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Summary

A nonlinear finite element procedure has been developed for the dynamic

vibrational analysis of planar mechanisms. The analysis takes into account the

effects of geometric and material nonlinearities, vibrational effects and

coupling of deformations. Numerical results have been reported for certain

mechanism examples. The effects of the nonlinearities have been found to be

significant on the dynamic behavior. Due to the complex nature of this

nonlinear analysis procedure, an efficient optimal design approach using an

optimality criterion technique has also been developed. The new optimization

technique, called the Gauss Nonlinearly Constrained Technique, has been

developed in such a way that it is applicable to design problems with nonlinear

objective functions and constraints. The applicability of this method has been

demonstrated with example problems consisting of objective functions of various

complexities. Complete details of the nonlinear finite element procedure as

well as the optimization technique are available in two papers (to be published)

which are included here in the Appendix.

Research Obiectives

The objectives of this research are to develop a nonlinear finite element

dynamic analysis procedure for both planar and spatial mechanisms of the type

found in space structures. Geometric, and material nonlinearities as well as

combinations of these are to be included in the analysis. Furthermore, an

efficient optimal design method is to be developed to handle objective functions

composed of a combination of rigid body and deformation displacements involving

., " -, , ., , ., ' : . ', ., , , , .... ... .., - .- , . - -, , , ,. . . ., . .. . - . . . .... .. -. .; .. ,. . ... .. . .. . , "



geometric design variables as well as cross-sectional sizes. Thus, during the

reporting period it was proposed to

a) develop a nonlinear finite element procedure for dynamic planar

mechanisms;

b) develop an efficient optimization method involving a mall number of

analyses for mechanism design problems.

Sianificant Accomplishments

Substantial progress has been made in both of these two research areas

-during the reporting period. Complete details of the work are included in the

1- Appendix; only a sumnary is presented here.

In the nonlinear finite element analysis area, planar mechanism problems

have been formulated to include the effects of material and geometric

nonlinearities due to large deformations, and vibrational effects for members

with nonuniform cross sections. Effects of transverse shear and rotatory

inertia have also been included. Numerical results for deformations and

- stresses have been reported for certain planar mechanisms. The results clearly

indicate the effects of geometric and material nonlinearities on the dynamic

behavior of planar mechanisms and the need to include these effects in the

analysis.

In the optimal design area, a new optimization technique, called the Gauss

Nonlinearly Constrained Method (GNLC), which is applicable to design problems

with nonlinear objective functions and constraints has been developed. The GNLC

technique is an extension of a previously developed method called the Gauss

Constrained Technique which is capable of handling only linear constraints.

Both of these techniques, based on Gauss' unconstrained method, were developed

2



so that the Kuhn-Tucker conditions were automatically satisfied when the

procedure terminated. As an example, a four-bar mechanism was designed such

that the coupler point (XX,YY) of the mechanism closely generated a curve

defined by discrete points. The objective function to be minimized in this case

was the am of the distances (squared) between the desired curve and the actual

curve generated by the mechanism. This objective function is a highly nonlinear

function of the design variables. For the particular example considered, the

GNLC technique was found to require significantly fewer objective function and

constraint evaluations than currently available methods.
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THE DEVELOPMENT AND APPLICATION OF
GAUSS' NONLINEARLY CONSTRAINED OPTIMIZATION METHOD

D.R. Boston*, K.D. Willmert*
and M. Sathyamoorthy*

Abstract

Presented in this paper is a new optimization technique, called

- the Gauss Nonlinearly Constrained Technique which is applicable to de-

sign problems with nonlinear objective functions and constraints. The

- technique is an extension of a previously developed method for linear

constraints, referred to as the Gauss Constrained Technique. Both of

these techniques, based on Gauss' unconstrained method, have been de-

veloped so that the Kuhn-Tucker conditions are automatically satisfied

when the procedure terminates.

Introduction

The optimal design of many structures and mechanical mechanisms in-

volves one or more complex and time consuming analyses at each iteration

of the optimization. This is particularly critical if a large deformation

nonlinear analysis is required. In these cases especially, it is im-

portant that the optimization method require very few analyses, even at

the expense of significantly increasing the amount of calculations by the

optimization technique itself. For example in a recent work, DeRubes

and Willmert (1] applied the relatively efficient Generalized Reduced

Gradient (GRG) Technique of Lasdon et.al (2] to mechanism design for path

generation and rigid body guidance. The mechanism links were considered

*Mechanical and Industrial Engineering Department, Clarkson University,
Potsdam, N.Y. 13676.
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flexible, and thus a quasi-static (linear) finite element analysis was

used to obtain deformations and stresses. The GRG required as many as

14,000 mechanism analyses to obtain the optimal design. Computation

time approached twenty hours on an IBM 4341 mainframe computer. If a

nonlinear analysis had been used, the corresponding times would have

:h. been considerably higher.

To reduce the number of analyses, Paradis and Willmert [31 develop-

ed a new direct method for efficient design of mechanisms. Gauss'

method, which Wilde [4] concluded to be very efficient for unconstrain-

ed mechanism design, was modified to handle linear constraints. The re-

suiting technique, referred to as the Gauss Constrained Technique, was

highly efficient and required very few objet.t!ve function evaluations to

obtain an optimal design. Their method has been extended, in this paper,

to handle nonlinear constraints.

Development of the Method

The optimization problem consists of minimizing:

F(') X -*T (1)

4. 4.

where 0 is a vector of general functions of the variables x. Many opti-

mal design problems have objective functions of this form. For the

derivation of the optimization technique, the O's are approximated by

.linear functions of x (which makes F quadratic) of the form:

0 - + c (2)

===4.-. == = = = === == == ====== ======= ===================::::::::: ::::::::: .: :i:. ;:: : .::: . .- : -;.: :- -.-- :-::



3

where J and c are a constant matrix and vector respectively. However

the technique, once derived, will be applied to more general cases where

o are highly nonlinear functions of x. The constraints are approximated

by a general quadratic of the form:

*1 2 . *".-Cxgi(x) = x + bix - d. < 0 i1l,.. k (3)

The gradient of the objective function (1) is given by:

VF(x 2J (4)

.4.

which is exact whether is linear or not, as long as J is the matrix
. .

of first partial derivatives of *. The matrix of second partial de-

rivatives of the objective function is:

G = 23JT (5)

which is exact only when is linear. At any given iteration we assume

there are . active constraints (ordered such that j = 1,2,...,L) where

t. < k. Thus, the Kuhn-Tucker conditions are:

VF(X)+C(Ax +b)X +.+ (A~ +b9. X . 0 (6)

gj(x) = 2 x + x3 - d. 0 j=I,...,t (7)

X. > 0 j=l,...

Similar to the development of Paradis and Willmert [3], the new

.o . .. . . . . .

