THETA = ZETA

RX = C2WM - (W3 + 2.8*ELGAME)*SIND(ZETA-180.)

RY = CN ONY - (W3 + 2.8*EWEATE)*COSD(ZEI -80g.)

ENDIF

This is all calculated using geometry. It is easiest done by

drawing a sketch of the structure connected to another and finding

the X and Y distances to the registration point from the connect

node. Once this is done using all the structure's nodes as

reference, the IFLAG=3 condition ends. Now the following three

subroutine calls are made:

CALL GETIDC (I)COEp, NSX, INDEXF)

CALL CEOSIT(INDEXF, IICHAIN)

CALL CLRE(ISRC, INDEXF)

GErIDC takes the structure code IMODDE, assigns it a sequence

number (NSEQ), and assigns an index number (IDaXF) to the source

file. CPOSIT assigns the structure a chain number and returns it

in ICHAIN. CLREWR clears the source file record, nMXF, where

the structure's parameters will be stored. ISC is the logical

8

...

unit number for the source file. The next move is to write the
parameters to the source file. The first six parameters must be
in the following order, followed by the layers and the size

paraneters:

WRITE(ISRC, REC=INDEXF) IDDlE,NSRX, RY, 1T[A, ICHAIN,
~LAYS(l),..., IAYS (NLAM),PARAMa,... ,PARAn

To display the newly created structure, call DISPCNE(INDEXF,ISRC).

GO TO 9000 will end creation of the structure.

At label 400 (IFLAG=4) designates that this structure is the

one being connected to. Therefore, the X,Y value of the connect

node must be calculated. First, the parameters of this structure

have to be read from the source file as follows:

READ(ISRC, LAYTAB(IXXENSQIN)) IR, NSERX, RY, THETA, ICHAIN,

LAYS(1) ,...,AYS(NLAY) ,PARAM,..., ARAMn

The array LAYTAB is the layout table of the entire mask. Each

structure is entered into LAYTAB when created. The two subscripts

IOUE and QQ will located the record number of the structure

in the LAYQJT table.

In this section, the X,Y location of each node is calculated

relative to the registration point. Also, the normal angel (ZETA)

of the structure is calcualted at each node. For the varactor

diode, the calculation is as follows:

IF(MOD .EK. 1)THEN

ZETA = THETA + 180.

V(1,1) = 0.0

V(l,2) = 0.7*WMSA
• ELSEIF(NODE .JQ. 2)THEN

ZETA - ThETA + 180.

V(l,l) = 0.0

V(1,2) = -W3 - 2.8*E ATE
ENDIF

9

• ~~~~~~~~~~~~~~~~~~~...-,.....•..-..-..-.....-................. '.-. .:.*" . -.- - 4 - . s
'

P , , - , " " " " , : - . , - , m . - . , , "

The array V is the vertice array where the first subscript is the

vertice number and the second subscript is I for the X coordinate,

and 2 for the Y coordinate. For example, V(1,1) is the X

coordinate of the first vertice, and V(3,2) is the Y coordinate of

the third vertice. Now the vertices of the nodes have to be

transformed to virtual coordinates using subroutine XFORN.

CAlL XFORM (RX, RY, THETA, 1)
QINNVDX = V(1,l)

CNODY = V(1,2)

GO TO 90000

The 1 in XFURM means only one vertice ina rray V is transformed.

(ANC DX,CNNC[)Y are the coordinates of the connect node n question.

IFLPC=4 is completed.

At label 500 and 600 (IFLA-5 and 6) are not currently used.

CALL MESSAGE(l) and GO TO 90000 should be written at both these

labels.

At label 700, the new structure is allowed to be scaled.

First, MESSAGE(56) is called. his prompts the user to enter a

scale factor for each scalable parameter. Now read in the

parameters using LAYM identical to the READ at label 400. The

next step is to prompt the user and read in each scale factor for
each parameter. Use AREAD to read in the factor giving 1.0 (ND

SCALE) as a default. Next, check if any factors were 0 by
multiplying them together and testing for 0 result. Now scale the

old parameters by multiplying them with the scale factors. Next,

call IRDA1R using LAYTAB to clear the old record.

CAL L A(ISRC,LAYTAB(INOODENSQIN))

" Then write the new scaled parameters back to the source file. End
the scale with GO TO 90000.

