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"ABSTRACT

This thesis demonstrates the use cf.the Dempste:~5hafé:
theory of eyideﬂce on the cLattlefield. The use of tae
theory in a Decision Aid or Decision Support System for the
Intelligence Apalyst will speed‘ ‘the force 'commander's
Command and Control Cycle. -

The Comaand and Corntrol Cycle is modelled and a benefit
of enharced comnabd and control is described.  The
Dempster-Shafer theory is discussed using tactical battle-
field exazples. A Dempster~-Shafer Decision AiGd is presented

as welli as methods for improving computational speed. A

specific application area, Situation Deveiopment Analysis in
the All Source Analysis System (ASAS) is proposed.
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A. BACKGROUNL

The nature or battle is rapidly changing.

The_ . developuent of modern wvarfare is outstriping our
' abll;ti_to,panage it effectively. The speed, power and.
sophistication of uwodern weapons and the olitical axnd
geographical complexities of potential battlefields in
places like Europe _and the Niddle East _have placed the -
ggm%an%et 1n50% rapidly moving, data-rich environment. .

e.,:p. o

Many publication on the state of the modern battlefiéfﬁ
use the saae descriptive adjectives: intense, djnamic.
mcbile, rapidly changing, data-rich, etc. The guoted
article goes on to stress that modera Jecision aids are
needed to assist the battlefield decision ‘maker ", . . Ly
expanding'his ability to rapidly -and efféctively anélyze the
data pecoming available." [Ref. 1: p. 50] However, to
assist tae force commaﬁder.on the battlefield, much military

research has emphasized the need to help the field commander

and staff in deciding a course of action in critical battle-
field situaticns [ kef. 2].

B. THE PROBLEM

The comaander's decisions on ° the tattlefield are prima-
rily influenced by three facto:é: the environament, the enemy
torce, acnd the <friendly force. The only factor tuat tae
force coamander can directly ccntrol is the friendly force.
I1f this contrcl is to be effective, 'the comaarnder must bave
intelligence about the environzent, and the enemy force. It
particular, Fhe commdnder in the Airland tatctleficld needé a
rapid, accarate assessmert of the current enemy situation

and the enenmy's intentions.

12
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The commander's information requirements place an ever
increasing responsibility on the intelligence analyst. Raw
data from battlefield sensors must be converted to‘intelli-
gence as rapidly - as possible. fiithout a proper under-
standing of the enemy's capabilities and intentions, the
likélihcod of selecting an apptopridte course of action is
extreme ly small. ' ' '

C. THESIS OBJECTIVES

‘The. prinary objective of this thésis,is to demonstrate
the use of the Denpster-Shafer theory of evidence on th2
tattlefield to help correlate data for predicting enemy
intentions. Specifically, the thesis will: .

1. Demonstrate the use of the Dempster-Shafer theory of

evidence in a tactical military intelligence decision
aid. .
2. Create a decision aid | prototype that uses the
. Dempster-Shafer theory.
3. Analyze techniques for reducing the computational.
 complexity acd calculation time required for
Dempster-Shafer. | .
To understand the role of evidential reasoning oa tke

Lattlefielad, Chapter II of the thesis. will discuss the
tactical command and control process. It will also describe

the problem c¢f the intelligence analyst, unaided by an
evidential decision aid, as he deals with the bombardment of

"battlefield data. Ennancement of the coauwani and.control

cycle will be discussed, leading to an examplé showingqg the
tenefits of an improved cycle.

In Chapter iII, the concept or evidential reasoning ﬁill
bz introduced. Ivo metkbods for- evidential reasoning,
Boolean Llogic and_Bayesian‘ Inference, will be investigated
to exposé their shortcomings for use in pattiefieli

13
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: situations. The Dempster-Shafer theory of evidence, its
advantages and disadvantages will be presented.

X Chapter IV will describe the Démpste;-Shafer theory

| ' ‘decision aid created to assist the pilitary intelligence

analyst. The aid functioans in a cyclical process, receiving

each bit of data from the user, combining it with previous

data, and presenting its conclusions to the user. Reduction

in computaticnal coamplexity apnd calculatioh time of the

Dempster-Skafer method ére also discussed. These cbmputa—
' tional tecaniques speed up the hierarchical sumnmations

reguired by the Dempster-shafer theory, but they also reduce
i the'scope of the problen. The reduction methods can be
applied to evidential reasoring on tke battlefield.

Chapter V discusses the battlefield intelligence
analyst's'job of Situation Devélopment Analysis, a specific
" ‘ appiication area for the Dempster-shafer decision aid. The
.' _ enhancement of Situation Developaent Analysis by a
i | Dempster-shafer decision aid wi1ll 1lead to benefits of

' improved command and control. |
! ' . a listing of the PASCAL code written for the decision
. aid in Chapter IV is contained in Appendiz A. '

- - 14
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II. BATTLEFIELD COMMAND AND CONTEOL

The opportunity for battlefield applications of the

. Dempster-Shafer theory' of evidence stems from the need to

shorten a~ commander's command and control cycle. With a
shorter cycle, a force commander can recognize eneay inten~
tions and strike quickly enough to disrupt the enemy opera-
tion. With a gquick reaction, the battlefield initiative can
be seized before the opposing force can react to the new
situation.  1The now veakened and off balanced enemy force

. will be easier to defeat. This'process.of converting data
into action more quickly than the opponent is referred to as

turning within the enemy's decisiosn cycle.

' Reducing the commander's command and control cycle tinme
requifes tae capability to react more gquickly than ever
before. The faster and desper that ﬁhe friendly force carn
interdict the enery's forces, the more successful the
operaticn. ,

‘ Enhanced command and control has emerged as a solutiorn

-for dealing with a dynamic qnd‘ data eariched  battlefield

while reducing tae coamander's reaction time. This chapter
will discuss .the coﬁménd and comtrol cycle, the data flow in
the cycle, current erhancements to the cycle, and present an
exakple that shows the benefit of reducing éycle time by
enhancing command and control.

A. THE COMBAND AND CONTEOL HNETWORK

Command and control is an extremely complex battlerfield
function by  #hich the commandei and siaff wllocate
resources, direct nnit movement, and coordinate operations.
Commard anrd control can be modelled as ‘a continuing cycle

15




within a network of nodes as illustrated in Pigure 2.1.'
Within thas cycle are processes, depicted as the nodes, tgat
can be enhanced to reduce cycle time. 'These nodes aave been
described in nény ways by many experts [Ref. 3], but will be

| designated here as Collection, Interpretation, Degision, aci

Action.

COLLECTION |, ____" DATA _ _ ___ _| INTERPRETATION
1 t
- |
< | ’ & |
< | i |
[ i d |
] o=
| Zz
} |
} . d
|acrion|_______ORPERS  __ DECISION

Figure 2.1 Command and Control Cycle Network.

To understand the command and control network, and the
cycling within it during battle, it is necessary to investi-
gate each node of the network. Within each node, functions
that can be enhanced or eliminated may be discovered. The
improvement of node efficiency will reduce cycle time and
help in the effort to interdict the enemy force as early as
pessible. v ‘ o

The iodes of the cycle network Jepicted in TFigure 2.1

are as follows.

