-y

. AD-A162 212 173

- 10MA CITY APPLIED-OPTIMAL DESIGN LAB

T SREEKANTANURTHY ET AL 38 OCT 83 CAD-55-83-17
7/

UNCLASSIFIED RFOSR-TR-85-1883 AFOSk-82-8322 G 571

NN
HE NN
HENNNEN
NN
N
L
Ll
B
RN
NN
L
HENEEN -
NN

AT IS PRI
4, 1 —

e

A PEVR

" e
PRIIR I S0

>

flo 5
T

= |&
li25 e pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
R

el e D e i e ST~ B iy~ B gt B W E gl s bt pin e s 130 "%, i . e M 8,0 .l A U i W . Gl e L

KFOSR-TR- 85-1083 . é/

Technical Report No. CAD-SS-83-17

Database Management in
Design Optimization

by

AD-A162 212

T. SreekantaMurthy, S. D. Rajan, C. P. D. Reddy, D. T. Staley,
M. A. Bhatti, and J. S. Arora

DESIGN OPTIMIZATION LABORATORY
Division of Materials Engineering
The University of Iowa
Iowa City, IA 52242

e or scm DTIC
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Under Grant No. AFOSR 82-0322 ELECTE PRy
DEC9 185 : B

A

oloan®}
r 1983 Approved for pu’o}?:: o /
distribu‘tion ynlir

- . el R IW, 4R W dLa-_ A e Ny d,

' Unclassified
‘-: SECURITY CLASSIFICATION OF THIS PAGE (When DuuLEnleredL
.
" READ INSTRUCTIONS
i REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
AL T. REPORT NUMBER 2. GOVT ACCESSH NOL 3. REQ! 'S CATALOG NUMBER
£ | *"Jr63CTR. 85-1083 4103 2/
"\“. 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
o Annual, October 1982 to
- Database Management in Design Optimization September 1983
6. PERFORMING OG. REPORYT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
T. SreekantaMurthy, S.D. Rajan, C.P.D. Reddy,
D.T. Staley, M.A. Bhatti, J.S. Arora AFOSR 82-0322
a‘?
. 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :sggR&AwOERLKEMSNTT P':AOBJECT TASK
‘,' Division of Material Engineering é //U()' 5
iy College of Engineering
! The University of Iowa, Iowa City, IA 52242 ,Z 30 7M
s: 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
i AFOSR/NA 30 October 19
Building 410 13. NUMBER OF PAGES
hi Bolling AFB, D.C. 20332 222
;‘: t4. MONITORING AGENCY NAME & ADORESS(/f diiferent from Contenlling Olfice) 15. SECURITY CLASS. (nf this report)
.\ Unclassified
154 GECL ASSIFICATION/ DOWNGRADING
SCHEDULE
. NA
oy ———
F\Y 16. DISTRIBUTION STATEMENT (of this Report)
L)
v
Qr',g Distribution is unlimited
) Approved for publie release;
distributionunlimited,
4
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1f difterent trom Report)
()
iy .
é: Distribution is unlimited
JEEES—
" 18. SUPPLEMENTARY NOTES
©
P>
)
kK2
)
)
&
: 19. KEY WORDS (Continue on reverse side il necessary and identify by block number)
o Database Management; Database Design: Optimization; Design; Engineering
,“, ’ Computations; Scientific Computing: Interdisciplinary Design; Analysis
Y
34
¥
y 20. ABSTRACT (Continue on reverse side If necessaty and Identify by block number)
P * The report describes fundamental concepts, needs, and requirements
K of a database management system for design optimizatfon. Type of data needing
h N [4
:,‘ management are identified. A preliminary database management system for
‘i:: structural optimization has been designed, implemented and evaluated. Detailed
-‘: specifications for a desirable database management system for more general
design optimization environment have been developed. Some important specifi-
RR cations for the system are (1) data independence, (2) multiple logical views of
l:::4
] c', N
ol 4 DD ,"5R%; 1473 £oimion oF 1 NoV 63 15 OBSOLETE "

Unclassified ~
r’ SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(Whaen Dets Entered)

5the data, (3) memory management, (4) matrix operations utilities, (5) query
language for use in interactive sessions as well as applications programs, and
(6) management of permanent, temporary, global and local databases. Such
capabilities must be available for design optimization applications. A com-
prehensive review of literature on database management systems for engineering
computations has been completed. It is noted that the field is fairly new.
Some systems have been developed in the recent past. Thelr favorable features
and timltatfons are identified. Based on these studies, development of a com-
prehenslve engineering database management system has been in progress. The
system is being developed and integrated into design optimization methods. It
will become a core for design, implementation and evaluation of databases for
engineering optimization applications.

N

/
{ Accesion For /
LN oRAdd i
e . *i D
P - . D
..........)
- .__—
. s Codes
i e v ee———rl
- ~ . dfor
T u{)ﬂ,cia‘
/\

Unclassified
SECURITY CLASSIFICATION OF YTu's PAGE(When Data Entered)

PRk '._.‘._‘_..‘\.‘.._1,_.}:3—.‘:‘. 3
WA '~’."-"-."~‘
g .

ABSTRACT "

The report describes fundamental concepts, needs, and requirements
of a database management system for design optimization. Type of data
needing management are identified. A preliminary database management
gsystem for structural optimization has been designed, implemented and
evaluated. Detailed specifications for a desirable database management
system for more general design optimization environment have been
developed. Some important specifications for the system are (1) data
independence, (2) multiple logical views of the data, (3) memory
management, (4) matrix operations utilities, (5) query language for use
in interactive sessions as well as applications programs, and (6)
management of permanent, temporary, global and local databases. Such
capabilities must be available for design optimization applications. A
comprehensive review of literature on database management systems for
engineering computations has been completed. It is noted that the field
is fairly new. Some systems have been developed in the recent past.
Their favorable features and limitations are identified. Based on these
studies, development of a comprehensive engineering database management
system has been in progress. The system is being developed and
integrated into design optimization methods. It will become a core for
design, 1mp1ementation,and evaluation of databases for engineering

optimization applications.

ATR FORCE OFF™ A= A~ = rrersnrs nmeetmmq (gpey)
NATTOR

r

s “34 i3
e N

......

MATZH . &
Chief, Teonnlcal .ulo .o .li....viuion

AT
-, .

RS ¥ et
\’_'.'v’

B
TAOAY

o it - T - 5 - gua Y = o -

5

‘5

3 Ry

§ SUMMARY o

.. , -

;% In October 1982, a project was initiated under the sponsorship of gﬁg

lt Alr Force Office of Scientific Research to study and develop database %%.

K - .
management concepts for design optimization. Considerable progress has =

gy been made since then in identifying the needs of database management

;' concepts, type of data needing management and the features of a database

. management system suitable for design optimization. Various data models

;4 and their suitability for design optimization have been studied.

{3 Various file structures for physical data storage have been studied.

:: Suitable structures have been identified. A comprehensive review of

E; literature on database management concepts in scientific and engineering

;f computations has been conducted. Available systems have been

¢ evaluated. Favorable features and limitations of the available systems

WY

{i with respect to their usage in the design optimization environment have

;ﬁ been identified. A database management system for structural

é optimization has been designed and evaluated. Based on these studies

?n desirable features of a general purpose database management system have

\

?ﬁ been identified. Such a database management system is badly needed for

%? design development, and evaluation of proper databases for design

, optimization. The system will become a core for further studies on

éﬁ database development for design optimization.

fﬁ The report is divided into four parts. A summary of each part,

ii status of research, associated personnel, publications, and plan of

;:’ research are presented in the following paragraphs.

A -
PR AE YA Y L TN TR TR LT T N T W L L e AR RLRES .'Q SRS ALORS AR AR
'V’"C \v-'{ > \.'-’\m‘ Uyt R e {‘E '{ % % n’: SRR G -.'.; -s.': ;’.‘-‘ 4% ‘u.{\;\',c-
} o m,‘. Aty Un y Al SO AP T - " w‘-w wé TEOAL SRS AN
I Ak }‘\A‘ ;,' v\}‘ P Ay 2 l;‘ O (34 "‘ » ' . ‘

P N e e N

b

s

bkl
P

CPPPIIL.
o o A

\A

oo
s
Y.

PART 1

Rajan, S.D., Bhatti, M.A. and Arora, J.S., "A Database Management System

for Structural Optimization.”

This report is partly based on the Ph.D. dissertation of Mr. S.D.
Rajan completed in July 1982. The work was in progress when the project
was initiated. Following is a summary of this report:

The database management system for design optimization has needs
that are characteristic of most engineering computations. However there
are some requirements that stretch the limitations of not only computer
systems but also the methodology behind software development. This
report examines the needs of engineering database management. DNetails
are drawn from the SADDLE system that has been used for optimal design
of structural systems. SADDLE stands for Structural Analysis and
Eynamiciggs%gn LanguagE. The system is modular, portable, reasonably
efficient and amenable to future growth. All the modules interact via a
global database. The database management system uses a data manager
that has three distinct parts -— the data model processor, the resource
manager and the I/0 manager. Both the relational and hierarchical data
models are supported. Tuning parameters are provided to enhance
computational efficiency on different machines. Emphasis is on user-
system interaction — free-format input, error recoveries, and easy
means to create, edit and update information. Experience gained with
the SADDLE system is utilized in defining a general purpose database o
management system for design optimization,

Several publications have been planned based on this work.

-',.'-u'-,."-u -""Tf&:_ v\“
2 S * *3- ¥ Y‘-

‘1:""‘ PNy

I-<~

J"_‘l
e

g

=
> Dl e

-

A

RN

PART II

SreekantaMurthy, T. and Arora, J.S., "Database Management Concepts in

Design Optimization.”

This report presents general concepts for database management in
design optimization. The need for database management is emphasized.
Data used in design optimization is discussed. Various data models used
in database management are described. A data model suitable for design
optimization is discussed. Physical and logical data structures are
studied. File structure for physical data models are important.
Therefore various file structures are studied for physical storage of
data. Suitable file structures for design optimization are discussed.

A comprehensive review of literature for database management in
scientific and engineering computations is conducted. It is noted that
database management ideas are fairly new to engineering design
community. Some database management systems for scientific computing
have been developed in the recent literature. Features of these systems
are studied. Favorable features as well as drawbacks of the available
systems with respect to design optimization applications are noted.
Based on this study a suitable database management system and database
design for optimization applications can be developed.

The report is a part of the Ph.D. dissertation of Mr. T.
SreekantaMurthy that is in progress. Based on this work a paper has

been submitted for presentation at the AIAA Conference to be held in May

1984.

In addition, two other Ph.D. students - J.K. Paeng and G.J. Park -
are working on applications of design optimization of general dynamic
systems using database management concepts. Database of a commercially
available finite element program is being changed so that it can be used
for design, implementation and evaluation of database concepts with

general applications.

PART III

Reddy, C.P.D., SreekantaMurthy, T., Arora, J.S. and Bhatti, M.A.,
"Engineering Database Management System (EDMS): Concepts and

Requirements.”

This report describes concepts and requirements of a database
management system for engineering design optimization and, in general,
scientific computing. Distinction between database management in
business and engineering applications is first highlighted. General
concepts for design of a database management system in scientific
computing and, in particular, engineering design optimization are
presented. Based on these concepts and requirements, a set of detailed
specifications suitable for database management system (DBMS) has been
developed. Such a DBMS can be used in the development, implementation
and evaluation of database management concepts and methods for design
optimization. Some important specifications for the system are: (1)
data independence, (2) multiple logical views of the data, (3) menory
management, (4) matrix operation utilities, (5) query language for use

in interactive sessions as well as applications programs (useful for

Pk N

i

g defining optimization problems), and (6) management of permanent,
: temporary, global and local databases. These capabilities must be
. present for design optimization applications. Based on the
y
» specifications, a database management system called EDMS (Engineering
: Database Management System), has been initiated. The system is being
3 developed and integrated into design optimization methods. It will be Siii
s used in the design, implementation and evaluation of database management e
o concepts for design optimization.
3 Several M.S. and a Ph.D. students are working on this part. C.P.D.
3
S Reddy and T. SreekantaMurthy designed and implemented the data
\ definition and data manipulation languages. Scope of these commands is ;i\z.
i being expanded. D.T. Staley and R. Hotz - two M.S. students - are §§§z
K working on this part. Matrix operations library is being designed. §;¢t
ﬂb These commands will operate on the data stored in the database and R:f:
;i deposit results in the database. These will be extremely useful in éiil
:' developing and evaluating the databases for design optimization. A ;{Qt‘
;; general purpose query language 18 being designed. The material will gZEI
. W
.; become a M.S. thesis of Mr. R. Hotz. §€§
b ? v
o+ In addition, two M.S. students - V, Venkatesh and Y.K. Shyy - are 231*
'd working on the design of linear equation and general eigenvalue ;
;ﬂ solvers. Various solution methods and their algorithms are being
g designed for implementation with the database management system. Such i
- capabilities will be extremely useful for design optimization and other Effi
:§ applications. The material will be suitable for M.S. theses of the E?;?
. £

above two students.

- Journal articles are planned based on this work. yx;j

ot

P2

:\té

PART IV e

SreekantaMurthy, T., Reddy, C.P.D., Staley, D.T., Arora, J.S. and é;j
Bhatti, M.S., "Engineering Database Management System: EDMS User's Ezi
— 3
5

This report presents a user's manual for the EDMS. The idea here ;i;z

is to show current capabilities of the system. The manual contains t{'
various commands for the system. There are two types of commands: file ;;&
operations and data set operation. File operations define the type of ?&é
file, opening and closing of a file and other file operations. Thc data g&g
set operation commands include both the data definition as well as data E';'
manipulation commands. Limited capability is available as can bhe seen ijiw
from the available commands. Other commands for data definition as well ;?}
as data manipulation are under extensive development. These will b= 'ifg
made available soon. Once the system has been developed, it will become .&‘;
a core for study, design, development and evaluation of database design izfl
for various optimization applications. fgk
Several M.S. and Ph.D. students have worked on this part of the Eéii
project. C.P.D. Reddy (M.S.), Don Staley (M.S.), Robert Hotz (M.S.), and
T. SreekantaMurthy (Ph.D.) have implemented the commands currently "";
available. C.P.D. Reddy has graduated and left the University. Don Staley ;iii
will be graduating and leaving at the end of November 1983. Robert Hotz, :;}}

T. SreekantaMurthy and some new students will continue working on this
part of the project under the supervision of the principal investigator.
Robert Hotz will be working on the matrix operations library. T.

SreekantaMurthy will be working on query language and the data manager.

¢
i

[I e

2ot X

>

-
sy

f

£t

. e oo)

>
T

A
A
L B TR A

8-
‘l

[
0

o

»
A |

by % “r
A
bl e -

'

LI I o

7,
<
-

PREFACE
This report is based on the Ph.,D, dissertation of S.D.Rajan
completed in the Civil and Environmental Engineering Program of the
Division of Materials Engineering. Partial support for the work was
provided by the Air Force Office of Scientific Research Grant No.AFOSR-
82-0322., In addition the support provided by the Computer—Aided
Engineering Laboratory and the Division of Materials Engineering of the

College of Engineering is acknowledged.

>

"y
r_‘t

L

.

P

- T
N .
" F)
el s

. . . s
CUREY YR N

O]

e
~
Y

P : ['-’:n- s, 5
a A.’..'..'n.,A a

r»
ry
5

Yl
yx

ABSTRACT

The database management system for design optimization has needs
that are characteristic of most engineering computations. However there
are some requirements that stretch the limitations of not only computer
systems but also the methodology behind software development. This
report examines the needs of engineering database management. Details
are drawn from the SADDLE system that has been used for optimal design
of structural systems. The system is modular, portable, reasonahly
efficient and amenable to future growth, All the modules interact via a
global database. The database management system uses a data manager
that has three distinct parts —— the data model processor, the resource
manager and the I/0 manager. Both the relational and heirarchical data
models are supported. Tuning parameters are provided to enhance
computational efficiency on different machines. Emphasis is on user-—
system interaction -~ free-format input, error recoveries, and easy

means to create, edit and update information.

RN TS W N S

- L
s ,.'.‘#._-.\].:‘1 A

TABLE OF CONTENTS

Page

LIST OF FIGURESI...I‘....’....i.l.......'.0'....“..........'..'. iV

2
‘{t} CHAPTER 1 ENGINEERING DATABASE MANAGEMENT.....cc0oc000000000e0 1
.‘-:"j
k; 1.1 Need for Engineering Database Management...... 1
N 1.2 Requirements of a FEM-based Optimization
Software...'.........’...I...I..'II'.......... ll
"‘- 1-3 Scope Of Work....-...............-............ 15
o CHAPTER 2 ELEMENTS OF A DATABASE.........ccceeveneoeeeenannns 17
7 2.1 Introductory RemarkS....cceeeceecsccosecsacass 17
:x.*‘ 2.2 Data structures.....l.....l..‘...‘............ 17
-'.-: 2.3 Physical Databasel..ll.l......I.....l'l....... 19
.ﬁl‘ 2.4 Conceptual Database....ccsseeeesccccsscssoncns 20
‘_":-_‘ 2.5 Query LanguagE......-...........-............. 36
:.}:“. 2.6 Memory Management...‘...l..‘.......'.......... 40
. CHAPTER 3 SADDLE: DATABASE MANAGEMENT SYSTEM....cocecoveensnas 44
1
Lo .1 Introductory RemarkB....eecesecscescccscecnsans A
o . Software Development..ccceeccocscccsscrncssscesse 44
..". SADDIE Physical Database..'............I...... “7
]

SADDLE Conceptual Databas@.cccesessssccsesccescs 52
SADDLE Memory Management Systemecceocecccscoscces 60

WWwwwwwww
. e o
CO~NOWL &H~WN —

O .6 Primary-Secondary Storage LinK....seoesecacocss 72
25 . SADDLE Design Query Language..cceccesssccccsse 73
’\a * co“trol Structure..................'.......‘.‘ 75
o

e | m‘ “uﬂumonwmnm m.-oo..oooo.oooooooo.-oo'o. 80

4.1 Introductory RemarkS..ccecsessecsccsscccccccas 80
4,2 Experience with SADDLE DBMS....ceevcevenassase 80
4.3 Improvements of SADDLE DBMS....cccosevcescssss 83

«

.
O

:

.

Lo o

EUE T}
LA O SR 4
3 B

J.é APmDIxA 9 0 0 8 000 8OOSO SO LN SO0 OO0 ONEEPIDOSOSBEE OSSO OPEEOLSEESLIPEPEOEESEESEDS 86 !:d‘
{ |

':-:': APmDIxB 0 0 0P 0P ISP PSRN NRNL0N0C00000000CR0LIINSINONESINSIOISIOEOETBREIEDRTDROO 90

> ' .‘
.]
S REFERENCES 102 e
'-i " CRCRC R R BN B BN BB B R Y A B R R B B I RN A B I R B B R B BN B A B B BB B I A I BRI ..I i
r e A
J .-,\]
sl 3
P h
I e
=" h
e - - S
A .
4 v,'- '.'-‘i
(] i N
- '.‘

"
L
&

Ay

4
¢
A

e

_x"l v

s

7
.

E)

f

.

.

M

s

]

.
I-
.

.

'
ll
T,
o
‘)
f

.

£
i
)
‘
[’
At
£
T,
’
7’

4
—

[
’I

" - PR
CaE J‘fv‘c
t‘--'-'.r,f. N

, -
4:'.';'..‘;, ;_“_L I > .’) “- i

> o el b " i e ikt ey '.'!1¥ KOS TR TR W Cab8 i) (i e gadh ahd gindt Sn-wb Sl hadh S
P .
fyel v
‘.‘ -
KL
;:
R
o
)
K
S LIST OF FIGURES
_g: Figure Page
:} l.1 Schematic illustrating program gtowth.....-.-o-....--...... 2
2K
LW
‘ ' 102 The Concept of hierarchy.I..l..............I.'....I.'.....l 3
s A
:7, 1.3 Structure and contents of SPAR libraryescececsseocsscocecsce 7
{4{: 104 GIFTS modular arrangement........‘......I.'..............I. 9
o
L 1.5 Flow in a FEM-based optimization programeececcecesscscescses 12
" 2.1 Entity-relationship Concept.............................'.. 21
‘gi 2.2 An example of hashed file organization cceeessccssssccscess 25
i
Y 2.3 An example of sparse Index file organizatioN.eesssesccscecece 26
"::~: 2.4 Hierarchical database model.....'.......‘.'...'l........... 29
-3 2.5 Hierarchical model for the structural databaseseeecssessesecs 30

2.6 Network model for the structural databaSeesscececssccesceecs 32

f%: 2.7 Relational model for the structural database€seesscsesceceses 34

}§$ 2.8 Use of primary and secondary keySeeeceoeessscscoosassssssses 38

o~

?; 2.9 Modified relationship scheme of Fige3.B8iuseeesccsscsscnsoes 39

:'j 3.1 File handling conventionNS.ssecescssssssssscessscsscsscessocss 48

!

-

.":;: 3.2 Stot‘age scheme for entity Set GRAD:sssceesvesoscccscsnccanes 53

-{

e 3.3 Storage scheme for entity sets SDIR and STIF.eseessocassaee 55

;} 3.4 Storage scheme for entity set NODEsoeesoesossessosssscccnsce 37

N
“;H 3.5 Storage Scheme for entity set ELEM...-..-.-....ooooooo'oooo 57

' o

W

,“ 3.6 Arrangement of primary StOragececssessscscsssssecccesssscss 0l
3

l:: 3.7 Flow between storage directorieSceceeccccescscsscccscssassccass H2

{7

‘:;-' 3.8 F].OW in a typical module....-..-....--..............-...... 16

<)
193]
0

WS

! i1
5" '\Qﬁ MY Tl J OOEACREIE N0 Y T W Pl LW D R R R AL A L ATt LY %
» Xo T T '\'_; r’p", ‘r_.'\).‘ "'&'ﬁ$\ ‘-,:- ti:: :;_{:."x," .;' '-f"{.-' '{\f- \'\ . P A s AN <4 :ﬁ' \Q‘l l“ |‘~
I-' o LR LN .l S Y.
S dgid .-:'.h'.h'.! " .‘u Rl in e 8 oS ‘ 54 .“

Ly

-
e 2
s

-

3
A

"

- '-"l -
-y

.
1= '

E

- -

’.
»

4y
A

*'h$ -_ﬂ -.".-_'.‘n.' -.".. g
R ISAT AL X VR G HASKSYS Teteid
Gahaay, oA AR A, 5

.) ~;
"|) -
o S
b P
& ? »']'
‘ CHAPTER 1| Sx
\ p
. ENGINEERING DATABASE MANAGEMENT _—
y :.:::. \
1.1 Need for Engineering Database Management :ﬁ{
: o~
¥ Three developments in the recent past have convinced engineering -
v ‘ \J
software developers of the need for centralized (or, unified) database o
; management. First, there is a constant need to expand the capabilities :H:‘
R ".{ :

of a program. The flow of logic has reached a stage where all facets of

o

. software development - resource allocation, error detection and program

?i documentation - point to the need for an integrated and controlled

f? approach, Second, modular development has shown that in the absence of

:: a common, shared database, more problems are created than solved. Last,

i it has been recognized that software vendors simply cannot meet the

)

M needs of all users. To cater to varied needs, software development .lf

i; must include means to access data by both system and user programmers. 25;;

;5 Figure 1.1 illustrates difficulties associated with unchecked :?;iy

2 program growth (Felippa, 1979). Program components are represented by 1:2

Eg. nodes and connecting paths show the direction of logic and data flow §‘:

f&‘ (these paths can be uni- and bi-directional). It is immediately ;ESﬁ

2{ obvious that the architecture 1s sensitive to the smallest, local ;_’.

a modification. A commonly used strategy to restrain this uncontrolled Cﬁﬁi

%é growth is use of the concept and structural hierarchies. Hierarchy }&fﬂ

;: (Fig. 1.2) can be applied to software development in two ways : (1) i: 2

o) to organize programs into modules, sub-modules, etc., (restricting the éﬂ#*

.. connecting paths) and (2) organization of data by refinement of :i:.
Y

> A

] “4b

hz ’ o)

A -
s RN ““'IF"W’ T
\M‘ :'sga "(\% i‘ T E\

o¢

l.‘

x,

A

Y
r e
) 2 bt
' {

e

S

v

Figure 1.1 Schematic illustrating program growth

- e o g es -t - e e o e

. S
) W
T o
] - .
g
o -
] -

wane
.
TS vy]
S
Aty

vy .' '
-
igal ™

A o
: .‘:1).‘_' 4

, QR
9 117
L) _‘-q .‘\-’;

. '.' = 5 4]
[} all
u L.
i ‘:' ."-\,
[.*' N
) .

;e [N
L, CEy,
&l

: y v

T,
. » ’:4_
A‘h"‘;‘; A% \
15]
r:e:) Ry k
s X
e N=3 N=4 NeS)
Wy Ay
b o
i ~
e iy
Q'!E -:
":‘}.L'
o =
) {3 %
s"- by a)
g
- AL
o

rd
15 (:._-l:
v'l:o At
[P Pt
'..' [o
S e
-:‘. F
2]
- 't 13 ..‘
RS o)
e, Al
- RS
""': \".'0
A K
=y Dt
- TR
[t ~
. Ry
S P, e T\ e L ¢ MR ALY g
LR G N, e T e "
s - A LY b

s
RS
k.'- M R r

R

X s

=

§ WS

Figure 1.2 The concept of hierarchy

Leve! 1

N N
[l L
> >
[-]
- -

A _ ;
> : - .'v i *-, n
- '?.,-}l;

Level 4

W.II\'\(\""I‘(

i

a
I R 2

ooty

|

r.
i
b 1

.

(Ve
e
. ala

¥

TN POPLILN

'y

.
i
LI

.QF

;ﬁ' attributes. Modularization provides a iweans of organizing the program
a. into subdivisions to simplify the growth during the development and qfﬁi
f_ enhancement phases. But is modularization alone sufficient ? “Modules u:S
s
}E are not only characterized by the functions they perform, but also by S%E
f_ their connectivity with the rest of the program” (Tausworthe, 1977). é%ﬂ
:6 The second characteristic forms the basis of centralized data manage-
iﬁ ment. Large scale software systems have shown that efficient
connectivity can be achieved ad infinitum by coupling modularity with a
~§ centralized Data Base Management System (DBMS).
?: So far, the discussion has been in abstract generalities. In
;i fact, the concepts of database and database management systems have
t; not been detailed. Using Date's (1975) definition, a database is a
FE centralized collection of data, accessible to several application
i programs and organized according to a database-definition schema. In
f? a design environment, the database will contain information on
A
? geometry of the structure (nodal coordinates, element description and
. connectivity), material properties, loading conditions (element as
ft well as nodal loads), design variables, objective function and similar
o
k: quantities. The database manager (forming the DBMS) is that part of
=
; the program that processes all requests to access, create or update
i; data from the database. It 1is quite likely that the DBMS will be a
ii part of all modules. Note that generally, neither does the DBMS
= manipulate data nor does it directly control the flow of logic. These
E;‘ requests are handled by application utilities. This distinction is
:: important due to a common misconception (or, misapprehension) among
D
g8
7
'%
o)
x;“u A Tt L T T e T G T e T e e T T T N T T e T e L L TN
R AR RN T}i’ :;; TR .\;\:_.‘.:,.}}‘__-ﬁ:.-f.{.s A AR AR LGN

S RN A ST S AR e ey
~ . SOy A o Wt e
Y g e o KRR A e Sy

.
B
Y

p
5 -
& 3
N 3
:?: engineers. It is believed that a DBMS has very limited scope in ;?;
N W
:"; engineering computations because it does not manipulate data (equation -
553 solver) or process information (graphics package). Another widespread ﬁ;
. s
1&3 belief is that database managers and database architecture mean the :;E
i same thing. It is sufficient, at this stage, to compare database “i
.;i managers to equation solvers and database architecture to the g;
‘EE% generation of global stiffness matrix. As much as equation solvers %;
N are inefficient if the global stiffness matrix is formed incoherently :;?
;2ﬁ (especially true for off-line equation solvers), database managers do Ei~
N, Ll
;E; ’ a poor job if the architecture 1s poorly conceived. i:t
1 Database management systems of two commonly used finite element éﬁ
software systems, SPAR and GIFTS, are examined next. The SPAR computer E&
' software system 1s a collection of processors that perform particular &2
g steps in the finite-element structural analysis procedure (Giles and 72£
":g Haftka, 1978). The data generated by each processor is stored on a ;;
i?g database complex that resides on an auxiliary storage device. Each iz
f‘ processor has a working storage area that contains the input and the @{
\.g computed data from the processor. Allocation of space in the storage ig
, o3
3§# area is problem—dependent and is dynamically allocated during i%r
"? execution. Data transfer takes place directly between a specified e
4 e
ﬁ;é location in the working storage area and a specified location on the ;ﬁ
e »
ifff disk, using a set of data handling utilities. 1In addition to o

»
.
"*

B
.
'J

18

processors for structural analysis, the SPAR system has processors that

)

form an arithmetic utility system for matrix-related computatfons, a

v
.

Foene

,‘.V.i ‘-

.
» e 8

A N L A T T AT T T T T A LT
SR LR ERL AR LB LR) e
., - -

N R D O T O T

1
1
3
P
o

Y

+
bY

[«)
g -
> I
ERE W t .;4. N e

r

=
re

data complex utility for managing and printing data and a plotting
facility for both on-line and off-line plotting.

The SPAR database complex is composed of a maximum of 26 libraries
or data files. The libraries 1 to 20 are available for general use,
with libraries 21 to 26 reserved for temporary, internal use. Figure
1.3 shows the structure and contents of a typical SPAR library. The
master directory points to the table of contents which in turn points
to the data sets referenced in the table of contents. Physically, the
auxiliary storage 1s divided into sectors (of fixed size) and each
read/write operation starts at the beginning of a sector. This

addressing is a two—word affair —— the first word is the library number

and the second word contains the relative sector number within that

¢

Sl TR
e 'y
N N
[PN .
N SN .

P
i
Aty

library. However, a set of data is referred to by giving the library

number and a unique name assigned to that data set, At the application
level, data sets are accessed by the 'library number-data set name'
duo. The procedure to relate data set names to a corresponding
relative sector location on disk uses information contained in the
table of contents (TOC). Utilities exist in SPAR to store complete
libraries as a single data set inside another library, so that a user
can organize data in a hierarchy of libraries if necessary. These
nested libraries must be reconstituted into separate libraries before
the individual data sets can be accessed.

GIFTS 1s not a single program, but a collection of modules that
are present in a program library (Kamel, McCabe and Spector, 1979).

Individual modules run independently and communicate via the unified

)) \'\' S o o i ~\] ')'\ I T ‘v‘-‘b.'- R Y T L e J L "
"_'-" ")' Canytd -" o AW ORI "_.".-‘-.- .
R R e e '»* Z *4.'«' s '-r--*'”?‘m‘-v o
OOt KOGy PO RSP
SRR sy N s e o

Figure 1.3 Structure and contents of SPAR library

LIBRARY STRUCTURE

Master
directory

TTTTTT:
|

T
2

NV L Y- o
KENRRIN L $Rrr

A B R I R Rt S S S .o
P O R S S i
P -

P
-

tdlae Siadn S s sz mnt los i Bac dhee

X database (Fig. 1.4). The database manager not only processes requests
(to access data from the database but also does memory management. Each
K5CK module has its own local database. Working storage 1s assigned to each
Y data set (in the form of a COMMON block) that is a part of the local

database. Each data set is stored in a separate random—access file.

“r
- .l.
|

The process of paging is carried out within the working storage, unlike

Ay A

?

a pure virtual memory operating system. There are four routines used

with every data set - for opening and initializing the working storage, -

t?§£ for reading the data set, for creating/modifying the data set, and for i:
§%§ releasing the working storage. Clearly, the GIFTS data management ;l
;fﬁ‘ system cannot work in a stand-alone environment since the database ;J
;E;g manager is embedded in the application software. E\
E#E The absence of memory management in the program architecture is the ;l
~ principal shortcoming of SPAR., An obvious retort is to let the virtual t;
{?}; memory operating system perform this task. There are four reasons why :E
iiﬁ this argument is unsatisfactory. Firstly, supply has always lagged ;i
‘3‘- behind demand vis—a—-vis memory requirement. The conventional %
;,ﬁg programming approach has been to push the size of arrays as high as i?
1%2% possible. Analysis of structural systems with 10000 degrees of freedom gE
‘1f; and more are no longer uncommon and there are very few machines that ’
Bl b
“E;; can truly offer an in-core solution to these problems. Secondly, all Eé
€Qi; VMOS do not operate efficiently, not because of the lack of methodology :)
i é: as much as the lack of hardware-software interaction that is inherent 3{
éség in most memory management nrhi{losophies. Thirdly, with any VMOS, Ez
'isg: frequent page turning zctivity can be avoided by localizing references g;
o B3
s A
Tt 2

v

it s

M A T ™ " p o e N N AT TN T YTt e v, LN, Ve e . e TR LT TR et e e AR R

LR ey WA N A A TR BRI AT . s SR

¢ Lt S . e “ . b SRR I ",
o .

Figure 1.4 GIFTS moduiar arrangement

Module 3

lnodule 2

Module |

w e e o
Lorls .
- R v..-\-ﬁ "+

GIFTS LIBRARY

UNIFIED DATABASE

X g
TN N,

A
ot

59
[+
(¢
o
‘e
o
5

i uhE ety
:-fl "A ...l "l

l{l a®

during computation. Once again, the conventional programming approach
has not addressed this issue, especially in matrix-type computations.
Lastly, distributed processing is bound to become the trend of the
future. If computers of varying capabilities are used to access the
same database, then quite obviously the problem of resource allocation
will be a crucial issue on smaller machines.

There are two other problems with the SPAR data complex. The data
definition language promotes a hierarchical database structure;
whereas a relational database structure has proven to be physically and
logically simpler. The other problem is that excessive fragmentation
can take place if the sector size does not happen to be an integral
multiple of the data that 1is stored. Commercialization of the program
with its successor EAL has made it even more difficult to find
proper documentation on the database structure. Hence, it is quite
doubtful whether the program can be adapted efficiently for design
purposes.

GIFTS is the state—-of-the—art, as far as database architecture is
concerned., A relational data structure has been used extensively to
store all requisite information. However, the database manager has
some severe shortcomings. The primary problem is the size of the data
manager. The requirement that four new routines be included with every
new data set implies that the size can increase indefinitely. Both
programs have a static physical database description, in the sense that
minor changes in the structure entail recompilation of all relevant

modules. There are elegant techniques available to make file-handling

10

- W

-

Tl w

LA Rt b= S el e Sl Bead Ol i T S S BN AR S) o a s AU R e AR Al t e Mg tad ue B Buh Ve B bR A Ll Sl B R S

11

easier and to manipulate the physical database descriptions. Another
problem with GIFTS is that the allocation of primary memory is

static. Since different computing systems do not work the same way, a
desirable feature is to have tuning parameters externally controlled so
that memory can be allocated dynamically. Some of these points are

raised in the next two sections.

1.2 Requirements of FEM-based Optimization Software

There are significant differences in the flow of a program that

performs analysis only and a program dedicated to analysis and design.

While finite element techniques are well-estahlished and usually

provide solutions to problems in one pass, optimization techniques

find solutions in an i{terative manner. Figure 1.5 illustrates this ihﬁ
fact graphically. The design system calls the analysis program
repeatedly and the number of times it is called is dependent on how
the gradients of the objective function and the constraints are
computed.
Depending on the design philosophy being used, the designer has
three options in choosing the design variables:
(1) element cross-sectional properties could be used
as design variables; e.g., cross—sectional area, height and
width of a rectangular section (Haug and Arora, 1979).
(11) nodal coordinates could be chosen as design variables;
i.e., the shape of the structure is being obtained as the

design objective (Haug, Choi, Hou and Yoo, 1981).

-,-‘-- - 2 *
N «y ®
_-‘- -

-‘q"-

Co '1. -.\ b
;'.\‘l". *-m-:(q .

I!”'“!l!l‘ EIE l-l!'.l!'!!' l-”c L oa b A e vt e i e B A Sh T G 6 S o g A Sl B i M2 A- il S & i

X

S e

> .

At

s T2

P aThs)

AR

s

s DN

Figure 1.5 Flow in a FEM-based optimization program

A

PRE -PROCESSING

(Define ?oonetry end properties
of th

e structure)

1.
2.
3.
4.
5.

FINITE-ELEMENT ANALYSIS

Analyse connectivity data

Forn stiffness matrix

Form load vector(s)

Solve the equilibrium
squat ions

Compute stresses

IR

ll

2‘

OPTIMIZATION (Design Process)

Compute objective end
constraint functions

Form gradients of these
functions

D

A el i e % A B St S B et T e Nev vy I

Divided difference
scheme

Find direction of
travel

Compute step along
the diraction
Update the design
veriasbles

Analytical

Convergence

satisfied

;{“; 13
)
:%% (1iii) element connectivities are the design variables; i.e.,
5 | the layout of the structure is being determined (Rozvany,
J 1980).
- In a particular design problem, the design variables might belong to
any one or all of the above categories.
: With the first option, the flow involves performing analysis
E only once in going from point B to C in Fig. 1.5, if the gradients are
! provided analytically by the program. However, if a divided difference
f;i: approximation is used for gradients, design variables are
;ig perturbed and an analysis is performed for every perturbation of the
‘;; design variable. Options (ii) and (1ii) introduce further
%E& computations, since the pre-processing step needs to be executed
2%* whenever the shape of the structure changes appreciably., It {is
= therefore critical to organize not only the computations but also the
)
i:% data in such a manner that the search technique required to locate data
i
:SE from the database is efficient.
)‘ The step that requires the most computational effort during
¥
‘ﬁ; analysis is the solution of the equilibrium equations. If data are
}gé organized such that the top part of the stiffness matrix reflects the
z-f contributions from the 'non-active' part of the structure (the part
i' of the structure that does not change during design), then this part
:;z' need neither be updated nor decomposed. The savings in overall
LZ: computation are then substantial. With either option for design
Egi variables, the non-active part of the structure grows in size as the
iE? optimum design is reached. It should also be mentioned that such a
Ly E
40 Y
> T
3 B
b R

14

scheme is used in the analysis of structures with non—-linear response

(Bhatti, Ciampi, Pister, and Polak, 1981). Furthermore, the decomposed
stiffness matrix can be used for finding the solution of adjoint
equations for computing the gradients analytically (Haug and Arora,
1979). 1In addition, computations tend to be repeated if the analysis
. segment does not compute data required during design calculations. For
example, the quantities involved during the formation of the local
stiffness matrices are also required for computing the derivatives of

the stiffness matrix with respect to design variables.

ﬁ There is a key difference that has been overlooked so far — how
X

{ deep is the user involvement with the development and usage of design
é software ? The user is usually less inclined to make efforts towards
f; solving problems that are not included among the program development

functional objectives (Sobieski, 1980). A "black-box" would be ideal,
as 1n the case of finite element analysis, However, there are two
reasons why such a scheme is infeasible with optimization programs:
(1) the objective function and constraints are problem—dependent
(11) there is insufficient data to conclude which optimization
technique works best for structural problems. The user must
be given control to select not only the optimization
R technique but also the values of the 'judgement' (the user
must use judgement based on previous experience and
i intuition) parameters associated with each technique.
f It 18 now clear that a second level of programming effort is

s involved. The user must be able to clearly define the design

PR

ST R
LI A S e .
DA

L4 AN
R SRR
BRI A SN

e
[

-4

4 s

PN

J
y Y "..