10

• ,- -. -.. . •-." . -. . .° . .-.. ,. •. - . ., .°. ,• -

At label 800, the structure is changed. First, call

MESSAGE(19), then read in the parameters from the source file

using LAYTAB as at label 400. Now prompt for all changeable

parameters using AREAD and IREAD to read in the new ones. Use the

old ones as default. This includes RX, RY, and THETA. Now change

the layers using subroutine LYRSET and array LAYS for multi-

layers. Call aRDAR using LATAB as at label 700 and write the

new parameters back to the source file.

At label 900, the LISTEM omand is invoked. The important

parameters of the structure are printed either to the screen or to

a list file called LISTEM.IST. Start by reading in the parameters

using LAYTAB. Then check the passed parameter NCHAIN. If NCHAIN

= 1, then write to a file using the passed parameter NODE as the

logical unit number. Otherwise, print to the screen. The

parameters are printed according to a format (either 95 or 96).

Format 95, which prints to a file, prints all parameters on one

line. Format 96, which prints to the screen, forms a new line

after every 80 characters. This is so all parameters fit on the

screen. The important parameters include the character name of

the structure, then NSEQ,RX,RY,ICHAIN, all layers and all size

parameters. For the varactor diode, LISTEM is as follows:

~IF(NCRAIN EQ . I)THEN

WRITE(NME, 95) NSBD,RXRY,IAYS(1) ,LAYS(2) ,LAYS(3),

ICHAIN, EGATE,DGATE, ELCH,WSA,W3

ELSE

WRITE(*, 96) NSEQ,RX,RY,LAYS(l) ,LAYS(2) ,LAYS(3),

ICHAIN, ELGATE,DGATE, ELCHM,IffSA,W3

ENDIF

End LISTER with GO TO 9000.

71

. . .ii

I, "" . .- "-°.-. .". .- •"• ".. . -.". ".'' . ' .".".' ' .-.-. ' .% ' .". .' -. % '" , % .' ' &' , .. '

Label 1000 (IFLA3=10) is used to change an existing
structure's X,Y location. All that is done here is that the old
parameters are read out using LAYTAB. The record is cleared by a

call to CLRDAR. and the parameters are read back in substitutting
CQNNX,QCNNDY for RX,RY. Label 9000, return, and end finish of

the service routine. Now go to the first routine of this module
called SERVER. In SERVER, add the condition for IWIDE=xx where xx

is the structure number of the new structure. The code will be as
follows:

ELSEIF (I(ODDE .xx) THEN

CALL SERVxx (IFL, X, Y, A, NOE, NSE, NZ2N)

Make sure all the parameters present are passed.

C. OOLR3xx - This module contains all the structure display routines.

Like the SERVE routines, the DISPLAY routines are identified by

their structure number, and each structure has its own. 7b add a
new structure display routine, first copy one from an existing
structure of similar design. A hardopy to look at is helpful.
For faster compilation while debugging the new structure, the new
display routine should be written into one of the smaller display

continuation files, (XLRA3xx.

First change the name to DISPxx, where xx is the structure

number. The passed parameters should be INIEX and IFILE. Make

sure the following parameter and common blocks are present:

PARAMETER (WMVCS=200, ITIO=2)
PARAMETR(NLYRS=1 4)

SCO9 N /PLDYV/ V(NUMKS, IlO)

COMMDN /RELAS/ LAYMERS(8:NLS)

Next, read the parameters from the source file using IFILE as the

logical unit number and INIEX as the record number.

12

:; -. V '... . . '-.--'-.-- '.-.--'-....."... . --. •.,. .-"- . ..-. . -'--.- . • . - "- .- . - . .-- . -. .--
-.1 .' ''.''' . _ .'- ' ' " " "" "" "- "" " "t"" "" "" " =.. .. -. .. " " " ' ' ' ' : ' " ""i'i . ", ". ",

. . -- C. C.-, -.

Now the display is set up layer by layer. A layer will be

displayed only if it is set to l in the LAYERS array. For each

layer, LAYN, the value of LAYERS(LAYN) is tested for 1. If yes,

then display; if ELSE, do not. Also, LAYERS(G) is the universal

display setting. Sometimes a structure does not display well when

all the layers are shown simultaneously. It is up to the

prograomer to set which layers are to be displayed when LAYERS(S)

is 1.

