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ABSTRACT

The report describes fundamental concepts, needs, and requirements

of a database management system for design optimization. Type of data -i

needing management are identified. A preliminary database management

S system for structural optimization has been designed, implemented and

evaluated. Detailed specifications for a desirable database management

system for more general iesign optimization environment have been

developed. Some important specifications for the system are (1) data

independence, (2) multiple logical views of the data, (3) memory

management, (4) matrix operations utilities, (5) query language for use

in interactive sessions as well as applications programs, and (6)

management of permanent, temporary, global and local databases. Such

capabilities must be available for design optimization applications. A

comprehensive review of literature on database management systems for

engineering computations has been completed. It is noted that the field

is fairly new. Some systems have been developed in the recent past.

Their favorable features and limitations are identified. Based on these

studies, development of a comprehensive engineering database management

system has been in progress. The system is being developed and

integrated into design optimization methods. It will become a core for

design, implementationand evaluation of databases for engineering

optimization applications.
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In October 1982, a project was initiated under the sponsorship of

Air Force Office of Scientific Research to study and develop database

management concepts for design optimization. Considerable progress has

been made since then in identifying the needs of database management

concepts, type of data needing management and the features of a database

management system suitable for design optimization. Various data models

and their suitability for design optimization have been studied.

Various file structures for physical data storage have been studied.

Suitable structures have been identified. A comprehensive review of

literature on database management concepts in scientific and engineering

computations has been conducted. Available systems have been

evaluated. Favorable features and limitations of the available systems

with respect to their usage in the design optimization environment have

been identified. A database management system for structural

optimization has been designed and evaluated. Based on these studies

desirable features of a general purpose database management system have

been identified. Such a database management system is badly needed for a

design development, and evaluation of proper databases for design

optimization. The system will become a core for further studies on

database development for design optimization.

The report is divided into four parts. A summary of each part,

status of research, associated personnel, publications, and plan of

research are presented in the following paragraphs. 1.-,4

.3,



PART I

Rajan, S.D., Bhatti, N.A. and Arora, J.S., -A Database Management System

for Structural Optimization."-

This report is partly based on the Ph.D. dissertation of Mr. S.D.

Rajan completed in July 1982. The work was in progress when the project

was initiated. Following is a summary of this report:

The database management system for design optimization has needs

that are characteristic of most engineering computations. However there

are some requirements that stretch the limitations of not only computer

systems but also the methodology behind software development. This

report examines the needs of engineering database management. Details

are drawn from the SADDLE system that has been used for optimal design

of structural systems. SADDLE stands for Structural Analysis and

~yaicDsinLagaE. The system is modular, portable, reasonably
_F-mcDsinL ug

efficient and amenable to future growth. All the modules interact via a

global database. The database management system uses a data manager

that has three distinct parts - the data model processor, the resource

manager and the 1/0 manager. Both the relational and hierarchical data

models are supported. Tuning parameters are provided to enhance

computational efficiency on different machines. Emphasis is on user-

system interaction - free-format input, error recoveries, and easy

means to create, edit and update information. Experience gained with

the SADDLE system is utilized in defining a general purpose database

management system for design optimization.

Several publications have been planned based on this work.
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PART 11

Sreekantauurthy, T. ad Arora, J.S., "Database Management Concepts In

N Design Optimization.'

This report presents general concepts for database management in

design optimization. The need for database management is emphasized.

Data used in design optimization is discussed. Various data models used

in database management are described. A data model suitable for design

optimization is discussed. Physical and logical data structures are

studied. File structure for physical data models are important.

Therefore various file structures are studied for physical storage of

data. Suitable file structures for design optimization are discussed.

A comprehensive review of literature for database management in

scientific and engineering computations is conducted. It is noted that

database management ideas are fairly new to engineering design

community. Some database management systems for scientific computing

have been developed in the recent literature. Features of these systems

are studied. Favorable features as well as drawbacks of the available

systems with respect to design optimization applications are noted.

Based on this study a suitable database management system and database

design for optimization applications can be developed.

The report is a part of the Ph.D. dissertation of Mr. T.

SreekantaMurthy that is in progress. Based on this work a paper has

been submitted for presentation at the AIAA Conference to be held in May

1984.
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In addition, two other Ph.D. students - J.K. Paeng and G.J. Park -

are working on applications of design optimization of general dynamic

systems using database management concepts. Database of a commercially

available finite element program is being changed so that it can be used

for design, implementation and evaluation of database concepts with

general applications.

PART III

Reddy, C.P.D., Sreekanta~urthy, T., Arora, J.S. and Bhatti, N.A.,

"Engineering Database Management System (EDHS): Concepts and

Requirements.-

This report describes concepts and requirements of a database

management system for engineering design optimization and, in general,

scientific computing. Distinction between database management in

business and engineering applications is first highlighted. General

concepts for design of a database management system in scientific

computing and, in particular, engineering design optimization are

'presented. Based on these concepts and requirements, a set of detailed

specifications suitable for database management system (DBMS) has been

developed. Such a DBMS can be used in the development, implementation

and evaluation of database management concepts and methods for design

optimization. Some important specifications for the system are: (1)

data independence, (2) multiple logical views of the data, (3) menory

14. management, (4) matrix operation utilities, (5) query language for use

in interactive sessions as well as applications programs (useful for

v
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defining optimization problems), and (6) management of permanent,

temporary, global and local databases. These capabilities must be

present for design optimization applications. Based on the

specifications, a database management system called EDMS (Engineering

Database Management System), has been initiated. The system is being

developed and integrated into design optimization methods. It will be

used in the design, implementation and evaluation of database management

concepts for design optimization.

Several M.S. and a Ph.D. students are working on this part. C.P.D.

Reddy and T. SreekantaMurthy designed and implemented the data

definition and data manipulation languages. Scope of these commands is

being expanded. D.T. Staley and R. Hotz - two M.S. students - are

working on this part. Matrix operations library is being designed.

These commands will operate on the data stored in the database and

deposit results in the database. These will be extremely useful in

developing and evaluating the databases for design optimization. A

general purpose query language is being designed. The material will

become a M.S. thesis of Mr. R. Hotz.

In addition, two M.S. students - V. Venkatesh and Y.K. Shyy - are

working on the design of linear equation and general eigenvalue

solvers. Various solution methods and their algorithms are being

designed for implementation with the database management system. Such

capabilities will be extremely useful for design optimization and other

applications. The material will be suitable for M.S. theses of the .'

above two students.

Journal articles are planned based on this work. ,

vi..
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PART IV

Sreekanta~urthy, T., Reddy, C.P.D., Staley, D.T., Arora, J.S. and

Bhatti, M.S., Engineering Database Management System: EDMS User's

Manual."

This report presents a user's manual for the EDMS. The idea here

is to show current capabilities of the system. The manual contains

various commands for the system. There are two types of commands: file

operations and data set operation. File operations define the type of

file, opening and closing of a file and other file operations. The data

set operation commands include both the data definition as well as dat-

manipulation commands. Limited capability is available as can be seen

from the available commands. Other commands for data definition as well

as data manipulation are under extensive development. These will b,..

made available soon. Once the system has been developed, it will become

a core for study, design, development and evaluation of database design

for various optimization applications.

Several M.S. and Ph.D. students have worked on this part of the

project. C.P.D. Reddy (M.S.), Don Staley (M.S.), Robert Hotz (M.S.), and

T. SreekantaMurthy (Ph.D.) have implemented the commands currently

available. C.P.D. Reddy has graduated and left the University. Don Staley

will be graduating and leaving at the end of November 1983. Robert Hotz,

T. SreekantaMurthy and some new students will continue working on this
7

part of the project under the supervision of the principal investigator. "0

Robert Hotz will be working on the matrix operations library. T. ."* '

SreekantaMurthy will be working on query language and the data manager.

vii
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ABSTRACT

The database management system for design optimization has needs

that are characteristic of most engineering computations. However there

are some requirements that stretch the limitations of not only computer

systems but also the methodology behind software development. This

report examines the needs of engineering database management. Details

are drawn from the SADDLE system that has been used for optimal design

of structural systems. The system is modular, portable, reasonably

efficient and amenable to future growth. All the modules interact via a

global database. The database management system uses a data manager

that has three distinct parts -- the data model processor, the resource

manager and the I/0 manager. Both the relational and heirarchical data

models are supported. Tuning parameters are provided to enhance

computational efficiency on different machines. Emphasis is on user-

system interaction - free-format input, error recoveries, and easy

means to create, edit and update information.

".-74

J ,r- *' ~. . - ~ * -. *

'\a'..



TABLE OF CONTENTS

Page

LIST OF FIGURES........................................ iv

CHAPTER 1 ENGINE ERI NG MTABASE MANAGEMENT .......................

1.1 Need f or Engineering Database Management .... I
1.2 Requirements of a FEM-based Optimization

Software ............... .............. 11
1.3 Scope of Work................................ 15

CHAPTER 2 ELEMENTS OF A DTABASE .......................... 17

2.1 Introductory Remarks ............ ....... 17
2. 2 Data Structures . . ......... . . ........ 17
2.*3 Physical Database ........................ 19
2.4 Conceptual Database ............................. 20
2.*5 Query Language.......................... 36
2.6 Memory Management ....................... 40

CHAPTER 3 SADDLE: DATABASE VARAGEMENT SYSTEK................... 44

3.1 Introductory Remarks...................... 44
3.2 Software Development ...................... 44
3.3 SADDLE Physical Database................... 47

.. 3.4 SADDLE Conceptual Database.................. 52
3.5 SADDLE Memory Management Sym t e....... 60
3.6 Primary-Secondary Storage Li nk..............72
3.7 SADDLE Design Query Language ............ 73
3.8 Control Structure........ .............. 75

CHAPTER 4 EVALATAION OF SADDLEK D1lI .. .. .. . .............. 80

4.1 Introductory Remarks ........... .. ........... 80
4.2 Experience with SADDLE DBMS ..................... 80
4.3 Improvements of SADDLE DBMS............ 83

APPENDIX A . .. .. .............. ..... . ...... ... .. . .. .. ...... 86

APPENDIX B ..... . .. ....... .. .. ................. ....... 90

REFERENCES .. . ............. . .. . ... .. .. .. ............. 102

.2i



A

-'4.

-4

.4.

'A
* 4 ~*\ -4:

* .'*.c ~
4.'.

p

*4.~*X

- -

p.'-

p

.4

'p.
.~ A*~*

*4. I

p 4"'.

4...

-- 4.

4-.-

pp.

LI
"~q ' . '~§ * ~.*:-** 4 4'. 4..



.4o

LIST OF FIGURES

Figure Page

1.1 Schematic illustrating program growth ...................... 2

1.2 The concept of hierarchy ....... ............ ............ 3

1.3 Structure and contents of SPAR library..................... 7

1.4 GIFTS modular arrangement .................................. 9

1.5 Flow in a FEM-based optimization program ................... 12

2.1 Entity-relationship concept ................................ 21

2.2 An example of hashed file organization ................... 25

2.3 An example of sparse index file organization ............... 26

2.4 Hierarchical database model................................ 29

2.5 Hierarchical model for the structural database ............. 30

2.6 Network model for the structural database. ................ 32

2.7 Relational model for the structural database ............... 34

2.8 Use of primary and secondary keys .......................... 38

2.9 Modified relationship scheme of Fig.3.8 .................... 39

3.1 File handling conventions .................................. 48

3.2 Storage scheme for entity set GRAD ......................... 53

3.3 Storage scheme for entity sets SDIR and STIF ............... 55

3.4 Storage scheme for entity set NODE ......................... 57

3.5 Storage scheme for entity set ELEM......................... 57

3.6 Arrangement of primary storage..... ..................... 61

. 3.7 Flow between storage directories...*...................... 62

. 3.8 Flow in a typical module................................... 76

W .. V

~Lj



V.

1

-. . *' ft.... '~ Vft$.~ ~



.. ...-..- . ... + , .. - - . , .. - 7'-r r2 r ... . .r r 'r r :. l W -J~ -: II - , d - ,S I , U .. l %. -. ' i '% '

CHAPTER I

ENGINEERING DATABASE KANAGMENT

1.1 Need for Engineering Database Management

Three developments in the recent past have convinced engineering -

software developers of the need for centralized (or, unified) database

management. First, there is a constant need to expand the capabilities

of a program. The flow of logic has reached a stage where all facets of

software development - resource allocation, error detection and program

documentation - point to the need for an integrated and controlled

approach. Second, modular development has shown that in the absence of

a common, shared database, more problems are created than solved. LaRt,

it has been recognized that software vendors simply cannot meet the

needs of all users. To cater to varied needs, software development

must include means to access data by both system and user programmers.

Figure 1.1 illustrates difficulties associated with unchecked

program growth (Felippa, 1979). Program components are represented by

nodes and connecting paths show the direction of logic and data flow

(these paths can be uni- and bi-directional). It is immediately

obvious that the architecture is sensitive to the smallest, local

modification. A commonly used strategy to restrain this uncontrolled

growth is use of the concept and structural hierarchies. Hierarchy

(Fig. 1.2) can be applied to software development In two ways (1)

to organize programs Into modules, sub-modules, etc., (retrtcting the

connecting paths) and (2) organization of data by refinement of

4 4ra
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Figure 1.1 Schematic illustrating program growth
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4.

i, ~attributes. Modularization provides a means of organizing the program '-

into subdivisions to simplify the growth during the development and

enhancement phases. But is modularization alone sufficient ? "Modules

are not only characterized by the functions they perform, but also by ii
their connectivity with the rest of the program" (Tausworthe, 1977).

The second characteristic forms the basis of centralized data manage-

ment. Large scale software systems have shown that efficient

connectivity can be achieved ad infinitum by coupling modularity with a

centralized Data Base Management System (DBMS).

So far, the discussion has been in abstract generalities. In

fact, the concepts of database and database management systems have

not been detailed. Using Date's (1975) definition, a database is a

centralized collection of data, accessible to several application

programs and organized according to a database-definition schema. In

a design environment, the database will contain information on

geometry of the structure (nodal coordinates, element description and

connectivity), material properties, loading conditions (element as

well as nodal loads), design variables, objective function and similar

quantities. The database manager (forming the DBMS) is that part of

the program that processes all requests to access, create or update

data from the database. It is quite likely that the DBMS will be a

part of all modules. Note that generally, neither does the DBMS

manipulate data nor does it directly control the flow of logic. These

requests are handled by application utilities. This distinction is

important due to a common misconception (or, misapprehension) among

- "

0 \ 
.
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5

"" engineers. It is believed that a DBMS has very limited scope in

engineering computations because it does not manipulate data (equation

solver) or process information (graphics package). Another widespread

belief is that database managers and database architecture mean the -

same thing. It is sufficient, at this stage, to compare database

managers to equation solvers and database architecture to the

generation of global stiffness matrix. As much as equation solvers

are inefficient if the global stiffness matrix is formed incoherently

(especially true for off-line equation solvers), database managers do

a poor job if the architecture is poorly conceived.

Database management systems of two commonly used finite element

software systems, SPAR and GIFTS, are examined next. The SPAR computer

software system is a collection of processors that perform particular

steps in the finite-element structural analysis procedure (Giles and

Haftka, 1978). The data generated by each processor is stored on a

database complex that resides on an auxiliary storage device. Each

processor has a working storage area that contains the input and the

computed data from the processor. Allocation of space in the storage

area is problem-dependent and is dynamically allocated during

execution. Data transfer takes place directly between a specified

location in the working storage area and a specified location on the

disk, using a set of data handling utilities. In addition to ""

processors for structural analysis, the SPAR system has processors that

form an arithmetic utility system for matrix-related computations, -

4 .
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data complex utility for managing and printing data and a plotting

facility for both on-line and off-line plotting.

The SPAR database complex is composed of a maximum of 26 libraries

or data files. The libraries 1 to 20 are available for general use,

with libraries 21 to 26 reserved for temporary, internal use. Figure

1.3 shows the structure and contents of a typical SPAR library. The

master directory points to the table of contents which in turn points

to the data sets referenced in the table of contents. Physically, the

auxiliary storage is divided into sectors (of fixed size) and each i

read/write operation starts at the beginning of a sector. This

addressing is a two-word affair -- the first word is the library number

and the second word contains the relative sector number within that

library. However, a set of data is referred to by giving the library

number aiid a unique name assigned to that data set. At the application

-i75

level, data sets are accessed by the 'library number-data set name'
b ..

duo. The procedure to relate data set names to a corresponding

relative sector location on disk uses information contained in the

table of contents (TOC). Utilities exist in SPAR to store complete

libraries as a single data set inside another library, so that a user

can organize data in a hierarchy of libraries if necessary. These

nested libraries must be reconstituted into separate libraries before

the individual data sets can be accessed.

GIFTS is not a single program, but a collection of modules that

are present in a program library (Kamel, McCabe and Spector, 1979). -

Individual modules run independently and communicate via the unified

:N-:
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Figure 1.3 Structure and contents of SPAR library
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database (Fig. 1.4). The database manager not only processes requests

to access data from the database but also does memory management. Each

module has its own local database. Working storage is assigned to each

data set (in the form of a COMMON block) that is a part of the localI

database. Each data set is stored in a separate random-access file.

The process of paging is carried out within the working storage, unlike

a pure virtual memory operating system. There are four routines used

with every data set - for opening and initializing the working storage,

.4. for reading the data set, for creating/modifying the data set, and for

releasing the working storage. Clearly, the GIFTS data management

system cannot work in a stand-alone environment since the database

-. manager is embedded in the application software.

The absence of memory management in the program architecture is the

principal shortcoming of SPAR. An obvious retort is to let the virtual

memory operating system perform this task. There are four reasons why

this argument is unsatisfactory. Firstly, supply has always lagged

behind demand vis-a-vis memory requirement. The conventional

programming approach has been to push the size of arrays as high as

possible. Analysis of structural systems with 10000 degrees of freedom

and more are no longer uncommon and there are very few machines that

can truly offer an in-core solution to these problems. Secondly, all

VMOS do not operate efficiently, not because of the lack of methodology

as much as the lack of hardware-software interaction that is Inherent

in most memory management Philosophies. Thirdly, with any VMOS,

.,~,.-'4.frequent page turning Acctivity can be avoided by localizing references

%4
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Figure 1.4 GIFTS moauiar arrangement
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during computation. Once again, the conventional programming approach

has not addressed this issue, especially in matrix-type computations.

Lastly, distributed processing is bound to become the trend of the

future. If computers of varying capabilities are used to access the

same database, then quite obviously the problem of resource allocation

will be a crucial issue on smaller machines.

There are two other problems with the SPAR data complex. The data

definition language promotes a hierarchical database structure;

whereas a relational database structure has proven to be physically and

logically simpler. The other problem is that excessive fragmentation

can take place if the sector size does not happen to be an integral

multiple of the data that is stored. Commercialization of the program

with its successor EAL has made it even more difficult to find

proper documentation on the database structure. Hence, it is quite

doubtful whether the program can be adapted efficiently for design

purposes.*

GIFTS is the state-of-the-art, as far as database architecture is

concerned. A relational data structure has been used extensively to

store all requisite information. However, the database manager has

some severe shortcomings. The primary problem is the size of the data

manager. The requirement that four new routines be included with every

new data set implies that the size can increase indefinitely. Both

programs have a static physical database description, in the sense that

minor changes in the structure entail recompilation of all relevant

modules. There are elegant techniques available to make file-handling
.~* * S*.

,.. '. . . . - . . . . - .. . . .. ,.. .) . .. - .. .... . . .. .. . . . .. . . . .. . . . . . .. .., .. . .. . - . - , .- . .. .,- ,- . . L
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easier and to manipulate the physical database descriptions. Another

problem with GIFTS is that the allocation of primary memory is

static. Since different computing systems do not work the same way, a

desirable feature is to have tuning parameters externally controlled so

that memory can be allocated dynamically. Some of these points are

raised in the next two sections.

1.2 Requirements of FEN-based Optimization Software

There are significant differences in the flow of a program that

performs analysis only and a program dedicated to analysis and design.

While finite element techniques are well-established and usually

provide solutions to problems in one pass, optimization techniques

find solutions in an iterative manner. Figure 1.5 illustrates this

fact graphically. The design system calls the analysis program

repeatedly and the number of times it is called is dependent on how

the gradients of the objective function and the constraints are

computed.

Depending on the design philosophy being used, the designer has

three options in choosing the design variables:

(i) element cross-sectional properties could be used

as design variables; e.g., cross-sectional area, height and

width of a rectangular section (Haug and Arora, 1979).

(it) nodal coordinates could be chosen as design variables;

i.e., the shape of the structure is being obtained as the

design oblective (Haug, Chol, Hou and Yoo, 1981).

SOt

? -
'-"
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Figure 1.5 Flow in a FEM-based optimization program
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(iii) element connectivities are the design variables; i.e.,

the layout of the structure is being determined (Rozvany,

1980).

In a particular design problem, the design variables might belong to

any one or all of the above categories.

* With the first option, the flow involves performing analysis

only once in going from point R to C in Fig. 1.5, if the gradients are

provided analytically by the program. However, if a divided difference

approximation is used for gradients, design variables are

perturbed and an analysis is performed for every perturbation of the

design variable. Options (ii) and (iii) introduce further

computations, since the pre-processing step needs to he executed

whenever the shape of the structure changes appreciably. It is

therefore critical to organize not only the computations but also the

data in such a manner that the search technique required to locate data

from the database is efficient.

The step that requires the most computational effort during

analysis is the solution of the equilibrium equations. If data are

organized such that the top part of the stiffness matrix reflects the

contributions from the 'non-active' part of the structure (the part

jJ %X* of the structure that does not change during design), then this part

need neither be updated nor decomposed. The savings In overall

computation are then substantial. With either option for design

variables, the non-active part of the structure grows in size as the*

optimum design Is reached. It should also be mentioned that such a

L

-
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scheme is used in the analysis of structures with non-linear responsej

(Bhatti, Ciampi, Pister, and Polak, 1981). Furthermore, the decomposed

stiffness matrix can be used for finding the solution of adjoint

equations for computing the gradients analytically (Haug and Arora,

1979). In addition, computations tend to be repeated if the analysis

segment does not compute data required during design calculations. For

example, the quantities involved during the formation of the local

stiffness matrices are also required for computing the derivatives of

the stiffness matrix wiith respect to design variables.

There is a key difference that has been overlooked so far -how

deep is the user involvement with the development and usage of design- -

software ? The user is usually less inclined to make efforts towards

solving problems that are not included among the program development

functional objectives (Sobieski, 1980). A "black-box" would be ideal,

as in the case of finite element analysis. However, there are two

reasons why such a scheme is infeasible with optimization programs:

(i) the objective function and constraints are problem-dependent

(ii) there is insufficient data to conclude which optimization ~ .

technique works best for structural problems. The user must

be given control to select not only the optimization

technique but also the values of the 'Judgement' (the user

must use judgement based on previous experience and

intuition) parameters associated with each technique.

It is now clear that a second level of programming effort is 4

involved. The user must be able to clearly define the design

%V,K~~~~~~~~ w>~iw 0*; P I1jf
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objectives and carry out computations as efficiently as possible.

This user effort can be eased by the system programmer. To compute

values of the objective function and constraints and their derivatives,J.

the user needs to use certain arithmetic operations and requires the

values of the optimization quantities.

1.3 Scope of Work

A computer aided structural analysis and design system, called

SADDLE has been developed. This report describes its database manage-

ment system, which meets most of the requirements outlined in the

previous sections. In Chapter 2, the basics of database management are-

presented. Concepts connected with data structures, physical and

conceptual databases are discussed together with discussions on what

constitutes a query language. The last section discusses the rudiments

of the memory management scheme (MMS). The implementation details In

the SADDLE design system are presented in Chapter 3. The relational

and hierarchical models together with their file implementation schemes

are discussed. Later the SADDLE MNS implementation details are shown. .

It should be noted that primary storage is finite and is usually a

limiting factor. Hence, dynamic allocation of memory is a must for

solutions to large problems. The rest of the chapter examines the data

structure in detail. Pointer and buffer concepts are introduced,

together with data management techniques for vectors and arrays. --

Information exchange between primary and secondary storage, withoitt the

use of I/0 buffers, Is discuissed. Also, the influence of data



structure on computations in virtual memory machines is examined. 16

The chapter concludes with the SADDLE design query language. The

evaluation of the system is discussed in Chapter 4. Experience with

the use of the SADDLE design system is examined and suggestions for

improvements in the features are presented. The report concludes with -

general discussions on the state-of-the-art in engineering DBMS and

scope for future developments in addressing user-system interaction,

efficiency and future enhancements of design optimization systems.

