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A nonlinear finite element procedure has been developed for the dynamic
vibrational analysis of planar mechanisms. The analysis takes into account the
effects of geometric and material nonlinearities, vibrational effects and
coupling of deformations. Numerical results have been reported for certain
mechanism examples. The effects of the nonlinearities have been found to be
significant on the dynamic behav}or. Due to the complex nature of this
nonlinear analysis procedure, an efficient optimal design approach using an
optimality criterion technique has also been developed. The new optimization
technique, called the Gauss Nonlinearly Constrained Technique, has been
developed in such & way that it is applicable to design problems with nonlinear
objective functions and constraints. The applicability of this method has been
demonstrated with example problems consisting of objective functions of various
complexities. Complete details of the nonlinear finite element procedure as

well as the optimization technique are available in two papers (to be published)

which are included here in the Appendix.

Research Objectives

The objectives of this research are to develop a nonlinear finite element
dynamic analysis procedure for both planar and spatial mechanisms of the type
found in space structures. Geometric, and material nonlinearities as well as
combinations of these are to be included in the analysis. Furthermore, an

efficient optimal design method is to be developed to handle objective functions

composed of & combination of rigid body and deformation displacements involving
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geometric design variables as well as cross-sectional sizes. Thus, during the

reporting period it was proposed to
a) develop a nonlinear finite element procedure for dynamic planar
mechanisms;
b) develop an efficient optimization method involving a small number of

analyses for mechanism design problems.

Significant Accomplishments

Substantial progress has been made in both of these two research areas
during the reporting period. Complete details of the work are included in the
Appendix; only a summary is presented here.

In the nonlinear finite element analysis area, planar mechanism problems
havé been formulated to include the effects of material and geometric
nonlinearities due to large deformations, and vibrational effects for members
with nonuniform cross sections. Effects of transverse shear and rotatory
inertia have also been included. Numerical results for deformations and
stresses have been reported for certain planar mechanisms. The results clearly
indicate the effects of geometric and material nonlinearities on the dynamic
behavior of planar mechanisms and the need to include these effects in the
analysis.

In the optimal design area, a new optimization technique, called the Gauss
Nonlinearly Constrained Method (GNLC), which is applicable to design problems
with nonlinear objective functions and constraints has been developed. The GNLC
technique is an extension of a previously developed method called the Gauss
Constrained Technique which is capable of handling only linear comstraints.

Both of these techniques, based on Gauss” unconstrained method, were developed
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so that the Kuhn-Tucker conditions were automatically satisfied when the
procedure terminated. As an example, a four-bar mechanism was designed such
that the coupler point (XX,YY) of the mechanism closely generated a curve
defined by discrete points. The objective function to be minimized in this case
vas the sum of the distances (squared) between the desired curve and the actual
curve generated by the mechanism. This objective function is a highly nonlinear
function of the design variables. For the particular example considered, the
GNLC technique was found to require significantly fewer objective function and

constraint evaluations than currently available methods.
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THE DEVELOPMENT AND APPLICATION OF
GAUSS' NONLINEARLY CONSTRAINED OPTIMIZATION METHOD

D.R. Boston¥*, K.D. Willmert*
and M. Sathyamoorthy¥*

Abstract

Presented in this paper is a new optimizatioﬂ technique, called
the Gauss Nonlinearly Constrained Technique which is applicable to de-
sign problems with nonlinear objective f;nctions and constraints. The
technique is an extension of a previously developed method for linear
constraints, referred to as the Gauss Constrained Technique. Both of
these techniques, based on Gauss' unconstrained method, have been de-

veloped so that the Kuhn-Tucker conditions are automatically satisfied

when the procedure terminates.

Introduction

The optimal design of many structures and mechanical mechanisms in-
volves one cr more complex and time consuming analyses at each iteration
of the optimization. This is particularly critical if a large deformation
nonlinear analysis is required. In these cases especially, it is im-
portank that the optimization method require very few analyses, even at
the expense of significantly increasing the amount of calculations by the
optimization technique itself, For example in a recent work, DeRubes
and Willmert (1] applied the relatively efficient Generalized Reduced
Gradient (GRG) Technique of Lasdon et.al [2] to mechanism design for path

generation and rigid body guidance. The mechanism links were considered

*Mechanical and Industrial Engineering Department, Clarkson University,
Potsdam, N.Y. 13676.




[ flexible, and thus a quasi-static (linear) finite element analysis was
used to obtain deformations and stresses. The GRG required as many as
14,000 mechanism analyses to obtain the optimal design. Computation '
TS time approached twenty hours on an IBM 4341 mainframe computer. If a

nonlinear analysis had been used, the corresponding times would have

NN
;$1} been considerably higher.
éﬁ:: To reduce the number of analyses, Paradis and Willmert [3] develop-
A
ed a new direct method for efficient design of mechanisms. Gauss'
if} method, which Wilde [4] concluded to be very efficient for unconstrain-
:Ff ed mechanism design, was modified to handle linear constraints. The re-
¥ sulting technique, referred to as the Gauss Constrained Technique, was
highly efficient and required very few objeutive fuanction evaluations to
{2? obtain an optimal design. Their method has been extended, in this paper,
e
to handle nonlinear constraints.
iﬁ; Development of the Method
AN
j‘ The optimization problem consists of minimizing:
- 2
'\v“,:v
45
o F(x) = 376 (1)
S .
ji: where 3 is a vector of general functions of the variables x. Many opti-
i:; mal design problems have objective functions of this form. For the
e derivation of the optimization technique, the ¢'s are approximated by
[ .
ﬁj: ' linear functions of x (which makes F quadratic) of the form:
.': T> >
e S xJIx+ec (2)
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where J and c are a comstant matrix and vector respectively. However
the technique, once derived, will be applied to more general cases where
-> ->