. .
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method is generated such that a single iteration yields the optimal de-

sign for a quadratic objective function assuming that the constraints

active at the optimal design are also active at the starting point. If

F(x) is quadratic then the following equation is valid for any two points

4. 4
xV+ and x:

44.

VF( + )  VF( ) G( -x )(9)

Solving equation (6) for VF(4 +I ), assuming x + is the optimal design,

and substituting into equation (9) results in the iterative expression

4.

(after solving for x +i):

1. 4. 144
x (G + JEAjl ) [Gx- -b X VF(x )I (10)v'4-. j1 j V ] ~

If the objective function has the special form of equation (1), then

the G matrix in the iterative equation would be replaced by equation (5),

Ti.e. G = 2JJ . Otherwise, the method could still be applied as long as

the matrix of second partial derivatives G, or an approximation to it,

were known.

In order to use the iterative equation (10) the unknown vector of

Lagrange multipliers A must be determined. This is accomplished by sub-

stituting the expression for x +i, equation (10), into each of the active

constraints of equation (7) resulting in a system of t nonlinear equa-

tions in Z unknowns X of the form:



(A) - { f(G + jZ A A [G bj VF(' )A1 2 j ij v jaij J i

{(G + EjIAjj) fGx XbA - VF(

+ b (G+ jiAA )jl1EGx - x -VF(x)Ijlj V j=ljji X

- di = 0 i1.(11)! +
This system of equations in X could be solved using several dif-

ferent methods. The approach used in this research was as follows. At

each iteration initially the Newton-Raphson technique was applied. If

the method did not converge, which may be caused by the fact that the

equations had no solution or that the method simply was not able to

locate one, then another approach was used. In this case, an objective

function H was formed which was the sum of the squares of the

active constraints gi" This unconstrained function was minimized with

4.
respect to A. In this work, Powell's method was used, but any available

4.technique could be applied. The optimal values of A (whether H is zero

.- or not for these values of x were then used in the iterative equation

(10).

As in the original Gauss Constrained Technique (as well as the gra-

dient projection method) the criterion for dropping a constraint from the

set of active constraints is the sign of xi At any iteration the con-

straint corresponding to the most negative A is dropped from the set of

active constraints and a new vector of Lagrange Multipliers is deter-

mined. This procedure is repeated until all Ai > 0. If this results in

no active constraints, then the optimization technique continues by set-

.WIN

h..-.. . . . . . . . . . . . . . .. . ..... .. . .... ..



6

ting all Xi 0 in equation (10). In this case, the iterative expression,

can be shown to reduce to Gauss' method for unconstrained optimization:

X (jjT)-lj
-+ 4 T - l (12)

At each iteration a decision must be made as to whether or not a new

constraint should be added to the set of active constraints. If the

direction of minimization sv+l is defined as the direction from x V to

x V+1 then a constraint is added only if a step in the s direction

will not satisfy the constraint.

Two different methods were used to handle violated constraints.

The first approach was to do nothing special if a constraint became

violated as a result of an iteration based on equation (10). Thus

whether a constraint is only active, i.e. gi = 0, or if it is violated,

i.e. gi > 0, it is treated the same in the optimization technique. The

basis behind this approach was the assumption that eventually the method

will satisfy all constraints, since these are equations (11) which the

method attempts to satisfy at each iteration. This approach allows the

optimization to start at any design whether it satisfies the constraints

or not.

The other method of handling violated constraints was to start at

a point which satisfied all constraints. Then if a step is taken using

equation (10) such that gr(-Xv) > 0, a new design x+ was found along

the line connecting x and x such that g (X') 0. This was
V v+l r v-I1

accomplished by stepping back from a violated constraint using the

approximate equation:



-p r p n a, .n. r S] uV CJwirrvwra V M n J b '1 n Vt ., "' L -1. ~.- ~ '- -

7

"4°

X r
x = - r (13)"" +I x S(X +l)  g r ('X

The design x'+, was then used in the next iteration.

Although the technique was developed assuming linear functions *(x),

i.e. F(x) quadratic, the method is applicable to problems where the Os

are general functions of x. An especially important characteristic for

mechanism design is that the technique requires a total of only one more

objective function evaluation than iterations to obtain an optimal design,

unlike the GRG Technique of Lasdon et.al [21, where a step length deter-

mination is required at each iteration.

Example Problems

Several examples were considered in this work, two of which are

presented here.

The first problem, which is a modified Rosen-Suzuki test problem,

consists of a quadratic objective function in eight variables with

seven quadratic inequality constraints as follows:

Minimize

F4,., x 2 3 2 + 1 2 + 2 + 2 5 2 2 3 2
1 I x2 2x3 +x4 5 x6 + x7 28 V

-3x 2 + 5x4 + x5 + 7x6 2x x8
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subject to:

1 12 3 2 -I 2 1 22
l(x) 2 x 1+- r3+2- 7+x82x 3-4x 6+ 5x7

- 10 < 0

4., g2 ;u + 2 + x2  2 + 2 2 2

x+ x 3- x 4+x 5- x 6+x 7x 8-6< 0

+ 2 2 2 2 2 2 2 2
(x)nx1 + 2x + x + 2x + x + 2x + x +2x 8

-x1 x 4 - 5 x 8 - 13 <0

2 )=+ 2x 2+ 3x 2 x2+ 5x 2+ 6x 2+x -x941 x 2 3 5 6 7 1 3

-x 5-x 7- 5< 0

+ 2 2 1<
95 Wxi x+ x 8 xl1- x 8 - 1

+ 2 2 2 2 2 2 2 2
96 (xu2x, - 2x2 +2x 3-2x 4+ 3x 53 x73

-2x + 2x 2-2x + 21-(0
1 2 -2x 3  x6 2x7 2x 8 10-

+ 2 2 2 2
g 7(W 4x 2 -4x 4 + 2x 6 -2x 8 -5x,-5x3 + 5x 5

+ 5x -20 < 0
7

V7
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Tables I and 2 show the results of the optimization from two dif-

ferent starting points. Three different techniques were applied. The

first two were variations of the Gauss Nonlinearly Constrained method.