[EE RS B

.

objectives and carry out computations as efficiently as possible.

This user effort can be eased by the system programmer. To compute
values of the objective function and constraints and their derivatives,
the user needs to use certain arithmetic operations and requires the

values of the optimization quantities.

1.3 Scope of Work

A computer aided structural analysis and design system, called
SADDLE has been developed. This report describes its database manage-—
ment system, which meets most of the requirements outlined in the
previous sections. In Chapter 2, the basics of database management are
presented. Concepts connected with data structures, physical and
conceptual databases are discussed together with discussions on what
constitutes a query language. The last section discusses the rudiments
of the memory management scheme (MMS). The implementation details in
the SADDLE design system are presented in Chapter 3. The relational
and hierarchical models together with their file implementation schemes
are discussed. Later the SADDLE MMS implementation details are shown.
It should be noted that primary storage is finite and is usually a
limiting factor. Hence, dynamic allocation of memory is a wmust for
solutions to large problems. The rest of the chapter examines the data
structure in detail. Pointer and buffer concepts are introduced,
together with data management techniques for vectors and arrays.
Information exchange between primary and secondary storage, without the

use of I/0 buffers, 1s discussed. Also, the influence of data

e
S

-9

3

structure on computations in virtual memory machines is examined.

P
< 2R R 2t

The chapter concludes with the SADDLE design query language. The

r

evaluation of the system is discussed in Chapter 4. Experience with

L

the use of the SADDLE design system is examined and suggestions for

.->""

improvements in the features are presented. The report concludes with
general discussions on the state-of-the-art in engineering DBMS and

scope for future developments in addressing user-system interaction,

RS e N

[
{
/
k

efficiency and future enhancements of design optimization systems.

-.-4 “. . AR o .
I% (, Ly - - E) "
PRERS R ER CARRAIAY S T AR PV o a

D A -
T BT TR R W T e e T g LaRh ol A= s St Sat faus fas ut S0 Sau §0s Ben A ot 9 RN N R L S LW WLV YT Y TR LR LS L a1 "‘1
R)

N

>

RSA)

T

1%y

17 =

N

CHAPTER 2 o

ELEMENTS OF A DATABASE

o

'.1 &

2.1 Introductory Remarks s

."‘ \.: 1
Between the user, the application program and the computer, there b

are many levels of abstractions. 1In the previous chapter, references
were made to these different levels - the user view of the database and
the conceptual and physical databases. In reality, only the physical
database exists, but its implementation is a direct result of the
conceptual database. The lowest level is the physical database
residing on some secondary storage as bits and bytes. These bits and
bytes are based on a conceptual scheme. The conceptual scheme can be
described by a data definition language (DDL) that forms the data
model. 1In this chapter, these different levels of abstraction will be
closely examined and their role in the SADDLE DBMS will be explained.
The presentation is in the order of increasing abstraction, First, the
basic problem of storing data will be tackled, followed by the
description of the data model in terms of a conceptual language, and
finally the user manipulation of data through a 'query language'. In
addition, one other closely-related question will be examined - "How to

incorporate memory management in the DBMS?"

e 2.2 Data Structures

o

" A data structure is a structure whose elements are items of data,
;: and whose organization 18 determined both by the relationships bhetween

[N

Al |

W

A
>
.l
1
s
.
.
.
A}

T K T T T O N S
S e AR ARIIY i ‘
- S SRR O Rtk G RT

g

s
o

LR R SR

18

-

S the data items and by the access functions that are used to store and 5

; retrieve them (Baron and Shapiro, 1980). 1In this section, some data -

? structures that can be extremely useful for design optimization will bhe ;ijs

{ discussed. EEET;
Linear Structure : A linear structure is one that 1s stored in the [;25

3 manner they are processed. These data can then be used to manipulate E};}

; information such as insertion and deletion of elements of information. %ééi

A Two such structures are described below. L'

S

: (a) Linear List: This is a finite, ordered list of elements. For ;:E{

‘i example, to store design variable information, it is possible to L;i}

N store the design variable value, the upper bound and the lower

g bound as fields of an element with each element stored as a record

F in a file. Another example is a vector that is often used to store

‘ information whose size in number of elements is not known a priori

‘ﬁ or one that cannot be created all at once. In this case, a vector

§ 1s used as a buffer and the buffer is filled with one element at a

time. The buffer is emptied once it is full.

v
? (b) Linked List : In this data structure, each element contains a iﬂy

'j pointer to its successor. A disadvantage with a linear list {is ;§§§!
’ that 1{f elements in the 1list must be deleted or inserted then :M{

,é either the entire list or a portion of the list must be modified.

§ Only the singly linked list where each element contains a pointer

f to the next element will be discussed here. The process of

:: insertion 18 carried out by modification of one pointer - the

L=

‘; pointer preceding the new entry (the pointer value of the new entry

y N

r

e s
3 '

-
v
.

Fa

vl

.t

s
14
7
Pl
I

r

o
L
s
.l

el

ol

ll‘l" l‘ 2 . v *"‘ .
AR
v

3
e

LN B

P Y Tttt

»

19

now is the same as the old pointer value of the preceding entry).

Deletion follows the same process - the pointer value of the

preceding entry must be updated.

IISS!.: A tree is a data structure that is used to represent an
hierarchical relationships among data items. A tree 1s described by
nodes; the top level node is the root node. Each node may be connected
to a node at the lower level that is the child of the parent node. The
discussion on trees is postponed until the next section.

Matrices : These are perhaps the most widely used data structure
in engineering programs. They are usually stored in memory in contiguous
blocks and are accessed by a simple accessing function. A single-
dimensional array is called a vector. Arrays can be two, three and of a
higher-orders and are stored either in the column-major order or row-
major order. One increasing use of similar data structure is a tahle
where mixed data types are stored. This forms the basis of the

relational data model and is discussed later.

2,3 Physical Database

The physical database stores information in a file that consists
of records. For example, the database may have a file storing data on
all elements of a structure, with each record containing information
about one element. These records may or may not have an identical
format. The record format links each field to a data type. An

operation performed on a file is called a transaction. Typical

transactions are:

iz

":rl y
2 0] 08 8]

oy 4
z
X
r’
1 s
Y i)

S J
k" 'S0

s . a_ s &
lrl"‘.‘l’ 1
MR}

v
.

P
!' »
N D M)

9

A

X

Na AN

,.l‘L

[
d.

20

(a) createf/insert a record

(b) delete a record

(c) update a record

(d) find a record
Note that each transaction is finally performed on one record, though
many records may have been used to locate the record in question. The
address of a record is usually found through pointers. The concept of
pointers will become apparent as the term is used more frequently

throughout this chapter.

2.4 Conceptual Database

Before discussing how the physical database is implemented, it is
necessary to realize that the information stored in different files is
intertwined with the transaction against that information. What this
means is that the information cannot be stored arbitrarily, since then
its retrieval for future use may be inefficient. Two terms are
pertinent in this context—— the entity and the relationship concepts.
In Fig. 2.1, the entity, pre-processor is linked to another entity,
structural analysis program, by the relationship, "creates data for".
Similarly, the structural analysis program "communicates iteratively
with” (relationship) the design program (entity) while the pre-
processor (entity) "provides visual display” (relationship) for the
analysis program. Entities have properties, called attributes, that
assoclate a value from the domain of values for that attribute, with

each entity in an entity set. An attribute or a set of attributes

% 21

{ Figure 2.} Entity-relationship concept

. > PROCESSOR [‘_‘j

s P
s v
o v e
Y .
T S
- .-
oy « el

A s

W, "o

SN
-~

STRUCTURAL

St consun|cates
L ANALYSIS

Iteratively

DESIGN

PROGRAM &
i PROGRAM \ 2
e o

provides -
visusi | poST o
diepley PROCESSOR 5

~ >

A
.--‘. M AL
v '5.‘

-0 N
-l s
SN }.\

N ~

San i
{ e
A RS
3 -

y '-', {._

e

S .
‘a::."‘
\ T.g’.
L
L]

.
*
ey ¢
i

P
’

1

T
75

» \ .‘
LSO e
:}"w -
Wik N

e
pt
.
e
4’

R ATty
LWL M A

-

st e
i SRR

22

whose values uniquely identify each entity in an entity set is called

a key for that entity set.

Entity set Attributes Key
Nodes {(nodal coordinates, boundary conditions) Node Number
Elements (material, element, element Element Number

(properties , properties, connectivity)

The relationship between entity sets is simply an ordered list of
entity sets. In structural applications, two common types of
relationship are one-to-one and many-to-one relationships. An example
of the former 1Is the correspondence between loading cases and nodal
deflections. An example of the latter, is the relationship BELONGS_TO
between the entity sets ELEMENTS and MATERIAL GROUPS (many elements may
have the same material properties but no element can belong to more
than one material group). These concepts are necessary for
implementation of the conceptual database. It is usual to associate an
entity set with a file in which the attributes of the entity set are
stored as records. Broadly speaking, the files can be divided into
four categories :

(a) The size of the file is not known until the user has entered
all input, Examples include element information file, nodal
data file, and design variable linking information.

(b) The size of the file is computed from user input and until all

the requisite information is scanned, the size cannot be

determined. A typical example is the stiffness directory

o Ly
", v
o b
0 ad
N 23 R
RN -l
) (,J
~‘~:\'\)
ti:j file (a dense index file) in which the directory is created ﬁi
s -~

y tal

t,ﬂ” while the element connectivity data is being interpreted. F#

4 -\: ""w'..' ::'
i (c¢) The size of the file is known and fixed. Examples include “
-.'4‘:1: .:-
}fé the stiffness matrix, loading information and stress files. tQ
L o

_ (d) The maximum size of the file is known, but the size required ;%

P

fﬁ}if during computations is not known. A typical example is the -
NS >

1ff{ file that stores the derivatives of the active constraints N

. with respect to the design variables. Since the size of the

;;}: active set 1is likely to change with each iteration, the

j}ﬁ' current size is always less than or equal to the maximum

f_;; size.

T It 1s crucial to bear in mind the category of a file hefore choosing a

el

. -

otk particular implementation scheme for that file.

3 _ There are four widely used implemenation schemes (or, access

L

‘}}} methods) —- the hashed file organization, the sparse index file

o3

AR organization, the balanced tree organization and the dense index file

{? organization. The idea behind hashing is as follows: The attribute of

N

ot a pailr to be stored or located is used as a parameter for a hash

.i:j function which is much like the address computation function used for
Sy

an array. However, unlike array subscripts, which map directly 1into
sequence of integers, attributes to tables are fregquently large and are

often character strings that do not map into addresses in any

;;5 methodical way [Bl]. In practice, the hashed file is divided into

{j{: buckets, each of which contains a specified number of records. The
[hash function h(i) takes as argument a value of the key(i) and produces
A)

24

an integer from 0 to a maximum value (which is then used as a pointer
to the first block). One area In which hashed file organization can be
used for structural applications is in the implementatfon of a matrix
directory.

Suppose a program uses a number of files that have alphanumeric
identifiers. Let the file names (and their characteristics on one
record) be stored in a file with the entries in a random order. In
order to obtain the characteristics with the key as the alphanumeric
identifier, one could use a hash function h(i) equal to the length of
the identifier 1 modulo 3. This implies there are 3 buckets. Suppose
we wish to find the entry, ELEMENTS, in Fig. 2.2 where b;'s are block
numbers, Hashing ELEMENTS, we obtain 2 and locate the third entry in
the bucket directory, which points to the first block (bg) for bucket
2. Each non-empty sublock is then searched for entry ELEMENTS. 1If the
record is not found, the header of the block points to the next
block. The chaining of block pointers continues until the record is
found.

The sparse index file 1s organized very much like a phone book.
The file is sorted based on the key value. A second file is created
called the sparse index file that contains a pair (i,b) indicating that
the first record in block b has the key 1. The index file is then
sorted, based on the key value. The strategy to locate a record is to

scan the index file until the key 1 in the file exceeds the required

"

key. The previous block (corresponding to key (i~-1)) is scanned

a5

completely, until the required record is located (Fig. 2.3). There

x

2
L% % o
AL

o

l‘. .\ l.. ’
ey)

»

B .
AR
FyA R

.
2

]
.
)

d,

7
VP

2

g

AFIR :.I_ ‘.
et T e e e T

e

- 2 s
et My
" -' ll Cr 2

2t
5
o

Y
B

L B

AN M
. . . .
L4

il
"'l‘l
L P e R |

LY

)
]

Figure 2.2 An example of hashed file organization

™

by

HISTORY

GRAD

ol om0 !
|

Buckat
directory

b2

bz

NODES

STRESSES

'iELsncnrsi

bg

bg

b7

25

l'
‘lf‘
Nty

(PR L S it aeg v ar g ar g AR e k- g e - - = Y
N oS
AN A
y -

" .
e Ak

26 e

P ::.' .:-:
& !
A n:.' :.‘.]
. .:._'-.
: Figure 2.3 An example of sparse index file organization
O s
3 ‘-) L
K~ T
¢ IO
N S
¥ N -‘.‘u"
. 2]
- o
e A
o »:\.
5. A
h ‘1. !\ »

= —{u [veor | veco]

g}

R % 11 | #a73 | MAT4 |

"1 [wari | war2 |

e Matrix file

s -
N % 09 | veci]']] o]

LA S

3,0
ol

2

o ta

—_ 11 Jwan|' [mats| ' [mars] | ‘

Index file <3

2
F]
-

—),
’

1
A

o

o~

! ~" 3
e At
~ Teble of index blocks -
R
S RS

T
. '.E e
b
(5 -

L gl
"‘.'.~ \'\ \g
., ‘\17'\
o o
..';.. -
oy

R b
.“‘c .‘:‘j-.
n‘\\ LR
14.1 DRy
! .y, . R “‘>
[, el
Loy Lo

" .
ot -

A R
RN IO T R I
PEEREREATAR M CAKST

'(THERTTMT BTE " BT aTe T
-

S
PN
..
. .
- -
T
[

|

27

_..
By

UV I I A o¥
. it
NE STl s A5

A

el

X

are different techniques used to scan the block - linear search, binary

A
.

search or address calculation search. The balanced tree is an
extension of the index system. It is sometimes more efficient to have
an index of an index, an index of that and so on, until the index fits
a block. For most structural problems, these two techniques do not
offer considerable advantages over the dense index file organization.

With a category (a) file, in which data fields usually represent
attributes, maintaining a sorted file will prove to be expensive. By
allowing records to appear in a random order, partially filled blocks
can be avoided. This is the idea behind files with a dense index.
Insertions can be easily made as the logic involves only keeping track
of the last record. The problem with using an unsorted file 1is to

locate a record, given its key. Hence another file (the dense index

file) is created, which consists of records (i,b) for each key i in the
main file and b is the corresponding pointer to the record in the main
file. But should the dense index file exist separately? It should be
noted that for a majority of structural applications, the key is an
integer value that simplifies calculation of pointers. The dense index
could exist as a part of the main file (embedded pointers) - consider a
nodal data file in which record j contains the dense index key 1. A
pointer could exist as a field of the record, pointing to the record
containing nodal data for node i. If i equals j, then the record
points to itself.

It is not uncommon to have a database store files of differing

organizations. 1t 1is also not uncommon to associate an entity set

with more than one file, each organized differently., What file
implementation works effectively for structural applications can be
answered only after the 'data model' is formulated. This will also
explain the mechanism to store file types (b), (c) and (d).

At the conceptual level, the data model describes the type of
structure used in the database relationships. There are three widely
used models - hierarchical (tree-structured), network (plex-
structured) and relational (flat files). In all the models, the
data definition language is used to tell the DBMS what data structure
will be used. Briefly, the functions of the DDL include identification
of data subdivisions, establishing the hierarchy in the logical data
structure, specification of primary and secondary keys and
specification of size in terms of data aggregates of vectors and
matrices. The salient features of each model will be illustrated,
using an example that is easily understood but somewhat complex -
formation of the global stiffness matrix. The hierarchical model is
like a tree (Fig. 2.4). The hierarchy consists of elements called
nodes. There is a parent-child relationship between elements so that
no element can have more than one parent; an element may be related to
several elements (children) at a lower level. Figure 2.5 shows a
hierarchical data model used to perform the task.

The algorithm is straightforward -

(Step 1) Loop through all elements.

(Step 2) Obtain connectivity information.

Topow 3seqelep [BITYIIRIdIH &' and1g

iuc!iﬂu M'M\n.unnn.~-\¢|\.t.- ..vnqh)«- e e et oy v s _w ~ I
i e J T VYN FUNTIPLIARS R . A
RIS OO0 . AR 5 OOAARN SSNoaaty - XCO0NG {HERRREIC) ‘TONRARANN" 1 NXXXLT 1
4 ! s A Pthl H i S E L) y
- X Tary ...\d.(n“-.“-- - -! J = i

e b »* q POl
e ey h PSS 2 LAY L
[750 It WU e ‘ dNn\ T e I g \\\-ﬂ\“: H
h . . oy
' A sl hh S a2 1X UNSERE REPEIL . H

404d] N33
-

3dAl
d0dd 1YH | y1a31M

ﬂl

ININIIUS 10

120
0381475334 .J8 3000 Z'A°X U1u0 ALIATLIINNOD

3drL

ON 300N INMT ON INMIT]

33N1N31S

aseqeiep TPINIONIIS 3yl 10j [9pow [EITYIIBAAITH ¢'Z 3In3Tg

e w W L 4 3 v x e St 200 Tt alll U B AR P e e . v . = e - o Sy Cc Ty vTyte v
& P] IS J AR NSRS | SRR .\\-A.q......w.A-. A "y k:\.ﬂn . e
E 1 A a g - el i —— B

RIS AFRY o

-

‘l (s
D
.'

»
v
x

v "5 e Y

.
P R R Sl ¥ §

RO T T
.‘r“ .

e
: K

o v g
Farale R A

> Bt st x M allN

-:-(? ;: 2 ;“'""
PAESERESIAS ©
l‘ l. l...

oo

L
ﬂiﬁ N

a 2 12 1
¢l
A &8 ¥ a 3

) .’f

(Step 3) Obtain nodal coordinates of the nodes forming
the element.

(Step 4) Obtain material properties.

(Step 5) Obtain element properties.

(Step 6) Form the local stiffness matrix.

(Step 7) Form the local-to-global transformation matrix.

(Step 8) Form the global stiffness matrix, as the product of
the matrices in Steps 6 and 7.

(Step 9) Return to Step 1.

In order to implement the algorithm using the heirarchical model,
step 2 involves going down the tree to the element CONNECTIVITY. To
obtain the nodal coordinates, the CONNECTIVITY record contains
pointers to the NODE tree. Similarly, Steps 4 and 5 involve use of
MATERIAL PROPERTIES and ELEMENT PROPERTIES nodes. The rest of the
steps involve computations based on the previously accessed values,
with the BOUNDARY CONDITIONS information used in Step 8.

If the child in a data relationship has more than one parent,
then the relationship cannot be described by a heirarchical model.
The network data model can instead be used, with all relations
restricted to be binary, many-one realtionship (links). To represent
relationships among entity sets El, E2, ... , Ek, a new logical
record type T is created as (Tl, T2,..., Tk) of entities that are a
part of the relationship. This enables the creation of links [1
between the entity sets Ei (Ullman, 1980). Figure 2.6 shows a network

model for the same algorithm, where a E TO M is the logical record type

31

. o

. .

vl rh
RPN

ELEMENT
PROPERTIES

MATERIAL
PROPERTIES

[
o)
o
0
o
~
o
©
—
o
-
o
LS]
3}
2
v
+
w
v
<
&
~
8
~
L}
.m
~
r
o
2
W
Y
=
]
~
(]
~
3
&0
o
ke

o A
v

B

LY E o
r‘:
" o
A Kre

Gt

b AP S

33

that establishes the many-one relationships between the entity sets,
ELEMENTS and MATERIAL_ PROPERTIES and so on.

The relational database 1is based on intuition, tempered by

experience, if such a human characteristic exists. With sufficiently
diverse databases, both the hierarchical and network models have

proven to be functionally inefficient (Date, 1975; Ullman, 1980),
Pictorially, the relational scheme is like a table. Each column contains
an attribute and each row is an entity. There is a distinct
relationship between a row entry and the corresponding column entry and
redundant data is not allowed. The mathematical concept of a relational
database requires the definitions of a domain, Cartesian product, tuples
and a relation. A set of values of one column (attributes) is a

domain. If there are n domains, then the Cartesian product of the
domains 1is a set of n—tuples (there are as many tuples as there arc
columns in the table). A relation scheme is expressed as R(Al,A2,...An)
if Al1,A2,...An are the attributes of the relation R.

Note the strong similarity between the physical database
description in terms of record format, file and record and the
relational database description in terms of relation scheme, relation
and tuple. This ready translation from concept (relatiom) to
implementation (file), makes the relational database a powerful data
model. Figure 2,7 shows the relational scheme for the structural
database. The entity set ELEMENTS is related to entity sets
MATERIAL_PROPERTIES, ELEMENT_PROPERTIES and NODES. The relatfon

gscheme for ELEMENTS has attributes as keys for these entity sets but

Figure 2.7 Relational model for the structural database

MATERIAL ELEHENT ELEMENT
TN (ooopeery ng) (eopeerr wo @ @

GLOBAL
STIFFNESS
MATRIX

ELEMENT PROPERTIES

STIFFNESS

NODE

BOUNDARY
CONDITIONS

LOCAL

Mh.RIX

MATERIAL PROPERTI’S

PRODERTI’S

Rt A il el noas s it Mo g | gl i gy anee Lasr i st sl el At i i i =i Ll s o A dhass i dayt el B Dt et Baf "B Aadh i S ot

3

w'\.J\

MY

;{:- not their non-key attributes. Redundant data are avoided and the

ACh

{. procedure to link entity sets in a tabular form is called

4-_\\ et
b normalization (Codd, 1970). e
;i}: It is quite apparent that for the structural database in :f;

question, the network model is an improvement over the hierarchical

model and the relational model provides further improvement over the

v ‘\ £
Joli 8
A% J
ey

;ﬁf network model. Note the enormous amount of redundant data in the ;ﬁﬁ
o S
i hierarchical model. The material and element properties are stored E;h
3¢ Bk
;;; for all elements, ignoring the many-to—one relationship alluded to L:i
ﬁ%% earlier. In fact, the model has already gone through the _;?
?:; normalization procedure. In an orthodox model, the tree NODE would
;;;i have been a child of ELEMENTS. The connectivity data now is of a

Eif virtual logical type (which is a pointer to the tree NODE). The

~ network model has minimal redundant data. In fact it can be argued
?ii; that the model is identical to the relational model, semantics aside.

il

‘%:{ However there is a difference. The logical record types, E TO N,

> >

). E TOM and E_TO_EP, are quite unnecessary. In the relational model,

;ﬁ they have been substituted by embedded pointers or secondary keys.

:Ei Relational models do not provide answers to all situations. The

.j?: fact that all three models are now in a state of flux indicates that

?;; there is still room for improvement. There are instances in which the

lii; database relationships, in either the entire or part of the database,

:;i are strictly hierarchical, or network or relational. Consider, for

;E: example, the SPAR data manager - the hierarchical structure clearly is
;23 superior in addressing matrices or submatrices stored as a part of a

huge file. The reason is that the matrix information can be
efficliently transferred between the application program and the DBMS
and 18 influenced by the data manipulation language or query

language.

2.5 Query Language

The term ‘'query language' is merely a dignified label for the
queries discussed earlier - given an entity set E, its attributes A,
and the values of the attributes V, how can relationships be
expressed between the quantities (Martin, 1975). 1In a design
environment, queries are usually one of the following forms :

(1) A(E) = ? - "What {s the value of attribute A of entity E?"

(What 1s the x-coordinate of node 237)
(i1) A(?) = V - "What entity E has a value of attribute A equal
to V?" (Which nodes have deflections greater than or equal to
2.0 units?)
(1i1) A(?) = 7 = "What are the values of attribute A for all
entities?” (What are the stress values for all elements?)
There are other types of queries that are used less frequently (or, not
at all) - ?2(E)=V, ?(E)=? or ?(?)=V, Complex queries consisting of
combinations of these are also possible - Find the elements in design
group 6 that have stress values greater than one-half the yield
stress?
Complex queries involve use of multiple keys. The primary key is

essentially an entity identifier., The secondary key does not identify

o, W .
I N

LWL AL SO

a unique record, but identifies all those that have a certain

property. A secondary index uses the secondary key as input and

- provides a primary key as output, so that a record can be found.

The answer to the complex query in the preceding paragraph involves
use of primary and secondary keys. The primary key is 6 (design
group number) which points to the entity set, ELEMENTS (Fig. 2.8).
The entity ELEMENT has two secondary pointers, material group number
and stress record pointer, which point the entity sets,

;s: MATERIAL PROPERTIES and STRESSES.

This example is particularly useful in illustrating the fact that

the types of queries and the subsequent computations greatly influence
the conceptual scheme. Note that the DESIGN_GROUP uses variable
length records, since the number of elements 1in a group is not fixed.
The implementation of variable record length files is not trivial.

é- Figure 2.9 illustrates a different entity-relationship scheme. The
design group information is now embedded in the entity set ELEMENTS as
a data field. The advantage is that the entity set DESIGN_GROUP no

Ny longer exists (a variable length record file does not exist).

However, Iin order to answer the same query, the logic would involve
scanning the entire file to locate elements in design group 6.

Then, is the first scheme superfor? The answer is yes, based on the
nature of the query. However, if the query 1s posed differently as —--
Find the elements that have stress values greater than one-half the

03 yield stress and create a new entity set STRESS_SUM, which stores the

sum of the stress values of all elements in a group, then clearly the

.y -.".’ e \
RO Vs e T
P YN SR o PEAN A (LT

W ﬁ}%@';
PRER I T Jal
it iR

0
>
U
~
~
9
@
o
g v
y s
: 4
: e
g w
<]
a -
> =] .
Q &
& (23]
|
u &
[« 9
S
"] 9
o W
) =] N —
ol
) o oy
0 ke m
je=] m. <
© 5 «
-3
. |
o~ (] 'nIH.
&
M &
3 a
&0 r
o R
29
g . Fytetrto " RN ERC R Sy Yy N AERIIR S . P e PP
£ors 700000 DO n OO ~ eS0T RTshA, |

- .
(4

LA T
AL IRELS TIF! B

38

39

Figure 2.9 Modified relationship scheme of Fig. 2.8

ELEMENTS | DESIGN

soe wo |

4
)

RO A [w s - .
R RCRENERY NEt SO VT
¥ e [P T s

v
i

«
~

e
JEI

z
x,

‘

MATERIAL PROPERTIES STRESSES

14

e e d

e

]

)

Srmeedl

40

gsecond scheme 18 superior. What is being emphasized is that the
complexity of the query language controls the conceptual database. It
should be pointed out that the biggest difference between context-free
data managers and application-oriented data managers 1is the nature of

their query language structure.

2.6 Memory Management

The memory management problem is simply this - any computer
system has a finite amount of primary memory (core) available for use
by the user. If the program requirement exceeds this amount, is a
solution to the program possible? There are two types of memory usage
- those used by instructions and those used for storing values of
arrays (variables). The following discussion 1is confined to
management of array space.

by
Extending the ideas presented,Shrem (1974) to FEM-based

optimization methods, variables can be divided into two types -

tabular and matrix.

Tabular Matrix
Nodal coordinates Element stiffness matrices
Element topology Structural stiffness matrix
Loading information Sensitivity vectors
Design variables Transformation matrices

Stresses & strains
Active constraints
Objective function
history

:_ 3‘ '\\\ _.:f.- -\.\L\\ "‘L-. -
) _',“-_‘._._“,.‘\ \ -\.\ .-,"~4

-
Ve

e _ \ ' ‘.'- YRS CAA SRS
J‘J.f I ‘\. s ‘... Cae . ‘.r \‘ o DA RS ‘q}.‘_ -':\}\J‘- .‘?}."N{\l

353.
)

2 a

Y
R

5 41

LI o+
o

.5 The working set of data consists of that part of the data
: ' that resides in primary memory at a particular stage of the design
i;? process (the maximum size of the working set dictates the core
:l: requirement). The algorithm should try to keep the working set as

constant as possible, in order to minimize use of secondary storage.
Quite often, this is not possible. It should also be noted that the

ratio between the working sets of tables and matrices changes

significantly during the design process, as does the size of the
Y working set itself.

Working Sets in FEM-Based Optimization Techniques

G Phase of the design process Tables Matrices
Lt Pre-processing X
- Analysis of input data X
- Computation of element properties X X
f:;. Assembly of equilibrium equations X X
LY Solution to equilibrium equations X
Computation of gradient vectors X X
%;f Solution to non-linear programming problem X X
:{C Post-processing X
‘ifl The unique nature in which data are required during the design
TN
) procedure makes it crucial to organize data properly. Consider the
4
:*‘ example referred to in the previous section. The four quantities (with
X
h ﬂ: their abbreviations in parenthesis) that are required are as follows:
v
¢ (1) connectivity data (CON)
o
R
oA (11) nodal coordinates (NC)
r:.:*:
:;{~ (111) material properties (MAT)
"y
e (iv) element properties (ELP)
;{E{ Quantities (i) and (iv) are stored sequentially and accessed
,ﬁ:ﬁ sequentially. The size of MAT {s usually small compared to other
e
¢ 30
vs w;';.
X
)
:ﬂﬁo
'
Lol
e
- .) N

.'-. - -
.-_.\ BN -.-

r - -‘

o 4'-
- - -l . -.nl - - . . .
\._. } AR A L e T e T RN
-’ q"..q.i P .u.f -l!.g A AR s e e s AT e Tt e et e

T - . . .
Coa
DRV A_,\._AL.*L‘..\..;.LAAL_L_AA_;-L‘L ARSI

P

rg
2 X
» '

', <
2y % Y s

-

‘1

AR

v

LYY

P

42

quantities. The quantity NC is the only quantity whose role in the

computations 1s difficult to predict. If the numbering scheme is

random (large half-band width), the node references will be erratic.

Hence, a large amount of primary memory should be assigned to NC,
The discussions in the previous two paragraphs provide a

basis for allocation of the working set to the quantities involved.

If the working set (or the primary memory) is insufficlent for the

problem being solved, a priority table establishing quotas for the

quantities involved is necessary. Since management of the working

set 1s directly under the control of the MMS, it can provide the

program an addressable space that is much larger than the physical
memory of the computer system. The organization of virtual memory is icji
RS

dependent on the mapping scheme that performs the translation to };;ﬂ

location space.

One way to carry out the translation is to divide the working set
fnto pages and assign the number of pages to each quantity, depending
upon the priority table. In order to implement this scheme, there are
three main storage management decisions that must be resolved - fetch,
placement and replacement strategies (Shaw, 1974), The fetch strategy
defines the policy of when to load virtual memory and how much of
virtual memory to load at a time. The placement strategy determines
where in the working set to load all or part of the virtual memory.

The replacement strategy deals with dynamic allocation systems in which

the decision centers around what to remove or swap from the working set

when there is not enough space available. The fetch, placement and

K 43

D

'

N replacement strategies used in SADDLE are discussed in the next

. chapter. \

4 g
7 - .
S Y

o e Al

gt R N NS

L L

TR I
- I
s
'I

4 2 3 a

PS>

e

1
Lo

UGS 1)

- v v x5 ¢ v w wy
B R T
.

SO I BSRRKRRN K

I. - 3 il

A BN

RN

S

CHAPTER 3 R

"- -l ‘I h

SADDLE : DATABASE MANAGEMENT SYSTEM :
:_~ s i

& :‘a

3.1 Introductory Remarks

Database management concepts were discussed in Chapter 2, The
actual implementation in SADDLE is non-standard and is examined in this
chapter. Some additional terminology will be introduced. The
management scheme will be dependent on 'file-usage tables' (FUT),
'primary storage directory' (PSD), 'secondary storage directory'

(SSD), page table, 'file descriptions’' (FDES), assignment and

de: ;signment. The term 'quantity' will denote all the data that are
stored in a file. The implementation scheme for the physical database,
together with the file-handling conventions, is discussed first
followed by the conceptual database. Later, detalls on the memory
management system and the link between primary and secondary storage
are explained. Finally, the SADDLE query language structure is

explained, followed by the program control structure.

3.2 Software Development

Before developing a design software system, answers to some of
the following basic questions are in order (Rajan and Bhatti, 1982):

(a) On what machines will the software be implemented ?

(b) How general-purpose should the program be ?

(c) How familiar are the users (designers) with design systems ?

The answer to the first question is partly dependent on the

second. If the design system is to be designed for handling

relatively small problems (of the order of few hundred degrees of

freedom and a small number of design variables), then most machincs
with existing operating systems will be suitable (Kamel, McCabe and
DeShazo, 1979). However, if the system is to be more general, then the
execution environment becomes restrictive. With the current state-—of-
the-art in design software, the requirements can be summarized as -
(1) at least a 32-bit machine with double that precision available
for floating point representation,
(1i) easy to use file-handling utilities which can be called from
within the program, and

(111) the minimum available core to the user should be at least
equal to the module size plus array space of the largest
module.

With a non-virtual machine, the programmer {s aware that there 1is

only limited core available, but secondary storage is unlimited for
all practical purposes. With these data, there are three options
available to the programmer -

(1) Develop a program in which data is managed entirely within
core. Obviously, the maximum size of the problem that can be
handled is dependent upon the available core; e.g., MOVIE.BYU
(Christiansen, 1980). Usually, restart options cannot be used,

since no secondary storage is being used.

s
RIS e
L&A.i..ﬂ A A

(11) Develop a program with the assumption that a certain fixed core

is available and manage the data by storing the quantities on

secondary storage and reading them into core only when

required. This method is superior to (i), but since the
'certain amount' is fixed, only a particular class of problems
can be handled; e.g., SPAR (Whetstone, 1977).

(i11) Develop a program that does memor; management, built along the
lines of a virtual memory operating system. This concept
permits solutions of considerably larger problems without any
changes to the software. In essence, the software 1s general
enough to handle any size practical problem; e.g., GIFTS
(Kamel, McCabe and Spector, 1977).

While it is evident that the last option provides the ideal choice for
a non—-virtual machine, it is not so clear how this scheme peforms
under a virtual memory operating system.

The second question has an easier answer. A modular design
system allows the program to be as general-—purpose as the programmer
desires. This is true as long as the database is flexible. Either
the initial design of the database makes provisions for future
development or the database structure is flexible enough to allow for
future development, without involving detailed book-keeping on the part
of the system programmer. There are two different approaches to ensure
this requirement. The top~down methodology (the hierarchy of
development tasks proceeds from a job represented by a node at level
n, to jobs represented by its subordinate nodes at level n+l) ensures
that the original concepts are always visible. 1In the bottom-up
methodology, one 7ever loses sight of what is being accomplished.

Neither method is satisfactory and quite frankly, there is no

.‘.. "_‘ R _~_‘.-~._.'.¢..._~ ‘.' ..‘\- L _.- '.* ‘1 ../-\ “' ‘(« . “, R

-I g \" _'¢ :
AL SR
é‘m‘b’ﬂ\ﬁ

46

., .. -
! ~
[|' .
o Qs i .

i A W I

s y-n-=r g
. i ” -,"y'f'} i

>
«Va’a

AN
P

& » .
*a 'y a%s

b Dl
ol W Rl Wl W Wt

- "
ll‘l"lx“"‘ A

v
AT

e 0y
T N

€

[

pAEYY

. &
Y

o AN

R

3

el

b
II.

L TR T g
CTRW T

]

47

substitute for proper management (software development is still
an art).

The last question addresses man—-machine interaction. For
wide application of the software, 1t is necessary to evolve a language
that can be easily understood by beginners and ex,erienced designers.
In this context, the observations of those who used the POL feature of
the ICES system is worth examining —— "It is interesting to note that
several engineers have found it quite difficult to use problem oriented
language. This at first seems a strange paradox since problem
oriented language is supposed to simplify computer usage. Closer
examination reveals that the users typically are not engineers” (Ross,
1966), The comparison between human languages and computer languaggs
shows that both are far from perfect and extrapolating the fact that
the former has taken over 3000 years to evolve to this state, computer
languages still have to transcend a significant portion of the
evolutionary process. At this stage it seems as if better languages

can be developed only through user~feedback.

3.3 SADDLE Physical Database

SADDLE modules communicate with the physical database by reading
(and writing) information from the files. File~handling can pose
serious book-keeping problems, for several reasons. Figure 3.1
i1lustrates SADDLE's file~handling conventions. Calls to open and

close files are made only in the driver main program. To execute a

particular step of the algorithm, quantities involved in the execution

Figure 3 File handling conventions

hait Bah Sad St Bt dad Bel s 2 A2t

Oriver
Main Progran

Call to cpen files

Call o driver suliroutine
for step |

Call to close files
lif necessary)

T

}

Call to open flles
{1f neCassary)

Call to driver subroutine
for step 2

e e

Termination Step

Oriver subroutira

Cal! to subroutine !

Cal! tao subroutine 2

1 49 e
- 5o
SRS o
:') -.,"_vﬂ
o of the step are first identified. The main program then makes calls]
. e l;":T
" to open files that contain these quantities (if they are not already i
‘41:;

:a open). Control is then transferred to the driver subroutine, which

o

)
;‘ﬁ may or may not use calls to other subroutines to execute the logic.
N

Finally, control is transferred back to the driver main program,

Qﬁ Before executing subsequent steps, appropriate files are opened/closed.

5 .

"l

> The SADDLE physical database is made up of two types of files -

_ those that store program control information and those that contain

;ﬁ data pertaining to the problem being solved. The files can be
“?? subdivided into two types, based on the way data is accessed -

?1 sequential access files and random access files. Interaction with

1

&} sequential access files takes place one record at a time, starting at
?;? the beginning of the file. This interaction is relatively standard in
3 -'4

FORTRAN. A random access file used in SADDLE is described by its

;ﬁ record length and page size. The record length is the number of words

:J of information stored in one physical record and an integral multiple

J of records make a page. If the size of the file is not known a priori,
2

:ﬂ then the I/0 operations are in terms of a single record. If the size

:i of the file is known, then a page of information is transferred between

L: the primary and secondary storage. The CPU time required for the

;;: latter case 1is significantly less., The page size has been set as cloase

% the operating system page size as possible. This allows efficient disk

o\
"; operations to take place. There 1is one subroutine associated with file

o

f: operations. The subroutine, FILEQP, performs seven operations

0
.-“l’.
\-¢-'
N
’l

LT A P Y PR o) O il o S I A L™ et T A L A R A N
T AR - e L e e e :
.',-'h L -) .\"‘:-"":'

-
T . S

wtw "
w LY ERAY
.

NN

associated with file handling -~ read, write, open, close, delete, check

existence of and rename.

Subroutine FILEOP is invoked using six arguments :

SUBROUTINE FILEOP (oper,nunit,fname,ntype,nbuf,np)

oper : operation to be performed. Valid values are -

READ

WRIT

OPEN

CLOS

DELE

-
.