To display a layer, you must fill the vertice array V with
I X,Y coordinates of an enclosed polygon. This is best done by

looking at a sketch of the strucutre and, one by one, fill the

array V with consecutive points of an enclosed polygon.

Coordinates are found relative to the registration point. The

polygon must be enclosed in order to fill with color. once array

V is filled with the points of the polygon, XF-RM must be called

to translate the points to screen coordinates.

CALL XMtRM (RX, RY, M-TA, NM)

NPTS is the number of vertices in the defined polygon. To fill

with the right layer color, call the following:

CALL LCIR (LAYN, NJMOL)
CALL SELPAT (NUYML)

LCtE takes in the layer number and returns the proper integer

color number for that layer. SELPAT then selects that color for a

fill pattern. A call to BCUND draws the polygon on the screen and

fills it with color.

CALL BWJN (VFIRST,VLAST)

13

VFIRST and VLAST are the first and last vertice of the polygon.
Usually, the structure cannot be defined by just one polygon. For
every polygon , XFtRM, LaXCR, SEJPAT, and BWI4 must be. called.

When one layer is finished, go on to the next layer in the
structure. Once all polygons for all layers are designed, the
subroutine ends.

Go back to the first subroutine in this module, called

DISPLAY. Enter the condition to call the new structure display

routine.

ESEIF(SM .ED. xx) THM4

alL DISPxx(LAYTAB (NTSR,), ISC)

Next go to subroutine DISPO4E and add:

ELSE

+ IF(.(NS . xx) THEN

CALL DISPxx(INDEX, ISRC)

This concludes addition to OOLR3xx.

D. CIF3xx - This module contains all the routines for CIF generation.

Again, copy a CIF routine of an existing structure with similar
design. For faster compilation while debugging the new structure,

the new CIF routine should be written into one of the smaller CIF

continuation files, CIFA3xx. Change the name of the routine to
CIFxx. The parameters passed to this routine must be, in order,
INX, LEVMM, GEWWP. The following parameter and common blocks

must be present:

LOGICAL GEBOP

P.RAMETER(ISRC=3, ICIF=16)
PARAMETER (NUMVCS=20, Ir1O=2)
cKN /LW/ V(RMCSnr1)

14

-- - "- - -.

Next, a statement function converting meters to hundredths of

microns:

I.N(TER4) = IM (TERM/(0.00000001) + 0.5)

Read the parameters of the structure from the source file usingI ISRC as the logical unit number and INDEX as the record number.
The current level being processed is passed to the routine through
LEVNIM. The next statement should check if any of the layers of
this structure equals LEVNUM. If yes, then set GBOMDP = true.

This tells the min CIF routine that geometric output has

occurred. If no output, then go to the end of the routine.

Th produce geometric output (translate to CIF), first derive

a directional vector using structure angle THETA:

IDIRX = INMO(SD(THETWA)*.E-5)

IDIRY = INT(SIND(THETA)*L.E-5)

Test each layer separately if it equals LEVNUM. If yes, then

translate only that layer.

Each layer must be broken up into CIF rectangles. The width,

length and midpoint of all rectangles must be calculated. The
midpoint coordinates should be calculated relative to the

registration point and entered into the vertice array V. Then

XF(RM is called to transform them to screen coordinates. For

example, we have a rectangle with width = 0.91, length 0.02, and

midpoint at X,Y. The following statements occur:

WID = 0.01

LEN = 0.02

V(l,l) = X

V(l,2) = Y

CALL XM (RX, RY, TETA, 1)

15

Next, a call to CIFBOX is made. CIFBOX takes the rectangle's

parameters and places them in a CIF file. For the above data, the

call is as follows:

CALL CIrBOX(IOON(LN), I00N(WID), I(N(V(l,l)), IOON(V(1,2)),

IDIRX, IDIRY)

If a polygon is desired, the routine PAVN is called. The

polygon has to be four-sided, and the four points must be defined
in array V. The call is as follows:

CALL KOLIN(ION(V(1,I)), IOON(V(1,2)), IOON(V(2,1)),
ICON(V(2,2)), I(CCN(V(3,1)), I(CON(V(3,2)),

I(XCN(V(4,1)), I(CON(V(4,2)),

Notice that the parameters are converted to hundredths of microns
using ICON. Once all rectangles and polygons for all layers are

done this way, the subroutine ends.