¢ are highly nonlinear functions of x. The constraints are approximated

by a general quadratic of the form:
> 1> - . _
gi(x)=-§ xA;x +b.x-d <0 i=1,...,k 3

The gradient of the objective function (1) is given bv:

VF(X) = 2J¢ (4)

>

which is exact whether ¢ is linear or not, as long as J is the matrix
>

of first partial derivatives of ¢. The matrix of second partial de-

rivatives of the objective function is:
T
G =2JJ (5)
3 . + I} 3 . s e
which is exact only when ¢ is linear. At any given iteration we assume

there are £ active constraints (ordered such that j = 1,2,...,%) where

2 < k. Thus, the Kuhn-Tucker conditions are:

> > > > >
VF(x) + (Alx + bl)x1 + ... + (Alx + bz)kz =0 (6)
@ =13 x+3™ -4 =0 =1 % (7)
gj 2 j j j J g v ey
Ay 20 §=1,...,8

Similar to the development of Paradis and Willmert [3], the new




N method is generated such that a single iteration yields the optimal da-
sign for a quadratic objective function assuming that the constraints
- active at the optimal design are also active at the starting point. [f
- F(x) is quadratic then the following equation is valid for any two points
X and x :
v

u+l

.'. - - - = - - -
- VF(xv+1) VF(xv) G(x\)+1 xv) (9)

Solving equation (6) for VF(;v ), assuming ;v is the optimal design,

+1 +1

and substituting into equation (9) results in the iterative expression

):

>
(after solving for X 1

X = 6+ jﬁlAjAj)-l[G;\) - jilﬁjxj - VF(;\))] (10)
i?j If the objective function has the special form of equation (1), then

the G matrix in the iterative equation would be replaced by equation (5),
-}> i.e. G = ZJJT. Otherwise, the method could still be applied as long as
the matrix of second partial derivatives G, or an approximation to it,
were known.
) In order to use the iterative equation (10) the unknown vector of
b Lagrange multipliers ; must be determined. This is accomplished by sub-
stituting the expression for ;v+1’ equation (10), into each of the active

constraints of equation (7) resulting in a system of % nonlinear equa-

<>
tions in 2 unknowns A of the form:
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145 A, - VF(xv)]}Ai

i =133

£ -1, > J AN -
e+ & ijj) lex, - jg bA, - VF(x )]}

1 17573

T -1, » > >
+ b, (G + jélijj) lex - jilbjxj - VF(x )]

-d, =0 i=1,...,2 (11)
. >

This system of equations in A could be solved using several dif-
ferent methods. The approach used in this research was as follows. At
each iteration initially the Newton-Raphson technique was applied. If
the method did not converge, which may be caused by the fact that the
equations had no solution or that the method simply was not able to
locate one, then another approach was used. In this case, an objective
function H was formed which was the sum of the squares of the
active constraints g; - This unconstrained function was minimized with
respect to I. In this work, Powell's method was used, but any available
technique could be applied. The optimal values of K (whether H is zero
or not for these values of K) were then used in the iterative equation
(10).

As in the original Gauss Constrained Technique (as well as the gra-
dient projection method) the criterion for dropping a constraint from the
set of active constraints is the sign of Age At any iteration the con-
straint corresponding to the most negative ) is dropped from the set of
active constraints and a new vector of Lagrange Multipliers is deter-

mined. This procedure is repeated until all ), > 0. If this results in

no active constraints, then the optimization technique continues by set-
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ting all A; = 0 in equation (10). 1In this case, the iterative expression,

can be shown to reduce to Gauss' method for unconstrained optimization:

R

*> T.-1 >
WO (J3%) 3¢ (12)
At each iteration a decision must be made as to whether or not a new

constraint should be added to the set of active constraints. If the

>
direction of minimization s

is defined as the direction from ; to
v+l v

;;+1, then a constraint is added only if a step in the ;;+1 direction
will not satisfy the constraint.

Two different methods were used to handle violated constraints.
The first approach was to do nothing special if a constraint became
violated as a result of an iteration based on equation (10). Thus
whether a constraint is only active, i.e. g = 0, or if it is violated,
i.e. 8 > 0, it is treated the same in the optimization technique. The
basis behind this approach was the assumption that eventually the wmethod
will satisfy all constraints, since these are equations (11) which the
method attempts to satisfy at each iteration. This approach allows the
optimization to start at any design whether it satisfies the constraints
or not.