EXST :

RENM

for

for

for

for

for

for

for

reading from a file

writing on a file

opening a file

closing a file

deleting a file

checking the existence of a file

renaming a file

nunit : unit number on which the operation is to be

performed/code for checking existence of a file;

(nunit=1 if file exists;nunit=-1 if file does not exist)

The unit number is to be supplied by the calling routine for READ,

WRIT and CLOS operations.

The unit number on which the file is opened

is returned for the OPEN operation.

fname : file name

\,l\
&L

A
LR

readable.

ey
YR § L] ry
a 1'1"\'.1,';1 ‘?‘A A

‘1.;‘&' YNNGy

oAl |

2 X
L)
le "t

Lot g oo o0
YXX

“

e
'..“’q'
A
A
.
.

YOS

ntype : file type

The file name is provided for all operations even though the name is

not used for READ,WRIT and CLOS operations, so as to make the program

Valid values are - SA(sequential access) and RA(random access).

nbuf : buffer used for READ/WRIT operations

AR AT v e 4 e Anaaiaie fun. i o 4 AR B i i - A A4 - Be Al R nal - g~ 4
",

. K e e
Pt « CEA |
v . PR,
o et LIRS |
e T KRR
. .’ e

v
NN Ay

21 e P s
SR £1 Do
PR e RPN)

v teg PR
SN B

ey
vt et el

s .
‘*uﬁdﬁﬁxii{"‘

" s

’
O

-
¥

: Ty 'z
! f (:'/ s

. b

RN
;;; A dummy value 1is specified if the operation is not a READ/WRIT

{‘“ operation. Otherwise the argument corresponds to the array that

Eﬁzz contains the values to he written on the disk, for a WRIT operation or
,Eiii to the array that stores the values that are read from the disk, ur a
’~"; READ operation.

‘;ii np : page number/file name

.." <

2:2 There are two uses of this argument. For a READ/WRIT operation, the

value of the page number is supplied by the calling routine. For a

special OPEN operation and for the RENM operation, np is used to pass

the ordinal value of SPEC and the new name of the file, respectively.
To help facilitate transfer of information between primary and

secondary storage, some additional information must be generated.

This step is executed by three subroutines; ITOCHAN, INITAL and MODEIO.

These subroutines carry out I/0 definitions and define the entries in

X
i:;E the storage directories.
_' Subroutine IOCHAN does the following :
g
‘{ (a) defines unit numbers for terminal input/output, command input
G?£§ file, printer (output) file and conversation (output) file,
f;ié (b) sets the program and database version,
ey

(c) queries the user for job identification and checks for its
validity,
(d) sets values of valid file unit numbers.
Subroutine INITAL does the following :

(a) starts timing the execution

(b) reads in file descriptions

LéC)

.
v

-
"
-
o
-

1y
P

- r’l'l‘

x

LR AR ALAL AL L N Sl afh ulE ot S Ah shl® gl talataliat Rt Sn b dnil ind jat fab Satt el fab datt 4 LR A i A MED it kit ' woly g ane e arh a8 e s
TEIN T TN T YTy L T

P %]

N

ol

.»f:‘x_:

52 3

Reh)

(c¢) initializes program counters fﬁ}?

. ".‘F

Subroutine MODEIO is used with the command input and save conversation .
modes of execution. The routine checks for the existence of the file :EQ%
. .’

jobname.COM for command input and creates/opens file jobname.OUT for o
e

output. If jobname.OUT exists, then the output is appended to the end ;;;i
of the file, ﬁ;¢i
',";--'"-"

The description of the SADDLE files is given in Appendix B, where ﬁ?i”

the format of a typical record in the file is described.

3.4 SADDLE Conceptual Database

Two data models have been used in the SADDLE system. The
hierarchical model 1is used with matrix-type entity sets, while the

relational model 1s used with tabular information. The matrix entity

sets can be divided into two categories ~ sparse matrices and full
matrices. An example of a full matrix is the matrix of gradients of
active constraints (GRAD) with respect to design variables. All full
matrices in SADDLE are stored as submatrices in the column order.
Figure 3.2 shows the conceptual arrangement of GRAD. The matrix has
NDESV (number of design variables) rows and NAC (number of active
constraints) columns. The number of active constraints usually changes
from design point to design point, but this does not affect the storage

scheme since the matrix is stored column-wise. In order to access data

i{n submatrix (i,j), the record number is computed as,
REC = {+(j-1)*NR

where NR is the number of superrows in the matrix. In the case of GRAD

T

L A b ot S aAdh® abk 2 bk~ i

o N NN -

Calhir Al -) - Clal mivk _Stl s I Sy

i i e N et S e M AR e Gl IS

A
~—

Figure 3.2 Storage scheme for entity set GRAD

NR INC

o |

.

..

o |
*-Eu'\'.-. “.J“ ‘
‘ "nlhm.

Ol ORI A et SR G AE A S BN L R R W Qe Ty A Ra 4 " 4 et Bl 4 o Sk Yol Aok B A Ll
v v o -y o Sl B I Il A Ao av A9 At ooy o)

.'1"_:1

54 T

S

there are NDVB superrows computed as follows - :ﬁfi
N

NDVB = NDESV/NBSIZ + MINO(MOD(NDESV,NBSIZ),1) .
r_j\

where the size of one submatrix is (NBSIZ,NBSIZ). This is an example e
of a sorted file that requires no indexing, since the calculation of :::}
REC yields a unique value. Other entity sets that follow a similar Lo
conceptual scheme include the constraint function file (FUNC), ﬁiﬁi

temporary files used with the linearization technique in module OPTMOD, f‘
loading information file (LOAD) and the deflection file (DEFL).

The stiffness matrix (STIF) is an example of a sparse matrix. As
in the case of GRAD, the matrix is split into submatrices. However,
only the non-zero submatrices in the upper triangle are stored row-
wise. Information from STIF can be obtained by reading the location
from file, SDIR (Fig. 3.3), a modified sparse index file. The number of
records in SDIR is the number of superrows in STIF. The value of
POINTER is the record in file STIF, where the first submatrix in that
superrow is stored. NS 1is the number of contiguous strings of non-zero
submatrices in that superrow and LC(1,I) is the number of first super-
column in string and LC(2,I) is the number of last supercolumn in
string. Taking the example in the Fig. 3.3, there are 4 superrows.

The first superrow has 2 strings of sub-matrices (LC(1,1)=1, LC(2,1)=1
and LC(1,2)=3, LC(2,2)=3) with the POINTER value 1., Similarly, superrow

2 has one string (LC(1,1)=2, LC(2,1)=4) with the POINTER value 3, and so

<

on. The file STIF contains sorted information, based on the pointer

Y-

~
P

values in SDIR, with the first two fields in each record storing

AD

the number of rows and columns in the submatrix.

"‘v-‘&,', ..‘.44. .*_ -"‘

R 'ﬂ‘ -1'\"' “'r- N
:T.;'U- ".-7'.»- .c"{ﬂ'.}-}.r \".n M ~ =& .i “:

S B ot el Bed 2am Bede s dad B Lol Rk il Bd-E AR B e Bih g oalhue mne 4 - Rin R ia-Ale Rte - b WA sl de b vl Sadh SufiCU A B St el AP A AW LW T T T e TS T .

o
n

Figure 3.3 Storage scheme for entity sets SDIR and STIF

NR {NC

N MO NN e INDND -

] STIF

POINTER |NS |[LC(1,I) [LC(2,I} fe -

O SOIR

4

" ""‘41
. .. !
.-h _‘v
‘ -"‘, -
A

VAN
1‘ -

BN .
A -
AT .
CN o
| N -

N TR BN PI T SO0 RN T S)
" N N N W e Y
N Sy Y Y
b S TR T AN ..\ht x,

SR I A AN AP AP PN P P

4G G Ay
et T,

AR

.?ﬂ???lg
VAN

ey
<

]

R i R Al G S S SR e fve R iy ki b (IR S R Rl tas a atal G b el walh bl Al Sk A A A R

.
8\

The relational model 1is different in implementation from the
hierarchical model, because of the mechanism involved in locating a
recvord of informatfon. The dense index file implementation of two
relational entity sets - element information (ELEM) and nodal
information (NODE) is now considered. Figure 3.4 shows the conceptual

record of the entity set, NODE, The attributes are as follows for the

ith record :
NU user number of system node i
NS system record where user node 1 can be found
X,Y,Z nodal coordinates

DVX,DVY,DVZ design group numbers of the x, y and z coordinates
DISC(6) vector of displacement constraint codes

(0 : no constraint; 1 : constraint)

NBL superrow to which the node belongs iIn the stiffness
matrix
NFR row number in the superrow
BC(6) vector of boundary condition codes

(0 : suppressed; 1 : free to move)
The conceptual addressing of a node takes place in two modes - the user
mode and the system mode. This scheme is necessary, since (i) the user
does not generate information on all the nodes (automatic node/mesh
generation) and (i1) the system renumbers the nodes to reduce the half-
band width, 1In order to locate user node j, the jth record in the file
1s read. 1If NU=j, then the information has been located., Otherwise,

record NS is read, where the user node j is now located. In order to

ST T WL T e
- - g Y
T S T

UoTa e U L T T
.ﬁ'.m AR AR S P,

. .
’{-:"hu “‘: ".. ‘#.' Ll oY
T S IR

.
NP S

e
o

WL O W g e U l.'% paha™ ..".'_.‘.ﬁ'.".'f'u Coiad S A A R R -

Figure 3.4 Storage scheme for entity set NODE

NODE

NU NS |X 1Y |Z |DVX |OVY |DVZ | DISC | NBL |NFR |BC

Figure 3.5 Storage scheme for entity set ELEM

ELEM

NS [IT | IORD | MATP [PROP | LTYP | NDV| IREC } IFP [NCP | LCP

ay R TR RNy EA Rkl d Aok ek el Sl "l AT AN pon o _poy |
e
i\.‘

1th

locate system node f{, the record in the file is read. Hence, the
embedded pointers NU and NS actually account for the dense index file
implementation. Note that the file is arranged so as to minimize
access in the system mode (at worst 1 access per node), which 1s likely
to be used more often then the user mode (at worst 2 access per

node). The example is further useful in illustrating the fact that the
conceptual database can be different than the physical database in
implementation. The attributes BC and DISC are binary data and it

would be a waste of space to store them as vectors. In actual

implementation, they are stored as packed data (into the lowest-order 6

bits of a single variable).
The conceptual record of the entity set ELEM is shown in Fig.
3.5. The attributes are as follows for the it record :
NU element user number
(NU=—232+1 for a continuation record)
NS system record number where user element 1 can be found

(in a continuation record, stores rest of the node

numbers)
IT element type (1-ROD, 3-TM3)
IORD order of element (l-linear, 2-quadratic)
MATP material property number
PROP element property number
NDV number of design variables
LTYP type of design variable

i il 4'?
CRANNANY

.~ "“h',‘l.‘"“.;‘" -

SRS AR
RS

N >
=
1%3 IREC design group number of the first design variable in
;;1 the element

1
;5 IFP forward pointer to the next element belonging to
%S the same design group

NCP number of corner nodes

3:3 LCP(27) list of corner nodes (system mode)
:i; The number of corner nodes varies from finite element to finite

element. Reserving the maximum storage locations per element for every

element would result in wasted, unused space. In order to minimize

7ty sg)
l‘ l, x

L
3

1
&

this unused space, a conceptual variable record length technique has

¥

. -

L been implemented, as shown in Fig. 3.5. The first record contains a
;ﬁ list of 8 corner nodes. If there are more than 8 nodes per element,
f;é information is continued in the next record following the contfnuation
1

record format. In order to locate information on system element j, the
’i; jth record is read. If NU has the value of a continuation record, then
’E; the element is not active. If not, the value of NCP is checked. If NCP
;) is greater than 8, then the next record is read and the list of corner
;ﬁ nodes is transferred to vector LCP.
?3 A linked 1list technique is used to handle the problem of storing

| g8

the design variable linking information. In order to identify all the

=

g. elements that belong to a design group and related information, the
4. ¢
yd attributes NDV, LTYP, IREC and IFP are used. The first two indicate

o

the number of design variables in the element and the type of design

‘v

jﬁ@ variable (area, moment of inertia, thickness etc.). IREC points to the

;-i design group number of the first design variable of the element. IFP

‘

h .r‘: :“'-:‘;‘
2 R
2 o
PN ‘-',"r.‘
>)

-}::5 2 T ‘.":,‘:.\':.'Q_::‘.:-‘_:'u'_f“-'_;.\ D
4"’(g-- .:k "..:« - "
L) ot *J.{ ." -

"
o

4

BT

OIS
ol et

u 2N 4
=

Ak |

.,"’I‘A

0y,

-

iE,';S-‘III”

-

is the pointer to link different elements. Suppose elements 5,10 and
15 belong to the same design group. Then IFP for element 5 is 10, for
element 10 is 15 and for element 15 is -l. A negative value indicates
that the element 18 the last element in the group.

Other files that have the same conceptual scheme include the
material properties file (MATR), element properties file (PROP) and the

element stress file (STRS).

3.5 SADDLE Memory Management System

Drawing an analogy between the physical database and a book, the
SADDLE memory management system (MMS) philosophy will be explained.

The two entities are compared below.

DATABASE LITERARY COMPOSITION
Physical Database Book
File Chapter
Block Page
Recor:d Line
Data Words

Just as a book 1s a collection of chapters, the physical database
1s made up of files. A file (chapter) 18 a collection os records
(lines) grouped together into blocks (pages). However, there are some
differences. It would be unusual tn find a book with varying page
sizes or with the same numher of words per line a page. Physical
datahases usually have different blocking factors and a constant
record format for different filles.

Using Figs. 3.6 and 3.7, the complex link between the conceptual

database, physical database and the primary and secondary storage will

Vﬁdrrc

n,q.l.

.*"
RN *.

.l t!‘!‘-‘l‘o\‘

Sofh S il o B e SR A S e B Al Bl N B i - A it i ol e L i Al

o t.-.m.. ‘

- S -
: <

P
LAY

s
PR PR

e e
L

LS

Figure 3.6 Arrangement of primary storage

p——— gy ey
v ¥ X F
2
T T T

ey

et

-

1) Page |Page |Page | Page Page ' Last

F

Vorking Set

— Oty |—bl¢——Qty 2 —dj¢—— —_—
e {Subset 11 (Subset 2)

st

ll'.r’
A

LI |
L]
e

A
NS

]

wte =l »
A o

- g

Py

-

A
. MG .

- R PR “"” .
“w L% % w A

AN S A I YN DI e
sl A A L R e e L T

s Jmﬁ‘l‘ﬂ"?ﬂ(“u.ﬂiz
-

Figure 3.7 Flow between storage directories

SECONDARY STORAGE DIRECTORY

(S S0
FOES PAGE TRBLE
FIRST
NAME | RECORD |[PRGE |QTY PRGE RELATIVE PRGE
LENGTH [SIZE INARME NUMBER NUMBER
-
PRIMARY STORAGE DIRECTORY
(PSD)
‘*VORKING SET FuT CONTROL FILE
U
TABLE SIZE
SAOOLE QTY | OFFSET |FILE |[UNIT|TYPE
Program
Module
Contral

Information

.

e e
Coe

-
o

62

(e

bi‘-
n“-l‘
k)

v

. '
o AR
P
O VT
Jrte Bt

.
s T
.

R X .
R f
G
A T
IRV | 3

1
I
L

-
aclx e

»
&

u
w0
-
.
-
-
)

I S ek TV}
a5 A _¥_

w fr fr i
i, <

T

e,
L

‘u"'lr‘<
« a Tk

.._'

-

o
s
Ll
Xa

Y

be explained. The primary storage is essentially a super—array that is
divided into a number of pages. The pages in the working set are each
assigned to different quantities and are so arranged that pages that
belong to a particular quantity have adjacent locations. The physical
database itself, can be looked upon as a collection (super—array) of
files (subsets) that have different blocking factors (page sizes).
Hence, a unique relationship can be established between the location of
a page (in primary storage) and the corresponding location of that page
in secondary storage. 1In order to define this mapping, storage
directories have been created in the SADDLE DBMS.

First, file descriptions (name of file, record length, page size)
are read from file FDES into the secondary storage directory. Then, a
file usage table 1s created in the primary storage directory. This
table records the file name, the unit on which the file is open and the
type of file. The control file SIZE is then read. Tt contains such
diverse information as current problem size, problem switch settings
and program limitations. Now the assignment of primary storage to each
of the quantities can be carried out. This assignment is carried out
by routine ASSIGN,

Subroutine ASSIGN is invoked as follows :

SUBROUTINE ASSIGN (KA,name,npage,nofset)
KA : super-array that is the working set
name : name of quantity (file)

This name should exist {n the file FDES as a valid entry. Tts' file

descriptions should be clearly defined in the file FDES.

673

A

el

npage : number of pages to be assigned :ji;
The value passed by the calling routine establishes how many pages are
to be assigned to the quantity name. If this value is zero, then the
maximum number of pages that the quantity requires is assigned.

nofset : offset in the working set
ASSIGN returns to the calling routine the value nofset that is the
offset (in terms of locations in KA) from the start of the working set

where the subset begins. Routine ASSIGN calls LOAD to load the

information from the physical database to the primary storage if the
file already exists, or initialize the primary storage if the file is
being created. This assignment creates the page table in the secondary

storage directory and the working set table in the primary storage

directory. The page table has the name of the quantity (hence the file
from which data is read/written), the first page number in the working
set, and the relative page numbers (of the pages in secondary storage)
in the primary storage (relative with respect to the first page). If
the relative page number (also called codeword pointer) is zero, then
the page is not in the primary storage. The working set table records
the name of the quantity and the offset from the beginning of the
working set (in number of words of data).

Every request for a transaction follows a set path. Navigation
along the path will explain the role of the directories. Suppose the
quantity NODE is required in a module. The first step is assignment of
space in the working set for NODE. File FDES provides information on

the record length and page size of NODE. Then control file SIZE is

. 4:(.‘ .
ROy N

" a " e
PR
x
&
»

)

) 5
e '
- o
-
;E used in computing the number of pages required (unless the user
{, specfies a non-zero number of pages for NODE). The page table is
éé updated to reflect the page assignment for NODE, There are two
i:s counters associated with every page - the write bit counter and the use
- bit counter. In addition, a codeword pointer is used with every
Ez page. If the pointer value is zero, then the page is not in the
i; working set. Otherwise it points to the location where the page
resides. The file NODE is then opened before any transaction is

. carried out. The unit number is recorded in the file usage table. .iEf;
}é Let the transaction require information on a particular record. E?:fi
:‘ The routine GETDAT is used for the read operation - ffif
ij CALL GETDAT (file unit for NODE, record number, working set, KORE
iiz value, offset in the working set for NODE). &il‘f

: Using the record number, record length and page size, the page number .
;{i for the referenced record is computed. The page table is 'looked up'’
15; to find the value of the codeword pointer. If the codeword pointer
?2 value is zero, the paging algorithm is invoked to make room for the
ij incoming page. Having located the page in the working set, the
;3 relative position of the record in the page 1is computed. The contents
‘;: are then transferred from the working set to the translating buffer
;% assoclated with NODE (common block TRNODE). For the write operation,
;;i the inverse procedure is carried out (a call to PUTDAT is made).
.;; If a page fault occurs, routine GETPAG implements the replacement
i; strategy. A modifled form of the 'nmear-LRU' (least recently used)

%: technique has been used. Using the secondary storage directory, the

' (2]

(s
bR

)
a

)

-
€8
)

-

)

-

)

»

t

]

X
Rt

-~
]

L4

»
’

H
K

P . . -
. AP
PR T
Y . DI A
.t PR I R

Ry

u‘,'.’?’:: j

‘- .-..
'.’ r"-' v
LTS

“ Al
S4

66

algorithm loops through the pages (in the page table) that are assigned
to the quantity in question. The read and write counters are added to
determine the page with the lowest sum. This is the page that will be
replaced. Before the page 1s ejected from primary storage, the value
of the write counter 1s checked. A non-zero value indicates that the
contents of the page have been modified. The new contents are now
dumped on the corresponding page in secondary storage. If all pages
have the same sum, then the last page is thrown out. In order to
ensure that the new page is not thrown out i1f a page fault occurs
before the page is referenced, the read counter value 1is set to the
highest value of the sum as soon the page 1is brought in.

Two topics are discussed pertaining to efficiency - tuning
parameters and ‘'garbage collection'. For an efficient design system,
the data organization and the memory management schemes must be
flexible enough to allow performance enhancements on various computer
installations. The SADDLE DBMS includes the following tuning
parameters in the design of the database:

(i) maximum size of the working set,
(i1) page allocation policy within the working set, and
(ii1) page size.
The first identtfiable parameter is the maximum size of the working
set. Since the working set requirement is problem dependent, it is
advisabhle to increase this size to as large a figure as possible on
non-virtual machines. If the requirements still cannot be met, the

MMS will automatically invoke the replacement strategy to handle the

bt Y * e Sa i Sl S Rkl Gk Sak Ak iad teii aal Sk Sad Bk S0 B o ol

L] ' .
a2l

s
Sz

)
W)

|
L AR

s

additional requirements. The question is more difficult to answer for
virtual machines. The real-to-virtual memory ratio, type of
computations carried out and system load (all installation—-dependent
features) dictate the size of the working set. A smaller working set
is preferred for systems in which the machine is heavily loaded. The
allocation policy in the distribution of the working set is another
parameter., This is especially true since the MMS swaps pages in and
out of the subset of the working space that is allocated to the
quantity that 1s being paged. The page size is another tuning
parameter. On non-virtual machines, the page size should be close to
the maximum I/0 transfer allowed by the operating system. On virtual
machines, page size should be as close to the system page size as
possible. 1t should be noted that the page size is an {mportant
figure., Small page size has the following disadvantages:

(1) more page turning activity, and

(ii) large page table size.
On the other hand, a large page size requires a greater I/0 time
during paging. The record length could also be considered a tuning
parameter, but it 1is not clear at this stage whether varying the
length of the record would yield better results. Paging works most
efficiently with programs that execute sequentially, without frequent
references to distant memory locations. Programs characterized by
such locality of reference generate a minimum of page faults. The

SADNLE relational and hierarchical schemes are buflt on such lacalfity

of reference. 1Tn order to verify this philosophy, numerical

68

experiments were carried out. Tabhle 3.1 presents the data obtained
from an experiment conducted to compare the SADDLE memory management
system against the PRIME operating system.

Numerical experiments were conducted with a structural model
consisting of 1250 nodes and 4631 elements. The structure was analyzed
for modeling errors such as zero length elements (for line elements)
and zero area elements (for two—~dimensional elements). The
transformation matrix for local-to-global transformation was also
computed and design variable groups for the elements were identified.
For each of the three tasks, the algorithm proceeded to analyze the
data one element at a time, starting with the first element. Three
direct access files from the database were used - NODE for nodal
information, ELEM for element information and TRAN for transformation
matrices, with the last named quantity created and the information
associated with the second modified during the course of execution.
The numerical results in the table show the direct comparison between
an all "in-core" solution (working set 250,000) and a solution with the
memory management done by SADDLE MMS. The term "in-core” merely
indicates the memory management is being handled by PRIMOS. Both
jobs were run simultaneously from different terminals and the system
performance was monitered at a third terminal every 10 sec. In Table
3.1, all quantities relating to page sizes and working sets are in
terms of 32-bit words, CPU and disk I/O times are in seconds and PF

refers to page faults. One fact that is rather clear is that PRIMOS

performs relatively poorly when the system is heavily loaded (Run nos.

g

D

AN
R

P I O O e T R T T T T T e T T Pl T T T TR TQu TR G P T T N T ¥

3

®
‘f:::: 69

e

QIR

:}}: Table 3.1 Comparison between PRIMOS and SADDLE MMS
K
- Page Size type A
-\’.:-4_'
24:? Number of Pages Number of Disk System
'“'-; Run Working for SADDLE CPU 1/0 PF/sec % Time
L No Set Size NODE ELEM TRAN PF Time Time CPU

] Unused

s
ook 1 21000 12 20 10 3933 43,3 57.6 12,7 8.1
,SKQ 250 000 70 331 91 0 26.4 70,9

- 2 65 000 40 60 30 2 153 36,2 59.6 15,7 12,1

;;;{ 250 000 70 331 91 0 27.2 95.4

.L‘.i'f‘,{ 3 50000 30 50 20 2 783 38,3 68.4 10.3 11.0

'tjﬁ‘ 250 000 70 331 91 0 26.0 74,5

L g 4 45 000 30 30 30 2 813 38.9 76.0 15.5 15.1
2 250 000 70 331 91 0 27.1 97.6

e

.:{; 5 80 000 40 80 40 2 103 36.8 85.1 20.4 27.4

‘;?{Z 250 000 70 331 91 0 28,2 108,2

. Page size 486 490 510

AN
-:::2#
‘:yﬂ Page Size type B

) Number of Pages Number of Disk System
o Run Working for SADDLE CPU 1/0 PF/sec % Time
o No Set Size NODE FELEM TRAN PF Time Time cpU

A Unused

W

3 6 35 000 25 5 5 1 330 30.7 49,7 9.3 22.5
250 000 35 166 46 0 24.9 60.1

NN 7 11000 1 5 5 6 557 60.6 97.2 16.1 24.8

e 250 000 35 166 46 0 26.1 100.9

SYARS

i 8 82 000 10 25 46 2 986 40.8 80.2 13.7 29,6

o 250 000 35 166 46 0 25.4 78.9 .:
e l\.:
e 9 85 000 10 50 25 2 957 39.2 56.9 6.1 8.1 .\
{{{{ 250 000 35 166 46 0 23,6 51.0 .
o L
i A :
.‘;'?':h e

e

120 A%

[y

\:.: 70 e ‘:J
: e
if Table 3.1 (cont) N
4
L 10 110 000 35 50 25 254 25.0 56,0 13.8 47.0
O 250 000 35 166 46 0 25.0 75.5
11 70 000 35 25 10 319 25.3 56.5 13,0 33.3
250 000 35 166 46 0 24,7 65.7
o 12 20 000 10 5 5 3 067 39,2 42,2 6.0 43,0
. 250 000 35 166 46 0 23, 43.9
-
3% 13 700 S5 1 1 3 658 43.3 57.8 6.6 41.0
oy 250 000 35 166 46 0 23.4 50.1
&l Page size 972 980 1020

Page Size type C

PR 5. A
- '

Number of Pages Number of Disk System

- Run Working for SADDLE CPU 1/0 PF/sec % Time
< No Set Size NODE ELEM TRAN PF Time Time CPU
\:3 Unused
R 14 90 000 5 20 5 1 281 38.4 76,2 14.8 21.3
i 250 000 12 56 16 0 25.9 85.8
--Lv
3] IS 70000 3 10 10 1674 42,0 81.4 12.9 8.6
L 250 000 12 56 16 0 25.0 79.2

J
!ﬁ} 16 95 000 12 15 S 94 25,2 68.2 22,0 23.8
o 250 000 12 56 16 0 26.0 92.5
5o
N 17 125 000 12 20 10 79 26.7 102.4 26,5 31.0
- 250 000 12 56 16 0 27.5 120.7
I Page size 2916 2940 3060
&5

o

ll\‘

ot
[
"
Sh
.\,4'
\
150
o
0"
e
e

4
)
ad

71

5,10,11,16,17). Much smaller working sets fare better, both in terms
of CPU time and disk I/O time. However, during times of light systcm
load (Run nos. 1,9,15), PRIMOS required less disk transfer time. Page
size types B and C fared much better in terms of number of page faults
and disk 1/0 times, when they are tuned properly, compared to a smaller
page size used with type A. The number of pages allocated to a
particular quantitv also plays an important role in the number of page
faults that result when the SADDLE MMS invokes the paging philosophy.
This is clear when comparing Run nos. 6 and 14 with Run nos. 8 and

16. The latter show higher page turning activity. Such behaviour is
expected since element data are accessed sequentially, while the nodal
information references are more erratic. Allocating more pages to
nodai data resulted in a smaller number of page faults.

It was mentioned in Chapter 1 that the working set in FEM-based
optimization programs changes in nature from one step of the algorithm
to another. The implication is that a quantity in use in one step may
not be in use in the following step. The question is what to do with
the inactive pages. 'Garbage collection' is the process of locating
all pages that are no longer in use and adding them to the list of
available space. SADDLE does garbage collection only in a few
modules. The procedure consistes of two parts. First, the secondary
storage directory is scanned, locating the inactive pages. After all
inactive pages have been 1dr 1tified, the rest of the pages are linked

to form a contiguous block of active pages. The primary and secondary

LERE A AT AN SRS IR

.,
l,-.
vt

Yottt
R

Bl Jd
drtrtedy?

i

<.

Y . !

&

» .
>+ P

(3

BXT S

- { ‘l . 1
B e .
AL LA A

N.J'...‘..-‘-,’ q.-._<.“
CiTet ol i pY
ORI ot % ,

_A

storage directories are updates to reflect the changes. The

procedure 1is an expensive process and must be used with care.

3.6 Primary-Secondary Storage Link

All information, whether fixed-point or floating-point data
(single and double precision), exist as a part of the working set
(identified as a super array, KA). When data are initally read from
the files, they are stored starting at the location that is the
beginning of the subset of the working set allocated to the particular
quantity. Similarly, when data are written to the files, they are
first transferred to the appropriate locations of the super array
before they are actually written on the files., Such a scheme 1is
viabhle because of the manner in which data are stored in memory.
Transfers to and from disks take place in number of words and not in
number of variables and data types. Most operating systems make
available to the user these low-level I/0 routines, which are
non-standard FORTRAN routines. They require as input, among other
things, a buffer (or,array) that contains the values that are to be
written, the location of the buffer in the program space and the
number of words that are to be transferred. Such a scheme does not
preclude the usage of standard FORTRAN I/0O routines, but such a usage
would in all probability make the system response poorer, because of
the overhead associated with calls to such routines.

SADDLE has five routines that are used to retrieve or dump a

particular record from the database. Routines GETDAT and GETREC obtain

|

e

i,

thé &

A_a

AL,

YT X W

f’. CaTaln’

ey
¥
-'l -

2 s
yoaLa,

ot

af -

afalas’s

A AN Y

information from the working set and transfer the data to the

translating buffer. Routines PUTDAT and PUTREC carry out the inverse
process of transferring information from the translating buffer to the
working set. Routine GETPAG 1s invoked during a page fault. The

idea behind such a scheme is that the implementation of both the
relational and heirarchical data models can be carried out with minimal

regard to the concept of data types and machine precision.

3.7 SADDLE Degsign Query Language

The design query language has been designed to cater to the needs

of two types of users - the CO user and the Cl user. The CO user can
use the commands in the SADDLE design language to manipulate data in

the physical database. These commands can be divided into four

categories. A Category ! command is a technical information command of

the form NN
x:\%\
AN
(a) HIST (b) MENU B,
1,100 ROD2

where the first line of 1input (alphanumeric) is an entity set By
'\."'-
identifier and the second line specifies the domain of the entity set P}Xﬂ
(tuples or attribute domain). With the HIST command, the entity set _;t \
ey
'Optimization History' is identified and the input '1,100' specifies ¥ 3
TS
the range of values of the primary key, design cycle number. If the ;ﬁyi:

number of design cycles 1is less than or equal to 100, information on

the entire set has been requested. With the MENU command, the entity

set 'Elements' {s identified. However, the second line of input ROD2

e e N N
s

"
ARG

n

L .

x

L}
.

s

U

——
vy ‘v -“"J
v AL PN Y

(2 LI i o -
A 'n{ [
Wit

X Fh

LY,
aRE: 1.%

£
>
.x:,.

specifies that all possible values of the attribute, design variable
type, be displayed.
The second category command is an update command; information is

created, modified or deleted,

(a) SETB,?2 (b) DESELEM
1,2 5
3,4

The first line is an entity set identifier. The second (and subsequent
lines) of input are either values of attributes or values of primary .;f
key. With the SETB command, the entity set 'Design Variables' and its NN
attributes lower/upper bounds are identified. The values '1,2' and
'3,4' establish the lower/upper bounds of the current design

variahles. The command DESELEM cuts across entity set boundaries. The

command links the information between the entity set 'Elements', y
'Element Properties' and 'Design Variables'. All elements that have the ;;:2'
same element properties as element 5 belong to the current design l}}?

variable group. Element 5 is the primary entity with its attribute,
element property number, as the secondary %ey. The values of the

element properties (that are design variables) are transferred to the

attribute, design variable value, of the entity, (current) design
variable.

Category 3 commands deal with program control information,

(a) CYCLES (b) STATUS
20 R

The command CYCLES sets the maximum number of design cycles to 20,

Pa 9a- g 0% g~ Mgt g i iyl by Bia Rua iy B AN

o 75
R
:i, STATUS displays the design information, number of design variables,
inequality and equality constraints, design cycles and maximum
:5E: anticipated number of active constraints.
:53: Miscellaneous commands form the category 4 commands. They include
- ote
. commands to identify types of design variables (element properties,
AT
&}i nodal coordinates), optimization teclinique in use, breakpoint value,
}i} value of perturbation used in finite differences, etc.
The Cl user has more control over the types of queries. However,
T the relational calculus that is used to access both relational and
hierarchical data, must be programmed by the user. Essentially, the
OPTQTY library provides the user with the means to access and update
L
L.
{:)J information. The access mechanism operates on one conceptual record at
'R:{i a time either providing access to the entire tuple (ZSTRS) or one or
more attributes forming the tuple (ZNODE),
RS
-
N:.
N
o 3.8 Control Structure
Execution of as SADDLE module can bhe divided into five phases
LY
SOk (Fig. 3.8). The five phases are initiated by a driver main program,
e
b whose functions are to:
' (i) set working set size (value of KORE). The value of KORE
e,
j:xi is dependent upon the installation and the operating system,
":P-_ 'j-:
e (11) allocate subsets of the working space to the quantities
n 5';’
o involved,
Lty
Fu?n (111) transfer control to the user command input parser that tests
r.'..':
i}ﬂ* the user input for validity and then transfers control to
e

A Ty e NN e e
o PG Y
i o) ik Sem . St

- TN
IR 0L W

TR VRV &

\ 1
3

- Y
i .)q.l‘.\..-ﬂw\\-.--‘
PRI S wm\n DR AR B D i S
AETER e G M
. .. i P

3

Y

Y RIS

3

- "h‘
L L

|
.
)
And g

hdall Sall aah uol vai aah 2l ok el Snh Snd g g
. " o
4 Bl

I
i

SR t_f

o

OPEN FILES
EXECUTE STEP
CLOSE FILES

Laosin

INITIALIZATION

STEP
NORKING SET
ASSIGNMENT
NORKING SET
DERSSIGNMENT
TERMINATION

STEP

1
4’

j‘;‘

AT M T HE Y WMy WO AL LW UN Y VU T T

ORIVER
MAIN
PROGRAM

Figure 3.8 Flow in a typical module

P Y

-

Iy

.
.
4
.
2
f
.
13
,
'
by - ., % - - e e .- ’ . - P . e e . . . 3
UAIRORDS . iSge te SN SN A T NN sl e AL PR L e S AT St T R e NG R G SR AR, T e et
PAE A P o o ol PO I s ol P I W R R Nl i LIRS SO IEIE — IEEI B S RN A A it B *
ey (1 2 . o AT e DAL ,‘.A\.. - 3N sn...-a.-\-. 'y -a-.-Aq ",vh...«ﬁ...-«.ll\ -4»‘.-\. ﬁ-»n\
= * 2 £ T X - - Rl

e
7
‘e

8 3
PRPAFLPAPRVRIE

R AT
A

the appropriate subroutines,

(1v) release the working space (either at every stage of execution
or at the conclusion of the execution), and

(v) terminate execution and print user information messages.

Phase 1 : Initiation of Execution

Before execution begins, the SADDLE system performs some perliminary
tasks. First, it establishes 1/0 channels in order to transfer data
between the user and the physical database. It then queries the user
for a job identification (id). Having established the job id, it
checks for existence of such a job in the user disk space. It also
makes sure that the user is using the current version of the program
(that the databases are comptabile). The read/write counters are
initialized and the program counters are set. The working set size is
also established as a part of the primary storage directory. The file
characteristics are read from file FDES and are stored as a part of
the secondary storage direcrtory.

Phase 2 : Assignment of Working Space

The working space is divided into pages, usually of unequal sizes but
close to the value that allows optimum I/0 transfers. The allocation
of pages is left to the user, through the use of reset controls. The
user needs to reset the values only 1f the user feels that either the
problem size is larger than the current size of the working set, or
that SADDLE system does a better memory management job than the
operating system. For non-virtual machines or for virtual machines

with small virtual-to-real ratios, SADDLE's paging scheme will have to

DRI e e 50k Salii vt S S lia B S LS LA ML A i Aol . arN - p A’ AR el i e o

-
s 8 T 4k

P ek

o
"

be used to solve large problems. Normally, when reset controls are
not used, SADDLE assigns the maximum number of pages needed by a
partlicular quantity., The maximum number of pages 1s automatically
calculated by the program (subroutine INITAL in the SADDLE library)
during Phase ! of execution. The user should reset values only 1if the
user 1s conversant with the quantities involved in the computations.

Phase 3 : Execution Phase

Step 1! of Algorithm:

The driver main program now transfers control to the appropriate
subroutine. It passes the entire working set and the values of the
offsets of the quantities from the beginning of the working set as the
arguments. The computations involved in this phase are carried out
and the values from the database are fetched from the database are
fetched by appropriate calls to the SADDLE library routines. When
computations are complete, control is returned to the driver main
program, which then initiates execution of the next phase of the
algorithm,

Step 2 of Algorithm:

StEE [X XXK]
Ste [

Phase 4: Deassignment of Working Space

When all of the computations are complete, the SADDLE system performs
some more computations - the deassignment phase is exactly the
opposite of the assignment phase. Each quantity previously assigned

to the subsets of the working space must now be released, but before

Sl S S e ™ SiCi e e B A EE B S A i S e - ma- Al B Ae on B

the space is made available, the SADDLE system checks whether the
quantity was either created or modified during execution of the
module. If a page was created or modified, then the new value is
dumped on the files.

Phase 5: Termination of Execution

To provide the user with meaningful information (viz. CPU time,
paging time, I/O operations), the SADDLE system makes available to the
user these important values. On subsequent executions, the user is

e most likely to use the interpr:tations of the previous run so as to

make the execution more efficient.

.'.."q‘.." IS LR
PO AT S YA Y ey

.
N
o

“r 7y
A
aala

:

e r Ty

™
'

r

T

s
g

T
.

a

‘;4: L.;;

=

cTate
. '
or

l’t’; P

18]
L

LR

AD-A162 212 DATABASE MANAGEMENT IN DESIGN OPTIMIZATIONC(U) IOHA UNIV 2/3
I0MA CITY APPLIED-OPTIMAL DESIGN LAB
T SREEKANTAMURTHY ET AL 38 OCT 83 CAD-55-83-17
UNCLRSSIFIED AFOSR-TR-85-1883 AFOSR-82-8322 F/G 5/1 NL

NN
NN
HEEENNN
NN
NN
A
LT
|
N
---=-
B
g
HENEE -
—

10 %K 2
= :t:-?lf MZ
"" T 2
= [RE2
li2s s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A
k)

. ‘.,- ,- Vv .. \'

.
VAR

YN

LRI M N

-
\

T

A

AN

Y L2 it - R LA L W LT e e TR e e

tu®
ot
&)

80

2

§ CHAPTER 4
f' EVALUATION OF SADDLE DBMS

\i 4,1 Introductory Remarks

iﬁ This chapter summarizes the experience with the use of SADDLE

’* system for design optimization. The system has been used for optimal

%(design of various structures using the techniques connected with finite

element analysis, non-—-linear programming, computer graphics and
database management systems. The system has access to powerful pre-

;; and post-processors, GIFTS and MOVIE.BYU. The chapter concludes with

;ﬂ an evaluation of the SADDLE DBMS and areas of future research work that

? will enhance the capabilities of the system are outlined.