Go to subroutine CIFER. Add the following condition:

EISEIF('MvC .ED xx)THM~
CALL CIFxx(IDXSRC, LEVNUM, GB0NDP)

Addition to CIF3xx is amplete. This also xpletes the addition
of a new structure to the library.

4. POGRAMMR 'S DESRIFPTION OF THE MSK PGM

A. MASK3xx - This is the main module for the MASK system and contains

all the general-purpose subroutines.

Subroutine MAIN - This is the backbone of program MSK. It
opens all necessary files and does most of the initialization.

16

At label 10876, the LAYERS array is initialized to 0. Then
the chain file, CHAINS.IT, and the message file, MESSWGE.TXT, are

opened.

At label 10080, the layout table, LAYTAB, is set to 0.

At label 10090, the GRAPICS is initialized by calls to
O)ETEK and INITT. Then the screen is cleared and the banner

printed. Subroutine SRCOPEN is called, which opens the source
file CLD or NEW. If ES(AP was entered, the program terminates.

If the source file was opened NEW, the mask size parameters

are prompted and read in and placed in the first record of the

source file. If the source file is CLD, a backup copy is made and

the chains and layout table are built.

Next, the screen coordinates are set with calls to IWINDO and

CVSCAL. The program now jumps to label 20006 where the mask

prompt is printed and waits for a user command. The next

statment reads in the user cummand and sends it to subroutine

PARSER. PARSER processes the cowmand and returns. If logical

variable IMDONE is true, then the program closes all files and

terminates. Otherwise, the mask prompt is printed and the program

waits for a new command.

Subroutine PARSER - This routine parses the first ommand (6

characters) in the mask comiand line entered by the user. It then

calls the appropriate routines to process that comrand. The

commands are parsed, in order, as follows:

ESCAPE - Terminate program.

| HEPM - If HE[M4E X, then, using the crosshairs

and subroutine VOJRSR, find any X,Y screen

location.

SIZEIT, MASIZE - Both print out the mask dimensions to the

screen.

17

..

" ',,, '- , " "-' , ,.... ,'. ,,-'' --.-.- -" ,r.. ".. . . - -'

EXPAND With the use of VCJRSR and the crosshairs
or user-entered coordinates, scale an area

of the screen. The scaling is done by

subroutine CVSCRL.

PATGEN - Not available.

"ELBFAM - Not available.

LAMT - Displays the existing layout by calling
subroutine DISPLAY.

FILEIT - Calls subroutine SRCFILE which allows the

user to save the current mask layout

without exiting program.

MYVEST - Move a structure by calling SERER with

IFLAG = 10. The distance XY to move is

prompted to the user.

BWIfKD - Same as MVEST except the entire chain is

moved.
HELPST - Not available.

ELE - Delete an entire chain of structures with a

call to DELCN.

EU.LIC - Duplicate a chain of structures with a call
to DUPCIN.

SLAYER - Sets levels of the existing mask layout for

display. This is done in subroutine

LYMENU.

CIEGEN - Processes the mask oommand, CIFILE. Call

GENCIF to generate the mask layout to CIF.

LISTER - List the contents of the source file. This
is done by calling SEWER with IFLK = 9

for all structures in the source file.

LAYTAB - Print the layout table to the screen.

GMMSUP - Implement the super structure utility. Call

SJPERI.

18

If the command was a 6-character structure name, ISTOOD is

called to get the structure code and PARSE2 is called to parse the

structure operations. PARSE2 returns IFLG which represents the

type of structure operation to be performed.

At label 10000, IFLAG=l, structure connections are performed.

The connection commands are ++,H+,V+,A+. These operations are

done in subroutine COMPOS.

At label 20000, IFLAG=2, a new structure is placed at

location X,Y or at angle THETA (AA). This is accomplished with a

call to SERVER with IFLN3=l and 2 respectively.

At label 30000, IFLAG=3, structure move operations are done

(UP, EN,FR,LF). This is done by calls to MOVACH.

At label 4000, IFLAG=4, structure scale (SC), Change (CH),

and delete (-) operations are performed. Call SERVER, IFLG=7,

to scale, call SERER, IFLK=8, to change, and call DELSTR to

delete a single structure.

