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ABSTRACT

A summary o(,.ecent results.>is presented on the subject of

" , J, progressive ply cracking in fibrous laminates. ft-rs- ,evaluation of

stiffness changes caused by systems of aligned slit cracks which are

parallel to the fiber direction in a unidirectional composite lamina is

discussed. Results obtained by the self-consistent method are presented.

Next, a procedure for estimating instantaneous crack densities and

stiffness changes in a lamina subjected to a prescribed strain history

is outlined. These results are extended to analysis of laminated

r composite plates under in-plane stresses. Specific examples and

comparisons of analytical and experimental results are presented for

two graphite-epoxy systems. Kyu. ~
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I i. STATEMENT OF WORK

- In many fibrous composite systems the failure strain of the fiber

far exceeds that of the matrix. Under load, the difference is usually

accommodated by matrix cracking. This is frequently observed in

monotonically or cyclically loaded laminated plates, where each layer

may contain a system of aligned slit cracks which grow in the direction

* "of the fibers and across the thickness of the ply. Such cracks are

often called ply cracks or transverse cracks, although it is more

appropriate to reserve the latter for cracks which are perpendicular to

.. the fiber axis, and refer to cracks which grow parallel to the fiber

direction as axial cracks.U

In polymer matrix composites axial matrix cracking typically

starts at low strain levels in the weakest off-axis ply. As loading

continues, cracks appear in other off-axis plies; also, their density

.- increases until it reaches a certain saturation level. For example, in

statically loaded (O/90)s graphite-epoxy laminates the minimum crack

spacing was observed to be equal to 3.5-4.0 ply thicknesses [1]. In

metal matrix composites, matrix cracking appears to be caused only by

cyclic loads which exceed the shakedown limit of the laminate [2].

" Under such circumstances the matrix experiences cyclic plastic straining

and, consequently, low-cycle fatigue failure. Both axial and transverse

17 cracking is present, the former in off-axis plies, the latter in zero

degree plies. The crack patterns and densities are generally similar to

[.X.
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those found in polymer matrix systems. However, saturation density

increases with load amplitude, and it is not unusual to find cracks as

close as one ply thickness.

In a typical part of a laminated composite structure, removed

from concentrated loads and free edges, matrix cracking is the initial,

.. low-stress damage mode under applied load. It is eventually followed by

other types of damage, such as delamination between layers and fiber

fbreaks; but these appear at relatively high loads which may exceed

allowable design magnitudes. In contrast, matrix cracks grow at low

loads, and they can significantly impair stiffness and strength of

composite structures, especially those containing many off-axis plies.

For example, fatigue tests on both polymer and metal matrix laminated

- plates indicate that stiffness and residual static strength reductions

* caused by cracking in plies may be as high as 10-50% after 2 x 1O5

cycles of loading [2,3]. It is therefore desirable to consider the

*" effect of matrix cracking on composite properties in design.

Sufficiently general theoretical models of progressive cracking

in composite laminates are apparently not to be found in the literature.

Such results as are available for angle-ply laminates have been obtained

*,' from finite element calculations [1l, while other studies have focused

on (o/9O) s laminates [4].

The purpose of this research is ,to develop a procedure for



prediction of crack densities in Individual plies of a laminated

composite structure as a function of applied load, and to evaluate the

effect of cracks on stiffness of the structure.

The analysis has been performed in the following steps:

6m a) Evaluation of overall thermoelastic properties of a fibrous

composite which contains a certain density of aligned

slit cracks.

b) Evaluation of crack densities and stiffness changes

in a single'ply which is strained in a prescribed way.

c) Evaluation of crack densities and stiffness changes

in a laminated composite plate which is subjected

to prescribed loading. Specific examples were solved

for laminated plates under in-plane loads.

Comparisons of theoretical predictions was made with

experimental data.
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2. STIFFNESS CHANGES CAUSED BY A SYSTEM OF CRACKS IN A PLY

2.1. Preliminaries

We are concerned with evaluation. of overall compliance, thermal

expansion coefficients (or thermal strain and stress vectors), and

strain and stress averages in the phases of a fibrous lamina which

contains aligned slit cracks, and is subjected to uniform mechanical

loads and thermal changes. The approach to the problem was outlined in

reference C5], where we suggested that the effect of matrix crack

systems on prcperties of fibrous composites can be analyzed, in

principle, by the same techniques which are commonly used in evaluation

of elastic constants of composite materials and fibrous laminates, e.g.,

*by the self-consistent method.

The essential approximation in the evaluation of stiffness and

compliance changes of laminates consists in the replacement of a cracked

" layer, Figure ib, by an effective medium which contains many cracks,

Figure la. The crack densities can be exactly matched to provide

identical stiffnesses. However, the cracks in the layer are not

entirely surrounded by the layer material, instead they interact with

neighboring layers which have different elastic properties. This

interaction is limited to the vicinity of the crack tip, thus it may be

*l important in analysis of local crack growth at the interface, but it has

1L
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I2.

only a minor effect on lamina stiffness. We note that a similar

.* approximation is commonly accepted in evaluation of elastic moduli of

laminated composite structures reinforced by monolayers of large

diameter fibers.

When the composite is reinforced by monolayers of fibers, such

as boron or silicon carbide, the cracks and fibers may be of similar

size. The appropriate model is shown in Figure 2. It is analogous to

that of Figure 1, except that it contains three phases (fiber, matrix,

and cracks), whereas the model of Figure 1 can be reduced to two phases

(composite "matrix", and cracks). Accordingly, the models in Figures 1

3 and 2 are referred to as two-phase and three-phase models, respectively.

From the practical standpoint, the effect of model choice on composite

stiffness is small. The simpler two-phase model is thus sufficient for

1 analysis of all fibrous systems.

In the three phase model we designated the fiber as phase 1,

matrix as phase 2, and cracks as phase 3. In the two phase model phases

1 and 2 are joined in a homogeneous "matrix" and designated as phase 2;

the voids or cracks remain phase 3.