8

4.2 Experience with SADDLE DBMS

<,

i The design system has been used to solve two different types of

i optimal design problems - minimum weight design problems and min-max

;§ problems. For these design problems, the design variables have been of

N three types - member properties, nodal coordinates and non-structural

jﬁ (dummy) design variable. Different constraints have been imposed -

;ﬁ, direct stress and buckling constraint (for truss elements), von Mises

i stress criterion (for constant stress triangular elements) and

E; displacement constraints at specified locations. Before proceeding any

ﬁ; further, the requirements of a typical design problem will be

i] examined. The design problem is usually of the form -

e

g: minimize objective function (a function of design variables)

s:z

1.

3 S
:: T3
Q) e

R Rl VT ".q‘-.': :'J-
o ’~.\ **“ _\i. 1

- .‘. - :: 4 , " N ’.‘-
S - :ht '\,‘. <

uu
‘h“-\'n -. *n

=3
- e
’ 81
‘$: "w
‘; subject to constraint functions£ O (functions of design 3:::"
;.. variables). Gt
ﬁ:g The tacit assumption is that both the objective function and the
?;E constraints can be reduced to the above form. Quite often 1in
. structural applications, the objective and constraint functions are
{%i dependent on other variables, e.g. state variables. One of several
:23 techniques (direct differentiation, adjoint variable technique) must
. then be used by the user to achieve the task of reducing the design iﬁﬁ
'*g problem to the above form. 1In order to find the next design point, a €¥§
4%5 typical NLP technique will require these four quantities - ﬁﬁé
;-_ (1) value of objective function, iff;
gkg (2) value(s) of constraint(s), %;EE
;Eé (3) gradient of objective function with respect to the design S;E’
Y h
) variables, and ff_
- U
fﬁi (4) gradient(s) of the constraint(s) with respect to the design
L%; variables, for the curr-.at design point,
“;L The implication so far has been that the designer(user) must be f;?
E:% allowed access to not only data already computed by the rest of the Eég‘
?g design system, but must be allowed to (1) modify them if necessary, to :%%
;lf reflect the design problem based on the user's requirements, and (1i) :}i.
g3 o
j; store/retrieve user-defined data in a similar manner. L%ii
b,
;%? ' The SADDLE design system has provided most of these capabhilities giét
A% :

ot for both the Cl and the C2 users. The utility libraries (AOL and =

i v,
2 e
Y 7 -~)
S OPTQTY) provide access to the datahase to retrieve, manipulate and yLEg
A\ o '
- ,&.: g
":}: update system~computed data. Most of the design information is #} '
!.l ‘.—'!'“
i3 = ." o
- J ‘..) :
. o]
o AN
o A
o P
A N
LWt :‘- Y
o X

RSN
.

TR

LUe W ol CTRTRAF T LA TCAIRNTE LY Coty N T gV g g vy rgr wryere

automatically generated by module DATUM, where the user can
interactively input and edit design-related information. The system
also provides space to store user-defined variables. Such a capability
is necessary since the user-supplied DESIGN module controls the flow
between the analyzer and the synthesizer and in order to be able to
achieve this result, the user must be allowed means to manipulate some
(flow) control variables,

The following are some other charactersitics (with particular
reference to the DBMS) of the SADDLE system -

(1) Supports both the hierarchical and relational data models. The
data manager treats both these data models in a similar fashion
so that the data transfer between the routines that implement the
conceptual database and the routines that implement the physical
database 1s not bound by the data model.

(2) Implements the virtual memory management philosophy. The
application program is not bound by the amount of core memory
available. The size of the problem that can be handled is
dependent only on the size of the page table and the amount of
secondary table available.

(3) Caters to the need of different types of users. The user
involvement with the details of the data manipulation language is
left to the user.

(4) Tuning parameters are provided to enhance the computational
efficiency on different machines. Locality of reference is built

into the database structure so that minimum page faults are

PRl B i M it Shadl Sad YR M AL 4 s ANk B N3 g R AR -aa -l o aan auma o oy —‘-x

82

-
LN ;’-
, \ "
[e
'? 83 3
%‘qﬁ: "
%
» ‘-}: generated when data are manipulated. R
- ((5) Provides easy means to enhance the capabilities of the system.]
:: l“ o
kl
i"ﬁ: The data independence that is also alluded to here is not total -
oy -,"-: XY
Q‘z" but changing the database structure of any entity set will o
o involve minimal changes to the application program.
RO
o RG\
-'.j-‘: 4.3 Improvements of SADDLE DBMS "
A
. If there is one major problem with the curent developments in the .
: ok
.\\\ .'1. (R
,'x, area of engineering databsse management systems, it is with the basic ;"
WAl
1, or
',.*_‘-" concepts and notions connected with the definition of what constitutes a 7
VN 4
DBMS. Unlike business computing, where the user development of so- .
‘3, called business application software, is rather limited, engineering :\“_'.:'
R o
t computing thrives on software development. This trend is based on the ol
e premise that individual requirements are peculiar and deserves special p
o jt
O . [
an > attention. The development of engineering DBMS usually proceeds hand- 5‘:
'-f.‘: .
b t in-hand with the development of application software. The development Y
= of the SADDLE system is a typical example. GIFTS, SPAR and SADDLE, in
e 2
‘1‘ 4.| &
-
,.3_--'5 that order, represent an attempt to separate the application software
-:*:-1:" r':k
'-:,.:-}‘ from the components of a DBMS - the data definition language and the Rl
.‘ data manipulation language. The question i{s not whether the components -
can be separated (they have traditionally been distinct from applicatfon ::j:_\
software) but whether such a separation will aid engineering :::::
(' 3 computations. Specifically, can such a philosophy - oy
O N
2 '4-,‘\ f
,',"'-_'r\. (1) standardize software development, make it easier to control :‘\‘(
'CR '
i:i current development, enhance the capabilities of and achieve a)
A A
v‘.'hr: '\'.
i ;
e o
bl .

‘_.
2 _
reasonable reliability in usage,

» (2) increase computational efficlency and leave the problem of
[/

\.
;}: resource allocation to be sorted by the DBMS rather than the
s
" system programmer, and
2
] (3) make it easy for both the system programmer and the end-user to
ﬂ% form the conceptual scheme of the application software and
o
1 manipulate the data using the conceptual definitions.

The answer to each of the question is 'yes'. In order to implement

f%j such a philosophy into the SADDLE DBMS and enhance the capabilities of
ffﬁ the system, the following are some of the areas of future research
’. 1
o work-
ii (1) Build a query language into the system that can be used both
‘E; interactively and through an application program. This language

) should make it possible for the user to specify to the system
sﬁ the (conceptual) schema. The system then should be able to
s
ﬁﬁ decide :
1ﬁ (a) The data model that is best suited for the (conceptual)
e

N schema.

2]
R
z (b) Form the physical format for the entity sets minimizing
K)

redundancy and building integrity into the system.
(c) Identify the file implementation scheme best suited to
the entity set 1in question.
(2) The query language should be easy to use and some form of query
optimization must take place to minimize execution time for

certain queries.

. - ey ey e = el eyt e L R T
S N T T Tt P TR B R e N T T T

. . - . . - .
ST - BRSO CAR AR e e
A \}'n 13 - CEATEANERIR R LR e A PSRN ROR ;'\:' e

A RCIEV DOE AL PR PE APEE ST TR PR SR o :r;'_',:d.-l.f;'_»'_h .

84

85 o
?s_
~, -
)
(3) The data manager should be able to handle multiple-user e
requests, implement read/write locks and have a procedure to R
5
protect the security of the system. %{
(4) The system should be able to recover from a system crash., If a :Lk
total recovery is not possible, then checks and bounds must be T;;
¥, !]
built into the system to warn the user of any 'bad' data. ;:j
« 't
+33
The suggestions outlined above may be a tall order to fill in a s

short period of time. However, they are very useful additions that can

be made to the DBMS over a period of time. The next chapter looks at

the application aspects of such a database management system.

\."'- .'u'-\

o\
‘.”\‘e.‘:‘ b \k ‘l'.-»\ NS ¢ >

2
-
1
AL
)
‘~,(. APPENDIX A
'2; A brief definition of some important terms are given below. It
‘;ﬁ should be noted that these definitions are not universal, but
clarify the usage in the context of this dissertation.
R -
e
L attributes
‘..h
N the properties of an entity
bW
f ‘z command file
0
%ﬁ a file that contains commands (and/or data) in the same form
AR
\ as the input the user types at the terminal
-
i
o data manager
-
“:4 the part of the DBMS that processes requests from the
' l
. application program and operates on the physical database
"f—%
A% data model
[y
. -', \
tj? a description of the type of structure used in database
L2 relationships
HSe
%
ey database
JE collection of data (in an organized form) needed for the
K.+
;‘i execution of a module
fﬁj entity set
P
T

collection of entities. Items about which information {is

3
‘.. ’.
&

stored is an entity.
¥ file

an organized collection of related data records

. o
'H.-‘.-_. X

A
to Ve

N e el N S e e T T e
WA e AR ._3;_’.(\.1-..,%.’- o AN

] I ‘.‘i
5 87
¥
.
EN
)
A
& garbage collection
¥
. the process of locating all pages that are no longer in use -
% and adding them to the list of available space. NS
- SRS
N RS
3 interactive mode RO,
W 1{'&"{".
- a conversation mode between SADDLE and the user where the et
z* user responses are typed at the terminal
N
5 library
. a collection of subroutines that perform primitive functions d
X like file operations, input/output functions, graphics etc.
N
ﬂ memory management system
- a system that oversees the memory allocation to the
s
:3 different entity sets in the program and makes it appear as
!
‘ -
- if more memory is availahle than what the computer actually
i
has S
r module
52 a program that performs an identifiable task ;;_Jw
. %Y
page | =="
3 SNG
) a basic unit of primary storage; also basic transaction uiiji
> T
- unit between primary and secondary storage e
b yINNY:
P post—processing M
p Tn ‘. h.. ‘
N program(s) engaged in the task of helping the user visually QQ}}:
3 R
< interpret output from the analysis and optimization phases el
1 el
> oY
3 A
o, PN
! '\ R\;--. >
K %])
¥ ey,
L R
-,
1: :‘."::‘.
: 2o
j :'\::‘v‘n Y
/. AR)
» 'J.‘-’

L) PN .'w".\.f‘.-‘ -"_.(e T
ey A I RHCKANEE R TR
On N4 Lo T 0 0 LTS,

i) w

! P
N s
:};} e
il p e
3.
@'{0 | 88 ey
§ “o
] g
,.z X g
3 pre—processing RS
) o
; program(s) engaged in the task of preparing input data for '
: the (finite-element) analysis and optimization phases e
- 3 "\\‘::.
et primary storage S
~ .<.A‘~;~\
) the main storage (core) in the computer =22
W)
MR processor
by .
o same as a module Rt
pseudo—-batch mode
{f- a conversation mode between SADDLE and the user where the
Y
o user responses are being read from the command file as
a opposed to the terminal
~
:ﬁ record
AL
_};: smallest data field that holds a quantum of information (an
; integral fraction of the page size)
3
oo, runstream mode
[D
;f{ an automated mode of execution where modules are executed in fi(;
% the proper sequence without interactive user intervention; =03
» DaEn
' " [q“
- the user communicates with the system through a runstream kai
(- ‘,"\"‘:‘
P R
: "'jj file \‘_:\:’
e secondary storage -

-
.
v
-

storage on a secondary medium like disk drive or magnetic Rkl

TR AN Y |
v LT,

v

e
td

tape ECAT

storage directories

B T
\?f a collection of information on the physical descriptions of }}}j
N the files existing as a part of the database R
.:,{_ :~ \.ﬁ~
o Vg
.o, el
X2 -~
. ~o. \
-:ﬂ)‘. --“- ~
b AR
ala
%:\ﬁ-\- ')- ” w.'.-_ ENP N o i : ~r T
"J'"J-?'.f“f"f"ﬁkf':'"? DDA N SN M DO RATI IR YR N "“ RPN
RoRgated e AR ey m i ai e . 3 w. NN
Ml ML a { W) ¢ X 5 g .] X FASNG’ , : b \ ‘h\}h)L\l\{\

[P
a R
Y 89 N
3 .y
R
llv virtual machines
¥
: a machine using an operating system that allows more storige

o
ﬁﬁ space than the physical size of the memory

Y

“li
R working set

- H

superset formed by the collection of all the entity sets used

3
i, by the module
‘N

X

N

~

P

o

(N
S]
s .

“_a.m N

A
2

il
Ll g

LR A R R A~ N A S Dl k Rtk ek St~ Sad hedt And Suib fins g
~ .

90

APPENDIX B

The following is a description of the SADDLE database. It contains
a description of the contents of a typical record in every file used by
the SADDLE system,

kkkkkhhhhhhkkhhhkhkhhkhkhhkkhhhhkhkhkhkkkhkkhhkhkhkkhhhhkhrhrhhkhhkhkhkhkhkhkhhkhhhhhk
FILE NAME : job . SIZE

RECORD LENGTH : 25 INTEGERS

RECORD : 1
VARIABLE FUNCTION
NAME

1 Unused

2 Unused

3 Unused

4 NRUXM Number of raster units in x-direction on main viewing
area

5 NRUYM Number of raster units in y-direction on main viewing
area

6 NRUXM Number of raster units in x-direction on offset viewing
area

7 NRUYM Number of raster units in y-direction on offset viewing
area

8-25 Unused

RECORD : 2

VARIABLE FUNCTION
NAME

1 NCPPEM Max. number of corner points per element

2 NFGM Max. number of freedoms per group (block size)

3 NSRM Max. number of submatrix strings in a superrow

4 NLCSM Max. number of loading cases / Max. number of fictitious
load vectors that can be solved simultaneously

5 NSTRM Max. number of stresses per stress point

6 NACLIM Max. number of active constraints

7 NDVPEM Max. number of design variables per element

8-25 Unused

. vt
Ll ~ -
RS
e

ot " i e it B it g~ 4 :'.m!’!'!‘-u-ﬂ.’.'!'_'.'1'2 7 TR

91

RECORD : 3

VARTABLE FUNCTION

NAME

1 NGPT Total number of points (active+deleted)
2 NGPA Total number of active points
3 NELTS Total number of elements (active+deleted)
4 NKPT Total number of key points (not active)
5 NL Total number of lines (not active)
6 NG Total number of surface grids (not active)
7 NS Total number of solid grids (not active)
8 NMATR Total number of material properties
9 NPROP Total number of element properties
10 NDFPM Max. number of degrees of freedom per node
11 Unused
12 NUGRP Total number of unknown groups in solution
13 NLCT Total number of loading cases
14 NLCA Total number of active loading cases
15 Unused
16 Unused
17 Unused
18 NSTRR Total number of records in stress file
19 Unused
20 Unused
21 Unused
22 NFIB Block number of first freedom to be condensed
23 NUNKT Total number of degrees of freedom in structure
24 Unused
25 Unused
RECORD : 4

VARIABLE FUNCTION

NAME

1 ISTPRE Finite element model generation switch
2 ISTPM Point mass generation switch
3 ISTBWO Bandwidth optimization switch
4 1ISTST Stiffness formation switch
5 Unused
6 ISTLD Load generation switch
7 1ISTBC Boundary condition switch
8 1ISTDEC Stiffness decomposition switch
9 TISTDN Deflection generation switch
10 Unused
11 Unused
12 Unused

LI - . S e T R I RO I - _,-- A
- s - - B . - L} - - e Y.y - . - LA - . A .
. P, PSR I - - - A § - P Y (PPN
5 S LA S A K T T ST K LI WIGNE I LR T

Coa it Wa i Sl I AR e WL AT W L N ST W TR Pt L. ey -

\ 13 1ISTES Element stress switch
Rl 14-17 Unused
" 18 ISDES Design information switch
, 1.{'\»4 19-25 Unused
P RECORD : 5 UNUSED
1N
! \..
RECORD : 6
O VARIABLE FUNCTION
1;3, NAME
S 1 XMINBX
b 2 XMAXBX
‘ 3 YMINBX Virtual coordinate
X 4 YMAXBX limits for plot
a 5 ZMINBX
6 ZMAXBX
o 7 XMINSC
. 8 XMAXSC Screen coordinates
. 9 YMINSC limits for plot
F 10 YMAXSC
505 11-25 Unused
.}" RECORD : 7
I VARTABLE FUNCTION
L NAME
.
LA
_ég I SCLM Model scale
KRG 2 VDIST Viewing distance
et 3 TRAN(3,3) Global-screen coordinate transformation matrix
2 12~25 Unused
dF
R RECORD : 8
i
T VARIABLE FUNCTION
e NAME
5o I XMIN
Ry 2 XMAX
o 3 YMIN Coordinate limits
i 4 YMAX of model
o 5 ZMIN
-‘;,7. 6 ZMAX
h?b 7-25 Unused
!'.4.‘
0 RECORD : 9 UNUSED
Y v
[Y
iy s
-.\:f it
i =
a9 ol
K, .5:‘{\.
"“1'5'1--"'..,---—,- Tt R Sy, B, e »‘, .- ‘. ~ - - .\‘ T T T 'L .:'. '.
e e S R I I e ‘* R S etond

-v-\."n*'\',frr. D
-r" "-‘} o NN

W “"-\
,,\.-‘1‘-\."5;* YR \.\--.*'-,.

B . -:&
) i
* .
v r»:—.
4 2
B R
N AN,
iy RECORD : 10 UNUSED ANy
L e e e e e e pYNRYS,
. RECORD : 11 .
N
VARIABLE FUNCTION Y
- NAME -';'_-..::
.-: ————— ‘I‘\:-:_.
1 NDV Total number of design variables PAMAY
. 2 NINEQC Total number of inequality constraints
,ﬁ 3 NEQC Total number of equality constraints
Q' 4 MAXCYC Maximum number of design cycles for the problem
E 5 NCDCYC Current design cycle number
0 6 NEVAL 1 .. if function values have to be evaluated
A 2 .. if gradients have to be evaluated
. 7 NSTAT 0 .. if in the midst of a design cycle
e 1 .. 1f a design cycle has been completed
o 2 .. if an error has been encountered
N 8 NACMAX Maximum number of anticipated constraint violations
‘ﬁ 9 NAC Number of violations in current design cycle
e 10 NACWOB Number of violations excluding those on bounds of
- design variables in current design cycle
;; 11 NDVB Number of blocks of design variables
3> 12 NACB Number of blocks of active constraints
1} 13 NACWOB Number of blocks of active constraints excluding those R
S3 on bounds of design variables -
v 14 NFUNC Number of function evaluations between restarts ‘
A I5 NGRAD Number of gradient evaluations between restarts
A~ 16 IBRK Current breakpoint value
!:- 17 NBA Number of blocks of anticipated constraint violations
> 18 NFB Number of blocks of constraint function values
o 19 NTECH Optimization solution technique code
o .« 1 for linearization technique (LINRM)
M «s 2 for feasible directions technique (CONMIN) ‘fﬁ"
:E «« 3 for gradient projections technique (GRP) tﬁy}
o 20 DESVAR Design variable type code B
. +o 1 for member cross section properties as design ;;ﬁy
X variables P
o ee« 2 for nodal coordinates as design variables muiedd
A 21 Unused
" 22 IPRINT Print code
.:ﬁ 23-25 Unused
~ Fe e Fedo e e e ok e e e e e e ek ko ok e ok o e ok e e ok e ok ke ke ke gk ke ok ke ok ok ok e e e ok ke ek ke ok ke ek ok k
= FILE : job . ELEM
}F RECORD : TYPICAL “oyt
'6 RECORD LENGTH : 25 INTEGERS + 10 SINGLFE PRECISION -3:,:",'
> T Y
* 4
(\Q '-. .
: IS
NS
AR
o
N)
]

LIPS
.

)
TR)
N

-
LY

|
)

W e L LN e T ey
R P, R A AN |
24 ~n"' Y "-\‘(4 "t 1"“«."4 -
LI oy '_-"‘L ", P
Sy RO Al ey

3
h
VARTABLE FUNCTION
v NAME
A
& 1 NEU Element number (user)
'ﬁ 2 NES Element number (system)
~ 3 LTYP Type of design variable
t 4 NDV Number of design variables in element
5 IT Element type :
IT =1 — ROD
. IT = 2 — BEAM
- IT =3 — ™
& IT =10 — SPRING BOUNDARY ELEMENT
L TORD = 1 -—- SPRING
- I0RD = 2 ~— TSPRING
. 6 TORD Element deflection interpolation order
s IORD = 1 —— LINEAR
a IORD = 2 — PARABOLIC
3 IORD = 3 — CUBIC
[7 IST Element sub-type
s IST = 0 — PLANE STRESS
IST = 1 — PLANE STRAIN
. IST = 2 — AXISYMMETRIC
- 8 Unused
< 9 NLDREC Pointer to load record in job.LOAD
X 10 NCP Number of corner (attachment) points
11 NGP Total number of points
12 NSTPT Number of stress points per layer
13 NLAYR Number of layers for which stresses exist
14 ISTPTR Pointer to first record in stress file
15 NMAT Material type number
16 NTHS Element property group number
17-22 Unused
23 IREC Design group number of the first design variable in
element
24 IFP (Forward) pointer to the next element belonging to the
same design group
25 ALPHID Alphanumeric identifier
26 LCP(8) list of corner points (by system number)

o e Ao K do T e e de ke ok K ke ok Fo ke e o de K K Jo ke de Fo K K & & ok de K ok K % sk e sk ok ok ok 3 e ok ok bt g o b I v e ok de e ok o e e ok o ok ke e ke
FILE : job . MATR

" RECORD : TYPICAL
:x RECORD LENGTH : S INTEGERS + 11 DOUBLE PRECISION

= VARTABLE FUNCTION

e NAME

:% 1 MATPTR First record number of material number 'I'
:’ (zero 1f material 'I' nonexistent)

\
.
-
.

\‘-*

.. - -\ " - ‘.- -
,m.n.» o w;L ww.u- _._\, PRI

{3 s s.‘..m.

Fs
Al

i 95 SN
) IR
X Y
"‘ 2 IMT Material type : :‘-1
b 1 - Isotropic material ALLE
X <0 - Continuation record (neg. of material type O o
oy being represented) o d
" N 3 LRED)
P 4 LGREEN Color Levels R
K 5 LBLUE

i Remainder of record is dependent on the material type :

For an isotropic material (IMT =1)

™ 6 E Young's modulus
A 7 VNU Poisson's ratio
‘; 8 G Shear modulus

b 9 SsY Yield stress (von-Mises criterion)

] 10 RHO Mass density

11 Unused

3N 12 ALPHA Thermal expansion coefficient

_: 13 0 Thermal conductivity
- 14 TEMP Temperature (for temp. dependent material)

-n 15 Unused s
- 16 Unused SN
. dkkhhdkidkhkhkhhhhhkhhhhkkhkhhihhkhhkhhhhkArkhhhkkihkhhhihhhkihkhhhkihkrkkkk T
- FILE : job . PROP

- RECORD : TYPICAL el
- RECORD LENGTH : 6 INTEGERS + 15 DOUBLE PRECISION o
A VARIABLE FUNCTION o
N NAME : e
', 1 ITHPTR First record number of element property group number I RN
Wt (zero if group 'I' non-existent) —
B 2 ITYPE Element property type : o
3 0 - Simple value list .:u£{
b‘ 1 - Interpolation value list f¢:;:
iy 2 - Geometric data is to be interpolated from the SR
S following two cross-section definitions stored R
N in this property group plinhe?

3 - Cross-section definition vy

¥ 3 IPTRCS Pointer to record in this file at which standard element e
55 cross—section definition is stored (O=none), or at which SO
f$ geometric data interpolation data is stored (ITYPE=2). e
- Remainder of record is dependent upon the value of 'ITYPE' - -
o ITYPE = 0 o
{ 4 LRED -
- 5 LGREEN Color levels ;f:*J
- 6 LBLUE Sk
. PN
-l SN
. o
20

s

‘a

4
v
. -’

.

Ly 'y‘j‘-;-"-'.:v ‘.:-_',.'-
ST

SSRhr

@ T W W N R A
<y

96

7 THS(15) List of element property values; usage depends upon the
Element type @
RODS : Cross—-sectional area
™3 + Thickness
Jedede o g de e de e g e e e e e g ok e e ke e gk ok o ek ek ok v e ek ok e e ke ko e e ok ke e ok ok e e e e e Aok ek ok

FILE : job . NODE

RECORD : TYPICAL
RECORD LENGTH : 10 INTEGERS + 14 SINGLE PRECISION + 3 DOUBLE PRECISION

VARIABLE FUNCTION
NAME

1 NU User number of system node 'I' (negative number
flags deleted/merged node)

2 NS System record number at which to find data for
user node '1’

3 Unused

4 Unused

5 X

6 Y Nodal point coordinates

7 2

8-13 Unused

14 NDVX Design variable group number of x-coordinate

15 NDVY Design variable group number of y—coordinate

16 NDVZ Design variable group number of z-coordinate

17 NDISC Displacement constraint code packed into lowest-—order
six bits.

18-24 Unused

25 NLDREC Pointer to point load in load file

26 NBL Number of corresponding unknown block

27 NFR Relative number of first unknown within block

28 MFP Map of freedom pattern, packed into the lowest-order
twelve bits. From the highest order bit, they are :
L(1) - L(6) — Freedom flags

0 = Suppressed
1 - allowed

L(7) - L(12) — Prescribed displacement flags
0 - Freedom not prescribed

1 - Freedom prescribeD
e e e e o e e e e e e de e ok e e 3 e 9k ok ok e o e s e e ek ok ek ok ok e ek ok e e de A A dededed ek ok ok ke e A e de e ok

FILE : job . STRS

RECORD : TYPICAL
RECORD LENGTH : 8 DOUBLE PRECISION

This file contains element stress values, one per stress point per layer
for each element, and stress resultant values, one per stress point for
each element in the model. It 1is divided into major groups. Each major

TN AL SRS . T X T e Lt S T P e e K T Tt Sl A s
W, . o - B L - R R A R A A AT A N

A o . AICARS Ry . RS RIASS R L R A SRR
J:.)',:.‘; T SN NP LA T B ‘}f’}"’! iy \i‘;, .‘:.- e

et

SR
SR
alaSanta

~

v \
und

group of the file (each loading case) contains one group of records for
every stress point in each element, The group contains all stress and
stress resultant for all layers of stress values at that stress point.
The mode and problem class switches for the model determine which of
these sets of data are actually stored in the file. The file contains a
total of input "NSTRP" stress records for each loading case.

Each stress point group in this file can contain the following records:

<STRESS RESULTANTS - 1 RECORD>
RST(6) Up to 6 stress resultant components
FREE(2) Unused

<STRESSES -~ 'NLAYR' RECORDS>
STR(6) Up to 6 stress components
FC(2) Two fallure criterions (in percent)

The layers will be ordered from the bottom to the top of the element.
KhAhhhhhhhhhrhkrhhhkkkkkkkhhhhhkAhkkkArrAARkkAkhkhrhhkkkkhkhkkkhhhkhrhrkhkkkk

FILE : job . LOAD

RECORD : TYPICAL

RECORD LENGTH : 8 DOUBLE PRECISION

Consists of 'NLCT+1' groups of records, each group containing 'NGPT'+]
(logical) records. The first group (Number 0) is reserved for composite
loading cases. The second group (numher 1) contains loading case 1!,
etc. The first record in each group is reserved for special purposes,
while the remaining records store the load values for each node.

VARIABLE FUNCTION
NAME

VX Load in X-direction
vy Load in Y-direction
\'¥4 Load in Z-direction
MX Moment about X-axis
MY Moment about Y-axis
MZ Moment about Z-axis
RES Load resultant

RESM Moment resultant

= === == EE T TR b b R

QO N N

The first record in each group con.ains:
LDTYPE Type of load group:
0 - Simple loading case
5 - Composite loading case
6 - Composite loading case (at angle 'VAL')
VAL Time or frequency value

MOD Modification flag
oo Ko de e de dode de e ok e ek ke ko e ok o ok o o e ok ke e e ke ke ok e ok o o o ok o o e e ek ok e ke e e e ke

=
e W W g T TN, T
D ".'r.‘.\vd"\) ‘.'-:\(:'\.S -:_",.‘\,\ A \,":'_’ S
'h"kh.¢'. SRS ."':.*-s ‘."-’} LSNP
_;w-'v AEAR RGN

-

hon

- . N e v A 4 2y bl A Sal Yok Sak Aokt sl Baf- Al b S8 A S A Bl 8o hak mefs ok il wvrvr‘

)

3 R
u

48 98
b

0

Tl

AN FILE : job . DEFL
- RECORD : TYPICAL

é.' RECORD LENGTH : 8 DOUBLE PRECISION

j;d Identical in structure to load file, but it contains nodal point

vﬁ. deflection components and resultants, rather than loads. It also

e contains a total of 'NLCA' groups of records, rather than 'NLCT' as the

1% LOAD file does. Each record (except the first in each group) contains:

VARTABLE FUNCTION
o5 NAME

:,:!
.. 1 U X~displacement

- 2 v Y-displacement

. 3w Z~-displacement
ooy 4 THX Rotation about X-axis
,gw 5 THY Rotation about Y-axis

R 6 THZ Rotation about Z-axis

AN 7 DIS Resultant displacement

0 8 ROT Resultant rotation

o ek e de de de sk dede sk s e e o e e e e e e e e Aok Aok ke ek ke ke khkkkk kA ARk hkh Ak kR kkkkkkkkkkkkk

A FILE : job . SDIR

O

D RECORD : TYPICAL
k- RECORD LENGTH : 42 INTEGERS

. Contains 'NUGRP' records, each describing the submatrix distribution in
: one row of the stiffness supermatrix.

e
NS VARIABLE FUNCTION

}k NAME

.4";»\:
w 1 NFR Number of rows in superrow

“) 2 NFP Number of first node with freedoms in this superrow

}E 3 NLP Number of last node with freedoms in this superrow

'~ 4 LPD(18) List showing rows with prescribed displacements:
o LPD(I) = 0 — Row's freedom not prescribed
f;’ LPD(I) = 1 — Row's freedom is prescribed

: 22 NS Number of submatrix strings in the row
wiad 23 IFSPTR Pointer to the stiffness file record number of first
T submatrix in row S
Y 24 1IBAK Pointer to the earliest preceding row which interacts :3§%;
-ﬁ: with the current row :}»H
Ng 25 LC(2,9) List of column strings where non-zero submatrices are ui}j
rf' present. For string 'I': .
- LC(1,I) = Number of first column in string

(:: LC(2,1) =-- Number of last column in string e
CHC Rkekddehhhd ki ddk ki kdehkxk ik dedd ik kkhk ki khkkkkkiikkkikk ReXy
+ il
. _“‘

V\f v <. .‘.‘."‘.r'..‘:“w‘ . u.\. - -:- -:--. . .‘_
3*.('.(~ _'.(S ,_.: \ ,_.(:;-.‘_ o .

<. R) .
. . . %7 ., PR
AR _né ‘K}S‘I N twt "‘u i‘?l J'}_ }‘J:.}.r\.r_" L3 ':r ':f" pR

oo L

'y’ e
Ve rg ¢ -
KL :)9 \:.
I R
N Dl
1LY - .
15 FILE : job . STIF a1
» . o
B) [t
\ RECORD : TYPICAL =
‘ RECORD LENGTH : 4 INTEGERS + 324 DOUBLE PRECISION “:
E h i
d - o
R VARIABLE FUNCTION e
N, NAME s
) o -
) 1 NR Row and column position of this submatrix in the powork
A 2 NC supermatrix :{:
i;; 3 NFR Number of rows in submatrix "L
S 4 NFC Number of columns in submatrix S
e 5 SM(18,18) Submatrix, stored column-wise g
(ot A dede e dedede R e A Ak Ak ek ek ek ek gk ek ek ek ok ek ko ko ko o

FILE : job . FUNC

RECORD LENGTH : 1 INTEGER + 18 DOUBLE PRECISION
RECORD : 1
N VARIABLE FUNCTION ‘""
ébg NAME s
53¢ 1 OBJF Objective function value Y
N 2 EP Constraint-band thickness s
;ufn 3 VMAX Maximum constraint violation ok
" 4 EPBD Constraint-band thickness for design bound constraints _
5 CONV Convergence parameter -
N RECORD : 2 UNUSED 3
e RECORD : 3 UNUSED ';$}
5 RECORD : 4 UNUSED s
D RECORD : 5 List of integer variable names supplied by the user. =
g’ Maximum of 36 names, each storing 4 characters, O
Hone _ .
& '« &
}r RECORD : 6 List of double precision variable names supplied by the :\“
Qﬂ user, Maximum of 18 names, each storing 4 characters.)
e - P
J3 RECORD : 7 Values of the 36 integer variables defined in record 5. "
e -m:v.-\.‘
f{:j RECORD : 8 Values of the 18 double precision variables defined in :j:i
Ty record 6. v
M e e e,
2 RECORD : 9 UNUSED .
L i RECORD : 10 UnUSED o
ﬁf;
>
.
e
Ty
i %
) ?
W

R R W W gy
-

100

RECORD : 11 onwards

. VARTABLE FUNCTION
' NAME ——

: 1 NSF Number of values in subvector. A
g 2 G(18) Constraint function values. ?}fﬁ
o Tk gk dek ek ded itk doddede g gk deok e ok ek do e dodode de e de e de de ek ek ke e e e dodede e de ok ok ok ok R

FILE : job . DESV

RECORD : TYPICAL
. RECORD LENGTH : 1 INTEGER + 108 DOUBLE PRECISION

LYy

. .l‘ r'; ++

’ VARIABLE FUNCTION
NAME

NV Number of values in the subvector

X(18) Design variable values

XL(18) Lower bounds of design variables

Xu(18) Upper bounds of design variables

DF(18) Gradient of objective function

DELTA(18) Direction vector

XS(18) Copy of design variable values during line-search BRUN

KARRARL ahhkhkhkhkhkkhrkkhkhkkhrkhkhkhhhkkhhkkhhkhhkkhrhikkihkhkhkhkkkkhhkhhhhhiikhhhkkk ;%"
)]

- FILE : job . GRAD

AN
Wl

ot J

- Ny)

VR 1
AEAh

NOWMSWN -

RECORD : TYPICAL P
RECORD LENGTH : 2 INTEGERS + 324 DOUBLE PRECISION oy

VARTABLE FUNCTION s
NAME :‘_{_’\' 4

/ 1 NSR Number of rows in submatrix
2 NSC Number of columns in submatrix NG
3 DG(18,18) Submatrix storing gradients of active constraints with Q}}?
T respect to design variables. ;E;)
de ke e e 3t e e e e e e ek ke e o s Ak e o ek sk e o ek ke e o o ok e ok o ok o e ok ok e o o e ek e ok e e e ok ok ek ke e e e ek e

w FILE : job . HIST N

- RECORD LENGTH : 1 INTEGER + 18 DOUBLE PRECISION o]
- The file is so arranged that the first MAXCYC (maximum number of design -
0 cycles) records contain the design history, one record per design -
- cycles, followed by NDVB records (number of design variable blocks) e
) per design cycle containing the values of the design variables at the oy
end of the design cycle.

§ VARIABLE FUNCTION L
v NAME R

D M e i i aaan e e e Lw e ale b ais S uoe min e aos aaaie 2

?_ PPTTe - o auean
A
F» 1ol
w
»
{f 1 OBJF Objective function value
2 CONvV Convergence parameter value
y 3 VMAX Maximum constraint violation
N 4 STEPSZ Step size at the end of line-search
5~18 Unused

19 NACTVE Number of active constralints

The rest of the file contains the design varfable values stored as
18 values per record preceded by a header containing the numher ot
values stored in the record.

x
i ¢

LI T %
[
e by
PR A
PR

T
-
«

3l P

L
'. I. l. l. .
« A a e .

(AN ROOK

¢

AR

':q-‘- R
RN AR P TRP AR PN o S el

LS8

"'\"“_(A & 8

I T S T P T P I Y Wi

102

REFERENCES

Baron, R.J. and Shapiro, L.G., 1980, Data Structures and Their
Implementation, Van Nostrand, New York.

Bhatti{, M.,A,, Ciampi, V., Pister, K.S. and Polak, E.,, 1981, "OPTNSR -
An Interactive Software System for Optimal Design of Statically
and Dynamically Loaded Structures with Non-linear Response”,
Report No., UCB/EERC-81/02, University of California, Berkeley.

Codd, E.F., 1970, "A Relational Model of Data for Large Data Banks”,
CACM, Vol.!3, No.6, pp.33~55.

Christiansen, H,, 1980, "MOVIE.BYU -~ A General Purpose Computer
Graphics System™, Brigham Young University, Provo, Utah.

bate, C.J., 1975, An Introduction to Database Systems, Addison-Wesley,
Reading, Mass.

Felippa, C.A., 1979, "Database Management in Scientific Computing - I.
General Description”, Computers and Structures, Vol. 10, No.l,
pp.53-61,

Giles, G.L. and Haftka, R.T., 1978, "SPAR Data Handling Utilities",
NASA Technical Memorandum 78701, NASA Scientific and Technical
Information Office.

Haug, F.J. and Arora, J.S., 1979, Applied Optimal Design, Wiley-
Interscience, New York,

Haug, E.J., Choi, K.K., Hou, J.W, and Yoo, Y.M., 1981, "A Variational
Methnd for the Shape Optimal Design of Elastic Structures”,
Proceedings of the International Symposium on Optimal Structural
Design, University of Arizona, Tucson, Arizona.

Kamel, H.A., McCabe, M.W. and Spector, W.W., 1979, “GIFTSS5 Systems
Manual”, Unfversity of Arizona, Tucson.

Kamel, H,A,, McCabe, M.W. and DeShazo, P.G., 1979, "Optimum Design of
Finite Element Software Subject to Core Restrictions”, Computers
and Structures, Vol.10, No.l, pp.63-80.

Martin, J., 1975, Computer Data-Base Organization, Prentice-Hall, Inc.,
New Jersey.

- In {:
L
'

g
L

-

103

N

i

L

X Rozvany, G.I.N., 1980, "Optimality Criteria for Grids, Shells and
A Arches”, Proceedings of the NATO-NSF Advanced Study Institute on
v Optimization of Distributed Parameter Structures, University of
2? Iowa, Iowa City, Iowa.

:q“‘d

y:ﬁ Rajan, S.D. and Bhatti, M.A., 1982, "Data Management in FEM-based

NG Optimization Software”, Computers and Structures, Vol.l16, No.Il-4,
A pp.317-325.

o Ross, Daniel, 1966, ICES System Design, The M.I.T. Press, Cambridge,
g Mass.