At 90000 the routine ends.

Subroutine PARSE2 - This routine parses the ommand line for

structure operations and returns the desired nodes and sequence

numbers.

Subroutine COMPOS - This routine does all structure connect

operations. First, it calls SERVER with IFLPG=4 to get the
existing structure's connect node coordinates. Then, in order,

the code for A+,H4+,++, and V+ are listed. The new strctures being

connected are created with a called to SEWER, IFLPG=3.

Below is a list of the rest of the subroutines in MASK3xx.

19

. . . *'A .

NEGVEX -Determines if two structure angles are connect-

compatible.

FUNCTION ISTOOD- Encodes a 6-character structure name to an inte-

ger code. All structures are entered in the

array name and assigned an integer according to

placeoent.

FUNCTION ISTSEL- Used for selecting choices of a menu.

CVSCAL - Scales user space by the specified scale factor.

It uses Plot-lO routine DWINDO.

XFORM - Translates the points in the vertice array V

relative to the registration point, X, Y, and

angle THETA, of a structure.

GETIDC - This routine enters a new structure into the

layout table, assigns it a sequence number and an

index to the source file.

STlIDEN - Gets the structure code and sequence number of an

existing structure.

DELCHN - Deletes a chain of structures. It calls EISM.

DELSI!R - Deletes one structure.

CPOIT - Deposits a new structure into a chain.

LY NU - Sets the layer display array.

WIPCHN - Duplicate a chain of structures.

MOVVCH - Move a chain of structures. It calls SERVER,

IFLA=I0.

XLA7HZ, XULAVR - Translates horizontally or vertically all

structures created after a given structure.

LOGICAL JNMION

MEMBER - Determines if an operator is a member of a given

set.

SKIPBL - Skip all preceding blanks in a string.

LOGICAL FUNCTION

ASNVIT - Prompts user to quit or not.

SREAD - Read in a string with the option of a given

default.
LOGICAL FUNMION

20

.°. °-. -,'.. • ;°o "o " -"o-°" ." .% - , - -" % ..- -- -. - ,. .-

NAMEOK -Checks if a command or name is 6 characters

starting with a letter and the rest alphanumeric.

IN2CHR - Returns the integer value of a 2-digit decimal

nuntmer.

INICHR - Returns the integer value of a numeric character.

SRCFILE - Allows manipulations to the source file. The

command FILEIT uses it.

ESCAPE - Allows you to enter the name of the exit file and

copy the working source to it when exiting MASK.

BK:UP - Creates a backup of an 'old' source file to use

as a working copy.

SRODPEN - This routine prompts the user to open an old or

new source file.

SJFERI, SUJ1R2,

SJPER3, SJUPR4,

SUPERD -These routines get a super structure from an

existing source file and add it to the current

layout.

MESSAGE -Reads from the message file, MESSAGE.TXT, the

proper MASK message and prints it to the screen.

IREAD,AREAD -Read in integers and reads with the option of a

given default.

ORNER - Not used.

ASKYNIO - Prcmpts the user for a Yes or No response.

ATTEN - Halt the program until a key is struck.

LOAI)JX - Load array V with proper position vectors.

LNIKU3S - Read in the flash position for inputted

character.

_0ETEK - Changes the setting of the TEKTRONIX 41 07

terminal to graphics mode.

CDOEDIT - Changes the setting of the TEKTONIX 4107
terminal to edit mode.

This concludes module MASK3xx.

21

.- d - - |

B. SERV3xx and SERVA3xx, SERVB3xx - This module contains all the
structure service routines.

Subroutine SERVER - This is the driver module for all

structure service routines. It directs the flow of the program to

the proper structure routine.

Subroutines SERV0 through SERVnn - These are all the

individual structure service routines. All existing structures
have their own. To add or modify one of these routines, go to

Part B, Section 3, on how to add a new structure to the library.

This completes module SERV3xx.

C. (CR3xx and WOLRA3xx, aOLRB3xx - This routine contains all the

structure display routines.

Subroutine USPLAY reads the current source file and displays

each structure one by one by calling the proper structure display

routine. Each structure has its own routine.

Subroutines DISPER, DISKME display only a single inputted
structure.