The self-consistent analysis of the cracked composite, as outlied

L in [5-7], starts with a composite geometry in which the cracks are initially

regarded as ellipsoidal cylindrical inclusions. A self-consistent

• . estimate of overall stiffness of this medium is obtained. Next, the

....-....................................... *." .l -l .



inclusions are evacuated, i.e., replaced by voids. Finally, the aspect

ratio of the voids is adjusted so that in the limit the voids change to

cracks.

To evaluate crack density, the cr.cks in Figure 1 are first replaced by

elliptic cylindrical voids, with a, b, denoting the major and minor semiaxes.

If n is the number of voids per unit area in the x1x2-Dlane, then the

volume fraction of voids is equal to c3 = Trabn, and c2 + c3 = 1. Next,

• : let the voids be reduced to cracks, i.e., 6 z b/a 0 0. Then

2 1C3  4ana • 1 .

where a= 4na 2 is the crack density parameter. In fact, S Is equal to

*the number of cracks of fixed length, e.g., 2a, in a square uf side 2a.

For example, if the cracks are located in a ply, Figure 1b, then SU
measures the distance between regularly spaced cracks in terms of ply

- thickness 2a. At 6 = 1, the distance between cracks is equal -to 2a, as 3

decreases the distance increases and at B = 0 the cracks vanish. We

*L recall that the observed minimum distances between cracks in a

saturation state are equal to 3.5-4.0 ply thicknesses, i.e., 7a-8a Ill.

r Corresponding values of $ are 0.28-0.25, but values as high as B 1 1

" were observed in the B-Az system [2]. Therefore 0 < S < 1 is the

appropriate range of S.

oL
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On the macroscale, the cracked unidirectional composite of

Figure 1 can be regarded as an orthotropic homogeneous solid. The

elastic properties of the "matrix" are identical with those of the

fibrous composite and can be easily evaluated. When cracks are

introduced, the macroscopic or overall elastic moduli of the solid

change. To make the concept of overall moduli meaningful, it is

necessary to consider overall uniform loading. Thus, we introduce

uniform overall average stresses and strains E, with components

arranged in (6x1) column vectors and related by constitutive equations*

a-Lc , - Ma , (2)

where L, and M are the overall stiffness, and compliance (6x6) matrices

of the cracked composite, respectively. M - L-1 when the inverse

exists. Effective properties of uncracked fibrous material (phase 2) are

denoted by LO, M° , or by L2, M2 .

° As in C5-7], (6x6) matrices are denoted by capital Latin or Greek

letters, e.g., L, M, A, A, B, P, Q, and (6xl) matrices by lower case

bold face letters, e.g., 0, , m, .

i
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For a dilute concentration of aligned slit cracks, the matrices L

* and M can be evaluated by the self-consistent method. This was done in

Reference C5]; the results are:

L z L T L A L(3)

where L2 zL, M2 =M 0  and

r - (5)

The matrix A has only three nonzero components, which are

* expressed in terms of compliances M of the effective medium as:

A22  2233 232

44 (44M 5)31 (6)

A = ( 22M33-M 23) 11 33 -MI3 )
66 M 33  2

*where aiand O2are the roots of

2M233 M 3 ) 2
-{ 33M66 * 2 2MM 33 - 13J 23)} + 11 I33 - 13

r (7)



. These results imply that only three compliance coefficients M22 , M44 ,

and I66 are affected by the introduction of cracks, the remaining six

terms in M are unchanged, i.e., they remain equal to those of the

uncracked fiber composite. In particular

M M.0 M =140 M =140
1 1112 12 ' 13 13

14 M09~ M Mo-~ 14 M?
23 23 ' 33 33 ' 55 55

r 22  22 ~( 22M33  23 M)( 1  33 (8)

44M44 + T(MM05) (9)

Mo- Ig MYM.412  fMht4+ i . (10)
66 66 "'T(22'33 23'11 33-13 ' 1 ~2 33

and from (7):

22
CL+ MM + 23 (M2 M 3 M3  ) I1

1 2 £ 33M66 ~ ( 12M33-M13M23 )) 22 M33 23J

The unknown shear compliance 144 can be obtained directly from

(9):

fI



L

+ M + o2 4M4 M55)11 (11)

The remaining unknowns M22 and M66 are found from (8) and (10).

These results can be utilized in (4) for a more direct eva.luation

of the three nonzero components of the matrix A in (6):

Ai = (Mij" M .(ij 22, 44, 66) (12)

Of course, the same result follows from (6) and (7). In any

case, the Aij may now be substituted into (3), and the components of the

overall stiffness L can be found in a closed form. The resulting

n expressions are given in reference [7, eqn. (A-6)].

It is seen that the results are remarkably simple, and similar to

those that are routinely used for evaluation of elastic moduli of an

* uncracked composite medium. This similarity is particularly useful in

" applications of the results to laminated structures.
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2.2 Response to Thermal Change

Let 8 denote a uniform temperature change from a reference

temperature eo, applied to the composite. The constitutive equation (2)

must be replaced by

.7 =Lc- -M 7 + em , (13)

where m is the thermal expansion vector and £ the thermal stress vector.

From (13) one obtains

S- L m (14)

It is probably obvious that the presence of cracks does not affect

free thermal expansion of the composite. Thus

m=m o  , (15)

and from (3), (4) and (14):

X - (I - SLA)to (16)

F,

Explicit forms of m and £ are:

rI

-12-
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(L11l L1 2 ) OT + L13 "A

L =T (L 12 + L22 ) aT + L23 aA

A (L13+ L23 ) =T + L33 OA (17)

0

r
0 0

U0

*where aT and aA are linear thermal expansion coefficients of the

- uncracked composite In the transverse and axial directions, respectively.

Since the coefficients of LIj change with a, is also a function of m,

. while m remains constant.