V-

-V...
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CHAPTER 2

ELEMENTS OF A DATABASE

2.1 Introductory Remarks

Between the user, the application program and the computer, there

are many levels of abstractions. In the previous chapter, references

were made to these different levels - the user view of the database and

the conceptual and physical databases. In reality, only the physical

database exists, but its implementation is a direct result of the

conceptual database. The lowest level is the physical database

residing on some secondary storage as bits and bytes. These bits and

bytes are based on a conceptual scheme. The conceptual scheme can be

described by a data definition language (DDL) that forms the data

model. In this chapter, these different levels of abstraction will be

closely examined and their role in the SADDLE DBMS will be explained.

The presentation is in the order of increasing abstraction. First, the

basic problem of storing data will be tackled, followed by the

description of the data model in terms of a conceptual language, and

finally the user manipulation of data through a 'query language'. In

addition, one other closely-related question will be examined - "How to

incorporate memory management in the DBMS?"

2.2 Data Structures N

A data structure is a structure whose elements are items of data,

and whose organization is determined both by the relationships between

%a

.. . . . ,- .C.- , . , ,r . . . . . . . . . . ,. . . . ., .
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the data items and by the access functions that are used to store and

retrieve them (Baron and Shapiro, 1980). In this section, some data

structures that can be extremely useful for design optimization will he

discussed.

Linear Structure A linear structure is one that is stored in the

manner they are processed. These data can then be used to manipulate '.

information such as insertion and deletion of elements of information.

Two such structures are described below. •

(a) Linear List: This is a finite, ordered list of elements. For

example, to store design variable information, it is possible to

store the design variable value, the upper bound and the lower

bound as fields of an element with each element stored as a record

in a file. Another example is a vector that is often used to store

information whose size in number of elements is not known a priori

or one that cannot be created all at once. In this case, a vector

is used as a buffer and the buffer is filled with one element at a

time. The buffer is emptied once it is full.

(b) Linked List : In this data structure, each element contains a

pointer to its successor. A disadvantage with a linear list is

that if elements in the list must be deleted or inserted then

either the entire list or a portion of the list must be modified.

Only the singly linked list where each element contains a pointer

to the next element will be discussed here. The process of

insertion is carried out by modification of one pointer - the

pointer preceding the new entry (the pointer value of the new entry

.~~~~. . . . .

. . . . 4...
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now is the same as the old pointer value of the preceding entry).

Deletion follows the same process -the pointer value of the

preceding entry must be updated.

Trees :A tree is a data structure that is used to represent an

hierarchical relationships among data items. A tree is described by

nodes; the top level node is the root node. Each node may be connected

to a node at the lower level that is the child of the parent node. The

discussion on trees is postponed until the next section.

Matrices :These are perhaps the most widely used data structure

in engineering programs. They are usually stored in memory in contiguous

blocks and are accessed by a simple accessing function. A single-

dimensional array is called a vector. Arrays can be two, three and of a

higher-orders and are stored either in the column-major order or row-

major order. One Increasing use of similar data structure is a table

where mixed data types are stored. This forms the basis of the

relational data model and is discussed later.

2.3 Physical Database

The physical database stores information in a file that consists

of records. For example, the database may have a file storing data on

all elements of a structure, with each record containing information

about one element. These records may or may not have an identical

format. The record format links each field to a data type. An

* operation performed on a file is called a transaction. Typical

transactions are:

*4. Z- . . . . . ..*.
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(a) create/insert a record

(b) delete a record

(c) update a record

(d) find a record

Note that each transaction is finally performed on one record, though

many records may have been used to locate the record in question. The

address of a record is usually found through pointers. The concept of

pointers will become apparent as the term is used more frequently

throughout this chapter.

2.4 Conceptual Database

Before discussing how the physical database is implemented, it is

necessary to realize that the information stored in different files is

intertwined with the transaction against that information. What this

means is that the information cannot be stored arbitrarily, since then

its retrieval for future use may be inefficient. Two terms are

pertinent in this context-- the entity and the relationship concepts.

In Fig. 2.1, the entity, pre-processor is linked to another entity,

structural analysis program, by the relationship, "creates data for".

Similarly, the structural analysis program "communicates iteratively

with" (relationship) the design program (entity) while the pre-

processor (entity) "provides visual display" (relationship) for the

analysis program. Entities have properties, called attributes, that

associate a value from the domain of values for that attribute, with

each entity in an entity set. An attribute or a set of attributes

.,4 ., .%. . . .. . ........ ,.... .. . .... . . ....
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Figure 2.1 Entity-relationship concept
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whose values uniquely identify each entity in an entity set is called

a key for that entity set.

Entity set Attributes Key
Nodes (nodal coordinates, boundary conditions) Node Number

Elements (material, element, element Element Number
(properties , properties, connectivity)

The relationship between entity sets is simply an ordered list of

entity sets. In structural applications, two common types of

relationship are one-to-one and many-to-one relationships. An example

of the former is the correspondence between loading cases and nodal

deflections. An example of the latter, is the relationship BELONGS TO

between the entity sets ELEMENTS and MATERIAL GROUPS (many elements may

have the same material properties but no element can belong to more

than one material group). These concepts are necessary for

implementation of the conceptual database. It is usual to associate an

entity set with a file in which the attributes of the entity set are

stored as records. Broadly speaking, the files can be divided into

four categories

(a) The size of the file is not known until the user has entered

all input. Examples include element information file, nodal

data file, and design variable linking information.

(b) The size of the file is computed from user input and until all

the requisite information is scanned, the size cannot be

determined. A typical example is the stiffness directory

O L-'
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file (a dense index file) in which the directory is created

while the element connectivity data is being interpreted.

(c) The size of the file is known and fixed. Examples include

the stiffness matrix, loading information and stress files.

(d The maximum size of the file is known, but the size required

during computations is not known. A typical example is the

file that stores the derivatives of the active constraints

with respect to the design variables. Since the size of the

active set is likely to change with each iteration, the

JVcurrent size is always less than or equal to the maximumJ

size.*

It Is crucial to bear in mind the category of a file hefore choosing a

particular implementation scheme for that file.

There are four widely used implemenation schemes (or, access

~ ' ~methods) -- the hashed file organization, the sparse index file

organization, the balanced tree organization and the dense index file

organization. The idea behind hashing is as follows: The attribute of

a pair to be stored or located is used as a parameter for a hash

funct ion which is much like the address computation function used for

an array. However, unlike array subscripts, which map directly into

sequence of integers, attributes to tables are frequently large and are

* .~.'often character strings that do not map into addresses In any

methodical way [BI). Tn practice, the hashed file is divided Into

buckets, each of which contains a specified number of records. The

hash function h(i) takes as argument a value of the key~l) and produces
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an integer from 0 to a maximum value (which is then used as a pointer

to the first block). One area in which hashed file organization can be

used for structural applications is in the implementation of a matrix

directory.

Suppose a program uses a number of files that have alphanumeric

identifiers. Let the file names (and their characteristics on one

record) be stored in a file with the entries in a random order. In

order to obtain the characteristics with the key as the alphanumeric

identifier, one could use a hash function h(i) equal to the length of

the identifier i modulo 3. This implies there are 3 buckets. Suppose

we wish to find the entry, ELEMENTS, in Fig. 2.2 where bi's are block

numbers. Hashing ELEMENTS, we obtain 2 and locate the third entry in

the hucket directory, which points to the first block (b5 ) for bucket

2. Each non-empty sublock is then searched for entry ELEMENTS. If the

*."- record is not found, the header of the block points to the next

block. The chaining of block pointers continues until the record is

found.

The sparse index file is organized very much like a phone book. *'

The file is sorted based on the key value. A second file is created

called the sparse index file that contains a pair (i,b) indicating that

the first record in block b has the key i. The index file is then

sorted, based on the key value. The strategy to locate a record is to

scan the index file until the key i in the file exceeds the required

key. The previous block (corresponding to key (i-I) ) is scanned

." ~. completely, until the required record is located (Fig. 2.3). There I

,......-. ... ................. ....-. .-.-. ...-.-
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Figure 2.2 An example of hashed file organization
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Figure 2.3 An example of sparse index file organization
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are different techniques used to scan the block - linear search, binary j
search or address calculation search. The balanced tree is an

extension of the index system. It is sometimes more efficient to have

an index of an index, an index of that and so on, until the index fits

a block. For most structural problems, these two techniques do not

offer considerable advantages over the dense index file organization. .

With a category (a) file, in which data fields usually represent

attributes, maintaining a sorted file will prove to be expensive. By

allowing records to appear in a random order, partially filled blocks

can be avoided. This is the idea behind files with a dense index.

Insertions can be easily made as the logic involves only keeping track

of the last record. The problem with using an unsorted file is to .

locate a record, given its key. Hence another file (the dense index

file) is created, which consists of records (i,b) for each key I in the

main file and b is the corresponding pointer to the record in the main

file. But should the dense index file exist separately? It should be

noted that for a majority of structural applications, the key is an

integer value that simplifies calculation of pointers. The dense index

could exist as a part of the main file (embedded pointers) - consider a

nodal data file in which record j contains the dense index key i. A

pointer could exist as a field of the record, pointing to the record

containing nodal data for node i. If i equals J, then the record

points to itself.

It is not uncommon to have a database store files of differing

organizations. It is also not uncommon to associate an entity set

I' "'. '' ." 4;- ."-'-." ' - .-. ". , .- ..... " - .4'-. - . ".-" 'w ". ",. " , - i ',. .. .. . .. . . .
"
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28

with more than one file, each organized differently. What file

implementation works effectively for structural applications can be

answered only after the 'data model' is formulated. This will also

explain the mechanism to store file types (b), (c) and (d).

At the conceptual level, the data model describes the type of

structure used in the database relationships. There are three widely

used models - hierarchical (tree-structured), network (plex-

structured) and relational (flat files). In all the models, the

data definition language is used to tell the DBMS what data structure

will be used. Briefly, the functions of the DDL include identification I
of data subdivisions, establishing the hierarchy in the logical data

structure, specification of primary and secondary keys and

specification of size in terms of data aggregates of vectors and

matrices. The salient features of each model will be illustrated,

using an example that is easily understood but somewhat complex -

formation of the global stiffness matrix. The hierarchical model is "/. ,

like a tree (Fig. 2.4). The hierarchy consists of elements called

nodes. There is a parent-child relationship between elements so that

no element can have more than one parent; an element may be related to

several elements (children) at a lower level. Figure 2.5 shows a

hierarchical data model used to perform the task.

The algorithm is straightforward -

(Step 1) Loop through all elements.

(Step 2) Obtain connectivity information.

7-j9V..
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(Step 3) Obtain nodal coordinates of the nodes forming

the element.

(Step 4) Obtain material properties.

(Step 5) Obtain element properties.]

(Step 6) Form the local stiffness matrix.

(Step 7) Form the local-to-global transformation matrix.

(Step 8) Form the global stiffness matrix, as the product of

the matrices in Steps 6 and 7.

(Step 9) Return to Step 1.

In order to implement the algorithm using the heirarchical model,

step 2 involves going down the tree to the element CONNECTIVITY. To

obtain the nodal coordinates, the CONNECTIVITY record contains

pointers to the NODE tree. Similarly, Steps 4 and 5 involve use of

MATERIAL PROPERTIES and ELEMENT PROPERTIES nodes. The rest of the

steps involve computations based on the previously accessed values,

with the BOUNDARY CONDITIONS information used in Step 8.

If the child in a data relationship has more than one parent,

then the relationship cannot be described by a heirarchical model. -,

The network data model can instead be used, with all relations

restricted to be binary, many-one realtionship (links). To represent

relationships among entity sets El, E2, ... , Ek, a new logical.

record type T is created as (TI, T2,..., Tk) of entities that are a

part of the relationship. This enables the creation of links [A

between the entity sets Ei (Ullman, 1980). Figure 2.6 shows a network

model for the same algorithm, where a E TO M is the logical record type

. . . . .. .... .... . . ....... . .......l':" .'} , ,.-',.,, ,: I- -"';"',..""'.--"." . .. *"-. .-, -. ° ,' , - . ". - .''' , .' .-- , ."-:.:.
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Figure 2.6 Network model for the structural database
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that establishes the many-one relationships between the entity sets,

ELEMENTS and MATERIAL PROPERTIES and so on.

The relational database is based on intuition, tempered by

experience, if such a human characteristic exists. With sufficiently

diverse databases, both the hierarchical and network models have

proven to be functionally inefficient (Date, 1975; Ullman, 1980).

Pictorially, the relational scheme is like a table. Each column contains I
an attribute and each row is an entity. There is a distinct

relationship between a row entry and the corresponding column entry and

redundant data is not allowed. The mathematical concept of a relational

database requires the definitions of a domain, Cartesian product, tuples

and a relation. A set of values of one column (attributes) Is a

domain. If there are n domains, then the Cartesian product of the

domains is a set of n-tuples (there are as many tuples as there are

columns in the table). A relation scheme is expressed as R(AI,A2,...An)

if AI,A2,...An are the attributes of the relation R.

Note the strong similarity between the physical database

description in terms of record format, file and record and the

relational database description in terms of relation scheme, relation

and tuple. This ready translation from concept (relation) to

implementation (file), makes the relational database a powerful dara

model. Figure 2.7 shows the relational scheme for the structural

database. The entity set ELEMENTS is related to entity sets

MATERIAL PROPERTIES, ELEMENT PROPERTIES and NODES. The relaLion

scheme for ELEMENTS has attributes as keys for these entity sets but

V.
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Figure 2.7 Relational model for the structural database

PROPERTY No PROPERTY NO SBTP

ELEMENTELEMENT PROPERT IES

STIFFNESSS

L TO. G

MkRI

TRANSFRMATIO

MATRIX GLOBA

i-NOD 
PROPERTIES,~~A* .. ~

*5'*A 5.. A,

NODA BOUNDARYAA* 
MAERA PRPRTE

CONDTION TYPE.



,..-.~

not their non-key attributes. Redundant data are avoided and the

procedure to link entity sets in a tabular form is called

normalization (Codd, 1970).

It is quite apparent that for the structural database in

question, the network model is an improvement over the hierarchical

model and the relational model provides further improvement over the

network model. Note the enormous amount of redundant data in the

hierarchical model. The material and element properties are stored

-y. for all elements, ignoring the many-to-one relationship alluded to

earlier. In fact, the model has already gone through the

normalization procedure. In an orthodox model, the tree NODE would

have been a child of ELEMENTS. The connectivity data now is of a

virtual logical type (which is a pointer to the tree NODE). The

network model has minimal redundant data. In fact it can be argued

that the model is identical to the relational model, semantics aside.

* A However there is a difference. The logical record types, E TO N,

E TO M and E TO EP, are quite unnecessary. In the relational model,

they have been substituted by embedded pointers or secondary keys.

Relational models do not provide answers to all situations. The

fact that all three models are now in a state of flux indicates that

there is still room for improvement. There are instances in which the

database relationships, in either the entire or part of the datahase,

4 are strictly hierarchical, or network or relational. Consider, for

example, the SPAR data manager - the hierarchical structure clearly is

-" superior in addressing matrices or submatrices stored as a part of a

1. A
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huge f ile. The reason is that the matrix information can be

efficiently transferred between the application program and the DBMS

and is influenced by the data manipulation language or query

" 'language.

2.5 Query Language

The term 'query language' is merely a dignified label for the

queries discussed earlier - given an entity set E, its attributes A,

and the values of the attributes V, how can relationships be

expressed between the quantities (Martin, 1975). In a design

environment, queries are usually one of the following forms

(i) A(E) = ?- "What is the value of attribute A of entity E?"

(What is the x-coordinate of node 23?)

(i) A(?) = V - "What entity E has a value of attribute A equal

to V?" (Which nodes have deflections greater than or equal to

2.0 units?)

(iii) A?) ? - "What are the values of attribute A for all

entities?" (What are the stress values for all elements?)

There are other types of queries that are used less frequently (or, not

at all) - ?(E)=V, ?(E)-? or ?(?)=V. Complex queries consisting of

combinations of these are also possible - Find the elements in design

group 6 that have stress values greater than one-half the yield

stress?

Complex queries involve use of multiple keys. The primary key is

essentially an entity identifier. The secondary key does not identify
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a unique record, but identifies all those that have a certain

property. A secondary index uses the secondary key as input and

provides a primary key as output, so that a record can be found.

The answer to the complex query in the preceding paragraph involves

use of primary and secondary keys. The primary key is 6 (design

group number) which points to the entity set, ELEMENTS (Fig. 2.8).

The entity ELEMENT has two secondary pointers, material group number

and stress record pointer, which point the entity sets,

MATERIALPROPERTIES and STRESSES.

This example is particularly useful in illustrating the fact that
the types of queries and the subsequent computations greatly Influence

the conceptual scheme. Note that the DESIGNGROUP uses variable

length records, since the number of elements in a group is not fixed.

The implementation of variable record length files is not trivial.

Figure 2.9 illustrates a different entity-relationship scheme. The

design group information is now embedded in the entity set ELEMENTS as
a data field. The advantage is that the entity set DESIGNGROUP no

longer exists (a variable length record file does not exist).

-: However, in order to answer the same query, the logic would involve

scanning the entire file to locate elements In design group 6.

Then, is the first scheme superior? The answer is yes, based on the

* *v*. nature of the query. However, if the query is posed differently as -

-~ Find the elements that have stress values greater than one-half the

yield stress and create a new entity set STRESSSUM, which stores the

SUM of the stress values of all elements in a group, then clearly the

.:~wv.>* * -
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Figure 2.8 Use of primary and secondary keys
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Figure 2.9 Modified relationship scheme of Fig. 2.8
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second scheme is superior. What is being emphasized is that the

complexity of the query language controls the conceptual database. It

should be pointed out that the biggest difference between context-free

data managers and application-oriented data managers is the nature of

their query language structure.

2.6 Memory Management

The memory management problem is simply this - any computer

system has a finite amount of primary memory (core) available for use

by the user. If the program requirement exceeds this amount, is a :"

solution to the program possible? There are two types of memory usage

- those used by instructions and those used for storing values of

arrays (variables). The following discussion is confined to

management of array space.
b'.

Extending the ideas presentedShrem (1974) to FEM-based

optimization methods, variables can be divided into two types

tabular and matrix.

Tabular Matrix

Nodal coordinates Element stiffness matrices
Element topology Structural stiffness matrix
Loading information Sensitivity vectors
Design variables Transformation matrices all"
Stresses & strains

-: ' Active constraints
'" Objective function

history

-,........................-..- ... . . . . .. . . . . . .. . . . . .
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The working set of data consists of that part of the data

that resides in primary memory at a particular stage of the design

process (the maximum size of the working set dictates the core

requirement). The algorithm should try to keep the working set as

constant as possible, in order to minimize use of secondary storage.

Quite often, this is not possible. It should also be noted that the

ratio between the working sets of tables and matrices changes

significantly during the design process, as does the size of the

" working set itself.

Working Sets in FEM-Based Optimization Techniques

Phase of the design process Tables Matrices
Pre-processing x

Analysis of input data x
Computation of element properties x x
Assembly of equilibrium equations x x
Solution to equilibrium equations x
Computation of gradient vectors x x
Solution to non-linear programming problem x x
Post-processing x

The unique nature in which data are required during the design

procedure makes it crucial to organize data properly. Consider the

example referred to in the previous section. The four quantities (with

their abbreviations in parenthesis) that are required are as follows:

(i) connectivity data (CON)

(ii) nodal coordinates (NC)

(iii) material properties (MAT)

(iv) element properties (ELP)

Quantities (i) and (iv) are stored sequentially and accessed .

sequentially. The size of MAT is usually small compared to other

L
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quantities. The quantity NC is the only quantity whose role in the

computations is difficult to predict. If the numbering scheme is

random (large half-band width), the node references will be erratic.

Hence, a large amount of primary memory should be assigned to NC.

The discussions in the previous two paragraphs provide a

basis for allocation of the working set to the quantities involved.

If the working set (or the primary memory) is insufficient for the

problem being solved, a priority table establishing quotas for the

quantities involved is necessary. Since management of the working

set is directly under the control of the MMS, it can provide the.Ii

program an addressable space that is much larger than the physical

memory of the computer system. The organization of virtual memory is

dependent on the mapping scheme that performs the translation to 11
One way to carry out the translation is to divide the working set

into pages and assign the number of pages to each quantity, depending

upon the priority table. In order to implement this scheme, there are

three main storage management decisions that must be resolved - fetch, .*' \

placement and replacement strategies (Shaw, 1974). The fetch strategy

defines the policy of when to load virtual memory and how much of

virtual memory to load at a time. The placement strategy determines

where in the working set to load all or part of the virtual memory.

The replacement strategy deals with dynamic allocation systems in which

the decision centers around what to remove or swap from the working set

when there is not enough space available. The fetch, placement and

% *, or"
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* replacement strategies used in SADDLE are discussed In the next

chapter.

rI
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% CHAPTER 3 " "
,.

SADDLE : DATABASE MANAGEMENT SYSTEM

3.1 Introductory Remarks

Database management concepts were discussed in Chapter 2. The

actuial implementation in SADDLE is non-standard and is examined in this

chapter. Some additional terminology will be introduced. The -.

management scheme will be dependent on 'file-usage tables' (FUT),

'primary storage directory' (PSD), 'secondary storage directory'

(SSD), page table, 'file descriptions' (FDES), assignment and

dei ,signment. The term 'quantity' will denote all the data that are

stored in a file. The implementation scheme for the physical database,

together with the file-handling conventions, is discussed first

followed by the conceptual database. Later, details on the memory

management system and the link between primary and secondary storage

are explained. Finally, the SADDLE query language structure is %.

explained, followed by the program control structure.

3.2 Software Development

Before developing a design software system, answers to some of

the following basic questions are in order (Rajan and Bhatti, 1982):

(a) On what machines will the software be Implemented ?

(b) How general-purpose should the program be ?

(c) How familiar are the users (designers) with design systems ?

The answer to the first question is partly dependent on the

second. If the design system is to be designed for handling

7.. ."
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relatively small problems (of the order of few hundred degrees of

freedom and a small number of design variables), then most machines

with existing operating systems will be suitable (Kamel, McCabe and

DeShazo, 1979). However, if the system is to be more general, then the

execution environment becomes restrictive. With the current state-of-

the-art in design software, the requirements can be summarized as -

(i) at least a 32-bit machine with double that precision available

for floating point representation,

(ii) easy to use file-handling utilities which can be called from

within the program, and

(iii) the minimum available core to the user should be at least

equal to the module size plus array space of the largest

module.

With a non-virtual machine, the programmer is aware that there is

only limited core available, but secondary storage is unlimited for

all practical purposes. With these data, there are three options

available to the programmer-

(i) Develop a program in which data is managed entirely within

core. Obviously, the maximum size of the problem that can be

handled is dependent upon the available core; e.g., MOVIE.BYU

(Christiansen, 1980). Usually, restart options cannot be used,

since no secondary storage is being used.

(ii) Develop a program with the assumption that a certain fixed core

is available and manage the data by storing the quantities on

secondary storage and reading them into core only when

V,...
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required. This method is superior to (i), but since the

'certain amount' is fixed, only a particular class of problems

can be handled; e.g., SPAR (Whetstone, 1977).

(Ii) Develop a program that does memory management, built along the

lines of a virtual memory operating system. This concept

permits solutions of considerably larger problems without any

changes to the software. In essence, the software is general

enough to handle any size practical problem; e.g., GIFTS

(Kamel, McCabe and Spector, 1977).

While it is evident that the last option provides the ideal choice for

a non-virtual machine, it is not so clear how this scheme peforms

under a virtual memory operating system.

The second question has an easier answer. A modular design

system allows the program to be as general-purpose as the programmer

desires. This is true as long as the database is flexible. Either

the initial design of the database makes provisions for future

development or the database structure is flexible enough to allow for

future development, without involving detailed book-keeping on the part

of the system programmer. There are two different approaches to ensure

this requirement. The top-down methodology (the hierarchy of

development tasks proceeds from a job represented by a node at level

n, to jobs represented by its subordinate nodes at level n+l) ensures

that the original concepts are always visible. In the bottom-up

methodology, on( ever loses sight of what is being accomplished.

Neither method is satisfactorv and quite frankly, there is no

L .,
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substitute for proper management (software development is still

an art).

The last question addresses man-machine interaction. For

wide application of the software, it is necessary to evolve a language ~ ~
that can be easily understood by beginners and exrerienced designers.

In this context, the observations of those who used the POL feature of

the ICES system is worth examining - "It is interesting to note that

several engineers have found it quite difficult to use problem oriented

language. This at first seems a strange paradox since problem

oriented language is supposed to simplify computer usage. Closer

examination reveals that the users typically are not engineers" (Ross,

1966). The comparison between human languages and computer languages

shows that both are far from perfect and extrapolating the fact that

the former has taken over 3000 years to evolve to this state, computer

languages still have to transcend a significant portion of the

evolutionary process. At this stage it seems as If better languages

can be developed only through user-feedback.

