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_ A summary of;;;;;;£ resultssis presented on the subject of
e / .’)¢4£E;rogressive ply cracking in fibrous laminates. Firsty evaluation of
stiffness changes caused by systems of aligned slit cracks which are
parallel to the fiber direction in a unidirectional composite lamina is
discussed. Results obtained by the self-consistent method are present:d,

Next, a procedure for estimating instantaneous crack densities and

stiffness changes in a lamina subjected to a prescribed strain history
is outlined. These results are extended to analysis of laminated
r _ composite plates under in-plane stresses. Specific examples and

comparisons of analytical and experimental results are presented for

v

- Cr’a A//ﬂ" 7ﬁw’:??:2 e f-/,/n.'z,u"’ﬁ/vﬂ.n-.
: /\/) 3 .‘

s 7l

. /
- /

. g
two graphite-epoxy systems. )7’(7405((/; ; [’0 w2 Ty a /&v/a/,).




1. STATEMENT OF WORK

In many fibrous composite systems the failure strain of the fiber
far exceeds that of the matrix. Under load, the difference is usually
accommodated by matrix cracking. This is frequently observed in
monotonically or cyclically loaded laminated plates, where each layer
may contain a system of aligned slit cracks which grow in the direction
of the fibers and across the thickness of the ply. Such cracks are
often called ply cracks or transverse cracks, although it is more
appropriate to reserve the latter for cracks which are perpendicular to
the fiber axis, and refer to cracks which grow parallel to the fiber

direction as axial cracks.

In polymer matrix composites axial matrix cracking typically
starts at low strain levels in the weakest off-axis ply. As loading
continues, cracks appear in other off-axis plies; also, their density
increases until it reaches a certain saturation level. For éxamp1e, in
statically loaded (0/90)s graphite-epoxy laminates the minimum crack
spacing was observed to be equal to 3.5-4.0 ply thicknesses [1]. In
metal matrix composites, matrix cracking appears to be caused only by
cyclic loads which exceed the shakedown limit of the laminate [2].

Under such circumstances the matrix experiences cyclic plastic straining
and, consequently, low-cycle fatigue failure. Both axial and transverse

cracking is present, the former in off-axis plies, the latter in zero

degree plies., The crack patterns and densities are generally similar to
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those found in polymer matrix systems. However, saturation density

increases with load amplitude, and it is not unusual to find cracks as

;i close as one ply thickness.

-

:. In a typical part of a laminated composite structure, removed

i; from concentrated loads and free edges, matrix cracking is the initial,
low-stress damage mode under applied load. It is eventually followed by
other types of damage, such as delamination between layers and fiber

Ef breaks; but these appear at relatively high loads which may exceed

a- allowable design magnitudes. In contrast, matrix cracks grow at low

:i loads, and they can significantly impair stiffness and strength of

|| composite structures, especially those containing many off-axis plies.

._ For example, fatigue tests on both bolymef and metal matrix laminated

T plates indicate that stiffness and residual static strength reductions

- caused by cracking in plies may be as high as 10-50% after 2 x 106

cycles of loading [2,3]. It is therefore desirable to consider the

effect of matrix cracking on composite properties in design.

Sufficiently general theoretical models of progressive cracking

in composite laminates are apparently not to be found in the literature.

v
-y, ,

Such results as are available for angle-ply laminates have been obtained
from finite element calculations [1], while other studies have focused
on (0/90,)

s laminates [4].

The purpose of this research is to develop a procedure for

.
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prediction of crack densities in individual plies of a laminated
composite structure as a function of applied load, and to evaluate the

effect of cracks on stiffness of the structure.

The analysis has been performed in the following steps:
a) Evaluation of overall thermoelastic properties of a fibrous
composite which contains a certain density of aligned
slit cracks.
b) Evaluation of crack densities and stiffness changes
in a single ply which is strained in a prescribed way.
c¢) Evaluation of crack densities and stiffness changes
in a laminated composite plate which is subjected
to prescribed loading. Specific examples were solved

for laminated plates under in-plane loads.

Comparisons of theoretical predictions was made with

experimental data.




2.  STIFFNESS CHANGES CAUSED BY A SYSTEM OF CRACKS I A PLY

2.1 Preliminaries

We are concerned with evaluation of overall compliance, thermal
expansion coefficients (or thermal strain and stress vectors), and
strain and stress averages in the phases of a fibrous lamina which
contains aligned slit cracks, and is subjected to uniform mechanical
loads and thermal changes. The approach to the problem was outlined in
reference (5], where we suggested that the effect of matrix crack
systems on prcperties of fibrous composites can be analyzed, in
principle, by the same techniques which are commonly used in evaluation
of elastic constants of composite materials and fibrous laminates, e.g.,

by the self-consistent method.

The essential approximation in the evaiuation of stiffness and
compliance changes of laminates consists in the replacement of a cracked
layer, Figure 1lb, by an effective medium which contains many cracks,
Figure la. The crack densities can be exactly matched to provide
identical stiffnesses. However, the cracks in the layer are not
entirely surrounded by the layer material, instead they interact with
neighboring layers which have different elastic properties. This

interaction is limited to the vicinity of the crack tip, thus it may be

important in analysis of local crack growth at the interface, but it has




!E only a minor effect on lamina stiffness. We note that a similar

approximation is commonly accepted in evaluation of elastic moduli of
laminated composite structures reinforced by monolayers of large

diameter fibers.

< When the composite is reinforced by monolayers of fibers, such
as boron or silicon carbide, the cracks and fibers may be of similar
size. The appropriate model is shown in Figure 2. It is analogous to

r that of Figure 1, except that it contains three phases (fjber, matrix,
and cracks), whereas the model of Figure 1 can be reduced to two phases

(composite "matrix", and cracks). Accordingly, the models in Figures 1

II and 2 are referred to as two-phase and three-phase models, respectively.
From the practical standpoint, the effect of model choice on composite
- stiffness is small. The simpler two-phase model is thus sufficient for

- analysis of all fibrous systems.