Again, the derived expressions are valid only if the cracks are

open. Closed cracks do not affect thermal response of the composite.

-3
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2.3 Local Strain and Stress Averages

Certain applications of the above results require information about

local stress and strain fields in the phases. Estimates of local fields

are also needed to distinguish between loading conditions which lead to

either open or closed cracks and thus delineate limits of validity of

the theory.

It is clear that when a fiber reinforced composite containing

cavities is subjected to general uniform mecahnical loading, part of the

applied strain (i.e., the average strain) is accommodated by cavity ex-

pansion. Whereas the strain of a typical cavity wall becomes unbounded

in the limit of vanishing aspect ratio, the important quantity in the

S macroscopic study of composites is the wall strain multiplied by the

area of the cross-section (or aspect ratio) which tends to a finite

limit.

U

From the formulae given in [5,7], and in Section 2.2 above, it is

not difficult to show that in the limit of slit cracks (6+0), the

overall strain 7 is given by

To + , (18)

-14-
[i

................ "
.. . t



where c is the average strain In the composite "matrix":

io 0 (I-A L)j +TALme (19)

In addition, Ec is the crack accommodation strain

SC A L(- e) ; (20)

it represents that part of the applied (average) strain which is

r4 accommodated by cracks.

In practice equations (19) and (20) provide us with estimates of

m the local stress and strain fields within the composite.

Viewed from another standpoint, equations (19) and (20) immediately

ml furnish the strain concentration factors. As far as the matrix is

concerned,

o A 7 8-ea (21)
-0 - -

" where

A I FA. L (22)

a , (A0 . I) m A - 'A L m

S-15-
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It is perhaps important to emphasize the different physical

interpretations of o and c . WhereasZo is the average strain in the

matrix, c represents that part of the overall strain which is

accommodated by all the cracks. Therefore, 6ne can write (20) as

Ec A - eac (23)

where

(24)

-mA~UC
For example, it is lmnediately obvious that the average thermal

strains in a fully constrained cracked composite ( 0. 0) are

m

The matrix expands at the expense of crack closing.

For computational purposes it is advantageous to rewrite (22l)

with the help of (3) in the form

A =M L (25)

It is often convenient to have explicit forms of the above results.

,. -16-

. ' ,, _'.%. . . v.' ..:< ., . *".1,.:.': 2.>,,:.":..,' , - ? . ... . * ".:,. ,-* .N.., ..



The nonzero components of A in (22) are:

All A33  -A55  -1

A2 1  22  22 ) L12

A22  (M 2  M22) L22  1 (26)

A23 u (2 -' 122) L23

A4. M M/M4

A66  6 1f 66

Again, Mij are compliances of the uncracked composite.
r

S- The components of thermal strain concentration factor a in (22) are

all zero, except forI
*,"-" 3 .A rfi 4. (L12

a 2  22 12 L2)"T .23 aAI (27)

The average strain Tc (20), (.23) in the cracks has the following

nonvanishing components:

,£C2 " B 22 Ll( 11 T) + LZZ( 22 "u.Te) + L3('c33"*Ae)) (.28)

* *2. 23 3(-M 41M44 ) 23  12  ( 6f6 6 6 12

We note that the distinction between open and closed cracks is

determined by the inequality

c22 (29)

L- -17-
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r

. which can be evaluated with the help of (28).

The results presented here are valid only if this inequality is

satisfied. If the sign is reversed, or if the two sides are equal, then

cracks are closed and do not affect the mechanical and thermal response

* :of the composite. An exception arises when the closed crack faces slide

in shear. Treatment of this case is beyond the scope of the present

paper.

Finally, we note that evaluation of stress averages in the phases

is trivial. Since open cracks do not support any stress.

" ic'- •(30)

,2C

.)

" " -18-
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2.4 Stiffness at Large 8

When a fibrous lamina is embedded in a laminated structure, it may

crack rather extensively. Under such circumstances, certain components

of Lij in (3)become independent of 8, or equal to zero. It is worth

evaluating these limiting stiffnesses since they correspond to the worst

possible damage to a particular ply of a laminate. A good approximation

to the actual residual stiffness can be obtained as

L = lim L (31)

Now as B-- it is easy to see that

M22 , M 4 , M66

U

whereas the remaining components of the compliance matrix remain finite

- (and equal to the uncracked value). It then follows from simple matrix

inversion that

Ll * /Y - I Lo 2o

33 - (L12) L2 2

L L 0 L 3 =0

0  (32)M? / - .L L 2L3/ Lo
L13  "M13 13 12.23 22

S*o 2 /

33 -=33 23 22

-19-• .. ......... .,, ...... .. -. -. -. -....;. ..- .-,-, ,. -. .,, ,..'. .,-.v**,v.*.. * -.-; .'<.,;.**-. .- .- *-/..'%';.''--



whee Y Mo 0 (M 0)2. Al so,

L 0 5 L (33)
55 5 44  L66  0

For a moderately cracked ply, say B s 1, a reasonable approximation

to thle stiffnesses L1j (ij - 1,2,3) is still given by (32), Wile L5 is

of course equal to LO5  However, L44 and L6  must be calculated either

*directly from (3), or indirectly from (8), (10), and (11).

-20-



2.5 Selected Results

To illustrate the evaluation of compliances of a cracked composite,

and of the "matrix" strain averages, we consider a T300 Gr-Ep system.

Table I lists the constituent properties of fiber and matrix, and of the

uncracked composite. The composite compliances were obtained from

self-consistent estimates of moduli.

Figure 3 shows changes in the three compliances M22, M44, and M66,

r: calculated from Equations (8) - (11) for given values of crack density B.

Of course, all these components increase with increasing e, but their

change is quite gradual, especially at low B. This contrasts but is not

1 in conflict with the relatively rapid reduction in stiffnesses which we

found in [5].

