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ABSTRACT

A method for error correction of ill formed input i- described which acquires dialogue patterns in
"" typical usage and uses these patterns to predict new inputs. Error correction is done by strongly biasing

parsing toward expected meanings unless clear evidence from the input shows the current sentence is not
expected. A dialogue acquisition z-d tracking algorithm is presented along with a description of its imple-
mentation in a voice interactive system. A series of tests are described which show the power of the error
correction methodology when stereotypic dialogue occurs.
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1. Introduction

In an environment where stereotypic discourse com monily occurs, the repetitiveness and predictabil-

ity of the interactions may enable a machine to effectively anticipate some inputs. For a speech under-

standing system, such anticipation can greatly enhance the processor's capabilities for error correction so

that proper action will take place despite inaccuracies at the voice recognition phase. This paper is con-

cerned with the automatic construction of a model of user behaviors in typical interactions and the use of

such a model in the correction of misrecognition errors.

It is assumed that a user approaches the machine in a typical application with a problem to be

solved. He or she inputs a series of sentences requesting action or information that will lead to a solution

and then leaves when the task is complete. In the early examples of such an interaction, the machine will

have little or no expectation and will be dependent on its basic capabilities for understanding and carrying

out commands. However, if repetitive behaviors occur, the processor will effectively use them to antici-

pate inputs and correct errors. This will enable the user to speak less precisely and more quickly while

still achieving reliable performance.

Such repetitive behaviors may occur within a single dialogue where a user.may utter sentences with

*similar meanings again and again (as in "Is there a plane on Thursday' What time does it leave? Is there

one on Friday' When does it leave?"). They may also occur when a given dialogue resembles earlier ones.

The expectation system will thus continuously monitor inputs, looking for repetition. If no repetitious

behavior occurs, the natural language processor is allowed to proceed without intervention in handling a

dialogue. However, if repetitiveness is detected, the expectation system will supply the processor with

anticipated behaviors which can be used to help remove uncerainties in sentence recognition when they

occur.

In the following sections, an overview of the history-based expectation system is given. Then a

representation for user behaviors is described, followed by an algorithm for creating and tracking such

models along with a method for using them in error correction Finally, an implementation of this metho-

dology will be described in the domain of speech recognition and results from a serim of tests investigating



2

the system's performance in various situations will be presented.

* 2. An Overview of the'listory-Based Expectation System

The general gol of the hist...j bcd cxpcctatlo sym%.r" ib Wr urge a series of diaiogues. each of

which consists of a sequence of sentences, into a more general dialogue that reflects the patterns that exist

between and within the separate dialogues. Thus, the expectation system must:

1) save incoming dialogues,

2) find patterns between and within these dialogues so that they can be merged into a more general dialo-
gue, which becomes a formula for a more general situation, and

3) use this information to help predict what will be said by a user in a given situation.

This ability to predict what might be said by a user can help error correct what is input to the natural

" language system through errorful means, such as a voice recognizer. We will call this ability "expecta-

"• tion". Figure 1 shows an overvie* of the structure of the history-based expectation system. Expectation

is acquired at two levels, the sentence level and the dialogue level. A special parser, called the expecta-

tion parser, is used to analyze at the sentence level. The expected dialogue is a data structure used to

store the history-based expectation that is acquired using an expectation acquisition algorithm. This con-

stitutes the dialogue level.

As each sentence is entered into the system, such as through a speech recognition device, it is parsed

.- and a meaning representation is produced and saved by an expectation acquisition algorithm in the expec-

tation module (see I in Figure 1). The parse is also output for use in the next step in the system's pro-

cessing of the sentence. This process builds a sequence of sentence meanings which are then incorporated

, into an expected dialogue (see 2 in Figure 1). After an expected dialogue is partially or completely built,

the expectation module attempts to determine where the user is in a given dialogue using information

from the expected dialogue and the current parsed sentence (see I and 3 in Figure 1). If it succeeds, it

* creates and transmits (see 4 in Figure 1) an expected sentence set to the expectation parser. The expecta-

tion parser will then use this information to improve its ability to recognize the next incoming sentence.

2-
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3. A Representation for User Behaviors

Suppose a user inputs the following sequence:

Sentence Label

Display my mail summary for today. SI
Show me this letter. (with touch input) S2
(the letter appears on the screen)
Remove this letter. S3
Display the letter from JA. S4
(letter appears on the screen)
Delete it. S5
Log off. S6

We will denote the meaning of each sentence Si with the notation M(Si). The exact form of M(Si) need

not be discussed at this point; it could be a conceptual dependence graph (Schank and Abelson 11977), a

- deep parse of Si, or some other representation. A user behavior will be represented by a network, or

* directed graph, of such meanings. At the beginning of a task, the state of the interaction will be

represented by the start state of the graph. The immediate successors of this state will be the typical

opening meaning structures for this user and succeeding states will represent, historically, paths that have

. been followed by this user.

It is important that if two sentences, Si and Sj, have approximately the same meaning, this should

," be clear in the representations M(Si) and M(Sj). Our algorithm, described below, ill merge two meanings

" M(Si) and M(Sj) into a single node in the behavior representation if they:

(1) are sufficiently similar, and

(2) appear in similar contexts.

0 Thus, in the above example it would appear that M(S3) and M(S5) play similar roles and could be

* represented by one structure: after a letter is read, one might expect to see it deleted.

Often times, two commands will be similar except for the instantiation of certain constituents. This

is the case in sentences S2 and S4, which request the display of, respectively, the message indicated by a

ft" f-t'' i " d ft~ 
l

ft , i. ifiti .l . . .. .. . ' . . . ... " tf ft * ", ft ft f-t,, , ,



4

touch and the letter from JA. Again, it is desired to represent such similar meanings in a behavior graph

with a single node if they appear in similar environments. Thus, a routine will be needed to find a gen-

eralization of two such sentences which can represent their common meaning. In the example, the gen-

eralization of S2 and S4 might be "display <LETTER>" where "<LETTER>" is a noun group refer-

ring to a letter.

In tracking a dialogue, we may arrive at a node in the behavior graph with meaning MI. This

means a command is expected with meaning M2 which is either identical to, or a special case of, MI. If

such an M2 is input at this time, we will say that Ml predicts M2 and define the predicate:

Predicts(M1, M2) = true if and only if meaning MI is identical or similar to M2.

