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S BACKGROUND

)-The long term goals of this research activity are derived from
concurrent computing with emphasis on numerical algorithms that
support a variety of scientific applications. Among the
applications of immediate interest are signal processing, high
resolution spectrum estimation, and computationally intensive
statistical methods such as the bootstrap. The shorter term
focus has been the refinement and enhancement of the concurrent
computing environment itself and the numerical algorithms that
form the foundation for the applications.

The computer systems that support this research use hardware
manufactured by Intel -- with the 8086 cpu and the 8087 floating
point processor at the heart of each node. The nodes are
contained in workstations (with up to seven Workers and a Manager
in a workstation) that can operate independently or can be linked
together during execution. Worker structure and memory are
configurable to support experiments conducted in the course of

this research. ij~

PERSONNEL , ' ,

During the period covered by this report, May 15, 1984 to July
15, 1985, the following senior personnel have been supported
under this contract: Virginia Klema, principal investigator (3.5
months), Elizabeth Ducot (2.25 months), and George Cybenko (1.1
months). In addition, research staff member Richard Kefs has
spent 4.5 months on the project; while 1.5 months of graduate
student support has been provided.

STATUS

Version 1.0 of the Tasker (a comprehensive concurrent
computing environment) has been completed, installed on three of

- the project's Concurrent Computing Workstations, and tested using
several different control-synchronization structures. By
deliberate intent, the segmenting of modules for computation and
the degree of concurrency requested are the responsibility of the
user. The software Tasker provides primities to support
assignment of concurrency within the algorithm or the
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application. On-line help utilities have been created that
provide support for the use of the Tasker through all stages of
software development and testing. The primitives that permit the
user to define his environment, locate code and data on the
worker processors, pass data and messages through the system, and
monitor execution of the various portions of his algorithm are
described in a project working paper, WP4, entitled "Application
Interface to the Concurrent Environment*.

A principal challenge for our research is the melding of
numerical analysis, algorithmic design for concurrency, specific
applications, and analysis of concurrency. A favorable prospect
for this effort is the graceful migration of the basic
computational modules and primitives for the software tasker to
large scale MIMD machines.

..
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WP4: AFOSR-82-0210
Rev: July 1, 1985

APPLICATION INTERFACE
To The

CONCURRENT ENVIRONMENT

Elizabeth R. Ducot

The purpose of this note is twofold. The first is to present
the mechanisms by which a user activates and describes his
concurrent computing environment (See Section I, System
Activation). The second is to define the system routines and
functions by which he controls the real-time execution of his
application programs within that environment (See Section II,
Real-Time Execution).

In both cases, the primitives introduced are presented as a
Ofirst effort" -- planning for a more sophisticated user
environment that includes tools for debugging and monitoring is
already underway. The concurrent environment, called the TASKER,
consists of two separate operating systems: 1) the MANAGER, the
multi-tasking operating system running on the master processor,
and 2) the WORKER, the smaller self-contained system running on
each of the worker processors. The primitives within the TASKER
(whether for definition of the environment or execution) are
activated via statements inserted in the user's code of the form:

CALL function (parameters...).

Throughout the discussion that follows, samples of these
statements appear as part of the general explanation. However,
specific instructions on how to use each of the commands and how
to define and interpret each of the parameters in the calling
sequences have been deferred to Appendix A.

A complete application consists of three distinct components:
1) the initialization software, 2) the control program which
coordinates the activities of the workers and may interact
directly with the user, and 3) the portions of the application
designed to execute in parallel solely on the workers. The
initialization software must execute first to activate the system
as described below.

I. SYSTEM ACTIVATION

1.1 System Initialization

The user initializes the concurrent computing environment
programatically. This initialization program can be written in
any language and is invoked from the user's terminal. It
executes on the master processor and is linked to the MANAGER1 in
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order to resolve system references. The first statement in the
initialization sequence is:

CALL init_concur (1)

This function initializes the worker processor boards and passes
parameters throughout the system that ensure consistent behavior
of the floating-point arithmetic support environment. At the same
time, this call establishes that all workers are active and that
the individual WORKER operating systems can communicate with the
MANAGER. Upon completion of this command, a summary is presented
to the user indicating which physical processors are currently
available. In the event that this does not match the user's
perception of the physical system he has programmed, he may elect
to abort the initialization, rework his code or request a
reconfiguration of the hardware!

1.2 System Interconnect (OPTIONAL)

The second stage in the initialization is an optional one in
which the user tailors the communication paths in the system to
his application. Before he can customize this interconnect, he
should have a working knowledge of how the communication paths
are established when the default interconnect structure is used.

Communication between worker processors is accomplished via
messages that are wposted" to communication ports. Each worker
owns a maximum of n input and n output ports that are used to
create virtual circuits. If the user does nothing explicit, the
default is an *any to any" interconnect structure in which the
physical unit numbers of the other n-1 workers (those displayed
during initialization) plus the manager are mapped into the 2n
logical port identifiers. For a given worker lil, output ports

"" (corresponding to logical units for writing) take on the value of
the physical unit number (1 to n) of potential receivers of

*messages from fif, while input ports are assigned physical unit
numbers (1 to n) of processors that may be sending messages to
processor fi. Unit 0 is reserved in both cases for the manager
itself.

The most obvious reason for overriding the default is the
case in which the user wishes to place the same code, utilizing
the same logical unit numbers for reading and writing, on each
processor. Physical units for reading and writing will be
necessarily different, depending on which physical processor is
actually executing.the particular copy of the code. In order to
assign these processor specific logical unit numbers, the
following call is made for each processor requiring an override.

CALL send-structure (procid, inlist, outlist, status) (2)

1 The linkage to the TASKER library for the manager is defined in

Appendix B.
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A secondary consideration in deciding whether or not to
override the communication structure may be one of efficiency.
Some improvement in performance is expected to result from
limiting the 'any to anym interconnect structure to accommodate
only those message ports required by the application. However,
this consideration should be ignored at the outset in the
interest of establishing an initial test case.

. 1.3 Movement of Code

usrOnce the communication structure has been established the
user must then indicate the placement of his code across the
processors at his disposal. A subroutine call is required to
specify the disposition of each unique code segment to be used in
the application. The same code may be sent either to one or

" broadcast to many processors with a single function call. The
form of this call is the following:

CALL send-code (numuprocessors, listof-processors,
file_name, execution_mode, listofcodeids, status)

(3)

Code segments are prepared in advance, stored on the disk, and
moved from the file indicated in the calling sequence to the
desired processors. The user may develop as many or as few of
these distinct code segments as he wishes. Depending upon the
execution-mode, execution may begin as soon as the code is
received at its destination or may be suspended awaiting an
explicit *start" command.

II. REAL-TIME EXECUTION

2.1 Structure of the Application

The user has the option of placing his control program on a
specific worker processor or running it directly on the manager.
For the time being, the user is encouraged to run his control
program on the manager. There are a number of reasons for this;
the following are the most significant. First, since only the
manager has direct access to the terminal and the disk, debugging

- and data handling are made easier for the user who includes the
manager within his real-time execution environment. Secondly, the
processing power of the manager is currently underutilized,
leaving ample resources to support control and synchronization

*. type statements.