S We note that the composite without cracks is transversely
isotropic, and has five independent compliances, M ij When cracks are

introduced the coefficient M22, M44, and M66 change, the material is no

longer transversely isotropic, and the number of independent elastic

compliances increases to eight.

The changes caused by s in components of strain concentration

factor A in (22) are shown in Figure 4. As required by (26), five of the

eight components of A change with s. Note that the fiber vo.lume fraction

appears to have a small effect on Aij. However, crack density 6 can have

. a significant effect on the strain concentration factor components,

especially at relatively low values of 6.

.- -21 -
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3. PROGRESSIVE MATRIX CRACKING IN A PLY

3.1 Preliminaries

Consider a unidirectionally reinforced composite ply of thickness

2a, which is embedded in a laminated plate, shell, or a similar composite

composite structure. The structure is subjected to a certain

incremental loading program which, at each loading step, causes a known

instantaneous overall strain state e in the ply under consideration. The

strains eij are assumed to be uniform within the ply. An element of the

rcomposite structure which contains the ply is shown in Fig. 5. A typical

ply is bonded to laminated layers of thickness b' and b" such that at

least one of the adjacent layers is much thicker than the ply, if b' ) b"

0, then b' > 2a.

At a certain magnitude of applied strain T, which is usually much

* smaller than the failure strain of the fiber, a system of matrix cracks

starts to develop in the ply. The geometry of matrix cracks is

influenced by the strength anisotropy of the fibrous ply, and by the

state of stress. Clearly, cracks may propagate most easily on planes

which are parallel to the fiber direction. An unbroken ply segment in a

typical part of a laminated plate or shell, which is removed from free

edges and other stress concentrations, usually supports a state of plane

stress. In the coordinates of Figure 5, this suggests that components

(722, 023, and 033 are large in comparison to a11. Matrix cracks parallel

to fibers are not affected by a33, although this stress component may

cause cracking on planes perpendicular to fibers. The remaining stresses

[ -22-
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favor cracking on x1x3-planes. The shear components 012 and a13 may be

present as well, for example in bent plates where their magnitude varies

through plate thickness. Again, a13 does not influence axial cracks

parallel to the fiber; a12 contributes to crack growth on x1x3-planes,

even though an exceptionally large a12 might cause cracking on planes

inclined to x1 axis.

These considerations suggest that the matrix crack system consists

of aligned slit cracks of width 2a, which are infinitely long .in the

fiber direction x3.r

The average spacing of cracks in the system can be conveniently

described in terms of the crack density parameter 8, the average

distance between cracks is 2a/s, Figure 5.

Of course, the actual spacing of cracks at a given value of 8 need

not be regular. Available experimental observations suggest that

individual cracks are initiated at randomly distributed locations in the

ply, and then propagate, sometimes in an unstable manner, across the ply

width [2,4]. The number of these cracks grows progressively with

increasing e, up to a certain saturation, density, typically 8 < 1.

Under sustained or cyclic loading the crack density may increase with

time, even at a constant stress amplitude.

r Regardless of the underlying fracture mechanism, the random crack

pattern corresponding to a given average density a can be illustrated by

the sequence of Figure 6. A ply segment of length 1 = 12.5 mm and

-23-



thickness 2a = 0.125 mm is shown. The width of the segment is assumed to

be much larger than 2a. In agreement with experimental observations, we

assume that the actual distance between any two adjacent cracks cannot be

smaller than the ply thickness 2a C2-4]. Thus, the 12.5 mm long segment

can contain at most 100 cracks at 8 = 1. To illustrate the progressive

cracking process, the possible crack locations in the ply segment at B

= 1 were fixed at regular intervals, 2a apart. Then, a sequence of 100

random numbers was generated and each number was assigned to one of the

prospective locations. Four values of 8 were selected, and at each 8

the required number of cracks was drawn in the locations with the lowest

random numbers. For example, at 8 = 0.1 there are ten cracks in the

segment. These are retained in their positions and supplemented by 20

additional cracks at a = 0.3, etc.

The sequence shown in Figure 6 was constructed, under the

assumption that formation of a new crack is not influenced by the

presence of an existing crack. Due to stress relaxation next to an

existing crack, this may not be the case in an actual ply. At low

values of B cracks may form preferentially at locations removed from

existing cracks, and the crack distribution in the early stages of the

process may become somewhat more uniform than that suggested by Figure

6.

I
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3.2 Crack Interaction

Before the onset of cracking, the local strain and stress fields in

a typical segment of a thin ply, removed from concentrated forces and

free edges, are usually uniform. If the current applied strain 7, and

-uniform thermal change e are known, then the corresponding ply stress

a follows from constitutive equations (13).

Once a particular ply begins to crack, the uniform strain and

stress fields are perturbed. There are stress singularities at crack

tips, and the stress components d22, a13, and a23 vanish on each crack

face. Nevertheless, the crack affected regions are localized in the

neighborhood of each crack. Thus in the early stages of cracking, each

5 crack can be regarded as essentially isolated. In other words, the

elastic field in the neighborhood of a particular crack can be

determined by considering that crack alone in the ply.

p

As the crack density increases, so does the totality of perturbed

regions. Ultimately, the cracks will interact with each other, and the

crack-affected regions will eventually occupy the entire volume of the

ply.

It is important to estimate the distance between cracks at which

crack interaction becomes significant. One way of doing this is to

consider a ply with an average crack density 8, and investigate the

differences between compliances M obtained for interacting and

noninteracting cracks. It is easy to anticipate that crack interaction

-25-
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will cause major deviation from linearity in the M22 component which

changes most rapidly with crack density 0; c.f., Figure 3.

I.,. Specifically, with reference to Equation (4), the compliance for

interacting cracks is:

M22 z M22 + wO A2 2  (34)

For noninteracting cracks, M22 is given by the linear formula

r
o 1 0 (5M22 M22 + wr A22  (35)

0 0
where M22 , A22 are Yalues of M22 , A22 at 8 = 0.