It is quite possible, as with M(S2) and M(S4) above, that a common generalization can be found for two

sentences that appear in sinlilar contexts. Then one will be able to merge them into a single node in the

behavior graph. Thus, it is necessary to have a predicate to check whether these conditions hold and a

function to find the desired generalization. The following two routines do this:

Mergeable(MI, M2) = true if and only if an M can be found such that Predicts(M, Mi) and
Predicts(M. M2).

Merge(Mli, M2) yields a meaning M which is identical to. or a generalization of. M and M2.

A user behavior is represented as a network of sentence meanings with transitions from one meaning

to another that indicate traversals that have been observed in actual dialogues and their frequencies. For

example, the abo% e six-sentence sequence could be represented as shown in Figure 2. Each node i has a

meaning Mi and a count Ci, which gives the number of times in observed dialogues this node has been

. visited. The integer on each transition gives the number of times it has been traversed in observed dialo-

gues.

More formally, a behavior graph B will consist of a set of nodes named 0, 1, 2, 3, ... ., bsize-I Each

node i will have its associated Mi and Ci and the first node will have a special meaning MO = 'start'.

The transitions will be represented as triples (i, j, k) where the traversal is from node i to node k and has

. ... .. .. . . . .-............... **. . .... --- ,. .... .:......- ..... ...-.
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been observed j times. The example six-command sequence would be represented by the nodes 0 through

4 with Mi's and Ci's as shown and with the triples

(0.1.11 (L.1.2) (-2.2.3) (3.1,9) (3 1,4)}.

Notice that the observed probability of crossing transition (i, i, k) is j/Ci, a fact that is used by the expec-

tation parser.

4. The Expectation Model Building and Tracking Algorithm

It is desired to have an algorithm to monitor the discourse, collect the history of inputs, and invoke

expectation when any kind of repetition occurs. Such an algorithm will be described below. To do so,

however, some additional notation is needed:

current -an integer giving the state number in B corresponding to the most recently recognized sen-
tence.

- bsize = the total number of statei in B.

E(i) = {k j >0 (i, j, k) is in B}, the set of successor states to state i, also called the expected sentence set
of i.

P( . E(current)) = The result of the expectation parser with input S and E(current), where S is the
current input sentence which may have errors, and E(current) is a set of expected meanings in
B. the successors of node current. The result, or output, is the meaning of S, *%kS).

The behavior graph B begins with one state numbered "0" and with MO = start, C(0) = 0. Thus, the

size of the graph is bsize = 1 and the most recently recognized sentence is assumed to be this start state,

current - 0.

Suppose that the first sentence in the above sample dialogue is read:

S1 = "Display my mail summary for today."

Then the processor will begin with no expectation since E(0) is currently the empty set, and find

M(SI) - P(SI, (1).



* This will result in the creation of a second state in B with the following statements:

Create a N'EW NODE:

Put(currmnt, 1, bzize' iro B, s Lra!us iLion .o the new state is created)
C(current) := current) ; (state O's count L, incremented)
current :=bsize; (the new state is now the current state)
M(current) :=M(S) (the iiew state's meaning is recorded)
C(current) :-0, (this state has not yet been visited and exited)
bsize :=bsize +1; (the size of graph B is incremented)

Thus, the .rst two states shown in Figure 2 will exist with the single transition (0, 1, 1). Sentence S2 and

S3 result in similar processing, the addition of states 2 and 3, and the creation of transitions (1, 1, 2) and

(2, 1, 3) as shown in Figure 3.

The input sentence will yield a different action, however, if its meaning M(S) is determined to be

* mergeable with the meaning-of an existing node M on the graph. While the details of mergeability have

* not yet been discussed, let us assiume for the currtnt example that M(S4) is mergeable with M(S2). Then

a new meaning will appear in the graph that is a generalization of these two, M~erge'MS2'), M(S4)), and a

* graph transition will be built to this new meaning Transfer to the existing meaning N& would proceed as

follows:

C(current) :=C(current) 1;
Mk :=Merge(Mik, M(S));
Put(current, 1, k) into B;
current :=k;

Figure 4 shows the updated graph. At this point, current -& 2, and the expectation set, E(2), is non-

* empty for the first time. So, now we compute P(S5, {M3)) meaning that S5 is read with the expectation

that its meaning will be "remove this one". Given this expectation, the parser will prefer any transitions

down paths that lead to some paraphrase of this sentence and, unless the system clearly recognizes that
"eMoVe 9"i one" will be

something else has been said, a sentence meaningarecognized. If it is recognized, then current will be

advanced to this expected node. In general, there may be several expected sentences and the processor

will select the one most similar to the incoming utterance unless that sentence is clearly not any member
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of the expected set.

Thus, if a successor k to the current state predicts the incoming sentence, we track that successor.

Tracking the expected meaning Mk would proceed as follows:

C(current) :- C(current) 4- 1;
Mk := Merge(lMlk, M(S));
Increment r in (current, r, k);
current := k;

Figure 5 shows the result.

The final sentence S6 in the dialogue will cause the creation of a termination state and complete the

graph of Figure 2. The behavior gra ph creation and tracking algorithm is thus the collection of the above

21
2 M(52),M(S4)

1 2

3 M(S3),M(S5)

Figure 5 Merging M(S3) and M(S5)

.Oo . ~ .



code segments:

if no behavior graph B'exists then
begin
bsize :- 1:
N10 := start;
CO: 0
end

else
load B;

current :. 0;
repeat

begin
read input sentence S;
M(S) := P(S, (Mk I k in E(current)})
if Predicts(Mk, M(S)) where k in E(current) then

begin
C(current) := C(current) + 1;
Mk :- Merge(Mk, M(S));
Increment r in (current, r, k);
current :- k;
end;

else
if Mergeable({Mk I k = 1 and/or 2 and/or ... bsize-1), M(S)) then

begin
C(current) := C(current) + 1;
Mk :- Merge{fMk I k - I and/or 2 and/or ... bsize-1}, M(S));
Put(current, 1, k) into B;
current :=- k;
end;

else
create a NEW NODE:

end
until M(S) is a dialogue termination.