16
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1. Collection

' The Cc¢llection node of this network describes the
activity of gathering data about friendly and eneay forces

'by all ameans available. Miller and Cushman [Refs. 5,1],

describe this activity as sensing, but sensing may include
the recognitica or interpretation’of the data received. Por
purposes of this thesis, sensors only gather the dataz and do
not modify it in any way.

Collection is a continuing process and does not
realize divisions between battles or battlefields. A sensor
may receive data that may has no effect in its area of oper-
ation. Tet, this'same data may be of critical importance to
the comm;ndef. Nonétheless, all of this data will be trans-
mitted to the Interpretation node.

Intergretation is the combinatibn, evaluation, and

translation of raw data into intelligence. The Tresult of
this activity is an understanding of the Dbattlefield situ-
atior including eneuy intentions.
' Intergretation, like Collection, is a continuing
process. ' The intelligence analyst must deal with the
continuous stream of relevant and irrelevant data arriving
from the Collection node. Decision aids are wused fo help
the intellijence analyst comprehend the entire tattlefield
picture presented by this onslaught of data. |

The arc conrecting the Collection and Interpretatioan
node indicates f£low in both directiomns. As the battletfieli
situaticn develogs, sensors may be directed to chanje posi-
tions oL sense other areas . of  the Lattlefield.
Consequently, tne connecting ‘are depicts coordination
Letween thesé nodes. ' |
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3. Leéigig.n

After recognizing the enenmy intentions, the friendly

force must react. This node describes the commanderfs deci-
sion brocess that chooses the course of action which opti—

mizes possibility of friendly success given the interpreted

course of enemy actiosn. This success can be measured by the
ninimization of friendly losses, the maximization of ehemy
losses, or by any measure of effectiveness or any measure of
performance considered essential by the commander.

. It is possible that tae cormander does not have
enough infornétion to Justify a course of action. He maf
then request more data collection or direct surveillance in
cther areas. The commander will inform the Interpretation
node of his g£ssential Elements of Information (ESI) or
Priority Inteiligence Reyuirements (PIR), those intelligence
itens of the utmost importance to the force. Therefore, the

| arc cornnecting the Interpretation and Decision nodes 1is
' . bi-directional. l | -

4. Action

The last rode of the network represeats the movenmernt
of troops into battle executing the course ¢f action rrom
the Decision rode.  This actiﬁity may range from a coapli-
cated smaneuver to a reactiorary tactic in  a _surprise
encounter. ‘ | _ ' '

Tone arc from the Decision to Action node is uani-
directicnal. This does not uean that subordinate coamanders
dc not‘coordinate or réspond to superiofs,' but it depicts
the final orders or the higher-ievel commander after all
planning is accomplished. -

The ccmmand and control network ends in the flow of
data from the Decision node to tihe Action node, see Figure
2.1, and therefore, can only function after the preceding

nodes have conpleted their prccesses.

18
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- 0f .course, the eneay must also cycle through a
similar network during the battle. During.operations,'each
force must constantly collect, interpret, decide, and act at
all lévels of command within the battlefield. The force
that executes their cycle the fastest will have the battle-
field advantage.

B. ENHARCING THE NETWORK

There are many areas within the command and coatrol
‘network that can bé enhanced by some type of avtomation.
Stewart, Ross, and Tiede [Bef. 4] have identified functional
.areas in any organization whére the human processor can_be
imptoved by introducing automation; - Many of these areas
have applications in the comsand and control network. Tanle
1 depicts thege processes, the advantage gained by automa-
tion, and the areas of the command and control Network where
they apply. ' '

1. Enhapcement Of Data Flow Througk The Network

The arcs which connect tane nodes of the coammand and
centrol cycle network represent data flow. The Collectioca

. node passes data to the Interpretation node which passes

data, or ain tais franme, intelligence to the Decision node.
Here, possivle courses of action are analyzed to select the
one that best zfulfills the commander's effectiveness
reasuce. Next, the Decision node sends orders, which

consist of the directiors - to units in the force, tc the:

Action node. These force units will then execute the chosen
course of action. rhe force units then act or interact with
the enemy forces creating more data to be gathered by tha
Collection node and the cycle continues.

‘ Much research has gone into the area of improving
data handling and flow within the network [Ref. 5]. The
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Appiicable
Network
process . Mode
Receive/ . Al
Transmit
Interpret/ Interpretation
Vaiidate
Evaluate/ interpretation
Coordinate
Project/ tnterpretation
Extrapolate

TABLE 1

Man Unsided
achin

Commun icates Mood
of Sender

Only man can flesh
out ircomplete pat-
terns and generate
new hypotheses and
tests for them

Only man can inter-
pret in context and
generate hypotheses
and inslights

onty man can define
projection and ext-
rapolation parameters

‘invoives hypothesis

generation

AREAS FCR ENHANCEMENT BY AUTOMATION

Man-Machine
Machine Interaction
Mithout Hen Leversge®®

Incressed Effect- Littie
tive channel cep-
scity;Hasrd Copy

Can only extend
human memory
{assoclated oper-
stions) and facli~
Itate hypotheses
testing {calcula-
tion) .

Tremendous

Can only extend Significant
human memory and
fscilitate coord-
Ination based on

a priorl rule

Can only extend Tremendous
memory and facli-

3 ltates calculations

*% Man-Machine interaction Leverage [s defined by the suthor ss » measure
of Potentis! Gain when man Is sided by machine,

Tactical Operating System (TGS) a

System '(MCS) key on getting data tc the commanders and
presenting them with the best

nd the Maneuver Control

representation of the battle-

field through isproved commurnications capabilities.

a

Increased data 'flow is an

means of quickening

the command and control cycle,

also presents a variety of probleans.

rich btattlefield, data will be flowing on the arc from the
Collection node to the Interpretation

rate [Ref. 1]. This

flow will eas

intuitively appealing
but it
In a fast moving, data

ily overwheln

processor at the heart of the Interpretation node.
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__In the Interpretation node, the da;a collected by
all sensors available to the commander and staff (usually
referred to as "all source") is transformed by humans into
intelligence. - Due to the high speed of input to the
Interpretaticn node and the slow human.interface, the input
to the commander at the Decision node is only as fast as the

intelligence analyst'processing the data. 1In order to main--

tain the required speed, the znalyst may tend to ignore or

only briefly review input, losing a more complete battle—:

field picture. This problem suggests the need to reduce the

research emphasis from systems that enhance data flow to

systeas that support the analyst's coanversion of data into
intelligence. ' '

' 2. [Echancepent Of The Mgtwork Processes

Inside each node of the command and control cycle
data is being processed into a useful form for that partic-
‘ular nogde. If these processes inside the nodes are not
streamlined, . the command 'and control cycle will idle,
Qaiting for a node to compiete 1its activity. Enhahcement of
tae network processes will reduce the overall hetvork cycle
time and therefore, ;mprove the commaand and contfol or tre

force.
a. Collection Enhancements
The Collection node has been improved through
advancements in sensor ‘technology [Ref. 1]. Incceased
range, accuracy, and processing capabilities of sensor

systems have sigﬂifigantly enlarged theé data low to tke
Interpretation node.

b. Interprétation Enhancements

The. Interpretation node has been enchanced by
data base managemert and modern video displays. The anralyst
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can now store, display, and recall data in structured forn.
This structured fora helps the analyst quickly recognize
trends, correlate data and, basically, use a systeamatic
approach to the intelligence process. As data flowing into
the node is frocessed, the enemy situation and intentions
become visible. The analyst uses this data to present the
conmander with the best estimate of the situatinn to use in
the Decision node. |

' With the increasing input to the'Intefptetation
node, and the reduced butpuf flow caused by the inerfficiency
of the human frocessor, the need surfaces for some decisioq
aid to correlate and combine data. A system which would
"help the analyst combine evidence to recognize critical
enemy activity, and answver the commander's Essential
Elements 'of Informatioa (EEI) or Priority 1Intelligence
Requirements (PIR) is needed. It is this node of the
command and control cycle netw¥ork which would  benefit froam
the use of an evidence combination support systen.