This will not always be the case. As the development of the
MANAGER proceeds, it is expected that a more sophisticated
debugging environment for both manager and worker will be
specified. A number of new monitoring functions will be defined,
with the suite of functions and commands available to the user
and/or system continuing to grow. In the future, therefore, the

* load on the manager may be such that the execution of the control
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program on the manager processor itself would interfere with
MANAGER's ability to respond to requests from the other
processors in the system.

If the control program is designated for the master
processor. it is linked along with the initialization software to
the MANAGER portion of the TASKER. Worker software, on the other
hand, whether for control or computation is linked to the more
limited WORKER environment. The WORKER supports realtime
execution statements onlys assuming that the environment has been
fully initialized by the manager. In addition, IO capabilities
on the workers are limited and are provided only by the TASKER
primitives themselves. The particular restrictions on the code
segments dipend on the implementation language and are described
elsewhere. At the end of each module, regardless of location is
a statement of the following form:

CALL complete (4)

which does not return control to the user.

2.2 Initialization

Real-time execution is initiated with the following function
call:

CALL execute_concur (control_mode) (5)

A value of 0 for the control_mode indicates that a control
program has been set up to run on the manager. The subtroutine
call to the control program or inline code will be executed
immediately after returning from the call to execute_concur.

A value of 1 for the control_mode indicates that the control
program has already been posted to a worker via a sendcode
command. In this case, the MANAGER takes over all the resources
of the master processor and does not return control to the user
at the terminal.

From this point on, the progress of the execution is governed
" by the interaction among the programs running on the various

processors as well as the control program.

2.2 Movement of Data

Both synchronous and asynchronous communication primitives
are provided. Asynchronous calls are extremely fast and merely
establish the communication request. However, the data buffers

2 See Appendix B for a discussion of the use of either PL/M or

FORTRAN. Requirements for using C will be added at a later date.
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associated with asynchronous calls, whether for outgoing or
incoming data, cannot be immediately reused. Synchronous calls,
on the other hand, block the processor until 1) transmission of
the data is complete in the case of outgoing messages, or 2) the
message has been completely received in the case of incoming
data. Data buffers associated with synchronous calls, therefore,
are available immediately on return to the user. Blocking calls
should be used with extreme caution since control does not return
to the user until they have been completed satisfactorily. A more
efficient approach, from the point of view of utilizing the
computing power of the processor, is to mix asynchronous calls
with interrogation of the transaction status (see idstatus) and
the computational statements that comprise the rest of the
algorithm.

During a send operation, data may be either broadcast or
point-to-point; the syntax of the send command is the same:

CALL senddata (numberofports, list-of-portids,
databuffer, numberofentries, precision_code,
list_of_messageids, status) (6 & 7)

The preceding routine generates an asynchronous call. The
4 synchronous command to send data has the same syntax, however,

the subroutine name is s~send_data.

The command to receive data is similar to the send command,
except that only point-to-point data movement is supported. The
asynchronous form of this function is:

CALL receivedata (portid, data_buffer, number_of_entries,
precision_mode, message_id, status)) (8 & 9)

Again, the synchronous form of the command, activated under the
name sreceive_data, uses the same syntax.

2.3 Utilities

The most important of the utilities is the function for
determining the system status. This is essential in the case of
an asynchronous call, since only when the transactionstatus of a
specific transaction is complete can the buffer associated with
that transaction be used again. The form of this call is

transaction_status = idstatus (transactionid) (10)

where transactionid refers either to a message-id or a codeid.

The remaining utilities are optional, since coordination may
be achieved entirely through mixtures of send-data. receive_data
and status calls. However the start and collect commands may be
very useful to the user who desires to force synchronization or
control specific timing.

".
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CALL start (num-ids, listofcodeids, fork_status) (11)

broadcasts an initiation message to all processors running code
segments on the list. This extremely short message results in
nearly simultaneous initiation on each processor. It should be
noted that unless worker code is already executing (e.g. has been
wfstarted" by the sendcode command), a start command must be
issued before any message traffic can be processed by the worker.

CALL collect (num_ids, listofids, joinstatus) (12)

monitors either the completion messages sent by the code segments
on each worker or the status of specific transactions in the
list.

CALL byte-copy (input-vector, outputvector,
numberofentries, precisionmode, move_status) (13)

This utility permits copy of floating point elements without
using the 8087, particularly important if the movement of NAN's
is desired.

The final function available to the user in the concurrent
environment allows him to determine the physical unit number of
the processor on which he is executing from inside the program.
The form of the call is:

CALL whoami (procid) (14)

.r6
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APPENDIX A

The components of the concurrent computing environment
accessible to the user are described below. The discussion that
follows presumes that the application language is FORTRAN -- the only
one of the Intel languages that provides a set of languace extensions
for taking full advantage of the numeric co-processor in the system.
Within this framework, the following conventions are used in defining
the variables:

1) an INTEGER is a two byte signed quantity (with a value in the
range -32,768 to +32,767) and is defined within the application
as INTEGER*2.

2) a BYTE corresponds to the declaration INTEGER*1.

3) An ffuntyped" data buffer refers to an array of any legitimate
type. It is important to note that all calls to tasker routines
are made by reference, the address of the data buffer is all
that is known by the TASKER. No type or bounds checking is done
when processing a buffer. Thus, the responsibility for
allocating sufficient buffer -pace [(num_entries,'(preccode)
bytes] to accommodate receive and copy requests remains the
responsibility of the user.

All concurrent primitives, presented below in alphabetical oder, are
accessed via subroutine calls from the FORTRAN application program.
The single exception to this procedure is the status check function
(idstatus), an INTEGER function which may be used ao part of a logical
IF statement. Five of the commands listed, marked SA (System
Activation) only, are used during the portion of the application
dedicated to initializing the concurrent environment. Thus these
commands are available only to software linked to the MANAGER
operating system and running on the master processor. All other
primitives are used identically whether executing on the master or
worker processors.

One further comment is appropriate regarding the output of these
routines. In many cases an INTEGER return code has been defined
(appearing in the calling sequence as a parameter whose name ends with
the characters "_statusw). In general, these parameters are included
in the specifications of the TASKER primitives for completeness only -
- to allow for future development of the software. This version of the
TASKER (Version 1.0) treats abnormal behavior of its commands as
*unrecoverable errors* and therefore returns control to the user only
when no exceptional conditions have been encountered. When sending
code to worker processors, however, this parameter is significant and
should be examined. (See sendcode).

CALL byte-copy (invector, out-vector, nunentries.

7



precmode, movecopy)

INPUT PARAMETERS:

in-vector An untyped data buffer containing the data to
be copied.

outvector An untyped destination buffer.

num_entries An INTEGER giving the number of data items in the
data buffer. NOTE: The number of bytes that will
be copied is:

(num-entries) * (preccode).

:, prec-code A BYTE indicating the number of bytes
:. required for an entry in the data buffer.

Thus prec_code takes on the value of:

I = byte, integer'1, or character
2 = 2 byte integer or word
4 = long integer or short precision floating
point number
8 = long precision floating point number
10 = extended precision or TEMPREAL

OUTPUT PARAMETERS:

movecopy An INTEGER return code indicating the number
of bytes moved successfully.