In the three phase model we designated the fiber as phase 1,
matrix as phase 2, and cracks as phase 3. In the two phase model phases

1 and 2 are joined in a homogeneous "matrix" and designated as phase 2;

the voids or cracks remain phase 3.

The self-consistent analysis of the cracked composite, as outlied
t: in [5-7], starts with a composite geometry in which the cracks are initially

regarded as ellipsoidal cylindrical inclusions. A self-consistent

estimate of overall stiffness of this medium is obtained. Next, the




n inclusions are evacuated, i.e., replaced by voids. Finally, the aspect
ratio of the voids is adjusted so that in the limit the voids change to

cracks.

To evaluate crack density, the cracks in Figure 1 are first replaced by
elliptic cylindrical voids, with a, b, denoting the major and minor semiaxes.
If n is the number of voids per unit area in the x1x2-o1ane, then the
volume fraction of voids is equal to ¢y = Tabn, and Cp +Cq = 1. Next,

let the voids be reduced to cracks, i.e., & = b/a - 0. Then

¢y = Traznd = %1766

P!
o
—

where 8 = 4na2

is the crack density parameter. In fact, 8 is equal to
the number of cracks of fixed length, e.g., 2a, in a square uf side 2a.
For example, if the cracks are located in a ply, Figure 1lb, then 8
measures the distance between regularly spaced cracks in terms of ply
thickness 2a. At 8 = 1, the distance between cracks is equal to 2a, as 8
decreases  the distance increases and at 8 = 0 the cracks vanish. We
recall that the observed minimum distances between cracks in a

saturation state are equal to 3.5-4.0 ply thicknesses, i.e., 7a-8a [1].
Corresponding values of 8 are 0.28-0.25, but values as high as 8 = 1

were observed in the B-AL system [2]. Therefore 0 ¢ 8 <1 is the

appropriate range of 3.
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On the macroscale, the cracked unidirectional composite of
n Figure 1 can be regarded as an orthotropic homogeneous solid. The
h elastic properties of the "matrix" are identical with those of the
w2 fibrous composite and can be easily evaluated. When cracks are
- introduced, the macroscopic or overall elastic moduli of the solid
- change. To make the concept of overall moduli meaningful, it is

necessary to consider overall uniform loading. Thus, we introduce

uniform overall average stresses g and strains'§, with components
arranged in (6x1l) column vectors and related by constitutive equations*
: g=lg » e=Mg , (2)
E
‘ |I where L, and M are the overall stiffness, and compliance (6x6) matrices

of the cracked composite, respectively. M = L'1 when the inverse

exists. Effective properties of uncracked fibrous material (phase 2) are

denoted by L°, M°, or by Lz, MZ'

*

As in [5-7], (6x6) matrices are denoted by capital Latin or Greek

letters, e.g., L, M, A, A, B, P, Q, and (6x1) matrices by lower case

bold face letters, e.g., 9, €, m, 2.
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For a dilute concentration of aligned slit cracks, the matrices L

and M can be evaluated by the self-consistent method. This was done in

Reference [5]; the results are:

L=l -BL,alL (3)

M =M, +84A (4)
where L2 = LY, M2 = M°, and

E*%ws (5)

The matrix A has only three nonzero componernts, which are

expressed in terms of compliances M of the effective medium as:

M

My Mase

oM Ms e,
2 My 17 a,)

- ] (6)
hag = (Myq M55)

2 \s R
i E e U DY FUI S
66 N 2+ %

33

where oy and az are the roots of

2,2
(M22M33-MZ3)a - MgM + 2

MigMiz - MigMpgdla + M Moy - M2, = 0




T T T ———8<

These results imply that only three compliance coefficients M22’ M44,
and M66 are affected by the introduction of cracks, the remaining six
terms in M are unchanged, i.e., they remain equal to those of the

uncracked fiber composite. In particular

My =My e MM Mg e
Mpg = My o Mgy MGy L Moo= M
Myp = Moy + BlMyghay = M2} (ad + o)/M,y (8)
My = Mg * BlMyyMgg)® | ()

_ 10
Mog = M5 + BlMpMaa-M51) 500 My ) 5o + My 10

and from (7):

2
@48, * (“11"33'”%)/ (MypM33-M55)

2
ay + o, * [MaaMeo + 2(My MMy gMy3) 1/ LMy M5 M5 5]

The unknown shear compliance M44 can be obtained directly from




- _ 0 3 1
Moo= M +g{eM55+(82M2 +4M44M55)z] (11)

P

The remaining unknowns M,, and Mgg are founa from (8) and (10).

r ,’u,'

These results can be utilized in (4) for a more direct evaluation

N |

of the three nonzero components of the matrix A in (6):

NPT
g lv

= - fo]
Ay = Mgy - My

/8 . (i = 22, 44, 66) (12)
Of course, the same result follows from (6) and (7). In any

case, the A, . may now be substituted into (3), and the components of the

ij
l overall stiffness L can be found in a closed form. The resulting

expressions are given in reference [7, eqn. (A-6)].

[t is seen that the results are remarkably simple, and similar to
those that are routinely used for evaluation of elastic moduli of an

uncracked composite medium. This similarity is particularly useful in

applications of the results to laminated structures.
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2.2 Response to Thermal Change

Let 6 denote a uniform temperature change from a reference

temperature 8,, applied to the composite. The constitutive equation (2)

must be replaced by

g=L¢E-o02 t=Mo +6m , (13)

-~ -~ ~ -~ -~ -~

. where m is the thermal expansion vector and 2 the thermal stress vector.