The other method of handling violated constraints was to start at

a point which satisfied all constraints. Then if a step is taken using

equation (10) such that gr(;v+1) > 0, a new design X'

o+] Was found along

> >
the line connecting X, and x

>
41 Such that gr(xv+1) = 0. This was

accomplished by stepping back from a violated constraint using the

approximate equation:
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o > . (x\,_'_1 - x\,)gr(x\’)

- X =x - (13)
- vl v x ) - g (x)
,’* 8 %041 gr_ v

(- The design x$+1 was then used in the next iteration.

<>
e Although the technique was developed assuming linear functions ¢(;),
o i.e. F(x) quadratic, the method is applicable to problems where the ¢s
e .
'i: are general functions of ;. An especially important characteristic for
b

mechanism design is that the technique requires a total of only one more

;a; objective function evaluation than iterations to obtain an optimal design,
;j unlike the GRG Technique of Lasdon et.al [2], where a step length deter-

mination is required at each iteration.

R Example Problems
P
;3 Several examples were considered in this work, two of which are

presented here.

_;: The first problem, which is a modified Rosen-Suzuki test problem,
};t consists of a quadratic objective function in eight variables with
W,

“«w seven quadratic inequality constraints as follows:

.}:

M

N

b - : Minimize

3 > _ 2,32 12 2 2 .52, .2 32
( F(x) = x; + 2%y +3%3 + 3x, + 2x. + 3% + X + Fxg + 2%,
X

-

Y‘l'l

- 3x +5x4+x

2 + 7x, - 2%, - X
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. subject to:

N’LO-'

gl(;)

2 2 2 2 2 2
+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x1

,.' <>
2 8, (%) x§ 2

F5al - x2 + x3 - x, + x5 - x, + x7 - X

2 2 2 2 2 2 2 2
x1 + Zx2 + x3 + 2x, + x_ + 2x, + x_ + 2x8

->
% 83(x) 4" %s 6" 7

51

> 2 2 2 2 2 2
g,(x) = x| + 2x, + 3x3 + 4xg + 5x, + 6x5 + x, - x

3

gs(;)

2xf - 2x% + 2% - 2%°

>
" 8¢ (x) 2 3 4

2 2 2 2
+ 3x5 - 3x6 + 3x7 3x8
- 2x1 + Zx2 - Zx3 - 2x6 + 2x7 - 2x8 -10<0

-

37(x)

2 2 2 2
4x2 4x4 + 2x6 - 2x8 - le - 5x3 + st

+ 5x7 -20<0
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g

%. Tables 1 and 2 show the results of the optimization from two dif-
s ferent starting points. Three different techniques were applied. The
f% first two were variations of the Gauss Nonlinearly Constrained method.
%g The first one, labeled GNLC.NS in the tables, ignored violated con-

" straints, while the second, labeled GNLC, treated violated constraints
'J using equation (13). Both of these methods were compared with the Gen-
? eralized Reduced Gradient technique, labeled GRG.

s Table 1 shows the results from a starting point where no constraints
;: were active or violated. All three methods produced the same optimal

4

design. The number of iterations NI, and number of function evaluations

.
e A

NF for the GNLC methods were considerably less than for the GRG. Table 2
shows the results from a starting point in which three constraints were
violated, while one was active. For this starting point only the

GNLC.NS technique was applicable. Again the number of iterations and
function evaluations were less than for the GRG.

The second example consists of the design of a four-bar mechanism

X

such that the coupler point (XX,YY) of the mechanism closely generated

> the curve defined by the eight points as shown in Figure 1. The ob-
; jective function to be minimized is the sum of the distances (squared)
between the desired curve and the actual curve generated by the mechanism:
8
158 -> 2 2
S F(x) = I, (XX, - X6,)" + (YY; - YG,)
1 )
where:
.
)
<
5 XXi '_xzcosyi + xscoswi + X10
4
$4
RN "4.':: C-'.:_"\‘} Ry "x".'-x..a..\.,‘.*\' o3 : RN At




e ' 10
X T
i
%
Wl =
‘i_ Y‘Ii xzsinyi + xscosw1 + Xg
.
:.; wi-x6+x7+ni-ei
- T
-0 -1 xzsin(yi - xg)
€y T tan T . cos(Y, - x,)
" 1 2 i 6
d. — .
o '
. [ \
2 2 2 2 ,
(> - - -
: . sl Xyt xy-ox, 2x1x2cos(yi x6)
L ng ™ cos
2 2 1/2
.:: . 2x, [xl +x; - 2x1x2cos(yi - x6):l
o -
P
i
%
”.» and (XG,YG) are the coordinates of the desired curve.
The design variables xl,...,xlo are link lengths, orientatiom of
.‘
:i some of the links as well as the location of the crank pin. Note, the
objective function is a highly nonlinear function of the design vari-
-
i ables. This is the same problem that Paradis and Willmert [3] solved,
:"; however, two nonlinear constraints, g13 and g14’ have been introduced here
-,; to constrain the location of the crank pin to two user defined circular
e regions. Thus, our design problem contains ten variables, LIRERETE ST
:'_‘. and fourteen inequality constr:ints gi(;) £ 0 i=1,...,14. The con-
,'::: straints are:
b
_‘~,:
-F!
-
N
2
.
N
o
"r