This support system could usé .somé theory of
inference, Beclean logic, Bayesian Inference, or Evidential
Reasoning to aid the intelligéncev analyst in combining
evidence to recognize the. enemy's intent. This evidence
combination technique shduld also allcw for the uncertainty
that confronts the analyét in his human reasoning process{
These specific inference techniques will be discussed in
Chapter III. '

¢. Decision Enhancements

' The Decision node is an area which, has received
substantial attention. In this node the commander and staff
rlan tuture. ccurses of action, wafgame these options, and
then select the course with greatest probability of success.
Enemy Coirses of Action (ENCOA), Forces cComparisor Model
(FORCECCM), ~ Contingency Screening Model (CONSCREEN), and
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Quick Screening Model (QUICKSCREEN) are current nodels
developed for the commander and staff to aid in this deci-
. sion prccess. With the abundance of models available in the
military community related to decision making, this node was
a good candidate for early enbancement Dby automation
techniques. |

d. Action Enhancements

Improving data £flow in the command' and control
system, along with improving battlefield tranéportation will
accelerate the purpose of the Action node by getting troops
to the'regui;ed bosition on the battlefield in the aost
efficient manner as possible. ' '

C. THE CRITICAL BODE

hich node in the command and control network holds the

key to battl2field success? Clearly, the Collection node
will have a very rich environment from which 'to gather data -

and transzit to the ;nterpretétion node. EverY anit on the
battlefield will be forwarding data to be interpretei.

' The commander and staff may plan continuously for every
cpnceivable epnemy course of action. Porces will be posi-
tioned to provide as auch deterrent as possibls to the
eneny. ' . '

Sub-units will plan for movement to each battle position
for each friendly course or action directed by higher heaad-
qunarters. Therefore, recognition or interpretation of the
eremy course of action becomes the limiting factor irn the
command and centrol cycle. | '

If the iritial enemy attack info NATO pbsitions in
Western . Eurdpe, or amny activity- during war, can be
pradicted, the ccammander car commit his forces, especially
the reserve forces kept for this purgpose, to repel the
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obponent. The Interpretaticn node is the trigger to this
action. It must be accurate, effective, and as streamlined
as possible. The éntire netvork process hinges on the crit-
ical role of the Interpretation node, | . '

Hov much of a difference will enhancement of this node
Ey evidential reasoning, or any method for that matter, and
the resultant reduction :n command and control cycle tinme,
make on the battlefield? ‘

D. BENEFPIT OF REDUCED COMMAND ARD CONTROL CYCLE TIME, AN
BXANPLE

An “example [Ref. 5], is proposed to demonstrat. the
' benefit achieved at a critical battlefield confrontation by
reducing the commana and control cycle time. o

In a Zuropean type scanario, units are deployed with tke .

mission of maintaining some force ratio threshold (RTH) in
all sectors of operation in order to prevent an enemy break-
through., Assume there is a pre&etermined critical sector in
which the enémy has chosen to attempt such a breakthrough.
The <rforce Ratio in the Critical Sector (RC3) will be

computed as:

'KCS = R(t) / B(t) | - (2.1)
where R(t) is the total number of major tank/anti-tarnk
_systems in the attacking (Red) force at time (t), and B(t)
is the sare identifier-for the Jefending (3lue) force. Both

force describers are functions of time to allow for attri-

tion acd reinforcement by reserve forces. ' The Red forces
are divided between critical and hon-éritiéal S2Ctors. The
Blue forces have in pcsition a reserve force containing part
(percentage of force = x) of the total force. See Figure
2.2 for force dispositions. ' |
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(1-x)*B(t)

Reserve Force
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R(t) Attacker Strength at Time (t)
B(t) Defender Strength at Tiame (t) . .
X = Percentage of Force in keserve

"

Pigure 2.2 Battlefield Layout.

If &TH is the threshold ratio ‘necessary to preveht,a
breaxthrodgh in the critical sector, the defender pust keep
RCS < RTH. ‘To accomplish this standcfr, tahe command and
ccntrol c¢ycle must function in a timely marner so that
reserve forces are  committed at the correct mwmoment in time
and the required tiareshold ratio is maintained.

Figure 2.3 shows a hypothetical time comparison of tae
atfacker/defender schedules for respective qommand and
ccntrol cycles, Figure 2.4 shows hypothetical linear force
ratios indicating mission deficiency on +he . part of the
defending force dae to the surprise gained by the attacker's
commitment in the criticai sector. ,

Reduction of the defender's command and coatrol cycle
will increase B(t), increase attacker attrition, and reduce

" the missior deficiency, vsee Figure 2.5. The tize sequence
used ia Figures 2.4 and Fighre 2.5 correspond to those
schedules depicted in Figure 2.3.
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Attacker Activities: . .
Ti-Attacker decides to conmmit main attack force

T2-Movement of main attack force begins

T3-Lead elements of main attack force 2rrive in
critical sector

- Th-Last elements of main attack force close in
critical sector

Attacker ««|eccs|ecccccccnaaa P R et olecmcana P mmecmrecm—aan .-
Activity :
LA T2 T3 TS
Collect interpret Decide Act
DefONder ~ecececacvce|sccvcacec|ccaes T T L T T I B e
Activity
t1 t2 t3 th t5 t6

Defender Activities:
ti1-Defender detects movement of main attack force

t2-Defender interprets tlmo and jocation of main
‘attack

t3-Defender decides to commit reserve force to
critical sector

th-lLead alements of reserve force arrive in
critical 'sector

t5-tast elements of reserve force close in the
critical sector

to-Reserve fully deployed into new defensive
positions in the critical sector

Pigure 2.3 Tiae Ccn arison of lttacker
and Defender Cycles(mnotional).

Although this 1s a very simplistic and hypothetical

situation, it nonetheless demonstrates the advantages that
occur when the coamand and control cycle is shortened by any
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node in the network. The earlier the critical sector can be
reinforced, or tae deeper the attacker can be interdicted,
the more 1likely the ratio in the sector can be reduced to
RTH .and a breakthrough prevented. Conseguentlj, any reduc-
tion'in cycle time can be difectly equafed to an increase in
effectiveness of the force. Therefore, reduction of the
Interpretation node's processing ‘time by a decisioz aid_
using evidence combination will have a posifive effect on
the battle. .