Subroutines DISPgl Through DISPnn are individual structure

display routines. They ae described in detail in Part C, Section

3 (how to add a new structure to the library).

BDW - Draw the boundary of an enclosed polygon defined

in the vertice array V. Also the polygon is
filled with the right color. Plot - 10 routines
are used.

LMRSET - Sets the MASK layers for a multilayered struct-

ure,

22

CLRDR - Clears a record of the source file.

LxxxjM -Assigns the proper color number for the proper

layer.

This completes module C(tR3xx.

D. CIF3xx and CIFA3xx, CIFB3xx - This module contains all the
structure CIF generation routines.

GENCIF - This is the driver routine for the generation of CIF. It

opens the CIF file, SCURCE.CIF then structure by structure, it
reads from the source file and calls the appropriate CIF genera-

tion routine.

Subroutine ICHMN prompts the user for type of CIF genera-

tion. The user has the choice of CIF generation for EMASK or

ONELL format translation.

Subroutines (OENID, CGENID2, C33ENID3 generate CIF code for a

MSK ID.

Subroutines CFNEXT, CIFGET, CFSKBL, SHNW, CFPAS1, ITALBN,

CIFSRT, CIFSRT2 and CIFSRT3 are currently not used.

Subroutine CIFLIM enters the MRSK limits to the CIF file.

Subroutine CIFX4 enters comments into the CIF file.

Subroutine CIFBOX enters a CIF rectangle into the CIF file.

Subroutine FOLYN enters a CIF four sided polygon.

Subroutine CIFLAY enters a change of layer into the CIF file.

23

.. ..-..... ... *..- U- . " .-a . " a.. ' ,a . - *' .."-'-,-i . .,,, ' . ' , , '%'-'.".". - ... -'% , . - .

Subroutine CIFER is the driver to all individual structure

CIF routines.

Subroutines CIF0l through CIFnn are the individual structure
CIF generation routines. They are described in detail in Part D,
Section 3.

Subroutine FRAME draws a frame around the MASK layout.

Subroutine IIWNUM draws a number on the display (not used).

This completes module CIF3xx.

E. E1RN3xx - This program translates CIF code to E(ECRGUSK code.

Subroutine MAIN opens is the MESSA3E file, M and
prints the banner. GETPAT is then called.

Subroutine GENPAT prompts and opens the CIF file at Label

1000. At Label 1106, the machine readable EMASK file and the user

readable EMASK files are opened. PRSCIF is called next. This is

where the translation takes place. When the translation is

completed, CVRLTP is called to create the machine readable file.

This ends the routine.

Subroutine PRSCIF parses the CIF file and translates it to

EMSK code. At label 450, the CIF file is read to find all the
layer numbers available. At label 500, layers are printed and the

user is prompted to enter the layers not to be translated to
EMASK. At 10600, the parsing begins by reading a line of CIF
code. If the line is a CIF box, then the dimensions are onverted

to tenths of microns and sent to subroutine OX which creates an

ELBCTRCMASK box. If the CIF line is a layer, then EDLAYR is
called to process an EMASK layer. If the line is an end state-
ment, then EMEND is called. If the line is a comment, then M1SK
size parameters are read in and EMN is called. 7his writes the

comment to the ER4SK file.

24

.- . ..- -'~~. .. '. ,..-..-. , -..-..-.. . . . ,- . . - -.. - -. ,- ,,.. .- . .- .

Subroutine PREFIL pref ills an 800 character array called

BW(, with a beginning and end of block character. This array is
used in creating the machine readable EMASK file which is written

in 800 character blocks.

Subroutine FLUSH prints the entire 800 character array,

block, to the user readable EM1SK file. Then it calls PREFIL.

Subroutine CVRrI converts the user readable EMASK file to

the 800 character record machine EMASK file.

Subroutine EWRIT writes an EMASK operator and its parameter

to the array block.

Subroutine DMN writes a CIF comment into the array block.

The comment is enclosed in quotes.

Subroutine CH6INT converts an integer to a six (6) character

nwmeric str ing.

Subroutine IAYR processes a CIF layer command. FLUSH is
called to empty the array block to the EM4SK file. That termin-
ates the previous layer. The new layer is started by printing the

level number.

Subroutine OX takes the dimensions of a CIF rectangle and

breaks them down to flashes.