When the user enters the system again, this algorithm can be reinvoked using the existing B graph.

If the next dialogue is very similar to a previous one, then tWe expectation dialogue will powerfully sup-

,. port error correction. If the next dialogue has little resemblance to previous ones, then no expectation will

*" be available and the user will be dependent on basic processor recognition capabilities.

This section has given an overview of the approach to history-based expectation processing. The

details of the method are dependent on how the functions P, Predicts, Mergeable, and Merge are imple-

mented. The following sections describe our implementation which was used to investigate the viability

of this approach and the performance it can achieve.



5. An Implementation

The implementation to be described is based on a speech understanding system. An off-the-shelf

speech recognition device, a Nippon Electric Corporation DP-200, was added to an existing natural

language processing system. the Natural Language Computer (NLC*) ([Ballard [1979, Biermann and Bal-

lard 11980"). The faultiness of the speech input motivated the effort to attempt error correction using the

* history-based expectation technique described here. The resulting speech understanding system is called

* the Voice Natural Language Computer (VNLC) (Fink [19831).

The implementation, as in the overview of the general system presented in section 2, consists of two

major parts, an expectation parser and an expectation module, and their respective data structures. The

expectation parser embodies the function P, while the major functions of the expectation module are

* Predicts, Mergeable, and Merge. An expected sentence set, E(current), along with the most recent input

sentence S, are inputs to the expectation parser P. The expectation parser P uses these two inputs to

* determine the meaning M(S) of the input sentence S. Thus, M(S) is a deep parse of S. The function

* Predicts determines if one of the sentences in E(current) predicts M(S). If so, the M(S) is merged with this

Sentence meaning and dialogue tracking is begun from that point. Otherwise the function Mergeable

determines how "similar" M(S) is to any other sentences in the expected dialogue. In this implementa-

tion, the function Mergeable is actually much more cautious about determining whether or not a set of

sentences should be merged. For the implementation. if Mergeable determines that certain nodes in the

expected dialogue are mergeable with M(S), then it adds the successors of these nodes to E, creating an

expanded expected sentence set. Then, if the next sentence jnput is predicted by one or more of these

sentences, they are merged through the action of Predicts and Merge.

5.1. The Expectation Parser

The purpose of the expectation parser in this implementation of a speech understanding system is to

*take input from the scanner and the expectation module, and use this information to determine what was

said by the user. Thus, during the parsing process, the expectation parser must reconcile the sequence of

* words input from the scanner with the expected sentence set from the expectation module, or determine

.-- - - - . 4

* * *'*-. * . . . .



that the scanner input is not like anything that was expected and. thus igJnore :: ..

the expectation parser parses from two inputs. It is constantl) trying to maintij. a, r .ri -n ,,

the input from the scanner and the input from the expectation module This balancrizg i, krt IL 1,l t.

a set of rating factors that are used during the parsing procedure to help guide the searct, for a reasoriat

sentence structure. These rating factors. at times. will be referred to as probabilities in the following do-

eussion. However, in reality, the ratings are one thousand times the values of the logarithms of numberm

between 0 and 1. Thus, the ratings span the values -999 to 0, where 0 is equivalent to a probability of

one. These ratings are computed this way because they remain integral and still fairly accurately

represent the correct values. Also, they can simply be added and subtracted rather than multiplied and

divided in the hundreds of calculations required for a single sentence parse.

The expectation parser uses an ATN-like relresentation for its grammar (Woods 119701). Its stra-

tegy is top-down. The types of sentences accepted are essentially those accepted by the original NLC

grammar, imperative sentences with nested noun groups and conjunctions (Ballard 11979]). An attempt

has been made to build as deep a parse as possible so that sentences with the same meaning result in

identical parses. Sentences have the same 'meaning' if they result in identical tasks being performed

The various sentence structures that have the same meaning we call 'paraphrases'. We have studied the

following types of paraphrasing:

1) WORD <=> WORD
'entry* <=> 'number'

2) ADJ NOUN < = > NOUN QUALIFIER
'positive entries' <- => 'entries which are positive'

2) NOUN NUMBER < = > DET ORDINAL NOUN
'row 2' <=> 'the second row'

4) CLASSIFIER NOUN <=> NOUN of/in CLASSIFIER
'the row 1 entries' <---> 'the entries in row 1'

6) EQUIVALENT SETS
'row 1' <=> 'entries in row 1'

6) QUANTIFIERS
'all (of) (the) entries' <=> 'the entries'

-. 1
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10) PRONOUNS
't' < = > 'row '

Il) ORDINAL NOUN <-> NOUN X in COLUMN or ROW Y
NOUN NUM.%BER < = > NOUN X in COLUMN or ROW Y
'sixth entry' <==> 'entry 2 in column 3'
'entry 6' <==> 'entry 3 in row 2'

12) NUMBER < => ENTRY X
'9.75' <=> 'entry 3'

13) WORD <=> (WORDS)
'double' <=> 'multiply by two'

14) CONJUNCTION OF VERBS
'double row two and zero matrix one.' <-> 'double row two.

zero matrix one.'

* It is obvious from this list that there are varying levels of paraphrasing. Some arise at the vocabulary

level (number 1), some at the syntactic level (numbers 2, 3, 4, 5, 6, and 7). some at the semantic level

(numbers 8, 9, and 10), some at the current world level (numbers 11 and 12). and some at a combination

of levels (numbers 13 and 14). Those that only require knowledge of the vocabulary or of the grammar

are implemented in the current history-based expectation system. This means that paraphrases one

*. through seven are handled currently. The last seven may be dealt with at some future date. However,

they are somewhat more complicated because they require temporal-type knowledge such as the current

referent of a pronoun or the current size of a matrix. The lexical and grammatical paraphrases, on the

other hand, will always have the same meaning, regardless of the current state of the world. By handling

" the seven lexical and syntactic paraphrases, a stored parse can aid in recognizing many sentences with the

same 'meaning' but different surface structures.