The difference between the above compliances can be expressed in
a g

l. terms of (M22 - M22 )/M22 . The following presents this ratio for the

graphite-epoxy ply considered in Table I; the magnitudes are not

dependent on fiber volume fraction cf for 0.2 < cf < 0.6.

8-0.10 0.15 0.20 0.25 0.30 0.40 0.50

(M22 -M2 2)/M22  0.017 0.038 0.0681 0.105 0.151 0.271 1 0.432

-26-
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These results, which apply to cracks already in existence, suggests

that significant crack interaction starts at 8 = 0.25, when the compli-

ance deviation from linearity becomes larger than 10%.

The concept of crack interaction needs to be understood from the

stand-point of new crack formation in a volume of a ply which already has

an average crack density a. If a crack which is about to form is found

in a ligament between two existing cracks, it can be regarded as

noninteracting only if the existing cracks are at least 8 or more ply

thicknesses apart, i.e. when 8 < 0.125 before the crack forms.

Of course, crack initiation at random locations leads to consider-

able variations in local spacing. As suggested by Figure 6, individual

cracks may be much closer than ply thicknesses at 8 = 0.125. Therefore,

one can conclude that crack interaction starts very early in the cracking

process. Indeed, assume that crack interaction is present for all values

ofa >0.

--
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3.3 Progressive Cracking of a Ply

In agreement with the conclusions reached in Section 3.2, we regard

the progressive cracking process as a sequence of events in which

individual cracks are initiated at random locations in the ply, and

.r propagate, possibly in an unstable manner across the entire loaded width

of the ply. Formation of a single crack represents an elementary step

__ in the process. To account for interaction between cracks, we assume

that the stress which causes the crack to form at a given average crack

density 8 in the ply is equal to the volume average (13). Explicit form

of relevant components is:

0 0
a12 = 2L66 e12 = 2L66 712(1 + L66 A66 )"1

a22 = L12(711 " Te) + L22(-22 - Te) + L23(33- MAO) (36)

12(-1 "Te) + L22 ('F22 - "T') + L23( 33  Ae) (1+0 L22 22)

0 0
a23 2L44 -23 = 2L44723 (l + T L44A22)

"I

Fracture criteria for crack formation during progressive cracking

are apparently not to be found in the literature. However, it is

reasonable to expect that the process will be essentially repetitive,

governed by a criterion similar to that for first ply failure.

In general, each slit crack in the ply can open in three modes,

each of which corresponds to one of the three stresses (36). To fix

ideas, consider that the slit crack extends in the direction parallel to
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the fiber axis x3 , Figure 5. Then 712 in (36) causes Mode III failure,

a23 Mode 11, and 022 Mode I. Mode III can be excluded in most

applications, on the grounds that the fracture surface in a fibrous ply

contains numerous longitudinal asperities created by the crack as it

finds its way between densely packed fibers. These asperities are

interlocked and thus prevent relative shear displacement of fracture

surfaces in the x1 direction. Of course, Mode III and 012 are

implicitly absent in plane stress.

r Modes I and II are usually interrelated, but to a different extent

in different composite systems. A ply failure criterion which reflects

this fact way presented by Hahn et al. [8] for the case of 722 > 0,

a23 0 in the form:

2 2
(1-g)(22/71) + ('22/"') + ( 23/U*I ) = 1 (37)

U

where g is an empirical interaction parameter, 0 < g < 1. For g = 1

there is no interaction and (37) is reduced to the familiar quadratic

form. The 71 and 711 are critical stresses at which the ply actually

fails. These stresses increase with decreasing ply thickness. Also, as

B grows, one expects that formation of new cracks may become gradually

more difficult. This can be reflected by demanding that oI, 'I be

nondecreasing functions of S. Thus we write:

[.

T= 7I(as), = 1 (a,B) (38)

[ -29-
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While (37) is valid for 722 > 0, the composite ply may also crack

if 722 < 0 and 723 * 0. Under such circumstances (37) should be

replaced by

"" 2

(623/7II1 = 1, (38)

with 1 = aII (a, 8, a22).

The.critical stress magnitudes in (37) and (38) need to be

established experimentally. So far, only first ply failure magnitudes

of strengths (38) have appeared in the literature, c.f., r3,4].

Information about 711, especially under compression (39), is generally

not available.

I
If (12), (14) or an equivalent criterion is accepted for progres-

sive cracking, then the average crack density 0 can be evaluated during

qincremental deformation of the ply. Suppose that the composite ply is

subjected to current uniform strain -, and that the corresponding crack

density is So > 0. A strain increment de, and a uniform thermal change

de are applied, and a new magnitude of 8 is sought.

Let
I-'

•+ de, e' = + d (40)

be the new values of strain and temperature. The corresponding average

stress in the ply is, in analogy with (13):

-..
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" L + ' , (41)

where L' L'(6), ' -(a) are overall instantaneous material properties

of the cracked ply at the as yet unknown value of

B = + dB; do > 0. (42)

To determine if de and dO in (40) will actually cause additional

cracking, it is necessary to evaluate first stresses (41) with L' =

L(60 ), ' = (Bo), i.e., with material properties at the original crack

density 00. If these stresses make the left-hand side of (37) or (39)

- larger than unity, then an increment do is required to reduce L', V2 to

the level allowed by the selected failure criterion. When (37) or (39)U
are called upon, it is also necessary to adjust WI and aII according

to the current value of S.

Y The increment dB caused by (40) can be evaluated by a simple

iteration scheme in which $ is adjusted so that the stresses (41)

satisfy (27) or (29) while ' and 8' are applied.

Once the new magnitude of 8 has been found, it is oossible to

evaluate all components of the current stiffness and compliance matrices

L" L and M.

We recall that both L and I are decreasing functions of a, thus the

ply softens under increasing strain, but it remains elastic during

-31-
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unloading and reloading to the current stress level, Figure 7. This

aspect of the procedure permits evaluation of B under incremental

. -deformation even when the critical stresses 7, and aII in (37) are taken

as independent of B. This may be advantageous in practical applications

when a and aII may be known only at first ply failure, i.e., at a j O.