From (13) one obtains

R

"
—

’3

(14)

It is probably obvious that the presence of cracks does not affect

free thermal expansion of the composite. Thus

ms=mg , (15)

and from (3), (4) and (14):

L= (I -8WU)2, (16)

Explicit forms of m and £ are:

-~ -~




; |-. pa— 7

< o (Ly* La) ey + L5 °A7
-
i ar (Lyg* Lpadap + Ly3 9 |-
[ _jlj

ay (Li3* Lp3) o + L33 o (17)
u! ™ : !, Y .

. 0 1]

r

- 0 0

" 0 0

— ol 3 and

-

B where a; and a, are linear thermal expansion coefficients of the
uncracked composite in the transverse and axial directions, respectively.
Since the coefficients of Lij change with g, £ is also a function of m,
while m remains constant.

-

Again, the derived expressions are valid only if the cracks are

open. Closed cracks do not affect thermal response of the composite.

-13-
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2.3 Local Strain and Stress Averages

Certain applications of the above results require information about
local stress and strain fields in the phases. Estimates of local fields
are also needed to distinguish between loading conditions which lead to

either open or closed cracks and thus delineate limits of validity of

the theory,

It is clear that when a fiber reinforced composite containing
cavities is subjected to general uniform mecahnical loading, part of the
applied strain (i.e., the average strain) is accommodated by cavity ex-
pansion. Whereas the strain of a typical cavity wall becomes unbounded
in the limit of vanishing aspect ratio, the important quantity in the
macroscopic study of composites is the wall strain multiplied by the

area of the cross-section (or aspect ratio) which tends to a finite

limit,

From the formulae given in [5,7], and in Section 2.2 above, it is
not difficult to show that in the limit of slit cracks (§+0), the

overall strain € is given by

€ =€y +tee , (18)

-14-
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where € is the average strain in the composite "matrix" :

T (I-Bal)g +TaLme . (19)

In addition, Eﬁ is the crack accommodation strain

T *BAL(c-m) ; (20)

it represents that part of the applied (average) strain which is

accommodated by cracks.

In practice equations (19) and (29) provide us with estimates of

the local stress and strain fields within the composite.
Viewed from another standpoint, equations (19) and (20) immediately

furnish the strain concentration factors. As far as the matrix is

concerned,

sA.E--eE (21)

€

A=1.-81r, ' (22)

0

where




strains in a fully constrained cracked composite (E'. Q) are

The matrix expands at the expense of crack closing.

with the help of (3) in the form

o . -‘.'7-!’:' N Ty T T v U T T T av o T ety

It is perhaps important to emphasize the different physical

interpretations of € and T+ MWhereasc, is the average strain in the
matrix, E; represents that part of the overall strain which is

accommodated by all the cracks. Therefore, one can write (20) as

:e.-c - éc L ’ (23)
Ac =8 AL

(23)
a. * BALM .

For example, it is immediately obvious that the average thermal

EO'-EC.EA L!.e *

For computational purposes it is advantageous to rewrite (22])

A=MoL . . (25)

It is often convenient to have explicit forms of the above results,




The nonzero components of A in (22) are:
Ar =33 = A =1

. |
Ry = (Myp = Mp)) Ly,

Ay = Mgy = Mg) Lyp + 1 (26)

Ay = (M = M) Ly,
0
Rag = Mga/Myy

Ags = Mgs/Mes -

Again, M are compliances of the uncracked composite .

The components of thermal strain concentration factor a in (22) are

all zero, except for

22 = = Bhyy [llyy + Lpplegr + Ly3 0] (27)

The average strain €c (20), (23) 1n the cracks has the following

nonvanishing components:

=C - - ry ry
22 7 B Aol (E1y-art) + Lpplegpeg®) + Lyy(F3p-0®)] ()

-~C = - - (] a - -
B33 = (1- Mea/M)op 7y = (- MesMgglsr, o

We note that the aistinction between open and closed cracks is

determined by the inequality

¢ > 0 ’ (29)




which can be evaluated with the help of (28).

The results presented here are valid only if this inequality is

satisfied. If the sign is reversed, or if the two sides are equal, then
cracks are closed and do not affect the mechanical and thermal response
of the composite. An exception arises when the closed crack faces sliide
in shear. Treatment of this case is beyond the scope of the present

paper.

Finally, we note that evaluation of stress averages in the phases

is trivial. Since open cracks do not support any stress.

7, ¢




2.4 Stiffness at Large 8

When a fibrous lamina is embedded in a laminated structure, it may
crack rather extensively. Under such circumstances, certain components
of Lijvin (3) become independent of 8, or equal to zero. It is worth
evaluating these limiting stiffnesses since they correspond to the worst
possible damage to a particular ply of a laminate. A good approximation

to the actual residual stiffness can be obtained as

L = 1im L i3 . (31)
[ e

Now as g-= it is easy to see that

- N

Ma2s Mags Mg

whereas the remaining components of the compliance matrix remain finite
(and equal to the uncracked value). It then follows from simple matrix

inversion that

1 = 3/Y = L (L

12) /L3




LA - M A e afe - A odiae AR o

o}
_ﬂ where Y = Mfl Hg3 - ("13)2' Also,
< 0 * *
LSS * L55 ? L44 = L55 =0 . (33)

For a moderately cracked ply, say g = 1, a reasonable approximation
to the stiffnesses Lij (ij = 1,2,3) is still given by (32), while Lgg is

of course equal to "%5‘ However, L,, and L66 must be calculated either

directly from (3}, or indirectly from (8), (19), and (11).




2.5 Selected Results

To illustrate the evaluation of compliances of a cracked composite,
and of the “matrix" strain averages, we consider a T300 Gr-Ep system.
Table I lists the constituent properties of fiber and matrix, and of the
uncracked composite. The composite compliances were obtained from

self-consistent estimates of moduli.