3.3 SADDLE Physical Database

SADDLE modules communicate with the physical database by reading

(and writing) information from the files. File-handling can pose

. serious book-keeping problems, for several reasons. Figure 3.1

illustrates SADDLE's file-handling conventions. Calls to open and

close files are made only in the driver main program. To execute a

particular step of the algorithm, quantities involved in the execution

%L
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Figure 3. 1 File .handling conventions
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of the step are first identified. The main program then makes calls

to open files that contain these quantities (if they are not already

open). Control is then transferred to the driver subroutine, which

may or may not use calls to other subroutines to execute the logic.

Finally, control is transferred back to the driver main program.

Before executing subsequent steps, appropriate files are opened/closed.

The SADDLE physical database is made up of two types of files -

those that store program control information and those that contain

data pertaining to the problem being solved. The files can be

" 'f, subdivided into two types, based on the way data is accessed-

sequential access files and random access files. Interaction with

sequential access files takes place one record at a time, starting at

the beginning of the file. This interaction is relatively standard in

FORTRAN. A random access file used in SADDLE is described by its

record length and page size. The record length is the number of words

of information stored in one physical record and an integral multiple

of records make a page. If the size of the file is not known a priori,

then the I/O operations are in terms of a single record. If the size

of the file is known, then a page of information is transferred between " ft

the primary and secondary storage. The CPU timne required for the

latter case is significantly less. The page size has been set as close

the operating system page size as possible. This allows efficient disk

operations to take place. There is one subroutine associated with file

operations. The subroutine, FLEOP, performs seven operations

'.S
% f
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associated with file handling - read, write, open, close, delete, check

existence of and rename.

Subroutine FILEOP is invoked using six arguments

SUBROUTINE FILEOP (oper,nunit,fname,ntype,nbuf,np)

oper : operation to be performed. Valid values are -

READ : for reading from a file

WRIT : for writing on a file

OPEN : for opening a file

CLOS : for closing a file

DELE : for deleting a file

EXST : for checking the existence of a file

RENM : for renaming a file

nunit :unit number on which the operation is to be

performed/code for checking existence of a file;

(nunit=l if file exists;nunit=-l if file does not exist)

The unit number is to be supplied by the calling routine for READ,

WRIT and CLOS operations. The unit number on which the file is opened

Is returned for the OPEN operation.

fname file name

The file name is provided for all operations even though the name is

not used for READ,WRIT and CLOS operations, so as to make the program

readable.

Le
ntype : file type

Valid values are - SA(sequential access) and RA(random access).

nbuf : buffer used for READ/WRIT operations

=... ....... ............................
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A dummy value is specified if the operation is not a READ/WRIT

operation. Otherwise the argument corresponds to the array that

contains the values to be written on the disk, for a WRIT operation or

to the array that stores the values that are read from the disk, Jr a

READ operation.

np page number/file name

There are two uses of this argument. For a READ/WRIT operation, th-

value of the page number is supplied by the calling routine. For a

special OPEN operation and for the RENM operation, np is used to pass

the ordinal value of SPEC and the new name of the file, respectively.

To help facilitate transfer of information between primary and

secondary storage, some additional information must be generated.

This step is executed by three subroutines; IOCHAN, INITAL and MODEIO.

These subroutines carry out I/0 definitions and define the entries In

the storage directories.

Subroutine IOCHAN does the following I
(a) defines unit numbers for terminal input/output, command input

file, printer (output) file and conversation (output) file,

(b) sets the program and database version,

(c) queries the user for job identification and checks for its

* .. validity,

(d) sets values of valid file unit numbers.

Subroutine INITAL does the following

(a) starts timing the execution

(b) reads in file descriptions

S-+ -. ,-
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(c) initializes program counters

Subroutine MODEO is used with the command input and save conversation ___

modes of execution. The routine checks for the existence of the file

jobname.COM for command input and creates/opens file jobname.OUT for

output. If jobname.OUT exists, then the output is appended to the end

of the file.

The description of the SADDLE files is given in Appendix B, where

the format of a typical record in the file is described.

3.4 SADDLE Conceptual Database

Two data models have been used in the SADDLE system. The

, hierarchical model is used with matrix-type entity sets, while the

relational model is used with tabular Information. The matrix entity

sets can be divided into two categories - sparse matrices and full

matrices. An example of a full matrix is the matrix of gradients of

active constraints (GRAD) with respect to design variables. All full

matrices in SADDLE are stored as submatrices in the column order.

Figure 3.2 shows the conceptual arrangement of GRAD. The matrix has

NDESV (number of design variables) rows and NAC (number of active

constraints) columns. The number of active constraints usually changes

from design point to design point, but this does not affect the storage

scheme since the matrix is stored column-wise. In order to access data

In submatrix (i,j), the record number is computed as,

N REC i+(I-I)*NR

where NR is the number of superrows in the matrix. In the case of GRAD

. -... ...-..



Figure 3.2 Storage scheme for entity set GRAD
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there are NDVB superrows computed as follows -

NDVB = NDESV/NBSIZ + MINO(MOD(NDESV,NBSIZ),l)

where the size of one submatrix is (NBSIZ,NBSIZ). This is an example

of a sorted file that requires no indexing, since the calculation of

REC yields a unique value. Other entity sets that follow a similar

conceptual scheme include the constraint function file (FUNC),

temporary files used with the linearization technique in module OPTMOD,

loading information file (LOAD) and the deflection file (DEFL).

The stiffness matrix (STIF) is an example of a sparse matrix. As Z:

in the case of GRAD, the matrix is split into submatrices. However,

only the non-zero submatrices in the upper triangle are stored row-

wise. Information from STIF can be obtained by reading the location

from file, SDIR (Fig. 3.3), a modified sparse index file. The number of

records in SDIR is the number of superrows in STIF. The value of

POINTER is the record in file STIF, where the first submatrix in that

superrow is stored. NS is the number of contiguous strings of non-zero

submatrices in that superrow and LC(1,I) is the number of first super-

column in string and LC(2,I) is the number of last supercolumn in

string. Taking the example in the Fig. 3.3, there are 4 superrows.

The first superrow has 2 strings of sub-matrices (LC(1,I)=I, LC(2,1)=I

and LC(1,2)=3, LC(2,2)=3) with the POINTER value 1. Similarly, superrow

2 has one string (LC(1,I)=2, LC(2,1)=4) with the POINTER value 3, and so

on. The file STIF contains sorted information, based on the pointer

*': values in SDIR, with the first two fields in each record storing*-

the number of rows and columns in the submatrix.

----....... . . .
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Figure 3.3 Storage scheme for entity sets SDIR and STIF
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The relational model is different in implementation from the

hierarchical model, because of the mechanism involved in locating a

record of information. The dense index file implementation of two

relational entity sets - element information (ELEM) and nodal

information (NODE) is now considered. Figure 3.4 shows the conceptual

record of the entity set, NODE. The attributes are as follows for the

th record

NU user number of system node i

NS system record where user node i can be found

X,Y,Z nodal coordinates

DVX,DVY,DVZ design group numbers of the x, y and z coordinates

DISC(6) vector of displacement constraint codes

(0 no constraint; 1 constraint)

NRL superrow to which the node belongs in the stiffness

matrix

NFR row number in the superrow

BC(6) vector of boundary condition codes

(0 suppressed; I free to move)

The conceptual addressing of a node takes place in two modes - the user

mode and the system mode. This scheme is necessary, since (i) the user

does not generate information on all the nodes (autonatic node/mesh

generation) and (ii) the system renumbers the nodes to reduce the half-

band width. In order to locate user node J, the jth record in the file

is read. If NU=J, then the information has been located. Otherwise,

record NS is read, where the user node j is now located. In order to

i-x '
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Figure 3.4 Storage scheme for entity set NODE
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locate system node I, the J1th record in the file is read. Hence, the

embedded pointers NU and NS actually account for the dense index file

implementation. Note that the file is arranged so as to minimize

access in the system mode (at worst I access per node), which is likely

to he used more often then the user mode (at worst 2 access per

node). The example is further useful in illustrating the fact that the

conceptual database can be different than the physical database in

implementation. The attributes BC and DISC are binary data and it

would be a waste of space to store them as vectors. In actual

implementation, they are stored as packed data (into the lowest-order 6

bits of a single variable).

The conceptual record of the entity set ELEM is shown in Fig.

3.5. The attributes are as follows for the ith record

NU element user number

(NU=-23 2+1 for a continuation record)

NS system record number where user element i can be found

(in a continuation record, stores rest of the node

numbers)

IT element type (I-ROD, 3-TM3)

lORD order of element (1-linear, 2-quadratic)

MATP material property number

PROP element property number

NDV number of design variables

LTYP type of design variable

X ! ..
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IREC design group number of the first design variable in

the element

IFP forward pointer to the next element belonging to

the same design group

NCP number of corner nodes

* .~LCP(27) list of corner nodes (system mode)

The number of corner nodes varies from finite element to finite

element. Reserving the maximum storage locations per element for every

element would result in wasted, unused space. In order to minimize

this unused space, a conceptual variable record length technique has

been implemented, as shown in Fig. 3.5. The first record contains a

list of 8 corner nodes. If there are more than 8 nodes per element,

Information is continued in the next record following the continuation

record format. In order to locate information on system element jthe

j th record is read. If NU has the value of a continuation record, then

the element is not active. If not, the value of NCP is checked. If NCP

is greater than 8, then the next record is read and the list of corner

nodes is transferred to vector LCP.

* A linked list technique is used to handle the problem of storing

the design variable linking information. In order to identify all the

elements that belong to a design group and related information, the

attributes NDV, LTYP, IREC and UFP are used. The first two indicate

the number of design variables in the element and the type of design

variable (area, moment of inertia, thickness etc.). IREC points to the

design group number of the first design variable of the element. UFP
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is the pointer to link different elements. Suppose elements 5,10 and

15 belong to the same design group. Then IFP for element 5 is 10, for

element 10 is 15 and for element 15 is -1. A negative value indicates

that the element is the last element in the group.

Other files that have the same conceptual scheme include the

material properties file (MATR), element properties file (PROP) and the

element stress file (STRS).

3.5 SADDLE Memory Management Systen

Drawing an analogy between the physical database and a book, the

SADDLE memory management system (MMS) philosophy will be explained. r

The two entities are compared below. - - '

DATABASE LITERARY COMPOSITION
Physical Database Book

File Chapter

Block Page
Record Line
Data Words

Just as a book is a collection of chapters, the physical database

is made up of files. A file (chapter) Is a collection o. records

(lines) grouped together into blocks (pages). However, there are some

differences. It would be unusual to find a book with varying page

sizes or with the same numhbr of words per line a page. Physical

databases usually have different blocking factors and a constant

record format for different files. L

Using Figs. 3.6 and 3.7, the complex link between the conceptual

database, physical database and the primary and secondary storage will

". N 
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Figure 3.7 Flow between storage directories
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be explained. The primary storage is essentially a super-array that Is

divided into a number of pages. The pages in the working set are eaich-

assigned to different quantities and are so arranged that pages that

belong to a particular quantity have adjacent locations. The physical

database itself, can be looked upon as a collection (super-array) of

files (subsets) that have different blocking factors (page sizes).

Hence, a unique relationship can be established between the location of N

a page (in primary storage) and the corresponding location of that page

in secondary storage. In order to define this mapping, storage

directories have been created in the SADDLE DBMS.

* First, file descriptions (name of file, record length, page size)

are read from file FDES into the secondary storage directory. Then, a

file usage table Is created in the primary storage directory. This

table records the file name, the unit on which the file is open and the

type of file. The control file SIZE is then read. It contains such

diverse information as current problem size, problem switch settingsj

and program limitations. Now the assignment of primary storage to each

of the quantities can be carried out. This assignment is carried out

by routine ASSIGN.

Subroutine ASSIGN is invoked as follows

SUBROUTINE ASSIGN (KA,name,npage,nofset)

KA :super-array that is the working set

4. name :name of quantity (file)

rhis name should exist In the file FDES as a valid entry. ItsW f II(o

descriptions should be clearly defined in the file FDES.

-577
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npage number of pages to be assigned

The value passed by the calling routine establishes how many pages are

to be assigned to the quantity name. If this value is zero, then the

maximum number of pages that the quantity requires is assigned. ]
nofset offset in the working set

ASSIGN returns to the calling routine the value nofset that is the

offset (in terms of locations in KA) from the start of the working set

where the subset begins. Routine ASSIGN calls LOAD to load the

information from the physical database to the primary storage if the " -.

file already exists, or initialize the primary storage if the file is

being created. This assignment creates the page table in the secondary

storage directory and the working set table in the primary storage

" directory. The page table has the name of the quantity (hence the file

from which data is read/written), the first page number in the working

set, and the relative page numbers (of the pages in secondary storage)

in the primary storage (relative with respect to the first page). If

the relative page number (also called codeword pointer) is zero, then

the page is not in the primary storage. The working set table records

the name of the quantity and the offset from the beginning of the

working set (in number of words of data).

Every request for a transaction follows a set path. Navigation

along the path will explain the role of the directories. Suppose the

quantity NODE is required in a module. The first step is assignment of

space in the working set for NODE. File FDES provides information on

the record length and page size of NODE. Then control file SIZE is

U
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used in computing the number of pages required (unless the user

specfies a non-zero number of pages for NODE). The page table is

*1- updated to reflect the page assignment for NODE. There are two

counters associated with every page - the write bit counter and the use

bit counter. In addition, a codeword pointer is used with every

page. If the pointer value is zero, then the page is not in the

working set. Otherwise it points to the location where the page

resides. The file NODE is then opened before any transaction is

carried out. The unit number is recorded in the file usage table.

Let the transaction require information on a particular record.

The routine GETDAT is used for the read operation -

CALL GETDAT (file unit for NODE, record number, working set, KORE

value, offset in the working set for NODE).

Using the record number, record length and page size, the page number

for the referenced record is computed. The page table is 'looked tip'

to find the value of the codeword pointer. If the codeword pointer

value is zero, the paging algorithm is invoked to make room for the

incoming page. Having located the page in the working set, the

relative position of the record in the page is computed. The contents

are then transferred from the working set to the translating buffer

associated with NODE (common block TRNODE). For the write operation,

the inverse procedure is carried out (a call to PUTDAT is made).

If a page fault occurs, routine GETPAG implements the replacement

strategy. A modified form of the 'near-LRU' (least recently usd)

technique has been used. Using the secondary storage directory, th."

awL
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algorithm loops through the pages (in the page table) that are assigned

to the quantity in question. The read and write counters are added to

determine the page with the lowest sum. This is the page that will be

replaced. Before the page is ejected from primary storage, the value

of the write counter is checked. A non-zero value indicates that the

contents of the page have been modified. The new contents are now

dumped on the corresponding page in secondary storage. If all pages

have the same sum, then the last page is thrown out. In order to

ensure that the new page is not thrown out if a page fault occurs

before the page is referenced, the read counter value is set to the

highest value of the sum as soon the page is brought in.

Two topics are discussed pertaining to efficiency - tuning

parameters and 'garbage collection'. For an efficient design system,

the data organization and the memory management schemes must be

flexible enough to allow performance enhancements on various computer

installations. The SADDLE DBMS includes the following tuning

parameters in the design of the database:

(I) maximum size of the working set,

(ii) page allocation policy within the working set, and

(iII) page size.

The first identlgiable parameter is the maximum size of the working

set. Since the working set requirement is problem dependent, it is 711
advisable to Increase this size to as large a figure as possible on

non-virtual machines. If the requirements still cannot be met, the

MMS will automatically invoke the replacement strategy to handle the

... °... ..i .;: :.
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additional requirements. The question is more difficult to answer for

virtual machines. The real-to-virtual memory ratio, type of

computations carried out and system load (all installation-dependent

features) dictate the size of the working set. A smaller working set

is preferred for systems in which the machine is heavily loaded. The

allocation policy in the distribution of the working set is another

parameter. This is especially true since the MMS swaps pages in and

out of the subset of the working space that is allocated to the

quantity that is being paged. The page size is another tuning

parameter. On non-virtual machines, the page size should be close to '4'

the maximum I/O transfer allowed by the operating system. On virtual

machines, page size should be as close to the system page size as

possible. It should be noted that the page size Is an important

figure. Small page size has the following disadvantages:

(i) more page turning activity, and

(ii) large page table size.

On the other hand, a large page size requires a greater I/O time

during paging. The record length could also be considered a tuning

parameter, but it is not clear at this stage whether varying the

length of the record would yield better results. Paging works most

efficiently with programs that execute sequentially, without frequent

references to distant memory locations. Programs characterized by

such locality of reference generate a minimum of page faults. The

SADDLE relational and hierarchical schemes are built on such locality

of reference. In order to verify this philosophy, numerical

4.44 ..- -4 .'4 .
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experiments were carried out. Table 3.1 presents the data obtained

from an experiment conducted to compare the SADDLE memory management

system against the PRIME operating system.

Numerical experiments were conducted with a structural model

consisting of 1250 nodes and 4631 elements. The structure was analyzed

for modeling errors such as zero length elements (for line elements)

and zero area elements (for two-dimensional elements). The K'-,

transformation matrix for local-to-global transformation was also

-. computed and design variable groups for the elements were identified.

For each of the three tasks, the algorithm proceeded to analyze the

data one element at a time, starting with the first element. Three

direct access files from the database were used - NODE for nodal Y

information, ELEM for element information and TRAN for transformation

matrices, with the last named quantity created and the information

. associated with the second modified during the course of execution.

The numerical results in the table show the direct comparison between

an all "in-core" solution (working set 250,000) and a solution with the

memory management done by SADDLE MMS. The term "in-core" merely

indicates the memory management is being handled by PRIMOS. Both ,.

jobs were run simultaneously from different terminals and the system

• -performance was monitered at a third terminal every 10 sec. In Table

3.1, all quantities relating to page sizes and working sets are in

terms of 32-bit words, CPU and disk I/O times are in seconds and PF

refers to page faults. One fact that is rather clear is that PRIMOS

performs relatively poorly when the system is heavily loaded (Run nos.

Y--.-. .-. '.' - -'" ". .." .. .... " " .. . . ... .4 * ." * " " " " " ".. . . . ... . ..-
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Table 3.1 Comparison between PRIMOS and SADDLE MMS

Page Size type A

Number of Pages Number of Disk System
Run Working for SADDLE CPU I/O PF/sec % Time

L. No Set Size NODE ELEM TRAN PF Time Time CPU

Unused

1 21 000 12 20 10 3 933 43.3 57.6 12.7 8.1
250 000 70 331 91 0 26.4 70.9

2 65 000 40 60 30 2 153 36.2 59.6 15.7 12.1
250 000 70 331 91 0 27.2 95.4

3 50 000 30 50 20 2 783 38.3 68.4 10.3 11.0
250 000 70 331 91 0 26.0 74.5

4 45 000 30 30 30 2 813 38.9 76.0 15.5 15.1
250 000 70 331 91 0 27.1 97.6

5 80 000 40 80 40 2 103 36.8 85.1 20.4 27.4
250 000 70 331 91 0 28.2 108.2

Page size 486 490 510

Page Size type B

Number of Pages Number of Disk Systpm
Run Working for SADDLE CPU I/O PF/sec % Time
No Set Size NODE ELEM TRAN PF Time Time CPU

Unused

6 35 000 25 5 5 1 330 30.7 49.7 9.3 22.5
250 000 35 166 46 0 24.9 60.1

7 11 000 1 5 5 6 557 60.6 97.2 16.1 24.8
250 000 35 166 46 0 26.1 100.9

82 000 10 25 46 2 986 40.8 80.2 13.7 29.6,.-250 000 35 166 46 0 25.4 78.9

9 85 000 10 50 25 2 957 39.2 56.9 6.1 8.1
250 000 35 166 46 0 23.6 51.0

8 * . . . .
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V. IiTable 3.1 (cont) ' ..

10 110 000 35 50 25 254 25.0 56.0 13.8 47.0
250 000 35 166 46 0 25.0 75.5

11 70 000 35 25 10 319 25.3 56.5 13.0 33.3
250 000 35 166 46 0 24.7 65.7

12 20 000 10 5 5 3 067 39.2 42.2 6.0 43.0
250 000 35 166 46 0 23. 43.9

13 7 000 5 1 1 3 658 43.3 57.8 6.6 41.0
250 000 35 166 46 0 23.4 50.1

Page size 972 980 1020

Page Size type C

Number of Pages Number of Disk System
Run Working for SADDLE CPU 1/0 PF/sec % Time
No Set Size NODE ELEM TRAN PF Time Time CPU

Unused

x 14 90 000 5 20 5 1 281 38.4 76.2 14.8 21.3
250 000 12 56 16 0 25.9 85.8

.V 15 70 000 3 10 10 1 674 42.0 81.4 12.9 8.6
250 000 12 56 16 0 25.0 79.2

16 95 000 12 15 5 94 25.2 68.2 22.0 23.8
250 000 12 56 16 0 26.0 92.5 " V

17 125 000 12 20 10 79 26.7 102.4 26.5 31.0
250 000 12 56 16 0 27.5 120.7

Page size 2916 2940 3060

%m
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5,10,11,16,17). Much smaller working sets fare better, both in terms

of CPU time and disk I/0 time. However, during times of light system

load (Run nos. 1,9,15), PRIMOS required less disk transfer time. Page

size types B and C fared much better in terms of number of page faults

and disk I/0 times, when they are tuned properly, compared to a smaller

page size used with type A. The number of pages allocated to a

particular quantit- also plays an important role in the number of page

faults that result when the SADDLE MMS invokes the paging philosophy.

This is clear when comparing Run nos. 6 and 14 with Run nos. 8 and
,,.,

16. The latter show higher page turning activity. Such behaviour is

expected since element data are accessed sequentially, while the nodal

information references are more erratic. Allocating more pages to

nodai data resulted in a smaller number of page faults.

It was mentioned in Chapter I that the working set in FEM-based

optimization programs changes in nature from one step of the algorithm

to another. The implication is that a quantity in use in one step may

not be in use in the following step. The question is what to do with

the inactive pages. 'Garbage collection' is the process of locating

all pages that are no longer in use and adding them to the list of

__ available space. SADDLE does garbage collection only in a few

modules. The procedure consistes of two parts. First, thr secondary

storage directory is scanned, locating the inactive pages. After all

inactive pages have been ldc itifted, the rest of the pages are linked

to form a contiguous block of active pages. The primary and secondary

- -.
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storage directories are updates to reflect the changes. The

procedure is an expensive process and must be used with care.

3.6 Primary-Secondary Storage Link

All information, whether fixed-point or floating-point data

(single and double precision), exist as a part of the working set

(identified as a super array, KA). When data are initally read from

the files, they are stored starting at the location that is the

beginning of the subset of the working set allocated to the particular

quantity. Similarly, when data are written to the files, they are

first transferred to the appropriate locations of the super array

before they are actually written on the files. Such a scheme is

viable because of the manner in which data are stored in memory.

Transfers to and from disks take place in number of words and not in

number of variables and data types. Most operating systems make

available to the user these low-level I/0 routines, which are

non-standard FORTRAN routines. They require as input, among other

things, a buffer (or,array) that contains the values that are to be

written, the location of the buffer in the program space and the

number of words that are to be transferred. Such a scheme does not

preclude the usage of standard FORTRAN I/0 routines, but such a usage

would in all probability make the system response poorer, because of

the overhead associated with calls to such routines. .

SADDLE has five routines that are used to retrieve or dump a

particular record from the database. Routines GETDAT and GETREC obtain

-.%.-
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information from the working set and transfer the data to ihe

translating buffer. Routines PUTDAT and PUTREC carry out the Inverse

process of transferring information from the translating buffer to the

working set. Routine GETPAG is invoked during a page fault. The

idea behind such a scheme is that the implementation of both the

relational and heirarchical data models can be carried out with minimal -1

regard to the concept of data types and machine precision.

h..

* 3.7 SADDLE Design Query Language

The design query language has been designed to cater to the needs . -.-

of two types of users - the CO user and the Cl user. The CO user can r:.

use the commands in the SADDLE design language to manipulate data in

the physical database. These commands can be divided into four

categories. A Category I command is a technical information command of

the form

(a) HIST (b) MENU

1,100 ROD2

where the first line of input (alphanumeric) is an entity set

identifier and the second line specifies the domain of the entity set ....

(tuples or attribute domain). With the HIST command, the entity set

'Optimization History' is identified and the input '1,100' specifies

the range of values of the primary key, design cycle number. If the

number of design cycles is less than or equal to 100, information on L"

the entire set has been requested. With the MENU command, the entity

set 'Elements' is identified. However, the second line of input ROD2

,3-,...'.
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specifies that all possible values of the attribute, design variable

type, be displayed.

The second category command is an update command; information is

created, modified or deleted,

(a) SETB,2 (b) DESELEM 9-'

1,2 5

3,4 a

The first line is an entity set identifier. The second (and subsequent

"A lines) of input are either values of attributes or values of primary

key. With the SETB command, the entity set 'Design Variables' and its

attributes lower/upper bounds are identified. The values '1,2' and

'3,4' establish the lower/upper bounds of the current design

variables. The command DESELEM cuts across entity set boundaries. The

command links the information between the entity set 'Elements',

'Element Properties' and 'Design Variables'. All elements that have the

same element properties as element 5 belong to the current design

variable group. Element 5 is the primary entity with its attribute,

element property number, as the secondary key. The values of the

element properties (that are design variables) are transferred to the

attribute, design variable value, of the entity, (current) design

variable.