To further reduce cycle time, it is possible to
initially have a contingency plan allowing for‘la major

attack in all sectors of ‘the front. Once the critical
sector is identified by the 1Interpret node, the plan for
that sector would be executed. This contingency would

almost remove the Decision node from the command and control
network. ' This planning concept'would reducé the cxcle time
by that foramer amount allocated to the Decision node and
further reducg the mission deficiency. '
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III. EVIDENTIAL REASONING

" Ae BACKGROUNL

As hkattlefield information flows into the Interpretation
node of the Ccmmand and Control cycle, it must be combined.
or fused with prior information to update the understanding
of the eneny situaiion. As ptéviouély discussed, this
"process is currently being accomplished by a man-in-the-loop
system that c¢an slow down the entire command and control
cycle [ Bef. 1]. . Methods of evidence combination that can
enhaﬁce, not replace, the human inference process will now
be discussed. . '

The pattlefield situation of Chapter II described the
comnmander's aésire to recognize the sector of main attack.
The determination of the enemy's intentions can be viewed as
a test of hypotheses consisting. of all mutually exclusive
sector combihations. Given the knowledge that an attack is
imminent, such as the first battle in a European scenario,
it is the analyst's job to accept or reject these kypoth-
eses. To accoumplish this task, the ana;yst must place
values orn each likely sector, or hypothesis, indicating the
probability of an attack in that sector.

The compariSon bhere of battiefield reasoniag to
hypotiesis testing is logical. The analyst has a set oi
hypotheses, ccmposed of the sectors of possikle attacks, an?
.their 9pultiple conjunctions. These ‘hypotheses indicate

'attacks over any one, or any combination, of the sectors in
the force comsander's zone of responsirility.’

Ao example of this battlefield-situation will how be
described. It w1ll demonstrate the use of an eviiential
reasoning process in the Interpretation node. This example
will be used thrcughout the chapte;.
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To begin, suppose the unit using this reasoning enhance-
ment is a U.S. Division. The division's area of responsi¥
bility is divided into three brigade sectors (1,2,3). The
eneny attack, assuming this is the state of the battle,
could occur in Sector 1, 2, or 3. If it occurs rmnear a
brigade boundary, or is vide enough to cover more than one
sector, the attack could occur in combinations (1,2) or
(2,3). If a divided attack'cccurs, or attaéks from adjacent
eneay fcrces cccur, then (1;3) is a possibility. .

' The battlefield, or population, is sampled via the
unit’s sehsors, and the saupled evidence leads the analyst

fo'accept(or reject the hypotheses of attack locations. in.

the case of battlefield sampling, the sampling process takes
place over tinme. ' '

‘Ihis chapter will discuss the guality of <the evidence
presented to' the déciéibn maker, the use of Boolean and
Bayesian methods to evaluate the analyst'svhypotheses, ‘and
an in depth look at a teckaique for evidential reasonirng
based on the_DémpsterQShafer theory of evidence. '

B. THE QUALITY OF EVIDENCE

In the tactical environment, the Interpretation node
will receive information from many sensors, both human and
‘machine. This information is inherently uncertair, incom-
plete,  and SOmetimés ‘inaccurate. Although less than
optimal, this situation is the nature of the battlefield and
the nature of the evidence received. The termv avidence
becomes approfpriate here since the irformation received will
be a basis f£c¢r conclusions or judgéments, not a'clear answer
to arny bne hypothesis.




1. Uncertaip Evidence

Battlefield sensors canmnot describe their sample in
precise detail and, therefore, create inherent uncertainty
in the reports they generate. Some sensors can indicéte
movement direction, size of the element, or type of unit
observed. Other sensors may only report that a uait is
moving and may not detect the size or exact location of the
target. None can give a comélete description of the event.
The sensor or operator is always uncertain of many attri-
butes of the target. As Lowrance and Gafvey recognize
[BRef. 6], the evidence tends to lend varying degrees of
support to one or wmore hypotheses rather than completely
specify thé event.

2. Incomrléte Evidence

The sensor information will also be incoaplete. The
battlefield sensor can only "view"® its assigned sector of
search. It can describe what 1t sees, but cannot lend

evidence to what it cannot see on other parts of the Lattle-
field. The analyst should realize that this incomfpleteness.

éxists, and direct movement of sensors or change sensor
search areas to receive a more complete fattlefield picture.

3. Incorrect Evidence

The third characteristic of the information
collected By the sensor is that it could be incorrect. The
orerator, interpreter, or soldier reporting could be
cdﬂpletelylmistaken in their spotting, or the ereay could be
using deceptive techniques to confuse the opposing force.

' For these three reasoans: uncértainty, . incomplete~
ness, and inccrrectness, the hypotheses'or pfopositions can
only be attributed degrees of support based on the evidence
. received. No one piece of information can be accepted as
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compléte truth. Therefore, it is the iterative'process of
combining information :from all sources through time, that
will lessen the damaging effects of poor-quality evidence
and produce good intelligence. To accept or reject the
proposifions tased on a single, cloudy piece of evidence
would certainly bias tke entire intelligence prediction
effort. ' o ,
What statistical methods can be used to evaluate the
evidence in terms of lending support to the acceptance or
rejection of the hypotheses? Three methods ‘of evaluation
will be discussed. These are: Boolean Logic, Bayesian
Inference, and Evidential Reasoning = using the
Denpster-shaferitheorj of evidence combination.

C. TWO COMMON METHODS FOR EVIDENCE EVALUATION

1. Boolean logig

In Boolean logic the hypotheses or propbsitions can
only belrepresented as' True or Faise. varying degrees of
support are not accepted, and any information relative to
the hypothesis would have to be interpreted as total support
cr total negjation. ' |

As Lowrance and Garvey indicate [Ref. 6], Booleaa
logic cannot capture the partial belief in hypotheses geder-
ated by the ccarse evidence received. The battlefieid will
never be an area for clear cut decisions.in black and white,
but will always tend towards decisions that deal ‘with the
“grayness" of the evidencé.

Continuing with the Division example, a report is
received of a small unit, an enemy motorized rifle comcgany,
moving towards the Forward Line of Troops (FLOT) of
Sector 1. This activity could be the advance of the enenmy's

reserve force indicatirg a breakthrough attempt, or it cculd'

be a feigning action, c¢r only a partial repositioning of
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troéps.‘ Based on this activity, the analyst cannot, with
100% certainty, predict that the main attack is coming in
Sector 1 (Trﬁe) or tha; it does not indicate an attack in
Sector 1 (False). Nor does the evidence_ negate or support
the possibility of attack in the other sectors.

2. pBayesian Inference

"Bayesian methods have been propcsed as a basis for.

several decision aids (Refs. 7,8]. However, these methkods
have iniherent inefficiencies in dealirg with disbelief,
information supporting the compiiment of the hypothesis, and
a priori probabilities.'-

;  a. Bayesian Formulation

A Bayesién approach [Ref. 7] would 'consider
various hypotheses, such as an attack in Secto:‘1 {S1) given
some datum (D) from a battlefield sensor. The probability

that (S1) is true given the data would te:

E(S1|D) = P(D|S1) e P(S1) / P(D) . : (3.1)
where:
P(S11D) = posterior probability of the (3.2)

hypothesis given the observed datunm.