Figure 3 shows changes in the three compliances MZZ’ Mgy, and M66’
calculated from Equations (8) - (1l1) for given values of crack density 8.
0f course, all these components increase with increasing g, but their
change is quite gradual, especially at low 8. This contrasts but is not
in conflict with the relatively rapid reduction in stiffnesses which we
found in [5].

We note that the composite without cracks is transversely
isotropic, and has five independent compliances, Mij'
introduced the coefficient M22’ M44, and "66 change, the material is no

When cracks are

longer transversely isotropic, and the number of independent elastic

compliances increases to eight.

The changes caused by 8 in components of strain concentration
factor A in (22) are shown in Figure 4. As required by (26), five of the
eight components of A change with 8. Note that the fiber volume fraction

appears to have a small effect on Ai However, crack density £ can have

J'l
a significant effect on the strain concentration factor components,

especially at relatively low values of 8.
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3. PROGRESSIVE MATRIX CRACKING IN A PLY

3.1 Preliminaries

Consider a unidirectionally reinforced composite ply of thickness
2a, which is embedded in a laminated plate, shell, or a similar composite
composite structure. The structure is subjected to a certain
incremental loading program which, at ;ach loading step, causes a known
instantaneous overall strain state E‘in the ply under consideration. The
strains E}j are assumed to be uniform within the ply. An element of the
r composite structure which contains the ply is shown in Fig. 5. A typical

ply is bonded to laminated layers of thickness b' and b" such that at
least one of the adjacent layers is much thicker than the ply, if b' > b"

l > 0, then b' > 2a.

At a certain magnitude of applied strain E} which is usually much
smaller than the failure strain of the fiber, a system of matrix cracks
starts to develop in the ply. The geometry of matrix cracks is
influenced by the strength anisotropy of the fibrous ply, and by the
state of stress. Clearly, cracks may propagate most easily on planes
which are parallel to the fiber direction. An unbroken ply segment in a
typical part of a laminated plate or shell, which is removed from free
edges and other stress concentrations, usually supports a state of plane
stress. In the coordinates of Figure 5, this suggests that components
r{ 022, 023, and 033 are large in comparison to ojj. Matrix cracks parallel

to fibers are not affected by 033, although this stress component may

cause cracking on planes perpendicular to fibers, The remaining stresses

v e e m e e e . Tt et
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favor cracking on xjx3-planes. The shear components oc12 and ¢13 may be
present as well, for example in bent plates where their magnitude varies
through plate thickness. Again, g3 does not influence axial cracks
parallel to the fiber; oyp contributes to crack growth on xjx3-planes,
even though an exceptionally large o, might cause cracking on planes

inclined to x) axis.

These considerations suggest that the matrix crack system consists
of aligned slit cracks of width 2a, which are infinitely long.in the

fiber direction X3

The average spacing of cracks in the system can be conveniently
described in terms of the crack density parameter B, the average

distance between cracks is 2a/B8, Figure 5.

Of course, the actual spacing of cracks at a given value of 8 need
not be regular., Available experimental observations suggest that
individual cracks are initiated at randomly distributed locations in the
ply, and then propagate, sometimes in an unstable manner, across the ply
width [2,4]. The number of these cracks grows progressively with
1ncreasing'€, up to a certain saturation, density, typically 8 < 1.
Under sustained or cyclic loading the crack density may increase with

time, even at a constant stress amplitude.

Regardless of the underlying fracture mechanism, the random crack
pattern corresponding to a given average density B can be illustrated by

the sequence of Figure 6. A ply segment of length ¢ = 12.5 mm and
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b thickness 2a = 0,125 mm is shown. The width of the segment is assumed to

q be much larger than 2a. In agreement with experimental observations, we

assume that the actual distance between any two adjacent cracks cannot be

smaller than the ply thickness 2a [2-4]. Thus, the 12.5 mm long segment
can contain at most 100 cracks at 8 = 1. To illustrate the progressive
cracking process, the possible crack locations in the ply segment at 8

= 1 were fixed at reqular intervals, 2a apart. Then, a sequence of 100
random numbers was generated and each number was assigned to one of the
prospective locations. Four values of 8 were selected, and at each 8
the reduired number of cracks was drawn in the locations with the lowest
I random numbers. For example, at 8 = 0.1 there are ten cracks in the
segment. These are retained in their positions and supplemented by 20

additional cracks at 8 = 0.3, etc.

The sequence shown in Figure 6 was constructed, under the
assumption that formation of a new crack is not influenced by the
!! presence of an existing crack, Due to stress relaxation next to an
B existing crack, this may not be the case in an actual ply. At low
o values of B cracks may form preferentially at locations removed from

existing cracks, and the crack distribution in the early stages of the

process may become somewhat more uniform than that suggested by Figure

6.
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3.2 Crack Interaction

Before the onset of cracking, the local strain and stress fields in
a typical segment of a thin ply, removed from concentrated forces and
free edges, are usually uniform. If the current applied strain E} and
-uniform thermal change 6 are known, then the corresponding ply stress

o follows from constitutive equations (13).

Once a particular ply begins to crack, the uniform strain and
stress fields are perturbed. There are stress singularities at crack
tips, and the stress components 3}2, 3}3, and 323 vanish on each crack
face. Nevertheless, the crack affected regions are localized in the
neighborhood of each crack. Thus in the early stages of cracking, each
crack can be regarded as essentially isolated. In other words, the
elastic field in the neighborhood of a particular crack can be

determined by considering that crack alone in the ply.

As the crack density increases, so does the totality of perturbed
regions. Ultimately, the cracks will interact with each other, and the
crack-affected regions will eventually occupy the entire volume of the

ply.