,'._‘. "
;{- Sobieszczanski-Sobieski, Jaroslaw, 1980, "From a Black-Box to a
1 Programming System: Remarks on Implementation and Application of
‘ Optimization Methods", Proceedings of a NATO Advanced Study
o Institute Session on Structural Optimization, Sart-Tilman,
0y Belgium.
TXﬁ_ Schrem, E., 1974, "Development and Maintenance of Large Finite Element
bl Systems", Structural Mechanics Computer Programs, Eds. W.Pilkey,
F K.Saczalski and H.Schaeffer, University Press of Virginia,
- Charlottesville,
oo Shaw, A.C., 1974, The Logical Design of Operating Systems,Prentice-
- Hall,Inc., New Jersey.
N Tausworthe, R.C., 1977, Standardized Development of Computer Software,
I Part 1 Methods, Prentics-Hall,Inc., New Jersey.
AN
;{4 Ullman, J.D., 1980, Principles of Database Systems, Computer Science
3%3 Press, Maryland.
3_ Whetstone, W.D., 1977, "SPAR Structural Analysis System Reference
ol Manual”, System Level II, Volume I, NASA-CR-145098-1.
o
Y
b
LS
SO
Al -"Q-‘
-
1

§ “

3
» s
P
ate T
o "8 e e
ST
alca’

-

R I I

» » N P
4 R R O A R G A SR

'n
—a s

R e R R T A R e T A R L LU T RN W L ST TS EY VR WY OV VRN

f§?

LFRRER !

!

This report presents general concepts for database management in
design optimization. The need for data management is emphasized.
Design optimization procedures use a large amount of data and are
iterative in nature. Data used in optimization procedure is described.
Logical organization of data using hierarchical, network and relational
data models 1is described with reference to design optimization. Various
techniques of physical storage of data are described. A suitable file
structure and file operations required for design optimization are
given. A comprehensive review of literature for database management {n

scientific computing is conducted. It 1is noted that database management

ideas are falrly new to engineering community and terminology used in
literature varies widely. Well-accepted terminologles are listed.

Favorable features and drawbacks of some available database management
systems are noted. Based on this study a suitable database management

system and a database for design optimization can be developed.

T
-_n‘q.'r ,,--"'1‘.{ . ‘e .'""._‘.
AT RN ~5'.p'}'_1 DY PO ISP

1)
TN o
N .\
o 3

o
A ——
;E;f TABLE OF CONTENTS =

Page
i"{:’:’. Io INTRODUCTION.-.ooooocnotoc-..ooo-p.ooo-oooo-oo-.-oooo-ooo-oo 1 :::'
o :

(

{‘.\—?i ITI. NEED FOR DATABASE MANAGEMENT IN DESIGN OPTIMIZATION......... 4 Ny <
III. DATA USED IN DESIGN OPTIMIZATION....cccoveeovccsesscccsnccce 6

4 "~';:'; IV. DATABASE ORGANIZATION FOR DESIGN OPTIMIZATION:.:.:eoceesrosass 10

Data MOdels..ocoolooooooo..ooo...otvoo.ooo'-ooloo.o.oao 10

N 4.1
4.2 Data Model for Design Optimization.seesceccecscseseeses 17

é_; V. FILE STRUCTUREOQQQGOoo.ooloo.o.oo...na.t.ooQalotoct.o..o-ool 23 “_r.“

L ok
(L . Y
‘\{f\ 5.1 Sequential Fileeessoeececocovesoesosoensscssosssssssssss 27 ':;I_
"g 5.2 Direct Access Flleceeeerssenssesancacssocsosscascoscocces 2
1509 5.3 BLOCKINEaesoaoessosececessscsasscssasarsesssassoccsences 2 ror)

- 5.4 Record Lengtheseeeessoccesssosssossssssssosssassssssscse 20
- 5¢5 PagiNgececescscsecoscssescssscscsssscsssssassnsscsnsoscnsss 29
) 506 POLNLErSceescessssssssescsssesssssscesssonssossssnssses 29
-»_'.:,‘ 5.7 Addressing Techniquee.sseecescosassossccccssccscscosssne 27

5.8

D
2
a
Foru

4z

File Structure for Design Optimization.scecescccescesses 28

-
Py

g

VI. REVIEW OF LITERATURE ON DATABASE MANAGEMENT ;
;‘.‘ IN ENGINEERING.............'.............‘...'.l....‘.l..l.' i)z k‘"‘

)"‘4’3. 6.1 Database Management ConceptS.ssseececsssscssccceocnsssss 32 ::I‘;Q
ll:“‘_- 6.2 Database Management SyStemSoaooo-oaotoooo-oooon-cooo-oo 36 "s
vy y
A Nha¥
". VII. DISCUSSION. s ceceeososcscscssscscesscsscsosstsosssesssscsscsanscsse 46 ,_

- APPENDIX A: TERMINOLOGIES USED IN DATABASE MANAGEMENT '_tﬁ.‘\

S =
:1'::1 A.l Hardware Tet‘minology.......-.....--.................-.o /09 :‘_'-:',:
-;'."'-3 A.2 Logical Database Terminology.eeseoscessssscescasecesass 51 -:.‘..r
' , A.3 Physical Database TerminologyY.eessresssacssssessccssves 57)
& e
C:t."‘ REnRENCEs-lIl.n'l--cooocooalnllouono-o.-o--oo-.o-o-o.---ooo‘. r)() '.~.\:-‘
i N
;n:“) A."’.'
s ";ii
L
] —
"'{:‘ c\

? J

‘ %:ﬁ]

LR % - 1
' . Pl

I. INTRODUCTION

Recent advances in the computer technology have considerably
improved the capability of engineer involved in design optimization. low
cost computer systems are available having higher memory, large disk
space, interactive capability and graphic display. Such systems were
considerably expensive a few years back. Since these new computer
systems can be used to handle large quantities of data and perform
computation rapidly, it is important to look at the role of data
management in design. Many engineering design problems are quite
complex. It is impossible for the engineer to specify a suitable design
satisfying all the performance requirements and physical constraints
without substantial computer analysis. In addition, the amount of
information and data used in design optimization computation is so huge
that data management becomes extremely important. A database management
system can be viewed as both a repository of data used/generated by a
given design problem and as a design tool. It offers powerful ways of
manipulating data., It liberates the designer from the tedious task of
managing data. Thus, a good database system in computer—aided design
provides a tool for the designer in achieving results in an efficient
and systematic way.

Computerization in commercial field in the areas such as business
accounting, inventory control, and task scheduling has bheen quite
successful with application of powerful data management systems,
However, due to the complex nature of information in scientific.

applications, the growth of data management system has not taken place

.r"'."-"'.";"'-"'-'-' [M Bl Sl YNl Yl Yl B Y " 5.0 M g Al e A A AR A aa A S e)
-
o

PR S AN S S Sa JRua Ny jing g Ap. dau - Sn -4 u oy 20k aite -4 e A 0 0 5o~ [A

to the extent as in busfness applfcatfons. Tt appears that the analysis
capability in computer~aided design of structural and mechanfcal systems
is enhanced with the use of some deatabase management systems that are
now available (Ulfsby, et al., 1979; Fischer, 1979; Comfort, et al.,
1978). These database management systems are highly specialized in
nature, Extensive modification of these systems are required to use
them in design optimization.

Current trends in database management are toward arriving at a
database management system that meets certain standard requirements,
such as data independence, flexibility, mulitiple usage, and non-
redundancy. These requirements can only be met by proper design of a
database. Different methodologies having markedly different
characteristics and features are available for database design (Buchmann
and Dale, 1979). However, most of these methodologies have their origin
in business environment. A database that suits design environment can
be obtained using a suitable scheme. Based on a detailed study of the
requirements, and data used in design optimization, appropriate database
management concepts can be developed. This fo;ms the subject matter of
the present report.

In Chapter 1II the need for database management system in design is
given. Data used in design optimization is discussed in Chapter III.
Structural and mechanical system design is used as a model. Data
similar to these systems are needed in other applications. In Chapter
1V, different data models used in data representation are discussed.

Also, a data model suitable for design optimization is given there.

File structures that are commonly used in database management field and

' L

Chs

.

i s

Bliat it

‘-'4‘
[280 INN
]

B
. .
CAT T e

RSN RS .
Dbt o 8 e B e M 3 on B

addressing techniques are given in Chapter V. A comprehensive review of
literature on engineering database management is given in Chapter V1.
Finally, discussions on database management concepts are given in
Chapter VIII. References cited in the report are given at the end of
the report, There is one appendix to the report. Tt contains various
terminologies used in hardware, and logical and physical database

structures.

e

”-‘ .

L Al

-
)

II. NEED FOR DATABASE IN DESIGN OPTIMIZATION

Computer programs for optimal design of large structural and
mechanical systems can be developed for automatic computation based on
well known design optimization methods (Haug and Arora, 1979). Finite
element techniques are usually adopted to analyze the system within a
design iteration. As such the finite element technique require huge
amount of computation and data storage depending on the size of problem
at hand. Further, the amount of data handled depends directly on the
number of iterations performed in iterative design optimization
algorithms., Therefore, a careful consideration of data handling aspect
i{s necessary in design optimization.

It is important to reaiize that engineering design optimization and
engineering analysis are fundamentally different in nature, In
analysis, {t is generally assumed that a solution exists and numerical
methods used are stable. Also, many engineering problems require the
use of data only a few times during the solution procedure. 1In optimal
design on the otherhand we find solutions in an iterative manner.
Existence of even a nominal design satisfying constraints is not
assured, much less existence of an optimal design. Therefore, it
becomes essential for the designer to exercise control over the suitable
design optimization method that has to be used. In such a case, the
data used by one method should be made available for use in another
method. The concept of centralized database becomes important. A
centralized database which allows interaction between a finite element

program and an optimization program can be used to improve design

. .

a AT T AT . S
Vo at e et e S

el dbadetdodbntd madh sl it A

. e Y
P

’

-
-4_“
o

L
3
2
14
. ¢
2 a

.
<,
TR

Vo

"
“

by e Y Yy
LN

y

“"- ‘;‘...6..9'
L A

ok

A s slsa

.
Ill
e b

.l‘l «

-.,‘.&%.

e
‘-"

MO N

8507
L
-

Al

iteratively. Such a database provides an option for the designer to
interrupt the program execution and provides flexibility for the
designer to change his design parameters. A properly designed datahase
when used with interactive computer graphics, offers considerahle aid to
the engineer involved in design optimization (Galletti and Giannotti,

1979; Somekh and Kirsch, 1979).

oy

2

=
-
-

it

e -

-

Pl Wi

v 8

iy

o at e

-
e

Ay

il s et padie 4 L TORNOWC, d - . L e e s wlwlNowon (ML pie o g e phen et ol i i

III. DATA USED IN DESIGN OPTIMIZATION

In optimal design of structural and mechanical! systems, we
generally use nonlinear programming techniques (Haug and Arora, 1979).
The design objectives and constraints for these systems are specified
quantitatively and expressed in terms of a mathematical model. Design
of a system is specified using a set of parameters called design
variables. The design variables depend on the type of optimization
problem. In design of aircraft components such as stiffened panels and
cylinders, the design variables are spacing of the stiffeners, size and
shape of stiffeners, and thickness of skin., In optimization of
structural systems such as frames and trusses of fixed configuration the
sizes of the elements are design variables. Thickness of plates, cross-
sectional areas of bars, moment of inertia represent sizes of the
elements. If shape optimization is the objective, the design variables

may include parameters related to geometry of the system.

The optimization problem deals with minimization or maximization of
objective functions subjected to certain constraint conditions. The
constraints may be classified into performance constraints and size
constraints. The performance constraints are stresses, displacements,
local and overall stability requirements in static case and frequencies
and displacements in dynamic case, flutter velocity and divergence in
aeroelastic case or combination of these. The size constraints are
minimum and maximum limits on design variables., 1In nonlinear
programming, the search for the optimum design variabhle vector involves

iterative scheme. The design variables data at n and n+l iterates are

o P
o %
k- Se
Ra 3
;\»’ computed. The direction of travel vector and step size are computed. o
o
::? The direction of travel involves computation of gradients of objective EE
}E? and constraint functions with respect to the design variables. Data E;fd
" belonging to equivalent design variables are grouped there by reducing ;;
*63‘ the size of design variable vector. SE;
i?é, In most problems of structural and mechanical system design, EE%
iﬂ‘ behavior of the system can be defined using state variables, e.g.,
?:§€ stress and deflection. In such a case, state space formulation is éi?
. "o
{;fj frequently employed (Haug and Arora, 1979)., Design sensitivity f?il
7;J coefficients in terms of matrix equation are determined in state space ;%;'
formulation. Adjoint equations are used to define a set of variables ;;3
that provide design sensitivity information. Symmetric matrix equations E;;
can be used to advantage thereby reducing the data storage requirements. ;?;
;zt In parametric optimal design problem yet another set of variables ﬁ;w
AR oY
i%:z called the environmental parameters are used (Haug and Arora, 1979). :i:.
.;?' Optimal design problem is formulated with additional constraints called :r“
-Eﬁé parametric constraints. The solution of parametric optimal design is ;::
R L
Hﬁ}. obtained in two steps (1) the solution of subproblem and (2) solution of :;j
outer problem. The data of these problems may be stored separately. ;fi
fiif Finite element method and numerical methods are adopted during ?E;
; analysis of structural and mechanical systems. Finite element method EF‘

uses data such as element number, nodal connectivity, element stiffness

*3;. matrix, element mass matrix, element load matrix, assemhled stiffness, :_2’
9 i
e mass, and load matrices, displacement vectors, eigenvalues, :}f
L -
YN ”
A
}‘j eigenvectors, buckling modes, decomposed stiffness matrix, and the -
T =
. stress matrix. 1In general data used in finite element is quite large. T

-
(]
Ve a

h SOl R e
.

o e
.

LI
B '
[

-

vt

o K
]

< £,

>
o

{
-
s

.
-

Symmetry of stiffness and mass matrices is taken into account so that
data storage requirement is reduced. Hypermatix schemes are generally
used in dealing with large matrix equations.

For design of large structures, efficient design sensitivity
analysis is particularly critical. For such structures, substructuring
concept can be effectiﬁiy integrated into structural analysis, design
sensitivity analysis, and optimal design procedures. In this concept,
one deals with small order matrices as the data can be organized
substructure~wise. The degrees of freedom can be classified into
boundary degrees of freedom and interior degrees of freedom. Data for
the stiffness matrices corresponding to these degrees of freedom can be
separately stored. Data of constraint functions corresponding to
internal and boundary degrees of freedom are used in determining design
sensitivty calculations. Adjoint matrix data is stored for each
substructure.

In case of multiple loading conditions, performance of the system
1s determined for each loading condition. Design sensitivty data is
computed for each violated constraint. To reduce the size of data, the
constraints which are not critical at optimum point are deleted. In
case of fail-safe optimal design problem, data of state-equations and
constraints are generated for each damage condition. Optimal design of
a system under dynamic loads requires additional data of eigenvalues and
eigenvectors. The eigenmodes data are used in modal anlysis to reduce
the size of equations in design sensitivity analysis.

Many real world problems will have features that are not explicitly

contained in general optimal design formulation. Problems with peculiar

S B 84 DA A AN A~ AN i S SONL e s MRl

¥

“
L

0
8 :-:3

features need to be treated by making minor alterations in the general

;n: algorithm., Interactive computation and graphics can be profitably
B
'L

o employed in design optimization. At a particular iteration, the
o
(- designer can study the data of design variables, constraints which are
i} active, performance of the system, cost functions, admissible direction
N

- of travel, sensitivity coefficients, etc. The designer can make

A **

.

[judgement regarding suitability of a particular algorithm, necessary

%ﬁ change of system parameters, redefinition of convergence parameters and
o

S
b use them in achieving the optimal design. Interactive graphics display
‘,\':“_
" facilities require additional data for display of system model, results,
X3

L and graphs.

Si Thus, for design optimization, data generated during analysis must
‘i be saved. The data saved is used for formulation of constraints.

\y il
\:z Constraints are checked for violation. Design sensitivity analysis of

z violated constraints is carried out. Calculation of design sensitivity
Y
5; coefficients needs most of the data generated during analysis.,
tﬁg Therefore, data must be organized and saved properly in a database for

f efficient design optimization.

‘
e

U
I‘ L]

u' *
Al
%

0]
W
¢ ;
.,".'. . '_:
e 9 :

. 1‘
! b

T ST A
AT “~-’-{;.-_}|.s~:'-

P
.

By

TN _\,‘._
)
Iy

n

.74 , l.. l‘ (

L)
s

.

S

A
H

B ®, 3 ST RN
ISR o »

[

RS o o

LR el g ek St

L] & AN
LY SR L

-8

a
3

.
IR
et

-~ »
* ot
'~ a.h _F

VAN Y SN

g e o e
)
.li.l

LA
-l
vl

v
H

AL

IV. DATA BASE ORGANIZATION FOR DESIGN OPTIMIZATION

Usually in any design environment, the design of several
engineering systems is carried out simulataneously. Also, in case of
large engineering systems, a number of groups are involved in design of
various subsystems. It is desirable to create a separate database for
each subsystem or project. The subsystem database can be identified
using a name. Each project may consist of a number of tasks. Depending
on the task complexity and volume of data generated, database may be
subdivided into a number of data libraries. These data libraries in
turn store a number of data sets that are identified by a name. The
individual groups dealing with the subsystem design are authorized to
access, store and modify data in a particular database, thereby ensuring
database security.

Modular program organization is essential for efficient design
optimization algorithm. A module is a software element that performs a
well defined task. These modules must possess exact knowledge of the
data structure. It is essential to study various data structure
organizations and choose those data structures that are most suitable

for design optimization.

4.1 DATA MODELS

The data models are logical representations of the data utilized by
the users of the database system. Data should be represented in a form
that {s most convenient from users point of view. A data model stores
the data as well as relationship between the data items. The overall

logical database description is referred to as a schema (overall model

10

I3

I

3 'y
P)
> ot at

e’
€
s
B9 B
i s S

of data or conceptual model). A schema is a chart of the types of data
that are used. It gives the names of the entities and attributes and
specifies the relation between them, There are three types of data
models that are commonly used. They are (1) Hierarchical model, (2)
Network model, and (3) Relational model. These three types of data
models are frequently employed in business application., Suitability of
these models with respect to design optimization is considered in the

following paragraphs.

4.1.1 Hierarchical Model:

In this model the data is represented by a simple tree-structure.
A tree 1s composed of hierarchy of elements called node. Every node has
one node related to it at a higher level. The node at a higher level is
called a parent node. Each node can have one or more nodes related to
it at a lower level called children. A node at the top of a tree is
called the root. Figure 4.l1.1 shows a hierarchical model. An elementary
hierarchical relation is the one in which there exists one and only one
parent for a set of child nodes. The root of an elementary relation has
no parent. A hierarchical model is a collection of elementary
hierarchical relations. Hierarchical model has one~to-many
relationships. Hierarchiés is a natural way to model truly hierarchic
structure in real world problems. Tree structures are used both in
logical and physical data descriptions. In logical data descriptions

they are used to describe relations between record types. In physical

data

.
.

S
[}

(s

x5,
Ly
N

A, Ay Ay Ty 4
.

o

|

Ny
[y

,, ..
!'- St e
A A

L
o

*79PON TEOTYI1BISTH V

L 9
14 Hzmxmqm INIWATI INAWITH

‘11

*y 2an314

s |
Hzmzmqm_

¥)
INIWITI INFWATH

1
_ Hzszdm~ “ INIWITI
*..

4

2

p

y e
s

< — azmzmq
. £ TIATT //

, ¢ TaAA1

4 1 T3ATT

111
TANLONALSANS

RoLe).

'
(]
]
'
]
¥
{]
h
1
B T T - - .
CA L m B) el T i Lo,
b ™ LA P L g LT a2 el P T
v.‘v \p\ \-.'ﬂ\\s\.g.n- Bz s "0 v ™

. /

II
INLONILSENS

i
| TALONYISENS

L
P SURSEUES——

!
]

N
~

TANLONALS

-~
-

i
e

e e '
RV —~ \._u-\-\..
ottt o0 lals 0 ‘ .

A

PO

B a g = -

WITYEWEY

ALL‘.‘A“;‘L

.

P
R

-
¥

. r‘.' ! Y
J;‘f..;_ﬂ' - P

{
!

description they are used to describe sets of pointers and relationship
between entries in indices. A hierarchical file has a tree—-structure
relationship. Hierarchical structures are relatively easy to represent
in many applications. In many other applications, data are not tree-~
structured. Therefore, in such cases, other complex models have to be
used to represent data. The hierarchical model simplifies the software
although the corresponding system is sligthly lengthy.

In finite element analysis, we can form a hierarchical model with
data items such as structure, substructure, elements and nodes (Figure
4,1.1), Another example of hierarchical model is in representation of
structural stiffness matrix. Depending on the size of matrices two or
three levels of data can be used. The hierarchy is established by the

two levels of data which actually contain the matrices.

4.1.2 Network Model:

A collection of arbitrarily connected logical relations is called
network relation., The data model defined by such a network is called
the network model. A network is more general than a hierarchy because a
node may have any number of immmediate higher level relationships. Any
data item in a network structure can be related to any other data item.
Figure 4.1.2 shows a network model. The network model can have one to
many levels of data representation as with hierarchical models. Tt is
possible to make a hierarchical data model non—hierarchical by adding

new segment types and new directional logical relations. Network allows

many~to~many relationships.

*T9POW dIOMIBN V °*Z°1°% 9In3d1g

7 TAAAT BN

N <
] ./ —
\

_ \
. \
_ S €
. T TIAAT ININITH _ i INIWATH | . INIWITH
A ' 1 m m ! {
h ,||I|||,||||— R N
4 — .
L]
1
3
L)
B e e r R s e st KRR, . Ty e e AR LYY, P e, v vt e, e - - oy 1Ay 4%y s “
D (PIEAAY ...,(M.M.. 0 ..r.\.lq\-w\..‘n..-.ﬂ.: b o A R .Mn... AEREA w.uw. RIS -.)..s.n.\.. .x.v.)v—.dxd B LAt ’..-J-Vn-.wﬁ)ﬂ«i.ﬂﬂ

X i Z - - - - - -l " - ”

. YRV R A da-muEe gty ~ P Pl e bl a4 LYl A e d u g Gt bl b St Aha g e Rl es g

A network relation is said to be simple if each directed logical
At relation is functional in at least one direction. This means a schema
in which no line has double arrows in both direction. Complex network
relation will have double arrows going in both directions. For example
in finite element analysis we can form data model with items such as

elements and nodes. The network data model allows complex relationships

that commonly occur in real world problems. The disadvantage of this
e model is in its complexity and in the assoclated data description

BT language.

4.1.3 Relational Model:

Tables are the most convenient way of representing some data. 1If a
L;f set of attribute pairs are properties of an entity occurence, then they

are said to be logically related. A data model constructed using

b relations is referred to as a relational data model. A relational data
‘;%; model is constructed from a tabular representation of data. Figure
"
). 4.1.3 represents a relational model of data. The rows of the table are
i
..Eg generally referred to as tuples. The columns are referred to as
‘Ezg attributes. If there 1s one tuple, the relation is said to be unary. A
fig binary relation has two tuples. Relations of degree n are called n-
gé& ary. The relational model provides an easy way to represent data., This Eﬁ;
;;% model can be easily implemented as physical storage of tabular records éﬁ,
(;:j are less complex than hierarchial and network models., The database can =
é;}& be expanded easily with additions of tuples and attributes. The
o
‘;Zﬁz operations such as PROJECT, JOIN, and SELECT can be used to form new
N

relations. Examples of relational models in finite element analysis are

e T R T T T O T Ui

TR T O W N W

TRIG
FLEMENT MATERIAL NODE NODE NODE THICKNESS
NO, NO. 1 2 3
i
NODE CORD
1
NODE DOF DOF DOF DOF NODE X
NO. 1 2 3 4 NO.

Figure 4.1.3. A Relational Model.

L
r 'z

“_’;‘ .1

b A
LA

16

—w
Ay
&4 N
4 a

)
a

A

P
-
b

i

N

e

S

&

g element-node relation, and node~degree of freedom relation. TRIG
'

\

JOR relation in Figure 4.1.3 contains tuples of triangular element data. o
3
i}jg There are six attributes of this relation namely element numbers, node S
) r'\-‘ :A;.'u
ggﬁ numbers, material number, and thickness. The relation NODE and relation ;;T
V'i\ CORD contain data of node numbers and coordinates of nodes, }i:
?F:E respectively. tﬁq
§}\f =T
b L\ Easy access to data in relational model is an important feature Z;:
th that is not available in other model. In a relational model high degree Ly
B T
i{} of data independence can be achieved. Also, in a relational database it .u:i
:4:'{‘,- .":“-‘
;%: is simpler to develop and implement data query and data manipulation égg
-;:: languages. :??
o]
4.2 DATA MODEL FOR DESIGN OPTIMIZATION i

The data used in design optimization was described in Chapter

N W III. It can be seen that majority of the data is numeric. It can be

;i%; classified into tabular and matrix forms. In general data can be

?{;‘ grouped into scalars, arrays, tables, matrices and character strings.

;ﬁ; These data can be grouped together to form a data set. A data set is a

;&; collection of data items. Data items in a data set are ordered by the

‘id? users or application programmers in a way that 1is convenient to use.

¥§¥E The user or the application programmer can describe his view of data in %E:
i;ig terms of relations between data items in a data set. Data sets are ;ii
i S
o named and indexed to identify them in the database. y
Ry R

A In design optimization, the concept of design variables is

2
s
.
2.
.
3
TG JURL R R Y

e fundamental and all data structures should be built around it. A

hierarchical data model for representing the design variahles is

-
bt
3?':]-". s -

2

\-."\-‘ ".:-'&:
Py N

F_‘.""h A H
OB '«
'a e) Al
2N »

o <

. -.{]

lane

L il B LTI . e

-\\. W ’_ -4",;\-.{..,..'.. 5 - s

i RO PCN RIS " RS

“» e sl

‘.v..m '-t o. o1

"
oy
]

!-
A A A4

)

B

At Ay
s " A &

'y

y 4
!.l 'l"
DA

o
.-'-

NIORS . AP
R - yOCAA

> -
1
LA RN
.
P

3 o~ v e A
AT
L o) . AN
i | I TP

&
-

wVe® .
SR

-'L‘

-8

described as follows: Figure 4.2(a) shows different levels in a
hierarchical model. The first level in the model is called DESVAR. It
provides basic information about the design variable and its location in
the structure. Attributes of the system are described in rows of the
table. The rows in the table indicate the substructure number,
equivalent substructure number, design cycle, and type of optimization
problem. Columns represent the values of the attributes for a specific
substructure. Since the values of the design variables cannot be
represented by a single value, a pointer is used to show the location
where the design variables are located. The second level of the data
model represents the design variable group data DESGRP. The first row
represents the design group linking, the second row represents the
material number, and the third row indicates an address to the lower
level. The columns represent design group numbers. The third level in
the data model is DESNUM. The rows in the DESNUM are the design
variable numbers and design variable cross—section type. The fourth
level in the hierarchical model is DESDAT. It contains the actual data
for design variables, i.e., cross-sectional data for the example.

A use of the relational data model is described with an example of
the finite element analysis. For the finite element idealization,
structural element numbers, material number, and nodal connectivity are
stored in the relation named ELMT., The nodal coordinates and degrees of
freedom numbers are stored in the relation NODE. These relations are
shown in Figure 4.2(b). The relation ELMT can be manipulated to form

new relations MAT and ELNOD using the PROJECT operation of relational

e e
LN
":
s 4
P

Vo1

)
PP
’Y

1

» .
180,08, 4
B s

{2

¢}

z
’

'

e

.
.l }
l'_),.‘
l‘l ,'
s

I

]
>

N
-
',

Mg s aay a0 s Ly

LEVEL 1

o : LEVEL 2

LEVEL 3

LEVEL 4

LA g e arm o-un ar e il i grd ssut acd a3 et SniC AR JIMENIE Cati™

DESVAR

SUBSTRUCTURE

NUMBER 11213 (4
EQUIVALENT

SUBSTR. NO LI R B I

DESIGN CYCLE

DES. OPTIMIZ.
TYPE.
SPATIAL/CROSS-SEC

ADDRESS TO
LOWER LEVEL

Figure 4.2(a)

DESGRP

—T Y

DESIGN.
GROUP. LINK

MATERIAL NO. | 1| 2] 2| 3

ADDRESS TO

'OWER LEVEL | ° 4] M

]

DESNUM

DESIGN. VAR.
NUMBER

DESIGN. VAR.
SHAPE

ADDRESS TO .
LOWER LEVEL]

DESDAT

HEIGHT

WIDTH

DIAMETER

THICKNESS

A Hierarchical Model for Design Optimization

TEEREY TSR TR YL T VINUELR L AL WL W oW
DA

C-CIRCULAR
R-RECTANGULAR
H-HOLLOW TUBE
L -ANGLE

TR A ARSI
Bt Sal
At

? 2 W - e g, . . 3 - 4 Mal A Sl S BB S ACE &t BB o og B-se g bl - g o s mea g

W

4‘1
1SN

~
::‘ algebra. NODE relation can be projected into DOF and CORD relations.
‘.
':' Using JOIN operation, the relations ELNOD and DOF can be combined to
O
2%
*wQ form a new relation ELDOF. The application programmer can employ

W
‘ol
i different relations to those defined in the schema. Thus relational
f{: model provides more flexibility to the database user. However,
o
p indiscriminate use of PROJECT and JOIN operations can produce invalid
Lo results in some cases.
: ‘ Another example of the hierarchical data model can be given for the
'

o+
)
:-. hypermatrix data., In storage of large order matrices encountered in
nd many finite element applications, it is convenient to subdivide matrices
;7 into smaller matrices. These small sized matrices are called sub-—

;; matrices. It is possible to organize submatrices into various
o

. hierarchical levels. Figure 4.2(c¢) represents a hierarchical scheme of
> data model representing a hypermatrix. This scheme of representing
hypermatrix helps in solving large order equations in a small memory

environment.

SISATRUY JUBWSTY 931Ul 103 T9poK eleq [euorlelay (Q)z't 2ans1g

_ ‘ON t “ON b 3 2 | ‘ON ‘ON | ON
h z | A 300 | 3QON | 3QON | 300N | 300N | 3aON | LW13 1vw | 1K13
aNo) 404 GONT13 1V

"LO3roNd

"LO3M0Yd

P
»

>

’L

5

.‘-t‘ .

0
Y
AW

. . WL WY T
DRI \"'\1 1“). N \'*\,‘\ *v -.~.'-_‘.~ :': K‘_ ;' SRR I A I A~ sl st siaoau Sy
et . R A A A A At g - ~ pd
B e A [N et At Rl e T AR A Ay

SR M

{
"' »
AR
o

o

POINTER TO
SuUBST | SUBST | SuBST | SUBST | SUBSTRUCTURE
1 2 3 4 STIFFNESS

MATRICES.

q

A

LAl =
»
LR

.

RPN
AN
oL P

A

iy
; PLE,
| PR

L sl

POINTERS TO POINTERS TO POINTERS TO
INTERNAL BOUNDARY INT/BOUND.
STIFFNESS ST. MAT. (SUB) ST. MAT

(SUBMATRIX) ‘ (SUBMATRIX)

E vy .1' 4 '-‘;
- e ..‘lb L

e b GNP R
. . . a

Tl E

.
AR
PN

e

.
‘e

&

—

HYPER MATRIX

- T

|
¥

: e ¢ * * * * L ELEMENT
- [}] [L L] f

nxn SUBMATRIX

'_:},:Zj Figure 4.2(c) Hierarchical Model for Hypermatrix Representation
e

e
LI T
r
]
b
“n 4
‘-

22

&.-.,_r ‘. ‘-r_r_-r-r(.. .-C. At ..,ﬁj)t
IA. HA_(JL*JC)L’/XA':&J‘{ 4'"; .)_Qx Jx‘ | ‘nt‘;g

7 \"'.’.Z <., ,'\\, e o ROEAE ST T T DL
A\ -.\. \\-A‘-w.ﬁu 1\.\‘! K AT o
i w e -x‘ - ~ .‘\ e - .
> (.‘ ‘L' \1\\. }R' 1\‘.‘ .‘ :" AN EAEER "o

i i a2 a - pa e e e bt i A e Anbiut Sl it e da S A S RN Akl A

V. FILE STRUCTURE

In this chapter, different types of file structures currently used
to store data on an auxillary storage device are reviewed. Auxillary
storage means tape drives, disc drives, and disc drums. Tape drives are
termed sequential device, whereas disc drives and drums are called
direct access devices. The physical storage of data on these devices
are generally different from the logical form of the data. Various
aspects of storage techniques namely operational efficiency, response
time and cost have to be studied before a particular technique is
adopted. Various file-storage techniques are presented in the following
paragraphs. Also, storage of data on physical devices based on concepts
such as 'blocking', 'record length', 'paging', 'addressing', and

'pointers' are discussed.

5.1 SEQUENTIAL FILE

Sequential file is usually associated with magnetic tape. However
it can also be used on a direct access storage device. A sequential
file is a collection of records which are stored one after another in a
sequential manner. Generally, a sequential file (magnetic tape) is used
to hold large quantities of data. Also, sequential storage devices are
less expensive. Limitation with sequential file organization is that
access time for an individual record is dependent on the location of

record in the file.

23

»
'y
r i
¥
L3
.
.
.
¢
f
¢
B
)
'
L]
v
.
.
:
N
4,
'

T TR rr———

»

- Qb

X 5.2 DIRECT ACCESS FILE

L A direct access (random access) file is usually associated with

~; disk or drum. It is a collection of records in which the time required
to locate a particular record is independent of that record's position
in a file. Records in a direct access file can be retrieved or stored
by specifying the actual address of records. There are several ways of
accessing a record., One method is to specify the relative record number
(from the start of a track and record number respectively) of a desired
- record. A second method is by specifying relative track and a record

b key. Another way is by specifying the actual cylinder head number, and

track record number on the device. Direct access device can be used to

store many kinds of file organization for example sequential, direct, and

o
v

——

indexed sequential. Records In a direct access file can be retrieved,

modified and stored in any desired order. This capability provides rapid

e’
1
PR

transmission of data between main memory and direct access device. A

R

N U e

- g

primary advantage of a direct access file is the speed with which an

:u: individual record can be accessed (or stored) in a large file. This
i;ﬂ advantage must be weighed against cost of direct access device.

o 5.3 BLOCKING

:ﬁf A group of data which forms a physical record is referred to as a _
7ﬁ:- block. Logical records are usually grouped together into blocks and are - i
‘ ".-. .. ! .

1 % "

' stored and retrieved one block at a time. Blocks are later split into ;.AJ
sl actual logical record in the program working area. This helps in e
o4 s
{'-.. '~‘.- : .u
o increasing efficiency in storage space and time involved for storage and RN
o S
O retrival operations. 5:1-
-'.:: (949 |
- ;

o
(- 24

SRR T o

".,‘b' _:. -.'v_ .-'-'.' - ;) N
e e . n"«ﬁ-l" "‘-‘."’ LY S ", '“‘\“.".-'.“' .
[':L"‘.!:A : Do e é -(qu'-n"&'- 1.;).;!11’-!.:)(& A; ‘}_ .;\ .';\1.nuL A_..A‘LA

; : 5.4 RECORD LENGTH)
‘i\; Fixed length records are desirable as they are simple to use and :s
352 less complicated to program. There are situations in which logical :Tﬁ
i:i records can be of variable length. For example records of element .;;
f}d numbers with nodal connectivity numbers; records of node numbers with ?;f
:Ei? degree of freedom numbers for each node. 1In such situations, the ‘::

: physical records will be filled with as many logical records as
possible. The gap leftout in the physical record has to be minimized by o

adjusting the physical record length.

Sometimes, it is required to store a variable length of list of }f¥
.l;it values of the same attribute. For exammple, number of nodes connected ;ﬂ:‘
3O o
';:; to an element varies depending on the type of element used. [In such W
W :‘I (.:\']
PEN cases, 1t may be advantageous to store the data as a string of values to —
j reduce the storage space. The program logic will be simplified if the jVi
S maximum length of list is used to store variahle length attribute list, jci
b 5.5 PAGING -
e KN
b J{ Blocks of data known as a page is transferred between the main S
jﬁ*} S
) NS
i o memory and the peripheral storage device. The concept of a page helps ﬁ}f
iy N
{ ‘N in minimizing the seek time. Page must bhe used in a good databhase jod
o S
AR management systems. co)
e e
e oo
RO NN
B 5.6 POINTERS e
.",.u“. o
i Links betweeen one record and another can be established with f?:
o' RS
:2{:: pointers. Pointers are stored in the record ftself which indicate where ‘:fh
A ‘-“. n- . e
%) L
::ig' another record is located on the physical storage. Three different L
5\L.." -
'7,;4 types of pointers ~ machine address, relative address, and record %?1
- R
558 jiijjj
-:.':':. 25 .:::.:'
. -

-
Pl

- "--,-‘ .- 3 -
SRV EYEEIS YN

(s

'l' 'I ‘l " ‘f"l;‘. 4

R

A

L I S
AU

1
S

Ly

S e It S s e B~ S - Bt I L i Sab St A o f /A iz A oRd i

identifier ~ can be used. Records in a file may be sequentially
numbered. The pointers are simply the sequential number. Sequential
number may later be converted into machine address. Machine
independence can be achieved to a certain extent through the use of
relative address pointers. However, machine address pointer is faster
than the other two types of pointers. 1In record identifier method, the
address must be established using symbolic¢ pointers. However, this
method is slower, especially if the record has an addressing method

needing more than one seek.

5.7 ADDRESSING TECHNIQUE

Records in a file can be identified and located using a unique
number or a group of characters called the key. There are several
methods of addressing a record. The simplest way of locating a record
is to scan the file and locate the key of each record. This method is
too slow. Another method is the 'Block Search' technique. In this
technique a defined number of hlocks of records are skipped and then
searched for the block containing the required record. Files are
addressed by means of a table called an index -~ the indexed sequential
file method (Fig. 5.7). The input to the table is the key of the
required record and result of the index table search is the address of
the required record. By this method, considerable time is saved but
space 1s needed to store the index. Hashing is another form of
addressing technique. In this method, item's key is converted into
near~-random number and the number is used to determine where the record

ts located. There are other addressing techniques such as indexed

26

g
ts
:"

¥
‘a

‘v
’

J‘EJ‘T

|
A 2 sl 1
AR
r lVJ‘.' -

¥)
""“,
' °]
R R o |

o

~
LY
Y
»

I.

R

LEVEL 1
INDEX

FILE

LEVEL 2
INDEX

Figure §.7 Indexed Sequential Addressing

27

AT " ATa T T T e Ta®q" a" T e Ny

nonsequential technique, key—address technique, and algorithm technique.

However, any of the combination of techniques can be used for addressing

purposes.

5.8 FILE STRUCTURE FOR DESIGN OPTIMIZATION
Based on the file storage techniques as defined in the above

paragraph, a file structure for design optimization can be developed.

Data can be stored, retrieved and modified using certain standard
operations/functions such as define a file, open a file, define a data

set name, write a data set, read a data set, and check for existence of

a file. The status structure of a file can be defined; for example
FILE: existing/non—-existing, opened/closed, RECORD empty/written. The
constraints for calling various functions must be defined: (1) file must
have been defined before it can be opened or written, (2) file must have
been opened and record must have been written before it can be read or
modified, (3) a record once written cannot be emptied again, and (4) a
closed file can be opened again or deleted. A status diagram for a file

system is shown in Figure 5.8.