If the first ply failure values are taken, the predicted magnitude of a

will probably exceed the actual one. Therefore, the stiffness of the

ply will be underestimated and again, the model predictions will be on

the safe side in most structural applications.
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3.4 Results

A
3.4.1 Stresses in a Deforming Ply

To illustrate typical results provided by (37), consider a graphite-

epoxy ply with properties given in Table I. The ply is deformed by

prescribed strains £22 and e23 in several radial directions, while

stresses are adjusted so that all = a12 = a13 a 033 = 0. For greater

clarity of presentation, the ply strengths are taken as constant:

S .cr _ ._cr
al =022 = 28.44 MPa, aII =a23 = 37.95 MPa

These values were measured for first ply failure of an unconstrained

,m ply, hence they represent relatively low strengths.

The results appear in Figure 8. In each case, the applied strain

is plotted on the horizontal axis, the average stresses and crackU

densities on the vertical. The constant strengths levels are plotted as

well. It is easy to see that if strengths were increasing with B, then

the stress components would be elevated accordingly.

A remarkable feature of these results is the strong effect of shear

* strain c23 on crack density increase. When only shear £23, or only

transverse normal strain £22 is applied, one finds that B increases

• "- about twice as fast in shear when is 2E23 compared in magnitude to £22.

S".At the same time, the shear strength exceeds the transverse tension

strength by 33%. This behavior can be related to the rate of change of

.. S-33-
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the relevant stiffnessed L22 and L44 with B. We recall from Figure in

[5] that L22 decreases with a much more rapidly than L44, from

comparable initial levels. Thus a23.is relatively large, much larger

than a2 2 for 2e23 > £22. Even at low £23122 ratios a23 keeps increasing

with applied strain while a22 always decreases after onset of cracking.

In addition to stress changes, the ply experiences stiffness change

- under deformation conditions of Figure 8. These are summarized in Figure

9.

F" 3.4.2 Progressive Cracking in Laminated Plates

The above procedure for analysis of crack accumulation in a

I j strained ply can be combined with laminated plate theory and thus ex-

tended to cracking laminated plates. Figure 10 illustrates stress and

stiffness changes in a plate subjected to combined loads.

As in the case of a lamina, cracking in laminated plates must be

analyzed in an incremental way. In many applications one cannot predict

the exact loading history, or a detailed analysis may be undesirably

complex. Under such circumstances, it is sufficient to estimate the

maximum stiffness loss caused by the greatest possible damage in

individual plies. Ply properties for this case were found, for large

values of B, Section 2.4.

L -34-
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The effect of a fixed, uniform crack density in all plies of the

laminated plate, on longitudinal (EL) and transverse (ET) in-plane

moduli of plates of different layups is illustrated in Tables II, and

III and V [9]. It is seen that the stiffness loss caused by extensive

cracking can be very significant in certain composite systems.

A comparison of the theoretical results with experimental

observations is presented in Figure 11. Axial stiffness of a (0/90 3)s

E-glass-epoxy plate is plotted against observed crack density for a

uniaxial tension test. The experimental points and shear lag analysis

were presented in [10]. The theoretical (SCM) curve was calculated with

the self-consistent approximation described earlier. A very good

agreement of this curve with experiments is indicated. A remarkable

feature of this correlation is that the only material constants used in

the analysis were the original elastic moduli of the uncracked

composite. With this information the stiffness changes were evaluated

for given crack density from (3) for the 900 plies, and overall laminate

stiffness change was found from laminated plate theory.

Additional comparisons were made with experimental results obtained

by Hwang and Hahn [3] who measured crack density as a function of

applied stress or strain in AS/3501-5A laminated plate coupons in

tension, and, with similar experiments reported by Ryder and Crossman

[11] for laminated T300/5208 plate coupons.

L
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Analytical predictions of crack densities in these laminated plate

5 coupons were made as follows: First, laminated plate theory was used to

calculate residual thermal stresses in each ply caused by cooldown from

the curing temperature. The temperature difference was AT=147°C for

both systems. Then ply stresses caused by a uniaxial applied load were

evaluated and superimposed on the thermal residual stresses in each ply

Next, (37) was rewritten for each ply with stresses 722 , a23 taken in

local ply coordinates, x3 is parallel to local fiber direction. The

al, all denote critical stresses at first ply failure. The parameter,

which accounts for failure mode interaction in an approximate way was

taken as g=0.1.

Now, to determine 71 and WI for the laminate test data shown in

Figures 12 and 13, one calculates the local stress a22 at first ply

failure in the 900 ply. Since a23 = 0 in this ply, one obtains al from

(37). Then, additional stress is applied to the laminate, and crack

density a in the 90° ply is calculated incrementally, according to the

sequence (37) to (42). The stiffness of the 900 ply gradually decreases

in the process. When the applied stress reaches the magnitude required

for first ply failure in the +450 ply, all in this ply is again found

from (37).

These results are listed in Table V as predictions (A) and (B) for

the two coupons.

-3.
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In a similar way, the results in Figures 14 and 15 were interpreted

and provided values of aI and aiiin predictions (C), (D) and (E), Table

V.

The experimentally found values of the critical stress FI and iII

at first ply failure in (37) are actually the sole material parameters

* .needed to fit the data. The only additional information entering the

analysis are original elastic moduli of the undamaged laminate, and the

empirical factor g=O.1 in (37).

r The magitudes of WI and all are fairly consistent. Note that pre-

dictions (A) and (B) apply to both 0 and 45° plies in Figures 12 and

13. Differences between (A) and (B) are caused by differences in ex-

S perimental data. Prediction (C) is sufficient for all plies in Figure

14, except for the -45* ply as explained below. Predictions (0) and (E)

in Figure (15) are different because the data points for the two coupons

* are so far apart.