CALL collect (num-ids, transids, joinstatus)

INPUT PARAMETERS:

num_ids An INTEGER indicating the number of entries in the
list of trans_ids to be processed.

transids An INTEGER vector containing the transaction
identifiers associated with either:

1) code executing on each of the designated
worker processors. The identifiers were
obtained when the code was sent to a worker
via a send-code command.

2) a list of messages to be wcollected"

OUTPUT PARAMETERS:

m8
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join_status An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions--execution of all
code indicated in the list of code_ids or
transaction of all messages listed is complete.

NOTE: THIS ROUTINE IS A SYNCHRONIZATION POINT. CONTROL WILL NOT RETURN
TO THE USER UNTIL COMPLETION MESSAGES FOR ALL TRANSACTIONS ON THE LIST

*. HAVE BEEN DETECTED OR A FATAL ERROR HAS BEEN RECEIVED.

CALL complete

INPUT PARAMETERS: -- NONE --

OUTPUT PARAMETERS: -- NONE --

This call must appear as the last statement in each module
running on the worker processor, as well as the last statement
in the manager program. Control never returns to the user after
issuing this statement.

CALL execute_concur (controlmode) (SA only)

INPUT PARAMETERS:

control_mode A BYTE variable indicating the location of the
user's control program.

0 = control program is to run on the manager. In
this case, user's control statements follow the
return from this subroutine.

I = control program has already been placed on its
appropriate worker. User statements encountered
after this point will be ignored and TASKER will
be in complete control of the processor.

OUTPUT PARAMETERS: -- NONE --

transstatus = idstatus (transid)

9



INPUT PARAMETERS:

trans_id An INTEGER referring either to a message
identifier or a code identifier.

OUTPUT PARAMETERS:

trans_status An INTEGER defined as follows:

0 = original request to initiate the transaction
has been logged.

1 = transaction queued

2 = request for data sent (applicable to receive
requests only)

3 = transaction partially completed

4 = transaction complete.

CALL initconcur (SA only)

- - --INPUT PARAMETERS: -- NONE --

OUTPUT PARAMETERS: -- NONE --

'N- CALL notify-in (routine)

INPUT PARAMETERS:

routine A BYTE designating a user defined routine number
(0-99) used to trace logic in the event of a fatal
error.

OUTPUT PARAMETERS: -- NONE--

CALL notifyout

p-

INPUT PARAMETERS: -- NONE --

...

10
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OUTPUT PARAMETERS: -- NONE --

NOTE: Calls to notify_in and notify-out must be used in pairs
in order that the traceback information, provided in the event of a
fatal error, make sense. Good practice would dictate that notify-in
become the first statement executed on entry to a user's main program
or subroutine; notify-out the last prior to a RETURN or an END. Any
selection of routine numbers in the legal range is acceptable, however
a call to notify-in with the routine number=O has the additional
effect of insuring that all 8087 exceptions are unmasked.

CALL receivedata (portid, databuffer, nunmentries,
prec-mode, messageid, input-status)

INPUT PARAMETERS:

portid A BYTE containing the logical unit number
associated with the intended receiver.

data_buffer An untyped data buffer reserved for the requested
message.

num_entries An INTEGER giving the number of data items
expected to be placed in the data buffer. NOTE:
This may or may not correspond to the number of
bytes, depending on the size of each entry.

preccode A BYTE indicating the number of bytes
required for an entry in the data buffer.
Thus preccode takes on the value of:

1 = byte or character
2 = 2 byte integer or word
4 = long integer or short precision floating
point number
8 = long precision floating point number
10 = extended precision or TEMPREAL

OUTPUT PARAMETERS:

message-id An INTEGER containing the transaction identifier
for this request for data.

inputstatus An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions

.5
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CALL send_code (numprocs, processors, file_name,
execmode, codeids, sendstatus)

(SA only)

INPUT PARAMETERS:

numprocs A BYTE variable indicating how many workers
are to receive the code segment referenced in
this function call

processors A BYTE vector giving the NnumprocsN physical unit
numbers of those workers

filename A string of CHARACTERS indicating the
complete path name of the code file on the
disk. (See Appendix B for instructions on
file preparation.) The terminator for the
string is the character Oil.

exec_mode A BYTE controlling initiation of the code

segment on the worker:

0 = begin execution immediately

I = defer execution until worker receives an
explicit start command.

OUTPUT PARAMETERS:

code_ids An INTEGER vector containing the transaction
identifiers associated with each of the designated
worker processors. Moreover, code_id(i) contains
the identifier corresponding to code running on
processor(i) in the input list.

code_status An INTEGER return code defined to reflect the

following conditions:

0 = no exceptional conditions

1 = at least one worker in the list is temporarily
unavailable. Code has been sent to all processors
in the list processor(i) for which legitimate
codeids(i) have been assigned. A codeid of -1
indicates that code was not transmitted to that
worker.

CALL send .data (num-ports, port_ids, data_buffer,
num-entries, prec-code, message-ids, outstatus)

12



INPUT PARAMETERS:

num-ports A BYTE value indicating the number of
receivers of a broadcast message. If
num-ports = 1, the message is point-to-point.

port-ids A BYTE vector containing a list of logical unit
numbers associated with the intended receivers.

data_buffer A POINTER to an untyped data buffer containing the
contents of the message to be sent.

num-entries An INTEGER giving the number of data items in the
data buffer. NOTE: This may or may not correspond
to the number of bytes, depending on the size of
each entry.

prec-code A BYTE indicating the number of bytes
required for an entry in the data buffer.
Thus prec_code takes on the value of:

1 = byte or character
2 = 2 byte integer or word
4 = long integer or short precision floating
point number
8 = long precision floating point number
10 = extended precision or TEMPREAL

OUTPUT PARAMETERS:

message-ids An array of INTEGERS of sufficient length to hold
one message identifier for each entry in the list
of receiving ports.

outstatus An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions

CALL send.structure (procid, input-list,
outputlist, comstatus) (SA only)

* INPUT PARAMETERS:

procid A BYTE specifying the physical unit number of the

processor receiving the modified I/O lists.

input_list A BYTE vector defining the mapping between

13



physical unit numbers of the other workers in the
system and logical units for input as seen by
worker Oprocid*. The first entry in the list
becomes logical unit 1, etc.; a value of -1 stored
in an INTEGER*1 variable (or FFh) indicates that
the logical unit will not be used. The manager is
automatically assigned to logical unit (and
physical unit) 0. If one wishes to assign the
manager to an alternate logical unit number, he
must use the physical unit number -2 (or FEh).

For the current hardware configuration, the
maximum length of this vector is 7. However, all
7 entries need not be present; a value of 0
supplied at any point will terminate the search
for valid logical unit numbers.

EXAMPLE: Suppose one wishes logical unit 1 to
correspond to input from processor 5, logical unit
3 to input from worker 6, and logical unit 4 to
input from the manager. In addition supose that
no other input units are required by this
application. The input-list would be defined as
follows:

inputlist = 5, -1, 6. -2, 0

outputlist A BYTE vector of the same form as winput-listw to

define the logical units for output.

VOUTPUT PARAMETERS:

comLstatus An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions

CALL setbreakpoint (loc_count)

INPUT PARAMETERS:

loc_count A BYTE defined by the user to mark a specific
location in the user's code. Calls to
setbreakpoint may be placed anywhere between
calls to notify-in and notify-out. The most
recent value of loc_count, along with the
routine number given by the currently active
notify_-in command, will be returned in the
event of a fatal error.