w.:_' .
>, 11
N T
Y
o\
D=1- - - x, -
N g (X) =1 -x,<0 gs(f) Xy + X, =% - %3 <0
‘."‘
"
AN
,;.:: g, (%) =1 - xg < 0 go(®) = x;, - 30<0
.:{\
>
_K
7 33(§) =x,-x,£0 glo(f) =x3-30<0
34(2) =Xy - X, <0 gll(f) =x, -3¢0
L“'
1 4 = - = -
= gs(X) = x, - x, <0 glz(i) xg - 30 < 0
3
A g, (X) = x, +x, - x, ~x, <0 g,.(¥) = (x. - cCx )2 + (x, - CY )2
< 6 1 2 3 4 = 13 0 9 1
- 2
:: - Rl s O
if 37(2) =X, + x5 % - X, <0
. g, () = (x5 - %) + (xg - c¥?
S
..‘_- 2
T - <
& Rp L0
_‘ vhere CX,, CY;, R, CX,, CY,, and R, were 4, 4, 3, 7, 7, and 3 re-
I% spectively.
‘:3 The resulting optimal designs using the GNLC and GRG methods are
X shown in Table 3. The optimal mechanism is shown in Figure 2. Again
;Q the Gauss Nonlinearly Constrained method required significantly fewer
fﬁ objective function evaluations.
’73 Conclusions
-5 The Gauss Nonlinearly Constrained method is an effective technique

of solving nonlinear design problems. It is particularly efficient

.

for cases in which the evaluation of the objective function is very
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time consuming. Although in some instances considerable calculations
must be done per iteration, the amount required is still insignificant
compared to that required to do just one analysis of a complex mechanical
or structural system.

The method has been applied to a variety of problems consisting of
objective functions of various complexities. In all cases it has worked
well. However, it has received only limited application to problems
involving constraints that are more than quadratically nonlinear. It

appears that further research is required for such cases.
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TECHNIQUE
Starting
Point GNLC.NS GNLC GRG
S
T NI 2 3 14
A F
T E
U A NF 3 4 144
S S
I
B
L
E
l.0 Xl -0.8797 -0.8797 -0.8797
1.0 X2 0.7030 0.7030 0.7030
0.0 X3 0.1092 0.1092 0.1092
1.0 X4 0.8333 0.8333 0.8334
0.0 X5 -0.2015 -0.2015 -0.2016
0.0 X6 -0.8570 -0.8570 -0.8571
0.0 X 0.3993 0.3993 0.3993
0.0 Xg 0.3333 0.3333 0.3334
-0.5 F ~9.520 -9.520 -9.520
- GACT 4 4 4
Table 1: Results of Rosen-Suzuki Test Problem
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TECHNIQUE

o7 Starting
Point GNLC.NS GNLC GRG

-9.520 * -9.520
4 * 4

¥ S I
- A F

o T E

U A NF 4 * 276

o S S

o I

o B

\,:-:: L
Ll E

‘ -1 X, -0.8797 * -0.8797
g -1 X, 0.7030 * 0.7030
cend -1 Xq 0.1092 * 0.1092
: \4’.‘?
plos -1 X 0.8333 * 0.8333
szg 4

o -1 Xg -0.2015 * -0.2015
e -1 Xg -0.8570 * -0.8570

*

"

o -1 X, 0.3993 * 0.3993
o,
o -1 Xg 0.3333 * 0.3333

F
G

(v) - violated constraint

- lI. . .'
reNNhYNn
TP 0

PR

.
a 1 a

Table 2: Results of Rosen-Suzuki Test Problem
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Starting GNLC GRG
s F
N NI 11 56
T S
g : NF 12 389
L
E
15.0 X, 30.0 30.0
5.0 X, 8.345 8.345
15.0 X, 25.821 25.821
5.0 X, 12.817 12.817
15.0 X 16.026 16.026
-0.007 Xg* -1.063 -1.063
0.412 X.,* 1.259 1.259
1.379 Xg* 1.118 1.118
6.0 Xq 4.0 4.0
5.0 X10 7.0 7.0
220.29 F 1.78349 1.78348
- Gpop | 9:13,14 9,13,14

*Angle Variables (radians)

Table 3: Results of Mechanism Design Problem
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Figure 1: Four-Bar Mechanism for Path Generation
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ABSTRACT

A finite element approach is presented in this paper for the nonlinear
vibrational énalysis of planar mechanisms. The analysis takes into account
the effects of material and geometric nonlinearities on the dynamic behavior.
The geometric nonlinearities included in this study are due to stretching of
the neutral axis and the curvature-displacement nonlinearity, both caused by
large deformations. The material nonlinearity is due to a nonlinear stress-
strain relationship of the Ramberg-Osgood type. The analysis presented here
makes use of hermite polynomials which ensure compatibility of curvature
between elements. Using a variable correlation table, a global system of
nonlinear equations are derived in terms of the global unknowns and the
kinematics of the mechanism. A harmonic series technique is then used to
obtain the steady state solutions to this system of nonlinear equationms.
Numerical results are presented for an example mechanism and the effects of

the nonlinearities are discussed.
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INTRODUCTION

The importance of flexibility of linkages on the performance of high-
speed minimum-mass mechanisms is well recognized. A considerable amount of
research has been done in this area in the last two decades. While it is
desirable to develop analytical and numerial procedures that enable the
design of rigid link mechanisms and robots to perform a given function with
specified reliability, it is also important to evaluate the effects of
flexibility of elastic members on their performance. It is known that a
mechanism designed for operation at low speeds may not perform satisfactorily
at high speeds due to the effects of large inertia forces and resulting
elastic deformations. Thus it becomes necessary to include in the dynamic
analysis of mechanisms, not only the effect of the rigid body motion, but
also the flexibility of the linkages.