[t is important to estimate the distance between cracks at which
crack interaction becomes significant. One way of doing this is to
consider a ply with an average crack density 8, and investigate the

differences between compliances M obtained for interacting and

noninteracting cracks. It is easy to anticipate that crack interaction
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will cause major deviation from linearity in the My, component which

n changes most rapidly with crack density 8; c.f., Figure 3.
;j Specifically, with reference to Equation (4), the compliance for
interacting cracks is:

0
M22 = M22 + %— ™8 A22 (34)

For noninteracting cracks, Mpp is given by the linear formula

r
Mz = M3z + 7 78 A3 (35)
. (o] o] .
o where Ma2, A2 are values of My, Ap2 at 8 = 0.
The difference between the above compliances can be expressed in
[} ]
!! terms of (Mpo - M22)/Mpp. The following presents this ratio for the
graphite-epoxy ply considered in Table [; the magnitudes are not
dependent on fiber volume fraction cf for 0.2 £ cf £ 0.6,
T T T l T 1 1
;; 8 0.10 0.15 | 0.20 0.25 0.30 0.40 | 0.50

(MZZ‘MZZ)/MZZ 0.017 0.038| 0.068 | 0,105 | 0.151 | 0.271 | 0.432




These results, whith’app]y to cracks already in existence, suggests
that significant crack interaction starts at 8 = 0.25, when the compli-

ance deviation from linearity becomes larger than 10%.

The concept of crack interaction needs to be understood from the
stand-point of new crack formation in a volume of a ply which already has
an average crack density 8. If a crack which is about to form is found
in a ligament between two existing cracks, it can be regarded as
noninteracting only if the existing cracks are at least 8 or more ply

thicknesses apart, i.e. when 8 < 0.125 before the crack forms.

Of course, crack inifiation at random locations leads to consider-
able variations in local spacing. As suggested by Figure 6, individual
cracks may be much closer than ply thicknesses at 8 = 0.125. Therefore,
one can conclude that crack interaction starts very early in the cracking

process. Indeed, assume that crack interaction is present for all values

of 8 > 0.
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3.3 Progressive Cracking of a Ply

In agreement.with.the conclusions reached in Section 3.2, we regard
the progressive cracking process as a sequence of events in which
individual cracks are initiated at random locations in the ply, and
propagate, possibly in an unstable manner across the entire loaded width
of the ply. Formation of a single crack represents an elementary step
in the process. To account for interaction between cracks, we assume
that the stress which causes the crack to form at a given average crack
density 8 in the ply is equal to the volume average (13). Explicit form

of relevant components is:

-— -— 0 - 0
912 = 2Lgg €12 = 2Lge €12(1 + B Lgg Agg) ™)
622 = L12(e11 - a8) + L22(522 - a18) + L23(€33 - ape) (36)
0 ,_ o ,_ o ,_ - 0 -1
= [L1p(Ey) - a18) + Ly (S5 - a18) + 153(F33 - ap®)] (148 Lppnp))
- -— 0o - 0 1
023 = 2L4ge23 = 2Lgge23(1 + B Laarp2)"”

Fracture criteria for crack formation during progressive cracking
are apparently not to be found in the literature. However, it is
reasonable to expect that the process will be essentially repetitive,

governed by a criterion similar to that for first ply failure.

In general, each slit crack in the ply can open in three modes,

each of which corresponds to one of the three stresses (36). To fix

ideas, consider that the siit crack extends in the direction parallel to




the fiber axis x3, Figure 5. Then g12 in (36) causes Mode III failure,

!! 3}3 Mode 11, and 022 Mode 1. Mode III can be excluded in most

. applications, on the grounds that the fracture surface in a fibrous ply

" contains numerous longitudinal asperities created by the crack as it ;

i finds its way between densely packed fibers. These asperities are
interiocked and thus prevent relative shear displacement of fracture

_ surfaces in the x; direction. Of course, Mode III and 312 are
implicitly absent in plane stress.

f; Modes I and II are usually interrelated, but to a different extent

h in different composite systems. A ply failure criterion which reflects

;; this fact way presented by Hahn et al. [8] for the case of Eéz > 0,

B 923 0 in the form:

g (1-9)(T22/%1) + 9("22/"1)2 + (”23/"11)2 =1 (37)

where g is an empirical interaction parameter, 0 < g < 1. For g =1 i
there is no interaction and (37) is reduced to the familiar quadratic

form. The oy and oy are critical stresses at which the ply actually

fails. These stresses increase with decreasing ply thickness. Also, as .

B grows, one expects that formation of new cracks may become gradually

more difficult. This can be reflected by demanding that gy, apy be

nondecreasing functions of 8. Thus we write:

G1 = aq(a,s), a1 = o1 (a,8) (38)

............




While (37) is valid for Gy > 0, the composite ply may also crack

if 922 < 0 and 023 # 0. Under such circumstances (37) should be

replaced by

- 2
(F23/%11) =1, (38)

with ay1 = o171 (a, 8, 022).

The.critical stress magnitudes in (37) and (38) need to be
established experimentally. So far, only first ply failure magnitudes
of strengths (38) have appeared in the literature, c.f., [3,4].

Information about 3}1, especially under compression (39), is generally

not available,

If (12), (14) or an equivalent criterion is accepted for progres-
sive cracking, then the average crack density B can be evaluated during
incremental deformation of the ply. Suppose that the composite ply is
subjected to current uniform strain E} and that the corresponding crack
density is By > 0. A strain increment dg, and a uniform thermal change

dé are applied, and a new magnitude of 8 is sought.