To simplify representation of the parser output we have developed a special notation to indicate the

deep parse of A sentence. For example, the parse of the sentences:

..
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Double the positive row 1 entries.
Double the positive entries in row 1.
Double the row I entries which are positive.
Double the-entries in row I which are positive.

is notated as-

Double (entries (positive) (ri))

The mechanism for using the expectation information during parsing is built into the ATN-like net-

work. At each point in the parse of a sentence, when the expectation parser is trying to determine what

the role of the current word slot is in the sentence, five different attempts are made to use the current

word slot as needed at the current point in the grammar network. These are:

1) Find a word in the current word slot from the scanner output that will fit the needs at this node
in the grammar. If such a word cannot be found, try choice 2.

2) Look at the parse of the' current expected sentence to see if the template slot that the parser is
currently trying to fill is filled in the expected sentence. If so, copy the value in the template slot
from the expected sentence to the current parse, ignoring the word slot from the scanner. Other-
wise, try choice 3.

3) Skip the current word slot from the scanner output, filling the corresponding parser template
slot, when appropriate, with a NIL value to indicate that a word has been skipped and that it was
assumed to have the function associated with the template slot. If the parse fails later on, and the
parser backs up to this point, try choice 4.

4) Assume that the word slot from the scanner is an extra one due to an error in recognition. Skip
this word slot and again try choice 1. If failure occurs, try choice 2. Finally, if failure again occurs,
try choice 5.

5) Assume that the needed word slot from the scanner is lost due to an error in recognition.
Without advancing to the next scanner word slot, try step 2 again. If this fails, then fill the parser
template slot, when appropriate, with a NIL value to indicate that a word has been lost and that it

was assumed to have the function associated with that template slot. Remain at the current scanner
word slot so that it can again be evaluated for a different function.

An example piece of the parser network is shown in Figure 6. The network represents a tree structure

which is searched by the expectation parser. Succession in the network is represented by the parent-child

relationship, which is indicated in Figure 6 by indentation. Thus, the node containing the command ADV

..- -



formatted routine FILLADJ:

4257 START
4267 ADV
4272 CHEK PART ADJ
4279 FILLSLOT ADJECTIVE QUOTE
4556 EXPCOMP ADJ
4286 RET
4551 EXPADV
5214 EXPCHEK ADJECTIVE
4885 COPYSLOT ADJECTIVE
4750 COPYWORD ADJECTIVE

goto 4556
joto 4556

4756 SKIPWORD LOG7
4762 J FILLSLOT ADJECTIVE NIL
4769 COPYWORD QUOTE NIL

I goto 4556
5036 EXTRAWS LOG7

goto 4267
I goto 4551

5043 LOSTWS LOG7
goto 5214

goto 4762

Figure 6. An Example Parse Net

. . . . .

* .- . . . . . . .
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is the parent of the node containing the command ClEK PART ADJ and so is succeeded by it. Should a

command fail, the parser backs up to the parent node of the node that has just failed. Thus, if a check

for an adjective in CHEK PART ADJ fails, control will back up to the node containing ADV. Choice is

represented by the sibling relationship which is indicated in Figure 6 by the vertical lines connecting

nodes. Thus, ADV, EXPADV, SKIPWORD, EXTMA WS, and LOSTWS are all siblings in the tree net-

work and are choices that the parser can make when parsing a sentence. Note that, in this case, these

five choices represent the five possible attempts that are made in trying to parse a word slot that were dis-

cussed above. A choice is made by picking the siblings in the order in which they appear in the network.

Thus, when the CHEK PART ADJ fails and control backs up to ADV, the expectation parser will

back up to the START node and then take the second choice, EXPADV, and attempt to proceed down

" that chain of commands.

The scoring mechanism within the parser serves to aid in the evaluation of the alternative paths

* during the parse process and the pruning of improbable choices. A typical spoken input to the system is

"add row one to row two"

*and the speech recognition machine will often return such errorful output as

"and row * to row".

,* The asterisk indicates that the device guesses the existence of a word but has failed to identify it.

The parser must be able to extract the user's original intent and its operation is guided by rating factors

which evaluate the quality of the path through the parser, the word selection , the level of agreement with

expectation, and the self consistency (or compatibility) of the sentence. These individual ratings work as

follows:

1) The Transition Value

Every time the parser moves over a SKIPWORD, EXTRAWS, or LOSTWS command a charge is

made to the value of the transition. Normally, a transition does not cost anything, but each SKIP-

WORD, EXTRAWS, and LOSTWS executed results in a lowering of the transition's value. This

charge is made for the rest of the parse unless the SKIPWORD, EXTRAWS, or LOSTWS is backed
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over. This charge can be seen in the sample grammar net appearing in Figure 6 after the words

SKIPWORD, EXTRAWS, and LOSTWS. The charge in this example for each of the three com-

mands is 1000*log..7, = -35.

2) The Word Value

We define the synophones of a given vocabulary word to be the words a user might speak that could

possibly be recognized as that word. Because of the nature of the dynamic programming algorithm

in the NEC machine, it yields only one guess at each word slot so it is necessary for our software to

provide the set of synophones for each guessed word. Thus, in the case of the above recognizer out-

put, the following synophones would be produced to represent the sequence of possible words spo-

ken:

word slot word rating

.0 and 1000log[] = 0
add 1000*log1.81 - -22

1 row 1000*log[l] = 0
rows 1000*og] .8] - -22

2 * 1000*log1j -- 0
3 to loooslogil] = 0

two 1O00*logl1] = 0
into lO00*log!.8'1 -22

4 row 1O0O*Jogjf - 0
rows IO00*log[.8] = -22

5 l000*log1] - 0

Each alternative word is given a rating. The words selected by the recognizer are given maximum

ratings and alternatives are given lower values. If two 'rords have the same pronunciation as with

"to" and "two", they are given the same values.

3) The Expectation Value

This value is based on whether or not there is an expected sentence, how well the current parse is

matching the current expected sentence from the expected sentence set, and how much the current

parse is using this expected sentence. Whenever a slot is filled by the parser, it is compared with

the corresponding slot in the expected sentence. If they do not match, the expectation value

i ~~~.............................. .....-.-..................-.. . . ---....... "-" ""'
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decreases, otherwise the expectation value remains the same.