It would be desirable to find that one set of critical stresses

fits all data for a particular system, or for the two grafite-epoxy

systems of Figures 12 to 15. This is not exactly possible but we note

that al in (A) (B) and (D) are similar; ideally they should coincide

since they refer to a single system. Still they are closer together

" than those in (D) and (E) found for not only one system, but also one

.- l ayup. In fact the two coupons Al and A2 were taken from the samer.
laminated plate.
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Therefore, one can conclude that the differences in effective ply

strength at first ply failure in Table V are caused by variations in

material properties that affect the experimental data.

A surprising feature of the experimental results shown in Figures

12 and 14 is that no cracks were observed in the interior -45' plies.

One would certainly expect to find cracks in these layers which

experience the same average strain state as the +450 plies where

numerous cracks were found. In fact, the -45* plies form a single ply

of double thickness, and this should make it more susceptible to matrix

cracking than the +450 plies of single thickness. This phenomenon

requires further study.

.! We note in passing that not all experimental data can be approxi-

mated with the average stress condition (37). This suggests a need for

a more accurate method of evaluation of local stresses in (37).

--,8
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3.5 Conclusions

p
1. An analytical technique has been developed for modeling of progres-

sive transverse matrix cracking in laminated composite plates. The

analysis consists of three steps. First, self-consistent estimates

of laminate stiffness changes are found for a given crack density

from (3) and (4). Next, the rate of crack density increase under

applied load is evaluated from (37) to (42) on the basis of a

selected ply failure criterion. Finally, the ply analysis is made

in terms of ply stress state for a ply embedded in a laminate with

several cracking plies. The instantaneous ply stresses follow from

a simple adaptation of laminated plate theory.

2. A good agreement of the theory with. several sets of experimental

data was found. The theoretical predictions require a minimum

amount of experimentally derived information, such as first ply

failure stresses in the cracking ply, and elastic moduli of the

undamaged laminate. No empirical parameters are required outside

the ply failure criterion (37).

3. The theory makes it possible to calculate the instantaneous crack

density in each ply, the instantaneous stresses in each ply of the

laminate, as well as the average fiber and matrix stresses in each

ply, after application of each load or strain increment to the

laminate, The laminate can be subjected to combined three

dimensional loading, and also to varying uniform thermal changes in

- .the course of mechanical loading.
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4. The analysis can be implemented through a simple numerical routine,

even on a microcomputer. In fact, the entire procedure for each

loading step is rather similar to that used in elasticity analysis

of laminated plates.

ACKNOWLEDGEMENT

This work was supported by the Air Force Office of Scientific

Research and monitored by Major David Glasgow, Ph.D., who provided

numerous useful suggestions. Dr. Norman Laws was a consultant on thisr
project. He contributed in a significant way to the development of

self-consistent estimates of mechanical properties of cracked plies and

laminates. Dr. M. Hejazi and Mr. C. J. Wung participated in various

stages of this work, performed the numerical calculations and helped to

make comparisons of theory with experiments.

4

o1

°""40-

. . . . . . . . . . . . . . . . . . .

° o ..



4. REFERENCES

1. S. 0. Wang and F. W. Crossman. "Initiation and Growth of Transverse

Cracks and Edge Delamination in Composite Laminates. Part I. An Energy

. Method," J. Composite Materials, Vol. 14 (1980) 71.

2. G. J. Dvorak and W. S. Johnson. "Fatigue of Metal Matrix Composites,"

International Journal of Fracture, Vol. 16, 6 (1980) : 585.

" 3. D. G. Hwang, "The Proof Testing and Fatigue Behavior of Gr/Ep

. Laminates." D.Sc. Dissertation, Washington University, St. Louis, MO, August

1982.

4. J. Bailey, P. T. Curtis and A. Parvizi. "On the Transverse Cracking

- and Longitudinal Splitting Behavior of Glass and Carbon Fibre Reinforced

* Epoxy Cross Ply Laminates and the Effect of Poisson and Thermally Generated

Strain." Proc. R. Soc. Lond. A., Vol. 366 (1979) : 599.

5. N. Laws, G. J. Dvorak and M. Hejazi. "Stiffness Changes in

Unidirectional Composites Caused by Crack Systems," Mechanics of Materials,

Vol. 2 (1983) 123.

S- 6. G. J. Dvorak, N. Laws, and M.Hejazi. "Matrix Cracking in

Unidirectional Composites," 1983 Advances in Aerospace Structures, Materials,

and Dynamics, ASME, Vol. AD-06, November 1983.

-41

................. .- , -..... •. .. , . . . . . . . .**..



-1 71

7. G. J. Dvorak, N. Laws and M. Hejazi, "Analysis of Progressive

Matrix Cracking in Composite Laminates. I. Thermoelastic Properties of

a Unidirectional Composite Ply with Cracks," to appear in J. Composite

Materials, 1985.

8. H. T. Hahn and T. Johannesson, "Fracture of Unidirectional

Composites, Theory and Applications," in Mechanics of Composite

Materials - 1983, G. J. Dvorak, editor, AMD-Vol. 58:135, ASME, New York,

1983.

9. N. Laws and G. J. Dvorak, "The Loss of Stiffness of Cracked

Laminates," to appear in "Fundamentals of Deformation and Fracture,"

presented at the J. D. Eshelby Memorial Symposium, University of

Sheffield, April 1984.

10. A. L. Highsmith and K. L. Reifsnider, "Stiffness-Reduction

Mechanisms in Composite Laminates," ASTM-STP 775, p. 103-117, 1982.

Si. J. T. Ryder and R. W. Crossman, "A Study of Stiffness, Residual

Strength and Fatigue Life Relationships for Composite Laminates," NASA

Contract Report CR-172211, 1983.

4

-42-......... . . . ., " " -" -...-° " - ., '-.".. ..........." "-.".. ..". .".. .... ..'-".. .".. ."."." " -".'.. ..-. .".. ".. .....