Subroutine E FL H writes out a flash to the EDASK file. The

parameters that describe the flash are W,V,U,X,Y which are width,

height, angle, X location and y location.

Subroutine MESSIE prints the proper message from

MSSAGE.TX.

Function ASHIT prompts user to quit.

25

Subroutine SREAD reads a string with optional default.

Subroutine SKIPBL skips preceding blanks of a string.

Function SHMdME extracts a short name from

a string.

This concludes EvRN3xx.

F. ECHK3xx - This program verifies the machine readable KE(Wn SK
code written to tape.

Subroutine ELGIECK starts by printing the banner at label 25
after all the format statements. Next the EMUSK file is opened.
Then the first 806 character record is read to find the M1SK size
parameters. With calls to LOT - 10 routines IN1TT and TWIID,
the screen size of the Tektronix 41V is set.

At Label 140, the layers menu is printed. The user can
choose if he wants all layers of the M1SK to be verified

separately or all on one screen.

At Label 190, the user is prompted if a copy of the screen is
wanted. Then the expansion menu is printed. The user can expand
any portion of the screen by a given scale factor. The scaling is
done in routine SCALE.

At Label 206, PARSE4 is called. PARSEM parses the DESK file
and displays the layout flash by flash.

At Label 9106, the routine ends.

26

Subroutine PARSEM parses the EMASK code. In order, it parses

for the following DUSK operators: S(FLASH), Z(END OF LAYER),

.(END OF BLOCK), O(COMM), LEV"(NEW LAYER), U,V,WX,Y.

Subroutine ISSSIR reads a substring fromn a string.

Subroutine EPRMOR prints EMASK error condition.

Subroutine EIU rP reads E SK file from tape to disk (not
used).

Subroutine WRBLOC writes the 800 character array, block, to
the screen (not used).

Subroutine BOX displays an DUSK flash to the screen around

point XY.

Subroutine ISH is not used.

Subroutine FRAE draws a frame around MASK display.

Subroutine SCALE scales any portion of the graphics screen

using VOJRSR and WINDO.

Subroutines SREAD and IREAD read strings and integers with

the option of a given default.

Tis concludes BCHK3xx.

G. CIRN3xx - This program translates CIF code to EBMF ORNML format.

Program MAIN - This routine contains the CIF parser.

At Label 350, the machine readable CORNELL file is opened.

Then the CIFILE is prumpted for and opened.

27

At Label 459, the CIF code is read through and the available

layers are defined. These layers are printed at Label 509.

At Label 709, the user is prumpted to enter which layers are

to be omitted from translation from CIF to CONL format.

At Label 1000, the translation begins. The parser begins by

checking for a CIF comment. The IRSK size parameters are defined

in these comments.

The parser then checks for a layer cxmmand. Subroutines DC

and 00MENT are called. These routines end the previous CORNELL
layer and set up for the next one. Next, the parser processes a

CIF End of File statement. Only ENDC is called.

The last condition checked is for a CIF rectangle. The

parameters are read in and CRNELL format is computed. CNELL

format consists of the X, Y coordinate of the lower left point and
the upper right point of the rectangle. This is easily computed

from the CIF parameters. The 0NELL format is written to the

file by the special format statement at label 400.

When the conversion is complete, all files are closed and the
program terminates.

Subroutine WOET initializes a new ORNELL format layer.
This is done by writing the following two lines:

DE RME AIR DVLPMENT CENTER

/CORNELL EEAM LITHIOGRAPHY SYSTEM

Subroutine ENDC terminates a CNELL format layer. The
string , END, is written to the file.

28

Subroutine SKIPBL skips preceding blanks in a string.

Subroutine SREAD reads a string with the option of a default.

This concludes CMN3xx.

H. OXHK3xx - This program verifies a (XNELL format tape file.

Program MAO - First the banner is printed and the CORNELL
file is opened.

At Label 400, the MAX and MIN of the CORNELL parameters is
defined. 7hen the graphics screen window is defined with a call
to WINMD and the virtual scale of the window is set with a call

to IWINMO. This program automatically scales the window so the
display covers the whole screen.

At Label 650, the numter of levels available are printed to

screen. The user is then prompted to enter which layer or layers

to be verified.

At Label 100, the 03RNELL format is parsed. First a CNLL
layer is checked, then an end of layer cxmmand is checked.