Most of the previous investigations in the area of elastic analysis of
mechaqisms have been carried out within the framework of the linear theory
[1-16]. However, Viscomi and Ayre [17]) used a Galerkin-type nonlinear
analysis procedure to study the vibrations of a slider-crank mechanism. A
later work by Sadler and Sandor [18] used the lumped parameter approach to
a nonlinear dynamic model of an elastic linkage. The mechanism analysed in
this paper was a general four-bar linkage and the analytical model inc'uded
the response coupling associated with both tne transmission of forces at the
pin joints and the dependence of the undeformed motion of a link on the

elastic motion of other links. A finite element analysis, with the aid of
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the piecewise linear method of Martin, was used by Sevak and McLarman [19]

to carry out the nonlinear analysis of a mechanism. Further nonlinear work

-{’f ol o 7]

dealing with the vibrations of elastic mechanisms are reported in References

Y )

[20-22]. 1In a recent investigation, Thompson and Sung [23] used a varia-

ii: tional formulation for the nonlinear finite element analysis of planar
:E: mechanisms considering geometric nonlinearities. Some experimental results

were presented.

This paper is concerned with the nonlinear vibrational analysis of
»;;f general planar mechanisms. A finite element method is used which includes
:?ﬁ the effects of both geometric and material nonlinearites. The geometric
j{f nonlinearities included in this study are due to stretching of the neutral
¥£ axis with partially constrained ends and a general curvature-displacement
Ak relationship, both caused by large deformations. The material nonlinear-
&éf ity is of the Ramberg-0Osgood type with three parameters to represent the
;i nonlincar stress-strain relationship [24-26]. Additional effects consid-
.i} ered are transverse shear and rotatory inertia and changes in cross-section
1£€: due to realistically proportioned members. The governing nonlinear differ-
.
;i ential equations are derived for each element in terms of the axial and
3 transverse deformations, rotations, curvatures, and shear deformation angles.

These equations are then assembled with the aid of a variable correlation
:. table and the resulting global system of equations is solved using an
{ .
153 : iterative technique based on a harmonic series solution procedure.
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FINITE ELEMENT FORMULATION

A finite element method is presented below for the nonlinear analysis
of a general closed looped mechanism. The mechanism can be composed of
various combinations of simple four bar chains, frame elements, sliders
moving on fixed references, or sliders moving on rotating links. Each link
is divided into one or more elements with each element having the local
coordinate system as shown in Figure 1. If a slider is present, the masses
Ml and MZ are located at ends 1 and 2, as shown. The length of the element
A is constant except for links with sliders moving along them.

The displacement vector of any point (a) on the element's neutral axis
is given by:

S = (X1 cosy + Y, siny + x + u)i + (Y1 cosy - X, siny + w)j (1)

1

where x1 and Y, are the coordinates of end 1 of the element given by the
rigid body motion. The coordinate x is measured along the element's neutral
axis from 1 to 2 and y is the angle between the rigid body position and the
X-axis. The axial and transverse displacements of point (a) from the rigid
body position are given by u and w, respectively. This equation takes into
account both'the rigid body motion and the elastic displacements and defines

the position of any point along the neutral axis.

Differentiating Equation 1 with respect to time yields the velocity of

any point (a). The unit vectors i and j move with the coordinate system and
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vary with time. The angular velocity of any differential line segment on

the neutral axis of the element is given by:

+
Y’t w’xt (2)
where-y,t is the derivative of y with respect to time and Vst is the de-
rivative of the transverse displacement with respect to the local coordinate
X and time t.

The kinetic energy due to rotation of the element is given by:

h
1 L 2 2
R.E. =3 [ I EAxls’t| + pIz(Y’t + w,xt)]dx dy
.h o .
2
1 2,1 2
*2 M1|S’t|x=o *2 les’tlxﬂA (3)

where p is the mass density and Ax and Iz are the cross sectional area and

2

moment of inertia of the element respectively. The term pIz(Y,t + w’xt) /2

represents the effect of rotatory inertia. The kinetic energy due to beam

bending associated with transverse shear is [27].

h
2 A 2 |
i {a,tIz}dx dy (4)

K.E. = f
oo
2

B

N|—=

where a is a measure of the transverse shear angle.
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u= | [o de dvol + | -% dvol (5)

Tx Yx
vol o vol y y

where o, €, Txy’ and ny are the normal stress, normal strain, shear stress
and shear strain, respectively. For a nonlinear material of the Ramberg-

Osgood type [24-26], the relationship between stress and strain is:
c=Aec=-Be" (6)

where A corresponds to Young's modulus E, and Be™ represents the nonlinear
term. A, B and m are constants for the particular material being considered.
The above relationship, Equation 6, is valid only for positive strains. If

the strain is negative, the following expression is used:
m
o =Aec+ B (-¢) ife <O n
The change in sign of the nonlinear term results in the same overall effect

on the stress-strain relationship as for positive strain, i.e. either hard-

ening or softening depending on the values of B and m.