Category 3 commands deal with program control information,

(a) CYCLES (b) STATUS

20

The command CYCLES sets the maximum number of design cycles to 20.

%.. .-
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STATUS displays the design information, number of design variables,

inequality and equality constraints, design cycles and maximum

anticipated number of active constraints.

Miscellaneous commands form the category 4 commands. They include

commands to identify types of design variables (element properties,

nodal coordinates), optimization teclnique in use, breakpoint value,

value of perturbation used in finite differences, etc.

The Cl user has more control over the types of queries. However,

the relational calculus that is used to access both relational and

hierarchical data, must be programmed by the user. Essentially, the

OPTQTY library provides the user with the means to access and update

information. The access mechanism operates on one conceptual record at

-. a time either providing access to the entire tuple (ZSTRS) or one or

more attributes forming the tuple (ZNODE).

-,*, 3.8 Control Structure

Execution of as SADDLE module can be divided into five phases

(Fig. 3.8). The five phases are initiated by a driver main program,

whose functions are to:

(i) set working set size (value of KORE). The value of KORE

is dependent upon the installation and the operating system,

(ii) allocate subsets of the working space to the quantities

involved,

(iit) transfer control to the user command input parser that tests

the user input for validity and then transfers control to
£•. "" _ 5
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Figure 3.8 Flow in a typical module
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the appropriate subroutines,

(iv) release the working space (either at every stage of execution

or at the conclusion of the execution), and

(v) terminate execution and print user information messages.

Phase 1 : Initiation of Execution

Before execution begins, the SADDLE system performs some perliminary

tasks. First, it establishes I/O channels in order to transfer data

between the user and the physical database. It then queries the user

for a job identification (id). Having established the job id, it

checks for existence of such a job in the user disk space. It also

makes sure that the user is using the current version of the program

(that the databases are comptabile). The read/write counters are

initialized and the program counters are set. The working set size is

also established as a part of the primary storage directory. The file

characteristics are read from file FDES and are stored as a part of

" the secondary storage direcrtory.

Phase 2 Assignment of Working Space

The working space is divided into pages, usually of unequal sizes but

close to the value that allows optimum I/O transfers. The allocation

of pages is left to the user, through the use of reset controls. The

S.-.. *user needs to reset the values only if the user feels that either the

problem size is larger than the current size of the working set, or

. that SADDLE system does a better memory management job than the

operating system. For non-virtual machines or for virtual machines

with small virtual-to-real ratios, SADDLE's paging scheme will have to

N, I
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be used to solve large problems. Normally, when reset controls are

not used, SADDLE assigns the maximum number of pages needed by a 4

particltlar quantity. The maximum number of pages is automatically

calculated by the program (subroutine INITAL in the SADDLE library) .V

during Phase I of execution. The user should reset values only if the

user is conversant with the quantities involved in the computations.

Phase 3 : Execution Phase

Step I of Algorithm:

The driver main program now transfers control to the appropriate

subroutine. It passes the entire working set and the values of the -I
offsets of the quantities from the beginning of the working set as the

arguments. The computations involved in this phase are carried out

and the values from the database are fetched from the database are

fetched by appropriate calls to the SADDLE library routines. When

'. computations are complete, control Is returned to the driver main

program, which then initiates execution of the next phase of the

algorithm.

Step 2 of Algorithm:

Step ....

Step ...

Phase 4: Deassignment of Working Space

When all of the computations are complete, the SADDLE system performs

some more computations - the deassignment phase is exactly the

opposite of the assignment phase. Each quantity previously assigned

to the subsets of the working space must now be released, but before

p%
"2.-
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the space is made available, the SADDLE system checks whether the

quantity was either created or modified during execution of the

module. If a page was created or modified, then the new value is

dumped on the files.

Phase 5: Termination of Execution

To provide the user with meaningful information (viz. CPU time,

I paging time, I/O operations), the SADDLE system makes available to the

user these important values. On subsequent executions, the user is

- . most likely to use the interp-'?tations of the previous run so as to

": make the execution more efficient.

C
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4 CHAPTER 4

EVALUATION OF SADDLE D6MS

4.1 Introductory Remarks

This chapter summarizes the experience with the use of SADDLE

system for design optimization. The system has been used for optimal

design of various structures using the techniques connected with finite

element analysis, non-linear programming, computer graphics and

database management systems. The system has access to powerful pre-

and post-processors, GIFTS and MOVIE.BYU. The chapter concludes with

an evaluation of the SADDLE DBMS and areas of future research work that

will enhance the capabilities of the system are outlined.

4.2 Experience with SADDLE DBKS

The design system has been used to solve two different types of

optimal design problems - minimum weight design problems and min-max -"X

problems. For these design problems, the design variables have been of

three types - member properties, nodal coordinates and non-structural

:-I (dummy) design variable. Different constraints have been imposed -

direct stress and buckling constraint (for truss elements), von Mises '- -

stress criterion (for constant stress triangular elements) and

displacement constraints at specified locations. Before proceeding any

further, the requirements of a typical design problem will be

examined. The design problem is usually of the form- L

minimize objective function (a function of design variables)

..
z. 
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subject to constraint functionsA0 (functions of design

variables).

The tacit assumption is that both the objective function and the

constraints can be reduced to the above form. Quite often in

structural applications, the objective and constraint functions are

dependent on other variables, e.g. state variables. One of several

techniques (direct differentiation, adjoint variable technique) must

then be used by the user to achieve the task of reducing the design

problem to the above form. Tn order to find the next design point, a

typical NLP technique will require these four quantities -

(1) value of objective function,

(2) value(s) of constraint(s),

(3) gradient of objective function with respect to the design

variables, and

(4) gradient(s) of the constraint(s) with respect to the design

variables, for the curr-.t design point.

The implication so far has been that the designer(user) must be

allowed access to not only data already computed by the rest of the

design system, but must be allowed to (i) modify them If necessary, to

reflect the design problem based on the user's requirements, and (ii)

store/retrieve user-defined data in a similar manner.

The SADDLE design system has provided most of these capabilities

for both the Cl and the C2 users. The utility libraries (AOL and

OPTQTY) provide access to the database to retrieve, manipulate and

update system-computed data. Most of the design information is '

SA-'
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automatically generated by module DATUM, where the user can

interactively input and edit design-related information. The system

also provides space to store user-defined variables. Such a capability

is necessary since the user-supplied DESIGN module controls the flow

between the analyzer and the synthesizer and in order to be able to

achieve this result, the user must be allowed means to manipulate some

(flow) control variables.

The following are some other charactersitics (with particular

-, reference to the DBMS) of the SADDLE system-

A (1) Supports both the hierarchical and relational data models. The

data manager treats both these data models in a similar fashion

so that the data transfer between the routines that implement the

* conceptual database and the routines that Implement the physical

database is not bound by the data model.

(2) Implements the virtual memory management philosophy. The

application program is not bound by the amount of core memory

available. The size of the problem that can be handled is

dependent only on the size of the page table and the amount of

secondary table available. I
(3) Caters to the need of different types of users. The user

involvement with the details of the data manipulation language is

left to the user.

(4) Tuning parameters are provided to enhance the computational

efficiency on different machines. Locality of reference is built

into the database structure so that minimum page faults are

10
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generated when data are manipulated.

(5) Provides easy means to enhance the capabilities of the system.

U The data independence that is also alluded to here is not total

but changing the database structure of any entity set will

involve minimal changes to the application program.

4.*3 Improvements of SADDLE DBMS

If there is one major problem with the curent developments in the

area of engineering databpse management systems, It is with the basic

concepts and notions connected with the definition of what constitutes a

DBMS. Unlike business computing, where the user development of so-

called business application software, is rather limited, engineering

computing thrives on software development. This trend is based on the

premise that individual requirements are peculiar and deserves special

attention. The development of engineering DBMS usually proceeds hand-

in-hand with the development of application software. The development

of the SADDLE system is a typical example. GIFTS, SPAR and SADDLE, in

that order, represent an attempt to separate the application software

from the components of a DBMS - the data definition language and the

data manipulation language. The question is not whether the components

can be separated (they have traditionally been distinct from application

software) but whether such a separation will aid engineering

computations. Specifically, can such a philosophy-

(1) standardize software development, make it easier to control

current development, enhance the capabilities of and achieve a

AX.
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reasonable reliability in usage, V

(2) increase computational efficiency and leave the problem of

resource allocation to be sorted by the DBMS rather than the

system programmer, and

(3) make it easy for both the system programmer and the end-user to

form the conceptual scheme of the application software and

manipulate the data using the conceptual definitions.

The answer to each of the question is 'yes'. In order to implement

such a philosophy into the SADDLE DBMS and enhance the capabilities of

the system, the following are some of the areas of future research

work-

(1) Build a query language into the system that can be used both

interactively and through an application program. This language

should make it possible for the user to specify to the system

the (conceptual) schema. The system then should be able to

decide:

(a) The data model that is best suited for the (conceptual)

schema.

(b) Form the physical format for the entity sets minimizing

redundancy and building integrity into the system.

(c) Identify the file implementation scheme best suited to

the entity set in question.

(2) The query language should be easy to use and some form of query

optimization must take place to minimize execution time for

certain queries.

", .° .
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(3) The data manager should be able to handle multiple-user

requests, implement read/write locks and have a procedure to

protect the security of the system.

(4) The system should be able to recover from a system crash. If a

total recovery is not possible, then checks and bounds must be

built into the system to warn the user of any 'bad' data.

The suggestions outlined above may be a tall order to fill in a

short period of time. However, they are very useful additions that can

be made to the DBMS over a period of time. The next chapter looks at

the application aspects of such a database management system.

,... ".'.-.
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APPENDIX A

A brief definition of some important terms are given below. It

should be noted that these definitions are not universal, but

clarify the usage in the context of this dissertation.

attributes

the properties of an entity

command file

a file that contains commands (and/or data) in the same form

as the input the user types at the terminal

data manager

the part of the DBMS that processes requests from the

application program and operates on the physical database

data model

Va a description of the type of structure used in database

relationships

database

collection of data (in an organized form) needed for the

execution of a module

entity set

collection of entities. Items about which information is

stored is an entity.

file

an organized collection of related data records

.%
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garbage collection

the process of locating all pages that are no longer in t.~e

and adding them to the list of available space.

interactive mode

a conversation mode between SADDLE and the user where the

user responses are typed at the terminal

library

a collection of subroutines that perform primitive functions

like file operations, input/output functions, graphics etc.

memory management system

a system that oversees the memory allocation to the

different entity sets in the program and makes It appear as

if more memory is available than what the computer actially

has

module

a program that performs an identifiable task

page

a basic unit of primary storage; also basic transaction

unit between primary and secondary storage

post-processing

program(s) engaged in the task of helping the user visually

interpret output from the analysis and optimization phases

.
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pre-processing

program(s) engaged in the task of preparing input data for

the (finite-element) analysis and optimization phases

primary storage

the main storage (core) in the computer

processor

same as a module

pseudo-batch mode

a conversation mode between SADDLE and the user where the

user responses are being read from the command file as

opposed to the terminal

record

smallest data field that holds a quantum of information (an

integral fraction of the page size)

runst ream mode

an automated mode of execution where modules are executed in

the proper sequence without interactive user intervention;

the user communicates with the system through a runstream

file

secondary storage

storage on a secondary medium like disk drive or magnetic

tape

storage directories

a collection of information on the physical descriptions of

the files existing as a part of the database

I - - - - - -



virtual machines

a machine using an operating system that allows more stor-ige

space than the physical size of the memory

working set

superset formed by the collection of all the entity sets used Z

by the module

4.-7
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APPENDIX B

The following is a description of the SADDLE database. It contains
a description of the contents of a typical record in every file used by
the SADDLE system.

FILE NAME: job. SIZE

RECORD LENGTH 25 INTEGERS
RECORD : 1

VARIABLE FUNCTION
NAME

I Unused
2 Unused
3 Unused
4 NRUXM Number of raster units in x-direction on main viewing

area
5 NRUYM Number of raster units in y-direction on main viewing

area
6 NRUXM Number of raster units in x-direction on offset viewing

area
7 NRUYM Number of raster units in y-direction on offset viewing

area
8-25 Unused

RECORD : 2

VARIABLE FUNCTION
NAME

1 NCPPEM Max. number of corner points per element
2 NFGM Max. number of freedoms per group (block size)
3 NSRM Max. number of submatrix strings in a superrow
4 NLCSM Max. number of loading cases / Max. number of fictitious . -

load vectors that can be solved simultaneously
5 NSTRM Max. number of stresses per stress point
6 NACLIM Max. number of active constraints
7 NDVPEM Max. number of design variables per element
8-25 Unused

Z .. . . . .
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RECORD : 3

VARIABLE FUNCTION
NAME

I NGPT Total number of points (active+deleted)
2 NGPA Total number of active points
3 NELTS Total number of elements (active+deleted)
4 NKPT Total number of key points (not active)
5 NL Total number of lines (not active)
6 NG Total number of surface grids (not active)
7 NS Total number of solid grids (not active)
8 !,MATR Total number of material properties
9 NPROP Total number of element properties
10 NDFPM Max. number of degrees of freedom per node
11 Unused
12 NUGRP Total number of unknown groups in solution
13 NLCT Total number of loading cases
14 NLCA Total number of active loading cases
15 Unused
16 Unused
17 Unused
18 NSTRR Total number of records in stress file
19 Unused
20 Unused
21 Unused
22 NFIB Block number of first freedom to be condensed
23 NUNKT Total number of degrees of freedom in structure
24 Unused
25 Unused

RECORD : 4

VARIABLE FUNCTION
NAME

1 ISTPRE Finite element model generation switch
2 ISTPM Point mass generation switch
3 ISTBWO Bandwidth optimization switch
4 ISTST Stiffness formation switch
5 Unused
6 ISTLD Load generation switch
7 ISTBC Boundary condition switch
8 ISTDEC Stiffness decomposition switch
9 ISTDN Deflection generation switch
10 Unused
11 Unused
12 Unused

2L
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13 ISTES Element stress switch
14-17 Unused
18 ISDES Design information switch
19-25 Unused

RECORD :5 UNUSED

RECORD :6

VARIABLE FUNCTION
NAME

I XMINBX
2 XMAXBX
3 YMINBX Virtual coordinate

*4 YMAXBX limits for plot
5 ZMINBX
6 ZMAXBX
7 XMINSC
8 XMAXSC Screen coordinates

-9 YMINSC limits for plot
10 YMAXSC
11-25 Unused

RECORD : 7

VARIABLE FUNCTION
NAME

I SCLM Model scale
2 VDIST Viewing distance
3 TRAN(3,3) Global-screen coordinate transformation matrix
12-25 Unused
---------------------------------------------------------------------------------

RECORD :8-

VARIABLE FUNCTION
NAME

I XMIN
2 XMAX
3 YMIN Coordinate limits
4 YMAX of model
5 ZMIN
6 ZMAX
7-25 Unused

RECORD :9 UNUSED

-- - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - -- - -

.41
%~



RECORD 10 UNUSED -Z

RECORD 11

VARIABLE FUNCTION
NAME

1 NDV Total number of design variables
2 NINEQC Total number of inequality constraints
3 NEQC Total number of equality constraints
4 MAXCYC Maximum number of design cycles for the problem
5 NCDCYC Current design cycle number
6 NEVAL 1 if function values have to be evaluated 4.

2 .. if gradients have to be evaluated
7 NSTAT 0 .. if in the midst of a design cycle

1I. if a design cycle has been completed
2 *. if an error has been encountered

8 NACMAX Maximum number of anticipated constraint violations
9 NAC Number of violations in current design cycle
10 NACWOB Number of violations excluding those on bounds of

design variables in current design cycle
I I NDVB Number of blocks of design variables
12 NACB Number of blocks of active constraints
13 NACWOB Number of blocks of active constraints excluding those

on bounds of design variables
14 NFUNC Number of function evaluations between restarts
15 NGRAD Number of gradient evaluations between restarts
16 IBRK Current breakpoint value
17 NBA Number of blocks of anticipated constraint violations
18 NFB Number of blocks of constraint function values
19 NTECH Optimization solution technique code

I for linearization technique (LINRM)
2 for feasible directions technique (CONMIN)

3 for gradient projections technique (GRP)
20 DESVAR Design variable type code

.. 1 for member cross section properties as design
variables

2 for nodal coordinates as design variables
21 Unused
22 IPRINT Print code
23-25 Unused

FILE : job ELEM

RECORD :TYPICAL .* ?

RECORD LENGTH 25 INTEGERS + 10 SINGLE PRECISION

J%
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VARIABLE FUNCTION

1 NEU Element number (user)
2 NES Element number (system)

3 LTYP Type of design variable ]
4 NDV Number of design variables in element
5 IT Element type

IT = I - ROD
IT = 2 - BEAM .
IT = 3 - TM
IT =10 - SPRING BOUNDARY ELEMENT

tORD = 1 - SPRING

lORD = 2 - TSPRING
6 TORI) Element deflection interpolation order

lORD 1 - LINEAR
lORD = 2 -- PARABOLIC
lORD 3 - CUBIC

7 IST Element sub-type .
IST = 0 - PLANE STRESS
IST = I - PLANE STRAIN
IST = 2 - AXISYMMETRIC

8 Unused
9 NLDREC Pointer to load record in job.LOAD
10 NCP Number of corner (attachment) points

11 NGP Total number of points
12 NSTPT Number of stress points per layer

13 NLAYR Number of layers for which stresses exist
14 ISTPTR Pointer to first record in stress file

15 NMAT Material type number
16 NTHS Element property group number

17-22 Unused
23 IREC Design group number of the first design variable in

element
24 IFP (Forward) pointer to the next element belonging to the

same design group
25 ALPHID Alphanumeric identifier
26 LCP(8) list of corner points (by system number)

FILE : job MATR

RECORD : TYPICAL

RECORD LENGTH : 5 INTEGERS + 11 DOUBLE PRECISION

VARIABLE FUNCTION i

NAME

I MATPTR First record number of material number 'I'

(zero if material 'I' nonexistent)

V.-*
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2 IMT Material type:
I - Isotropic material

<0 - Continuation record (neg. of material type
being represented)

3 LRED
4 LGREEN Color Levels
5 LBLUE

Remainder of record is dependent on the material type
For an isotropic material (IMT = 1 )
6 E Young's modulus
7 VNU Poisson's ratio
8 G Shear modulus

9 SY Yield stress (von-Mises criterion)
10 RHO Mass density
11 Unused
12 ALPHA Thermal expansion coefficient
13 U Thermal conductivity
14 TEMP Temperature (for temp. dependent material)

15 Unused
16 Unused

FILE Job PROP

RECORD : TYPICAL
RECORD LENGTH : 6 INTEGERS + 15 DOUBLE PRECISION

VARIABLE FUNCTION
NAM-

I ITHPTR First record number of element property group number I
(zero if group 'I' non-existent)

2 ITYPE Element property type
0 - Simple value list
I - Interpolation value list
2 - Geometric data is to be interpolated from the

following two cross-section definitions stored
in this property group

3 - Cross-section definition
3 IPTRCS Pointer to record in this file at which standard element

cross-section definition is stored (0none), or at which
geometric data interpolation data is stored (ITYPE=2).

Remainder of record is dependent upon the value of 'ITYPE'
ITYPE= 0

4 LRED
5 LGREEN Color levels

6 LBLUE

-71
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7 THS(15) List of element property values; usage depends upon the
Element type
RODS Cross-sectional area
Th3 :Thickness

FILE Job . NODE ]
RECORD : TYPICAL

RECORD LENGTH : 10 INTEGERS + 14 SINGLE PRECISION + 3 DOUBLE PRECISION L
--------------------------------------------------------------------------------

VARIABLE FUNCTION
NAME

I NU User number of system node 'I' (negative number
flags deleted/merged node) L

2 NS System record number at which to find data for
user node 'I' '.-

3 Unused
4 Unused
5 X
6 Y Nodal point coordinates
7 z
8-13 Unused
14 NDVX Design variable group number of x-coordinate
15 NDVY Design variable group number of y-coordinate
16 NDVZ Design variable group number of z-coordinate
17 NDISC Displacement constraint code packed into lowest-order

six bits.
18-24 Unused
25 NLDREC Pointer to point load in load file
26 NBL Number of corresponding unknown block
27 NFR Relative number of first unknown within block
28 MFP Map of freedom pattern, packed into the lowest-order

twelve bits. From the highest order bit, they are :
L(1) - L(6) - Freedom flags

0 - Suppressed
I - allowed

L(7) - L(12) - Prescribed displacement flags

0 - Freedom not prescribed
I - Freedom prescribeD

FILE job . STRS

RECORD TYPICAL
RECORD LENGTH : 8 DOUBLE PRECISION

This file contains element stress values, one per stress point per layer

for each element, and stress resultant values, one per stress point for
each element in the model. It is divided into major groups. Each major

V-A.M,1r,
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group of the file (each loading case) contains one group of records for
*every stress point in each element. The group contains all stress and

stress resultant for all layers of stress values at that stress point.
The mode and problem class switches for the model determine which of
these sets of data are actually stored in the file. The file contains a
total of input "NSTRP" stress records for each loading case.
Each stress point group in this file can contain the following records:

<STRESS RESULTANTS - I RECORD>
RST(6) Up to 6 stress resultant components
FREE(2) Unused

<STRESSES - 'NLAYR' RECORDS>
STR(6) Up to 6 stress components
FC(2) Two failure criterions (in percent)
The layers will be ordered from the bottom to the top of the element.

FILE : job LOAD

RECORD TYPICAL

RECORD LENGTH : 8 DOUBLE PRECISION
Consists of 'NLCT+I' groups of records, each group containing 'NGPT'+.
(logical) records. The first group (Number 0) is reserved for composite
loading cases. The second group (number 1) contains loading case 1,
etc. The first record in each group is reserved for special purposes,
while the remaining records store the load values for each node.

VARIABLE FUNCTION
v' NAME

1 VX Load in X-direction
2 VY Load in Y-direction

3 VZ Load in Z-direction
4 MX Moment about X-axis
5 MY Moment about Y-axis
6 MZ Moment about Z-axis
7 RES Load resultant
8 RESM Moment resultant

The first record in each group conains:
LDTYPE Type of load group:

0 - Simple loading case

5 - Composite loading case
6 - Composite loading case (at angle 'VAL')

VAT, Time or frequency value
MOD Modification flag

******************************************* * ********* "..
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FILE : job . DEFL

RECORD : TYPICAL
RECORD LENGTH : 8 DOUBLE PRECISION
Identical in structure to load file, but it contains nodal point
deflection components and resultants, rather than loads. It also
contains a total of 'NLCA' groups of records, rather than 'NLCT' as the
LOAD file does. Each record (except the first in each group) contains:

VARIABLE FUNCTION
NAME

I U X-displacement
2 V Y-displacement
3 W Z-displacement
4 THX Rotation about X-axis

* 5 THY Rotation about Y-axis
6 THZ Rotation about Z-axis
7 DIS Resultant displacement
8 ROT Resultant rotation

FILE : job . SDIR

RECORD : TYPICAL
RECORD LENGTH : 42 INTEGERS
Contains 'NUGRP' records, each describing the submatrix distribution in
one row of the stiffness supermatrix.

VARIABLE FUNCTION
NAME

I NFR Number of rows in superrow
2 NFP Number of first node with freedoms in this superrow
3 NLP Number of last node with freedoms in this superrow
4 LPD(18) List showing rows with prescribed displacements:

"- LPD(I) = 0 - Row's freedom not prescribed

LPD(I) = 1 - Row's freedom is prescribed
22 NS Number of submatrix strings in the row
23 IFSPTR Pointer to the stiffness file record number of first

submatrix in row
24 IBAK Pointer to the earliest preceding row which interacts

with the current row
25 LC(2,9) List of column strings where non-zero submatrices are -. :

present. For string 'I':
LC(I,I) - Number of first column in string
LC(2,I) - Number of last column in string

A-o
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FILE job . STIF

RECORD TYPICAL

RECORD LENGTH : 4 INTEGERS + 324 DOUBLE PRECISION

VARIABLE FUNCTION
NAME

1 NR Row and column position of this submatrix in the
2 NC supermatrix
3 NFR Number of rows in submatrix
4 NFC Number of columns in submatrix
5 SM(18,18) Submatrix, stored column-wise

FILE : job . FUNC

RECORD LENGTH I INTEGER + 18 DOUBLE PRECISION
RECORD : 1

VARIABLE FUNCTION
NAME

1 OBJF Objective function value
2 EP Constraint-band thickness
3 VMAX Maximum constraint violation

* 4 EPBD Constraint-band thickness for design bound constraints
5 CONV Convergence parameter

RECORD 2 UNUSED
RECORD :3 UNUSED
RECORD : 4 UNUSED

RECORD : 5 List of integer variable names supplied by the user.
Maximum of 36 names, each storing 4 characters.