Let

2 m)
"
t o)
+
Q
K]
-

8' =0 + do (40)

be the new values of strain and temperature. The corresponding average

stress in the ply is, in analogy with (13):




g' =L'¢e +6'2', (41)

where L' = L'(8), 2' =(B) are overall instantaneous material properties

of the cracked ply at the as yet unknown value of
B =89 + dB; d8 > 0. (42)

To determine if dg'and de in (40) will actually cause additional
cracking, it is necessary to evaluate first stresses (41) with L' =
L(Bo), &' = &(Bo), i.e., with material properties at the original crack
density By. [f these stresses make the left-hand side of (37) or (39)
larger than unity, then an increment d8 is required to reduce L', f' to
the Tevel allowed by the selected failure criterion. When (37) or (39)
are called upon, it is also necessary to adjust oy and oy according

to the current value of 8.

The increment dB caused by (40) can be evaluated by a simple
iteration scheme in which 8 is adjusted so that the stresses (41)

satisfy (27) or (29) while €' and 8' are applied.

Once the new magnitude of 8 has been found, it is possible to

evaluate all components of the current stiffness and compliance matrices

L and M,

We recall that both L and % are decreasing functions of 8, thus the

ply softens under increasing strain, but it remains elastic during

<31-



----------

.................

unloading and reloading to the current stress level, Figure 7. This

aspect of the procedure permits evaluation of 8 under incremental
deformation even when the critical stresses E} and 5}1 in (37) are taken
as independent of 8. This may be advantageous in practical applications
when F} and 3}1 may be known only at first ply failure, i.e., at 8 » 0.
If the first ply failure values are taken, the predicted magnitude of 8
will probably exceed the actual one. Therefore, the stiffness of the
ply will be underestimated and again, the model predictions will be on

the safe side in most structural applications.

...................
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;l 3.4 Results

3.4.1 Stresses in a Deforming Ply

To illustrate typical results provided by (37), consider a graphite-
epoxy ply with properties given in Table I, The ply is deformed by
prescribed strains €29 and €23 in several radial directions, while
stresses are adjusted so that oy = 912 = 013 = ¢33 = 0. For greater

clarity of presentation, the ply strengths are taken as constant:
- ~£r - —<r
g1 = g22 = 28.44 Mpa, o[l = 023 = 37.95 MPa

These values were measured for first ply failure of an unconstrained

ply, hence they represent relatively low strengths.

The results appear in Figure 8. In each case, the applied strain
is plotted on the horizontal axis, the average stresses and crack
densities on the vertical. The constant strengths levels are plotted as
well. It is easy to see that if strengths were increasing with 8, then

the stress components would be elevated accordingly.

A remarkable feature of these results is the strong effect of shear
strain €3 on crack density increase. When only shear €33, or only
transverse normal strain ey is applied, one finds that B increases
about twice as fast in shear when is 2c23 compared in magnitude to e37.
At the same time, the shear strength exceeds the transverse tension

strength by 33%. This behavior can be related to the rate of change of




the relevant stiffnessed Ly, and Lggq with 8. We recall from Figure Z in
[5] that Ly, decreases with 8 much more rapidly than Lg4, from
comparable initial levels. Thus gy3-is relatively large, much larger
than o5 for 223 > €22. Even at low e€23/e22 ratios o23 keeps increasing

with applied strain while o099 always decreases after onset of cracking.
In addition to stress changes, the ply experiences stiffness change
under deformation conditions of Figure 8. These are summarized in Figure

9.

3.4.2 Progressive Cracking in Laminated Plates

The above procedure for analysis of crack accumulation in a
strained ply can be combined with laminated plate theory and thus ex-
tended to cracking laminated plates. Figure 10 illustrates stress and

stiffness changes in a plate subjected to combined loads.

As in the case of a lamina, cracking in laminated plates must be
analyzed in an incremental way. In many applications one cannot predict
the exact loading history, or a detailed analysis may be undesirably
complex. Under such circumstances, it is sufficient to estimate the
maximum stiffness loss caused by the greatest possible damage in
individual plies. Ply properties for this case were found, for large

values of B, Section 2.4,
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The effect of a fixed, uniform crack density in all plies of the
li laminated plate, on longitudinal (E_ ) and transverse (ET) in-plane
- moduli of plates of different layups is illustrated in Tables II, and
[Il and IV [9]. It is seen that the stiffness loss caused by extensive

cracking can be very significant in certain composite systems.

-
A comparison of the theoretical results with experimental

:; observations is presented in Figure 11. Axial stiffness of a (0/903)g
E-glass-epoxy plate is plotted against observed crack density for a
uniaxial tension test. The experimental points and shear lag analysis

f; were presented in [10]. The theoretical (SCM) curve was calculated with
the self-consistent approximation described earlier. A very good
agreement of this curve with experiments is indicated. A remarkable

'. feature of this correlation is that the only material constants used in
the analysis were the original elastic moduli of the uncracked
composite. With this information the stiffness changes were evaluated

- for given crack density from (3) for the 90° plies, and overall laminate

stiffness change was found from laminated plate theory.

Additional comparisons were made with experimental resu.ts obtained
by Hwang and Hahn [3] who measured crack density as a function of
applied stress or strain in AS/3501-5A laminated plate coupons in

tension, and, with similar experiments reported by Ryder and Crossman

[11] for laminated T300/5208 plate coupons.
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Analytical predictions of crack densities in these laminated plate

‘ coupons were made as follows: First, laminated plate theory was used to

r

calculate residual thermal stresses in each ply caused by cooldown from
the curing temperature. The temperature difference was AT=147°C for
= both systems. Then ply stresses caused by a uniaxial applied load were
2 evaluated and superimposed on the thermal residual stresses in each ply
Next, (37) was rewritten for each ply with stresses 3@2, 3é3 taken in

-
i Tocal ply coordinates, x3 is parallel to local fiber direction. The

3}, 3}1 denote critical stresses at first ply failure. The parameter,
which accounts for failure mode interaction in an approximate way was

taken as g=0.1.