Using the Ramberg-Osgood relationship, the following expression for the

strain energy is obtained for positive strain ¢ > O:

o —
o
N —
3>
™
[
[+~
™
(=9
H]
a.
<
+

1
=G dx d (8)
i 2 Y y y

[
[]
NS — N




£, 14

.
P
N

-’

where x is the axial coordinate, y is the transverse coordinate, and Gx

is the shear modulus. When € < 0 the equation is:

h
Z A
U= J’j{leez—%lB(-e)”l}dxdy
_ho "
2
h
2 A
1 2
+ = Gy~ dx dy (9)
gL
2

The nonlinear expression for the curvature R of a planar static beam

undergoing large deformations is:

PRSI (10
w,)
X

Thus the strain is:

. ¥ y w:xx
TR T o

Combining the geometric nonlinearities due to stretching of the neutral axis
and the curvature-dispalcement nonlinearity, results in the expressions for

normal and shear strain:

e =u, +3 Ds w,. - (12)
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Substituting these expressions for strain into the strain energy Equa-

tions (8) and (9) produces, for ¢ > 0

h
2 vy a
A 2 3
S.E.= [ b{% A(u, +35D w, - xz 373 y2
_h o (L+D ’)
3 X
D y o
k 1 2 X o+l
+—8 (u, +5D w, - )
m+1 2 X1+ Db w,2)3/2
1 2
+ 3 ny (w,x + a)"}dx dy
and when ¢ < 0
h
2 A y w,
S.E.= | [ b {% A (u, + % D, w,o - xx 3/2)2
h o (1+D w, )
-3 s ’x
D y W,
k 1 2 XX m+1
mt1 B ( W ° 2 Ds Wi ¥ 2 3/2)
1+ D, v, )
X
1 2
+3 ny (w’x + a) }dx dy

In Equations (12), (14) and (15), D _, D

k’

b and DS are tracing constants

(14)

(15)




o .
o
b
'_‘
b
Bt
ho
. representing the effects of material nonlinearity, geometric nonlinearity
a2
xt. due to curvature, and geometric nonlinearity due to stretching of neutral
-
}{- axis, respectively. Each tracing constant is equated to unity when that
[y
i particular nonlinearity is being considered and is equated to zero when it
<+ is not.
\::
4§J In order to represent realistically proportioned members, changes in
} cross section are included. Each element is divided into sections of varying
i: lengths with constant area. The intergrations involved in the element equa-
j; tions are carried out in a piecewise fashion with the area in each section
| taken as a constant. This procedure provides a reasonable approximation of
%: variable cross sectional members without having to resort to large numbers
iiQ of elements.
The Lagrange function L is defined as:
)
3t "
o S k
o L= 5 ;% (RE.p +KE.p = S.E)yy (16)
P
A where Nk is the total number of elements in the kth link and S is the num-
i;: ber of links in the mechanism. Substituting Equations (3), (4) and (14)
0 into Equation (16), the Lagrangian L can be expressed in terms of the dis-
.k::.
,Qi placements u, w, the shear angle a, and the rigid body motion.
"
‘3: Hermite polynomials are used to approximate u, w, and a in order to
i
S satisfy the boundary conditions of various types of mechanisms easily and
‘---
:; to ensure interelement compatibility. The axial deformation u is approxi-
2
~ mated by a linear shape function given by
5
*:':' u = .
Uy Ce) Ny (x) + C,y(e) Ny(x) (7




-
»"‘: .
ol
S
:\.:h
b
( Similarly, fifth degree polynomial shape functions are used to approximate
. -
*:~ the transverse deformation w:
A
| w = Wl(t) Hll(x) + el(t) H21(x) + m1(t) H31(x)
:::: + Wz(t) le(x) + ez(t) sz(x) + mz(t) H32(x) (18)
e
5 where 8 and m are continuous between elements. The shear angle a is also
f:ﬂ.'_: approximated by a fifth degree polynomial in order to make it compatible
é: with the transverse displacement w. Therefore a is assumed to be:
a = ay(e) B (x) + 9 () B (x) + X (t) H,, (x)
:f 1 11 1 21 1 31
.
+ az(t) le(x) + wz(t) sz(x) + Az(t) H32(x) (19)
L
sj: where y and )\ are the first and second derivatives of a, respectively.
f) The Hermite polynomials are given by:
b2
o
gr NI(X) =1-e
o N, (x) = e (20)
b 2
o
-
‘}:.'.' 3 4 S
e, H ,(x) =1 - 10e” + 15e¢ - 6e
!‘.\\ 11
- HZI(X) = 8(e - 6e3 + 8ea - 3e5)
By (0 = 82e? - 3¢ 4 e - )2
le(x) = 10e3 - 15¢% + 6e5
4
H22(x) = A(-Ae3 + TJe - 3e5)
5
Hi(x) = a%(e” - 2" + )72 (21)