RECORD : 6 List of double precision variable names supplied by the
user. Maximum of 18 names, each storing 4 characters.

RECORD : 7 Values of the 36 integer variables defined in record 5.

RECORD : 8 Values of the 18 double precision variables defined in

record 6.
"- -4----

RECORD : 9 UNUSED
RECORD : 10 UhUSED

A'. .N'-4. :'%.
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RECORD 11 onwards

VARIABLE FUNCTION

NAME

I NSF Number of values in subvector.

2 G(8) Constraint function values.

FFLE : Job . DESV --

RECORD : TYPICAL
RECORD LENGTH I INTEGER + 108 DOUBLE PRECISION

VARIABLE FUNCTION
NAME L

2 X(18) Design variable values
3 XL(18) Lower bounds of design variables l--
4 XU(18) Upper bounds of design variables

5 DF(18) Gradient of objective function

6 DELTA(18) Direction vector
7 XS(18) Copy of design variable values during line-search

FILE : job . GRAD

RECORD : TYPICAL

RECORD LENGTH : 2 INTEGERS + 324 DOUBLE PRECISION

VARIABLE FUNCTION
', NAME

1 NSR Number of rows in submatrix

2 NSC Number of columns in submatrix
3 DG(18,18) Submatrix storing gradients of active constraints with .

respect to design variables.

FILE : Job . HIST

RECORD LENGTH : I INTEGER + 18 DOUBLE PRECISION
The file is so arranged that the first MAXCYC (maximum number of design

cycles) records contain the design history, one record per design

cycles, followed by NDVB records (number of design variable blocks)
per design cycle containing the values of the design variables at the
end of the design cycle.

VARIABLE FUNCTION

NAME

.• ..:
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1 OBJF Objective function value
2 COWV Convergence parameter value
3 VMAX Maximum constraint violation

4 STEPSZ Step size at the end of line-search
5-18 Unused
19 NACTVE Number of active constraints
-----------------------------------------------------------------------------
The rest of the file contains the design variahle values %tored as
18 values per record preceded by a header contatning the nitimh-r

values stored in the record.
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ABSTRACT

This report presents general concepts for database management in

design optimization. The need for data management is emphasized.

Design optimization procedures use a large amount of data and are

iterative in nature. Data used in optimization procedure is described.

Logical organization of data using hierarchical, network and relational

data models is described with reference to design optimization. Various

techniques of physical storage of data are described. A suitable file

structure and file operations required for design optimization are

,; - given. A comprehensive review of literature for database management in
. . .. 4..

scientific computing is conducted. It is noted that database management

ideas are fairly new to engineering community and terminology used In

literature varies widely. Well-accepted terminologies are listed.

Favorable features and drawbacks of some available database management

systems are noted. Based on this study a suitable database management

system and a database for design optimization can be developed.
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1. INTRODUCTION

Recent advances in the computer technology have considerably

improved the capability of engineer involved in design optimization. low

cost computer systems are available having higher memory, large disk

space, interactive capability and graphic display. Such systems were

considerably expensive a few years back. Since these new computer

systems can be used to handle large quantities of data and perform

computation rapidly, it is important to look at the role of data

management in design. Many engineering design problems are quite

complex. It is impossible for the engineer to specify a suitable design

satisfying all the performance requirements and physical constraints

without substantial computer analysis. In addition, the amount of

information and data used in design optimization computation is so huige

that data management becomes extremely important. A database management

system can be viewed as both a repository of data used/generated by a

given design problem and as a design tool. It offers powerful ways of

manipulating data. It liberates the designer from the tedious task of

managing data. Thus, a good database system in computer-aided design

provides a tool for the designer in achieving results in an efficient

and systematic way.

Computerization in commercial field in the areas such as business

accounting, inventory control, and task scheduling has been quite

suet PSsful withi application of powerful data management systvims.

However, due to the complex nature of information in scientific-
SL~ILL

applications, the growth of data management system has not taken place
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to the extent as, in husiness applications. It appears that the analysis I
capabi lity in compter-aided design of structural and mechanical systems

Is enhanced with the use of some database management systems that are

now available (Ulfsby, et al., 1979; Fischer, 1979; Comfort, et al.,

1978). These database management systems are highly specialized in r

nature. Extensive modification of these systems are required to use

them in design optimization.

Current trends in database management are toward arriving at a

database management system that meets certain standard requirements,

such as data independence, flexibility, mulitiple usage, and non-

redundancy. These requirements can only be met by proper design of a

database. Different methodologies having markedly different

characteristics and features are available for database design (Buchmann

.* and Dale, 1979). However, most of these methodologies have their origin

in business environment. A database that suits design environment can

be obtained using a suitable scheme. Based on a detailed study of the

requirements, and data used in design optimization, appropriate database

management concepts can be developed. This forms the subject matter ofa.,.- .- .

pa the present report.

In Chapter II the need for database management system in design is

given. Data used in design optimization is discussed in Chapter III.

Structural and mechanical system design is used as a model. Data

similar to these systems are needed in other applications. In Chapter

IV, different data models used in data representation are discussed.

Also, a data model suitable for design optimization is given there.

File structures that are commonly used in database management field and

2
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addressing techniques are given in Chapter V. A comprehensive review of

literature on engineering database management is given in Chapter VT.

Finally, discussions on database management concepts are given in

Chapter VIII. References cited in the report are given at the end of

-,. the report. There is one appendix to the report. It contains various

terminologies used in hardware, and logical and physical database

structures.

* ..- , ,
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II. NEED FOR DATA SE IN DESIGN OPTIMIZATION

Computer programs for optimal design of large structural and

mechanical systems can be developed for automatic computation based on

well known design optimization methods (Haug and Arora, 1979). Finite

element techniques are usually adopted to analyze the system within a

design iteration. As such the finite element technique require huge

amount of computation and data storage depending on the size of problem

at hand. Further, the amount of data handled depends directly on the

number of iterations performed in iterative design optimization

algorithms. Therefore, a careful consideration of data handling aspect

is necessary in design optimization.

It is important to reaiize that engineering design optimization and

englneering analysis are fundamentally different in nature. In

analysis, it is generally assumed that a solution exists and numerical

methods used are stable. Also, many engineering problems require the

use of data only a few times during the solution procedure. In optimal

design on the otherhand we find solutions in an iterative manner.

Existence of even a nominal design satisfying constraints is not

assured, much less existence of an optimal design. Therefore, it

becomes essential for the designer to exercise control over the suitable

design optimization method that has to be used. In such a case, the

data used by one method should be made available for use in another

method. The concept of centralized database becomes important. A . -.

centralized database which allows interaction between a finite element

program and an optimization program can be used to improve design

4
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iteratively. Such a database provides an option for the designer to

interrupt the program execution and provides flexibility for the

designer to change his design parameters. A properly designed database

when used with interactive computer graphics, offers considerable aid to

the engineer involved in design optimization (Galletti and Giannotti,

1979; Somekh and Kirsch, 1979).
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111. DATA USED IN DESIGN OPTIMIZATION

In optimal design of structuiral and mechanical systems, we

generally use nonlinear programming techniques (Haug and Arora, 1979).

The design objectives and constraints for these systems are specified

quantitatively and expressed in terms of a mathematical model. Design

of a system is specified using a set of parameters called design

variables. The design variables depend on the type of optimization

problem. In design of aircraft components such as stiffened panels and V

*cylinders, the design variables are spacing of the stiffeners, size and

shape of stiffeners, and thickness of skin. In optimization of

structural systems such as frames and trusses of fixed configuration the

sizes of the elements are design variables. Thickness of plates, cross-

sectional areas of bars, moment of inertia represent sizes of the

elements. If shape optimization Is the objective, the design variables

5, may include parameters related to geometry of the system.

The optimization problem deals with minimization or maximization of

objective functions subjected to certain constraint conditions. The

constraints may be classified into performance constraints and size

constraints. The performance constraints are stresses, displacements,

local and overall stability requirements in static case and frequencies

and displacements in dynamic case, flutter velocity and divergence in C5.

aeroelastic case or combination of these. The size constraints are

minimum and maximum limits on design variables. In nonlinear

programming, the search for the optimum design variable vector involves

Iterative scheme. The design variables data at n and n+1 iterates are

6
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computed. The direction of travel vector and step size are computed.

The direction of travel involves computation of gradients of objective ""

and constraint functions with respect to the design variables. Data

belonging to equivalent design variables are grouped there by reducing

the size of design variable vector.

In most problems of structural and mechanical system design, K

behavior of the system can be defined using state variables, e.g.,

stress and deflection. In such a case, state space formulation is

frequently employed (Haug and Arora, 1979). Design sensitivity

coefficients in terms of matrix equation are determined in state space

formulation. Adjoint equations are used to define a set of variables

that provide design sensitivity information. Symmetric matrix equations

can be used to advantage thereby reducing the data storage requirements.

In parametric optimal design problem yet another set of variables

called the environmental parameters are used (Haug and Arora, 1979).

Optimal design problem is formulated with additional constraints called

parametric constraints. The solution of parametric optimal design is

obtained in two steps (1) the solution of subproblem and (2) solution of

outer problem. The data of these problems may be stored separately.

Finite element method and numerical methods are adopted during -

. "analysis of structural and mechanical systems. Finite element method

uses data such as element number, nodal connectivity, element stiffness

matrix, element mass matrix, element load matrix, assembled stiffness,

mass, and load matrices, displacement vectors, elgenvalues,

eigenvectors, buckling modes, decomposed stiffness matrix, and the

stress matrix. In general data used in finite element Is quite large.

7
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Symmetry of stiffness and mass matrices is taken into account so that

data storage requirement is reduced. Hypermatix schemes are generally

iused in dealing with large matrix equations.

For design of large structures, efficient design sensitivity

analysis is particularly critical. For such structures, substructuring

concept can be effectiily integrated into structural analysis, design

sensitivity analysis, and optimal design procedures. In this concept,

one deals with small order matrices as the data can be organized

substructure-wise. The degrees of freedom can be classified into

boundary degrees of freedom and interior degrees of freedom. Data for

the stiffness matrices corresponding to these degrees of freedom can he

separately stored. Data of constraint functions corresponding to

internal and boundary degrees of freedom are used in determining design

sensitivty calculations. Adjoint matrix data is stored for each

substructure.

In case of multiple loading conditions, performance of the system

is determined for each loading condition. Design sensitivty data is ..

computed for each violated constraint. To reduce the size of data, the

constraints which are not critical at optimum point are deleted. In

case of fail-safe optimal design problem, data of state-equations and

constraints are generated for each damage condition. Optimal design of

a system under dynamic loads requires additional data of eigenvalues and

eigenvectors. The eigenmodes data are used in modal anlysis to reduce

the size of equations in design sensitivity analysis. -

Many real world problems will have features that are not explicitly "

contained in general optimal design formulation. Problems with peculiar

I?!8
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features need to be treated by making minor alterations in the generil

algorithm. Interactive computation and graphics can be profitably

" employed in design optimization. At a particular iteration, the

designer can study the data of design variables, constraints which are

active, performance of the system, cost functions, admissible direction

of travel, sensitivity coefficients, etc. The designer can make

judgement regarding suitability of a particular algorithm, necessary

change of system parameters, redefinition of convergence parameters and

use them in achieving the optimal design. Interactive graphics display

facilities require additional data for display of system model, results,

and graphs. ".'

Thus, for design optimization, data generated during analysis mtst

be saved. The data saved is used for formulation of constraints.

" Constraints are checked for violation. Design sensitivity analysis of

violated constraints is carried out. Calculation of design sensitivity

coefficients needs most of the data generated during analysis.

Therefore, data must be organized and saved properly in a database for

efficient design optimization. 
t4.:J
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IV, DATA BASE ORGANIZATION FOR DESIGN OPTIMIZATION

Usually in any design environment, the design of several

engineering systems is carried out simulataneously. Also, in case of

large engineering systems, a number of groups are involved in design of

various subsystems. It is desirable to create a separate database for

each subsystem or project. The subsystem database can be identified

using a name. Each project may consist of a number of tasks. Depending

on the task complexity and volume of data generated, database may be

subdivided into a number of data libraries. These data libraries in

turn store a number of data sets that are identified by a name. The

Individual groups dealing with the subsystem design are authorized to

access, store and modify data in a particular database, thereby ensuring

database security.

Modular program organization is essential for efficient design

optimization algorithm. A module is a software element that performs a

well defined task. These modules must possess exact knowledge of the

data structure. It is essential to study various data structure

organizations and choose those data structures that are most suitable

for design optimization.

4.1 DATA MODELS

The data models are logical representations of the data utilized by

the users of the database system. Data should be represented in a form

that is most convenient from users point of view. A data model stores

the data as well as relationship between the data items. The overall

logical database description is referred to as a schema (overall model -

10
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of data or conceptual model). A schema is a chart of the types of data

that are used. It gives the names of the entities and attributes and

specifies the relation between them. There are three types of data

models that are commonly used. They are (1) Hierarchical model, (2)

Network model, and (3) Relational model. These three types of data

models are frequently employed in business application. Suitability of

these models with respect to design optimization is considered in the

following paragraphs.

4.1.1 Hierarchical Model:

In this model the data is represented by a simple tree-structure.

A tree is composed of hierarchy of elements called node. Every node has

one node related to it at a higher level. The node at a higher level Is

called a parent node. Each node can have one or more nodes related to

it at a lower level called children. A node at the top of a tree Is

', called the root. Figure 4.1.1 shows a hierarchical model. An elementary

hierarchical relation is the one in which there exists one and only one

parent for a set of child nodes. The root of an elementary relation has

no parent. A hierarchical model is a collection of elementary

hierarchical relations. Hierarchical model has one-to-many

relationships. Hierarch~s is a natural way to model truly hierarchic

structure in real world problems. Tree structures are used both in

logical and physical data descriptions. In logical data descriptions

they are used to describe relations between record types. In physical

<A
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description they are used to describe sets of pointers and relationship

between entries in indices. A hierarchical file has a tree-structure

relationship. Hierarchical structures are relatively easy to represent

in many applications. In many other applications, data are not tree-

structured. Therefore, in such cases, other complex models have to be

used to represent data. The hierarchical model simplifies the software

* although the corresponding system is sligthly lengthy.

In finite element analysis, we can form a hierarchical model with

data items such as structure, substructure, elements and nodes (Figure

4.1.1). Another example of hierarchical model is in representation of

structural stiffness matrix. Depending on the size of matrices two or

three levels of data can be used. The hierarchy is established by the

two levels of data which actually contain the matrices.

4.1.2 Network Model:

A collection of arbitrarily connected logical relations is called

network relation. The data model defined by such a network is called

the network model. A network is more general than a hierarchy because a

node may have any number of immmediate higher level relationships. Any

data item in a network structure can be related to any other data item.

Figure 4.1.2 shows a network model. The network model can have one to

many levels of data representation as with hierarchical models. It is

possible to make a hierarchical data model non-hierarchical by adding

new segment types and new directional logical relations. Network allows

,- many-to-many relationships.

13
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A network relation is said to be simple if each directed logical -'

relation is functional in at least one direction. This means a schema

in which no line has double arrows in both direction. Complex network

relation will have double arrows going in both directions. For example

in finite element analysis we can form data model with items such as

elements and nodes. The network data model allows complex relationships

that commonly occur in real world problems. The disadvantage of this

model is in its complexity and in the associated data description

language.

4.1.3 Relational Model:

Tables are the most convenient way of representing some data. If a

set of Attribute pairs are properties of an entity occurence, then they

are said to be logically related. A data model constructed using

relations is referred to as a relational data model. A relational data

model is constructed from a tabular representation of data. Figure

4.1.3 represents a relational model of data. The rows of the table are

generally referred to as tuples. The columns are referred to as

attributes. If there is one tuple, the relation is said to be unary. A

binary relation has two tuples. Relations of degree n are called n-

ary. The relational model provides an easy way to represent data. This

model can be easily implemented as physical storage of tabular records

are less complex than hierarchial and network models. The database can

-..' -be expanded easily with additions of tuples and attributes. The

operations such as PROJECT, JOIN, and SELECT can be used to form new .-

relations. Examples of relational models in finite element analysis are L

*'1 :: -. ,.
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TRIG77

ELEMENT MATERIAL NODE NODE NODE THICKNESS
NO, NO. 1 2 3

NODE CORD

NODE DOF DOF DOF DOF NODE X Y Z
NO. 1 2 3 4 NO.

Figure 4.1.3. A Relational Model.
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element-node relation, and node-degree of freedom relation. TRIG

relation in Figure 4.1.3 contains tuples of triangular element data.

There are six attributes of this relation namely element numbers, node

numbers, material number, and thickness. The relation NODE and relation

CORD contain data of node numbers and coordinates of nodes,

respectively.

Easy access to data in relational model is an important feature

that is not available in other model. In a relational model high degree

of data independence can be achieved. Also, in a relational database it

is simpler to develop and implement data query and data manipulation

languages.

4.2 DATA MODEL FOR DESIGN OPTIMIZATION

The data used in design optimization was described in Chapter

111. It can be seen that majority of the data is numeric. It can be

classified into tabular and matrix forms. In general data can be

grouped into scalars, arrays, tables, matrices and character strings.

These data can be grouped together to form a data set. A data set is a

collection of data items. Data items in a data set are ordered by the

users or application programmers in a way that is convenient to use.

The user or the application programmer can describe his view of data In

terms of relations between data Items in a data set. Data sets are

named and indexed to identify them in the database.

In design optimization, the concept of design variables is

fundamental and all data structures should he built around it. A

hierarchical data model for representing the design variables is

17
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described as follows: Figure 4 .2 (a) shows different levels in a

hierarchical model. The first level in the model is called DESVAR. It

provides basic information about the design variable and its location in ;%

the structure. Attributes of the system are described in rows of the

table. The rows in the table indicate the substructure number,

equivalent substructure number, design cycle, and type of optimization

problem. Columns represent the values of the attributes for a specific

substructure. Since the values of the design variables cannot be

represented by a single value, a pointer is used to show the location

where the design variables are located. The second level of the data

model represents the design variable group data DESGRP. The first row

represents the design group linking, the second row represents the

material number, and the third row indicates an address to the lower

level. The columns represent design group numbers. The third level in

the data model is DESNUM. The rows in the DESNUM are the design

variable numbers and design variable cross-section type. The fourth

level in the hierarchical model is DESDAT. It contains the actual data

for design variables, i.e., cross-sectional data for the example.

A use of the relational data model is described with an example of

the finite element analysis. For the finite element idealization,

structural element numbers, material number, and nodal connectivity are

stored in the relation named ELMT. The nodal coordinates and degrees of

freedom numbers are stored in the relation NODE. These relations are

shown in Figure 4.2(b). The relation ELMT can be manipulated to form

new relations MAT and ELNOD using the PROJECT operation of relational

..- 1.
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DES VAR

SUBSTRUCTURE 2 34
NUMBERI

LEVEL *I EQUIVALENT1 1 2 2SUBSTR. NO1 2 2

DESIGN CYCLE

-~ DES. OPTIMIZ.
TYPE.
SPAT IAL /CROSS -SEC

ADDRESS TO*
LOWER LEVEL

DESGRP

DESIGN.
GROUP. LINK 1 2 3 4 5

LEVEL 2 MATERIAL NO. 1 2 2 3 4

ADDRESS TO
'_OWER LEVEL j

DESIGN. VA R. 1 2 3 C4 iCUA

NUMBER CCRUA
DESIN. V R.R-RECTANGULAR

LEVEL 3 DHESG.VR C R H L H-HOLLOW TUBE
SHAPE -- L-ANGLE

ADDRESS TO
LOWER LEVEL J 0

4E 
DESDAT

HEIGHT

LEVEL 4 WIDTH

DIAMETER

THICKNESS

Figure 4.2(a) A Hierarchical Model for Design o)ptimizaftionf

y19

r L -



.7771

algebra. NODE relation can be projected into DOF and CORD relations.

Using JOIN operation, the relations ELNOD and DOF can be combined to

form a new relation ELDOF. The application programmer can employ

different relations to those defined in the schema. Thus relational

model provides more flexibility to the database user. However,

indiscriminate use of PROJECT and JOIN operations can produce invalid

results in some cases.

Another example of the hierarchical data model can be given for the

hypermatrix data. In storage of large order matrices encountered in

many finite element applications, it is convenient to subdivide matrices

into smaller matrices. These small sized matrices are called sub-

matrices. It is possible to organize submatrices into various

hierarchical levels. Figure 4 .2 (c) represents a hierarchical scheme of

data model representing a hypermatrix. This scheme of representing

hypermatrix helps In solving large order equations in a small memory

environment.
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POINTER TO
SUBST SUBST SUBST SUBST SUBSTRUCTURE
1 1 2 3 4 STIFFNESS

I I I I I MATRICES.

POINTERS TO POINTERS TO POINTERS TO

INTERNAL BOUNOARY INT/BOUND.
S IFFNESS ST. MAT. (SUB) ST. MAT ...

(SUBMATRIX) (SUBMATRIX)

-2¢ 
.' I

-77-

,..._;.

HYPER MATRIX

-. '1. I "

, •-ELEMENT

0 0,

n x n SUBMATRIX

-. 7 .--

Figure 4.2(c) Hierarchical Model for Hvoermatrix Representation
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V. FILE STRUCTURE

In this chapter, different types of file structures currently u'ed

to store data on an auxiliary storage device are reviewed. Auxiliary

storage means tape drives, disc drives, and disc drums. Tape drives are

termed sequential device, whereas disc drives and drums are called

direct access devices. The physical storage of data on these devices

are generally different from the logical form of the data. Various

aspects of storage techniques namely operational efficiency, response

time and cost have to be studied before a particular technique is

adopted. Various file-storage techniques are presented in the following

paragraphs. Also, storage of data on physical devices based on concepts

such as 'blocking', 'record length', 'paging', 'addressing', and

'pointers' are discussed.

5.1 SEQUENTIAL FILE

Sequential file is usually associated with magnetic tape. However

it can also be used on a direct access storage device. A sequential

file is a collection of records which are stored one after another In a

sequential manner. Generally, a sequential file (magnetic tape) is used

to hold large quantities of data. Also, sequential storage devices are

less expensive. Limitation with sequential file organization is that

access time for an individual record is dependent on the location of

record in the file. - _

23
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5.2 DIRECT ACCESS FILE

A direct access (random access) file is usually associated with

disk or drum. It is a collection of records in which the time required

to locate a particular record is independent of that record's position

in a file. Records in a direct access file can be retrieved or stored

by specifying the actual address of records. There are several ways of

accessing a record. One method is to specify the relative record number

(from the start of a track and record number respectively) of a desired

record. A second method is by specifying relative track and a record Ii
key. Another way is by specifying the actual cylinder head number, and

track record number on the device. Direct access device can be used to

store many kinds of file organization for example sequential, direct, and

indexed sequential. Records in a direct access file can be retrieved,

modified and stored in any desired order. This capability provides rapid

transmission of data between main memory and direct access device. A

primary advantage of a direct access file is the speed with which an

individual record can be accessed (or stored) in a large file. This

advantage must be weighed against cost of direct access device.

5.3 BLOCKING

A group of data which forms a physical record is referred to as a

block. Logical records are usually grouped together into blocks and are

stored and retrieved one block at a time. Blocks are later split into

actual logical record in the program working area. This helps in

Increasing efficiency in storage space and time involved for storage and

retrival operations.

24
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5.4 RECORD LENGTH

Fixed length records are desirable as they are simple to ti-e and

less complicated to program. There are situations In which logical

records can be of variable length. For example records of element

numbers with nodal connectivity numbers; records of node numbers with

degree of freedom numbers for each node. In such situations, the

physical records will be filled with as many logical records as

possible. The gap leftout in the physical record has to be minimized by

adjusting the physical record length.

Sometimes, it is required to store a variable length of list of

values of the same attribute. For exammple, number of nodes connected

to an element varies depending on the type of element used. In stich

cases, it may be advantageous to store the data as a string of values to

reduce the storage space. The program logic will be simplified if the

maximum length of list is used to store variable length attribute list.

5.5 PAGING

Blocks of data known as a page is transferred between the main

memory and the peripheral storage device. The concept of a page helps

iminimizing the seek time. Page must he used in a good database

* management systems.

* 5.6 POINTERS

* Links betweeen one record and another can be established with -

pointers. Pointers are stored in the record itself which indicaite whe re

another record is located on the physical storage. Three different

types of pointers -machine address, relative address, and record
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identifier - can be used. Records in a file may be sequentially

numbered. The pointers are simply the sequential number. Sequential

number may later be converted into machine address. Machine

independence can be achieved to a certain extent through the use of

relative address pointers. However, machine address pointer is faster

than the other two types of pointers. In record identifier method, the

address imust be established using symbolic pointers. However, this

method is slower, especially if the record has an addressing method

needing more than one seek.