4) The Compatibility Value

This value differs from the other three in that it is simply true or false. Verb-operand, noungrouto-

noungroup, and expectation are checks made during the parse. If compatibility fails, then the

expectation parser backs up, otherwise it continues forward.

Each of these components has a value assessed at each word slot in the incoming sentence as well as

one for the entire sentence. The word slot values are assumed to have a top rating until the parser

reaches that word slot. Thus, the parser is always examining a best case situation based on what it has

already done. For example, all word slot transition values are assumed, initially, to have the value

1000*log[il] = 0. The transition value at a word slot is only lowered if it is necessary for the parser to

execute a SKIPWORD, EXTRAWS, or LOSTWS command in parsing that word slot. The charge made

is according to the value indicated at the particular command in the grammar network. The average of

the current values of all word slot transition values creates the sentence transition rating for the parse so

far. The word slot and sentence values for the expectation and word values are computed similarly. The

*l compatibility value differs, however, since it does not have degrees of ratings but rather indicates accepta-

bility or lack thereof Thus, it is not included in the formula for determining a rating for the parse.

Rather, if it fails, then parsing automatically backs up. If it succeeds, then parsing continues forward.

The values of the transition, word, and expectation components are used to determine two sentence

parse ratings. At each word slot, the values of the three factors are averaged together to produce a gen-

eral word slot parse rating. Also, the sentence values for the 'three components are averaged together to

obtain a general sentence parse rating. Thus, we have the following equations that define the various rat-

ing values, where n is the number of word slots in the sentence:

1) The Tramition Value

word slot traseition value:
wstransitionjxl - value of SKIPWORD, EXTRAWS, or

LOSTWS at word slot x
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sentence transition value.-

transitionconfidence = ws-transition[il /n
i-0

2) The Word Value

word slot word value:
ws.word-.x] = value of the word chosen from the

scanner input for word slot x

sentenee word value:

wordconfidence = wsword[i]/n
i-0

3) The Expectation Value

word slot expectation value:
wsexpectation[x] j= match of word slot x in current

parse with slot x in the expected sentence

sentence expectation value:

expectation_confidence = t ws_expectationji]/n
i -0

4) The Parse Values •

word slot parse value.
wordslotfactorlxl = (ws-transitionlx] +

wswordlx) + wsexpectation[x])/3

sentence parse value:
sentence factor =(transitipn confidence +

wordconfidence + expectationconfidence)/3

In order to control the expectation parsing, search is cut-off if rating values fall below certain levels.

Currently, these levels are:

1. Minimum word slot transition value (-52)
Minimum sentence transition value (-12)

2. Minimum word slot word value (-150)
Minimum sentence word value (-60)

3. Minimum word slot expectation value (-23)
Minimum sentence expectation value (-7)

* 4. Minimum word slot parse value (-190)
Minimum sentence parse value (-65)

................................................................. ' . . .
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If any one of the rating factors drops below its corresponding minimum value, the current search path is

cut-off and a different route through the grammar nets is attempted. In this way, there is a control over

the extent of the search. By setting all the minimum ratings to -999, for example, all possibilities in the

grammar are checked. On the other hand, setting all the minimum ratings to 0 results in the expectation

parser behaving like a normal parser since this essentially turns-off the use of the SKIPWORD,

EXTRAWS, and LOSTWS commands, the use of synophones, and expectation.

In theory, the parsing algorithm is admissible. The various rating factors can initially be set high

and gradually lowered until a parse is found. This parse would have the highest rating possible. How-

ever, this is impractical in practice due to the amount of time required to repeatedly search a growing

space. Thus, minimum rating values are set and the search is conducted once. In this way, the first parse

found is the "best" parse in the sense that it is the first one found whose rating was higher than the

minimum set value.

5.2. Routines of the Expectation Module

The task of the expectation module is to acquire a general dialogue from a series of dialogues spoken

by a user. The dialogues essentially contain examples of how to go about solving a particular kind of

problem. In acquiring these dialogues and merging them into one generalized dialogue, the expectation

system learns how to solve this particular kind of problem through examples. In a sense, by building this

generalized dialogue the expectation system is creating a procedure that can solve a particular subset of

problems. This is a future goal of the project. However, the current application is for the generalized

dialogue to be used as an aid in the voice recognition process by offering predictions about what might be

said next.

The types of problems that can be learned by the existing history-based expectation system include

linear algebra applications such as matrix multiplication, simultaneous linear equations, and Gaussian

• "elimination. Non-linear algebra problems that require matrix-type representations can also be learned,

such as gradebook maintenance and invoice manipulation. Though the implemented system is limited to
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matrix-oriented problems, the theoretical system is capable of learning a wide range of problem types.

The only requirement on the problem or situation is that it can be entered into the expectation system in

the form of examples. Thus, for example, it can acquire a 'script' such as the one for going to a restau-

rant as defined in Schank and Abelson [19771.

The expectation module takes two inputs and produces two outputs. The inputs are 1) the user

behavior graph discussed earlier, called the expected dialogue D, and 2) the meaning of the most recently

input sentence, M(S). Its outputs are a new expected dialogue D modified according to the latest input

sentence M(S) and an expected sentence set E. These outputs are produced based upon the inputs and

the functions Predicts, Mergeable, and Merge.

The role of the predicate Predicts can be best understood by recalling the function of the parser P.

P uses the set of expected sentences E(current) to try to error-correct the incoming sentence S. P may do

this by discovering that some Mk in E(current) is quite similar to M(S). If P does select such an Mk and

uses it to help parse S, then Predicts (Mk, M(S)) is true. Otherwise, Predicts (Mk, M(S)) is false. Thus

the function of Predicts is to select the Mk which the parser used in parsing S. If the parser did not use

expectation, then Predicts always is false.

If the incoming sentence was not predicted by existing transitions in B, perhaps it can be found to

be similar to some node Mk in B and a new transition could be added to that node. The routine Merge-

able has the job of finding one or more such Mk's into which the current sentence meaning M(S) can be

merged. The question of similarity of two sentences is determined by the meanings of the sentences them-

selves and the "environment" in which they occur in the dialogue. Sentence "meanings" are based on the

sentence deep parses produced by the expectatiolr parser, while a sentence "environment" is based on the

meanings of the sentences preceding and following it in the expected dialogue.