Table I. Constituent Properties and Compliances of the T300
Gr-Ep System

Unit E33  G31 I31  E 11  G12  Symmetry

Fiber 103ksi 33.00 3.36 2.25 0.78 Transversely

(T300) Isotropic
0.410

103MPa 227.5 23.2 15.5 5.4

Matrix 103ksi 0.50 0.19 0.50 0.19 Isotropic
(Epoxy) 0.350

103MPa 3.4 1.3 3.4 1.3r

Composite Compliances:

Compliance CfZ0.2  Cf=O. 4, cf-O.6

o 0.2069 0.1595 0.1192

M2o  -0.1037 -0.0779 -0.0561

Mo -0.0075 -0.0041 -0.0028
13
M0N 22 0.2069 0.1595 0.1192

23 -0.0075 -0.0041 -0.0028

- 0.0207 0.0107 0.0073
33

M 0.5108 0.2726 0.1244

Mo5  0.5108 0.2726 0.124455

M 0.6211 0.4746 0.3506
66

All values are in units of (10
3 MPa) °l
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401 T300/5208
% OF UNCRACKED MOULUS EL

"" ~Lay-up "-..,. 0.2 0.6 1.0

(04, 90) 100 99 99
(02, 90) 99 98 97

(0 90) 98 96 95

(0. 902) 97 92 90
"'(0 . 904) 9S 86 82

-"(02,! 4s) 99 97 95

",-(0 ,+,45 ) 98 94 92

(0,(:4S)2) 97 91 86

(:45) 91 74 S9

(02,:75) 99 96 95

(02,'60) 99 97 95

(02.:30) 99 97 9S

(02,:15) 100 99

40 1"300/5208

% OF U.RACXED MOCULUS ET

".-.. ! 0.2 0.6 1.0

(02,:46) 97 91 87

(0, -as) 9 898

(0,(!45)2 )  9S 87 80

(:45) 91 74 59

(02,-7s) 100 9999

f (02,40) 99 97 96

(02,.30) 92 79 71

(0?,885 69 59

Table II. Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of laminated
plates at given values of crack density a in all plies.

-
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60% E-GLASS/EPOXY

-% OF UNCRACXED MODULUS EL

Lay-u. 0.2 0.6 1.0

(0
2,z 5 ) 92 83 75

(0, .-4S) 88 75 63

(0,(.45) 2 ) 84 67 so

(45) 77 51 25

060% E-GLASS EPOXY

% OF UNCRACKED MODULUS ET

S.Lay-u 0.2 0.6 1.0

(02,.45) 86 73 64

(0, ,45) 82 66 53

(,(:45) 2 )  8o 60

(!45) 77 51 25

Table III. Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of
laminated plates at given values of crack
density S in all plies.
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% .................................................... ",, .. .",',• , -',',' •-'.. . .. .''."..''.



40% BORON/ALUMINIU4

% OF UNCRACKED MODULUS E L

La-u B0.2 0.4 0.6

(04.90) 96 93 91

(02,90) 93 87 83

(0. 90) 89 80 73

(0, 902) 85 71 62

(0, 904) so 64 51

(O,4)96 93 90

(02,:45) 94 89 85

(0, :45) 91 84 78

S(0,(:.45 )2) 89 80 73

401 8ORON/ALUMINIUM

% OF UNCRACXED MODULUS Er

Layup0.2 0. 0.6

(04,:45) 95 90 87

(02,:45) 93 86 81

(0, .+45) 90 82 75

880(:52)a 78 70

Table 76V. Theoretical predictions of relative changes in axial
(EL) and transverse (ET) Young's moduli of laminated

[. plates at given values of crack density B in all plies.
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PREDICTION Wi 1 MATERIAL LAYUP COUPON

MPa MPa

A 64.5 73.5 AS/3501-5A (02/90/±45)s A-b-A

B 64.5 125 A-b-6

C 83 105 T300/5208 (OI9O/t45)s

FD 45 100 (02/904)s A2

Al
E 70 100

Table V. Effective Ply Strength At First Ply Failure
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TWO-PHASE MODEL OF A CRACKED LAMINA

I
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THREE-PHASE MODEL OF A CRACKED LAMINA
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Figure 2.

2A. An infinite medium with aligned fibers and slit cracks,
- 2B, A fiber monolayer with cracks.
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Figure 4. Changes in strain concentration factor components in composite
#"matrix" caused by cracks of density S (T300 Gr-Ep).
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O'o[ Figure 5. Slit crack system in a uniformly strained composite ply.
Fibers and cracks are aligned with x 3 axis.
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*Figure 6. Random distribution of matrix cracks in a progressively cracking,
0.125 mmw thick ply.
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Figure 7. Schematic illustration of stiffness change of a cracking lamina.
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Figure 10. Calculated changes in ply stresses a*, and plate
stiffnesses Lij in a graphite-epoxy plate loaded
in simple tension 033 in the 0* direction. All

stresses are in local ply coordinates, the fiber
direction coincides with local i3 axis of a ply.
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*Figure 11. Comparison of experimentally observed stiffness changes
and crack densities Cll] with theoretical predictions.
The (SCM) curve was calculated from the self-consistent
estimate of stiffness in 900 plies, Equation (3).
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Figure 12. Comparison of Predicted and Observed Average Crack
Spacing in a Laminated Plate Subjected to Uniaxial
Tension. Experimental Data from Hwang and Hahn (1982).
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Figure 13. Comparison of Predicted and Observed Average Crack
Spacing in a Laminated Plate Subjected to Uniaxial
Tension. Experimental Data from Hwang and Hahn (1982).
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Figure 14. Comparison of Predicted and Observed Average Crack
Spacing in a Laminated Plate Subjected to Uniaxial
Extension. Experimental Data from Ryder and
Crossman (1984).
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Extension. Experimental data from Ryder and

Crossman (1984).
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