5.7 ADDRESSING TECHNIQUE

Records in a file can be identified and located using a unique

number or a group of characters called the key. There are several

methods of addressing a record. The simplest way of locating a record

Is to scan the file and locate the key of each record. This method is

too slow. Another method is the 'Block Search' technique. In this

technique a defined number of blocks of records are skipped and then

searched for the block containing the required record. Files are

addressed by means of a table called an index the indexed sequential

file method (Fig. 5.7). The input to the table is the key of the

required record and result of the index table search is the address of

the required record. By this method, considerable time is saved but

space is needed to store the index. Hashing is another form of

addressing technique. In this method, item's key is converted into

near-random number and the number is used to determine where the record 2
Is located. There are other addressing techniques such as indexed
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nonsequential technique, key-address technique, and algorithm technique. j
However, any of the combination of techniques can be used for addressing

purposes. ]
5.8 FILE STRUCTURE FOR DESIGN OPTIMIZATION

Based on the file storage techniques as defined in the above

paragraph, a file structure for design optimization can be developed.

Data can be stored, retrieved and modified using certain standard

operations/functions such as define a file, open a file, define a data

set name, write a data set, read a data set, and check for existence of

a file. The status structure of a file can be defined; for example

FrLE: existing/non-existing, opened/closed, RECORD empty/written. The

constraints for calling various functions must be defined: (1) file must

have been defined before it can be opened or written, (2) file must have

been opened and record must have been written before it can be read or

modified, (3) a record once written cannot be emptied again, and (4) a

closed file can be opened again or deleted. A status diagram for a file

system is shown in Figure 5.8.

'Is
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Figure 5.8 A Simple File System.
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Various operations on a file are:

DFI)EFN - Define a file in user's directory

DFOPEN - Open a file in the directory

DFDELE - Deletes a file

DFCOMP -Compress a file

I)FINFO - Give information of a file

DFCLOS - Closes a file 4

DSDEFN - Define a data set in a file

DSRDFN - Redefine a data set order and size

DSDELE - Delete a data set

DSCOPY - Copy a data set to another data set

DSGET - Get a data set

DSPUT - Put data into data set of a file

Some basic files required for design optimization are given as

fol lows:

INTL - Cost function, constraints, optimization parameters

DESV - Design variable file

ELMT- Element numbers and nodel connectivity

NODE - Node numbers and degrees of freedom numbers

STIF- Stiffness file (assembled stiffness, geometric stiffness, etc.,)

MASS Mass file (assembled lumped, consistent mass, etc.,)

LOAD- Load file (acceleration, concentrated, distributed, etc.,)

MATR - Material file

DEST - Decomposed stiffness

SOLT - Solution for displacement, stress, frequencies, mode shapes

etc.,)
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DSEN- Design sensitivity file (adjoint matrices, gradients etc.,)

OPTZ - Optimization file (optimal solution, history of cost function,

constraints, design variables, violation of constraints etc.,.) .

If substructuring technique Is adopted, then some of these files

could be organized separately for each substructure.

.4.,
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VI. REVIEW OF LITERATURE ON DATABASE MANAGEMENT IN ENGINEERING

A number of papers and reports have been published on database

K management in recent years. It is important to take advantage of what

has been done in the field of database management. Therefore, a

comprehensive review of literature on the subject is presented in this

chapter. The review is limited to the database management application

in scientific and engineering computing. The review may be broadly

grouped into two categories: (1) database management concepts,

methodology, etc., and (2) database management system that are currently

available. 7,

6.1 DATABASE MANAGEMENT CONCEPTS

The database management concepts are not new in the area of

business computing. However, the database management concept is

particularly new in the area of scientific and engineering community.

During last five years a number of papers have been published on the

database management in scientific computing. The paper by Fellipa

(1979) on database concepts in scientific computing highlights the

difference between the business data management and scientific data

management. The importance of centralized database is stressed in the

paper. The terminology used in the business computing is fairly new in

scientific computing. A comprehensive list of terminology that is

relevant to scientific computing is given in another paper by Fellipa

(1980).

An interesting paper by Bell (1982) gives some introduction to data

-. modelling in scientific computing. It discusses some issues on how
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scientists actually use their data. The paper also gives some

comparison between data modelling for scientific application and

commercial application.

Several research studies have been conducted to find out a suitable

way to design a database management system for scientific and

engineering applications. Buchmann and Dale (1979) analyzed different

methodology for database design. Various steps involved in a database

design are brought out. Also, they have presented a framework for

evaluating database design methodology. Roussopoulus (1979), designed

CSDL - an interactive language for designing conceptual schema of

databases. A database system architecture for interactive computer-

aided design has been proposed by Kunli (1979). Grabowski and Flgner

(1979) in their paper have discussed various issues in designing a

semantic data model. Difficulties of information modelling in CAD

applications is brought out in that paper. Another paper by the

Grabowski, Eigner and Rausch (1978' on CAD data-structure for

minicomputers brings out various steps Involved in database design .

process.

Lafue (1978) discusses several problems related to design of a

database system in his paper. He addresses several Issues related to

semantic, integrity, consistency, maintenance, and manipulation of a

database. In another paper by the author (1979), merging of data

definition language and data manuipulatton language has been suggested.

The reason mentioned is that the database schema is continoisly

redefined, i.e., record types added, deleted and modified. Therefore,

it is better to combine the two languages.
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Proceedings of a NASA conference (Publication 2055, 1978) on

Engineering and scientific data managemnt provide a wealth of

information on the subject. A good review of requirements for a

database managemnt system in support of scientific and technical

application is made by Lopatka and Johnson, (1978). In particular, the

paper deals with the data management system foi. CAD/CAM needs. The

proceedings also include some papers on database design methodology and

applications. A detailed discussion on conceptual design of a data

management system is presented by Elliot, Kunil and Browne (1978). The

paper describes a system design based on hierarchical model of data.

The data definition language used in the system is described in

detail. The paper also gives some practical examples on structural

design and wind tunnel data management. Application of data management .

system for weight control was presented by Bryant (1978). Management of

atmospheric data was presented by Jenne and Joseph (1978).

A fundamental coverage on data structure, data definitions is

presented by Browne (1976) in the third ICASE conference on scientific

- computing. The paper includes details of storage mapping functions, and

data representation with some examples. A storage mapping function that

utilizes an Inverted file system is also given in the paper. Data

management concepts applicable to aircraft industry and its CAD/CAM

requirements are explained by Fulton and Voight (1976).

1* Studies on data structures include mainly hierarchical and*.. + - .
relational data structures. Lopez (1974) developed a hierarchical

database management system called FILES. This DBMS is primarily for

applications in structural engineering. Jumarie (1982) has shown that a
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hierarchical data model simplifies the software in development of a

decentralized database with the use of microcomputers. Fishwick and

Blackburn (1982) dicussed some advantages of a relational data model

from an engineering point of view. The paper reports the use of a

relational data management system in an integrated design system called

PRIDE. Blackburn, Storaasli and Fulton (1982) in another paper further

demonstrate the use of relational database management system in CAI).

Some engineering test problems using relational data management system

are presented in the paper. Haskin and Lorie (1982) of IBM Research

Laboratory has shown how the relational data management system (System

R) can be extended to accommodate the arbitrary length of data items

that are commonly encountered in engineering applications. Felippa

* (1982) has demonstrated how a word-addressable file organization can be

simulated with FORTRAN 77 direct access files. The author points out

that word-addressable structure is a natural and desirable working-file

organization for scientific computing software.

The application of data management for numerical computations is

fairly new. Daini (1982) has developed a model for numerical database

that arises in many scientific application to keep track of large sparse

and dense matrices. The paper presents a generalized facility for

providing physical data independence by relieving users from the need

L' for knowledge of physical data organization on the secondary storage

devices. Because of the limitation on core storage and to reduces the

input-output operations involved In secondary storage techniques, many

investigations have been carried out on efficient use of the memory. A L

detailed survey by Pooch and Nieder (1973) gives various indexing
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techniques that can be used in dealing with sparse matrices. Darby-

Dowman and Mitra (1983) describe a matrix storage scheme in linear

programming. Rajan and Bhatti (1983) present a memory management scheme

for finite element based software. Much work is still needed in

application of database management in design optimization.

*6.2 DATABASE MANAGEMENT SYSTEMS

Several database management systems have been developed or are in

the process of being developed. In this section we will review the

following systems relative to their applicability to multi-disciplinary

design optimization environment:

DELIGHT - Design Language with Interactive graphics and a Happier

Tommorow

DATHAN - A data handling program for finite element Analysis

EDIPAS - An Engineering Data Management System For CAD

FILES - Automated Engineering Data Management System

GIFTS GIFTS Data Management System

GLIDE - GLIDE Language with Interactive graphics

ICES - Integrated Civil Engineering System

PHIDAS - A Database Management System for CAD -

" RIM - Relational Information Management System

SDMS - A Scientific Data Management System

* SPAR - SPAR database management system

TORNADO - A DBMS for CAD/CAM system , '

XIO - A Fortran Direct Acess Data Management System
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Broadly speaking, there are two types of database management

systems for engineering computations; context-free and application-

oriented managers. The context-free data managers are designed to work

as stand-alone systems. In such systems, the applications program

executes under the control of DBMS, i.e., the DBMS acts as the main

program. The application-oriented managers, on the other hand, are iii

the form of a library of subroutines that perform all the data handling

operations.

6.2.1 DELIGHT

DELIGHT (Nye, 1981) stands for Design Language with Interactive

Graphics and a Happier Tommorow. In its philosophy, the DELIGHT system

is very close to the GLIDE system (Eastman and Henrion, 1980). DELIGHT

is an interacive programming language. It has good extension and

debugging capability. It provides high-level graphic commands, a built-

in editor and a well-defined interface routines. A single statement,

procedure or part of an algorithm can be tested without having to write

and load/link a program. The system relies on virtual memory management "01

of the operating system. It is difficult to use the system with large

scale programs. Multiple users are not allowed in the system.

6.2.2 DATHAN

DATHAN (SreekantaMurthy and Arora, 1983) stands for data handling

program. It was written mainly for finite element analysis

applications. The program has some basic in core buffer management

1', scheme. The program has capability to store permanent and temporary

data sets. Substructure files can be arranged quite easily with game

37
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data set names for different substructures. Both integer and real data

types can be handled. Drawback of the system is that the user has to

keep track of the location from which a new data set has to begin. The

system has data manipulation commands which are simple to use. The

commands can be given using FORTRAN call statements.

6.2.3 EDIPAS

EDIPAS (Engineering Data Interactive and Analysis System); Heerema,

and van Hedel, 1983 is a tool for data management, analysis, and

,- presentation. The data management part provides a utility to initalize

*a project database, input programs to load data from files into database

under user controls, and a set of routines to extract data from and load

data into database in a controlled way. EDIPAS allows users to name a

database, a data structure, and data entities. EDIPAS allows user to

employ one or more hierarchical levels. The data is stored in entities

called blocks. A data block allows matrices, single values and

characteristic values as data elements. A database administration

support provides initialization of database, access to users, deletion

of data structures, audit database contents, and back-up facility.

Drawback of the system is that a clear data definition language is not

provided. Variable length records are difficult to process. The system

does not have a restart facility. The values of data elements have to

be either floating point number or string. A data block has to be

unique in a data structure.
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6.2.4 FILES

FILES (Lopez, 1974) is an automated engineering data management

system. It is extremely flexible with respect to the definition of a

database and methods of accessing it. Information storage and retrieval ..

may be performed using problem-oriented languages. Hierarchical data

structure is provided. For example matrix type of data encountered in

finite element application can be organized using hierarchical data
L

structure. The first two levels in hierarchy may contain pointers to

the third level data containing actual matrix data. The program allows

dynamic memory allocation. Data transfer takes place between FORTRAN

common block and database. FILES has a data definition language

scheme. Drawback of the system is that it does not have data mapping

language to specify mapping of data items and arrays to an external

device. Data is represented only in the form of tables. Data elements

are not allowed in the data definition language. The system requires a

distinct data management compiler.

6.2.5 GLIDE

GLIDE (Eastman and Henrion, 1980) is a context-free database

management system. It is designed to provide a high level facility for

developing individualized CAD system. It can be viewed as a language, a

database management system, and a geometric modelling system. It allows

users to define new record types known as FORMS that consist of a set of

- "-.. attribute field. It provides primitive data type set to organize a -

database. It provides excellent geometric modelling system or a graphic
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system. Drawback of GLIDE is that it does not allow multi-dimensional

arrays. It does not support multiple users simultaneously.

6.2.6 GIFTS

GIFTS (Kamel, McCabe and Spector, 1979) is an interactive program

for finite element analysis. It is a collection of modules in a program

.e. library. Individual modules run independently and communicate via the

unified database. The database manager processes requests for opening a

file, closing a file, storing data set in a file, and retrieving data

set from a file. The program has memory management scheme. Each data

set is stored in a separate random access file. Paging is carried out

within the working storage. A unique set of four routines is associated

with a data set for opening and initializing the working storage, for

reading a data set, for creating/modifying the data set, and for

. realizing the working storage. Drawbacks of the system is that for every

new data set to be created four new routines have to be written. Each

data set is associated with a separate common block, thereby increasing

the number of common blocks in the system. The data manager is

application dependent and cannot be used as a stand alone system.

6.2.7 ICES

ICES (Integrated Civil Engineering System; Roos, 1966) is a

computer system designed for solving Civil Engineering problems. ICES

consists of a series of subsystems each corresponding to an engineering

discipline. It provides a Problem Oriented Language which can be used to

write subsystem programs (e.g., Coordinate geometry program, Stress

analysis program). Command Definition Language is used by a programmer
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to specify the structure and required processing for each subsystem'

- commands. A Data Definition Language is used to specify the subsytem

' data structure. It uses its own programming language called iCETRAN

* (ICES FORTRAN) and has a precompiler which translates ICESTRAN to

. FORTRAN statements.

. -Dynamic data structuring capability is provided in the system

which helps to organize dynamic arrays in the primary memory.

- Hierarchical data structure is used for data modelling. Three

hierarchical levels: equivalence class, members, and attributes are

provided. Data is stored on secondary storage using random access

files. Data management program uses buffers to convert logical records

to physical records. Identifier is supplied by the programmer which is

a pointer giving the position on secondary storage of physical record.

The programmer has a choice to store data using dynamic arrays or using

data management system depending on amount and use of the data.

Drawback of the system is that it uses precompiler ICETRAN to convert to

FORTRAN program instead of directly to machine language. Physical

storage of data requires knowledge of address and pointers which the

programmers have to give. Data independence is thus not achieved. Only

..- three levels of hierarchy is adopted and it is difficult to extend to . -

-. ' many levels of hierarchy.

6.2.8 PHIDAS

PHIDAS (Fischer, 1979) is a data management system specially designed

for handling a collection of structured data on minicomputers. The

architecture of PHIDAS is in accordance with the ANSi-3 schema. It has an
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external subschema based on network model of CODASYL and an internal

schema for physical tuning particularly suited for engineering database. --

The data description language is provided to describe schema and sub-

schema. PHIDAS also has a storage structure description language. Data

manipulation language is FORTRAN call statements to subroutines. Drawback

of the system is that it is difficult to represent matrix type data.

6.2.9 RIM -

RIM (Comfort, Erickson 1978) stands for Relational Information

Management system. RIM has capability to create and modify data element

definition and relationships without recompiling the schemes or

reloading the database. RIM provides capability to define new types of

data for use in special application such as graphics. RIM supports

three types of data: real, integer, and text. Data definition and data

manipulation languages are available to define or manipulate

* relations. The user has capability to project, intersect, join and

subtract relations. RIM has good query language. RIM's modification

commands permit the user to update relation definition, change data

values, attribute names, delete tuples and delete the entire relation.

Utility commands such as LOAD, and EXIT are provided to load a new

database and close an existing database. Drawbak of RIM is that it does

a, not allow relation having row size more than 1024 computer words. It

does not provide an easy to use matrix manipulation routines. The

application oriented FORTRAN call statements do not have capability to

define attributes, relations, rules, etc., required in defining a

schema. The system does not support management of a temporary database.
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6.2.10 SDKS

SDMS (Massena, 1978) is a database management system developed

specifically to support scientific programming applications. It

consists of a data definition program to define the form of databases,

* and FORTRAN compatible subroutines to create and access data within

them. Database contains one or more data sets. A data set has form of

a relation. Each column of a data set is defined to be either a key or

data element. Key must be a scalar. Data elements may be vectors or

matrices. The element in each row of the relation forms an element

set. Temporary database capability that vanishes at the end of a job Is

provided. A scientific data definition language provides a program-

independent data structure. Both random and sequential access of data

set is possible. Data elements include scalars, fixed and variable

length vectors, fixed and variable-size matrices. Data element types

-'include text, real and integer. Drawback of the system is that It does

not have a query language. Generalized database load/unload is not

available. Double precision data type is not allowed. The system Is

implemented only on Cyber series computers.

6.2.11 SPAR

SPAR (Whetstone, 1977) computer program is a collection of

processors that perform particular steps in finite element analysis -'

S...-.

* procedure. The data generated by each processor is stored on a database

compiler that resides on an auxiliary storage device. Each processor

has a working storage area that contains the input and the computed data

. .
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problem dependent and is dynamically allocated during execution. Data. •

transfer takes place directly between a specified location on disk using

a set of data handling utilities. SPAR database complex is composed of -

26 data libraries or data files. Libraries 1 to 20 are available for

general use. Libraries 21 to 26 are reserved for temporary and internal

use. The database manager uses a master directory to locate the table of

contents which in turn is used to locate the data sets in the database. -'

Physically, the auxillary storage is divided into sectors of fixed size

and each read/write operation begins at the beginning of a sector. --

Drawback of the system is that it does not provide either hierarchical

or relational data structure. Excessive fragmentation may take place if .

the sector size does not happen to be an integral multiple of the data

that is stored.

6.2.12 TORNADO .

TORNADO (Ulfshy, Steiner and Oian, 1979) is a DBMS system developed

for CAD/CAM application. It is a CODASYL network system written in

FORTRAN with a very useful for handling complex data structures. It

handles variable object length and dynamic length records. System .

allows different data types - integer, real, character, double

precision, double integer, complex and logical data. The system has

easy to use data definition language and data manipulation language.

TORNADO system is highly portable. Data in the database can be accessed

by name. There is no restriction on data set types and allows many-to-

many relationships. Drawback of the system is that the size of a data

object defined by the system is limited by the largest integer value
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that can be represented in the computer. The size of the database is

limited by the maximum size of a file. A multi-file version is not

available. Matrix data is difficult to handle in the system.

6.2.13 X10

XIO (Ronald, 1978) is a set of subroutines that provides

generalized data management capability for FORTRAN programs using a

direct acces file. The system allows arrays of integer, real double

precision and character data storage. Both random access and sequential

access of data is provided. Variable length record 1/O is allowed in

the system. Bit map scheme is used to identify the unused space for

storage of data to minimize disk storage requirement. The program

allows restart facility using saved file following completion of a

partial execution or after a program termination. Drawback of the

system is that it can only operate on IBM360 or DEC PDPII computing

system. The system does not provide data definition language. It does

not provide either hierarchical or relational data structures.
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VII. DISCUSSION

Database management concepts in design optimization are discussed

in the report. The need for a database management system is

emphasized. The special features in design optimization such as

iterative solution procedure, uncertainty of solution, suitability for . ).

interactive computation, incorporation of finite element analysis are

described. Data used In design optimization is discussed. It is shown

that large amount of data is used in design optimization and data

organization is quite essential to ease designer's task of data "

management. Also, it is shown that amount of computation in design

optimization is large and efficient data management is essential.

Various terminologies used In database management field are listed in an

appendix. This is done primarily because different groups in database

management area use different terminology. Only well-accepted

terminology is given.

Database organization for design optimization is discussed. The

importance of classification of database on the basis of projects,

subsystems etc., is discussed. Data organization suitable for modular

program approach is presented. Different data models - hierarchical,

" ~' network and relational are discussed. Examples from both design

..- ,~ optimization and finite element analysis are chosen for demonstration

purpose. Data model suitable for design optimization is presented.

Various concepts of file structure are presented. The method used

for storing, retrieving and modifying data is described in detail.

Various techniques such as blocking, record length, paging, pointers,
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addressing, etc., are described. A file structure suitable for design

optimization is also discussed.

A review of literature on database management in engineering

application is made. Several database management systems have been

developed. Features of each system are reviewed. Favorable features

and drawbacks of each system are noted. It is seen that the field of

database management in computer-aided design is quite recent. There is

substantial scope for enhancements in the area.
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The terminology used in database management for describing various

ideas differ considerably from one group to another and even from one

time to another within the same organization. It is therefore necessary

to list the various terminologies used in the report which are taken from

most widely accepted sources. They are grouped into three categories -

Hardware terminology, Logical data terminology and Physical storage

terminology. They are listed in the following paragraphs in an

alphabetical order.

A. 1 HARDWARE TERMINOLOGY

Auxiliary Storage: Storage facilities of large capacity and lower cost

but slower access than main memory. They are also referred to as

- Peripheral or Secondary storage devices. Usually accessed via data

* channels, in which case data is stored and retrieved by physical

record blocks. They include magnetic tape and disk units, drums and

,- other devices used to store data.

Cell: is used as a generic word to mean either track, cylinder, module

or other zone delimited by a natural hardware boundary such that the

time required to access data increases by a step function when data

extends beyond a cell boundary (Martin ,1977).

Cylinder: An access mechanism may have many reading head. Each head

can read one track. A cylinder refers to a group of tracks that can

be read without moving the acces mechanism (Martin, 1977).

Direct-Access Storage Device: IN direct-access storage device, access

to a position for storage or retrieval of data is not dependent on

the position at which data was previously stored or retrieved. It
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is also called random access device.

Input-Output (I1/0) Device: An auxiliary storage device connected to the

CPU by a data channel.

Main Memory: A fast, direct-access, electronic memory hardwired to the

central processing unit. It holds machine instructions and data

that can be accessed in a time of the order of nanoseconds. It is

also, referred to as 'core' ,'main storage', or 'internal memory'.

Module: A module of the peripheral storage device is a section of

hardware which holds one volume, such as one spindle of disks

(Martin,1977).

Storage Device - Logical (Logical File, Memory Device, Name Space, or

Logical Address Space: A subset of the storage space that is

treated as a named entity by the operating system for purpose of

allocating and releasing storage resources during the execution of a

run unit (task). The term is most often applied to auxiliary

storage facilities

Storage Facility: Hardware available to store data at a computer

installation.

Track: A track on a direct-access device contains data that can be read

in a single reading without the head changing its position (Martin,

1977).

Volume: A volume is normally a single physical unit of any peripheral

storage medium such as tapes, disk packs, or cartridges (Martin,

1977).
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A. 2 LOGICAL STORAGE TERMINOLOGY

Arithmetic Data: An arithmetic data item has a numeric value with

characteristics of base, scale mode and precision; e.g., fixed point

data (integer), and floating point data (real and double precision).

Attribute: Properties of entities are called attributes. Attributes

associate a value from a domain of values for that attribute with

each entity in an entity set. For the entity 'finite element',

length of the element, number of nodes of the element, element

properties, etc., are its attributes.

Creation: It involves adding new files to the database, initializing

the files (i.e., file table definition), data validation, deciding

file types, etc.

Data Aggregate: A data aggregate is a collection of data items within a

. record. Data aggregates may be a vector or repeating groups.

(a) Vector is a one dimensional ordered collection of data

items.

Example: Node numbers of a structure

(b) Repeating Group is a collection of data that occurs

repeatedly within a data aggregate.

Example: Degrees of freedom of an element.

Degrees of freedom for the element appear in

multiples of node numbers.

............................... Dii D2i D31 , i - 1,n

where i node numbers and n = total number of nodes.

,77
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Data Definition Language (DDL): It is a set of commands that enable

users of DBMS to define data structures to store the data. All

data that is to be managed by the DBMS must follow the rules laid

down in data definition language. A DBMS must provide DDL to

specify conceptual scheme and some of the details regarding the

implementation of the conceptual scheme by a physical scheme. It

is not a procedural language, but a notation for describing

relationships among types of entities in terms of a particular data

model.

Data Independence: It refers to the independence between physical and

logical data structures. Physical data structure can change

without affecting the user's view of the data when we have data

independence. Similarly, logical data structure can change without

affecting the physical data structure.

Data Item: A data item is the smallest unit of named data. It is also

referred to as the data element or field. Each data item has a

unique representation. The data item can be any of the following

types: arithmetic (integer, real or double precision real), or

character string (character, bits).

Data Library: A named collection of data sets residing on a permanent

storage device. It is the most complex data structure upon which a Oft

global database management system operates (Felippa, 1980).