28

,
) K ‘o ,'(‘ :) PRI SN
a R AV SN S R R Y PR RPN DR
e e AP T S SR R I) .
FNIE SN PP PR FRPCVR PG R P P

- "n
LREA

i e anhoaiiec i G g Aepi oyt T I

o T s

READ
FILE

&

DEFINE OPEN CLOSE DELETE

———— FILE ™ FLLE | N B I 10 —

WRITE
FILE

—————

X

o

Figure 5.8 A Simple File System.

-2
P

2‘ irs ¢rJ"‘
' «
I e |

2
e

r

¥

2

T
w5

X

e

A

L

-' " "1 "r ”' "

Py
LPLIPLI

29

1

.
R I

g

R OR O T L
.)i)-'{\n"'-
Lot T

LG,
A Lﬁu{'x.-}b'b‘ri 2% ".'

- 2
oNy
?Xf Various operations on a file are: i
H
§;\ DFDEFN ~ Define a file in user's directory :E???
if DFOPEN — Open a file in the directory E;EE
5 [
- " DFDELE ~ Deletes a file Ao
"~ DFCOMP ~ Compress a file
:ii DFINFO - Give information of a file
o DFCLOS ~ Closes a file
AN DSDEFN - Define a data set in a file
ii DSRDFN ~ Redefine a data set order and size
'éé DSDELE ~ Delete a data set
,fﬁ DSCOPY - Copy a data set to another data set
x DSGET ~ Get a data set
,_{ DSPUT -~ Put data into data set of a file
‘;i Some basic files required for design optimization are given as
follows:
55 INTL ~ Cost function, constraints, optimization parameters
;; DESV =~ Design variable file
;;; ELMT ~ Element numbers and nodel connectivity
::? NODE ~ Node numbers and degrees of freedom numbers
f ; STIF ~ Stiffness file (assembled stiffness, geometric stiffness, etc.,)
K MASS - Mass file (assembled lumped, consistent mass, etc.,)
:l LOAD - Load file (acceleration, concentrated, distributed, etc.,)
;2% MATR ~ Material file
)i; DEST ~ Decomposed stiffness
;ig SOLT ~ Solution for displacement, stress, frequencies, mode shapes
;i etc.,)
N

30

P allae i A7 0e oAt A 8o i asle s S A S o I o/l whi - el nile - ol M AR - i AR e Mt e e e A

- DSEN - Design sensitivity file (adjoint matrices, gradients etc.,)

. OPTZ —~ Optimization file (optimal solution, history of cost function,
constraints, design variables, violation of constraints etc.,.)

If substructuring technique is adopted, then some of these files

H g; could be organized separately for each substructure.

o

Pl
A ALy

Pk
"AL

”

oA Xt
PR
re o bt

T

o'+

"’ S
il
4

r,

“aty
“‘A

TN

RN

= Zie 2o
>
‘_‘;“,1:1:4 ~- TN

'!"1‘1&‘..
LR Y

»

&« 'l ‘l
'

. _X 1
w . f_ =« 2 _ 2 ®» 4
a 2 ¥ e}
LS PRSI)

VI. REVIEW OF LITERATURE ON DATABASE MANAGEMENT IN ENGINEERING

A number of papers and reports have been published on database
management in recent years. It is important to take advantage of what
has been done in the field of database management. Therefore, a
comprehensive review of literature on the subject is presented in this
chapter. The review is limited to the database management application
in sclientific and engineering computing. The review may be broadly
grouped into two categories: (1) database management concepts,

methodology, etc., and (2) database management system that are currently

available.

6.1 DATABASE MANAGEMENT CONCEPTS

The database management concepts are not new in the area of
business computing. However, the database management concept is
particularly new in the area of scientific and engineering community.
During last five years a number of papers have been published on the
database management in scientific computing. The paper by Fellipa
(1979) on database concepts in scientific computing highlights the
difference between the business data management and scientific data
management. The importance of centralized database iIs stressed in the
paper. The terminology used in the business computing is fairly new in
scientific computing. A comprehensive list of terminology that is
relevant to scientific computing is given in another paper by Fellipa
(1980).

An interesting paper by Bell (1982) gives some introduction to data

modelling in scientific computing, It discusses some issues on how

32

N R
.‘ \- '..‘_\'\
S :\"..\
Tt Y
ey .
ek
- 2
{ ;";‘: v-‘._-'“
‘AN } -.:‘- '
i -]
:- scientists actually use their data. The paper also gives some 2l
t}. comparison between data modelling for scientific application and #iu{
o i
oo commercial application. \}%‘
Pl W
S A
AN Several research studies have been conducted to find out a suitabhle alad
ﬁ way to design a database management system for scientific and :.
A SR
\ A =
ix engineering applications. Buchmann and Dale (1979) analyzed different .
LY -
54 o
"y methodology for database design. Various steps involved in a database
design are brought out. Also, they have presented a framework for Cf:Q
» h" - A
= AR
-, evaluating database design methodology. Roussopoulus (1979), designed AN
AN T
R "
o CSDL ~ an interactive language for designing conceptual schema of w2l
ct e
AN databases. A database system architecture for interactive computer-— ;:gi
] -
LA i\
) e
:{: alded design has been proposed by Kunii (1979). Grabowski and Eigner it:l
[o

(1979) in their paper have discussed various issues in designing a

i;? semantic data model. Difficulties of information modelling in CAD .
i;; applications is brought out in that paper. Another paper by the 3
%i: Grabowski, Eigner and Rausch (1978 on CAD data-structure for :
i?: minicomputers brings out various steps involved in database design

E:E process.

';f Lafue (1978) discusses several problems related to design of a

i:j database system in his paper. He addresses several issues related to

»%i% semantic, integrity, consistency, maintenance, and manipulation of a

?L% database. In another paper by the author (1979), merging of data

:55 definition language and data manuipulation language has been suggested.

éi; The reason mentioned is that the database schema is continously

i;g redefined, {i.e., record types added, deleted and modified. Therefore,

1;4 it is better to combine the two languages.

:;; 13

Ny - e Tt N : e e .
N O C N P -\.{ .‘. I e e e e e e U VA . -
Henpiaerae) e & &
", Sy \
\\'* o u.'»":!'.\a N t‘h 5

ALY ua f oy e R e gnny W UW WL WU U U W A ™ 4 - J Lol Sl S aal Shh G g B i 2l G B Sl 20 A Sl B e S A i

’

A
&

'S4

L

" *

[

Py Proceedings of a NASA conference (Publication 2055, 1978) on

L4
L Y

£ Engineering and scientific data managemnt provide a wealth of

f: information on the subject. A good review of requirements for a

' database managemnt system in support of scientific and technical

1 application is made by Lopatka and Johnson, (1978)., 1In particular, the
:j paper deals with the data management system for CAD/CAM needs. The
o™

proceedings also include some papers on database design methodology and

applications. A detailed discussion on conceptual design of a data

57

; management system is presented by Elliot, Kunii and Browne (1978). The f;f.a
a ST
:? paper describes a system design based on hierarchical model of data. ﬂi;j
fj The.data definition language used in the system is described in f;;;
;; detail. The paper also gives some practical examples on structural
}i design and wind tunnel data management. Application of data management
}{ system for weight control was presented by Bryant (1978). Management of .%\;T
p ot
»E; atmospheric data was presented by Jenne and Joseph (1978), ggii
~d T
. A fundamental coverage on data structure, data definitions 1is :}%fb
a;i presented by Browne (1976) in the third ICASE conference on scientific ﬁéﬁuv
y " i\:-\"-
E; computing. The paper includes details of storage mapping functions, and i:éi‘

-
]
)
-

" data representation with some examples. A storage mapping function that ROVRAG

utilizes an inverted file system is also given in the paper., Data

0

management concepts applicable to aircraft industry and its CAD/CAM

[y

requirements are explained by Fulton and Voight (1976).

-

— g et
LA

,f- Studies on data structures include mainly hierarchical and
):

L relational data structures, Lopez (1974) developed a hierarchical

- datahase management system called FILES. This DBMS is primarily for ;y?}ﬁ
e applications in structural engineering. Jumarie (1982) has shown that a s
- BN
"‘V 3 l‘ \.-“ ‘-.
1Y) T
Ta B :“
W, 'u. < {
) :L'.J'J'-'- -‘ '. -. . J_'u o _-.__*. AN - ~

et

a:».m:-}' :; T :-.\;.-f LR

o A R AR A R

o A" oA N I i AT g P SRSt R aAeC SR M AL i DR R W)

N
'y

Y
p]

a
2

v

A

LA A
PR]

F]

hierarchical data model simplifies the software in development of a

decentralized database with the use of microcomputers. Fishwick and

-
Y

3

Blackburn (1982) dicussed some advantages of a relational data model

a2
TN

from an engineering point of view. The paper reports the use of a

relational data management system in an integrated design system called

.

[

PRIDE. Blackburn, Storaasli and Fulton (1982) in another paper further

4,
AL)

Lt

demonstrate the use of relational database management system in CAD.

Some engineering test problems using relational data management system

e v

are presented in the paper. Haskin and Lorie (1982) of IBM Research

A, .

R e

.

Laboratory has shown how the relational data management system (System
R) can be extended to accommodate the arbitrary length of data items

that are commonly encountered in engineering applications. Felippa

lti"..".."..'; A c r

(1982) has demonstrated how a word~addressable file organization can he
simulated with FORTRAN 77 direct access files. The author points out
that word—-addressable structure is a natural and desirable working—file
organization for scientific computing software.

The application of data management for numerical computations is
fairly new. Daini (1982) has developed a model for numerical database
that arises in many scientific application to keep track of large sparse
- and dense matrices. The paper presents a generalized facility for

providing physical data independence by relieving users from the need

.

for knowledge of physical data organization on the secondary storage

:’Jl -

devices. Because of the limitation on core storage and to reduces the

1.2
Fy
2

input-output operations involved in secondary storage techniques, many

“NAA

fa

investigations have been carried out on efficient use of the memory. A

A

. detailed survey by Pooch and Nieder (1973) gives various indexing

S

£

RN

-’

Vit

)‘ '.
REAEON

o
.

U

PR
. P

e

) “.;., x‘ ‘;‘.

] 3._\‘ \‘.;.':.'\l'

S i | Az XN

t

<-------
RO

LAt A AR e Al iR ial “ RSt ai MRS SR S A i 4 MY -« T W

techniques that can be used in dealing with sparse matrices. Darby-
Dowman and Mitra (1983) describe a matrix storage scheme in linear
programming. Rajan and Bhatti (1983) present a memory management scheme
for finite element based software. Much work is still needed in

application of database management in design optimization.

6.2 DATABASE MANAGEMENT SYSTEMS

Several database management systems have been developed or are in
the process of being developed. In this section we will review the
following systems relative to their applicability to multi-disciplinary

design optimization environment:

DELIGHT ~ Design Language with Interactive graphics and a Happier
Tommorow

DATHAN - A data handling program for finite element Analysis

EDIPAS - An Engineering Data Management System For CAD

FILES ~ Automated Engineering Data Management System

GIFTS -~ GIFTS Data Management System

GLIDE - GLIDE Language with Interactive graphics

ICES ~ Integrated Civil Engineering System

PHIDAS - A Database Management System for CAD

RIM - Relational Information Management System

SDMS -~ A Scientific Data Management System

SPAR ~ SPAR datahase management system

TORNADO ~ A DBMS for CAD/CAM system

X10

A Fortran Direct Acess Data Management System

36

i Broadly speaking, there are two types of database management

systems for engineering computations; context—-free and application-

S oriented managers. The context~free data managers are designed to work
as stand-alone systems. In such systems, the applications program

AR executes under the control of DBMS, i.e., the DBMS acts as the main

.:; program. The application-oriented managers, on the other hand, are in

the form of a library of subroutines that perform all the data handling

??é operations.

¥ 6.2.1 DELIGHT

< DELIGHT (Nye, 1981) stands for Design Language with Interactive

Graphics and a Happier Tommorow. In its philosophy, the DELIGHT system

75%' is very close to the GLIDE system (Eastman and Henrion, 1980). DELIGHT

- is an interacive programming language. It has good extension and

debugging capability. It provides high-level graphic commands, a built-

in editor and a well-defined interface routines. A single statement,

.) procedure or part of an algorithm can be tested without having to write
o

iﬁl} and load/link a program. The system relies on virtual memory management
o

in; of the operating system. It is difficult to use the system with large

scale programs. Multiple users are not allowed in the system.,
aa
§ 6.2.2 DATHAN

DATHAN (SreekantaMurthy and Arora, 1983) stands for data handling

1N

‘(;g program. It was written mainly for finite element analysis

1 ‘-::*'

::w: applications. The program has some basic in core buffer management
ONEY

:t;ﬁ scheme. The program has capability to store permanent and temporary
Dt

1«#2 data sets. Substructure files can he arranged quite easily with same
SO

e

L4

37

e TR R W e, e e
S ARG CEi
.

B
LY

L e
LB Pt

data set names for different substructures. Both integer and real data
types can be handled. Drawback of the system is that the user has to
keep track of the location from which a new data set has to begin. The
system has data manipulation commands which are simple to use. The

commands can be given using FORTRAN call statements.

6.2.3 EDIPAS

EDIPAS (Engineering Data Interactive and Analysis System); Heerema,

and van Hedel, 1983 is a tnol for data management, analysis, and
presentation, The data management part provides a utility to initalize
a project database, input programs to load data from files into database
under user controls, and a set of routines to extract data from and load
data into database in a controlled way. EDIPAS allows users to name a
database, a data structure, and data entities. EDIPAS allows user to
employ one or more hierarchical levels. The data is stored in entities
called blocks. A data blockh allows matrices, single values and
characteristic values as data elements, A database administration
support provides initialization of database, access to users, deletion
of data structures, audit database contents, and back—up facility.
Drawback of the system is that a clear data definition language is not
provided. Variable length records are difficult to process. The system
does not have a restart facility. The values of data elements have to
be either floating point number or string. A data block has to be

unique in a data structure.

b 6.2.4 FILES

FILES (Lopez, 1974) is an automated engineering data management

sf system. It is extremely flexible with respect to the definition of a
" database and methods of accessing it. Information storage and retrieval
may be performed using problem-oriented languages. Hierarchical data

: structure 1s provided. For example matrix type of data encountered in
finite element application can be organized using hierarchical data

. structure. The first two levels in hierarchy may contain pointers to
the third level data containing actual matrix data. The program allows

o dynamic memory allocation. Data transfer takes place between FORTRAN

:;ﬁ common block and database. FILES has a data definition language

:% scheme. Drawback of the system is that it does not have data mapping
" language to specify mapping of data items and arrays to an external

:;: device. Data is represented only in the form of tables. Data elements
5?; are not allowed in the data definition language. The system requires a
fji distinct data management compiler.

}:' 6.2.5 GLIDE

{* GLIDE (Eastman and Henrion, 1980) is a context—free database

t‘ management system, It is designed to provide a high level facility for

r
- o4 ! l‘,‘A

developing individualized CAD system. Tt can be viewed as a language, a

.
ate
e

database management system, and a geometric modelling system. 1t allows

~ G I
.

users to define new record types known as FORMS that consist of a set of
attribute field. Tt provides primitive data type set to organize a

"

7.

A database. 1t provides excellent geometric modelling system or a graphic
o

system. Drawback of GLIDE is that it does not allow multi-dimensional {:}

arrays. It does not support multiple users simultaneously.

6.2.6 GIFTS

GIFTS (Kamel, McCabe and Spector, 1979) is an interactive program
for finite element analysis. It is a collection of modules in a program
library. Individual modules run independently and communicate via the

unified database. The database manager processes requests for opening a

file, closing a file, storing data set in a file, and retrieving data
set from a file. The program has memory management scheme. Each data
set 1s stored in a separate random access file. Paging is carried out
within the working storage. A unique set of four routines is associated

with a data set for opening and initializing the working storage, for

reading a data set, for creating/modifying the data set, and for e

realizing the working storage. Drawbacks of the system is that for every }RE;
new data set to be created four new routines have to be written. Each RO
data set is associated with a separate common block, thereby increasing ;;Af

the number of common blocks in the system. The data manager is

application dependent and cannot be used as a stand alone system.

6.2.7 ICES
ICES (Integrated Civil Engineering System; Roos, 1966) is a

computer system designed for solving Civil Engineering problems. ICES

consists of a series of subsystems each corresponding to an engineering

discipline. It provides a Problem Oriented Language which can be used to -

write subsystem programs (e.g., Coordinate geometry program, Stress ar
analysis program). Command Definition Language is used by a programmer PR |
40 o

SR i Sa b Sadk de g St S S A e it it - S T

to specify the structure and required processing for each subsystem
commands. A Data Definition Language is used to specify the subsytem
data structure. It uses its own programming language called ICETRAN
(ICES FORTRAN) and has a precompiler which translates ICESTRAN to
FORTRAN statements,

Dynamic data structuring capability is provided in the system
which helps to organize dynamic arrays in the primary memory.
Hierarchical data structure is used for data modelling. Three
hierarchical levels: equivalence class, members, and attributes are
provided. Data is stored on secondary storage using random access
files. Data management program uses buffers to convert logical records
to physical records. Identifier 1s supplied by the programmer which is

a pointer giving the position on secondary storage of physical record.

The programmer has a choice to store data using dynamic arrays or using

bl i el ~ el a il A S AR e iy AL e Had ey uit DA At A S ol i A iy

data management
Drawback of the

FORTRAN program

system depending on amount and use of the data,
system is that it uses precompiler ICETRAN to convert to

instead of directly to machine language.

Physical
storage of data requires knowledge of address and pointers which the
programmers have to give., Data independence 1s thus not achieved. Only
three levels of hierarchy is adopted and it is difficult to extend to

many levels of hierarchy.

6.2.8 PHIDAS
PHIDAS (Fischer, 1979) is a data management system speclally designed
for handling a collection of structured data on minicomputers. The

architecture of PHIDAS 1is {in accordance with the ANSI-3 schema. 1t has an

41

PRSI PR
P

i

AT
‘. I " i
Ry [

~
-.

o

3, 1

, 1,
"t
P

IS
)

B3R Y i A S S S M A A At B* S Sl N S B v NI A S e A i RO ARG I AR ot i el i i ol it i o R A

external subschema based on necwork model of CODASYL and an internal
schema for physical tuning particularly suited for engineering database.
The data description language is provided to describe schema and sub-
schema. PHIDAS also has a storage structure description language. Data
manipulation language is FORTRAN call statements to subroutines. Drawback

of the system is that it is difficult to represent matrix type data.

6.2.9 RIM

RIM (Comfort, Erickson 1978) stands for Relational Information
Management system. RIM has capability to create and modify data element
definition and relationships without recompiling the schemes or
reloading the database. RIM provides capability to define new types of
data for use in special application such as graphics. RIM supports
three types of data: real, integer, and text., Data definition and data
manipulation languages are available to define or manipulate
relations. The user has capability to project, intersect, join and
subtract relations. RIM has good query language. RIM's modification
commands permit the user to update relation definition, change data
values, attribute names, delete tuples and delete the entire relation.
Utility commands such as LOAD, and EXIT are provided to load a new
X database and close an existing database. Drawbak of RIM is that it does
not allow relation having row size more than 1024 computer words. It
does not provide an easy to use matrix manipulation routines. The
E application oriented FORTRAN call statements do not have capability to
define attributes, relations, rules, etc., required in defining a

schema. The system does not support management of a temporary database.

42

s.ﬂﬁ*a APt dodey .::‘.“:;zgz;ny;;n NN 'Q{::‘
2L LR ol , NI SN men, * e u{x~\¢x
T R

.51?’:: .:{iﬂ;m ‘”?P 1&15..:&.1.. ¢.§..._,.a. \ ‘\}.&&«"x

by Ay Sy

g
¥
fo

L1
>

A
Yite

'
i N

a4

.
'.1

N

-
oA .

- d
R .

:f',‘."-'.u“n A
A NSRS

-'l‘IJ-{ } "-'l
LAAPANCAEAS

6.2.10 SDMS

SDMS (Massena, 1978) is a database management system developed
specifically to support scientific programming applications. It
consists of a data definition program to define the form of databases,
and FORTRAN compatible subroutines to create and access data within
them. Database contains one or more data sets. A data set has form of
a relation. Each column of a data set is defined to be either a key or
data element. Key must be a scalar. Data elements may be vectors or
matrices. The element in each row of the relation forms an element
set. Temporary database capability that vanishes at the end of a job is
provided. A scientific data definition language provides a program—
independent data structure. Both random and sequential access of data
set 1s possible. Data elements include scalars, fixed and variable
length vectors, fixed and variable~size matrices., Data element types
include text, real and integer. Drawback of the system is that it does
not have a query language. Generalized database load/unload is not
available. Double precision data type is not allowed. The system is

implemented only on Cyber series computers.

6.2.11 SPAR

SPAR (Whetstone, 1977) computer program is a collection of
processors that perform particular steps in finite element analysis
procedure, The data generated by each processor is stored on a databasc
compller that resides on an auxillary storage device. FEach processor
has a working storage area that contains the input and the computed data

from the processor. Allocation of spaces in the storage area is a

43

"~

b
LS e

PLINE

problem dependent and is dynamically allocated during execution. DNata

transfer takes place directly hetween a specified location on disk using
a set of data handling utilities. SPAR database complex is composed of ~‘n;~
26 data libraries or data files. Libraries 1 to 20 are available for j?“1?§
general! use. Librartes 21 to 26 are reserved for temporary and internal
use. The database manager uses a master directory to locate the table of
contents which in turn is used to locate the data sets in the database.
Physically, the auxillary storage is divided into sectors of fixed size
and each read/write operation begins at the beginning of a sector.
Drawback of the system 1is that it does not provide either hierarchical
or relational data structure. Excessive fragmentation may take place if
the sector size does not happen to be an integral multiple of the data

that is stored.

6.2.12 TORNADO

TORNADO (Ulfsby, Steiner and Oian, 1979) is a DBMS system developed
for CAD/CAM application. 1t is a CODASYL network system written in
FORTRAN with a very useful for handling complex data structures. It
handles variable object length and dynamic length records. System
allows different data types ~ integer, real, character, double
precision, double integer, complex and logical data. The system has
easy to use data definition language and data manipulation language.
TORNADO system is highly portable. Data in the database can be accessed
by name. There 1is no restriction on data set types and allows many-to-—
many relationships. Drawback of the system is that the size of a data

object defined by the system is limited by the largest integer value

44

5 e
7‘$‘.’ -:b,-
$‘¢ f_'!
"y r
"-%‘- b
‘ &}3 ~
Y38]
‘ that can be represented in the computer. The size of the database is
limited by the maximum size of a file., A multi-file version is not (;
available. Matrix data is difficult to handle in the system. :j4
6.2.13 XIO b
XIO (Ronald, 1978) is a set of subroutines that provides :$i
. ::
generalized data management capability for FORTRAN programs using a :wﬁ
a
direct acces file. The system allows arrays of integer, real double =
precision and character data storage. Both random access and sequential ;ﬁ
access of data is provided. Variable length record 1/0 is allowed in ti‘
the system. Bit map scheme is used to identify the unused space for ;{
storage of data to minimize disk storage requirement. The program ?:f
allows restart facility using saved file following completion of a f:j
partial execution or after a program termination. Drawback of the .
o
system is that it can only operate on IBM360 or DEC PDPll computing :t{
system. The system does not provide data definition language. It does -}}
!
not provide either hierarchical or relational data structures. {5&
X
“:"». §
-
-x.
DI
e
a3
<74

MR i Sl |}
AR NS
IR
el N

L

)f{ff'

Wy
\J.:'

=)
s 2
n

XN
b

Adete
I‘ lf Al
Tt Jody Py

————_—
PACRIERS -
WA N L i

I}
L

el
F
SRRLELL o

.
Salale

R

o’

-

VII. DISCUSSION

Database management concepts in design optimization are discussed
in the report. The need for a database management system 1is f;ﬁﬂ
emphasized. The special features in design optimization such as
iterative solution procedure, uncertainty of solution, suitability for
interactive computation, incorporation of finite element analysis are
described. Data used in design optimization is discussed. It is shown
that large amount of data is used in design optimization and data

organization is quite essential to ease designer's task of data

management. Also, it is shown that amount of computation in design
optimization is large and efficient data management is essential.
Various terminologies used in database management field are listed in an
appendix. This 1is done primarily because different groups in database
management area use different terminology. Only well-accepted
terminology is given.

Database organization for design optimization i{s discussed. The
importance of classification of database on the basis of projects,
subsystems etc., is discussed. Data organization suitable for modular
program approach is presented. Different data models - hierarchical,
network and relational are discussed. Examples from both design
optimization and finite element analysis are chosen for demonstration
purpose. DNata model suitable for design optimization Is presented.

Various concepts of file structure are presented. The method used

R

for storing, retrieving and modifying data is described in detail,

Various techniques such as blocking, record length, paging, pointers,

46

N 1.4 A
P P g‘,‘/,

o
L

-
‘.]
a s akh

B B N . b o - - AV " n A e 3 RtaAEaay gl Rttty A Pal i

. @
s 8

"y v
[
.
.
'
'
.
.
B
14
.
L}
.

- 7
T Ve
a a‘ate’alaa

'

addressing, etc., are described. A file structure suitable for design

L X "

optimization is also discussed.

A review of literature on database management in engineering
application is made. Several database management systems have heen
:} developed. Features of each system are reviewed. Favorable features
2 and drawbacks of each system are noted. It is seen that the field of
database management in computer—aided design is quite recent. There is

substantial scope for enhancements in the area.

o s
Nl

& A

bl

RN M

»

Lt aCi
T e e
LV R

. ’.;"4 .-

O LA
PRI RN .
F I P S
—

f.

*
. fnd

Sy

&
L¢
..
o

'\ .

¥

ey
.

e 1 AT, G
’ '...Pl.
P

o

R

R
’l
3y

47

VYN
»h
'l ’.

I ‘,

\
D) ""-

\:Jl't'

la A S S AT A (- i G B e Sad e £ Sl Sl i SR S Bra sttt A i B i s U SO e ek’ Sl i ARG et b= i ol mi et adb i

Pl Saflir-afiitclis < ® S~ JARIL At hnd Sad

- APPENIDIX A

. TERMINOLOGY USED IN DATABASE MANAGEMEMT

&
]

A
.

-
.
s

NN
" UM
S . \~g‘\if:\
- el
\e by
W LR
Nl u‘_. -A‘ -
L N
— .
Xy
)
s
3L
"-\
-.s
-‘x
"
{
-—’ l
o'y
.D
«r
‘.-‘
-'_'c
'

P
YRR 5

e -

b et

48

L
=Sy

{'\"}, \\""Z

AR T

The terminology used in database management for describing various
ideas differ considerably from one group to another and even from one
time to another within the same organization. It is therefore necessary
to list the various terminologies used in the report which are taken from
most widely accepted sources. They are grouped into three categories -
Hardware terminology, Logical data terminology and Physical storage
terminology. They are listed in the following paragraphs in an

alphabetical order.

A.1 HARDWARE TERMINOLOGY

Auxiliary Storage: Storage facilities of large capacity and lower cost

but slower access than main memory. They are also referred to as
Peripheral or Secondary storage devices. Usually accessed via data
channels, in which case data is stored and retrieved by physical
record blocks. They include magnetic tape and disk units, drums and
other devices used to store data.

Cell: is used as a generic word to mean either track, cylinder, module
or other zone delimited by a natural hardware boundary such that the
time required to access data increases by a step function when data
extends beyond a cell boundary (Martin ,1977).

Cylinder: An access mechanism may have many reading head. Each head
can read one track. A cylinder refers to a group of tracks that can
be read without moving the acces mechanism (Martin, 1977).

Direct-Access Storage Device: 1IN direct-access storage device, access

to a position for storage or retrieval of data is not dependent on

the position at which data was previously stored or retrieved. It

49

ARG LAR AR AL S L A4
(&

LS|
N
()

-

DO

v o
Lt

is also called random access device.

Input—-Output (1/0) Device: An auxiliary storage device connected to the

CPU by a data channel.

Main Memory: A fast, direct-access, electronic memory hardwired to the
central processing unit. It holds machine instructions and data
that can be accessed in a time of the order of nanoseconds. It is

also, referred to as 'core' ,'main storage', or 'internal memory'.

Module: A module of the peripheral storage device is a section of %ﬁi}
hardware which holds one volume, such as one spindle of disks {ﬁg?
(Martin,1977). fii:

Storage Device - logical (Logical File, Memory Device, Name Space, or ‘ ﬁ;
Logical Address Space: A subset of the storage space that is :
treated as a named entity by the operating system for purpose of ;?ﬁ?
allocating and releasing storage resources during the execution of a ,g?qf
run unit (task). The term is most often applied to auxiliary ii%}

W
storage facilities T;?;

Storage Facility: Hardware available to store data at a computer

installation.

Track: A track on a direct-access device contains data that can be read

in a single reading without the head changing its position (Martin,

o
1977). N
Volume: A volume is normally a single physical unit of any peripheral i:f;
storage medium such as tapes, disk packs, or cartridges (Martin, Ugf\
.:_\’:_-'\
1977). R

. ,\:_

o a e dan RSN E e s i s A R b e
o

A.2 LOGICAL STORAGE TERMINOLOGY

Arithmetic Data: An arithmetic data item has a numeric value with

characteristics of base, scale mode and precision; e.g., fixed point
data (integer), and floating point data (real and double precision).
Attribute: Properties of entities are called attributes. Attributes
associate a value from a domain of values for that attribute with
each entity in an entity set. For the entity 'finite element’,
length of the element, number of nodes of the element, element
properties, etc., are its attributes.

Creation: It involves adding new files to the database, initializing

the files (i.e., file table definition), data validation, deciding
file types, etc.

Data Aggregate: A data aggregate is a collection of data items within a

record. Data aggregates may be a vector or repeating groups.
(a) Vector is a one dimensional ordered collection of data
items.
Example: Node numbers of a structure

(b) Repeating Group is a collection of data that occurs

repeatedly within a data aggregate.
Example: Degrees of freedom of an element.

Degrees of freedom for the element appear in

multiples of node numbers.
oocoo-cooo-ooc-.oooooo--ooo‘Dli DZi D3i, i= l,n

where i = node numbers and n = total number of nodes.

~
]
-

i

51

i

':' Data Definition Laqggggg (DDL): It is a set of commands that enable et

users of DBMS to define data structures to store the data. All ASED

" data that is to be managed by the DBMS must follow the rules laid :
;}: down in data definition language. A DBMS must provide DDL to %;{2
:; specify conceptual scheme and some of the details regarding the éz}*i
;; implementation of the conceptual scheme by a physical scheme. It téﬁ;
;:: is not a procedural language, but a notation for describing 5if“
o~ relationships among types of entities in terms of a particular data :{;C
.: model. \ ‘.
ﬁé. Data Independence: It refers to the independence between physical and iiim:
}?" logical data structures. Physical data structure can change 5;;;“
;Ei without affecting the user's view of the data when we have data '5.:
15 o
Ej independence. Similarly, logical data structure can change without :: :
5 affecting the physical data structure. ;“E?
ES; Data Item: A data item is the smallest unit of named data. It is also ;1 {t
;:1 referred to as the data element or field. Each data item has a 615:
P o—
};z unique representation. The data item can be any of the following ATE:
:%E types: arithmetic (integer, real or double precision real), or éii;
;fﬁ character string (character, bits). :S?};
;fz. Data Library: A named collection of data sets residing on a permanent > ':
:;5 storage device. It is the most complex data structure upon which a ggA:i
fé global database management system operates (Felippa, 1980).)}f.:
2:5 Data Manipulation Language(DML): It is a set of permissible commands :

ni that are issued by users or application programmers to the DBMS to

55 carry out storage, retrieval or manipulation of data. The DML

?E? represents interface between the application program and the

-. >,

R
b7

w
N

I
'.'\'l,
LR A

f

1

e
~

Data

Data

Data

database management system. Thus the data managed by the DBMS can
be accessed and processed through the use of DML. It can be an
extension of the host language.

Model: Data model is a representation of the conceptual scheme for
the database. Generally a data definition language which is a
higher-level language is used to describe the data model. Examples
of data model are hierarchial, network and relational.

Set: An ordered collection of logically related data items arranged
in a prescribed manner. Each data set has some control information
that can be accessed by a programming system (Martin, 1977).

Structure: Logical arrangement of data as viewed by the users or

Database: A database is a collection of the occurences of multiple

Database Administrator (DBA) is the brain of the system. 1t provides

applications programmers.

record types, containing the relationships between records, data
aggregate and data elements. It is a collection of data files

stored on a storage device.

Database Management System (DBMS) The software that allows one or many

interfaces between the various parts of the system, does error

recovery, and enforces security measures.

Database System: The set of all databases maintained on a computer

persons to use and/or modify the database is called a DBMS. DBMS :{ﬂ:

s
also deals with security, integrity, synchronization and protection 1;3
of the database.

:I.Z':.,'-'f"- JL '

installation (or computer network), which are administered by a

common database manager.

< Entity: 1t is a thing that exits and is distinguishable, e.g., finite

g element.

b Entity Identifier: It is necessary for the programmer to be able to

record information about a given entity. Also it is necessary for
the computer to be able to identify it and have means of finding it
in storage unit. Entity identifier must be unique. Example -
Element number.

Entity Set: Collection (group) of all similiar entities is referred to
as an entity set. Example- all finite elements.

Garbage Collection: The process of locating all pages that are no

longer in use and adding them to the list of available space.
Group: A data set containing a special 'owner' or 'master' record (the

group directory) and a set of member records (Felippa, 1980).

Instances: The current contents of a database is called an instance of

the database.

Interrogation: This deals with identification, selection and extraction

of data from the database for further processing. It can be
divided into two phases:
a) The process of selection and identification of needed data and
extracting 1it.
b) The processing part which involves computation, display or any
other manipulation required including updating parts of the
database.

Logical Data Structure: Data in a particular problem consist of a set

of elementary items of data. An item usually consists of single

element such as integers, bits, characters and reals, or a set of

such items. The possible ways in which the data items are
structured defines different logical data structures. Therefore, it

is the data structure as seen by the user of the DBMS without any R

regard to details of actual storage schemes. :;:-
Memory Management System (MMS): A system that allocates the available ??%i
memory to the different entity sets in a program and makes it appear :;E,
as if more memory is available than what the computer has. ;;;
Module: A program that performs an identifiable task. -
Programming Language: The language that an application programmer may :?»;
use; e.g., FORTRAN. éfj

Program Library: A collection of subroutines that perform primitive

functions. Ry
Primary Key: The entity identifier is referred to as the key of the ,:Q-
record group or strictly it is primary key. Example - Element

number.

Query Language: Query is the process of question and answer that can be

accomplished using the query language, i.e., Query the database. The ‘ii;
e

commands are generally quite simple and can be used by \jﬁ
P

nonprogramming as well as programming users. These can be =

interactive commands as well as utilities that can be called from an

application program.

Record: A record is a named collection of data elements or data
aggregate. When an application program reads data from a database,
it may read one complete record at a time.

Schemes: When a datahase is to be designed, we develop plans for it.

Plans consist of an enumeration of the types of entities that the

55

L e “
S e et e e

PR
- - * At » "
E N Ay D -
RR D SRV DA, (2 2 e S SNy -y 1N

« Dl . d iV . aam e de b ue & ol e el d e Al gr A 0l S AL ML S ML Il i e A

o

5

?i database deals with, the relationships among the types of entites,
;;‘ and the ways in which the entities and relationships at one level of
1}3 abstraction are expressed at the next lower level. The term scheme

N .

::j (schema) is used to refer to plans, so we talk about conceptual

AN schemes and physical schemes. The plan for 'view' is referred to as
ti; a subscheme (subschema).

;{3 Secondary Key: The computer may also use a key which does not identify
3 a unique record but identifies all those which have certain

Eﬁ properties. This is referred to as secondary key.

ii Storage Address (Address): A label name or number that identifies the
%ﬁ place where data is stored in a storage device. The part of a

it% machine instruction that specifies the allocation of an operand or
{iﬂ the destination of a result.

N String Data: String data are either of the type character or bit. The
ii; length of the string data item is equivalent to the number of

.

uE characters (for a character string) or the number of binary digits
'3' (for a bit string) in the item.

Lo

;Ei Subscheme (View): A map of a programmer's view of the data he uses. It
ygi? is derived from the global logical view of the data — the schema,

_;; and external schema (Martin, 1977). It is an abstract view of a

:EE portion of the conceptual database or conceptual scheme. A scheme ;
:{i may have several subschemes. These are defined using the data

%ﬁ definition language (DDL).

Eg: Systems Programmer: A person responsible for installation and

:?: maintenance of computer programs.

Vectors: It is a one dimensional ordered collection of data items, all
of which have identical characteristics. The dimension of a vector
is the number of data items contained in it.

Word: The standard main storage allocation unit for numeric data. A
word consists of a predetermined number of byte characters or bytes,
which is addressed and transferred by the computer circuitry as an

entity.

A.3 PHYSICAL DATA STORAGE TERMINOLOGY

Address: It is a means of assigning data storage locations and
subsequently retrieving them on the basis of key for the data.

Bit: An abbreviation of binary digit. The term is extended to the
actual representation of binary digit in a storage medium through an
encoded two-state device (Felippa, 1980).

Byte: A generic term to indicate a measurable portion of consecutive
binary digits. The smallest main storage unit addressable by
hardware. In machines with character addressing, byte and character
are synonymous (Felippa, 1980).

Character: Member of a set of elementary symbols that constitute an

alphabet interpretable by computer software. A group of consecutive
bits that is used to encode one of the above symbols,.

File: A file is a named collection of all occurrences of a given type
of logical records. It is also a collection of data sets.

Page: A basic unit of primary storage; also basic transaction unit

between primary and secondary storage.

57

-

SR R
P AN PN PENE V. W

AT &

¥ .Jfll }IJI it 3

FAaFany guv he

s
PR

Paging: In virtual storage systems, the computer memory is made to N
appear larger than it is by transferring blocks (pages) of data or A

programs into memory from external storage when they are needed.

This is called paging.

Pointer: The address of a record (or other data grouping) contained in
another record so that a program may access the former record when
it has retrieved the latter record. The address can be absolute,
relative or symbolic.

Physical Data Structure It is important to distinguish explicitly

between logical data structures and the ways in which these
structures are represented in the memory of a particular computer.
This may be dictated by specific hardware and software systems. The
way in which a particular logical data structure is represented in
the memory or secondary storage of a computer system is known as
storage or physical data structure.

Sequential Access: A serial access storage device can be characterized

as one that relies strictly on physical sequential positioning and

accessing of information.

Storage: The process of assigning specific areas of storage to specific

type of data.

Virtual Memory: The simulation of large capacity main storage by a

multi-level relocation and paging mechanism implemented in the

hardware.

PV
)

.
v
it
- +
Soae
PR K
PR
a

z
s
. '

58 - ,q
b

- y) .