10
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A where, e = x/A.
Bl
IQ&: A transformation of coordinates is now introduced to change from the
:a; moving coordinate system associated with the elements to global coordinates.
s
Only Ul’ Wl, UZ and Wz need to be transformed. The other coordinates are
ﬁﬁ angles or derivatives of angles which are not directional on the X, Y co-
o
-;i ordinate system used. The transformations are:
o - -
f: U1 = U1 cos¢1 - W1 s1n¢1
Qi; W1 = U1 s1n¢1 + w1 coscp1
ok U2 = U2 cos¢2 - w2 31n¢2
i - , -
> W, = U, sing, + w2 cos¢, (22)
For pin connections the transformation angles ¢1 and ¢2 are set equal to -y
: (the rigid body angle) which transforms the coordinates back to the global
ﬂ{l coordinates. For sliders moving on rotating links the transformation becomes
,_%, more involved. 1In this cagse the deformation of the driver link must be
k.-;
”if transformed to correspond to the axial and transverse deformation of the
T
I rotating link [14].
9»3 Substituting the expressions form Equation (22) into Equations (17) and
ja (18), the global coordinates for the system are then:
--j
Q= (0, @ 8, moay ¢ A D, W B, m a6, A (23)
o 1717171717171 72 727272727272
o
o
~~ The Lagrangian function is then written in terms of the transformed element
,.--.
‘:; coordinates. Differentiating the Lagrangian with respect to the element co-
<4
i; ordinates, the following element equations are obtained:
e
i 11
RPNy LA S T I S I R S U PR P VT U T P T VAT R -Q_
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In differentiating the expressions for the kinetic and strain energies in
Equations (3), (4) and (14) it must be kept in mind that A which is the
upper limit of integration is a function of time. The operations carried
out in Equation (24) results in a system of nonlinear element differential

equations. Assembling the element matrices for the particular mechanism

being solved results in the global system of equationms:
M Q,tt +CQ,, *+ (Ke + Kn) Q = F(t) (25)

The M, C, Ke and Kn matrices are all functions of time. The C matrix re-
sults from the kinetic energy of the system. No damping was included in
the formulation of the problem. The C é,t term was found to be small and
thus was ignored in the analysis. The matrix K, is the linear portion of
the total stiffness matrix. It is a function of rigid body motion but not
a function of the deformations 6. The matrix Kn’ however, is the nonlinear
portiog of the stiffness matrix. It is a function of the deformations.
Equation (25) is thus a nonlinear system of equationms.

The derivation of the finite element Equation (25) is based on the
assumption of positive strains €. If the strain is negative a similar
derivation is possible, based on Equation (15) for the strain energy rather
than Equation (14). The only difference in the resulting Equation (25) is

. 1 , . .
in the stiffness matrix. Wherever an £€" = occurs in the original formula-

m-1 , :
tion, it becomes (-¢) for negative strains. All other negative signs
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resulting from the introduction of -¢ cancelled out in the differentiations
required. Thus in order to handle both positive and negative strains the

terms involving e™ 1 in the stiffness matrix were replaced d»y Ielm-l.

In order to solve the nonlinear system of Equation (25) an iterative
approach was used. First the equations were solved using the linear terms
only, i.e. the Kn matrix was ignored. This was accomplished by setting
all of the tracing constants Db’ DS and Dk equal to zero. The solution 6
for the linear equations was then used to determine values for the nonlinear
stiffness matrix Kn' Equation (25) was then solved again for new values
for 6, and the process repeated. Experience showed that this procedure
converged in from 3 to 5 iterations. To solve Equation (25) for Q(t), for
particular Kn’ a harmonic series solution method was used similar to that
of Bahgat and Willmert [14]. This approach overcomes problems with sta-
bility, due to the time varying nature of the matrices, that sometimes re-
sult from an eigenvalue technique. The steady state solution is obtained

without adding artificial damping. The solution, without the C é’t term,

is given by:

- N 2 2. ..-1 - -
Q(t) = I (K =-n“w™M (A cos nwt + B_ sin nwt) (26)
nZo n n

9

where w is the input crank speed, and An and En are solutions to the linear

equations:

- —
IQX.I

N N-1 _
F(t,) = g A cos nyt, + n£o Bn sin nwt

o n k k

) CRaae
=
=

for k = 0,1,...,2N-1 (27)

§
&
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where Ao is set equal to zero. The values of tk are the times at 2N equal

time increments per revolution of the input crank given by
£t == for k = 0,1,...,2N-1 (28)

Computational experience indicates that a fairly accurate solution is ob-

tained using only a few terms in Equation (26). As the number of terms in-

creases the components of the matrix (K - n2 w2 M) grow and thus the in-

2 wz M)-l becomes small. The summation can therefore be

verse (K - n
truncated to reduce computational time.

The stress in the links is calculated by evaluating the strains from
Equation (12). The stress can then be determined at any point in an element
using Equations (6) or (7). To find the maximum stress in an element the
maximum strain must be found. Setting the first derivative of Equation (12)
to zero and solving the resulting expression, the position of the maximum
strain is determined. Once the location is known, the maximum strain and
stress can be evaluated.