14
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OUTPUT PARAMETERS: -- NONE --

CALL s$receivedata (portid, databuffer, nunentries,
prec_mode, messageid, input-status)

INPUT PARAMETERS:

port_id A BYTE containing logical unit number associated
with the intended receiver.

databuffer An untyped data buffer set aside to receive the
message.

numentries An INTEGER giving the number of data items in the
data buffer. NOTE: This may or may not correspond
to the number of bytes, depending on the size of
each entry.

prec_code A BYTE indicating the number of bytes
required for an entry in the data buffer.
Thus prec-code takes on the value of:

I = byte or character
2 = 2 byte integer or word
4 = long integer or short precision floating
point number
8 = long precision floating point number
10 = extended precision or TEMPREAL

OUTPUT PARAMETERS:

messageid An INTEGER containing the transaction identifier
for this request for data.

input_status An INTEGER return code defined to reflect the
following conditions:

-i 0 = no exceptional conditions

I

4 CALL s~send-data (nunu-ports, port_ids, data_buffer,
nunLentries, prec_code, messageids, out_status)

* INPUT PARAMETERS:

num_ports A BYTE value indicating the number of



receivers of a broadcast message. If
num-ports = 1, the message is point-to-point.

port_ids A BYTE vector containing a list of logical unit
numbers associated with the intended receivers.

databuffer An untyped data buffer containing the contents of
the message to be sent.

numentries An INTEGER giving the number of data items in the
data buffer. NOTE: This may or may not correspond
to the number of bytes, depending on the size of
each entry.

preccode A BYTE indicating the number of bytes
required for an entry in the data buffer.
Thus prec-code takes on the value of:

1 = byte or character
2 = 2 byte integer or word
4 = long integer or short precision floating
point number
8= long precision floating point number
10 = extended precision or TEMPREAL

*. OUTPUT PARAMETERS:

message-ids An array of INTEGERS of sufficient length to hold
one message identifier for each entry in the list
of receiving ports.

outstatus An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions

CALL start (num-ids, code-ids, forkstatus) (SA only)

INPUT PARAMETERS:

num-ids A BYTE indicating how many codeids are to be
processed.

codeids An INTEGER array indicating which code segments
are to be started explicitly by this command. The
code identifiers are those previously returned by
a call to sendLcode.

OUTPUT PARAMETERS:

16



k forkstatus An INTEGER return code defined to reflect the
following conditions:

0 = no exceptional conditions

CALL whoami (proc_id)

INPUT PARAMETERS: -- NONE --

OUTPUT PARAMETERS:

proc_id An INTEGER returning the physical unit number of
the calling processor.

17
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1. Introduction

This report describes the design of a minimal, real time,
layer-type operating system. It includes the user interface , and

*i implementation on a concurrent machine. It is intented for a wide
range of specific applications but its primary purpose is to be
efficient, and small. Therefore, no protection mechanism exists,
although it can be added easily if one accepts a reduction of the
overall performance.

2. General Description

The operating system is composed of six modules which are
memory management ("mem"), process control and scheduling ("pr"),
semaphores ("sem"), mailboxes ("box"), naming ("tab"), and time
routines ("tin").

*. There are five layers
- "mem"
- "pr"
- "sem"
- "tab" and "tm"
- "box".

This means that the operating system can be taylored depending on
the application. That is, outer layers can be removed, added or
replaced with new ones. This design does not assume common address
spaces for processes or processors. But it requires some
communication scheme between processors, either by multi-ported
sharable memory or communication links. In loosely coupled processor
systems where processors have access to sharable and local memory,
It is required that each processor must run a self contained collection
of the operating system routines. These processors form subsystems
which may share and access common ressources such as semaphores,
mailboxes, memory pools...
As a result, all sharable objects must be self contained and provide
some mechanisms to protect critical sections.
This is achieved when the creation of the object is based upon the
processor creator 's knowledge of the environment of that object.
When accessed, the object provides information about the type of
protection it has - busy waiting, interrupt disabled, serialization,
signals...



Consequently, processes may become blocked waiting on some events
-ressources not available, others processes in critical sections..- or
idle. The major difference between those two states is that the

former is synchronously unblocked - as soon as the ressources
become available or one process just left the critical section-
whereas the latter is asynchronously waked up - as soon as it is
noticed . The state of that process is determined by the accessed
object. All descriptions in this document are given in C. If a system
call fails, a variable "system-status" associated with each process is
set with value error, and the return values is unpredictable.

3. Memory Management

The memory allocator works on objects called pools, which are
blocks of memory containing a data structure to specify the size of
the block, protection mechanisms, type of memory, parent pool from
which it can expand... There are two kinds of pools : node pools and
memory pools. Node pools are first-fit fast allocator of large
numbers of small word-align blocks. Memory pools are used for
allocating larger blocks of memory, also in first-fit word-align
fashion. The latter does not fragment memory, like node pool, and
merges back pieces of memory into larger blocks after being freed.
All type of pools can grow by borrowing memory from their parent
pool until their maximum size is reached.

Synopsys

extern MEMI.LPOOL *memrecreateo;
extern void memredeleteo;
MEM._VAR datasize, maxsize;

*MEMFLAG flag;
-A." MEM_..POOL *pool, *parent, mypool,

pool mem.create(mypool, parent, datasize, maxsize,f lag);

mem.delete(pool);

Description
Mem.create tries to create a pool at mypool. If mypool is a

NULLPOOL, then it creates the pool by allocating memory from the
parent pool. The newly created pool has the size datasize. If that pool
runs out of memory it will try to borrow memory from the parent pool
only if datasize is not greater than the maximum size allowed. The
flag specifies the protection -OB8JCONCURENT, OBJSERIALIZE-, the
type of the pool - NODE-POOL, MEMORYPOOL-, its nature
-MEM.CLEAR, MEM-NONBLOCK-. The flag determines the appropriate........... ................................ ... ......-. -.........



memory allocator routines.

Synopsis

extern char *mem-alloco;
extern void memdealloco;
MEMPOOL *pool;
char *myblock, *add;
MEMVAR size;

add - memalloc(pool, size);
add- memalloc(pool, size);
add = mem-xalloc(pool, myblock, size);
mem.dealloc(pool, myblock, size);

Description

Mem-alloc is the primary allocator routine. It atternps to allocate
an area of size bytes from the given pool. If it fails, it changes the
state of the calling process according to the pool flag. Mem.nalloc
never blocks. Mem-xalloc tries to allocate the space at myblock.
Mem.dealloc frees memory space of size size bytes of an area
previously allocated from the pool.

4. Process Control

The process control module was design to provide most common
operations -blocking, unblocking, priority changes,
creation of processes...- in single steps, without any searching,
allowing fast scheduling and context switching.