. LT e R - . ~ LN PSR ' w e T e .
- ST AT AT R S P D .-;‘-.‘_-.\- "-:"‘-" L e e

P Sl e et S te Lt e T . S . . R
SIVLE I U P P PRl W PR S R I PR D AP I O WHE A WA TR PR OR WA s W WS W oA SRR L NS

,

PR

k|

ety

N

[y
DA

g~

W- Chma~patwr ponhansaboaa b ansihe tie s oo S i e an i
i
33

REFERENCES

Afimiwala, K.A. and Mayne, R.W., 1979, "Interactive Computer Methods for
Design Optimization,” Computer—-Aided design, Vol. 11, No. 4, pp.
201-208.

Bell, Jean, 1982, "Data Modelling of Scientific Simulation Programs,”
Int. Conf. On Management of data, June 2-4, ACM-SIGMOD, pp. 79-86.

Blackburn, C.L., Storaasli, 0.0. and Fulton, R.E., 1982, "The Role and
Application of Database Management in Integrate Computer Design,”

Journal of American Institute of Aeronautics and Astronautics, pp.
603-613.

Browne, J.C., 1976, "Data Definition, Structures, and Management in
Scientific Computing,” Proc. Of ICASE Conference on Scientific

Computing, April 1976, pp. 25-56.

Bryant, J. C., 1978, "A Data Management System for Weight Control and
Design-to-Cost", NASA Conference Publication 2055.

Buchmann, A.P. and Dale, A.G., 1979, “"Evaluation Criteria for Logical
Database Design Methodologies,"” Computer-Aided Design, pp. 121-126,

Comfort, D. L. and Erickson, W. J., 1978, "RIM-A Prototype For A
Relational Information Management System,” NASA Conference
Publications 2055.

Daini, O. A., 1982, "Numerical Database Management System: A Model,”
Int. Confer. On Management Of Data ACM-SIGMOD.

Darby-Dowman, K. and Mitra, G., 1983, "Matrix Storage Schemes In Linear
Programming,” SIGMAP bulletin ACM, No.32, April 1983, pp. 24-38.

Date, C.J., An Introduction To Database Systems, Addison-Wesley,
Reading, Mass., 1977.

Derwa, G.T., 1978, "Advanced Program Weight Control System,” NASA
Conference Publication 2055,

Eastman, C.M. and Henrion, M., 1980, "The Glide Language for CAD,"” J. Of
the Technical Councils Of ASCE, Vol. 106, No. TCl, Aug. 1980, PP
171-184,

Eastman, C.M. and Fenves, S. J., 1978, "Design Representation and
Consistency Maintenance Needs in Engineering Databases,” NASA
Conference Publication 2055.

ER N N
A TNt Iy o Nty

B AP A S

3T

Elliott, L., Kunii, H. S., and Browne J.C., 1978, "A Data Management
System For Engineering and Scientific Computing,” NASA Conference
Publications 2055.

jt EmkiQ, L. Z., 1978, "ICES Cocepts—A Modern System Approach,” Computing
N n Civil Engineering pp. 89-107.

Felippa, C. A., 1979, "Database Management In Scientific Computing-I
P General Description,” Computers and Structures, Vol. 10, PP.
53-61.

- Felippa, C. A., 1980, "Database Management In Scientific Computing-II,
(<, Data structures and Program architecture,” Computers and Structures,
Vol. 12, pp. 131-145.

bkf Felippa, C. A., 1982, "Fortran-77 Simulation of Word-addressable Files," :ﬁf-
e Advanced Engineering software, Vol. 4, No. 4.

Fischer, W.E., 1979 “PHIDAS -a Database Management System for CAD/CAM ’n*}}

Software,” Computer—-Aided Design, Vol 11, No. 3, pp. 146-150. T

50 St
A Fishwick, P.A. and Blackbura, C.L., 1982, "The Integration Engineering Lo

Programs using a Relational Database Scheme,” Computers In Engg,
Int. Comp. Engg. Confer., pp. 173-181.

Fulton, R. E. and Voigt, S. J., 1976, "Computer—Aided Design and
LR Computer Science Technology,” Third ICASE conf. on Scientific
b Computing, April 1976, pp. 57-82.

Galletti, C,U. and Giannotti, E.I,, 1979, "Interactive Computer System
) Functional Design Of Mechanisms,” Computer-Aided Design.

Grabowski, H., Eigner, M. and Rausch, W., 1978, "CAD Data-Structures For
: Minicomputers,” Third Int. Conf On Computers and Engg., CAD 1978,
o pp. 530-548.

Grabowski, H. and Eigner, M., 1979, "Semantic Datamodel Requirements and
. Realization with a Relational Data Structure,” Computer-Aided
-, Design, Vol. 11, No. 3, pp. 158-167.

Haskin, R. L. and Lorie, R. A., 1982, "On extending the Functions Of a
- Relational Database System,” Int. Conf. On Management of Data ACM,
ot 1982, June 2-4, pp. 207-212.

Haug, E.J. and Arora, J.S., 1979, "Applied Optimal Design," John Wiley
and Co., 1979.

i Heerema, F.J. and van Hedel, H., 1983, "An Engineering Data managemet
System for Computer—Aided Design”, Advanced Engineering Software,
Vol. 5’ No. 2’ PP 67-75-

Jeffersion, David K. and Thomson, Bernard M., 1978, "Engineering Data
Management: Experience and Projections,” NASA Conference publication
2055.

Jenne, R. L. and Joseph, D. H., 1978, "Management of Atmospheric Data”,
NASA Conference Publication 2055.

Jumarie, G., 1982, "A Decentralized Database via Micro-computers a
Preliminary Study,” Computers in Engineering, Int. comp. Engg.
Confer. ASME, pp. 183-187.

Kamel, H. A., McCabe, M. W. and Spector, W. W., 1979, GIFTS5 System
Manual"”, University of Arizona, Tucson.

Kunni, T. I. and Kunn, H. S., 1979, "Architecture of a Virtual Graphic
Database System For Interacive CAD", Computer-Aided Design, Vol. lI,
No. 3, 1979.

gellrs
Lafue, E! 1978, "Design Database and Data Base Design,” Third Int.
Conf. On compters in Engg. and Building Design CAD78, Brighton
Metropole, Sussex, U.K., 14-16 March 1978.

Lafue, G.M.E., 1979, "Integrating Language Database for CAD
Applications,” Computer-Aided Design, Vol. 11, No. 3, 1979, PP
127-129.

Lopatka, R. S. and Johnson, T. G., 1978, "CAD/CAM Data Management Needs,
Requirements and Options,” NASA Conference Publications 2055.

Lopez, L.A., 1974, "FILES: Automated Engineering Data Management
System,” Computers in Civil Engineering, Electronic Computation, pp.
47-71.

Lopez, L.A., Dodds, R.H., Rehak, D.R., and Urzua, J.L., 1978,
"Application of Data Management to Structures,” Computing in Civil

Engineering, pp. 477-498.

Martin, J., 1977, “Computer Database Organization”, Prentice~Hall.
Inc., Englewood Cliff, N.J.

Massena, W. A., 1978, "SDMS - A Scientific Data Management System,” NASA
Conference Publication 2055.

Nye, W., 1981, "DELIGHT- Design Language with Interactive Graphics and a
Happier Tomorrow,” Electronics Research Laboratory, University of
California, Berkeley, CA 1981.

Pooch, U. W. and Neider, A., 1973, "A Survey Of Indexing Techniques For
Sparse Matrices,” Computing Surveys, Vol. 5, No. 2, June 1973, pp.
109-133.

P 3 . e - - ‘. . . .
T N T S SR)
. p N PR SPid
FRE A LA R A

k. Deimaloind

PRI

i

PRSI

e
AT .

[Foe " a
pr

— Pt el 2 i
. ¢ Voo
PRSI GE

B S

x

AR A

~ 4 g - - o a T e e
SR 2 2 R SRS At A At e OV C il i el U Stk AP oA HRCHAE ST

Rajan, S.D. and Bhatti, M.A., 1983, "Data Management in FEM-based
Optimization software,” Computers and Structures, Vol. 16, No. l-4,

RIM User's Guide, 1980, Academic Computer Center, University of
Washington W33, Jan 1980.

Ronald, D. P., 1978, "XIO-A Fortran Direct Access Data Management
System,” NASA Conference Publication 2055.

Roos, D., 1966, "ICES System Design", The M.I.T. Press, Massachusetts.

Roussopoulos, N., 1979, "Tool for Designing Conceptual Schemata of
Databases,” Computer—Aided Design Vol. 11, No. 2, pp. 119-120.

Schrem, E., 1978, "Functional Software Design and its Graphical
Representation,” Computers and Structures Vol. 8, pp. 491-502.

Somekh, E. and Kirsch, U., 1979, "Interactive Optimal Design of Truss
Structures,” Computer-Aided Design pp. 253-258.

SreekantaMurthy, T. and Arora, J.S., 1983, "A Simple Database Management
Program (DATHAN)," Technical Report, Division of Material Engg., The
University of Iowa, Jan. 1983.

SreekantaMurthy, T. and Arora, J.S., 1983, "Database Management Concepts
In Design Optimization,"” Technical Report, Division of Material
Engg., The University of Iowa, June 1983.

SreekantaMurthy, T., Reddy, C.P. and Arora, J.S., 1983, “"User's Manual
For Engineering Database Management System EDMS,"” Technical Report,
Division of Material Engg., The University of Iowa, Oct. 1983.

Ulfsby, S., Steiner, S. and Oian, J., 1979, "TORNADO:A DBMS for CAD/CAM
Systems,"” Computer—-Aided Design, pp. 193-197.

Whetstone, W. D., 1977, SPAR Sfructural Analysis System Reference
Manual, System Level II, Vol. I, NASA CR-145098-1.

62

YRR I I}
R

Kl .l‘ "‘ .,

r

b
.
2 _a

Sl -
| T, R o
.;bﬁée' :

J{?.
o

5

<¥.‘
"

MR

N H "- A’J
[l

PRV RV ALRIRFRFS,

T
LN

€«
P

at AN
.

[}
-1 H

e ~
P

I o
AENANON

3
e

ABSTRACT

This report describes concepts and requirements of a database
management system for engineering design optimization and, in general,
scientif;c computing. Distinction between database management in
business and engineering applications is first hightlighted. General
concepts for design of a database management system in scientific
computing and, in particular, engineering design optimization are
presented. Based on these concepts and requirements, a set of detailed
specifications suitable for database management system (DBMS) has been
developed. Such a DBMS can be used in the development, implementation
and evaluation of database management concepts and methods for design
optimization. Some important specifications for the system are: (1)
data independence, (2) multiple logical views of the data, (3) memory
management, (4) matrix operation utilities, (5) query language for use
in interactive sessions «s well as applications proevams (useful for
defining optimization problems), and (6) management u: permanent,
temporary, global and local databases. These capabilities must be
present for design optimization applications. Based on the
specifications, a database management system called EDMS (Engineering
Database Management System), has been initiated. The system is being
developed and integrated into design optimization methods. Tt will be
used in the design, implementation and evaluation of database management

concepts for design optimization.

;. ‘,‘_-3 .

R J o
- ’ - b ~ - -
W I AR Y S

A
it aibated

S ’
A ‘A' .“ .j‘ ‘I‘ .l.;'l.

I.

1I.

III.

- ™) e T T
—— . - - e reace e At R, gl atil Rl p it gl Sp Ml pARE SR RLER AR ARG

TABLE OF CONTENTS

INTRODUCTION. . . s ccoovensanocsoasosssssncnssasconsnssnnssonses
CONCEPTS AND REQUIREMENTS. . cccovoreossecsnsnonsorssasnsscnos

Introduction.‘...........l..'...Il'......‘.l..'..l.‘l..
Database Organization.cececeecsssecsocsonsosnssssonssans

2,1

2.2

2.3 Classes Of US@ISeessescscesssocvessssosssessscossannnns
2.4 Programmer's Interface..essessseseesssscccccncsncensons
2.5
2.6

Data Manipulation Language...eceesocescecosossocccsccns
Detailed SpecificationS...c.cecevessseooscessscosssoons

DIscussIouANDcomUsIoNs...........l’.l.l'.'.."I.I..'..l.

EDMS and Design Optimization....ccceeevucncsonccnnsnssonnnses

REFERENCES.-...;.lo.oiolo..oooo-ooon-o-onooooo-o.cooo--oooc-

Page
1

13
16
17
18
24
30

32

P ey ey e g, a v w i a M ' a e _ w ., a4 v «. ¥ . s 4 ~ @ « = = @
Ma ek 2 e - siee ad ‘pd - et aah-ni - etk -t ail At B pagt aei Rl NI A DRI AN BESL B S S R - A

-«

Sy
4

I

iqg;

5
~
]
3

-
<, '.‘:’{l :to : ."‘t

.
' '

I. INTRODUCTION

In a previous report (Rajan, Bhatti and Arora, 1983) database
management system for structural design optimization was described. The
system has been successfully used to solve known structural optimization
problems. In another report (Sreekantamurthy and Arora, 1983), concepts
of database design - physical and conceptual - have been studied.
Existing literature on scientific database management systems has been
extensively reviewed. This has been done to determine the suitability
of existing systems for use in design optimization environment. In this
report, concepts and requirements for a database management system
suitable for general engineering design optimization environment are
presented.

Conslderable work has been done on database management in business
type applications. Several books (e.g., Ullman, 1980; Wiederhold, 1977)

are avaiable. Whereas some progress has been made in database

management in scientific environment (Sreekantamurthy and Arora, 1983),
considerable more work needs to be done. A reason for this slow

progress in database management for scientific computing is due to a

view that database management systems developed for business

applications can be adapted for every other type of application. o
However this view is not correct as can be seen from the comparisons jg?
given in Table 1 (Felippa, 1979, 1980). =

There is a functional separation between business and scientific

)
2
"

computing that dictates the need for database management systems for

o 2w 2%
7

[t
Pl o]

scientific applications. Most scientific computing problems can be r%}
b
characterized as “large computing-large 1/0". In comparison, business ;fg

A SRV ST
SR
AT T) B .
A Y e

Al N S) Vel
?a k’-‘-’-‘:‘-{%{*}\.l‘u{'\-‘: w‘:‘-‘h&\.‘k ::'.a PO R SRy

.

"
LR
|y R S

e -
=Xy
s

Er
«
1

el
e

@« e

P
Y
st
N

A

‘v "J
3

ERRPER

1Y "l..

(O

L)

A
.
b e

-
~* "

"l

ll“
SERPRLAMED

= XONOWN

Byt at -~
St
- l‘\“'

o
M

y .
ALY

o . o
. <

N IR
RN

:
1

2T

i AL -
et

P A

aL o d

LI Seltatte
e

Ve A _~.’ ."

.
v

-~ s
. f‘wi’-'n ‘vf‘. L INE
e BV AR

2

N A
LN)

N IS

[N

SCNTIEN
S

Table 1

SCIENTIFIC Versus BUSINESS DATABASE MANAGEMENT

Scientific Computing

The data managed is static as well
as dynamic. There is a need for
frequent updating and deletions.

Unit of 1/0 is large and effects
large segments of the database

Main memory requirements are
high, requiring careful
allocation of resources.

Establishment of relations is
dynamic and depends on usage
and the user. There is no
need to save these relations
because they change from
application to application.

Emphasis is on ease of estab-
lishment of relations.

Need for dynamic altering of
logical view of data, i.e.,
same data can be viewed in
more than one logical order.

Deals with numeric data and is
word oriented.

Business Computing

The data managed is mostly
static,

Unit of I/0 is small.

Memory requirements are
small,

Relations are known and
static., They are established
by programmers. They hold
good for general users and
can be managed by the
system

Emphasis is on storing
relations.,

The organization of logical
record is determined at
the time of data defin-
ition and is viewed in
the same order.

The data managed is character
and byte oriented.

:é'-

F]
"

“ ‘.J
L
agiy 2%

&

X

o At e 4
.

v o A

1A

problems can be characterized as “small computing-small 1/0". Also, the
nature of the I/O in two applications differs significantly. Initially,
all business applications were termed to be “small computing-small 1/0"
and scientific applications "large computing-small 1/0". The former
remains valid today but the later has changed to "large computing-large
I1/0" with the integration of various disciplines aimed at solving a
problem. This change rules out the possibility of using database
management systems that are developed for business applications.

Most noticeable trends in scientific computation are the increase
in size and complexity of programs, and integration of software from
differing scientific disciplines. This trend combined with the
shortcomings of existing database management systems dictates the need
for a scientific database management system that posseses certain
distinct features:

a) That it be a "general-purpose” system which can be integrated

with any other existing or new application systems.

b) That it possess memory management which would translate user
defined logical structures to physical structures, as well as be
responsible for optimizing I/0.

c) That it possess built-in utilities that are commonly used, and
provision to develop utilities as the need arises.

d) That it be developed in a language which is widely used in the
area.

e) And it should be implementable with minor modifications on most

computer systems, i.e., portability of the system is essential.

2

PR
‘ s

' .
“X' r
A

f
Y S

Y

Va0
]

| A
Ty

W1

i

5y

‘r

2t
R
SR
NN
e
A, B, 1,1, 0,

L.k

Design of complex systems of the future will require sophisticated

technology will play a key role in this process. Proper management of
data will be a "must”. The database management system will be the core
of the design optimization software. The system must be such that it
facilitates the development, enhancement and modification of the design
optimization software.

Purpose of this report is to present some general concepts and
requirements for a desirable database management system in design
optimization environment. Based on the specifications given here,
development of a database minagement system has been initiated. The

system is being incorporated into design optimization programs to

completely develop and evaluate database design and management methods.

software. The process will be automated to some extent. Optimum design

AL

AD-A162 212 DATABASE MANAGEMENT IN DESIGN OPTINIZRTIOM(U) I0WA UNTV 3/
’ IOIM CITY APPLIED-OPTIMAL DESIGN LA
T SREEKANTAMURTHY ET AL 38 OCT 33 CAD-S5~- 82 1?7
UNCLASSIFIED AFOSR-TR-85-1883 AFOSR-82-8322 F/G

Ay
"L

%A
®

[FI
B2 umz.z

m

ol

o

I

FPEREEEE

R
« -}“.‘%
T
I .
AR
]
N |
)
W
N",(i
3 |||||

IL2s s pe

———

—
.
—
Fr

F

Fr

Il

- MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

)
I -
LI N

Py
L

'

[Gy e by

W,

4

YN
f\. MY SANS

e N Tt L SRS A
NS s

T R W W LR L Net Wy
-

oo s

4 II. CONCEPTS AND REQUIREMENTS

2.1 Imntroduction

It can be seen from the review of the literature that existing
database management systems will not satisfy needs of engineering design
activity., The context-free systems [GLIDE (Eastman and Henrion, 1980),
and DELIGHT (Nye, 1981)] are not suitable as it is impossible to add new
capabilities to the system by users from different fields. Only
originators of the program can add, modify and extend the system.
Therefore, application-oriented managers are more suitable for

engineering design act-ivity. In this regard RIM (1980) and GIFTS

(Kamel, McCabe and Spector, 1979) data managers come closer to
satisfying the requirements. However, as noted earlier (Rajan, Bhatti
and Arora, 1983; Sreekantamurthy and Arora, 1983) they also have certain
drawbacks. What is needed is a set of standard routines that allow
designers to create data structures, manage the memory, and store,
retrieve and manipulate the data. The DBMS should also have standard
utilities to locate and retrieve data records with values for certain
attributes matching the given value. Some of these operations are

extensively used in the management of various business-type databases.

These can be utilized here also.

)

0.
&
7

-

In the engineering design environment, there are several unique

PR
-8

:‘ ‘I.‘.'.‘:.::-
L lal A
'_'_‘l':;"f Ly

requirements that must be satisfied by a good database management

v

system. The system should manage not only the permanent database but it ﬁ\{xi

&
must also create and manage the temporary databases in a particular RN

DR
application program. This requirement is absolutely necessary as design ?é%%g
of various systems from different fields requires development of special ‘ 'E

N
)

& 0
¢~¢\"-‘

1
.
»
v
]
.
¥
r

N _).
o)
| d
5,
‘:' .‘:‘.':\
‘ 3 0- °, -‘ e
'{' ": -
ey
%ﬁ purpose application programs. Development of such programs and data R,
\ handling must be facilitated by the DBMS routiunes. With these general 5
7. X9
- 3
- requirements in mind, a set of specifications has been developed for }%ﬁ%f
w. .‘:1-:'.:.'
{3 such a DBMS. These are presented later in this chapter. The system is ftﬁw
called EDMS which stands for Engineering Database Management System. _
‘ SR
--ﬂ';.‘x{
: g
» 2.2 Database Organization "ot

2 To justify the effort and the expense of implementing the EDMS, it

should stand the test of time and place.

» TEST OF TIME: The time and expense used in implementation of the EDMS o
; oo
o should be returned well before the system is outmoded. ate]

- Outmode is a certainty but the time lag between EDMS

implementation and its outdating can certainly be

,_) increased by introducing a high level of flexibility. .{f}_.
E TEST OF PLACE: The cost of development of a database is high but it can Ei\
" be justified if it is compatible with different computer .
"' systems. This is necessary because in scientific ;-:::“E:“
:& environmeut several computer systems may be used. ‘E"‘”:
. The database, especially in a large organization should be both \':;
‘;‘ hierarchical as well distributive. The need for distributive

E:: organization stems from the fact that many organizatious employ

: different computer systems and if EDMS is restricted to only one system

3.' it results in loss of flexibility. Distributed database is nothing but

f. distribution of data libraries over several systems and accessible

.': through one system. However thig, if unot uneeded, can be made

: 6

v

\,~\..‘..‘.,-_-‘ _.‘...‘._. EENE NI

'-.-'u;m{i A “\”, ~Or y ," \ 3.-“'! - ST R L AN T \1.‘-.-.-\.-.1.\.‘-'.‘-'.."
SR >\£. R NaRRRIoY ,:w{. SRS R :

rriaed R . : AR :
R "-.-'» {'o.;'\-'f!.. .‘m O LT Sy A O

d'. ‘}'

l‘i

.\.,.

optional. The EDMS residing on one system would be in a position to

access parts of the database that are residing on some other system.
This is very useful in an environment where there are several micro,
mini, and main frame computers. This flexibility however introduces
complexity, requiring implementation of communication links between
various systems. The problem can be tackled once the basic software has
been developed and tested.

The distribution dealt only with data libraries. However, they are
not the only things that constitute a DBMS. Figure 1 shows a general
layout of the DBMS and a database. The EDMS should be organized in a
hierarchical manner. The head of the hierarchy would be the (Database
Administrator (DBA)). The interaction between various users and the
database 1s conducted through DBA. DBA is a processor that understands
the logical data structures used by the users. It maps them into
physical s;ructures, stores the data into the database and retrieves
it. The DBA is the most complex part of the EDMS, i.e., it is the brain
of the system. Next in the level of hierarchy would be the databases,
local and global. These two are at the same level. At the next level
is the data library. Several data libraries constitute a global or
local database., A data library is comprised of data sets. Data sets
are groups of related data items which may be accessed as a unit or sub-
unit. These sub-units constitute the lowest level of hierarchy and are
units of physical transfer (record/block/page).

The logical view of the database is slightly different and the end
users are restricted to this view only (see Fig 2.). The logical view

consists of a global and local database after the DBA. The DBA to them

7
o, SISANSOFRFIEES SN ALSS TR ok bt Ak A LA S S AP
P < 'y A L DR LR S g e DA b A
R E R R e R

~ AP .
-" “‘- .' F',' -')'1'

e Ok LALS
o E:;;%.Ez.. Jeatianee;

X

[
s fv tr

P
4{41

AL A Y
s

¢

2 0
a o

is a black box with multiple entry points. (The entry points are

nothing but commands that are supported by the EDMS). The users must be

aware of the existence of the global and local databases, so that they ey

can store data into and retrieve data from them. They should have .rj'i:

access to the index of the global database and also to their own local ';

A

database. This is needed to enable the user to verify the existence of :_

various libraries and data sets contained within them. Once they _--._..

provide information about the data library and the data set they have

some flexibility at the next level in accessing or storing data by means ':JE':

of logical structures. They can do that without worrying about the EE[‘

physical organization of the data. “

Any user of the database must go through the DBA to get to the :‘-

database. Some of the functions performed by the DBA are outlined {:

below, disregarding the implementation details. o

(1) Map Logical Data Structures into Physical Data Structures and

Vice Versa. "j\:.:

Given a logical data structure and the database, data library, ,

data set names, and the data aggregate, the DBA gets record(s) :ii;

from the database or stores them into it. The importance is in :}»}

. conversion from logical to physical and physical to logical :”_“_:
:‘I: structures. x..
‘;_; (i1) Allocation of Secondary Memory Storage. :t:
:‘; Allocation of secondary storage deals with initializing data V

':,'.3& libraries and data sets. Ty

t: (i111) Protect Database from Unauthorized Users. "‘z:

u The DBA has an access matrix which is a 1list of users of the

i i

I 8 o

o BEN
L, NS

DR S S P PRt Sl Wt ._q B A R A R O St T
A S S A R
Nt N Lt

Ul
TN y-o‘.x:.

-
03 NN

“* N*- .‘“‘;‘.‘
' ,a:;\u,&k\ -\ .x..q.‘.c,“ ‘

;T_.i

.

Com

&
..
AL

.
K

“5
)

»
t

W

- "
Y
R

..
Y U
PR

/<

X W)

>

A .l.v‘f_ [

sl

Ly

AN

Ty

GLOBAL DATABASE

.

LOCAL DATABASE

—F

i

DATA LIBRARY

RECORD/BLOCK/PAGE

Figure 1. General Layout of a Database

AL AL .Y,\'*.‘. v,

a
-,

.~"-'U*-"’)'\. \.n-. ‘_.'(_"-‘!‘-\-’

. \e

EERRA R P T

~

5 DBA :.:

3% I :x |
B, 41 S
& ¥
- GLOBAL DATABASE LOCAL DATABASE o
\
at o

Y, 7,
o
';&1

-

LY . 2 =
& _

DATA LIBRARY

oy

3 l R
i e
2 DATA SET 30
--_‘. :"n:*
- ?‘3.
e
o LOGICAL RECORD r‘{

RN

) i A g e
- ¥ * P e
SUB MATRIX ROW/COL VECTORS ;%

k [[59

1
: Eadd
DATA AGGREGATE
k) J k‘."_tl.
Y ® oy
. N
Y DATA ITEM Bt
oy N
3 l“‘» i‘
l..l (]
RS R
5 e
B Ve
X R
o
%, Figure 2. Logical View of a Database Ty
i :
N
! &
% W 3
‘.!: _:. X
:-:‘. t-:
W :

Cadieen

‘,.nmS}Mf ﬁ

database and all the libraries in the database. This matrix

contains information about who can access what libraries. If a
user tries to access a library without access rights the DBA
protects the database.

Keep Track of the Indices of Data Libraries as well as Data
Sets in each Library.

Given data library and data set names the DBA should map into
the physical location of the starting point of the data. To
achieve this the DBA has to maintain a list of the data set and
their physical locationms.

Prepare Data Libraries for 1/0

Once the physical location is determined the record that is
needed should determined, positioned and transferred to the
main memory. The data so transferred may not be in the format
of the logical structure required so a conversion might have to
be performed.

Error Detection.

There are several types of errors that can occur. The user
should be given sensible reasons for the error and if possible
any solution. The most common errors might be data types or
wrong data set name in a given library or wrong data library.
Maintenance of Local Databases.

Maintenance of local databases is very important. It
introduces a little distributive feature, because each user may
have zero or more local databases. There has to be efficient

interaction between global and local databases.

(viii) Support a Query Language Processor.
The user of query language is probably the most demanding s
uger. Such users have to interact with the EDMS in an English

like language at the system level. This requires DBA to have a

processor that can process the requests and format the data to

satisfy the requests. The commands should be processed when

the DBA is invoked from an interactive device, or by CALL
statements in an application program. The DBA should have .-..
syntactic analyser so that commands can be processed. All the i{f

above features form the query language processor.

(ix) Page Table and Page Replacement Algorithms. o
Since the users are blind to the physical storage structures T
and are provided the data independence (with respect to logical %m.i
structures), some memory management has to be performed by the

DBA. This involves maintenance of page table, as well as use

of page replacement algorithms.

{x) Keep Track of Statistical and Management Information.

The introduction of physical to logical mapping and memory {xii
management implies complexity. Since no one method of physica. {f)f
storage or page replacement algorithm can be efficient in a :;E;
dynamic environment, there should be features (statistical) ;;;i
that monitor the efficiency of given algorithms. $;3'

(x1) Maintenance and Updating of Access matrix of all the Users.

The access matrix is primarily used for protection of the

~ " Y

database (global). Whenever a new user accesses the database o
their key is included in the access matrix. Assoclat>d with %ﬁ?&
y e
; R
12]
" SR
B E»~ﬂ€
Ty . S |
. T R S K e _‘_ T ~ et .-"‘..5:' o - : TR .F\-._,,-,,\4:;::_:-:_::-}; : ‘:\._.-‘__\:_,_;_ : S

R
iy) N " g

4 TN ey WO T T YV N g T el o ETLETTL TR AT T T s s kT T e TN e et ARARY R

each data library is a set of keys. The user can access those
data libraries that contain the key (given) in their set, i.e.,
user can access the library.
Let (kl,k2,k3..00000000ec0s.kn) be the set of keys associated
with the library X, Then a user has the right to access X if
and only if

K, € (k1,k2,k3,..000000veeeeckn).
However the set of a library may be null. Such a set is
A universal and can be accessed by anyone. The set of keys are
provided either by the owner of a library or any other

authorized manager/staff.

2.3 Classes of Users

For reasons of security and protection of a database the user must
be classified, and assigned different priorities and capabilities to
ji; access the database. With respect to a scientific database, the users
¥ may be classified as follows (see Fig. 3):

(1) Database administrator

(11) Managers and staff

(111) Programming users
(1v) Nouprogramming users
- Each of these classes of users has a different level of understanding

(based on need to know and access requirements). It also requires a

X different language or interface to the database, X
»ii; (1) The database administrator requires the maximum amount of :E:Bﬂ
P e

flexibility and capability. The capabilities should include o
230
o A
BESAN
RUSAY
13 LR
L

Y
3P,

- - . - . . et et e ATttt et et et Tat e e R I I R AL AP R AL PR AT T
z _'.L'.-,'? .l S AT A A G B St T e e N S A L .. K
P) ot - - e T TN . M . ~ S R . C S
N AT A e ’ S : .) RTINS >

- . .

>
-"‘.c:
-

NI A B AL il

Trevavruorwew

o st 1R Sl o Bl SR - a8 -0 - SaAria i i §

e BT SSURIRON

e

e Y T 1 8a N0

.

d3sn 10

HI3HD

sy¥3sn
ONINWVY9O0YHd

N

44V1S
aNVv
SH3IOVNYW

N

NOI1LD310Wd 13A3"T ANOJ3S

vaa

3asv8 vivda

NOILD310dd ¥O¥¥3I TVYIN3QIOIV

NOILJ3108d T3IA3TT LSYHId

Classes of Users and Access Parts

Figure 3.

<

-,
K
o &
A5

:‘ . o tn i
[,:' -
I
'{f. ;Q:
$ﬁ._’f‘)
Lo those of the other three classes of users as well as the N
T capability to control the required security and integrity A
- "
P Y
% Ca
S functions for the database. o
A e
Yoy)
\fff (1ii) Managers and staff class of users is second in priority level -
o after the database administrator. These users are blacked out NGBS
il ;ﬁ
‘}i% from the details of the physical organization of the database, Fh
ot e
-«A\\{ !_h.‘
,}5\ but are aware of the techniques used for storage, protection T
o mechanism, etc. They can insert or delete library key, data PRy
sﬁiﬂ sets, and data libraries. They can define the scope of other Hik
o -
r}:} managers and lower level users to those parts of database for R
o ==
:;b which they have owners rights. They should be aware of the fﬂ_
RS

mapping mechanism between logical and physical structures, the jﬂﬁ

.. statistical information relevant to those parts of the

R database they are authorized to use. They should have the

It
{-jq option of looking at the physical organization of data without
AEj database administrator. This is useful to verify the accurate
4)‘ representation of data by DBA or to detect any errors in DBA
fiﬁ% when storing data. However it is risky if any of the database
;}Eg is altered without the knowledge of the database

administrator.

The remaining two classes of users access the database by either using

the data manipulation language (DML) or query language (QL).

-‘3 3

;~. (111) The programming user needs the capability to access specific e
’_u] DRI
L L
:i{i records within the database through the use of a collection of -
e T
5 1
‘éfﬁ database primitives (functions). These users must be able to :

L]
<.y
‘. "

o .
-‘f1‘

fetch, store and modify data values stored within those

x
]

15

- RARERRE
.

: .I.l
Ly

atye .
A A

TR WTURT WS I PTG W AL T P T e TR TN,

records. The primitives (fuuctions) are to be described in
terms of the host launguage; i.e., make these as extentions of
P{ the host language itself. A host language is a language that
is supported by the system being used: e.g., FORTRAN.
(iv) The nouprogramming user accesses and modifies the database

through the use of generalized query language (interactive

question and answers). This query language (set of commands)
should be supported at the system level. A user without a
program and with minimal input can access data from the
database for display, modification, or for graphing. A
typical use for this might be to access the set of X,Y
coordinates, display them on an HP terminal and make a plot

using AUTO.PLOT.

In scientific environment, most of the data access is done with the
;: intention of further computation or using it for graphic display. It is
: therefore important for the EDMS to support most common computation
procedures as system defined routines. It should also support basic
plotting routines that the user may use for displaying graphs on various

devices.

2.4 Programmer's Interface

-t The programmers class of users are mainly concerned with the
development of specific data storage and extraction, and data
manipulation programs in an engineering and research environment. Since
this class makes up for the majority of the users of the EDMS, a high

level of efficiency has to be attained. The user must be aware of the

A et

.
o . .
RS -« .l -' .' . “ '_‘ . "
I I I S G A A

3
A

>
01‘1.
o

e

LR
a,a

\d
t”'
e

various ways of using the data manipulation commands supported by the
EDMS. He should be well aware of all the data. The set of data
manipulation commands and their formats can be viewed as a programming

language which is an extention of the host language.

2.5 Data Manipulation Language (ML)

This consists of a set of FORTRAN subroutines that perform a
predetermined task. It will also concern itself with some protection
agpects.

The basic DML commands can be classified as

System Dependent Commands
Open database (files)
Close database (files)
Check existence of files(s)
Delete (files)
File Information Commands
Get all the data set names contained in a file
Get the file type (sequential/random)
Check file status (open/close)
Check for access rights (owner/nonowner)
Position the file
Dump file table contents
Create and Add Commands
Add a data set to the file
Add record(s) to the data set

Delete records from a data set

]
o i
A Delete a data set from a file {iﬁf
& Search and Access Commands oy
r Search for a data set
T; Search for a record number in a data set

» Position to a record number
i; Read record numbers X to Y
t; Search for the last record in a data set
0 2.6 Detailed Specifications
'%E The idea behind the EDMS is that its scope should not be restricted
S
:;; only to programs that would be written after its installation, but
g, should be extended to those programs which have already been ;;i;i
-g’ implemented. The later can be achieved by modifying some routines. This :hff
3‘{ transition (if the programs have been properly structured) should be ;:ii

quite straightforward. i»:z

o “-1
_ZQ One of the most important features in EDMS should be data :{33
R (s
ffl independence. No matter what logical data structure (of course finite) fsz
:é; is employed by a program, the EDMS or specifically the DBA should be égi:
fi? capable of providing a mapping between the logical and the physical data E:f%
W) DS
f;} structures. ?i?:
ié% In scientific oriented programs, much of the data generated and E;S{
g; manipulated will be dynamic. This introduces a different kind of ?é;_
;;3 complexity which is quite different from the one often encountered in ;f?k_
éi. business application data management. This requirement must be : :%5
3;; satisfied in design optimization environment. E}ii:
b2 3]
£ .EE;E'
¥ R
24 RS
: » 18 ‘.1-:-:‘:

a
)

I~ Xk

; ;‘)-“\"r“)”'-
P

-

The EDMS should provide facilities that would give the users an
option to save data both in the global as well as local databases. The
concept of local database is relevant in scientific research and design
environment due to the dynamic nature of the database. In a
developmental stage the user may want to verify the accuracy or
authenticity of the data before making it available to other users. The
EDMS would not maintain multiples of unique data libraries. As several
users could use the same data library simultaneously, there is a need
for local database. A particular library could be copied into a local
database. There, it could be used for updating and other purposes.

The dynamic nature of the database dictates that it should have
some statistical features. These would survey the efficiency of the
physical structures employed in relation to the logical data structures
used. The DBA would be prompted if and when a change in the physical
ogranization of a data library or libraries is required.

Based on the previous discussions and analyses, a set of detailed
specifications has been developed for the EDMS:

1) The data generated by the users should be stored in the appropriate
database (local or global) depending on the user specification.

The data managed should be retrievable from any of the bases.

Flexibility refers to enabling data storage and retrieval in more

than one form. Such flexibility must be provided.

2) If the EDMS is implemented on say PRIME 850 then implementation on
any other system say IBM 3033 should at the most involve

modification of those routines that are syséem related like file

manipulation, data representation, etc. The logic of the

:E
i; management system should be independent of the system. For
;. example, the FORTRAN complier on PRIME differs slightly from that
_ﬁ on IBM, The transition should involve modification of those parts
-f of the code that are within the scope of the difference in
" compliers.
ﬁi 3) The data could be generated by programs or it could exist in the
Tﬁ form of files. The management system should be able to manipulate
o this data and store it according to the user specification; the
:E data could be stored in more than one logical way. In storing
:g matrices the system should determine the sparsity of the matrix and
: should develop a scheme to store only those elements that are non-
)&; zero.
£§ 4) The data managed by the system should be accessible to any authorized

user in two ways: (a) program request, and (b) query request.

5) The data managed by the system is considered valuable therefore it

EFris

needs some measure of protection and security. The protection

introduces the concept of authorization. 1Is the user authorized to

53

‘-'x.:,.l

access the requested data, and what is the scope of authorization

(read only, read/write, etc.)? Security involves preventing an

ol
o TR

i

f: authorized unwary user from destroying the database accidentally or
Q% intentionally.

‘f: 6) Flexibility in expansion of the scope of the data management system
& is important. Since the system encompasses all the fields of

*i; engineering, visualizing each and every need initially may not be
;f possible. In addition, needs may change with time. This implies
f ; that adding new capabilities should be made easy. Utilities

~

20

P X X%

3 cét ':: ’4‘ " % :‘S \3 ‘&"~ .'\ o

'U ﬁ.ig Q! "\"ﬂ‘n t..,_ Nyt

supported should be easily replaceable by new and improved Yy
equivalent utilities.
7) The file (library) should be able to hold more than one data set (a

data set is a named collection of logical records). Each data set

may have different logical organization but this should not prevent

them from coexiting in the same file. This is quite important
because a system under analysis may have data sets of different
characteristics. Each characteristic data should be stored
separately but could coexist with others. This way all the

characteristics are accessible as a unit or individually.

8) Since each data set can be organized in one logical order, it would
be disadvantageous to access data in only one way especially in a
multi-user and multi-device environment. If a user wants to access
data in an order that is different from the order in which it was

stored, the managment system should convert and present the data in

the user required format. If the data accessed is to be used for
computational purposes, then it can be unformatted. However, if it
is used in display mode it has to be pre-formatted as the user
needs, and the specific device accepts.