The first one, labeled GNLC.NS in the tables, ignored violated con-

straints, while the second, labeled GNLC, treated violated constraints

using equation (13). Both of these methods were compared with the Gen-

eralized Reduced Gradient technique, labeled GRG.

Table 1 shows the results from a starting point where no constraints

were active or violated. All three methods produced the same optimal

design. The number of iterations NI, and number of function evaluations

NF for the GNLC methods were considerably less than for the GRG. Table 2

shows the results from a starting point in which three constraints were

violated, while one was active. For this starting point only the

GNLC.NS technique was applicable. Again the number of iterations and

function evaluations were less than for the GRG.

The second example consists of the design of a four-bar mechanism

such that the coupler point (XX,YY) of the mechanism closely generated

the curve defined by the eight points as shown in Figure 1. The ob-

jective function to be minimized is the sum of the distances (squared)

between the desired curve and the actual curve generated by the mechanism:

8 2 )2E (xxZ - XG.) + (YY YG

where:

XXi  x2 cosyi + x5COSI i3 i *2
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Yyi = x2siny + x5COsIP + x9

x6 + x7 + ni " Ei

1 =  2 sin(y. " x6

C tan x-cos( - x6)]

2 2 2 \

-1 + x2 + X3 "x- 2x1x 2cos(Yi - 6Y
ni = Cos ...... . 1 2

L x3 2 2 2XX 2cos( 1  6 J

Yi = x8 + Ay1

and (XG,YG) are the coordinates of the desired curve.

The design variables Xl,... 9xO are link lengths, orientation of

same of the links as veil as the location of the crank pin. Note, the

objective function is a highly nonlinear function of the design vari-

ables. This is the same problem that Paradis and Willmert [3] solved,

however, two nonlinear constraints, g13 and g14' have been introduced here

to constrain the location of the crank pin to two user defined circular

regions. Thus, our design problem contains ten variables, xl ,...,x 0 ,

and fourteen inequality constr-iints gi(') < 0 i-l,...,14. The con-

straints are:

.4.1

p.:

.'-. - .- .- ._..,., ... ,¢. .(. .- . -... -..., . -., . . - . ..-.. . . ...,,o . , .. .,,r , , ,,,. .*..r,'.- . ."";i' , ' " , ". -." :-- " ", . ". . " "," - ; ' ' " , . . .-." , " " '"-, , .- ,
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( 2 < 0 g8 (it) x2 + x4  x1 -x 3  0

0g2 () = 1 x5 < 0 g9(i) x 30 < 0

2 x 2  5x <093 g30=x - x I  <_ 0 g10(it) x x3 - 30 < 0

g4( ) x2 - x3 _0 911(-) x 4 - 30 < 0

g5(R) = x2 - x4 <0 g12( ) - x5 - 30 < 0

g6 ( ) x + x2 -x 3 -x 4 <0 g13 (t) 
= (x - CX )2 + (x9 .

2
-i < 0

g7 ( )x 2 + x3 x 1 x4 < 0

g14(x) = (x1 0 - + (x9 - CY2)2

2
-R <0

where CX1 , CY1, R1, CX2, CY2, and R2 were 4, 4, 3, 7, 7, and 3 re-

spectively.

The resulting optimal designs using the GNLC and GRG methods are

shown in Table 3. The optimal mechanism is shown in Figure 2. Again

the Gauss Nonlinearly Constrained method required significantly fewer

objective function evaluations.

Conclusions

The Gauss Nonlinearly Constrained method is an effective technique

of solving nonlinear design problems. It is particularly efficient

for cases in which the evaluation of the objective function is very

7-:r

~ 4.....
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time consuming. Although in some instances considerable calculations

must be done per iteration, the amount required is still insignificant

compared to that required to do just one analysis of a complex mechanical

or structural system.

The method has been applied to a variety of problems consisting of

objective functions of various complexities. In all cases it has worked

well. However, it has received only limited application to problems

involving constraints that are more than quadratically nonlinear. It

appears that further research is required for such cases.
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TECHNIQUE
Starting
Point GNLC.NS GNLC GRG

S\T NI 2 3 14

A F
T ET A NF 3 4 144U A
S S

I
B
L
E

1.0 X -0.8797 -0.8797 -0.8797

1.0 X 0.7030 0.7030 0.7030

0.0 X3  0.1092 0.1092 0.1092

1.0 X4  0.8333 0.8333 0.8334

0.0 x5  -0.2015 -0.2015 -0.2016

0.0 X6  -0.8570 -0.8570 -0.8571

0.0 X7  0.3993 0.3993 0.3993

.0.0 X8  0.3333 0.3333 0.3334

-0.5 F -9.520 -9.520 -9.520

- G ACT 4

Table 1: Results of Rosen-Suzuki Test Problem
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V.