Similarity is based on the notion of "distance". Currently two sentences are considered similar in

* meaning if their parses differ in only one slot in the noun group template. This means that their noun

group distance cannot be greater than one to be considered similar. For example, the following two sen-

tences are similar:

"" .... . .. .. .. ".""...."."."....".."""."...".""."....".".."."'"."...""..""..."".'..."..""..".."...."'.'".."......
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M("double the first row") = double (ri)

M("double row 2") = double (r2)

The environment of one sentence matches that of another if the sentence meaninr nrervdin.' the twr, -

• . tences being compared are identical and'or the sentence meanings following them are identical. Clearly,

these definitions are quite arbitrary and many other strategies could be tried. However, for the purposes

of this study, they were quite satisfactory.

Based on the question of how well the environment and the sentence itself matches previously seen

environments and sentences, five different matches are possible between the current incoming sentence

and the elements of the expected dialogue:

1) The sentence matches a sentence meaning in the expected dialogue exactly, but there is no
match of their environments.

2) The sentence matches a sentence meaning in the expected dialogue similarly, but there is
no match of their environments.

3) The sentence matches a sentence meaning in the expected sentence set exactly, which
implies that their environments also match.

4) The sentence matches a sentence meaning in the expected sentence set similarl , which
implies that their environment- also match.

5) There is no match between the sentence and any sentence meaning in the expected dialo-
gue.

• "In cases 1, 2, and 5, the sentence is determined to be new and unique to the expected dialogue. Therefore,

* Mk and M(S) are not mergeable. In such cases, M(S) is added as a new entry in the expected dialogue D.

In the other two cases, numbers 3 and 4, the incoming sentence is determined to be the same as or similar

to one already seen previously in an exact or similar situation. Thus, Mk is mergeable -with M(S). In case

3 the sentence is automatically merged with the one that it matches exactly in thr expected sentence set.

In case 4, the sentence is merged with the one that it matches similarly in the expected sentence set only

after it has passed an argument creation algorithm test to be discussed below. Otherwise it is also con-

* sidered new and unique and added to the expected dialogue as in cases 1, 2, and 5. The actual argument

creation occurs in the function Merge

- ", ''~~~~. .. . ....: '"", , , ' "x-a -.-.. ................ u..... ..... .
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The notion of creating an argument is associated with the problem of when to merge a set of similar

sentences in an expected dialogue into one sentence with a special flag in the slot where the sentences

differ. This is determined by the function Mergeable. As an example, at a certain point in a dialogue.

one may have an expected sentence set E(i) such as the following:

double (ri) .33
double (r2) .33
double (r3) .33

The numbers indicate the probability levels, derived from j/Ci, as discussed at the end of section 3.

In such a situation, the user's intentions may be reflected more correctly by the following expected sen-

tence set:

double (rARG) 1.0

which signifies that any row may be referred to. However, though this simplified expected sentence set

may be a good generalization of the pattern observed, it has ramifications for error correction.

" Specifically, it will be unable to fill-in a row number should that value be missing in the incoming sen-

*" tence. The first option also has its drawbacks. In this case should the row number be missing in the sen-

tence, the expectation parser will error correct the sentence to the most probable value, or the first one in

*" the set if the probabilities are equal, here the value one for row 1. Thus, both options are imperfect in

terms of the error correction capabilities that they can provide. The comparison that must be made to

determine which option is better in a given situation is how often the first will error correct incorrectly as

* opposed to how much error correcting power we will lose by using the second. How it is done is beyond

the scope of this paper but is explained in detail in Fink 11983].

The Merge function takes two inputs, MI and M2, which have been determined by the Mergeable

*: function to be similar in some way by considering their respective environments and meanings. Based

upon how similar the two meanings are, Merge creates a meaning M that is a generalization of MI and

M2, sometimes employing an argument. Thus, there are only two possible kinds of matches at this point

-2 -. * *
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between an input sentence and a member of the expected sentence set, an exact match or a similar match.

In the case of an exact match M = MI = M2 and M replaces MI in the expected dialogue. In the case of

a similar match, the meanings only differ by one slot in the noun group of their deep parse representation,

," so a generalization of that slot to "ARG" is made, meaning an argument is created. The function appears

as follows:

Merge (MI, M.2)
begin
for each slot x in MI and M2 do

if x(MI) 1= x(M2) then
x(M) := ARG,

else
x(M) x(M1);

end;

Thus, if the sentences "Double (rl)" and "Double (r2)" are inputs to Merge, the output would be "Double

- (rARG)".

6. Experimental Results

An experiment was run using VNLC to test the error correction capabilities in different situations.

These situations were simulated by making the test subjects perform certain tasks on the system that

resulted in different dialogue structures, or schemas. The four tests made on VNLC in this experiment are

*' considered to be representative of the possible schemas that can be produced by different dialogues in

* different situations. All possible dialogue schemas actually produce a continuum of patterns from totally-

ordered to totally-unordered. The tests described below are simply points on this continuum.

I.) Totally-Ordered Schema
This type of schema occurs whenever the system has at most two sentences at a time
in its expected sentence set and one of these always has a probability rating over

, I1.) Partially-Ordered SchemaIn this case, there is a general order to the sentences being spoken, but there is not

usually just one highly probable sentence in the expected sentence set at a time, but
several with varying degrees of probability.

.- •.. .-. ..-.-., * ... . .".,,..,,. .. : . .. .'.- .. , .','.'.". ..... " ,."," " :,: ,...... ..
. . . . .. , .. . . .- € ,.. . ,, ., ., .- .. ,.. ., , . - , , , . -.. . . . . . ", ... .. ..
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]I1.) Totally-Unordered Schema
This occurs when there is no over-all order to the sentences being spoken. Essentially
any sentence in the expectation dialogue has a probability of being spoken next.

IV.) Totally-Ordered Schema with Arguments
This test is an example of a totally-ordered schema but the system dne not kpnw
exactly what will be said all the time because one or more of the expected sentences
contain an argument.

Each of the four tests was run on three different test subjects to acquire data concerning how fast a user

speaks, what types of errors are produced by the voice recognizer, and how well the expectation system

acquires and uses the expected dialogue to help error correct the input.