9) This is an implementation detail for the capabilities supported at
steps 7 and 8. The database administrator should understand or
view the data in at least 3 leQels:

(a) conceptual: the global logical view of the data to be managed.
(b) external: presents variety of views of the data to multiple
users; e.g., conversion of physical storage view to logical

view and vice versa.

21

o Aok
o)

CUASANRALRIACREREY 1
PSR K k# AHSSAND

ht) <AL

AN - A
EPat S CP E) PR A A ¥ O A T

L LN Ry e

R
LA
alala e

. -~

»

:

%

A (¢c) internal: this view describes the physical characteristics of
{

;‘ data, i.e., integer, real, character, single precision, double
i

,3* precision, etc., and how these are represented in a particular
?: device.

10) The database if needed should be distributed over a variety of

?; computers, since it is logical to assume that engineering analysis
;3 and design involves various fields or departments. It might not be
. feasible for all departments to work on the same computer, so the
;; system should have the capability to store data on different

:é computer systems but accessible from any one computer. However

= there is an underlying assumption that "a network exists between

i all the computers used"”.

T 11) The conceptual schema involves a data defintion language (DDL).
Initially all logical structures may not be supported, but if and

'%. when the need arises for a new data definition, the DDL should be

L extended to incliude it.

12) The EDMS should provide a facility to create temporary files during

AR

AR

a process and delete them at the end of the process. This is an

Y

extremely useful requirement in design optimization. A number of

~$ design iterations are usually necessary before final design is

EF obtained. Therefore temporary data files must be created and

st deleted during each iteration.

fﬁ 13) The commands to use the EDMS should be well defined, the definition
%i should include a description of its parameters and also the scope
:E and functions performed by the command. A need for simplicity is
™ emphasized.

-7

';' 22

a4

Cr
’

b
{
3

S

¥

o

- S P

TSN ekl
!;{‘r‘r" .

y '

14)

15)

16)

17)

Multiple concurrent users should be supported and be able Lo access
any part of the database simultaneously.

The EDMS should support a graphic utility

Error recovery of the database should be automated so as to ensure
the integrity of the data managed.

The system must have its own memory management. If the available

memory specified is large, EDMS should perform a minimum of I/0.

Rn e Ta i)

“ 7

.k .
a

ataVe

23 ‘-: l:

y Ai;*’

il

o r 2t

-

y e 3
f.::';" I"(: s

X
~u

Ey

«
Te¥a a0

et

Al

> e

SN
._?_‘j_)\

III. DISCUSSION AND CONCLUSIONS

A basic purpose of this study is to define a DBMS for engineering

design applications. It should be the purpose of the system Lo
facilitate development of various design and optimization applications
programs by taking over the burden of data management.

Based on the discussion and review of literature a very
comphrensive database management system to satisfy this requirment has
been defined. It is determined that an application-oriented system is
the best for engineering analysis and design optimization activity. It
is highly flexible and can be used with any application. A comphrensive
set of specifications has been developed for the system. Based on these
specifications, a preliminary form of data definition and data
manipulation languages have been developed. A user's manual for this
implementation is given in the Part IV of this report. The user's
manual contains the current capability for data definition and data
manipulation. All the specifications have not been implemented yet.

The preliminary implementation is being used to evaluate file handling
procedures, paging algorithms and memory management techniques.
Substantial progress has been made. However, a lot more effort is

needed to fully develop and test the system. Distinctive features for

.
¥

MRS &
g

'
o,

)

the EDMS are:

LA

s) P
Bty “r ety et 7o

..
Ay Sgdy
.

a) Memory management: The unit of I/0 varies widely from application

x

TR
L]
s

to application and even within the same application. This
indicates the need for some kind of memory management that
would help optimize the time spent on I/0 and speed up

execution time. This task cannot be left to the discretion of

the user. Even though most mainframes and mini's support some
kind of memory management at the operating system level, it is
not available in micros. Therefore, the user is left with a
choice of running his programs either on a computer with memory
management or reduce the size of his problem. Memory
management can also be justified where one is already available
especially if the data management system supports databased
utilities. However this memory management should be developed
such that the user has a control over the size of paging memory
and also the size of each segment or page.

The initial implementation of memory management in EDMS
consists of fixed number of pages and the page size. Number of
pages is determined by the user prior to the execution of the
program and is constant for each run. The paging memory is in
the form of an array inserted in the common block, viz. MCONTNT
(npages,ipsiz). MCONTNT is a short-integer variable. Since
the system handles data other that short-integer, other data
types are equivalenced to refer to the same array, For
example, DIMENSION ILMEM (npages,ipsiz/2) EQUIVALENCE
(ILMEM,MCONTNT) where ILMEM is long-integer variable.

Depending on the data type appropriate array name is used.
Every paging management needs some kind of page replacement
algorithm. The algorithm adopted to determine the page to be
replaced is the "least recently used” (LRU), Here a counter is
maintained for each page., When the time comes for a page to be

replaced the page with the highest counter value becomes the

e

R

R

I
-

o o vz

e]
S i
TR o ok T ok i

x > X B e e e
'-'.:(,-‘:,1 =

A
bt ~ '.I".' '.7 'l)A.'l . i

by

¥
AL pLs

Y
'
x
1 3

1hER
a

B

-“'. x
[T el

[y

2

candidate. The counter of a page referred to any particular
instant is set to zero and the counter values of the rest of
the pages are incremented by one. The "least recently used”
algorithm is based on a time scale and a page with the largest
time gap would be replaced. In this system the time is
calculated based on the counter value, i.e., highger the
counter value the longer the time span. Pages are replaced
only when there are no free pages available. Therefore this
implies that entire paging memory could be utilized to retain
information about a data set. A dirty bit is associated with
each page which helps in determining if data in the page is to
be written or just replaced. Whenever a file is closed all the
data sets contained within the file having pages allocated to
them are emptied form the paging memory. Currently there is no
provision for automatic recovery in case of abnormal
termination, but would be provided in later implementaions.
Experience while testing has shown that a fixed page even for a
single application has its own drawbacks. This is because the
size of data sets usually vary dramatically within each
application thereby rendering the page to be either too big for
some data sets and too small for others. The way to counter
this problem is to divide the memory into two regions; one used
for fixed pages and the other for variable sizes or segments.
The user can determine the cutoff point. Any data set below
the cutoff point uses the segmented memory and those above use

fixed pages. The reason for not adopting a complete

26

.“:}l'
[]

PR
+ SRS I
s vl

,

al
LR
Y

T Y v
. PR . g - - - R - 240 ooy RN I e]
. - v S RL e | 5 PR NS

segmentation is that it would involve writing garbage
collection routines. This poses quite a difficulty even at the
operating system level let alone in a system like EDMS. Most

of the garbage collection algorithms would render this system

innocuous. The garbage collection scheme would not be adopted .u;ﬂf
L ."-_‘L"v
even when segmentation is implemented, but the problem would be %;&ﬁx
_.5&;‘
solved by what is called refreshing the segmented memory. When #C‘;;

contiguous memory is not available in the segmented memory to

bring in new data then all the data contained within segmented

memory is written out to the disk leaving the memory blank.
Even though this might prove inefficient at times, it is better A
than garbage collection and does not require any paging
algorithm. R
b) Logical structures supported in EDMS are of the form of vectors,
matrices and tables. A data set is essentially either a matrix
or a vector, but a matrix can k2 ordered in any one of the
following forms, viz. column order, row order or submatrices.
However, the logical view is not restricted to this order. A
data set ordered in, say, column order can also be viewed in
row or submatrix order. This provides a flexibility in viewing
the data differently based on the need. Also, it simplifies
the process of establishing relations between logical records
of the same data sets and with those of other data sets.

c) Physical organization: The process of establishing a file or data
library and data sets that are to be contained within it, take

a logical sequence as outlined below. Prior to any data

27

'l!E!lll!‘l!!lJ!!!!'U El!l'-'(‘".i\‘\\'\'.‘lC\K‘TI.WV“(KV RV T L WL e YO T Bl i B Sl i i S A Al A A A S N

transactions, it is the responsibility of the user to define
new files, or open an old file. Then the user can either
define new data sets or make use of previously defined ones.
If the user is interested in generating data and storing it for
later use, the procedure is as follows:
Step 1. Define file
Step 2. Define data set(s)
Once the file is defined, Step 2 can be undertaken

either immediately or in another application but prior

to an attempt to write data in to it.
Step 3. Write data

Step 4. Read, write or update.

The process of data set definition involves setting up the size
of data set, type of data that would be stored, and identifying
it by a name. Once this is established the information is
maintained in the database and operation with the data set is
cross checked before the operation is completed. The logical
organization of the data has little to do with the actual or
physical storage of the data and the user is not at all
concerned with this aspect. Whenever data is requested by the
user in terms of logical records they are mapped into the
physical database and supplied to the user.

d) Utilities: Every system of this nature should support utilities as
part of the system. It 1is preferable that the utilities be
developed by the same group that 1s developing the system in

order to exploit the usage of internal routines in performing a

SRS AN

- '.'-.‘n L -

given task efficiently. It was with this idea that we started ;:;:
to identify some utilities which would be commonly used. These
utilities can be divided into three groups: E.'
1) Math Utilities: Most commonly used matrix manipulation
operations will be included. These operate on data sets R0
stored in the database. The user is relieved of the
responsibility of going through a complicated task of
performing these operations in piece-wise fashion in case of
large data sets.

2) Stat Utilities: This group will consist of some of the

commonly used statistical operations. o

3) Graphic Utilities: This group will support a graphic R
e

package and interface to several hardware devices, it.e., the -~

graphic output could be directed to more than one physical
device.
e) Distributed Processing: Currently little has been done in
implementing this feature but is envisioned to be included iIn

later implementations. This basically involves usaged of the

system over a network of computers by sharing resources, i.e., asand

data residing on one computer would be made accessible to a

program running on another computer. };if;
f) Query Language: The data residing in database can be accessed ::i:f
through an application program or through a query language. :ﬁS;}
This could be used to view or display the data. It is iE:J
MY
envisioned that the query language would consist of interactive };?;

commands to query the database. It would also contain commands

29

e ea . - v .« .tp e L K el T R T
e e e e SR L TN e T IR
v -t - v A P P

. w - S T N » St
R N R L AP SRS) e BRI) . DR i R -
{™ » -."1-(,.- PR I AN AT TN (‘-'. S U . SCIATERPIRNE SN

IR DS P4 A PP TR AR ATAL VRS Ty, VU TV UGN B B P, N PRI 7« RGN P v

XN

e

:.: :

3

f@ﬁ that can be used in an applications program. This is an

; important and mandatory feature of the system if it has to be

:Ei used in design optimization of systems. Query language can be

§£ used to define the optimization problem (cost function,

~j constraints, etc).

:; g) Help Facility: With a system of this proportion there is a need for

- a help facility which would enable new users to reference the

calling sequence, implication of commonly occurring errors and

e e
Ejf methods to correct them. :Ff;
ifa h) Gripe Facility: This feature enables feedback from the users and

J:: the difficulities encountered in using the system.

ij: It is concluded that a database management system such as EDMS is a i
Ei; must for developement of various application programs for engineering : i
- design, especially optimal design.

EIMS and Design Optimization

'iﬁ A major goal of the present research is to develop database

&ii management concepts for engineering design optimization. In this regard

ii% considerable progress has been made. Existing concepts have been

>;?§ studied and evaluated. Data needed for design optimization have veen

"i identified. Desirable properties of a DBMS suitable for design

gg optimization have identified. Some of the basic functions of DBMS have
X ig been implemented and tested. However, substantial more work needs to be

é:{. done in the future.
Ei?: EDMS has been incorporated into an unconstrained optimization

e algorithm and tested. It has also been incorporated into a quadratic

programming algorithm. The quadratic programming algorithm is a basic
tool that is needed in many constrained optimization methods.
Therefore, this program will become a core for developing, implementing
and evaluating database management methods for design optimization.
EDMS is also being incorporated into a commerically available finite
element program. The purpose is to use general available analysis
capability for design optimization. The idea is that once general
analysis capability becomes available, database design methods for
optimization can be developed and tested.

General matrix utilities are also being developed. These will
operate on the data sets in the database to support basic matrix and
vector operations. Such utilities are not generally available in
existing DBMS. However, they are extremely useful in developing,

implementing and evaluating DBM concepts for design optimization.

MG I T o WL W™

-

-~ R * =Y : - TR
3 o
\ N
a S s“m‘
88
'\1:: -C :-t.l
2% REFERENCES il
\ Blackburn, C. L., Storaasil, O. 0. and Fulton, R. E., 1982, "The Role =
3¢4 and Application of Data Base Management in Integrated Computer- fﬂfﬁ
o Alded Design", proceedings of the ATAA/ASME/ASCE/AHS 23rd ;t Y
: ? tructures, Structural Dynamics and Materials Conference, New (531
_'):- Orleans, LA, May 10"12, PP. 603-613. -".t‘

. Eastman, C. M. and Henrion, M., 1980, "The GLIDE Language for CAD", J. N{~?.
o of the Technical Councils of ASCE, Vol 106, No. TCl, pp. 171-184, ;%g
5 31
}t Felippa, C. A., 1979, “"Database Management in Scientific Computing - I. N
[o, General Description”, Computers and Structures, Vol. 10, pp. 53-61. Cod
%l Al N

Felippa, C. A., 1980, "Database Management in Scientific Computing - II. "v

o Data Structures and Program Architecture”, Computers and AR
M Structures”, Vol. 12, pp. 131-145. e
t{ Fenves, S. J., 1973, "Design Philosophy of Large Interactive Systems", if;?f
g in Numerical and Compputer Methods in Structural Mechanics, Fenves pi-ad
;# et al (Eds.), Academic Press, pp. 403-414. o
33 BN
:&3 Kamel, H. A., McCabe, M. W. and Spector, W. W., 1979, "GIFTS 5 Systems }‘}k
L Manual”, University of Arizona, Tucson. ARe
" RSN
LR -

v Nye, W., 1981, "DELIGHT - Design Language with Interactive Graphics and -
e a Happier Tomorrow”, Electronics Research Laboratory, University «€ BACE
- California, Berkeley, CA. ?g{j
- Rajan, S. D. and Bhatti, M. A. and Arora, J. S, 1983, "A Database A8y
o Management System for Structural Optimization,” Technical Report P;'

; No. CAD-SS-83-9, Computer-Aided Engineering Laboratory, College of —
- Engineering, The University of Iowa, Iowa City, IA 52242, :Eym
e X ‘,
L RIM User's Guide, 1980, Academic Computer Center, University of R
.:1\,4 Washington, W33. o

A -t N

CaY "-v- ‘
mf Sreekantamurthy, T. and Arora, J. S., 1983, “"Database Management el
—F Concepts in Design Optimization”, Technical Report No. CAD-SS~-83- s
_{i- Design Optimization Laboratory, College of Engineering, The {}5
N University of Iowa, Iowa City, IA 52242, %E{.
ol Wl
F "_-. ‘-\: -L.
e Ullman, J. D,, 1980, Principles of Database Systems, Computer Science)
(‘: Press, Inc., Rockville, Maryland. !

:j; Wiederhold, G., 1977, Database Design, McGraw-Hill, New York. {;:?
2 b
'-‘*' "n‘:'\.
Sy, :_._:h\
) "o
:3 32 Y
P e

This subroutine is used to put submatrix data set from user buffer
into file defined on LUNIT. The data set has to be in SUBMAT order and
file unit 'RA' type.

CALL DSRDFN(LUNIT,TYPE,DSNAME,1SUB,JSUB,ORDER,I,J,DTTYPE)

The subroutine is used to redefine a data set. The row and column

dimensions of the data set (size) can be changed using this

subroutine. The values of ISUB, JSUB, I, J are the new data set

dimensions.

el St Sl e Al i S k- gl S S A i Sl] i B ¢ S 0 i G S S i i

TABLE OF CONTENTS

ﬁ::o‘., Page

I. INTRODUCTION.-....ooo.c.o-ooloouooo'oo.ocotooooo.oo..-o-.-oo l

II. DEFINITION OF SUBROUTINE ARGUMENTS.....ccc0000cc0c0ccccscsscs

w

ACCESSTYPE....-.".-.....l‘ncono.cco-oao.oooo-o-ooooo.

DORDER..........-....-.....-.....-.-.--.....--oo......

DSNAMEQQQoQ-n.ooo---.uc-coo.ono.co.to.ocnooooooooooooo

DTTYPE......oo..oocto'-.o.ottooa..co.oc-n-ooon..ooco.o

END.O..'....'........l.'......l..l'l.0..-....0....-...

FNAME.....0.-......000..-0..!....lo‘....o..o'....tl..a

FSTAT.OO...ooo.uonooo.ooo-oonn.oo-o-tooocoonocooooo..o

I’J'...'l...'.......l...........Oll..0..'..‘..........

Il,Jl‘oos'n'ooo..o...-ot.tloooooooooo.oo'....oooo.-.oo

0 IBUFF.-t-o.-oooooooocoo.o.ooo..--o-o.nooo-..oo..o-oooo

1
"
sal
NN NMNDNPNDDNDNDNDNDDND N
[
— D O NN ESWDN

Lz{ 3 1 IELM‘.O.....'.O.Q.....II‘....ll......'...'..o......00.
}:; 012 IERR......0.0..-Qoo'nooooo'o‘o'ooaocnooooouooo-ooouooo

;'--{_' 2.13 IFORMAT-oooooo-o-o.oo.tooo-ooonooanoao-n--oc--~ooo-ooo
'?,0 2.14 ISUB,JSUB.OO-oootuulocooctllln‘ucoul.t.o..-.uooooo..-.

N~NNNOOTCOOCTOAIINVT NN S PWWW

2 Ld l 5 JOB PO S OO D0 CP OB D LS E N COESOO TSSO PPTROOEBONESSEOSSe e
:.‘ * 2. 16 LUNIT. 0 0 000000000 E P PE0 0PSSOI RNO PO RBBO0EONOD OSSR
' .-: 2.17 NDSETSC'......'...0....'..........-!I................O
' ﬂ“.‘. 2 . 18 ORDER' PO 0 800 QPHOOOO OO SO NS SNCOO OSSR SO0 SN0 EN S
.' :-: 2 L 19 PTHNAME 9 08000000 P OO0 O ESSBBEOT O 0SSNSO ROOTDSESOENRESSNS
!.. F‘ 2 L] 20 STRT LRI I B I B B B Y B N B BN B B Y B R A B BN B B N IR B A B B BN AL B R AR AL B AL R I AN 4
. :) N 2 . 21 TYPE 8 00 0000000 CEIOOT NP SO0 NP0 P0 OB ORGSO ENSOSPOS
*:'\‘:‘ III. FILE OPERATION COMMANDS......cccesescecescscscnsassssscnsoss 9 s
*, ‘: ‘:. Iv L] DATA sETs OPERATIONS LI BN R S S O B A A B B B B Y R R R R A Y R L B B R N l O -" s
"3 >
RO —
S _\1 i
k) -~ :j::.-.'1
3o S0
T 3
Y <

.
b -a

v

2 b

Ol c‘.

LI
Lo s
‘t-,'f A .\'-\'\\
-\-":) }‘?- w
G}Ni

Ag
=

V!

; - -.“"‘
b - o
g ter el
": r%" "
i tl EI; k]

14
4

P
ey

]

SISt AY .) RO ERes . ::{,-.:__._.J_,

SN AN TN
'\ o - \ -, '\. _'ﬂ. Y ._ \ -.. ‘o :_1--‘ .‘_'\.‘ CAN A D) X RN
L4 < .‘\\. AS '(‘ - "-.~" '\ S \‘.‘ o> e AR

J

"-'
L s

ol @ - e | Gads st e ek kv, e catar pal - ugcaust el aodl ae it Sbuie 8 e el S Rl Al saui maliby

_-'
%

5

I. INTRODUCTION
‘ég This report describes the subroutines and their functions in the
\;E EDMS library. EDMS stands for Engineering Database Management System.
ﬁi The EDMS library has subroutines that can be called from any FORTRAN
.£ application program. Main purpose of the EDMS library is to take the
5; burden of managing the data away from the application programmer. The
t;? data can be stored and retrieved quite easily using the library
i%? subroutines. EDMS has its own memory management. Therefore, a call to
;Eq EDMS routine to store or retrieve data may not necessarily require a
?:. secondary storage I/0 operation. This depends on whether the data

IE manager has free space available in the buffer or not.

$H To use EDMS for managing data in an application program, two types
'h of operation must be carried out: file operations and data set

%% operations., Files and data sets are defined in the classical sense:

AR

:ﬁ file is a collection of data sets and data set is a collection of data
:és items such as integers, real numbers, double precision real numbers,
 §3 characters, etc. EDMS contains file operation and data set operat.on
;;? commands. New files must be defined before data sets can be writt:n in
,;; them. O01d files must be opened before existing data sets can be read or
A
~f§: new data sets can be created in them.

ﬁi Chapter 2 contains definitions of various arguments used in the
ia; subroutines. Chapter 3 contains the file operation commands and Chapter
'ig 4 contains data set operation commands.

::é The EDMS program is stored in the PRIME computer system at The

:;' University of Iowa. The program can be invoked using the following
i
i *

AN I R RS UL IR TRl B cmo .

D T T T R VR YL T Sy

. i,
Y
) LA
. 'K;ﬁf&

-

Bkl ab ol bl Gl D R
L]

-’
.

command :

ok, SDMS /* In PRIME A system

ok, EDMS /* In PRIME CAELAB system.
The above command requests the user to supply the application program
name. The application program must be compiled and its binary file must
be available in the user's file directory. The application program can

contain call statements to various subroutines of the EDMS library.

NS

ébt?ifi‘iii cﬁ“‘ R

v
3
[
4
S command :
ok, SDMS /* In PRIME A system AN
b ok, EDMS /* In PRIME CAELAB system. OO
Lo
P The above command requests the user to supply the application program IRy
name. The application program must be compiled and its binary file must -:.-:
.3 WY
\ be available in the user's file directory. The application program can j.:#:-j.
\ -)
' SATRN
X contain call statements to various subroutines of the EDMS library. hal
'4
|
P
K

L x7a "2 8

-y

af '

f‘\‘l

A T e A

Ho, 0
i B ‘ . 'iltu'igﬂ }'Qﬂ

v“{ TR RT T T YT RN L Y p-a hen ke §9n 20 80 dde 2o T et e Y e R BN R ot ol Aot Ve dh (e L S B S i REAE Sl SRal S Sl S YL S S A N

3
0 4
2'::“
,J" II. DEFINITION OF SUBROUTINE ARGUMENTS
¢
N
NS In this chapter, definitions of arguments used in various
.
tgﬁ
4.0 subroutines are given. These arguments are used in file operation
2R subroutines and data set operation subroutines given in Chapter ITI.
i '-L.'
I All definitions are given in an alphabetical order.
- -
Rhk 2.1 ACCESSTYPE:
[V Specifies whether the file has to be used for read/write/update
siji (R/W/U). Operation update implies read and write. CHARACTER *12
i ","‘:"
oW
"l-‘.
. 2.2 DORDER:
Bt ot
B
S The order in which the data is to be stored or retrieved, such as,
A
};} Columns ('COL'), rows ('ROW') or sub-matrices ('SUB'), Upper triangular
Y

row ('UTR'), Upper triangular column ('UTC'), Lower triangular row
('LTR'), Lower triangular column ('LTC'). Note: Currently only the

order specified in the DSDEFN subroutine is available. That is data can

5 be retrieved only in the form it is stored. CHARACTER*12
¥ ;E
() e
b 2.3 DSNAME:
X
G
'
3}(. The name of the data set that is to be defined or has already been
W0
I defined. A maximum of 12 characters are allowed with the first
Ry
N,
Erfﬁ character being a letter. If the data set appears as a character
ot
.‘- -
‘:u}’ variable in the calling program, the name of the variable is sent. If
VY
' 3% the data set name itself is being sent then it must appear in quotes.
‘e
5:33 If job name is to be concatenated with the data set name, then data set
Ao
!;%} name should contain only 8 characters. The data set name after
JeLY
_:; concatenation with job name will be 12 characters long. CHARACTER *12
1'l ::. ::
Qe
nxﬁkﬂ
4% 3
RO

s e . . m e e v e e e e e e e e e .';‘.\'
O e T i e T L e e T T T L T T T T T
> .'u"h.th g . . ¥ Nt P T - K e N . ‘

X
N,
g

L9
i
N
“»
i~
o 2.4 DTTYPE:
‘ N
-: The type of data stored in the data set: Real ('REAL'), Double
‘\b‘\
:-; Precision Real ('DREAL'), Integer Short ('INTS'), Integer Long ('INTL')
’.
" or Character ('CHAR'). CHARACTER *12
W
,&Q 2.5 END:
I
Qﬁ The ending location in the data set at which the user wishes to
W
stop the reading or the writing process. The meaning of END depends on
'Ef the method specified for retrieving data: a) Row-wise — then END = the
AL
L7 ending row number, b) Column-wise - then END = the ending column number, {Qﬁf‘
.)
i c) Sub-matrix - then END = the ending sub-matrix number, d) Part of a £
oK
}: column or row - then END = the ending element in the segment, and e)
. A
Mg Triangular matrix - then END = the ending row number or column number. g
) Na 4]

(NOTE: When a part of a column or row is required from a data set (ROW

- or COL data sets only) then use IELM parameter (see IELM paragraph) IELM
Py -
:{; is set to zero when a complete row or a complete columm or a submatarix A
s is stored or retrieved. INTEGER*4 =
:" $::'~ N,
N ALY
2.6 FRAME: G4
o N
f:- This is the name of a file that has been already defined or is to S
A;. be defined. It can have a maximum of twelve characters. The starting -
Eif characters must be a letter. CHARACTER*]2 B
5 T
:‘_(2 2 .7 ?STAT. ‘L‘:&;;
{
A% This specifies the status of the file to be defined or is already
o
“_j defined. Status can be either permanent 'PERMANENT', 'PERM', or
:zj temporary 'TEMPORARY', 'TEMP'. Temporary status for a file implies that
A it will be deleted before the program is stopped. CHARACTER*12 *5
o SR
J'.' e $
o At
S:: 4 .‘_\.,:
DA
o LN

)"} o, ‘."-'- i . ST . “_U' A - ...‘n

.':"_ \._K__:_‘,"_u_ LA RN
. v

SOR R GRS AT S

‘& *". 4‘1-..'(-‘- \\.'.‘\'., ‘t"‘ .-\‘-r_ :'-' --_‘1' .-r". N f~-:\-'\'\:..\‘ N '_; s “
NS SR e RSN G Ol RGN

- "y -v. .
..&')

.
+,
Pl l.‘l{“l‘;"?' ate B

2.8 1,J:
The actual dimensions of the data set. If the data set is a one-
dimensional array then the value of J is to be set to l. For a

triangular matrix data set, the size of matrix should be given,

INTEGER*4

2.9 11,J1:
The dimensions of the user buffer IBUFF. For one-dimensional array

the value of Jl should be 1. INTEGER*4

2.10 IBUFF:
The user buffer (array name) from which the data is to be retrieved
or stored back. NOTE: The array must be properly dimensioned in the

calling program and the correct data type specification should be used.

The array can be either one-dimensional or two-cimensional while using

ROW or COL data sets. Two-dimensional array should be used in the case¢
of SUB matrix data sets., The array should be one-dimensional in case of

UTR, UTC, LTR, and LTC data sets.

2.11 IELM:

This parameter is used when the user wishes to obtain part of a
column or row from the data set (ROW or COL data sets only). IEIM is
the specific column or row from which a part of column or row is stored
or retrieved. STRT and END are the starting and ending element numbers
in the row or col IELM. 1f the user does not wish to take a segment

from a column or row then zero value should be entered in the IELM

location. INTEGER*4

pres
-2y
P s
.
.
)
-
)
s
.
,
.
'
s
L
N
4
o
4

=

Y

ff{i

? ﬁ

554: 2.12 IERR:

:'J_ This parameter returns an error code if error occurs during any
;&; call to the EDMS library routines. It is zero if everything goes well.
‘:ki User should check the error condition after returning from the EDMS

library routine. INTEGER*4

2.13 TIFORMAT:

Specifies if the data to be written to the file is in formatted or

33 unformatted form (FORM, UNFORM). Default is unformatted. CHARACTER¥12
) 2.14 ISUB,JSUB:

The dimensions of the submatrix in a data set. The value of ISUB
or JSUB is zero in the case of ROW,COL,UTR,UTC,LTR, and LTC data sets.

J
)
3 INTEGER*4

2.15 JOB:

The job name to be assigned to all data sets belonging to a

project. The data set name will be concatenated with the job name. Job

}. name may be set to blank if no job name is used. CHARACTER *4

Lo

,f{ii 2.16 LUNIT:

. Nl"."

L This contains the logical unit number on which the file is defined
2.35 and opened. It is returned to the calling program by the subroutine

DFDEFN. This number is subsequently used in subroutine DSGET, DSPUT,

Y etc.,, for further reference to this file. INTEGER*4

'
J

- ‘ L2 R SR
F, " . . >
. !

X,
X
o

e
ASI

3

3
£ {1

v
l‘,"l,“!. ',.'
J.",:,»"..#
rogle s 5

o,

l“"
.m0

AR 3 -

R
v
s Mt

s vUale .
s <o
w elw
[y .
b e e e e
B i

e
D
.l
»

2.17 NDSETS:
This specifies the maximum number of data sets that will be
included in this file. Default is 20 at present and can be changed

easily. INTEGER*4

2.18 ORDER:
The ordering of the data set: Row ('ROW'), column ('COL') or sub-
matrix ('SUB'), Triangular matrix —upper triangular row matrix ('UTR'),

-lower triangular row matrix ('LTR'), —-upper triangular column matrix

('UTC'), =-lower triangular column matrix ('LTC'). This is the order in

which the data set is to be stored or retrieved. CHARACTER*12 ?%%1
ey

2.19 PTHNAME: L

The specifid UFD or SUBUFD under which the file is to be defined or fff?

is already defined. Maximum length of 256 characters. Each set of
UFD/SUBUFD must be separated by '>' sign and should be arranged
according to the descending hierarchy. Ex:

AEGDDD>SUB.DIR>.¢eeDeeeedeess>. CHARACTER*256

2.20 STRT:

The starting position for reading data from a data set. The
meaning of the STRT parameter depends on the method by which the user
intends to retrieve the data. 1If the data is to be read a) Row-wise -
then STRT = the starting row number, b) Column-wise - then STRT = the
starting column number, ¢) Sub-matrix - then STRT = the starting sub-
matrix number (NOTE: Sub-matrices are numbered column wise), d) Part of
a column or row then STRT = the starting element in the segment, and ¢)

Triangular matrix then STRT = starting row number or starting column

AR LR
‘i“e A
. e

SeTunces

CRAl SRR S S U aAIOMRIS A e i A s L Ll il At o " RHR? JARNAAL" o “LAM" A~ AR oY A" pul-pith Sai AR el o Sl S d el ik anie sieh stk abf Ak sch aid nEAath_ ol aci s sid-add il i aed |

number. (NOTE: When a part of a column or row is required from a data
set (ROW or COL data sets only) then use IELM parameter (see IELM
paragraph). IELM is set to zero when a complete row or a complete

column or a submatrix is stored or retrieved. INTEGER*4

2.21 TYPE:

This parameter specifies the type of the file that is to be opened
or is already open. The file can be random access or sequential access
type. TYPE can be either 'RANDOM' (or 'RA') or 'SEQUENTIAL' (or

'SA'). CHARACTER*12,

g
1

A
NSNS
LR e

"
P

.
L]
il

o

v

Ty

y . ¥ 80

' _.‘ "."-"
[v o]

YA ?1\.[:1:'“) 'J‘\.*‘\""W- o

ITI. FILE OPERATION COMMANDS

This chapter describes various statements for file operations:

CALL DFDEFN(FNAME ,PTHNAME,TYPE ,FSTAT ,NDSETS , IFORMAT ,LUNIT, IERR)

The function of this subroutine is to create a file in the user
file directory specified by the pathname and to open it. Beforc any
data is stored on a file, file must be defined using this subroutine.
Maximum of 20 files can be defined in the current version.

CALL DFOPEN(FNAME ,PTHNAME ,TYPE ,FSTAT ,ACCESSTYPE,LUNIT)

The function of this subroutine is to open the existing file
FNAME. The file must have been previously defined by a call DFDEFN. An
existing file must be opened before data sets can be retrieved or create
new data sets in the file FNAME.

CALL DFCLOS(LUNIT,TYPE,IERR)

The function of this subroutine is to close a file opened on
logical unit LUNIT. Before closing the file, the data sets in the file
automatically updated with latest modification to data, if such
modification has been done.

CALL DFDELE(FNAME,PTHNAME,LUNIT,TYPE, IERR)

The subroutine deletes the file FNAME on logical unit LUNIT. File

must be closed before deleting it, using DFCLOS subroutine.
CALL DFCOMP(FNAME ,PTHNAME,LUNIT,TYPE,FSTAT, IERR)

This subroutine compresses the file FNAME defined on LUNIT. The empty

space formed due to deletion of data sets in a file are removed by moving

datasets together. The subroutine helps in proper utilization of the disk

space. The file unit number after compressing the file is set to new value,

S IV. DATA SETS OPERATIONS

This chapter describes various subroutines related to operations on
data sets:

Xy CALL DSDEFN(LUNIT,TYPE,DSNAME,1SUB,JSUB,ORDER,I,J,DTTYPE)

e

: } The function of this subroutine is to define the data set details

ia' on a file unit (LUNIT). Size, order, data type, etc,, for the data set

- are defined. Data set must be defined before data items can be stored

_; in it. ISUB and JSUB are dummy values when defining ROW or COL data
f{: sets. Maximum of 2C data sets per file unit can be defined.

CALL JOBASN(JOB)

‘?2 The function of this subroutine is to assign job name to the data

(?i sets. The job name will be useful in identifying data sets belonging to
‘?p different jobs or projects. The user can define same data set name for

;ﬂ; different jobs. EDMS system concatenates the job name with data set

"y

\tf‘ name and the result is stored in the DSNAME argument on return from

5{ subroutine DSDEFN. The subsequent reference to the data set name is

LA

ESS made using the new DSNAME. This subroutine has to be called only once

.i;? before calling DSDEFN subroutine.

5in CALL DSGET(LUNIT,TYPE,DSNAME,STRT, IEND,IELM,DORDER, IBUFF,I1,

J1,IERR)
':lﬁ The function of this subroutine is to get elements of a data set
T;E from the file unit (LUNIT), into the user buffer area. Data set must be Eéii
.é}: residing in the file LUNIT. It must have been created by using EDMS -i%;;:

. iy
'ii library routines. ::Qf;

L 10

AN ~
:a LA TR R At “x"tqs'n-g::f;:,::niﬁng#fwf<J:f:::{“':'f et R T T el el RS
Yo v e L TE e, e L e e T e L T T e T L R R
fa \1#¢f\1s \wr"~“ . - -~ TN URCA U o X

S 6‘~'

T_z'. oo
i '_ - :" -
= 2 3

e e o
. s

CALL DSPUT(LUNIT,TYPE,DSRAME,STRT,1END,IELM,DORDER, IBUFF,I1,J1,
IERR)

The function of this subroutine is to put elements of a data set
from user's buffer to the file unit (LUNIT) that has been already
defined.

CALL DSGETR(LUNIT,DSNAME,STRT,IEND,IBUFF,I1,1ERR)

This subroutine is used to get rows of a data set from file LUNIT
into user buffer. The data set has to be in ROW order and file unit
must be 'RA' type.

CALL DSGETC(LUNIT,DSNAME ,STRT, IEND ,IBUFF,J1,1ERR)
This subroutine is used to get columns of a data set from file

LUNIT into user buffer. The data set has to be in COL order and file

unit must be 'RA' type.

CALL DSGETM(LUNIT,DSNAME,STRT,IEND,IBUFF,I1,J1,IERR)

This subroutine is used to get submatrix of a data set from file
LUNIT into user buffer. The data set has to be in SUBMAT order and file
unit must be 'RA' type.

CALL DSPUTR(LUNIT,DSNAME,STRT,IEND,IBUFF,Il,IERR)

This subroutine is used to put row data set from user buffer into
file defined on LUNIT. The data set has to be in ROW order and file
unit must be 'RA' type.

CALL DSPUTC(LUNIT,DSNAME,STRT,IEND,1BUFF,Jl,IERR)
This subroutine is used to put column data set from user buffer

into file defined on LUNIT, The data set has to be in COL order and

file unit must be 'RA' type.

CALL DSPUTM(LUNIT,DSNAME,STRT,IEND,IBUFF,I11,J1,1ERR) E:\'L:

‘\ !

<3

SN

11 <1

(. i : A Q“\ T $r§

A NI PR Pt .4’-, 3 Dy SER RTINS Nty Aty o

$‘;'ﬁ ‘.‘JJ- ,.} {j': :‘{- “M{ k I $,‘\"')’~ k::}‘:.\\ 3:0 O.l.: ‘HF:‘-‘: M

X z 0’ W hERS .0" ' PERATATR I ERTEIRARARAS o DUIONDDBELD ."i‘ hue, ‘u‘

o

7, .n‘

(3 ¥

o A

)

"

‘Q}:'

[\ 'Q‘:

e
,""' This subroutine is used to put submatrix data set from user buffer
LY

o into file defined on LUNIT. The data set has to be in SUBMAT order and
:‘-.}'

3“- file unit 'RA' type.

<v

q

CALL DSRDFN(LUNIT,TYPE,DSNAME,ISUB,JSUB,ORDER,I,J,DTTYPE)

._:‘ The subroutine is used to redefine a data set. The row and column
r.'\-'::

1 dimensions of the data set (size) can be changed using this

bt a

v subroutine. The values of ISUB, JSUB, I, J are the new data set
ol dimensions.

2

i_‘ CALL DSRNAM(LUNIT,TYPE,DORDER,DSNAME] ,DSNAMEZ,1ERR)

) The subroutine can be used to change name of the data set DSNAMEI]

- to a new name DSNAME2.
x CALL DSCOPY(LUNIT1,TYPEl,DSNAME,LUNIT2,TYPE2,IERR)
SN

The subroutine can be used to copy a data set DSNAME from file
o defined on LUNIT1 to a file defined on LUNIT2.

~‘::-\\f

-"__-:

'n“*:_
N

2
vl

.

o

o

7Ty

"l";“i‘
s
o

{ u. :

TR
-
'(\:
e

P
: ‘}.-\'_'-'
b\
‘,}..}':
Y Ly
;’A— AT "..'-_ Y . ’h."-_' - S A e P ..”'!\'(\' V'I. - oA
SRR ',"\&,‘-'i,.h\..: _‘:\"\-fi:ﬁ:::xy:} 'l"' '\1\.;\..& { {‘- '\%‘J_r
LYY N \\‘}‘g‘i \.51\""" 3 ;.
R A SR s '

e S U

R SN TEER

Lt TN ';'“7.\--.1;4.-_-»-—-—0"‘:“. a’_
.
-

- -
S._)‘.‘.ﬂ_-.'. e et

DTIC

- ~on. .

- -

SNTEIET
“"\ L

A AT A COL LT