S i-_ TECHNIQUE
"' Starting

Point GNLC.NS GNLC GRG

S IT N NI 3 24T N
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E

-1 X -0.8797 * -0.8797

S-1 X2  0.7030 * 0.7030

-1 X 3  0.1092 * 0.1092

-1 X 4  0.8333 * 0.8333

-1 -0.2015 * -0.2015

-1 X6  -0.8570 * -0.8570

-1 X 0.3993 * 0.3993

-1 X 0.3333 * 0.3333

14.0 F -9.520 * -9.520

(2,3,4 v),7 G ACT 4 4

(v) - violated constraint

Table 2: Results of Rosen-Suzuki Test Problem
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Starting GL R
Point GL R

KS F
T E NI115
A A 5

T S

S B NF 12 389
L
E

15.0 x130.0 30.0

5.0 x8.345 8.345

15.0 x25.821 25.821

5.0 x412.817 12.817

15.0 x16.026 16.026

-0.007 * -1.063 -1.063

*0.412 X71.259 1.259

1.379 X81.118 1.118

6.0 x4.0 4.0

5.0 x 07.0 7.0

220.29 F 1.78349 1.78348

-GAC 9,13,14 9,13,14

*Angle Variables (radians)

Table 3: Results of Mechanism Design Problem



Ix.YYI

5 4 3 1

20
X3 loe

7

10x.X - "

X? x

xlO ¥Ci X9

0 10 20 30

Figure 1: Four-Bar Mechanism for Path Generation

-A.

**. - 4-*1;-'5~ - S --

U ,,,-. ... -

-"-2 .



DESIRED

10-

GENERATED
CURVE

0 0 30

F 1 * 78349

Figure 2: Optimal Mechanism

v.9 -

........



FINITE ELEMENT NONLINEAR VIBRATIONAL

ANALYSIS OF PLANAR MECHANISMS

by

D. W. Tennant*

K. D. Willmert*
and

M. Sathyamoorthy*

*Department of Mechanical and Industrial Engineering

Clarkson University, Potsdam, New York, 13676



ABSTRACT

A finite element approach is presented in this paper for the nonlinear

vibrational analysis of planar mechanisms. The analysis takes into account

the effects of material and geometric nonlinearities on the dynamic behavior.

The geometric nonlinearities included in this study are due to stretching of

the neutral axis and the curvature-displacement nonlinearity, both caused by

large deformations. The material nonlinearity is due to a nonlinear stress-

strain relationship of the Ramberg-Osgood type. The analysis presented here

makes use of hermite polynomials which ensure compatibility of curvature

between elements. Using a variable correlation table, a global system of

nonlinear equations are derived in terms of the global unknowns and the

kinematics of the mechanism. A harmonic series technique is then used to

obtain the steady state solutions to this system of nonlinear equations.

Numerical results are presented for an example mechanism and the effects of

the nonlinearities are discussed.
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INTRODUCTION

The importance of flexibility of linkages on the performance of high-

speed minimum-mass mechanisms is well recognized. A considerable amount of

research has been done in this area in the last two decades. While it is

desirable to develop analytical and numerial procedures that enable the

design of rigid link mechanisms and robots to perform a given function with

specified reliability, it is also important to evaluate the effects of

flexibility of elastic members on their performance. It is known that a

mechanism designed for operation at low speeds may not perform satisfactorily

at high speeds due to the effects of large inertia forces and resulting

elastic deformations. Thus it becomes necessary to include in the dynamic

analysis of mechanisms, not only the effect of the rigid body motion, but

also the flexibility of the linkages.

Most of the previous investigations in the area of elastic analysis of

mechanisms have been carried out within the framework of the linear theory

[1-16]. However, Viscomi and Ayre [171 used a Galerkin-type nonlinear

analysis procedure to study the vibrations of a slider-crank mechanism. A

later work by Sadler and Sandor [181 used the lumped parameter approach to

a nonlinear dynamic model of an elastic linkage. The mechanism analysed in

this paper was a general four-bar linkage and the analytical model inc'uded

the response coupling associated with both tne transmission of forces at the

pin joints and the dependence of the undeformed motion of a link on the

elastic motion of other links. A finite element analysis, with the aid of

2
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the piecewise linear method of Martin, was used by Sevak and McLarnan [191

to carry out the nonlinear analysis of a mechanism. Further nonlinear work

dealing with the vibrations of elastic mechanisms are reported in References

[20-221. In a recent investigation, Thompson and Sung [231 used a varia-

tional formulation for the nonlinear finite element analysis of planar

mechanisms considering geometric nonlinearities. Some experimental results

were presented.

This paper is concerned with the nonlinear vibrational analysis of

general planar mechanisms. A finite element method is used which includes

the effects of both geometric and material nonlinearites. The geometric

nonlinearities included in this study are due to stretching of the neutral

axis with partially constrained ends and a general curvature-displacement

relationship, both caused by large deformations. Th, material nonlinear-

ity is of the Ramberg-Osgood type with three parameters to represent the

nonlinear stress-strain relationship [24-26]. Additional effects consid-

ered are transverse shear and rotatory inertia and changes in cross-section

due to realistically proportioned members. The governing nonlinear differ-

ential equations are derived for each element in terms of the axial and

transverse deformations, rotations, curvatures, and shear deformation angles.

These equations are then assembled with the aid of a variable correlation

table and the resulting global system of equations is solved using an

iterative technique based on a harmonic series solution procedure.

3
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FINITE ELEMENT FORMULATION

. A finite element method is presented below for the nonlinear analysis

of a general closed looped mechanism. The mechanism can be composed of

various combinations of simple four bar chains, frame elements, sliders

,* moving on fixed references, or sliders moving on rotating links. Each link

is divided into one or more elements with each element having the local

coordinate system as shown in Figure 1. If a slider is present, the masses

S 1 and M 2 are located at ends 1 and 2, as shown. The length of the element

A is constant except for links with sliders moving along them.

The displacement vector of any point (a) on the element's neutral axis

is given by:

S = (X1 cosy + Y siny + x + u)i + (Y1 cosy - XI siny + w)j (1)

where X1 and YI are the coordinates of end 1 of the element given by the

rigid body motion. The coordinate x is measured along the element's neutral

axis from I to 2 and y is the angle between the rigid body position and the

X-axis. The axial and transverse displacements of point (a) from the rigid

body position are given by u and w, respectively. This equation takes into

. account both the rigid body motion and the elastic displacements and defines

the position of any point along the neutral axis.