The above formulation is based on the use of the shear angle o, which

is appropriate particularly for short members. For long slender links this

quantity is not required. The elimination of a reduces the size of the

problem considerably since the nodal deformations Ay wl, Al, Ay, wz and
A2 would no longer be present. For long slender members:
a = - oW, (29)
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Using this expression, the equation for strain energy (14) for positive

shear ¢ reduces to:

h
2 W
A y 2
s.E. = [ | b{%A(u,x+%Dsw,2+ "23/2)
.h oo (1 + Dy w,)
2
D yw
k 1 2 ’x m+1
-——B (u, +-D w,° + ) Tldx dy (30)
m+l x 2 s ’x (1 + Db w,2)3/2

A similar expression exists for negative strain. The kinetic energy also
changes if o is not present. The energy associated with transverse shear,
Equation (4), is eliminated and thus Equation (3) represents the total
kinetic energy of the element. Using a procedure similar to the method
outlined above, vibrational equations of the same form as Equation (25) can
be obtained, but they will be smaller in size. However, nonlinear terms
still exist in the stiffness matrix due to the material and geometric non-

linearities. The method of solution is thus identical to that outlined

earlier.
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- EXAMPLE PROBLEM
§;§ The following example is presented to illustrate the method of solution.
e
j{f The nonlinearities due to neutral axis stretching, curvature-displacement
and stress-strain relationship are all considered. A four-bar linkage,
?f as shown in Figure 2, is used as the example with all the members flexible
A
N and made of the same material. The data for the mechanism is
o
P\
. Length of input crank (AB) = 5.0 in
Length of coupler (BC) = 11.0 in
Length of rocker (CD) = 10.5 in
:%: Fixed distance (AD) = 10.0 in
\“‘.
’:j~ Cross section of links = rectangular
). Height of rectangle = 1.0 in
:: Width of rectangle = 0.25 in
K<
o
Ll A
S The initial position of the input crank is zero degrees at t = 0 and the
>
. direction of rotation is counterclockwise. The mechanism is divided into
:t? three elements with each link in the mechanism taken as an element. The
,-; boundary conditions are that only moment and shear terms exist for the input
?; crank's driven end (A). For the pin connections between links, there are
*:% deformations, rotations and shear terms, and for the rocker's fixed point
~—i there are only rotation and shear terms.
’S: First, the deformations in the mechanism were determined with the shear
AN
~
RS
oo
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angle a present. In this case the crank link was rotated at 100 rad/sec.
The material properties, approximating aluminum, were as follows:

A = 10.87x10° 1b/in2

B = 0.8387x10°% 1b/in?
m= 3.0

Mass density = 0.0002536 lb-seczlin4

Three separate procedures were used to obtain numerical results. First
the problem was solved using the linear analysis method of Bahgat and
Willmert [14], with E = A. Next the method of this paper was used with the
tracing constants equal to zero. Thus a linear analysis was obtained.
Finally the method was applied with all tracing constants equal to one,
i.e. a full nonlinear analysis. A representative deformation ﬁl as a
function of crank position is shown in Figure 3. This is the horizontal
deformation of the free end of the crank link. As can be seen, the three
curves are very similar. The effect of the shear angle o is to increase
the deformation slightly. For this slow speed the linear and nonlinear
analyses were almost identical.

The same problem was solved again at a higher speed of 200 rad/sec.
The resulting deformation ﬁl is shown in Figure 4. As can be seen, high
frequency oscillations started to appear, with greater separation between
the three analyses. At even higher speed these oscillations became more
predominant to the point of instabilities in the analysis at very high

speeds.
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. The revised form of the analysis equations was considered next, i.e.
{j the form without the strain angle a. Here a crank speed of 150 rad/sec was
-
L. used. A comparison was made of the effects of the various nonlinearities
-,
A
on the deformations and stresses as compared to the linear analysis.
,f: Figures 5 and 6 show a comparison of the linear and nonlinear deformations
ﬁ} 62 (the horizontal deformation of the free end of the output link) caused
It
separately by geometric and material nonlinearities. Figures 7 and 8 show
fi: the maximum stresses in the connecting link of the mechanism. As expected,
fi? the material nonlinearity of the Ramberg-Osgood type results in deformations
¥ which are greater in magnitude than those obtained using a linear elastic
5 model. The maximum stress decreased due to the presence of the term Be™
o subtracted from the linear stress expression.
Y
The geometric nonlinearities considered, namely curvature displacement
-_h\.
2§ and stretching of the neutral axis, both due to large deformations produced
=¥ mixed results with deformations reduced at some points and increased at other
J points. The effect of the geometric nonlinearities would be expected to
:}: produce a stiffening of the members {27] of the mechanism and thus produce
:55 smaller deformations. The increased deformations in this case might be due |
|
- to the fact that the deformations are in relationship to the entire mechanism |
}i and not just to the individual beam element.
- . |
x
A
=
::j:
-\‘-
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CONCLUSIONS

The nonlinear analysis procedure, using a finite element technique, is
an effective method of calculating the steady state deformations and stresses
in a mechanism. Significant differences can occur between the linear and
nonlinear approaches. This was particularly true for the stresses in the
example considered in this work. Research is still needed on the overall
effect of the shear angle a, and a more complete picture of the nonlinear
terms in the analysis would be of value. Additional nonlinear effect should
also be investigated, such as separation of the translations of one link

due to large deformations of the other links.
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