No display is done until a ORNELL rectangle is found. Then
the rectangle parameters are sent to subroutine BCUND which

displays it on the screen. When the display is done, the user can
exit or display different levels.

Subroutine SKIPBL skips preceding blanks in a string.

Subroutine SREAD reads a string with option of a given

default.

29

Subroutine BCUND - Using PLOr-10 conands, a CNEL

rectangle is drawn to the screen.

Subroutine FRAME draws a frame around the MASK display.

This concludes OCHK3xx.

I. HELP3xx - This module contains the user HELP routines.

Subroutine HELPER is the driver routine for the MASK HELYI

comnand.

Subroutines GIVHLP, HIF, HLPRNT read and print the proper
message from file HE PPMS.TP.

Subroutine HELPST displays a given structure by levels to the

screen.

Subroutine IISEMB inserts a symbol in the display (not used).

Subroutine POINT draws a point on the screen.

5. CDMPILnI3 AND LINKING OF TE MSK SYSTEM

A. MASK.EXE - To create MASK.EXE, the following modules have to be

compiled.

1. MSK3xx.PVR

2. CWLR3xx.FM

3. CIF3xx. ICR

4. SERV3xx. FOR
5. All the CIF, SERVE, and (ELR continuation modules

6. HMP3xx. FOR

30

"."" ' ° °i"°" ;'o'"I' "" " "";""°'"' " " ° " "....."............"."........."............".."...". ° "" ." '° .
"'° "°°"°°-".

This is done using the FORTRAN statement as follows:

$ FORTRAN MRSK3xx

$ FORmRAN cIF3xx
$ FORTAN OLR3xx

$ FORTRAN SERV3xx
$ FORTAN HELP3xx

$ FORRAN CIFA3xx

F~ FORTRAN clFn3xx
$ FOTRAN CIRn3xx

$ FOTAN CLUnxx

$ FORTRAN SERVA3xx

$ FORAN SERVn3xx

The cm and FORTRAN can be abreviated to just F. In com-
piling these FORTRAN modules, object files were created. (With

EXPTESION .CBJ). these object files must be linked together to

create the executable file (EXENSION .EXE). This is done as
follows:

$ LINK/EXE4MISK MSK3xx,cE.R3xx,CIF3xx, SERV3xx,RA3xx, **

COLRn3xx, CIFA3xx,... ,CIFn3xx, SERVA3xx,..., SERVn3Xx, HELP3xx

31
P. . . P. -

The executable file MASK.EXE now exists in the default
directory. To run the program type:

$ RUN MSK

B. ETRN3xx and ECHK3xx - The two FORTRAN modules must be compiled to

create the object files. This is done as follows:

$ FOR A N3xx
$ FORAN BZHK3xx

To create the executable files, link both separately:

$ LINK ETMN3xx

$ LINK ECHK3xx

The executable files for both programs now exist in the

default directory. To run the programs, simply type:

$ RUN ETRN3xx

$ RUN EriK3xx

C. CTRN3xx and CCHK3xx - The two FORTRAN modules must be compiled to

create the object files. This is done as follows:

$ FORTRAN CTRN3xx

$ FORTRAN CCHK3xx

To create the executable files, link both separately:

$ LINK CTRN3xx

$ LINK C-HK3xx

32

:.'. -." -'.-..'- ".-.:'.•'2- >'/ ,-"d. i ,/ ? ,- . . -' 7 .. --i i -. ,-':" 0 ;" ", - --..4-----0. - - : 2.:i.:.2""'. .:: .-.- -

The executable files for both programs now exist in the

default directory. To run the programs, simply type:

$ IJN CTRN3xx

h. $ RUN OCK3xx

6. LIST OF S3NJCIRES 7M CANNOT BE ANSLATED TO BOIr EMASK AND 3RNELL

A. Structures available for CONELL translation only.

1. MESFET - GATE with air bridge EPI.

B. Structures available for E4ASK translation only.

1. MITEB - No miter and bend angle larger than 90.0 deg.

C. Structures available for E1ASK and CNEL translation but require

separate code.

1. LANGEC - Lange coupler.

2. MITERB - With miter and bend angle at 90.0 deg.

This concludes the text file MASK.DOC.

b

, 33

I
m
-

r.Ir

FILMED

-86

DTIC7