Differentiating Equation 1 with respect to time yields the velocity of

'-. any point (a). The unit vectors i and j move with the coordinate system and

4
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vary with time. The angular velocity of any differential line segment on

the neutral axis of the element is given by:

't + W, xt (2)

where.y, t is the derivative of y with respect to time and w,xt is the de-

rivative of the transverse displacement with respect to the local coordinate

x and time t.

The kinetic energy due to rotation of the element is given by:

h

K.E. 2 A AxS,t2 + + Wxt)2]dx dyR 2 f [ f +(dy
h o

+~ M 2= + .. M + 1 2 (3)

where p is the mass density and A xand I zare the cross sectional area and

moment of inertia of the element respectively. The term pz(Y~ t + wxt 2 /2

represents the effect of rotatory inertia. The kinetic energy due to beam

bending associated with transverse shear is [27].

h

K.E 1 2 24K'E'B f f h {, I }dx dy (4)B 2h o z

2

where a is a measure of the transverse shear angle.

5
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vol o vol

where a, C, Txy , and y are the normal stress, normal strain, shear stress

and shear strain, respectively. For a nonlinear material of the Ramberg-

Osgood type [24-26], the relationship between stress and strain is:

a A - Bm (6)

where A corresponds to Young's modulus E, and Bcm represents the nonlinear

term. A, B and m are constants for the particular material being considered.

The above relationship, Equation 6, is valid only for positive strains. If

the strain is negative, the following expression is used:

a - A c + B (-,)m if C < 0 (7)

The change in sign of the nonlinear term results in the same overall effect

on the stress-strain relationship as for positive strain, i.e. either hard-

ening or softening depending on the values of B and m.

Using the Ramberg-Osgood relationship, the following expression for the

strain energy is obtained for positive strain c > 0:

h h
L 2 1 B m+l 1 2

U f f{ A - B dx dy + 2 G X G Y dx dy (8)
h 0 _h 0

2 2

6
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where x is the axial coordinate, y is the transverse coordinate, and Gxy

is the shear modulus. When e < 0 the equation is:

h2A 1I 2 1 m)4-l

= {1 A --- B (-O }dx dy

ho f {2m+l

h

+ f f 2 G dx dy
h 0 ' Y

The nonlinear expression for the curvature R of a planar static beam

undergoing large deformations is:

1 = W'xx (10)
R ( 2 + w 3/2

x

Thus the strain is:

S- . - Y'xx (11)
R ( 2 + 3/2

Combining the geometric nonlinearities due to stretching of the neutral axis

and the curvature-dispalcement nonlinearity, results in the expressions for

normal and shear strain:

2 y ,
E U, D w, - 2 3 /2  (12)

7
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Yxy = W,x + a (13)

Substituting these expressions for strain into the strain energy Equa-

tions (8) and (9) produces, for e > 0

h2i 1 + 1 2 Y '

S.E. = f b{ A (u, +- D w, x  x2 2

h o (1+D w, )

2 b x

Dk 1 2 Y a'x )m+l-B +-D s w, - w2)3/2
u'i'B (u,x  2 x (1 + Db w,)

1 2

+ -1 G (w, + a)2 }dx dy (14)
2 xy x

and when e < 0

h
2 A 1 1 2 ___W__xx __2

S.E. = f f b {' A (u, + - D W, 2 3/2)

h o 2 s x (1+D w, 2
2 s x

Dk 2 Y Wxx M+l
"+ B (-u,x-- D s W,x +232k ~ 1 2 2s 2 3/2(1 + Db w,x

+ -1 G (w, + a) 2}dx dy (15)
2 xy x

In Equations (12), (14) and (15), Dk5 Db and Ds are tracing constants

8



representing the effects of material nonlinearity, geometric nonlinearity

due to curvature, and geometric nonlinearity due to stretching of neutral

axis, respectively. Each tracing constant is equated to unity when that

particular nonlinearity is being considered and is equated to zero when it

is not.

In order to represent realistically proportioned members, changes in

cross section are included. Each element is divided into sections of varying

lengths with constant area' The intergrations involved in the element equa-

tions are carried out in a piecewise fashion with the area in each section

taken as a constant. This procedure provides a reasonable approximation of

variable cross sectional members without having to resort to large numbers

of elements.

The Lagrange function L is defined as:

S Nk
L M KE. + KE -SE.i (16)
ki 1 'R -B

thwhere N is the total number of elements in the k link and S is the num-k

ber of links in the mechanism. Substituting Equations (3), (4) and (14)

into Equation (16), the Lagrangian L can be expressed in terms of the dis-

placements u, w, the shear angle a, and the rigid body motion.

Hermite polynomials are used to approximate u, w, and a in order to

;satisfy the boundary conditions of various types of mechanisms easily and

to ensure interelement compatibility. The axial deformation u is approxi-

* ~mated by a linear shape function given by

U U (t) N (x) + U2 (t) N2(x) (17)

9



Similarly, fifth degree polynomial shape functions are used to approximate

the transverse deformation w:

w = W1 (t) H11I(x) + 6l(t) H2 1(x) + m 1(t) H3 1(x)

.. + w 2(t) H12(x) + C2(t) H 22(x) + C2(t) H 32(x) (18)

where e and m are continuous between elements. The shear angle a is also

approximated by a fifth degree polynomial in order to make it compatible

with the transverse displacement w. Therefore a is assumed to be:

a = 1l(t) H1 (x) + 1l(t) H 21(x) + 1 (t) H 31(x)

+ a2 (t) H2 (x) + 2(t) H 22(x) + 12(t) H 32(x) (19)

where * and X are the first and second derivatives of a, respectively.

The Hermite polynomials are given by:

N 1(x) I - e

N 2(x) e (20)

3 4 5
H (x) 1 1 - 10e + 15e _ 6e
11

H. H21 (x) - A(e - 6e 3 + 8e 4 _ 3e 5

622 3 4 5
H (x) (Ce e + e - e )/

"4 5
~~H31(x) - 2(e2 - 3e3 + 3e4 - e)/

31
3 4 5H 1X) 10e _ 15e + 6e

22

2 3 4 5H32(x) = Ce - 2e + e )/2 (21)

10
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where, e fix/A.