P(DIS1) = probapility of the datum (3.3)
given the Lypothesis.,

P(S1) = pricr probability of the hypothesis (3.4)

before the datum.

P(D) = probability of the datum occurring. {3.5)
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The task of determining just this last broh-
ability of a datum occuring on the battlefield, is more than
.formidable. Given a fixed set of target describers :

TD = (td(1) /td(2) sese,td(n)) | | (3.6)

Where td(1) and td(2) «could be map grid coordinates in
easting and znorthing, td (3) could be the type of unit, td(4)
the size of the unit, td (5) the direction of movement, etc.
The analyst vould thea expfess partial beliefs over TD by
distributing Lelief to the elements of TD.

For example, a report is réceived about a tank
company 4in the intelligence analyst's area of 'resPonsi—
bility. He sust now determine the probability of detecting
the .tank coazpany at the reported location. in this case TD
= (td(1),td (2)), the set of g:i& coordinates in the division
Zone. Probakilities must be mapped to all grid coordinates
in his area which are maneuverable by tanks. The analyst
then adds the probabilities for td(1) and td (2) corre-
sponding to the reported grid coordinates or the tank

company to determine the probability of the datum occurring.

Probabilisticly, a piece of evidence will map
 the propositicns‘in TD to the closed interval [0,1]:

B : TD -=> [0,1] (3.7)

where
SUM a(td) = 1, for td in TD : {(3.8)

In other words, the conjunction of all evidence from tha

mapping must equal one, the basis for a probability.

statement.

- 35

sy




Then for any proposition defined over TD, such
as the report o7 the tank company (TANK), the prokability of
occurrence is: ‘

for all td in T, S (3.9
Prob (TANK) = SUM m(td), td in (TANK)

The pthability‘of proposition (TANK) is determined by the
sum of the probability of all location possibilities that
are elegents of the proposition.

It follouslthat:

Prob (TANK) = 1 - Prob (mot TANK) (3. 10)
ard since the environment sums to 1:
SUM m(td) = 1, td in TD | (3. 1)

"Thus all prokability not in (TANK) would lie elsewhere in
TD, as seen in Equation 3. 10. The inherent problesz with
this approach is that the Sensor operator, the intelligence
analyst, or an expert, must determine each a priori grob-
abitity for the. partitioning of TD into its elements
(td(]),td(Z)}...td(n)) given by the mapping m.

This mapping would not be a great problem given
a rich data base for a well-defined environment. However,
on the battlefield, the sensors will be receiving data on
micro events ‘that may oniy occur once; aad depend on'time,
weatner, terrain, or any other target descriptors used in

(TD) . To compute a priori fprobabilities given the general
nature of the situation would be an endless task and may not -

te acceptable for time-critical tactical decisior making.
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' Using equation 3.1 and this chapter's example of
a main attack against a Divisibn, consider the Bayesian task
of deternihing the probability of an cccurreuce. If datun
‘(D) is the report of the advancing motorized rifle company,
then P(D) is the probability of a such a company advancing.
Immediately the analyst is in a predicanmeant. He could uaké
a calculated guess about this value if an extensive data
base existed. However, there is noc data bpase, and the
analyst definitely does not have the time and may not have
the expertise to concern himself with these detailed
‘parameters. . o '

Further, what specific type of company was
observed by the sensor? If it is a reconnaissance company,
then the protability of this datum occurring could be high.
Next, the prcbability of attack given this datua (P(S1]D))
must be considered. There are now more . factors and prob-
.akilities with which the analyst must concern himself, most
of which are not krnown.

’ If the advancing cbmpany is a second echelon
element, then there would be a low protability of tke urniz
being 1n this fcrward area, unless it is the advance of a
breakthrough attempt.’ This probabilistic predicament could
go on and on. Because of the many unknowus, Bayesian infer-

ence may not be the most desirabie method with whica to deal "

with battlefield evidence coatination.’

Also, a anesian supporter would say that if
evidence suppcrted tuo'mutually exclusive proupositions, ' and
there was no reason to consider either over tane other, each

'shoﬁld be - assigned equal probabilities. So, if evidence .

supports proposition (X or Y or 2), with probability G.6, it
supports individual propdsitions (X)) (Y) o (D) with prob-
abkility 0.2. As a result, there is ;.twofold sapport of the
disjunction of any two of thése propositions over the other.
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If: , : )

P(X or Y or Z) = .6
and . .

P(X) = BP(Y) = P(2) = 0.2 ' . .
then: ' ‘ o

P(X or ¥) = 0.2 + 0.2 = 0.4 = 2 e P(Z) . .

However, there was no evidence received to indicate that the
disjunct occurrence (X or Y) was greater thac the sirngleton
of (2). The only fproposition the evidence supported wvas (X
or Y or 2Z), and in no way 'could‘distinguish it betveeﬁ

»

subsets of that event.
Further problems result from the inability to
represent ighorande (lack of support) throhgh Bayesian

-'._.‘.
J
"».r" A

.
»

-
»
3
.

methods. In the natural reasoning process of the analyst or
human sensor lies a critical and distinct diiference between
lack of support for a hypotheses and support for the compli-
ment of a hypcthesis.. If (X) and (Y) are the two proposi-
tions under consideratioa, ‘then\in a‘cogniti&e frame. lack
of support for (X) does not necessarily eguate to support in
(Y) . ' ' '
o 1f:
P(X or Y or Z) = 0.6
.then in Bayesian terms:

1 - P(X or Y or 2) = Plnot XX or Yor Z)]= 0.4

‘ Of utzost iamportance, it is. critical to recognize that the
evidence received was incomplete. and this distiactiorn
between (X or Y or 2) and not(X or Y or Z) caanot ne.made.
Due the sgnso;'; restricted sampling of the battlefield, the
eviderce can c¢nly suppor# the’disjunétion; not refute it.
| The concerns of representing aacertainty acd
ignorarce while dealing with pattlefield-quality evidence
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lead to the theory of evidence proposed by Arthur Dempster
and Glenn Shafer. This is not to say that Bayesiarn
Inference should pot be used on the battlefield. On the
contrary, if the probabilities for the use of Bayesian
Inference are available and if 'the amalyst can distribute
probabilities to single elements, then definitely Bayesian
Inference should be used. However, if these conditions are
not aet, and tremendous assumptions would be reguired to
meet the Bavaesian prerequisites, then Dempster-~sShafer should
ke considered as am alternative.

D. THE DEMPSTER-SHAFPER THEORY

This theory of evidence combination was conceived Ly
Arthur Dempster [Ref. 9], and 1later developed by ore of
.lDempster's students,‘Glenn Shafer [Ref. 10]. It is a theory
of evidence because it dea)ls with support of propositions
based on evidence. It allows for quantifying ignorance, or
lack of knowledge, as well as uncertainty. It uses a tern,
plausibility, to indicate 1lack of belief in .a proposition
réther'.than suggesting support of 'the compliment of the
propositioh. The term,‘Belief, is used to indicate support
for any propoéition. ' .

1. ormulation

The Frame of Discernment, the Set'of ali mutually
evclusive prorositions, is represented by: THETA. The
domain of THETA is the set of all possible subsets of THETA.