Synopsis

extern PCB *pr-createo;
extern void prexito;
extern void pr.deleteo;
extern void prblocko;
extern void pr.unblocko);
extern void pr_.priorityo;
extern void pr-reschedo;

PRPRIORITY priority;
PCB *pcb;
ENV *env;



pcb - pr.create(env, priority);
prexito;
prdelete(pcb),
prblocko;
pr.unblock(pcb);
pr.piority(pcb, priority);
prreschedo

Description

Pr.create create a pcb for a new process. If memory is available,
it sets its environment to env, and its priority to priority. The newly
created process is blocked and should be unblock by the calling
process in order to be scheduled.
Pr.exit delete the calling process. prdelete delete a specific
process. In actuallity it forces the supposily deleted process to
delete itself. Pr.unblock unblocks a process. Pr.priority changes the
priority of a specific process replacing that process in the schedule
queues and may result in a call to pr.resched. Pr.resched schedule a
new process, restoring its environment and saving the environment of
the previous running process. The scheduler has prehemptive
round-robin priority scheme.

5. Time Keeping

Time is kept by the system in its internal format and seperate
routine is provided to encode and decode this internal format.

Synopsis

extern void tm-seto;
static void tm-inco;
extern TMVR tm-geto;
extern TMVR tm-encodeo)
extern void tm-decodeo;
TMVR time, interval;
int tickf lag;
char buffer[ 13],
GENERIC (*fnct)(), arg;

tm-set(time);
time - tmingeto;
tm-inco;

tm.decode(time, &buffer);
time - tminencode(buffer);

i = . I~~ ~ ~ . . - - i " ..



tm.call(interval, tickflag, fnct, arg),

Description
m.tminc is a routine callable at interrupt-time. It updates the time

and check for things to be done. Tm.call
sets up a delayed function call and return immediately. After the
interval has elapsed the delay call of the form (*fnct)(arg) and will

be executed by tm.inc. Typical call to tm would be tm.call(interval,
tickflag, unblock, prun) where prun is the calling process, or
tm.cal l(interval, tickflag, sem.notify, sem) where sem is a

*' semaphore. Tminset sets the time in the internal format. Tmget
return the time int its internal format. Tm.decode converts a time
value form its internal format into ascii string of the form
yymmddhhmmss, that is 11:59:00 pm Dec 6, 1972 would be converted
into 721206235900. Tm-encode perforrnmthe reverse operation and
returrythe time value. -

7

6. Semaphore

extern SEM *sem-createo;
. extern void sem-deleteo;

extern void semrewaito;

extern void sem.signal();
SEM *semap, *mysemap;

*- MEMPOOL *pool;
-. SEM.FLAG flag;

int count;

semap -sem.create(mysemap, pool, flag, count);
sem-delete(semap);
sem.wait(semap);
semsignal(semap);

Description
The sem-create routine creates a semaphore with an initial

count of count. If mysemap is not a NULLSEM, then it tries to allocate
. space via a call to memalloc. The flag is used for the protection of

critical sections - OBJCONCURRENT, OBJSERIALIZE. A call to
semrewait decrement and test the count in a undivisible instruction -
use of hardware lock otherwise. If the count is negative it acts
according to the flag and may result in blocking the calling process.
The semsignal perform the opposite operation and may result in

waking up a process.

I -..**



7. Box

This module is intented for inter process communication and is
particularly oriented for uni-processor system with same or
different address space or loosely or tightly coupled multi-processor

! system, but outer layer may be added to support for direct link
communication.

Synopsis

extern MAI LBOX *box-createo;

extern void box-deleteo;
extern void box-sendo;
extern void box-recvo;
extern nt box-pollsndo;
extern void boxpollrcvo;
MEMPOOL *pool;
MAIL-BOX *mbx, *mymbx;
GENERIC *message, *mess;
BOX-FLAG *f lag;
int nbmess, sizemess;

mbx - box._create(mymbx, pool,f lag, nbmess, sizemess);
• box-delete(mbx);

box.send(mbx, message);
box.recv(mbx, mess);
status - box-pollrcv(mbx, mess);
status = box.pollsnd(mbx, message);

Description
Box-create create a mailbox. If mymbx is NULLMAIL, it tries to

allocate the space from the pool. The mailbox contains nbmess number
of messages, each of them of size sizemess bytes. Box-delete
performs the reverse operation.
Box-send sends a message. If resources are not available, that is, the
receiver mailbox is full, the calling process may be blocked or idle
depending on the mailbox flag. Otherwise the message is copied into
the mailbox, and the call returns. Box.recv tries to receive a message
from a particular process from a specific mailbox. If none is
available, the process state depends upon the mailbox flag. Otherwise
the message is copied into mess, and is deleted from the mailbox.
Box-pollsnd and box.pollrcv operate as box-send and box-recv but do
not block the process and return a status of the call.
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8. Tab

The purpose of this module is to map logical identities into
physical ones. If a process wants to send a message to another
process it needs to know the mailbox associated to that process. But
since it does not know the id of that process, defined at run time,
process must agree at compiled time on unique logical identities.
Then they can ask the operating system to associate logical and
physical name. As a result all processes can find out physical names
from logical names. The overhead is insignificant since one process

!: issues only one call to get the physical identity of a mailbox or a
semaphore that it may use heavily.

Synopsis

extern TAB-TABLE *tab-createo;
extern void tab-deleteo;
extern GENERIC tab-lookupo
extern void tab-seto;
GENERIC hiname, loname;
TAB-TABLE *tab, *mytab;
MEMPOOL *pool;
TAB-FLAG flag;
int nbname, tabname;

tab = tab.create(mytab, pool, flag, nbname, tabname),tab = tab-get(tabname);

tabdelete(tab);
tab-set(tab, hiname, loname);
loname - tab.lookup(tab, hiname);

*Description
Tab-create allocate memory space from the pool for the new

table if mytab is NULLTAB. The flag determines the type of
protection. Tab-delete deletes the table. Tab-lookup is used to get
physical name from logical name.Tab-set will map low name into high
name into a specific table. Nbname is the number of names that can be
maped. There are a fixed number of different tables : process,
semaphore, mailbox, pool. Each of them is determined by tabname.
When a new table is created, it is placed in an array of table. Tabname
is an index to that array. Therefore every process can retrieve
Information from a table if and only if it was created and knows its



tabname. Tabname are obviously defined at compiled time. One can
issues acall lIike

loname - tab-]ookup(tab-.get( tabname), hiname);
and then

box-send( loname, mess);
or simply

box-..send(tab-iookup(tab..get(tabname), hiname), mess);
if it will use the mailbox only once.
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Abstract

A new method for the orthogonalization of complex m by n Toeplitz matrices is presented. An
272inverse QR factorization is computed in lomn + -n' multiplications and divisions. This2

method uses inner products and projections in the same spirit as lattice algorithms for linear pred-
Iction do.

4,

1. Introduction

Toeplitz matrices arise in numerous applications of current interest. In a large class

of problems, rectangular Toeplitz matrices are specially structured in that they have

zeros in the upper right and lower left triangular corners. These matrices arise com-

monly in linear prediction problems [1, 2] when the autocorrelation approach is used.

Linear prediction problems, among other problems such as the discretization of integral

equations, can also involve rectangular Toeplitz matrices without zero corners (in signal

processing contexts these are covariance approaches).

In recent work [3], Sweet described an efficient method for the fast computation of

* QR decompositions of general Toeplitz matrices. As was noted in that work, there are

"' algorithms in the literature for solving closely related least squares problems involving

Toeplitz matrices. In particular, the paper [4] describes an efficient algorithm for solving

Research partially supported by contracts AFOSR 82-0210 and NSF MCS-8003354.