A transformation of coordinates is now introduced to change from the

moving coordinate system associated with the elements to global coordinates.

Only U1 , WI, U2 and W2 need to be transformed. The other coordinates are

angles or derivatives of angles which are not directional on the X, Y co-

ordinate system used. The transformations are:

U1 = U cS01 - W1 sinol

W = U1 sino1 + W cos0l

U, = U2 coso 2 - W2 sin0 2

W = U2 sin02 + W2 cos0 2  (22)

For pin connections the transformation angles 01 and 02 are set equal to -y

(the rigid body angle) which transforms the coordinates back to the global

coordinates. For sliders moving on rotating links the transformation becomes

more involved. In this case the deformation of the driver link must be

transformed to correspond to the axial and transverse deformation of the

rotating link [141.

Substituting the expressions form Equation (22) into Equations (17) and

(18), the global coordinates for the system are then:

q f [U1 W 1  ml a 1 l U2 W2 e2 m2 a2 '2 X21 T (23)

The Lagrangian function is then written in terms of the transformed element

coordinates. Differentiating the Lagrangian with respect to the element co-

ordinates, the following element equations are obtained:

."."11
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d 3L 3_ 0 (24)
dt Dq, 3q

In differentiating the expressions for the kinetic and strain energies in

Equations (3), (4) and (14) it must be kept in mind that A which is the

upper limit of integration is a function of time. The operations carried

out in Equation (24) results in a system of nonlinear element differential

equations. Assembling the element matrices for the particular mechanism

being solved results in the global system of equations:

M Qtt + C Qt (Ke + Kn F(t) (25)

'n

sults from the kinetic energy of the system. No damping was included in

the formulation of the problem. The C QIt term was found to be small and

thus was ignored in the analysis. The matrix Ke is the linear portion of

the total stiffness matrix. It is a function of rigid body motion but not

a function of the deformations Q. The matrix Kn , however, is the nonlinear

portion of the stiffness matrix. It is a function of the deformations.

Equation (25) is thus a nonlinear system of equations.

The derivation of the finite element Equation (25) is based on the

assumption of positive strains c. If the strain is negative a similar

derivation is possible, based on Equation (15) for the strain energy rather

than Equation (14). The only difference in the resulting Equation (25) is

in the stiffness matrix. Wherever an E m- occurs in the original formula-
, )n-I

tion, it becomes (-) for negative strains. All other negative signs

12



resulting from the introduction of -E cancelled out in the differentiations

required. Thus in order to handle both positive and negative strains the

rnm-i r-
terms involving E in the stiffness matrix were replaced y.)y 'I'

In order to solve the nonlinear system of Equation (25) an iterative

approach was used. First the equations were solved using the linear terms

only, i.e. the K matrix was ignored. This was accomplished by setting
n

all of the tracing constants Db, D and Dk equal to zero. The solution

for the linear equations was then used to determine values for the nonlinear

stiffness matrix K . Equation (25) was then solved again for new valuesn

for Q, and the process repeated. Experience showed that this procedure

converged in from 3 to 5 iterations. To solve Equation (25) for Q(t), for

particular K , a harmonic series solution method was used similar to thatn

of Bahgat and Willmert [141. This approach overcomes problems with sta-

bility, due to the time varying nature of the matrices, that sometimes re-

sult from an eigenvalue technique. The steady state solution is obtained

without adding artificial damping. The solution, without the C Q' term,

is given by:

N 2 2
Q(t) = Z (K - n W M) (A cos nwt + B sin nwt) (26)no n n

wherewis the input crank speed, and A and B are solutions to the linear
n n

equations:

N N-I
F(t) = n ° A cos nwtk + Z B sin nwtk~tn =o n k

for k = 0,1,..., 2N-1 (27)

13
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where A is set equal to zero. The values of tk are the times at 2N equal

time increments per revolution of the input crank given by

tk = for k = 0,1,...,2N-1 (28)
k Nw

Computational experience indicates that a fairly accurate solution is ob-

tained using only a few terms in Equation (26). As the number of terms in-

2 2creases the components of the matrix (K - n w M) grow and thus the in-

verse (K - n2 W2 M)- becomes small. The summation can therefore be

truncated to reduce computational time.

The stress in the links is calculated by evaluating the strains from

Equation (12). The stress can then be determined at any point in an element

using Equations (6) or (7). To find the maximum stress in an element the

maximum strain must be found. Setting the first derivative of Equation (12)

to zero and solving the resulting expression, the position of the maximum

strain is determined. Once the location is known, the maximum strain and

stress can be evaluated.

The above formulation is based on the use of the shear angle a, which

is appropriate particularly for short members. For long slender links this

quantity is not required. The elimination of a reduces the size of the

problem considerably since the nodal deformations al, I' X1 9 a 2, 2 and

A 2 would no longer be present. For long slender members:

a - w, (29)

14



Using this expression, the equation for strain energy (14) for positive

shear e reduces to:

h
2 1 1  2+ Y Wx 2

S.E. ho b A 2 'x (1+ 2

2

DB(u, I , + ) M+l}dx dy (30)
m+1 x 2 s x + 2)3/2

(1 + Db wx

A similar expression exists for negative strain. The kinetic energy also

changes if a is not present. The energy associated with transverse shear,

Equation (4), is eliminated and thus Equation (3) represents the total

kinetic energy of the element. Using a procedure similar to the method

outlined above, vibrational equations of the same form as Equation (25) can

be obtained, but they will be smaller in size. However, nonlinear terms

still exist in the stiffness matrix due to the material and geometric non-

" linear-ities The method of solution is thus identical to that outlined

earlier.

".1
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EXAMPLE PROBLEM

The following example is presented to illustrate the method of solution.