Domain Size = 2 exp |THETA| subsets (3.12) .
(2 raised to the magnitude of THETA subsets) '

An example of a Frame of Discernment would be the
three brigade sectors of the division zone in which the main
eneay attack 'could occur. In this case THETA = (1,2,3),
assuming 3 brigades in a division. '
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The dcmain would be :

AL gl ]

(1,2,3) (1,2) (1,3) (2,3) (V) , (2, (3) » O

o

, which are all the subsets of THETA. Although the Null Set,
o () will alvays be a subset of THETA, it will never have
Belief and will not be listed as a subset in the rest of the
calculations in the chapter. »

The mapping of probability assignaents to ths propo-
sitions is done by a Basic Probability Assignment (BPA),
referred to as Mass (M), which satisfies:

. o« - . « u R

M (Null Set) = 0 ' ' ©{3.13)
;i and
o SUM M) = 1, i in THETA (3. 14)

(the sun of Masses over THETA = 1).

- . Support for any proposition (X) is given &Ly .
j: Belief (X), or Bel(X), defined as: '
o Bel(X) = SUM (i), i in X I (3. 15)

i- Belief is the sum of all the' Mauses of all subsets of the
f~ -proposition. The Belief of (X) is the measure of the Mass

constrained to stay somewhere in (X) [Ref. 12]. Belief of .
an attack in sectors (1 or 2 ) would equal:

Bel(1,2) = M(1,2) + M(1) + M(2)

Related to Belief is Plausibility or the Upper
o ' Probability Function defined as the tctal probability M¥ass
that has potential for moving into (X).

r. ' 40
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Plaus(X) = 1 - Bel (not X) | : | o (3.16)

In the exanple,

‘1-Belfnot (1,2) ] = 1-Bel(3)

Plaus(i,Z)

The Doubt of (X) or Dou(X):

B TARNARAA S ARFILY e} AT

Dou(X) = Bel(mot X) ) ' (3.17)

is the measure of probability:forced to stay out of a.

bou (1,2) = Bel[nof(1.2)] = Bel (3)
It follows that:

B Plaus (3) 2 Eel(A) 2 H(A) | (3.18)

In contrast with Bayesian Inference, Dempster-Shafer
- allows motion of Masses throughout the frame or discernment
a ' sirce each #ass need not be constrained to single elements
within THETA.  Therefore,. no requirement ex;sts to compit

LA Masses to elements past thne level of recognition contained
b o in ‘the report, coastrained by the sensor's limited
B capabilities. ' ‘

If evidence réceiigd indicates an attack in Sector 1
or Seétot 2, the support need not te divided between the two
propositions, (1) and (2). If movement of enemy forces
towards the frecmt occurs oh a road bisecting the two zones,

it is not necessary to say that:
P(1) = P(2) = 1/2 » P (1,2)

but instead, the evidernce can belassigned to the'supe;set:
(“'2)0‘ \ ' ' - .
By using tbe two values of Belief and Plausibility,

e L TR

support ror a propositior or hypothesis can pe expressed by

.an intercval as follows.

A
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Evidential Interval (EI) = [Bel(X),Plaus(X) ] (3. 19)

where the differehce,’?laus(X) - Bel(X), can be referred to

as the Ignorance remaining about (X):
Ig(X) = Bel(X) - Plaus(X) | ‘ (3.20)

. If Igq{x) = 0, there exists no Mass available to move
into (X). Purther, if Ig(X) = 0 for all propositions, the
system is Bayesian. This is true since this would require
that all Masses be distributed to singletons ia the fraae of
THETA. For this reason, Bayesian Inference can be described

as a sukclass of the theory c¢f Belief functions [Ref. 14]."

Table 2 show some examples of these Evidential 1Interval

- values.

_ 'TABLE 2 | ‘
EXAMPLES OF DEMPSTER-SHAFER EVIDENCE INTERVALS

X(0,1) => ' No knowledge at all about (X).
X(0,0) => (X) is false.

X(1,1) = - (X) is true.

X(0.25,1) => Evidence.provides pgrtial

‘sufpport for (X).

2(0,0.85) => Evidence provides artial
support for (not X).

X(0.25,0.85) => Probability of (X) is between
0.25 and 0.85;i.e., the evidence
simpultanectsly grov1des support
for both (X) and (not X).
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In 'the continuing Division example, a report is
received indicating a strong possibility of attack in Sector
(1 or 2) represented as (1,2) and a slight possibility of

~attack in Sector 3, represented as'(3)a The analyst assigns

B U

Mass (1,2) = 0.6 and Mass(3) = 0.2. The remainder of Mass
(0.2) cannot be assigned elsewhere, so is assigned .to the
set representing the entire frame, Mass(1,2,3) = 0.2. These
Mass values aust be determined in some way by the analysi.
He pay use gprobabilities derived from prior analysis oz
eneny tactics if available,' or @may use ais own judgement
based on knowledge of ememy tactics. The latter method will
be further discussed invchapter V. For nov dssupe that the
analyst bas determined these values.

Belief is now lipited to those sets whose subsets
have Mass or: |

Bel(1,2,3) = M(1,2,3) + U (1,2) + n(1,3) + M(2,3)
e H() + M2 ¢+ M(3) . (

= 0.2 # 0.6 + 0.0 + 0.0 +0.0 +0.0 + 0.2 = 1.0
Bel(1,2) = N(1,2) + H(N) + 8(2) = 0.6+ 0.0 + 0.0 = 0.6 -
Bel (2,3) M(2,3; + M(2) + M(3) =0 + 0 + 0.2 = 0.2 ,
Bel(1,3) = M (1,3} ¢ M(1) + M(3) = 0.0 + 0.0 + 0.2 = 0.2
Bel(3) = M(3) = 0.2 ,
Bel(1l) = Bel (2) % 0.0 (They have no Mass assigned)

As seen in the above example, since THETA exhausts all
proposi tion possibilitiés,v the Belief in THETA is always
equal to 1.0. The Plausibility and Evidential Interval for
{(1,2) would be:

 Plaus(1,2) = 1 - Bel(not(1,2)) = 1 - Bel(3)
= 1-0.2 = 0.8 )

Evident;al Interval = [Bel(l,Z),Piaus(1,2)]
= [0.6,0.8] :
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The Igncrance would be:
Ig(1,2) = 0.8 - 0.6 = 0.2

The Evidential iInter vals (ﬁI) for all the sets are:

EI(1,2) [0.6,0.8]
EI(2,3) to.2,1.01'
EI(1,3) {0.2,1.0]
EI(1) = (0.0,0.8)
EI(2) = [0.0,0.8]

EI(3) (0.2,0.8]

2. combipatjon of Evidence

Dempster-Shafer allows for the combination of
evidence from knowledge sources or sensors on the battle-
field. Givenytwo Mass assignments M1 and M2 new Masses are
cCEputed by the orthogonai sum M1 @ M2 (where @ represents
orthogonal sum) defined as: '

M(Kall Set) = 0.0 | | S (3.21)

M(A) = (SUM [M1(X; o M2(Y) ]} /K o (3. 22)
vhere (X & Y) = (A); (& represents intersection)

K =1- SUM [M1(X) ® M2(Y) J. (X & ¥) = Null Set

SUM [M1(X) o M2(Y) ], (X & ¥Y) # Null Set

From Equation 3.21, the Mass assigned to the nuil set mast
eqial 0. This is accomplished Ly the notmali;ation of the
Masses assigned to all other sets. The',normalizaiioﬁ
factor, K, 1s equal to 1 - the Mass assigned to the nuil set
after combination. K is also equal to the sua of the Masses
assigned to the subsets of THETA {less the Null Set) after
coabination. ' »
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'The nev Mass, or combined Mass assigned to (3), is

the orthogonal sua of the Masses  (divided by the
normalization factor) where (X & Y) = (a). This orthogonal
sum combination technique can be further shown by the unit
square in Figure 3.1. ‘ .

k 1

T ‘
I M (A) x M: (X}
1

" (A) gedicaten to

A b .