To begin the experiment session, the subject trained the voice recognizer, a NEC DP-200, on a

specific vocabulary of forty-nine different words in connected speech mode. The subject was then given a

brief tutorial that lead him/her through a few features of the VNLC system and gave him some prac-

tice in talking to the NEC device. This training session usually took a total of about forty-five mm ares

The subject was then given one or more of the test sheets representing the problems to be solved The

number was based on the amount of time that the subject was willing to donate to the effort

Each test dialogue had a similar over-all structure in that it required a certain amount of repetition.

thus creating a loop structure in the expected dialogue. How much repetition there was depended on the

expected dialogue schema we were trying to imitate. In test I, which was done to demonstrate a totally-

* ordered schema, the test subject had to repeat an identical sequence of six sentences nine times in a row

* except for the seventh time when four new sentences were inserted into the loop. A sample schema can be

seen in Figure 7. In test II. the user had much more freedom since its purpose was to demonstrate a

partially-ordered schema. Here the subject had to solve six sets of simultaneous linear equations with two

equations and two unknowns. A sample schema is shown in Figure 8. Notice that in one case an argu-

ment was created. The third test was done to show how well error correction works when the dialogue

* seems random, creating a totally-unordered schema. To create such an environment, the user was asked

to repeat four sentences in random order eight times. An example expected dialogue schema that resulted

* from this test is shown in Figure 9. In the last test, test IV, the subject was asked to repeat a sequence of

................................
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four sentences six times, each time through changing the value of the row number spoken. This demon-

strates the argument creation facility in a totally-ordered dialogue schema. The expected dialogue gen-

erated from this test appears in Figure 10.

Each test has associated with it three charts indicating the results. The first graph represents the

average sentence error and correction rates, the second shows the average word error and correction rates,

while the third illustrates the average rate-of-speech in words-per-second spoken by the subject while

doing the experiment.

The charts indicating the average error and correction rates of the four tests reflect the loop struc-

ture of the dialogues. Each chart is a series of bar graphs, each bar graph representing the average error

and correction rates over the sentences spoken by the subjects in a particular loop of the dialogue. The

highest point on each of these bars represents the raw error rate of the voice recognizer. The different

* markings within the bars themselves represent the percentage of the errors that were corrected by a par-

ticular facility of the expectation 'system. The horizontal design associated with 'loosening' indicates the

percentage of the errors that were corrected by the use of the flexible parsing techniques, such features as

the synophones and the parser commands SKIPWORD, EXTRAWS, and LOSTWS. The vertical design

associated with expectation indicates the percentage of the errors that were corrected by use of the

expected sentence set alone. The blank area indicates the percentage of the errors that were corrected by

* using both of the above facilities. Finally, the dot design shows the percentage of-the errors that were not

. corrected. Thus, for example, in the top chart in Figure 11, the eighth loop of the dialogue had an 85%

sentence error rate from the voice recognizer. 6% of those errors were corrected using the facilities associ-

ated with loosening the search, while 25% of the errors were corrected by using only expectation.

Another 63% were corrected using features fr6m both categories. Finally, 6% were not able to be

corrected.

Test I, using a totally-ordered dialogue schema, was done to show how well the expectation system

"* can error correct errorful input when it can predict exactly what will be said next. As can be seen from

*the graphs in Figure 11, as the ability to predict what will be said next increases, so does the ability to

-.. .. . .. .. ....
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error correct. In loop seven of the dialogue, we deliberately had each user add four extra sentences

between the fourth and fifth sentences of the loop. This was done to show that the expectation system

had not become a complete automaton, but that it was still capable of dealing with unexpected input.

However, aw can be seen from the graphs in Figure 11, the expectation system's error correcting power

decreases in that particular loop of the dialogue since there is no expectation at certain points to help it.

Test H, creating a partially-ordered dialogue schema, was done to show how the expectation

acquisition algorithm dealt with dialogues containing some pattern and to see how well error correction

could work when expectation was not perfect. The results are shown in Figure 12.

Test M] demonstrates the error correction capabilities of the system when expectation only knows

that one of a group of sentences will be said next. It produces a totally-unordered dialogue schema. The

results of the systeirs error correction capabilities in such a situation appear in Figure 13.

Test IV uses a totally-ordered dialogue schema, but with a variation from test I. Each sentence

eventually contains an argument so that the system does not know everything about the sentence that

will be said next. The data given in Figure 14 shows the error correction rates for this dialogue. It

clearly shows how error correction failures increase unti! after the third loop when argument creation

begins so that the system no longer error corrects incorrectly.

Figure 15 shows the graphs of the average speech rate of the speakers for each of the four tests

Like the other eight graphs, these graphs reflect the loop structure of the diaogiaes. As can be seen, the

- speakers tended to increase their speech rate as they talked to the system. This behavior was hoped for

because as the speech rate increased, so did the error rate of thie speech recognizer, thus placing more of a

. burden on the error correcting abilities of the expectation system. Note that, in all eight graphs in Fig-

ures 11 through 14, the word and sentence error rates from the voice recognizer generally increased with

the progress through the dialogue. This is due to the increased rate of speech. However, the actual

failure rate of VNLC did not increase by the same amount. These extra errors were corrected by the

". expectation system.

%J
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Figure 15. Speech Rate i the Four Dialogue Schema Tests
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Figure 16 gives a summary of the average error and correction rates for each test and over-all.

7. Related Literature

A number of speech understanding systems have been developed during the past fifteen years (Bar-

nett et al. [1980], Dixon and Martin [1979], Erman et al. [1980], Haton and Pierrel (1976], Lea [1980],

" Lowerre and Reddy [19801, Medress [1980], Reddy [1976], Walker [1978], and Wolf and Woods [1980).

Most of these efforts concentrated on the interaction between low level information sources from a speech

recognizer and a natural language processor to discover the meaning of an input sentence. While some of

these systems did exhibit expectation capabilities at the sentence level, none acquired dialogues of the

kind described here for the sake of dialogue level expectation and error correction. A detailed description

of the kinds of expectation mechanisms appearing in these systems appears in Fink [1983].