The nonlinearities due to neutral axis stretching, curvature-displacement

and stress-strain relationship are all considered. A four-bar linkage,

as shown in Figure 2, is used as the example with all the members flexible

and made of the same material. The data for the mechanism is

Length of input crank (AB) 5.0 in

Length of coupler (BC) 11.0 in

Length of rocker (CD) = 10.5 in

Fixed distance (AD) - 10.0 in

Cross section of links - rectangular

Height of rectangle 1.0 in

Width of rectangle - 0.25 in

The initial position of the input crank is zero degrees at t - 0 and the

direction of rotation is counterclockwise. The mechanism is divided into

three elements with each link in the mechanism taken as an element. The

boundary conditions are that only moment and shear terms exist for the input

crank's driven end (A). For the pin connections between links, there are

deformations, rotations and shear terms, and for the rocker's fixed point

there are only rotation and shear terms.

First, the deformations in the mechanism were determined with the shear

16
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angle a present. In this case the crank link was rotated at 100 rad/sec.

The material properties, approximating aluminum, were as follows:

A - l0.87x106 lb/in
2

B - 0.8387x101 lb/in
2

m =3.0

Mass density = 0.0002536 lb-sec
2 /in4

Three separate procedures were used to obtain numerical results. First

the problem was solved using the linear analysis method of Bahgat and

Willmert [14], with E = A. Next the method of this paper was used with the

tracing constants equal to zero. Thus a linear analysis was obtained.

Finally the method was applied with all tracing constants equal to one,

i.e. a full nonlinear analysis. A representative deformation U as a

function o! crank position is shown in Figure 3. This is the horizontal

deformation of the free end of the crank link. As can be seen, the three

curves are very similar. The effect of the shear angle a is to increase

the deformation slightly. For this slow speed the linear and nonlinear

analyses were almost identical.

The same problem was solved again at a higher speed of 200 rad/sec.

The resulting deformation U is shown in Figure 4. As can be seen, high

frequency oscillations started to appear, with greater separation between

the three analyses. At even higher speed these oscillations became more

predominant to the point of instabilities in the analysis at very high

speeds.

17



The revised form of the analysis equations was considered next, i.e.

the form without the strain angle a. Here a crank speed of 150 rad/sec was

used. A comparison was made of the effects of the various nonlinearities

on the deformations and stresses as compared to the linear analysis.

Figures 5 and 6 show a comparison of the linear and nonlinear deformations
U2(the horizontal deformation of the free end of the output link) caused

separately by geometric and material nonlinearities. Figures 7 and 8 show

D- -. the maximum stresses in the connecting link of the mechanism. As expected,

the material nonlinearity of the Ramberg-Osgood type results in deformations

which are greater in magnitude than those obtained using a linear elastic

model. The maximum stress decreased due to the presence of the term Bcm

subtracted from the linear stress expression.

The geometric nonlinearities considered, namely curvature displacement

and stretching of the neutral axis, both due to large deformations produced

mixed results with deformations reduced at some points and increased at other

points. The effect of the geometric nonlinearities would be expected to

produce a stiffening of the members [27] of the mechanism and thus produce

smaller deformations. The increased deformations in this case might be due

to the fact that the deformations are in relationship to the entire mechanism

and not just to the individual beam element.

F.

C -
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CONCLUSIONS

The nonlinear analysis procedure, using a finite element technique, is

an effective method of calculating the steady state deformations and stresses

in a mechanism. Significant differences can occur between the linear and

nonlinear approaches. This was particularly true for the stresses in the

example considered in this work. Research is still needed on the overall

effect of the shear angle a, and a more complete picture of the nonlinear

terms in the analysis would be of value. Additional nonlinear effect should

also be investigated, such as separation of the translations of one link

due to large deformations of the other links.

ACKNOWLEDGEMENTS

This research is sponsored by the Air Force Office of Scientific Research,

Air Force Systems Command, USAF, under Grant Number AFOSR 84-0076. The U.S.

Governthent is authorized to reproduce and distribute reprints for government

purposes notwithstanding any copyright notation thereon.

19



,

REFERENCES

[1] Jasinski, P. W., Lee, H. C. and Sandor, G. N., "Stability and Steady-
State Vibrations in a High-Speed Slider-Crank Mechanism," Journal of"
Applied Mechanics, Trans. ASME, Vol. 37, 1970, pp. 1069-1076.

[2] Winfrey, R. C., "Elastic Link Mechanism Dynamics," Journal of En-
gineering for Industry, Trans. ASME, Vol. 93, 1971, pp. 268-272.

[3] Winfrey, R. C., "Dynamic Analysis of Elastic Link Mechanisms by Re-
duction of Coordinates," Journal of Engineering for Industry, Trans.
ASME, Vol. 94, 1972, pp. 577-582.

[4] Erdman, A. G., Sandor, G. N. and Oakberg, R. G., "A General Method of
Kineto-Elastodynamic Analysis and Synthesis of Mechanisms, "Journal of
Engineering for Industry, Trans. ASME, Vol. 94, 1972, pp. 1193-1205.

[5] Iman, I., Sandor, G. N. and Kramer, S. N., "Deflection and Stress
Analysis in High Speed Planar Mechanisms with Elastic Links," Journal
of Engineering for Industry, Trans. ASME, Vol. 95, 1973, pp. 541-548.

[6] Sadler, J. P. and Sandor, G. N., "A Lumped Parameter Approach to Vi-
bration and Stress Analysis of Elastic Linkages," Journal of En-
gineering for Industry, Trans. ASME, Vol. 95, 1973, pp. 549-557.

(71 Winfrey, R. C., Anderson, R. V. and Gnilka, C. W., "Analysis of
Elastic Machinery with Clearances," Journal of Engineering for In-
dustry, Trans. ASME, Vol. 95, 1973, pp. 695-703.

[81 Chu, S. C. and Pan, K. C., "Dynamic Response of a High-Speed Slider-
Crank Mechanism with an Elastic Connecting Rod," Journal of Engineering
for Industry, Trans. ASME, Vol. 97, 1975, pp. 542-550.

[9] Bagci, D., "Dynamic Motion Analysis of Plane Mechanisms with Coulomb
and Viscous Damping Via the Joint Force Analysis," Journal of En-
gineering for Industry, Trans. ASME, Vol. 97, 1975, pp. 551-560.