Z .°



-2-

the normal equations arising from linear least squares problems involving Toeplitz

matrices. Implicit in that work, and related work on close-to-Toeplitz matrices, are

efficient orthogonalization methods. This paper derives one such fast orthogonalization

for complex Toeplitz matrices that uses inner products and so is quite distinct from the

method of Sweet.

Our repeated use of the terms fast and efficient is meant to mean than an order of

magnitude less work is involved. In particular, while a general m by n matrix (with

m > n) can be orthogonalized using mn 2 operations, the fast methods use O(mn)

operations.

The method of this paper actually computes an inverse orthogonal factorization in

the sense that instead of computing

T = QR

with Q having orthonormal columns and R upper triangular, the method presented

here computes a Q and an R for which

TR =Q

* The implication of this for solving least squares problems is quite simple. Instead of

backsolving a triangular system, a triangular matrix is multiplied against a vector. In so

far as numerical stability is concerned, the computation of the inverse triangular factor

presents a potential pitfall. An error analysis of the classical lattice algorithm was

presented in [5] and indicated that the excellent numerical properties exhibited in prac-

tice by the lattice method can be analytically substantiated. The similarity between the

. method of this paper and lattice algorithms suggests that some analytical attention

ought to be paid to the accuracy of the former. By the same token, the numerical pro-

perties of Sweet's method have been subject to study recently [6]. Preliminary investi-

gations suggest that that method is unstable in spite of the use of orthogonal plane rota-

tions (it is the updating and downdating that can present problems there).

In the next section we present a simple derivation of this new orthogonalization

method together with a motivation that arises naturally from analogies with lattice algo-

rithms.

, 2. An Algorithm for Toeplitz Orthogonal Factorization

Let T be a rectangular Toeplitz matrix with entries tij ti-i for simplicity

(I<i <n ,l<j <n ,n <m ). If tj = 0 for j <0 and m -n <j:<5m such matrices can

be efficiently orthogonalized using the so-called "lattice algorithm" 17, 8, 2]. Since our

method for the general case is derived directly from this important special case, it is use-

ful to present this lattice algorithm.

Definition

Z denotes the unit cyclical shift operator -

--.
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(Zx), --- i-1 if 1<i<m

Note that T = Ix,Zx,Z2x, " . -] has a rectangular Toeplitz structure for any
-,. m-vector x (in fact, a rectangular circulant structure). We shall assume that x= 0

for m-n <J jm temporarily.
.

Lattice Algorithm

Input:
m

Itj } = withtj1  0 for m-n <j <m

Output:

Orthogonal vectors, q, with Q=-[q 1 , • • , qn]

and TR = Q, R upper triangular.

* Initialization:

.q

Main Loop:

FOR j - 2 TO n DO

ki -(Zqj-_,,) (la)(4,4)

q- Zq,+k 1 (2a)

= k Zq-,1 +q (3a)

Here (z ,y) denotes the complex inner product EY, yi. See [7, 2, 8] for details.

A key observation is that general Toeplitz matrices can be imbedded into such spe-

cial Toeplitz matrices of larger dimension (m +n -2) by n as follows.

4b '.
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tn 0 0
, t-n +i t-n 0

t_1  t -2 0

to t_1 tn

tm -1 tm -2 tm -n

0 tm-1 tn +1

0

0 0 0 0 tmin1

where T is the original m by n Toeplitz matrix and T, and T 2 are lower and upper

triangular Toeplitz matrices respectively.

It is convenient to write

" -- it ,Zt ,Z 2t,.. Zn-,t]

for the obvious m +2n -2 vector t.

Now this 1' has a form suitable for orthogonalization by the previously described
lattice algorithm. However, we desire to orthogonalize the columns of 1 with respect to

the euclidean inner product over the m interior entries only. We can view this as ortho-
gonalizing the big matrix T with respect to a non-Euclidean inner product defined by a

weighting say W. This diagonal weighting matrix is an m +2n-2 by m +2n-2 diagonal

matrix

W = diag (0, ... 0,1, ... ,1,0, ... ,0)

where there are v -1 zeros, m ones and n -1 zeros respectively. Clearly, if T Q 1I? is

a decomposition of 1' such that Q * WQ is diagonal and R is upper triangular, then
this gives an orthogonal decomposition of T by simply picking off the middle interior "I
rows of Q. Our algorithm is based on this observation and really orthogonalizes T with

*" respect to the IV-inner product.

For notational convenience, let x IVy = [x,y 1. Before proceeding, note the fol-

lowing fundamental identity satisfied by the W-inner product.

IZz,Zy] [,y ] + -- n+m-iln 9m-i (4a)

** 

-A
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This is easily verified by direct expansion using the definitions. A key element of this

identity is that it can be rewritten as

[Zx,Zy] -1x,y] + x*e._le,_ly - Xe..m-le,**m+-y = [x,yI + z'Dy

where en_1  and en+ml are the obvious standard basis vectors and

D -len*_ -en+m- l e *+m- l is a rank two "displacement" correction. It will be easy

to see shortly that the efficiency of this method depends precisely on the fact that D has

small rank, namely two in this case. More general situations where D has rank greater

than two but still small will have an order of magnitude more efficient orthogonalization

method also.

This algorithm uses one main iteration with two basic loop invariants. They are

stated as follows:

Invariant A

For each j >1, we have

qj E span[t,Zt, . . . ,Z-ltI

[qjq 5 ]=0 , l , q =t

Invariant B
For each j>1, we have

"- 0i4 E span[t ,Zt, . ,Zi-'t]

[q, x] =0 for all z E span[Zt, . . . , Zj-t]

Given these invariants as true for 1,2, . . , j we now demonstrate that they are

valid for j+1 also. This involves constructing qj+, and qi+, from q1 , i < j and

, i < j. By analogy with (2a), let

j
- qji -- Zqj + 6j 4j + E Cjk qk (5a)

k=2

First, select 6i so that

[q1 ,qj+1 ] = 0.

Thus let

6 = -[q 1,Z q I
6. (6a):'. [q 1,.4j

;.%
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Now pick i with 2<i <j and observe that by construction

i

q= Pk,i Zk-1t
k =1

for some {Pki } . Let

ZPi - iPk,i Zk-t
k=2

i= Z E Pk,i Z k - 2 t

k=2

(that is Zp is the same as qi but with the single term pl.i q, = Pli t subtracted). Note
* that Pi E span[t ,Zt, . . ., Zit]. Using the definitions of 6j and pi .we have

[qi,qj ] [qi,Zqj ] + 6b [qi,4j [ + aj i[qi ,qi]

= [Zpi + pli ql,Zqj] + 6j[Zpi + p1,iqjej] + ej,i [qi,qi]

, ---- ~~[Zp2 ,Zq, ] + . [ ,]

because 
both

[pl,, q ,Zqj I + 6j [pli, q l,0 I = 0

(by the previous choice of 6j) and

[Zpi, '4jI 0

(by Invariant B above). Now, we have

[qj ,q,+] [Zpi,Zqj] + ack [qi,qi]