L
o —————

M (8

T\. ........................

. s N

]

i

. 1

M (C) !

4 4 H

unft Square

Figure 3.1 - Unit Square Example of Crthogonal Sum.

Continuing with the example, a second report is
received by the' division intelLigence.analyst for which he

assigas Masses as follows:

M2(¢(1,3) = 0.3
M2(2) = 0.3

42(1,2,3) = J.4 )
(where M2 des;qnates second report).

Figure 3.2 shows the orihoqonal sun of these exapple Masses.
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Pigute 3.2 Oorthogonal Sum of Example Masses.

e

- The Ncrmalizing Factor (K) in this example is:

1
4
-

K= (1-0.06) = .34 ‘
(1-dass assigned to the Null Set)

New nortalized Masses are:

.

M(1,2,3) = .08/.94 = .085
M(1,2) = .24/.94 .255
1(1,3) .06/.94 = .064

]
RTINS d

]
]
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'!(2.3) = 0.0 (not an intersection set
in orthogomnal sum)

M(1) «18/.94 = .192

M(2) (.06 + .18) /.94 = ,255

M(3) (.08 + .06)/.94 = . 149

New Beliefs are'conbuted as follovs:

Bel(1,2,3) = .085 ¢+ «255 + 064 + .192 + .255 + .49

= 1.0

Bel(1,2) = .255 + 192 + .255 =,502

Bel (1,3) = .064 + .192 + . 149 = .405

Bel (2,3) = 0.0 + .255 + .149 = .404 (has belief even
though nc dass,due to Kass in its Subsets)

Bel (1) = .192

Bel(2) = .255

Bel(3) = .19

The new Evidential Intervals are:

E1(1,2)

=.[.502,.851].
EI(2,3) = [.406,.808] .
2I{1,3) = [.4%05,.745]

EI(1) = {.192,.596]
EI(2) = {.255,.595]
"EI(3) = [.149,.498]

These .results'show strongest Belief in the pair

(1,2) due mainly to the assigrment of Mass = .6 to this set
from M1. Belief in (1,3) and (2,3) are approximately egual,
.05 and .404 respectively. Belief for singlé ‘elements is
strongest for (2) due sainly to its Mass assignment fronm M1.
The final Beliefs follow from the Mass 'assignments, which is

appealing. , -
Also rote the changes in the Evidential Intervals
after combinatiocn. The intervals have narroWwed for most
47
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sets and no set has a Plausibility of 1.0. The Ignorance
(Plausibility - Belief) for all sets except (1,2) ' has
decreased.

3. Independence of Kmowledge Sourges

A point of interest in Dempster's rule of combina-

tion is the independence of knowledge sources or indepen-

‘dence of reports from the same source. How does this method

deal with multigle sightings from Same or different sersors?

IZ the sigkting or semsor data coae from different
knowledge sources, ther this evidence can be considered
colleéfed‘frcn independent elemeats. Sensors will occupy
different terrain positions and have varying operatiag char-
acteristics and capabilities. As such, ' these knowledge
soufces will derive enough independence for this method to
pro'duce desired results. . '

If the same sensor reports the same data, tnese
reports are nct independent in tne sense that they éome from
the same source. However, if the saﬁe_sensor reports on the
same unit of activity, but the location or any other repor-
table characteristic of the unit changes, then this 1is
~ ccensidered sufficiently' independent. An example would be

reports on movemént direction of . a target. This reporting
wculd be considered iundependent for the purpose of 1iadi-
cating a contfidence iowards or away form a hypothesis
[Bef. 11]. |
' If the same sensor is 'reporting on an activity that
does not move, a nigher headquarters locatiorn, then this
should pe  used as rew evidernce. It confirms headjuarter
location and also the fact they are not amoving (shown by
many reports from the same sensor) and therefore may indi-
cate something to the aunalyst to be }ncluded in the evidence
combina tion.
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4. Soms Points of Conmtention with Dempster-Shafer

Conflict over the Dempéter-Shafe: theory of evidence

arises from the following:b ’
a) Normalization. This. is the norsalizing of resultant
'Masses after combination. Mass that would go to the
null set is 4ignored and Masses going to THETA are

. normalized.
b) Total ‘Conflict. - When total conflict of evidence
occurs, Mass for all sets sums to zero. The anormal- '
izing factor (K) is equal to zero, and the attempt to s
divide by K, of course, fails. This case is the sarze ‘£i€
as sending all Mass into the null set. ]
However, there are several explanatiohs to reduce é};

concern over these eveats.
(1) MNormalization. <Consider Masses tending to

suppotf conflicting propositions., propositions that have no
intersection. The Yass in this event flows into the null
" set dindicating conflict between Masses' from «xnowledge
sources. Since this conflict occurs due to uncertainty
about the situation at hand, as more evidence is received

conflict will diminish. ’

Also, as certainty toward the correct
proposition increases so doés ability to decrease the number
cf elements in THETA. Then, less conflict will occur in the
evidence from seusors and the need for an evidence compina-
‘tion technique that deals with ubncertainty diminishes. But,
this is not the case on the rattlefield, vhere the sensors
are spread over dgreat distances across division rronmts.
These sensors are directed toward different areas of the
front and a great diversion of information is desired by tke |

intelligence analyst through a wide variety of contacts.
‘ L ‘Normalization, thken, is just a means of
- dealing with the conflicting nature of evidence. . The
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measure or weight of conf;ict is represented by the magni-

tude of the npormalizing factor (K). - K indicates hovw much
conflict occurs ketween the current Mass assigament and the

resultant Mass values of previous assignménts. If the set
of all possibilities is the Frame of Discernment, the null
set canmnot occur. The: uaés assigned to it represents
confllct, a ncrpal occurrence when so many sensors report so

varied data. The uass cannot remain in the aull set, there-

fore all d4asses are pormalized.

| A large measure of conflict occurs in the
"followving exasple: ‘

41(a) = .99

M1(B) = .01 .