Now, to determine o[ and oy for the laminate test data shown in
Figures 12 and 13, one calculates the local stress gpp at first ply
failure in the 90° ply. Since gp3 = 0 in this ply, one obtains a1 from
(37). Then, additional stress is applied *n the laminate, and crack
density 8 in the 90° ply is calculated incrementally, according to the
sequence (37) to (42). The stiffness of the 90° ply gradually decreases
in the process, When the applied stress reaches the magnitude required
for first ply failure in the +45° ply, oy in this ply is again found
from (37).

These results are listed in Table V as predictions (A) and (8) for

the two coupons.
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In a similar way, the results in Figures 14 and 15 were interpreted

and provided values of o and ayyin predictions (C), (D) and (E), Table

V.

The experimentally found values of the critical stress 3y and a1;
at first ply failure in (37) are actually the sole material parameters
needed to fit the data. The only additional information entering the
analysis are original elastic moduli of the undamaged laminate, and the

empirical factor g=0.1 in (37).

_ The magitudes of oy and oyp are fairly consistent. Note that pre-
dictions (A) and (B) apply to both 0° and 45° plies in Figures 12 and
13. Differences between (A) and (B) are caused by differences in er
perimental data. Prediction (C) is sufficient for all plies in Figure
14, except for the -45° ply as explained below. Predictions (D) and (E)
in Figure (15) are different because the data points for the two coupons

are so far apart.

[t would be desirable to find that one set of critical stresses
fits all data for a particular system, or for the two grafite-epoxy
systems of Figures 12 to 15. This is not exactly possible but we note
that o1 in (A) (B) and (D) are similar; ideally they should coincide
since they refer to a single system. Still they are closer together
than those in (D) and (E) found for not only one system, but also one
layup. In fact the two coupons Al and A2 were taken from the same

laminated plate.




Therefore, one can conclude that the differences in effective ply

n strength at first ply failure in Table V are caused by variations in

material properties that affect the experimental data.

- A surprising feature of the experimental results shown in Figures
12 and 14 is that no cracks were observed in the interior -45° plies,

One would certainly expect to find cracks in these layers which

experience the same average strain state as the +45° plies where

numerous cracks were found. In fact, the -45° plies form a single ply
o of double thickness, and this should make it more susceptible to matrix
r

cracking than the +45° plies of single thickness. This phenomenon

requires further study.

We note in passing that not all experimental data can be approxi-

2 mated with the average stress condition (37). This suggests a need for
B a more accurate method of evaluation of local stresses in (37).
nd




N 3.5 Conclusions

1. An analytical technique has been developed for modeling of progres-
oy sive transverse matrix cracking in laminated composite plates. The
- analysis consists of three steps. First, self-consistent estimates
of laminate stiffness changes are found for a given crack density
from (3) and (4). Next, the rate of crack density increase under
applied load is evaluated from (37) to (42) on the basis of a
selected ply failure criterion, Finally, the ply analysis is made
in terms of ply stress state for a ply embedded in a laminate with
several cracking plies. The instantaneous ply stresses follow from

a simple adaptation of laminated p]ate'theory.

2. A good agreement of the theory with several sets of experimental’
data was found. The theoretical predictions require a minimum
amount of experimentally derived information, such as first ply
failure stresses in the cracking ply, and elastic moduli of the
undamaged laminate. No empirical parameters are required outside

the ply failure criterion (37).

3. The theory makes it possible to calculate the instantaneous crack
;f density in each ply, the instantaneous stresses in each ply of the
laminate, as well as the average fiber and matrix stresses in each
ply, after application of each load or strain increment to the
t5 laminate. The laminate can be subjected to combined three
— dimensional loading, and also to varying uniform thermal changes in

the course of mechanical loading.,

.
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4. The analysis can be implemented through a simple numerical routine,
even on a microcomputer. In fact, the entire procedure for each
1oadfng step is rather similar to that used in elasticity analysis

of laminated plates.
ACKNOWLEDGEMENT

This work was supported by the Air Force Office of Scientific
Research and monitored by Major David Glasgow, Ph.D., who provided
numerous useful suggestions. Dr, Norman Laws was a consultant on this
project. He contributed in a significant way to the development of
self-consistent estimates of.mechanical propertfes of cracked plies and
Taminates. Or. M, Hejazi and Mr, C. J. Wung participated in various
stages of this work, performed the numerical calculations and helped to

make comparisons of theory with experiments.




4. REFERENCES

1. S. D. Wang and F. W. Crossman. "“Initiation and Growth of Transverse
Cracks and Edge Delamination in Composite Laminates. Part 1. An Energy

Method," J. Composite Materials, Vol. 14 (1980) : 71.

2. G. J. Dvorak and W. S. Johnson. "“Fatigue of Metal Matrix Composites,"

International Journal of Fracture, Vol. 16, 6 (1980) : 585.

3. D. G. Hwang, "The Proof Testing and Fatigue Behavior of Gr/Ep
Laminates." D.Sc. Dissertation, Washington University, St. Louis, MO, August

1982.

4. J. Bailey, P. T. Curtis and A. Parvizi. "On the Transverse Cracking
and Longitudinal Splitting Behavior of Glass and Carbon Fibre Reinforced

Epoxy Cross Ply Laminates and the Effect of Poisson and Thermally Generated

Strain." Proc. R. Soc. Lond. A., Vol. 366 (1979) : 599.

5. N. Laws, G. J. Dvorak and M. Hejazi. "Stiffness Changes in

Unidirectional Composites Caused by Crack Systems," Mechanics of Materials,

Vol. 2 (1983) : 123.

6. G. J. Dvorak, N. Laws, and M.Hejazi. “Matrix Cracking in

Unidirectional Composites,” 1983 Advances in Aerospace Structures, Materials,

and Dynamics, ASME, Vol. AD-06, November 1983.




e g e ama Back Beos e dams S e Bagt s S hdh dhaei LU Jo S e b ine bime S e, St g aa WSl et * Min i e S iva 0 S e Bl _Rha Sl b Se R Bndd

7. G. J. Dvorak, N. Laws and M. Hejazi, "Analysis of Progressive
ﬂ Matrix Cracking in Composite Laminates. I. Thermoelastic Properties of

a Unidirectional Composite Ply with Cracks," to appear in J. Composite

Materials, 1985.