Data Manipulation Langge(DM): It is a set of permissible commands

that are issued by users or application programmers to the DBMS to

carry out storage, retrieval or manipulation of data. The DML

represents interface between the application program and the
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database management system. Thus the data managed by the DBMS can ill
be accessed and processed through the use of DML. It can he an

extension of the host language.

Data Model: Data model is a representation of the conceptual scheme for

the database. Generally a data definition language which is a

higher-level language is used to describe the data model. Examples

of data model are hierarchial, network and relational.

Data Set: An ordered collection of logically related data items arranged

in a prescribed manner. Each data set has some control information

that can be accessed by a programming system (Martin, 1977).

. Data Structure: Logical arrangement of data as viewed by the users or

applications programmers.

Database: A database is a collection of the occurences of multiple

record types, containing the relationships between records, data

aggregate and data elements. It is a collection of data files

stored on a storage device.

Database Administrator (DnA) is the brain of the system. It provides

interfaces between the various parts of the system, does error

recovery, and enforces security measures.

Database Management System (DBMS) The software that allows one or many

persons to use and/or modify the database is called a DBMS. DBMS

L also deals with security, integrity, synchronization and protection

of the database.

Database System: The set of all databases maintained on a computer

installation (or computer network), which are administered by a

common database manager.
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Entity: It is a thing that exits and is distinguishable, e.g., finite

element.

Entity Identifier: It is necessary for the programmer to be able to

record information about a given entity. Also it is necessary for

the computer to be able to identify it and have means of finding it

in storage unit. Entity identifier must be unique. Example -

Element number.

Entity Set: Collection (group) of all similiar entities is referred to

as an entity set. Example- all finite elements.

Garbage Collection: The process of locating all pages that are no

longer in use and adding them to the list of available space.

Group: A data set containing a special 'owner' or 'master' record (the

group directory) and a set of member records (Felippa, 1980).

Instances: The current contents of a database is called an instance of

the database.

Interrogation: This deals with identification, selection and extraction

of data from the database for further processing. It can be

divided into two phases:

a) The process of selection and identification of needed data and

extracting it.

b) The processing part which involves computation, display or any

other manipulation required including updating parts of the

database.

Logical Data Structure: Data in a particular problem consist of a set

of elementary items of data. An item usually consists of single

element such as integers, bits, characters and reals, or a set of
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* such items. The possible ways in which the data items are

structured defines different logical data structures. Therefore, it

is the data structure as seen by the user of the DBMS without any

regard to details of actual storage schemes.

Memory Management System (MKS): A system that allocates the available

memory to the different entity sets in a program and makes it appear

as if more memory is available than what the computer has.

Module: A program that performs an identifiable task.

Programming Language: The language that an application programmer may

use; e.g., FORTRAN.

Program Library: A collection of subroutines that perform primitive

functions.

Primary Key: The entity identifier is referred to as the key of the

record group or strictly it is primary key. Example - Element

, number.

Query Language: Query is the process of question and answer that can he

accomplished using the query language, i.e., Query the database. The

commands are generally quite simple and can be used by

nonprogramming as well as programming users. These can be

interactive commands as well as ut iIl t I es that can be cal led Ir m ai.

application program.

Record: A record is a named collection of data elements or data

aggregate. When an application program reads data from a database,

it may read one complete record at a time.

Schemes: When a database is to be designed, we develop plans for it.

Plans consist of an enumeration of the types of entities that the -

°7 1
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database deals with, the relationships among the types of entites,

and the ways in which the entities and relationships at one level of

abstraction are expressed at the next lower level. The term scheme

(schema) is used to refer to plans, so we talk about conceptual

schemes and physical schemes. The plan for 'view' is referred to as

a subscheme (subschema).

Secondary Key: The computer may also use a key which does not identify

a unique record but identifies all those which have certain

properties. This is referred to as secondary key.

Storage Address (Address): A label name or number that identifies the

place where data is stored in a storage device. The part of a

machine instruction that specifies the allocation of an operand or

the destination of a result.

String Data: String data are either of the type character or bit. The

length of the string data item is equivalent to the number of

characters (for a character string) or the number of binary digits

(for a bit string) in the item.

Subscheme (View): A map of a programmer's view of the data he uses. It

is derived from the global logical view of the data - the schema,

and external schema (Martin, 1977). It is an abstract view of a

portion of the conceptual database or conceptual scheme. A scheme

may have several subschemes. These are defined using the data

definition language (DDL).

Systems Programer: A person responsible for installation and

maintenance of computer programs.
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Vectors: It is a one dimensional ordered collection of data items, all

of which have identical characteristics. The dimension of a vector

Word: The standard main storage allocation unit for numeric data. A

word consists of a predetermined number of byte characters or bytes,

which is addressed and transferred by the computer circuitry as an

entity.

A.3 PHYSICAL DATA STORAGE TERMINOLOGY

Address: It is a means of assigning data storage locations and

subsequently retrieving them on the basis of key for the data.r

Bit: An abbreviation of binary digit. The term is extended to the

actual representation of binary digit in a storage medium through an

encoded two-state device (Felippa, 1980).

Byte: A generic term to indicate a measurable portion of consecutive

binary digits. The smallest main storage unit addressable by

hardware. In machines with character addressing, byte and character

are synonymous (Felippa, 1980).

Character: Member of a set of elementary symbols that constitute an

alphabet interpretable by computer software. A group of consecuiitve

bits that is used to encode one of the above symbols.

Fil]e: A file is a named collection of all occurrences of a given type

of logical records. It is also a collection of data sets.

Page: A basic unit of primary storage; also basic transaction tiit

between primary and secondary storage.
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Paging: In virtual storage systems, the computer memory is made to -

appear larger than it is by transferring blocks (pages) of data or

programs into memory from external storage when they are needed.

This is called paging.

Pointer: The address of a record (or other data grouping) contained in

another record so that a program may access the former record when

it has retrieved the latter record. The address can be absolute,
L"

relative or symbolic.

Physical Data Structure It is important to distinguish explicitly -

between logical data structures and the ways in which these

structures are represented in the memory of a particular computer.

This may be dictated by specific hardware and software systems. The

way in which a particular logical data structure is represented in - "

the memory or secondary storage of a computer system is known as

storage or physical data structure.

Sequential Access: A serial access storage device can be characterized

as one that relies strictly on physical sequential positioning and

accessing of information.

Storage: The process of assigning specific areas of storage to specific

type of data.

Virtual Memory: The simulation of large capacity main storage by a

multi-level relocation and paging mechanism implemented in the
IL.

hardware.
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ABSTRACT

This report describes concepts and requirements of a database

management system for engineering design optimization and, in general,

'. ~. scientific computing. Distinction between database management in -'.

business and engineering applications is first hightlighted. General

concepts for design of a database management system in scientific

computing and, in particular, engineering design optimization are

presented. Based on these concepts and requirements, a set of detailed

specifications suitable for database management system (DBMS) has been

developed. Such a DBMS can be used in the development, implementation

and evaluation of database management concepts and methods for design

optimization. Some important specifications for the system are: (I)

* 'data independence, (2) multiple logical views of the data, (3) memory

management, (4) matrix operation utilities, (5) query language for use

in interactive sessions L9 well as applications proq'pms (useful for .

defining optimization problems), and (6) management ui permanent,

temporary, global and local databases. These capabilities must be

present for design optimization applications. Based on the

specifications, a database management system called EDMS (Engineering

Database Management System), has been initiated. The system is being

developed and integrated into design optimization methods. It will be

used in the design, implementation and evaliiation of database management

concepts for design optimization.
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- -- .-- I. INTRODUCTION---
In a previous report (Rajan, Bhatti and Arora, 1983) database

management system for structural design optimization was described. The

system has been successfully used to solve known structural optimization

problems. In another report (Sreekantamurthy and Arora, 1983), concepts ..

of database design - physical and conceptual - have been studied.

Existing literature on scientific database management systems has been

extensively reviewed. This has been done to determine the suitability

of existing systems for use in design optimization environment. In this

report, concepts and requirements for a database management system

suitable for general engineering design optimization environment are

presented.

Considerable work has been done on database management In business

type applications. Several books (e.g., Ullman, 1980; Wiederhold, 1977)

are avalable. Whereas some progress has been made in database

management in scientific environment (Sreekantamurthy and Arora, 1983),

considerable more work needs to be done. A reason for this slow

-,..-progress in database management for scientific computing is due to a

view that database management systems developed for business

applications can be adapted for every other type of application.

However this view is not correct as can be seen from the comparisons

given in Table I (Felippa, 1979, 1980).

There is a functional separation between business and scientific

computing that dictates the need for database management systems for

scientific applications. Most scientific computing problems can be

characterized as "large computing-large 1/0". In comparison, business

-., .- '... ' . ' \ "-' -'.'-.- , ... -..... .. .... -. -. ... - -. - •.. -. , . .. .:. .. ' .
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Table I

SCIENTIFIC Versus BUSINESS DATABASE MANAGEMENT

Scientific Computing Business Computing

The data managed is static as well The data managed is mostly
as dynamic. There is a need for static.
frequent updating and deletions.

Unit of I/O is large and effects Unit of I/O is small.
large segments of the database

Main memory requirements are Memory requirements are
high, requiring careful small.
allocation of resources.

Establishment of relations is Relations are known and
dynamic and depends on usage static. They are established
and the user. There is no by programmers. They hold
need to save these relations good for general users and

because they change from can be managed by the
application to application. system

Emphasis is on ease of estab- Emphasis is on storing
lishment of relations. relations.

Need for dynamic altering of The organization of logical
logical view of data, i.e., record is determined at
same data can be viewed in the time of data defin-
more than one logical order. ition and is viewed in

the same order.

Deals with numeric data and is The data managed is character
- word oriented. and byte oriented.

2
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problems can be characterized as "small computing-small 1/0". Also, the

nature of the I/0 in two applications differs significantly. Initially,

all business applications were termed to be "small computing-small 1/O"

and scientific applications "large computing-small I/0". The former

4. remains valid today but the later has changed to "large computing-large

1/O" with the integration of various disciplines aimed at solving a

problem. This change rules out the possibility of using database

management systems that are developed for business applications.

Most noticeable trends in scientific computation are the increase

in size and complexity of programs, and integration of software from

differing scientific disciplines. This trend combined with the

shortcomings of existing database management systems dictates the need

for a scientific database management system that posseses certain

distinct features:

a) That it be a "general-purpose" system which can be integrated

with any other existing or new application systems.

b) That it possess memory management which would translate user

defined logical structures to physical structures, as well as be

responsible for optimizing I/0.

c) That it possess built-in utilities that are commonly used, and

provision to develop utilities as the need arises.

d) That it be developed in a language which is widely used in the

area.

e) And it should be Implementable with minor modifications on most

computer systems, i.e., portability of the system is essential. I
3
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Design of complex systems of the future will require sophisticated

software. The process will be automated to some extent. Optimum design

technology will play a key role in this process. Proper management of

data will be a "must". The database management system will be the core

of the design optimization software. The system must be such that it

facilitates the development, enhancement and modification of the design

optimization software.

Purpose of this report is to present some general concepts and

requirements for a desirable database management system in design

optimization environment. Based on the specifications given here,

development of a database m-nagement system has been initiated. The

system is being incorporated into design optimization programs to

completely develop and evaluate database design and management methods.

4-
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II. CONCEPTS AND REQUIREMENTS

2.1 Introduction

It can be seen from the review of the literature that existing

database management systems will not satisfy needs of engineering design

activity. The context-free systems [GLIDE (Eastman and Henrion, 1980),

and DELIGHT (Nye, 1981)] are not suitable as it is impossible to add new

capabilities to the system by users from different fields. Only

originators of the program can add, modify and extend the system.

Therefore, application-oriented managers are more suitable for

engineering design act-ivity. In this regard RIM (1980) and GIFTS

(Kamel, McCabe and Spector, 1979) data managers come closer to

satisfying the requirements. However, as noted earlier (Rajan, Bhattl

and Arora, 1983; Sreekantamurthy and Arora, 1983) they also have certain

drawbacks. What is needed is a set of standard routines that allow

designers to create data structures, manage the memory, and store,

retrieve and manipulate the data. The DBMS should also have standard

utilities to locate and retrieve data records with values for certain

attributes matching the given value. Some of these operations are

extensively used in the management of various business-type databases.

These can be utilized here also. %

In the engineering design environment, there are several unique

requirements that must be satisfied by a good database management -

system. The system should manage not only the permanent database but it

must also create and manage the temporary databases in a particular

application program. This requirement is absolutely necessary as design

of various systems from different fields requires development of special

5

-VIA ,: -:.:..: ..-,.:. :...:,.,-:. .:-.:-:-..-:.: .... .- : .-.: -..-,.- ...-. ..-., .--: -.:..-:-:...: ,.. :..::: .:-:.. .: :12.: :



'.Z~q~ -U L

purpose application programs. Development of such programs and data

handling must be facilitated by the DBMS routines. With these general

requirements in mind, a set of specifications has been developed for

such a DBMS. These are presented later in this chapter. The system is

called EDMS which stands for Engineering Database Management System.

2.2 Database Organization

To justify the effort and the expense of implementing the EDMS, it

should stand the test of time and place.

TEST OF TIME: The time and expense used in implementation of the EDMS

r
,W should be returned well before the system is outmoded.

Outmode is a certainty but the time lag between EDMS

implementation and its outdating can certainly be

increased by introducing a high level of flexibility.q.4

TEST OF PLACE: The cost of development of a database is high but it can ''

be justified if it is compatible with different computer

systems. Thb.s is necessary because in scientific

environment several computer systems may be used.

The database, especially in a large organization should be both

U, hierarchical as well distributive. The need for distributive

organization stems from the fact that many organizations employ

different computer systems and if EDMS is restricted to only one system

it results in loss of flexibility. Distributed database is nothing but

distribution of data libraries over several systems and accessible

through one system. However this, if not needed, can be made

6
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optional. The EDMS residing on one system would be in a position to

access parts of the database that are residing on some other system.

This is very useful in an environment where there are several micro,

* mini, and main frame computers. This flexibility however introduces

complexity, requiring implementation of communication links between

various systems. The problem can be tackled once the basic software has

been developed and tested.

The distribution dealt only with data libraries. However, they are

not the only things that constitute a DBMS. Figure 1 shows a general

layout of the DBMS and a database. The EDMS should be organized in a

hierarchical manner. The head of the hierarchy would be the (Database

Administrator (DBA)). The interaction between various users and the

database is conducted through DRA. DBA is a processor that understands

the logical data structures used by the users. It maps them into

physical structures, stores the data into the database and retrieves

* 'I it. The DBA is the most complex part of the EDKS, i.e., it is the brain -

of the system. Next in the level of hierarchy would be the databases,

local and global. These two are at the same level. At the next level

is the data library. Several data libraries constitute a global or

local database. A data library is comprised of data sets. Data sets

are groups of related data items which may be accessed as a unit or sub-

unit. These sub-units constitute the lowest level of hierarchy and are

units of physical transfer (record/block/page).

The logical view of the database is slightly different and the end

*~* yusers are restricted to this view only (see Fig 2.). The logical view

consists of a global and local database after the DBA. The DBA to them

7
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is a black box with multiple entry points. (The entry points are

nothing but commands that are supported by the EDMS). The users must be

aware of the existence of the global and local databases, so that they

can store data into and retrieve data from them. They should have

access to the index of the global database and also to their own local

database. This is needed to enable the user to verify the existence of

various libraries and data sets contained within them. Once they

provide information about the data library and the data set they have

some flexibility at the next level in accessing or storing data by means '

of logical structures. They can do that without worrying about the

physical organization of the data.

Any user of the database must go through the DBA to get to the

.. database. Some of the functions performed by the DBA are outlined

below, disregarding the implementation details.

(i) Map Logical Data Structures into Physical Data Structures and

Vice Versa.

Given a logical data structure and the database, data library,

data set names, and the data aggregate, the DBA gets record(s)

from the database or stores them into it. The importance is in

conversion from logical to physical and physical to logical

structures.

(ii) Allocation of Secondary Memory Storage.

Allocation of secondary storage deals with initializing data

libraries and data sets.

(iii) Protect Database from Unauthorized Users.

The DBA has an access matrix which is a list of users of the

8
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database and all the libraries in the database. This matrix

contains information about who can access what libraries. If a
% ~user tries to access a library without access rights the DBA %4

(iv) Keep Track of the Indices of Data Libraries as well as Data

Sets in each Library.

Given data library and data set names the DBA should map into

the physical location of the starting point of the data. To

achieve this the DBA has to maintain a list of the data set and

their physical locations.

(v) Prepare Data Libraries for I/O

Once the physical location is determined the record that is

needed should determined, positioned and transferred to the

main memory. The data so transferred may not be in the format

of the logical structure required so a conversion might have to

be performed.

(vi) Error Detection.

There are several types of errors that can occur. The user

should be given sensible reasons for the error and if possible

any solution. The most common errors might be data types or

wrong data set name in a given library or wrong data library.

(vii) Maintenance of Local Databases.

Maintenance of local databases is very important. it

introduces a little distributive feature, because each user may

have zero or more local databases. There has to be efficient

interaction between global and local databases.
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(viii) Support a Query Language Processor.

The user of query language is probably the most demanding

user. Such users have to interact with the EDMS in an English

like language at the system level. This requires DBA to have a

processor that can process the requests and format the data to

satisfy the requests. The commands should be processed when

the DBA is invoked from an interactive device, or by CALL

statements in an application program. The DBA should have

syntactic analyser so that commands can be processed. All the

above features form the query language processor.

(ix) Page Table and Page Replacement Algorithms.

Since the users are blind to the physical storage structures

and are provided the data independence (with respect to logical

structures), some memory management has to be performed by the

DBA. This involves maintenance of page table, as well as use

of page replacement algorithms.

(x) Keep Track of Statistical and Management Information.

The introduction of physical to logical mapping and memory

management implies complexity. Since no one method of physica.

storage or page replacement algorithm can be efficient in a

dynamic environment, there should be features (statistical)

_.4 that monitor the efficiency of given algorithms.

(xi) Maintenance and Updating of Access matrix of all the Users.

The access matrix is primarily used for protection of the

database (global). Whenever a new user accesses the database

their key is included in the access matrix. Associat-d with

12
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each data library is a set of keys. The user can access those

data libraries that contain the key (given) in their set, i.e.,

user can access the library.

Let (kl,k2,k3 ............... kn) be the set of keys associated

with the library X. Then a user has the right to access X if

and only if

Kx c (kl,k2,k3, .............. kn).

However the set of a library may be null. Such a set is

universal and can be accessed by anyone. The set of keys are

provided either by the owner of a library or any other

authorized manager/staff.

2.3 classes of Users

For reasons of security and protection of a database the user must

be classified, and assigned different priorities and capabilities to

access the database. With respect to a scientific database, the users

may be classified as follows (see Fig. 3):

(i) Database administrator

(ii) Managers and staff

(iii) Programming users

(iv) Nonprogramming users

Each of these classes of users has a different level of understanding

(based on need to know and access requirements). It also requires a

different language or interface to the database.

i() The database administrator requires the maximum amount of

flexibility and capability. The capabilities should include

13
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those of the other three classes of users as well as the

capability to control the required security and integrity

functions for the database.

(ii) Managers and staff class of users is second in priority level

after the database administrator. These users are blacked out

from the details of the physical organization of the database,

but are aware of the techniques used for storage, protection

mechanism, etc. They can insert or delete library key, data

sets, and data libraries. They can define the scope of other

managers and lower level users to those parts of database for

which they have owners rights. They should be aware of the

mapping mechanism between logical and physical structures, the

statistical information relevant to those parts of the

database they are authorized to use. They should have the

option of looking at the physical organization of data without

database administrator. This is useful to verify the accurate

representation of data by DBA or to detect any errors in DBA

when storing data. However it is risky if any of the database

is altered without the knowledge of the database

administrator.

The remaining two classes of users access the database by either using

the data manipulation language (DML) or query language (QL).

(iii) The programming user needs the capability to access specific

records within the database through the use of a collection of *
database primitives (functions). These users must be able to

fetch, store and modify data values stored within those

15
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records. The primitives (functions) are to be described in

terms of the host language; i.e., make these as extentions of

the host language itself. A host language is a language that

is supported by the system being used: e.g., FORTRAN.

(iv) The nonprogramming user accesses and modifies the database- -

through the use of generalized query language (interactive

question and answers). This query language (set of commands)

should be supported at the system level. A user without a

program and with minimal input can access data from the

database for display, modification, or for graphing. A

typical use for this might be to access the set of X,Y

coordinates, display them on an HP terminal and make a plot

using AUTO. PLOT.

In scientific environment, most of the data access is done with the

intention of further computation or using it for graphic display. It is

therefore important for the EDMS to support most common computation

procedures as system defined routines. It should also support basic

plotting routines that the user may use for displaying graphs on various

devices.

2.4 Programmer's Interface

The programmers class of users are mainly concerned with the

development of specific data storage and extraction, and data

. manipulation programs in an engineering and research environment. Since

this class makes up for the majority of the users of the EDMS, a high

level of efficiency has to be attained. The user must be aware of the

16
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various ways of using the data manipulation commands supported by the

EDMS. He should be well aware of all the data. The set of data

manipulation commands and their formats can be viewed as a programming

language which is an extention of the host language.

2.5 Data Manipulation Language (13(L)

This consists of a set of FORTRAN subroutines that perform a -'

predetermined task. It will also concern itself with some protection

* aspects.

The basic DML commands can be classified as V'

System Dependent Commands

Open database (files)

Close database (files)

Check existence of files(s)

Delete (files)

File Information Commands

Get all the data set names contained in a file

Get the file type (sequential/random)

Check file status (open/close)

Check for access rights (owner/nonowner)
..A.

Position the file -

Dump file table contents

Create and Add Commands

Add a data set to the file

Add record(s) to the data set

Delete records from a data set

17
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Delete a data set from a file

Search and Access Commands

Search for a data set

Search for a record number in a data set C

Position to a record number

Read record numbers X to Y .

Search for the last record in a data set

2.6 Detailed Specifications

The idea behind the EDMS is that its scope should not be restricted

only to programs that would be written after its installation, but

should be extended to those programs which have already been

implemented. The later can be achieved by modifying some routines. This

transition (if the programs have been properly structured) should be

quite straightforward.

One of the most important features in EDMS should be data

independence. No matter what logical data structure (of course finite)

is employed by a program, the EDHS or specifically the DBA should be

capable of providing a mapping between the logical and the physical data

structures.

In scientific oriented programs, much of the data generated and

3 manipulated will be dynamic. This introduces a different kind of

complexity which is quite different from the one often encountered in

business application data management. This requirement must be *i55

satisfied in design optimization environment.

18
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* The EDMS should provide facilities that would give the users an

option to save data both in the global as well as local databases. The

concept of local database is relevant in scientific research and design

environment due to the dynamic nature of the database. In a

developmental stage the user may want to verify the accuracy or

authenticity of the data before making it available to other users. The

*EDMS would not maintain multiples of unique data libraries. As several

users could use the same data library simultaneously, there is a need

for local database. A particular library could be copied into a local

database. There, it could be used for updating and other purposes.

The dynamic nature of the database dictates that it should have

some statistical features. These would survey the efficiency of the

physical structures employed in relation to the logical data structures

used. The DBA would be prompted if and when a change in the physical

ogranization of a data library or libraries is required.

Based on the previous discussions and analyses, a set of detailed

specifications has been developed for the EDMS:

1) The data generated by the users should be stored in the appropriate

database (local or global) depending on the user specification.

The data managed should be retrievable from any of the bases.

Flexibility refers to enabling data storage and retrieval in more

than one form. Such flexibility must be provided.

2) If the EDMS is implemented on say PRIME 850 then implementation on

any other system say IBM 3033 should at the most involve W

modification of those routines that are system related like file

manipulation, data representation, etc. The logic of the

19
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management system should be independent of the system. For

example, the FORTRAN complier on PRIME differs slightly from that

on IBM. The transition should involve modification of those parts

of the code that are within the scope of the difference in

compliers.

3) The data could be generated by programs or it could exist in the

form of files. The management system should be able to manipulate

this data and store it according to the user specification; the

data could be stored in more than one logical way. In storing

matrices the system should determine the sparsity of the matrix and

should develop a scheme to store only those elements that are non-

zero.

4) The data managed by the system should be accessible to any authorized

user in two ways: (a) program request, and (b) query request.

5) The data managed by the system is considered valuable therefore it

needs some measure of protection and security. The protection

introduces the concept of authorization. Is the user authorized to

access the requested data, and what is the scope of authorization

(read only, read/write, etc.)? Security involves preventing an

authorized unwary user from destroying the database accidentally or

intentionally. :4..

6) Flexibility in expansion of the scope of the data management system

is important. Since the system encompasses all the fields of

engineering, visualizing each and every need initially may not be

possible. In addition, needs may change with time. This implies

that adding new capabilities should be made easy. Utilities

20
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supported should be easily replaceable by new and improved

equivalent utilities.