[101 Sadler, J. P., "On the Analytical Lumped-Mass Model of an Elastic
Four-Bar Mechanism," Journal of Engineering for Industry, Trans. ASME,
Vol. 97, 1975, pp. 561-565.

[11] Koster, M. P., "Effect of Flexibility of Driving Shaft on the Dynamic
Behavior of a Cam Mechanism," Journal of Engineering for Industry,
Trans. ASME, Vol. 97, 1975, pp. 595-602.

20

' ' .?,' - -.-- ':. . -.. " > -. .' ..... . --.., !- -"-, .i..-.- .-.,'-.f. ,,,



[12] Dubowsky, S. and Gardner, T. N., "Dynamic Interactions of Link
Elasticity and Clearance Connections in Planar Mechanical Systems,"
Journal of Engineering for Industry, Trans. ASME, Vol. 97, 1975,
pp. 652-661.

[131 Bahgat, B. M., "General Finite Element Vibrational Analysis of Planar
Mechanisms," Ph.D. Dissertation, Clarkson College of Technology,
Potsdam, N.Y., Nov. 1973.

(141 Bahgat, B. M. and Willmert, K. D., "Finite Element Vibrational
Analysis of Planar Mechanisms," Mechanism and Machine Theory, Vol. 11,
1976, pp. 47-71.

[151 Khan, M. R., "Vibration of Mechanisms with Sliding Pairs Using Con-
stant Length Finite Elements," M.S. Dissertation, Clarkson College
of Technology, Potsdam, N.Y., Feb. 1976.

[161 Naganathan, G., "New Finite Elements for Quasi-Static Deformations and
Stresses in Mechanisms," M.S. Dissertation, Clarkson College of
Technology, Potsdam, N.Y., 1980.

[171 Viscomi, B. V. and Ayre, R. S., "Nonlinear Dynamic Response of Elastic
Slider-Crank Mechanism," Journal of Engineering for Industry, Trans.
ASME, Vol. 93, 1971, pp. 251-262.

[18] Sadler, J. P. and Sandor, G. N., "Nonlinear Vibration Analysis of
Elastic Four-Bar Linkages," Journal of Engineering for Industry, Trans.
ASME, Vol. 96, 1974, pp. 411-419.

[191 Sevak, N. M. and McLarnan, C. W., "Optimal Synthesis of Flexible Link
Mechanisms with Large Static Deflections, "Journal of Engineering for
Industry, Trans. ASME, Vol. 97, 1975, pp. 520-526.

[201 Badlani, M. and Midha, A., "Member Initial Curvature Effects on the
Elastic Slider-Crank Mechanism Response," Journal of Mechanical Design,
Trans. ASME, Vol. 104, 1982, pp. 159-167.

[211 Davidson, I., "Non-linear Effects in the Support Motion of an Elastic-
ally Mounted Slider Crank Mechanism," Journal of Sound and Vibration,
Vol. 86, 1983, pp. 71-83.

[221 Sivertsen, 0. I. and Waloen, A. 0., "Non-linear Finite Element Form-
ulations for Dynamic Analysis of Mechanisms with Elastic Components,"
ASME Paper No. 82-DET-102.

[23] Thompson, B. S. and Sung, C. K., "A Variational Formulation for the
Nonlinear Finite Element Analysis of Flexible Linkages; Theory, Imple-
mentation and Experimental Results," ASME Paper No. 84-DET-15, 1984.

21

,-I



rK.
[%,

[24] Ramberg, W. and Osgood, W. R., "Description of Stress-Strain Curves
by Three Parameters," National Advisory Committee for Aeronautics,
Technical Note No. 902, 1943.

[25] Venkateswara Rao, G. and Krishna Murty, A. V., "An Alternate Form of
the Ramberg-Osgood Formula for Matrix Displacement Analysis," Nuclear
Engineering and Design, Vol. 17, 1971, pp. 297-308.

[261 Papirno, R., "Goodness-of-Fit of the Ramberg-Osgood Analytic Stress-
Strain Curve to Tensile Test Data," Journal of Testing and Evaluation,
Vol. 10, 1982, pp. 263-268.

[27] Sathyamoorthy, M., "Large Amplitude Vibrations of Moderately Thick
Beams," Proceedings of the First International Modal Analysis Con-
ference, Orlando, Florida, 1982, pp. 136-140.

[281 Huang, T. C., "The Effects of Rotatory Inertia and of Shear Deforma-
tion on the Frequency and Normal Mode Equations of Uniform Beams with
Simple End Conditions," Journal of Applied Mechanics, Trans. ASME,
Vol. 28, 1961, pp. 579-584.

A 6

22

Vol 579-584.*



-J-e



F. .0 T -77 7 7

Ci

Figue 2 our ar Mchai



*%1

00

4,

W4 4%

r-4,

*4-
.4 -4 c

Z4 9.04 U
"1 0 - -. 0 U

04

-- \0

V4-

No
11..

0
4- 1

1--4

\00

4)-

00
0 0 4-4

0 0 0 0

0___ __ __ __ __ 0_ _



00

CN
cv4

w

CUj

\0

0

v-4

1-,4

00

.- 4

-r4 J.Jn 0

00



-7 O WI -.- "9 -,' 17 T P7k

00

-- 4

CV)-p,4

\?L ) CuV
$54 0__ _ _ _ _ -

N U44

0

0

\00

$4

cCu

r4 0

q--4

040

CL
E
0

4)

C) 0

I;'.



00

ca-

Cu C

(1) C\
0

cU. 0

0

0 a)

Cu3

0

i--4

C.Cu

VNN

'r-4-0

C~Cu



- - . - - - - - - . - - . .- . .. .-

0 -.

1C-4

.0 0

020

p.6

(U~T-4 .3-
Wr-4 -4

.1-V-0

C'44

400

$44

cnC
o 0 04

Cd 0 0 0

0 c



G)
'-

occ
GJ)

'-44

14

4)0

rI 0 C14

0

C144

Go'
cc'

- -..

..............

0 0 0

0 0 0N



FLMED

D"Em"