= 1pi ,qjI + Fn -li qn-,jj - Pn +m-li qn+m -lj + ceji [qi, .q]

By Invariant A, [p.,qj] = 0 and so selecting

="P' +m,,-i qn +m-l.j - p'-l,i q- -j-', %Ck,i = qq]
" 2.'

will yield a qj+, with the desired properties. In of itself, this would clearly be and
O(mn ) algorithm and the key to getting an O(mn) algorithm lies in the fact that the

+" summation in (5a) reduces to

j qk qk
=_ C j.kqk = qn+m-, E Pn+m-i k qn-,JE F 1.-ki

k=2 k=2 [qk,q I k=2 [q qk]

- qn +;A-,j f j - qn -,j bj

Here fj and bi are easily updated to give f + and bj+1 which are required at the next
Iteration. Specifically, the updating is

f- +T qj+1
"... ~f 1 +i = f. + Pn+m-i.j+i q~'jl

• " . *•-.- • 
.
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"":" '"qj+l

bj+I= bj +.::.. b~l -- b + g~l~~l qj+,,qj+,]

Finally, 4i+, must be obtained and to this end, we note that both 4j and qj+ are W-

orthogonal to

Zt ,Z 2 t ,...,ZJ

and so any linear combination of these two vectors will also enjoy this orthogonality pro-

perty. In particular, select "yj so that

-j+= qj + j qj+ 1

is W-orthogonal to Z j t . Thus

-[ZJ t
J= [Z't q j + 11

This outlines the basic algorithm and an actual implementation requires a few additional

calculations for bookkeeping purposes. They are:

1. Maintaining orthonormality ( in the W inner product) of the qj

Z, "2. Keeping track of R for which TR - Q. That is, keeping track of coefficients pij

for which

~pj,i ZJ t =-i
j=

In light of all this, we have the following formal description of this orthogonaliza-

tion method. A complete FORTRAN listing is provided in the appendix for double pre-

cision Toeplitz matrices. Assume that tij - ti-j are the entries of an m by n Toe-

plitz matrix. The conventions used are:

a. Z denotes the unit shift operator as described before, with dimension appropriate

to the context;

b. bold roman letters denote matrices with leading dimensions n + m + 1 that are

used in the computation of Q in the QR factorization;

c. italic roman letters denote scalar quantities, either real or integer;

d. lower case Greek characters (0,0,p,p) denote matrices with leading dimensions n

that are used to maintain the coefficients of various important linear combinations

(that is, are related to R-1 in the QR factorization);

e. as before, [ , ] denotes the IV-inner product.

N

.. .

- - - - - - - - - - -. J.. ... ... . - . .
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TOEPLITZ ORTHOGONALIZATION ALGORITHM

:INITIALIZATIONS:

k = m + n

=j~ t j, for i<j k-1 qk,1 = 0
f=b=0,/=p=O
nrm = [ql,q 1]'
p1.1 = I/nrm

= /nrm

q= q,/nrm

:MAIN LOOP:

FOR j = 2 TO n DO
BEGIN

v =-[Zqj- 1 ,ql]
u -
w =qn + m -1j -
qj = Zqj- 1 + V4+ ub +wf
Pj Zpj- 1 +V4 + U,8+ WO

v = qj,qjI

v= qn~, - P1,, to

tf f+ vqj
4, =4 + V pi
b =b + w q

~=+ w Pi

v =nrm p,
4 (1 + vq

=?+ V P.

END

The output or this algorithm contains the orthonormal columns in the vectors
consisting of the entries

qj..

as i goes from n to n +m -1 inclusively, and the inverse triangular factor in the



matrix p.

3. Conclusion

A simple algorithm for computing the inverse orthogonal factorization of a
general complex Toeplitz matrix is presented. The method is more efficient for
solving linear least squares problems than is the method of Sweet [3]. Our method

7 225uses lOmn + -En multiplies while the method in [3] uses -- mn multiplies. The
2 2

numerical properties of neither method are well understood yet.

A Fortran program, implementing this method and using calls to LINPACK
BLAS [9], can be obtained from the author.
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Abstract

Recent progress on algorithms for Toeplitz matrices can be advantageously used in the computa-
-tion of Toeplltz singular value decompositions. This paper presents a method for computing

singular value decompositions of rn by n Toeplitz matrices that can result in an order of magni-
tude reduction of work in the case that M >> 71 which arises often in signal processing applica-
tions. The key idea is to preprocess such a matrix by computing its orthogonal decomposition
using very fast algorithms. Comparisons with traditional methods are made.

* Keywords. singular value decomposition, Toeplitz matrix, orthogonal decomposition.

1. Introduction

A number of recently developed techniques in signal processing make explicit use of

the singular value decomposition I. 2. 3 . This decomposition has been invaluable in a

variety of other applications for some time - examples include the regularization of ill-

posed problems, statistics, numerical analysis, control and systems theory 14]. The SVD

was popularized in the 1060's when stable, efficient, and reliable methods were first

A preliminary version or this work was presented at the International Conference on Acoustics. Speech and Sig-
nal Processing, Tampa, Florida, March 1085. Research partially supported by contracts AFOSR 62-0210 and
NSF MCS-8005334.
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discovered for its computation. Some indication of the SVD's current importance to sig-

nal processing is given by the amount of recent research devoted to finding extremely

fast, highly parallel algorithms for the computation or general SVD's [5, 6].

The singular value decomposition is easy to describe.

DEFINITION - Given a rectangular m by n complex matrix, A , the singular value

decomposition of A is a factorization of A of the form

A = UEV*

where U = [uiu 2 , . . . urn] and V -= [v 1 ,v2 , . . . , v.] are m by m and n by n

unitary matrices respectively and v is an m by n diagonal matrix

= diag (a ,a a

where p = min(m,n) and a, > a > ... >a > O. The columns of U and V are

the left and right singular vectors respectively while the ao are the singular values

of A.

A fundamental fact is that every complex matrix has a singular value decomposi-
tion. The reader is referred to standard sources (see [4] for example) for a detailed proof

of this and the facts that follow.

The set of singular values {a } is unique while if ai = ai+ ... i then

the subspaces span[u .... uj] and span[v i , . . . , v,] are unique. Furthermore, if m >n

then span[un+, .... u,] is unique with a similar statement true for the right singular vec-

tors if n > m.

The SVD is evidently closely related to eigendecompositions and, in fact, many of
the assertions above can be easily obtained from corresponding facts about eigendecom-

positions via this relationship.

Specifically, given A , note that B = A 'A is positive semi-definite and Hermitian.

Thus B has an eigendecomposition

B = VA I'

with A = diag(X1 , . ,.X) and X X2>-- >X >0 , V unitary. A 12 is a well

defined positive semi-definite diagonal matrix and it is easily verified that

(A VA-I/ 2)* (A VA - 1
/

2
) = In

Hence

U = AI'A -'1 /2

has orthonormal columns and so A- UA/ 2V* is the desired singular value
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decomposition.

Not only does this relationship show that the singular values of A are essentially

the square roots of the eigenvalues or A 'A and that the right singular vectors of A are
the eigenvectors of A *A but it also indicates how the singular value decomposition of

A can be computed.