7) The file (library) should be able to hold more than one data set (a

data set is a named collection of logical records). Each data set

may have different logical organization but this should not prevent

them from coexiting in the same file. This is quite important

because a system under analysis may have data sets of different

characteristics. Each characteristic data should be stored

separately but could coexist with others. This way all the

characteristics are accessible as a unit or individually.

8) Since each data set can be organized in one logical order, it would

be disadvantageous to access data in only one way especially in a

multi-user and multi-device environment. If a user wants to access

data in an order that is different from the order in which It was

stored, the managment system should convert and present the data in

the user required format. If the data accessed is to be used for

computational purposes, then it can be unformatted. However, if it

is used in display mode it has to be pre-formatted as the user

needs, and the specific device accepts.

9) This is an implementation detail for the capabilities supported at

steps 7 and 8. The database administrator should understand or

view the data in at least 3 levels:

(a) conceptual: the global logical view of the data to be managed.

(b) external: presents variety of views of the data to multLiple

users; eog., conversion of physical storage view to logical

view and vice versa. " "

* 2 1* ".-'. "
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(c) internal: this view describes the physical characteristics of

data, i.e., integer, real, character, single precision, double

precision, etc., and how these are represented in a particular

device.

10) The database if needed should be distributed over a variety of

computers, since it is logical to assume that engineering analysis

and design involves various fields or departments. It might not be

feasible for all departments to work on the same computer, so the

system should have the capability to store data on different -'

computer systems but accessible from any one computer. However

there is an underlying assumption that "a network exists between

all the computers used".

11) The conceptual schema involves a data defintion language (DDL).

Initially all logical structures may not be supported, but if and

when the need arises for a new data definition, the DDL should be

extended to include it.

12) The EDMS should provide a facility to create temporary files during

a process and delete them at the end of the process. This is an

extremely useful requirement in design optimization. A number of

design iterations are usually necessary before final design is

obtained. Therefore temporary data files must be created and

deleted during each iteration.
m .4

13) The commands to use the EDMS should be well defined, the definition

should include a description of its parameters and also the scope

and functions performed by the command. A need for simplicity is

4. emphasized.
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14) Multiple concurrent users should be supported and be able to access

any part of the database simultaneously.

15) The EDMS should support a graphic utility

16) Error recovery of the database should be automated so as to ensure

the integrity of the data managed. 4

17) The system must have its own memory management. If the available

memory specified is large, EDMS should perform a minimum of 1/0. ''

.7
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III. DISCUSSION AND CONCLUSIONS ¢..

A basic purpose of this study is to define a DBMS for engineering

design applications. It should be the purpose of the system to

facilitate development of various design and optimization applications

programs by taking over the burden of data management.

Based on the discussion and review of literature a very

comphrensive database management system to satisfy this requirment has" "'

been defined. It is determined that an application-oriented system is L

the best for engineering analysis and design optimization activity. It

is highly flexible and can be used with any application. A comphrensive

set of specifications has been developed for the system. Based on these

specifications, a preliminary form of data definition and data

* V manipulation languages have been developed. A user's manual for this

implementation is given in the Part IV of this report. The user's

manual contains the current capability for data definition and data

manipulation. All the specifications have not been implemented yet.

The preliminary implementation is being used to evaluate file handling

procedures, paging algorithms and memory management techniques.

Substantial progress has been made. However, a lot more effort is

needed to fully develop and test the system. Distinctive features for

the EDMS are:

a) Memory management: The unit of I/O varies widely from application

to application and even within the same application. This ... ,

indicates the need for some kind of memory management that

would help optimize the time spent on I/O and speed up .

execution time. This task cannot be left to the discretion of

4. 24
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the user. Even though most mainframes and mini's support some

kind of memory management at the operating system level, it is

not available in micros. Therefore, the user is left with a

choice of running his programs either on a computer with memory

management or reduce the size of his problem. MemoryI management can also be justified where one is already available

especially if the data management system supports databased

utilities. However this memory management should be developed

such that the user has a control over the size of paging memory

and also the size of each segment or page.

The initial implementation of memory management in EDMS

consists of fixed number of pages and the page size. Number of

pages is determined by the user prior to the execution of the

program and is constant for each run. The paging memory is in

the form of an array inserted in the common block, viz. MCONTNT

(npages,ipsiz). MCONTNT is a short-integer variable. Since

the system handles data other that short-integer, other data

types are equivalenced to refer to the same array, For

example, DIMENSION ILMEM (npages,ipsiz/2) EQUIVALENCE

(ILMEM,MCONTNT) where ILMEM is long-integer variable.

Depending on the data type appropriate array name is used.

Every paging management needs some kind of page replacement

algorithm. The algorithm adopted to determine the page to be

replaced is the "least recently used" (LRU). Here a counter is
maintained for each page. When the time comes for a page to be

,1w replaced the page with the highest counter value becomes the

25
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candidate. The counter of a page referred to any particular

instant is set to zero and the counter values of the rest of

7 the pages are incremented by one. The "least recently used"

algorithm is based on a time scale and a page with the largest

time gap would be replaced. In this system the time is

calculated based on the counter value, i.e., highter the

counter value the longer the time span. Pages are replaced

only when there are no free pages available. Therefore this

implies that entire paging memory could be utilized to retain

information about a data set. A dirty bit is associated with ..-

each page which helps in determining if data in the page is to

be written or just replaced. Whenever a file is closed all the

data sets contained within the file having pages allocated to

them are emptied form the paging memory. Currently there is no

provision for automatic recovery in case of abnormal

termination, but would be provided in later implementaions.

Experience while testing has shown that a fixed page even for a

single application has its own drawbacks. This is because the

size of data sets usually vary dramatically within each

application thereby rendering the page to be either too big for

some data sets and too small for others. The way to counter

this problem is to divide the memory into two regions; one used

r for fixed pages and the other for variable sizes or segments.

* The user can determine the cutoff point. Any data set below

the cutoff point uses the segmented memory and those above use

fixed pages. The reason f or not adopting a complete

26
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segmentation is that it would involve writing garbage

collection routines. This poses quite a difficulty even at the

operating system level let alone in a system like EDMS. Most

of the garbage collection algorithms would render this system

innocuous. The garbage collection scheme would not be adopted

even when segmentation is implemented, but the problem would be

solved by what is called refreshing the segmented memory. When
L

contiguous memory is not available in the segmented memory to

bring in new data then all the data contained within segmented

memory is written out to the disk leaving the memory blank.

Even though this might prove inefficient at times, it is better

than garbage collection and does not require any paging

algorithm.

b) Logical structures supported in EDMS are of the form of vectors,

matrices and tables. A data set is essentially either a matrix

or a vector, but a matrix can h2 ordered in any one of the

following forms, viz. column order, row order or submatrices.

However, the logical view is not restricted to this order. A

data set ordered in, say, column order can also be viewed in

-7. row or submatrix order. This provides a flexibility in viewing

the data differently based on the need. Also, it simplifies

the process of establishing relations between logical records

of the same data sets and with those of other data sets.

c) Physical organization: The process of establishing a file or data

library and data sets that are to be contained within it, take -..

a logical sequence as outlined below. Prior to any data
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transactions, it is the responsibility of the user to define

new files, or open an old file. Then the user can either

define new data sets or make use of previously defined ones.

If the user is interested in generating data and storing it for

later use, the procedure is as follows:

Step 1. Define file

Step 2. Define data set(s)

Once the file is defined, Step 2 can be undertaken

either immediately or in another application but prior

to an attempt to write data in to it.

Step 3. Write data

Step 4. Read, write or update.

The process of data set definition involves setting up the size

of data set, type of data that would be stored, and identifying

it by a name. Once this is established the information is

maintained in the database and operation with the data set is

cross checked before the operation is completed. The logical

organization of the data has little to do with the actual or

physical storage of the data and the user is not at all

concerned with this aspect. Whenever data is requested by the

user in terms of logical records they are mapped into the

physical database and supplied to the user.

part of the system. It is preferable that the utilities be

9 developed by the same group that is developing the system in

order to exploit the usage of internal routines in performing a
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given task efficiently. It was with this idea that we started

to identify some utilities which would be commonly used. These

utilities can be divided into three groups:

1) Math Utilities: Most commonly used matrix manipulation

I° -.-- "

operations will be included. These operate on data sets

stored in the database. The user is relieved of the

responsibility of going through a complicated task of

performing these operations in piece-wise fashion in case of

large data sets.

2) Stat Utilities: This group will consist of some of the

commonly used statistical operations.

3) Graphic Utilities: This group will support a graphic

package and interface to several hardware devices, I.e., the

graphic output could be directed to more than one physical

device.

e) Distributed Processing: Currently little has been done in

implementing this feature but Is envisioned to be included in

later implementations. This basically involves usaged of the

system over a network of computers by sharing resources, i.e.,

data residing on one computer would be made accessible to a

program running on another computer.

f) Query Language: The data residing in database can be accessed

through an application program or through a query language.

This could be used to view or display the data. It is

envisioned that the query language would consist of interactive

commands to query the database. It would also contain commands "777
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that can be used in an applications program. This is an

important and mandatory feature of the system if it has to be

used in design optimization of systems. Query language can be

used to define the optimization problem (cost function,

constraints, etc).

g) Help Facility: With a system of this proportion there is a need for

a help facility which would enable new users to reference the

calling sequence, implication of commonly occurring errors and

methods to correct them.

h) Gripe Facility: This feature enables feedback from the users andj

the difficulities encountered in using the system.

It is concluded that a database management system such as EDMS is a

must for developement of various application programs for engineering

design, especially optimal design.

KOKS and Design Optimization

A major goal of the present research is to develop database

management concepts for engineering design optimization. In this regard

considerable progress has been made. Existing concepts have been

....

studied and evaluated. Data needed for design optimization have veen

identified. Desirable properties of a DBMS suitable for design

optimization have identified. Some of the basic functions of DBMS have

been implemented and tested. However, substantial more work needs to be

done in the future. -

EDMS has been incorporated into an unconstrained optimization

algorithm and tested. It has also been incorporated into a quadratic
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programming algorithm. The quadratic programming algorithm is a basic

tool that is needed in many constrained optimization methods.

Therefore, this program will become a core for developing, implementing

and evaluating database management methods for design optimization.

EDMS is also being incorporated into a commerically available finite

element program. The purpose is to use general available analysis

capability for design optimization. The idea is that once general

analysis capability becomes available, database design methods for

optimization can be developed and tested.

General matrix utilities are also being developed. These will ,

operate on the data sets in the database to support basic matrix and

vector operations. Such utilities are not generally available in *'-N

existing DBMS. However, they are extremely useful in developing,

implementing and evaluating DBM concepts for design optimization.
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This subroutine is used to put submatrix data set from user buffer

Into file defined on LUNIT. The data set has to be in SUBMAT order and

file unit IRA' type.

CALL DSIDPV(WNIT,TTPE,DSEANK,ISUU ,JSU ,ORDUR, I,J ,DTPE)

The subroutine is used to redefine a data set. The row and column

dimensions of the data set (size) can be changed using this

subroutine. The values of ISUB, JSUB, 1, J are the new data set

dimensions.
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I. INTRODUCTION

This report describes the subroutines and their functions in the

EDMS library. EDMS stands for Engineering Database Management System.

The EDMS library has subroutines that can be called from any FORTRAN

application program. Main purpose of the EDMS library is to take the

burden of managing the data away from the application programmer. The

data can be stored and retrieved quite easily using the library

subroutines. EDMS has its own memory management. Therefore, a call to

EDMS routine to store or retrieve data may not necessarily require a

secondary storage I/O operation. This depends on whether the data

manager has free space available in the buffer or not.

To use EDMS for managing data in an application program, two types

of operation must be carried out: file operations and data set

V operations. Files and data sets are defined in the classical sense:

file is a collection of data sets and data set is a collection of data

items such as integers, real numbers, double precision real numbers,

characters, etc. EDMS contains file operation and data set operat.on

commands. New files must be defined before data sets can be writt'n in

them. Old files must be opened before existing data sets can be read or

new data sets can be created In them.
.\.. " ... ,

Chapter 2 contains definitions of various arguments used in the

subroutines. Chapter 3 contains the file operation commands and Chapter

4 contains data set operation commands.

The EDMS program is stored in the PRIME computer system at The

University of Iowa. The program can be invoked using the following

1'V%... .--'' .". 'J , ---... .. " . ... 'L..'°.'-.- , ". '.-.-- 1 9, :'' . '.. .,. .:- , ." • " "
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command:

ok, SDMS /* In PRIME A system

ok, EDMS /* In PRIME CAELAB system.

The above command requests the user to supply the application program

name. The application program must be compiled and its binary file must

be available in the user's file directory. The application program can

contain call statements to various subroutines of the EDMS library.

=....v

V?
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* command:

ok, SDMS /* In PRIME A system --

* ok, EDMS /* In PRIME CAELAB system. ~9

The above command requests the user to supply the application program

name. The application program must be compiled and its binary file must

be available in the user's file directory. The application program can

contain call statements to various subroutines of the EDMS library.

-- 7
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II. DEFINITION OF SUBROUTINE ARGUMENTS 1%

In this chapter, definitions of arguments used in various

subroutines are given. These arguments are used in file operation

subroutines and data set operation subroutines given in Chapter III.

All definitions are given in an alphabetical order.

2.1 ACCESSTYPE:

Specifies whether the file has to be used for read/write/update

(R/W/U). Operation update implies read and write. CHARACTER *12

2.2 DORDER:

The order in which the data is to be stored or retrieved, such as,

Columns ('COL'), rows ('ROW') or sub-matrices ('SUB'), Upper triangular

row ('UTR'), Upper triangular column ('UTC'), Lower triangular row

('LTR'), Lower triangular column ('LTC'). Note: Currently only the

order specified in the DSDEFN subroutine is available. That is data can

be retrieved only in the form it is stored. CHARACTER*12

2.3 DSMAME:

The name of the data set that is to be defined or has already been

defined. A maximum of 12 characters are allowed with the first

character being a letter. If the data set appears as a character

variable in the calling program, the name of the variable is sent. If

the data set name itself is being sent then it must appear in quotes.

If job name is to be concatenated with the data set name, then data set

name should contain only 8 characters. The data set name after

concatenation with job name will be 12 characters long. CHARACTER *12

3
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2.4 DTTYPE:

The type of data stored in the data set: Real ('REAL'), Double

Precision Real ('DREAL'), Integer Short ('INTS'), Integer Long ('INTL')

or Character ('CHAR'). CHARACTER *12

2.5 END:

The ending location in the data set at which the user wishes to

stop the reading or the writing process. The meaning of END depends on

the method specified for retrieving data: a) Row-wise - then END = the

ending row number, b) Column-wise - then END = the ending column number,

c) Sub-matrix - then END = the ending sub-matrix number, d) Part of a

column or row - then END - the ending element in the segment, and e)

Triangular matrix - then END = the ending row number or column number.

(NOTE: When a part of a column or row is required from a data set (ROW

or COL data sets only) then use IELM parameter (see IELM paragraph) IELM

is set to zero when a complete row or a complete column or a submatarix

is stored or retrieved. INTEGER*4

2.6 FNAE:

This is the name of a file that has been already defined or is to

be defined. It can have a maximum of twelve characters. The starting

characters must be a letter. CHARACTER*12

-~ 2.1 FSTAT:

This specifies the status of the file to be defined or is already

defined. Status can be either permanent 'PERMANENT', 'PERM', or

temporary 'TEMPORARY', 'TEMP'. Temporary status for a file implies that ....

it will be deleted before the program is stopped. CHARACTER*12

4•
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2.8 IJ:

The actual dimensions of the data set. If the data set is a one-

dimensional array then the value of J is to be set to 1. For a

triangular matrix data set, the size of matrix should be given.

INTEGER*4

2.9 Il,Jl:

The dimensions of the user buffer IBUFF. For one-dimensional array

the value of Ji should be 1. INTEGER*4

2.10 IBUFF:

The user buffer (array name) from which the data is to be retrieved

or stored back. NOTE: The array must be properly dimensioned In the

calling program and the correct data type specification should be used.

The array can be either one-dimensional or two-eimensional while using

ROW or COL data sets. Two-dimensional array should be used in the cas.

of SUB matrix data sets. The array should be one-dimensional in case of

UTR, UTC, LTR, and LTC data sets.

2.11 IELM:

This parameter is used when the user wishes to obtain part of a

column or row from the data set (ROW or COL data sets only). IEIM Is

the specific column or row from which a part of column or row is stored

or retrieved. STRT and END are the starting and ending element numbers

in the row or col IELM. If the user does not wish to take a segment

from a column or row then zero value should be entered in the IELM

location. INTEGER*4 L

5

---------------------------------



2.12 IERR:]

This parameter returns an error code if error occurs during any

call to the EDMS library routines. It is zero if everything goes well.

User should check the error condition after returning from the EDMS ]
library routine. INTEGER*4 Ii
2.13 IFORMAT:

Specifies if the data to be written to the file is in formatted or

unformatted form (FORM, UNFORM). Default is unformatted. CHARACTER*12
~..'

2.14 ISUB,JSUB:

The dimensions of the submatrix in a data set. The value of ISUB

or JSUB is zero in the case of ROW,COL,UTR,UTC,LTR, and LTC data sets.

INTEGER*4

2.15 JOB:

The job name to be assigned to all data sets belonging to a

project. The data set name will be concatenated with the job name. Job

name may be set to blank if no job name is used. CHARACTER *4

2.16 LUNIT:

This contains the logical unit number on which the file is defined

and opened. It is returned to the calling program by the subroutine

DFDEFN. This number is subsequently used in subroutine DSGET, DSPUT,

etc., for further reference to this file. INTEGER*4

6
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2.17 NDSETS:

This specifies the maximum number of data sets that will be

included in this file. Default is 20 at present and can be changed

easily. INTEGER*4

2.18 ORDER:

The ordering of the data set: Row ('ROW'), column ('COL') or sub-

matrix ('SUB'), Triangular matrix -upper triangular row matrix ('UTR'),

-lower triangular row matrix ('LTR'), -upper triangular column matrix

('UTC'), -lower triangular column matrix ('LTC'). This is the order in

which the data set is to be stored or retrieved. CHARACTER*12

2.19 PTHNANE:

%71

The specifid UFD or SUBUFD under which the file is to be defined or

is already defined. Maximum length of 256 characters. Each set of

UFD/SUBUFD must be separated by '>' sign and should be arranged

according to the descending hierarchy. Ex:

AEGDDD>SUB.DIR> .... > .... > .... >. CHARACTER*256

2.20 STRT:

The starting position for reading data from a data set. The

meaning of the STRT parameter depends on the method by which the user

intends to retrieve the data. If the data is to be read a) Row-wise -

then STRT = the starting row number, b) Column-wise - then STRT = the

.7,. starting column number, c) Sub-matrix - then STRT = the starting sub-

matrix number (NOTE: Sub-matrices are numbered column wise), d) Part of

a column or row then STRT = the starting element in the segment, and v)

Triangular matrix then STRT = starting row number or starting column
,.'" -%
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number. (NOTE: When a part of a column or row is required from a data

set (ROW or COL data sets only) then use IELM parameter (see IELM

paragraph). IELM is set to zero when a complete row or a complete

column or a submatrix is stored or retrieved. INTEGER*4

2.21 TYPE:

This parameter specifies the type of the file that is to be opened

or is already open. The file can be random access or sequential access

type. TYPE can be either 'RANDOM' (or 'RA') or 'SEQUENTIAL' (or

'SA'). CHARACTER*12.

j. .
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III. FILE OPERATION COMMANDS

This chapter describes various statements for file operations:

CALL DFDEFN(FNAME,PTHNAMETYPE,FSTAT,NDSETS,IFORMAT,LUNIT, IERR)

The function of this subroutine is to create a file in the user

file directory specified by the pathname and to open it. Before any

data is stored on a file, file must be defined using this subroutine.

Maximum of 20 files can be defined in the current version.

CALL DFOPEN(FNAME,PTHNAME,TYPE,FSTAT,ACCESSTYPE,LINIT )

The function of this subroutine is to open the existing file

FNAME. The file must have been previously defined by a call DFI)EFN. An

existing file must be opened before data sets can be retrieved or cret;Le

new data sets in the file FNAME.

CALL DFCLOS(LUNIT,TYPE,IERR)

The function of this subroutine is to close a file opened on

logical unit LUNIT. Before closing the file, the data sets in the file

automatically updated with latest modification to data, if such

modification has been done.

CALL DFDELE( FNAME, PTHNAME, LONIT,TYPE, IERR)

The subroutine deletes the file FNAME on logical unit LUNIT. Fi le

must be closed before deleting it, using DFCLOS subroutine.

CALL DFCOMP(FNAME,PTHNAME,LIJNIT,TYPE,FSTAT,IERR)

This subroutine compresses the file FNAME defined on LUNIT. The empty

space formed due to deletion of data sets in a file are removed by moving,

datasets together. The subroutine helps in proper utilization of the disk

space. The file unit number after compressing the file is set to new vaIlu.

9 .
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IV. DATA SETS OPERATIONS

This chapter describes various subroutines related to operations on
~data sets:

CALL DSDEFN( LUNIT,TYPE,DSNANE,ISUB,JSUB,ORDER, I, J,DTYPE)

The function of this subroutine is to define the data set details

on a file unit (LUNIT). Size, order, data type, etc,, for the data set

* *are defined. Data set must be defined before data items can be stored

in it. ISUB and JSUB are dummy values when defining ROW or COL data z
*sets. Maximum of 20 data sets per file unit can be defined.

. CALL JOBASN(JOB)

The function of this subroutine is to assign job name to the data

sets. The job name will be useful in identifying data sets belonging to I
different jobs or projects. The user can define same data set name for

different jobs. EDMS system concatenates the job name with data set

name and the result is stored in the DSNAME argument on return from

subroutine DSDEFN. The subsequent reference to the data set name is ".-

made using the new DSNAME. This subroutine has to be called only once

before calling DSDEFN subroutine.

CALL DSGET(IUNIT,TYPE,DSNANE,STRT,IEND,IELK,DORDER,IBUFF, 11"

J1,IERR)

The function of this subroutine is to get elements of a data set

from the file unit (LUNIT), into the user buffer area. Data set must be

residing in the file LUNIT. It must have been created by using EDMS

library routines.

10
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II } .:1 ACALL DPrUTLLUNJ.1,TYrn,DUMhI,STBL, iUU,JL,DRDER, BUFE *Ii ,JI,

-IK'R)

The function of this subroutine is to put elements of a data set

* from user's buffer to the file unit (LUNIT) that has been already

defined.

"' ". ~CAML DSCKT(LUNIT,iDSNM KI ,STRT,IHD,IBUFF,I ,IR" )-,

This subroutine is used to get rows of a data set from file LUNIT

into user buffer. The data set has to be in ROW order and file unit

\'-. must be IRA' type.

CALL DSzM~(LUNIT,DSNAHSTRT,IUD,IBUFF,JI ,IER)

This subroutine is used to get columns of a data set from file

LUNIT into user buffer. The data set has to be in COL order and file

unit must be 'RA' type.

CALL DSG TH(LUNIT,DSAN1K,STRT, IND, IBUl7,11 ,J1,IERR)

This subroutine is used to get submatrix of a data set from file

LUNIT into user buffer. The data set has to be in SUBMAT order and file

unit must be 'RA' type.

CALL DSPUTR(LNIT,DSIAK,STIT, lED, IBUFF,11 ,IKEI) j
This subroutine is used to put row data set from user buffer into

file defined on LUNIT. The data set has to be in ROW order and file

unit must be 'RA' type.

CALL DSPUTC(LUNIT,DSRANE,STRT,XlD,IBU7,JI ,IEIE)

This subroutine is used to put column data set from user buffer

into file defined on LUNIT. The data set has to be in COL order and

file unit must be 'RA' type.

CALL DSPUTH(LUNIT,DSNRAM,STET , EED,IBU 37,U ,J1,IlRR)

". .',!

. . .. 9 -' .

.4 ., I 1 I-.I



*This subroutine is used to put submatrix data set from user buffer

into file defined on LUNIT. The data set has to be in SUBMAT order and

file unit 'RA' type.

CALL DRD1I(LUUIT,TPK ,DBKANK, ISUB,JSU, SOlDER, IO , rJ,D PE)

The subroutine is used to redefine a data set. The row and column

. dimensions of the data set (size) can be changed using this

subroutine. The values of ISUB, JSUB, I, J are the new data set

dimensions.

p ~CALL D615W(LMNIT,TYPE ,DORDKR,DSNAHKI ,DSEANK2 , IRR)

The subroutine can be used to change name of the data set DSNAME1

to a new name DSNANE2.

CALL DCOPY(LITITYPZI ,DSIANB,LUIT2 ,TYPK2, IR)

The subroutine can be used to copy a data set DSNAME from file

defined on LUNITI to a file defined on LUNIT2.

%. )
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