The problem of handling ill-formed input has been studied by Carbonell and Hayes [1983], Granger

[1983], Jensen et al [1983], Kwasny and Sondheimer [1981], Riesbeck and Schank [1976], Thompson [1980,

Weischedel and Black [1980], and Weischedel and Sondheimer [1983]. A wide variety of techniques have

. been developed for addressing problems at the word, phrase, sentence, and in some cases, dialogue level.

" However, these methodologies have not used historical information at the dialogue level as described here.

In most cases, the goal of thesesystemsis to characterize the ill-formed input into classes of errors and to

correct on that basis. The work described here makes no attempt to classify the errors, but treats them

as random events that occur at any point in a sentence. Thus, an error in this work has no pattern, but

occurs probabilistically. A verb is just as likely to be miss-recognized or not recognized as is noun, adjec-

tive, determiner, etc.

The acquisition of dialogue as implemented 'in VNLC is reminiscent of the program synthesis metho-

dology developed by Biermann and Krishnaswamy 11976] where program flowcharts were constructed from

traces of their behaviors. However, the "flowcharts" in the current project are probabilistic in nature and

the problems associated with matching incoming sentences to existing nodes has not been previously

-addressed. Another dialogue acquisition system has been developed by Ho 11984]. However, that system

. . . . . . . . . . . . . ..'"."/ " " ." " "" * .' ".. ." ." . . ." ' n . . u I . . . I



Test I Test II Test III Test IV Over-all

vord-error-rats 18.78 11.75 11.25 12.17 13.49

corrected .59 1.50 1.50 4.17 1.94
vord-error-rate

seatesce-error-sate 61.22 40.83 52.25 56.33 52.66

corrected 3.22 6.00 5.38 16.00 7.65
sontonce-error-rate

average speaking rate 2.27 2.95 1.85 1.97 2.26

Figure 16. Average Word- and Sentence-Error-Rate in Percent,
Average Speaking Rate in Words-Spoken-per-Second
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has different goals: to enable the user to consciously design a dialogue to embody a particular human-

machine interaction. The acquisition system described here is aimed at dealing with ill-formed input and

is completely automatic and invisible to the user. It self activates to bias recognition toward historically

vbsei Yed pautras buL is not oLherwise observable.

8. Conclusions and Areas for Future Research

We have shown that the ability to use expectation in the form of knowledge about the dialogue

being spoken, as with humans, is a tremendous aid to speech recognition by computer. Since expectation,

in this research, has been based on repetition of patterns, the expectation system's ability to correct

varies, of course, with the repetitiveness of the dialogue itself. We have attempted, in sectiong5 and 6, to

justify this decision by demonstrating how the expectation system can acquire common programming con-

* structs such as loops and arguments. It is our belief that repetitious patterns occur in everyday life, and

*" that the expectation system is capable of dealing with such patterns, resulting in a generalized situation

similar to a Schankian script. Finally, we have tested the expectation r.qtem's correction power in some

representative situations, as discussed in section 6. It has been demonstrated that the expectation system

has the capabilities of reducing a large sentence error rate to nearly zero in many situations. At the word

level, error rates to the expectation system climbed as high as 47% in certain user dialogues when the user

" was speaking fast. At the same time, the error rate leaving the expectation system remained fairly low at

between zero and fifteen percent. On the average, the system was able to lower a sentence error rate of

53% to 8%, and a word error rate of 13.5% to 2%. The use of expectation, along with an ability to

ignore or add words to the input stream of the parser, is all that is needed to achieve this error correction

rate on randomly erroneous input.

The parser design, with the five choices at each word slot, has the potential to run into problems

with the exponential growth of the search and to result in unacceptably long parse times. However, when

* the rating scheme is used intelligently, it not only aids in finding the best parse of a word sequence, but it

also helps to lower the search time necemary by pruning unreasonable search choices. The average parse

.

.. . . . . . . . . . . . . . . . . .
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time for a sentence, from the tests discussed above, was 5.1 seconds while the average total processing

time for a sentence was 10.5 seconds. This was on a highly loaded PDP 11/70 under the UNIX operating

system. In the event that a particular word sequence leads the parser down a garden path, a time-out

faciliLy has been implemented that causes the parser to fail after one minute of real-time. However, out

of a total of 629 sentences spoken in the above four tests, this feature was needed only 19 times.

The research reported on here was divided into two parts, the theory and the implementation. Most

of the theory developed was implemented in the VNLC system. This theory has been aimed at error

correction of random errors using expectation based on historical information. However, there are many

possible extensions that could be examined in the future and added to the implementation if the investiga-

tion indicates that it would create a yet more usable system. These include the following:

1) use of low level knowledge from the speech recognition phase,

2) use of high level knowlefge about the domain in particular and the dialogue task in general,

3) a 'continue' facility and an 'auto-loop' facility as described by Biermann and Krishnaswamy
11976],

4) a 'conditioning' facility as described by Fink et al.[19851,

5) implementation of new types of paraphrasing,

6) checking a larger environment in the expectation acquisition algorithm when deciding if an
incoming sentence is the same or similar to one already seen, and

7) examining inter-speaker dialogue patterns.

All but two of these areas for expansion are aimed at moving the expectation system from one that finds

patterns in a user's dialogues and acquires historical knowledge about them to one that can acquire true

procedures. The first two areas for expansion have nothing to do with creating a true procedure acquis-

*. tion module but would be highly desirable from the point of view of the speech recognition application.

*" Features three and four would simply make the system easier to use and would require little theoretical

"' investigation. The final three would require research efforts.

. .-.-.. . ... -*- - - • -... •-.. , % .. -.-. ..-....-. - .. ... .
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In conclusion, we have designed a system that is capable of correcting ill-formed input and imple-

mented the design in the area of speech recognition. The system performs error-correction through a

mechanism also used by humans in the same situation, that of expectation. We have shown that the

expectation algorithm is general enough to handle almost any dialogue structure. It is possible to predict

approximately what kind of error correction to expect from the system based on the dialogue structure

and the word-error-rate. We have also shown that the theory on which the implemented expectation sys-

tem is based is capable of acquiring and generalizing real-world, script-like situations. This research can

serve as a starting point for further research into the field of computer expectation, procedure acquisition,

and learning.
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