8. H. T. Hahn and T. Johannesson, "Fracture of Unidirectional

Composites, Theory and Applications," in Mechanics of Composite

Materials - 1983, G. J. Dvorak, editor, AMD-Vol, 58:135, ASME, New York,

1983.

9. N. Laws and G, J. Dvorak, "“The Loss of Stiffness of Cracked

Laminates," to appear in "Fundamentals of Deformation and Fracture,"

presented at the J. D. Eshelby Memorial Symposium, University of

Sheffield, April 1984,

10. A, L. Highsmith and K. L. Reifsnider, "Stiffness-Reduction

Mechanisms in Composite Laminates," ASTM-STP 775, p. 103-117, 1982.

11. Jo. T. Ryder and R. W. Crossman, "A Study of Stiffness, Residual
Strength and Fatigue Life Relationships for Composite Laminates," NASA

Contract Report CR-172211, 1983.

A T




Table I.

Constituent Properties and Compliances of the T300
Gr-Ep System

33 Sy vy By Gy Symmetry
Fiber 33.00 3.36 2.25 0.78 Transversely
(T300) Isotropic
0.410
10°MPa 227.5 23.2 15.5 5.4
Matrix 0.50 0.19 0.50 Q.19 [sotropic
c
Epoxy) 0.350
3.4 1.3 3.4 1.3
Composite Compliances:

Compliance cf=0.2 cf=0.4 cf=0.6

M?] 0.2069 0.1595 0.1192

M?Z -0.1037 <0.0779 - 0.0561

M?3 -0.0075 - 0.0041 -0.0028

Mgz 0.2069 0.1595 0.1192

Mg3 -0.0075 - 0.0041 - 0.0028

M§3 0.0207 0.0107 0.0073

M§4 0.5108 0.2726 0.1244

Mgs 0.5108 0.2726 0.1244

Mgs 0.6211 0.4746 0.3506
A1l values are in units of (10 MPa)°1




40% 1300/5208
X OF UNCRACKED MODULUS €
: ~___ .

. Ly "~ | 02 0.6 1.0

bt (04, 90) 100 % %

. (05, 90) 99 % 97

= (0 , 90) %8 % 9

‘ (0, %, 97 %2 %
= (0, 90,) 95 86 82 i
(0,,+45) 9 97 9 ;

(0 ,+e5) %8 34 %2

(0,(+45),) 97 ) 86

(+45) 91 74 59

(05,475) % % %

(05,260 9 97 95

(05,230) %9 97 95

(05,215) 100 % 99

40% 7300/5208
% OF UNCRACKED MODULUS €,

'Tj::;r*~\\\\\f\ 0.2 0.6 1.0

(050245) 97 9 &7

(0, +45) % 89 8

(0, (+45),) 9 LY 80

| (+45) 9 74 59

i (05,275 100 % 99

l (0,,260) 99 97 %

' (04,+30) 92 79 7

{ (05,215) 88 69 59

Table I1. Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of laminated
plates at given values of crack density 3 in all plies.
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Table III.

60% E-GLASS/EPOXY

% OF UNCRACKED MODULUS EL

e .
| Lay-us 0.2 0.6 1.0
! (0,,+45) 92 83 75
| (0, +45) 88 75 63
E (0,(+45),) 84 &7 50
i (+45) 77 51 25

60% E-GLASS EPOXY
% OF UNCRACKED MODULUS €

r::;:;;‘--____i‘=kk 0.2 0.6 1.0
(0,,245) 86 7 64

(0, »45) 82 66 53

(0, (+45),) 80 60 4

(+45) 7 51 28

Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of
laminated plates at given values of crack

density 8 in all plies.
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Table IV.

Al N P N P i e Nt b

40% BORON/ALUMINIUM
% OF UNCRACKED MODULUS €

L
8
Lay-ud 0.2 0.4 0.6
(04.90) 96 93 91
(0,,90) 93 87 83
(0, 90) 89 80 73
(0. 90,) 8s n 62
(0, 904) 80 64 51
(0g4,245) 9 93 90
(05,245) 94 89 85
(0, +45) 91 84 78
(0,(295),) 89 80 .13
40% BORON/ALUMINIUM
% OF UNCRACKED MODULUS £
8 0.2 0.4 0.6
Lay-up : ‘ :
(0g.+45) 95 90 87
(05,245) 93 86 81
(0, +45) %0 82 75
(0,(+45),) 88 78 70

Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of laminated
plates at given values of crack density 8 in all plies.
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LAYUP

PREDICTION 9] o111 MATERIAL COUPON
MPa MPa
A 64.5 73.5 AS/3501-5A  (02/90/%45)g  A-b-4
B 64.5 125 A-b-6
C 83 105 T300/5208 (0/90/45)
0 45 100 (02/904)s A2
Al
E 70 100

Table V. Effaective Ply Strength At First Ply Failure
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Figure 1.

1A.  An infinite fibrous medium with aligned slit cracks,
1B. A fiber lamina with parallel slit cracks.
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THREE-PHASE MODEL OF A CRACKED LAMINA
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X3
Figure 2.

2A. An infinite medium with aligned fibers and slit cracks,

2B, A fiber monolayer with cracks.
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Figure 4. Changes in strain concentration factor components in composite

“matrix" caused by cracks of density g (7300 Gr-£p).
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Figure 5.

20/8_| 20/8

S1it crack system in a uniformly strained composite ply.
Fibers and cracks are aligned with Xq axis.
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