2. Computing the Singular Value Decomposition

Suppose that A is an in by n complex matrix. Note that the SVD of A is simply

related to the SVD of PAQ* where P and Q are unitary. Specifically,

PAQ* = (PU)-(QV)*

This observation is central to the computation of the SVD since if B = PAQ * is bidi-
agonal, then B is extremely sparse and one can then use simple iterations implicitly on

B*B which is Hermitian and tridiagonal to compute its eigenvalues. (A matrix is bidi-

agonal if the only nonzero entries lie along the main diagonal and one of the diagonals
adjacent to the main diagonal.) The complexity of reducing an m by n matrix to bidi-
agonal form is O(mn 2 ). Depending on how much of the SVD is desired, the computation
of the SVD of this bidiagonal matrix can involve work ranging in complexity from O(m 2 )
to O(mn2). Clearly, the complexity of bidiagonalizing a matrix is a lower bound on the
amount of work required to compute a singular value decomposition. In the case of Toe-
plitz matrices, it is precisely this step that affords an economy in computation if advan-

tage is made of recent algorithms for Toeplitz matrix orthogonalization. In order to see
the role of fast orthogonalization methods, is it important to first take a close look at

how the bidiagonalization step can be done.

In general, the bidiagonalization can proceed in two possible ways. Here we are
using A to denote an arbitrary m by n matrix.

I. Use a sequence of left and right Householder matrices to reduce A to bidiagonal

form. This approach was used in the original algorithm by Golub and Reinsch and

is currently implemented in LINPACK [7].

2. First compute an orthogonal decomposition of A, say QR, with Q * Q = In and

R an n by n upper triangular. Then bidiagonalize R as in 1. above [8].

The advantage of 2. over 1. is that for m >>n there can be as much as a 50% reduc-
tion in the amount of work required. This is not obvious but is born out by a careful

operation count. In fact, although 2. had been well known in some circles for a few

years [01, it was not until an analysis was recently published [8] that method 2. received

broad attention.

Thus for general singular value computations, an orthogonalization can roughly
half the amount of computation for a large class of important problems. In the next sec-
tion, we describe algorithms for fast Toeplitz orthogonalization that reduce by an order

of magnitude the operation count for this orthogonalization, effecting an even more

. ..-
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* substantial computational saving over traditional methods not taking Toeplitz structure

": into account.

In concluding this section, we extract some entries from a table in [4] that compare
the amount of work required by methods 1. and 2. of above. Three distinct problems

are listed for SVD computation. They are:

a. computation of E, the singular values only;

b. computation of E and V;

c. computation of E, U1 and V (here U, denotes the first n columns of U).

Problem Method 1. Method 2.

a. 2 mn -- 2_13n nn2 + n
3

b. , V 2tin 2 
-+ 4n 3  mn 2 + 17n3

3

c. , U , V 7mn 2 + -L1 n3 3mn2 + On
3

Comparisons of Different SVD Methods [4]

3. Algorithms for Toeplitz Orthogonal Factorization

Let T be a rectangular Toeplitz matrix with entries t.. == ti-j for simplicity

(l<i<m,l<j_<n,n <m). If t, =0 for j <0 and m-n <jm, such matrices can

* be efficiently orthogonalized using the so-called "lattice algorithm" [10, 11, 12].

Specifically, the lattice algorithm computes a decomposition of the form TR Q where

, Q has orthogonal columns and R is unit upper triangular [12]. Note that in this case.

* T T is a positive-definite Hermitian Toeplitz matrix and can be computed in about

mn operations. The elgenproblem for T' T can then be solved in 0(n 3 ) operations.
2

Considering the previously discussed relationship between singular value decompositions

*o and elgenvalue decompositions, this would give an 0(mn + na3 ) method for problems a.

and b. above but O(mn 2 ) for problem c. Moreover, there are potential accuracy prob-

lems with this approach (see [4] for an explanation of this).

N1.



*i The general m by n Toeplitz matrix is really a submatrix of a specially structured

Toeplitz matrix as described above. Note that

t -n 0 0

I - -1 _ 0

t.. 1  1- . 0

to t_1 t_n

tM -1 tM t-2 trn -n

0 tm -1 Im -n +1

* .0

0 0 0 0 tMin1

where T is the original m by n Toeplitz matrix and T, and T. are lower and upper

triangular Toeplitz matrices respectively. ' is a matrix of the type previously described

for which the lattice algorithm is suitable.

The lattice algorithm and the Levinson-Durbin algorithm [13] essentially use recur-

sions between sucessive columns of R in an orthogonal decomposition of 1 in order to

reduce operation counts. Now, T is a simple submatrix of T and the columns of R in

an orthogonal decomposition of T also enjoy recurrence relationships albeit much more

complex. In a recent paper [14], Sweet interpreted these relations as updating and

downdating operations on an orthogonalization. This interpretation was ingeniously

exploited by Sweet to obtain an O(mn) algorithm for the orthogonalization of general

Toeplitz matrices. Although the algorithm uses orthogonal rotations which themselves

are numerically stable building blocks, there are suspicions that Sweet's method may be

numerically unsound [15].

Based on a completely different approach, another Toeplitz orthogonalization

method based on inner products and projections (just as the lattice algorithm is), has

been presented [16].
25

Sweet's method uses requires about -mn operations for the computation of both
2

.............................................. • .• . •. . ...



17- n7 2 operations but computesQ and R. The method in [161 requires about 10ran + 2

the inverse triangular factor, R where TR = Q. This is not an algorithmic obstacle

since the SVD of R is obtained from the SVD of R -1 by transposition of the matrices of

singular vectors and inversion of the singular values. However, the use of the inverse

factor raises questions about numerical stability. Although a thorough analysis is not

presently available, there are some indications [17) that this family of inner product algo-

rithms for Toeplitz orthogonalization may be numerically well behaved. It would be

going too far to say that they are stable for classical QR factorizations but might be

stable for inverse QR factorizations. An analysis will have to be performed.

The final section identifies the savings that are possible from using this fast Toe-

i plitz orthogonalization as a preprocessing step.

" 4. Comparisons

The table below should be compared with the previous table using the two general

methods currently well known and accepted. This table lists the leading terms of the

operation counts for the Toeplitz orthogonalization method presented in [16] together

- with operation counts for method 1. for the SVD. Note that if m - n then method 1.

. is more efficient than method 2. Operation counts, as all others, refer to multiplications

- and divisions.

Problem Operations

43E V lOmn + -n
4 3

, .., VlOmn + n

.1

Operation Counts for Fast Orthogonalization Preprocessing in SVD

It is evident that orthogonalization as a preprocessing step for Toeplitz SVD com-

I' putatlons is advantageous in the cases where in >> n. We note that the formation of

the cross product matrix, T* T, in all cases has the smallest operation count. In light of

possible loss of accuracy in the cross product approach, and the unknown stability

*J"
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properties of fast Toeplitz orthogonalization, it seems that more work is required before

a clear champion emerges. In the meantime, among methods that do not resort to eigen-

value methods for T* T, it is clear that fast Toeplitz orthogonalization using the

method in [16) combined with the classical Golub-Reinsch SVD is fastest for problems

where m >>n. If accuracy is an absolute requirement, in the absence of thorough

anaylses for fast Toeplitz orthogonalization, the QR preprocessing method using House-

holder tranformations is best (method 2. of above).
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