M2(C) = .99 ,

42 (B) = .01 ' . '

M1 2 M2 yield:
M1(B) = .0001
41(Null Set) = .9999

Ndrmalized results are:
X = 1 - .9993 = ,0001
11 @ M2 (B) = .0001/.0001 = 1.0, a gquestionable result

However, if in fact (A,B,C) were the only
p0551b1e results, this conclusion is loglcal only through
combining this pattierield-q uallty,evidence and dealing with
ipherent ungertalnty can the anal yst reach conclusions about
the nypotheses, If the rignrous. ‘methods like Baye51an
Isference <cannot be used;, then Dempster—shafeh seemns to
offer a loyical alterrative. o

{2) ZTotal Cconflict. - The second sho:tcumi:g,‘

tctal conflict of evidence, is caused by total. combined Mass

going to the null set aborting any combination effort. This
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occurs Ly assigning total Mass from two knowledge sources to
sets vith no intersection, such as:

vu1(A,B) = 1.0

M2(C,D) = 1.0

51 @ 82 ==> K =0
'since:

[(a,B) & .(C,D)] = Null Set

Hovwever, is it possible to be 100X certain

of (A,B), yet at the same time, to be 100%¥ certain of (C,D)?

No, this situation and resulting conflict are unacceptable
and can only ke resolved by the realizatior that,again, the
analyst is dealing with uncertainty. . Inaccuracies in knowl-
edge sources cannot allow aSsignnent'of probability Masses
in tkis panner. '

. , As further proof, consider the following
exazxple [Ref. 12]. A fair die is rolled and knoéledge
source one places all Mass in the proposition that the
nunpber is eéven, U1 (EVEN) = 1.0. Conflicting evidence fron
knowledge source two places all Mass in the propositior that
tae mumber is odd, M2 (0DD) = 1.0. The result of combinpation
assigns all Mass to the null set since (EVEN & ODD) = Null
Set, and the combination fails. ’ A

This examrle shows that this occurrence
would ternd to violéte the assumption of uncertainty of thue
evidence and also falsify any logical reasoning process.
The aralyst cannotilet this occur ' under any method of
evidence comkination. ' '

E. BAIES' RUILE OF CONDITIONING

In a battlefield.situaticn,' using Bayes' conditioning
rule to combine evidence does not seeem to generate wmore
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satisfying Iesults than those  achieved by the
Dempster-Shafer method.
A probability distribution m would be transformed by

BPayes' Rule to m' by the réceipt of additional information.
It is necessary 'to restrict the domain of m to elements of
(X) when using this rule. Bayes' rule is:

for all i in THETA: ' : (3. 23)
- m'{i) = 0.0, if i not in (X) '
m'(i) = m(i)/(1-k), if i in (X)
where:
k = SU0M m(1) < 1, i in (X - (3. 24)

Or from equation 3.1:

P(S1|D) = EB(DiIS1) e P(S51)/P(D)

. Using the resuits of the prior knouledge sourée“ report
outcome, P(S1), P(S1}D) is updated by the probability of the
ned datum,. E(DX, and probability of the datum given the
hypothesis, P (DIS1). | |

A more tractable form of the‘eguatiog can be constructed
using likelihcod ratios where: ' o )

P(St1|D)sP({S2D) = [P(S1)/P(S2)]OP(DIS1)/P(DISZ) or

2(S1UD)/P(521D) = [£(51)/P(S2) JeL(D|S1:52)

where L(D|S1:82) = P(DIS1)/P(DIS2) and is called the likeli-
hood ratio favoring hypothesis S1 over S2. :
ow since P (S1|D) + P(52)D) must egqual one, thé final
values for pcsterior probabilities are determined by their
ratio. it 1is no‘longér. Lecessary to determine the prob-
ability'of the datum (P(D)), nor 1is it necessary to assess
the protabilities P(D{51) and P(DiS2) .if the likelihood
ratio L (D|S1:52) is used. However, it may be easier to

52

MR AN T N S WA S IR T o NN AN 3 T KR A W T ST Y A ) 1 MECVER P R MLAGES A - TGV, W R T S LR L L




C6lpute the likelihoodl ratio based on the probability
P(DIS), which will be demonstrated in an example.

The following éxample using this Bayesian method is
presenfed. Three hypotheses under consideration are:

S1 = attack in Sector 1
S2 = attack in Sector 2
S3 attack in Sector 3

‘The first difficulty encountered using this approach is -
determining pricr probabilities. Should they be calculated
using the first piece of evidence, or be based on other
knowledge. In this exaample there is no reason to favcr one
over the other, so assign equal probabilities: P(S1) = Pp(S2)
= P(S3) '= 0.333. / ' S

The first piece of evidence received (D1) indicates
strong possibility of attack in Secter 3 (53). To ease

| computation, all 1likelihood ratios will now be based on
Sector 3, ie.e€.: L(D1}S1:S3), L{(D1§S2:S3) and L(Dl|$3:53)
will be used. Table 3 column L(D115(i)|is3f lists the like-
lihood ratios based or this first piece of evidence.

The l;kellhood ratios can be computed in - the follbwing
manner. Datum 1 (D1) indicated a high probabllity of attack
in Sector 3, say P(D1{S3) = 0.8.  To compute likelihood
ratios, a comfarison must be pade with the ot her hypothese
If D1 indicates a small probability of attack in Sector 1,
(sty, say d.10, then the likelihood ratio L(D1§s51:53) =
.1/.8 = .125.  As previously stated, this likelihood ratio
could have alsc been determined by saying that the prob-
ability of attack in Sector'3.lbased orn the datum 1is eight
tines greater than attack in Sector 1. '

The ratio for Secter 2 and 3 will be .2/.8 = .250, or
attack in Sector 3 is four times more likely than attack iz

Sector 2, based ou the datum.
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The next piece of evidence received (D2) assigns the
fcllowing likelihood ratios:

L(D2}S1:53) = .70/.50 = 1.4
L(D2}52:S3) = .80/.40 = 1.6
L(D2}53:53) = 1.0

Now update all posterior probabilities for comparison
using the three equations and three unknowns:

P (S(i)1D) /B(S31D) = [P(S(i))/P(S3) ] ® L(D1{S(i)) :53)
e L(D2yS(i):53), for all i

and solve simultaneodsly. ,
Column P (S(i)) D) of Table 3 (where D represents all
- evidence received) shows the final posterior proktabiiities.
Now comparisons of hypofheses may be nade using these poste-
rior prchabilities. '

|  TABLE 3
BAYESTAN INFERENCE EXAMPLE USING LIKELIHOOD RATIOS

P(S(i)) L(D1IS(i):S3) L(D2jS(i):S3) P(S({)ID)

|
S1 % .333 .125 1.4 <111 i
S2 | <333 «250 1.6 .254
s3 \ 333 1.0 . 1.0 <635

P(S(i)) = Erior probakility
L(D1}S(i):53)
L{D2{4S(1):853)
P(S{(i)I1D) = 2osterior probability

L]

Likelihood Ratio from rfirst datun
Likelihoond Ratio from second datum
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There are several probleas encountered using this
approach. First, how should the prior probabilities be
chosen? If they are equally likely, then equal probabili-
ties could be assigned as done in this exanmple. It may be
Eetter to use tne first piece of evidence receive,‘but these
priors must sum to one. If the initiai evidence indicates a

strong possikility of attack in Sector 1, but lends no
support to the other hypotheses, how should prior probabili-

ties be assigned to the other hypotheses? ' Soue prior prob-

. ability must be assigned to the other hypotheses, if dot,

they will always have a postetior probability of zero.
'Sécond, there can be a lack of consistency in assignment
of likelihoods.  There is no constraiﬂt to the magnitude of
the ratio. In the example, a likelihood ratio of 1.4 was
used. Yet, if a strong indicator of attack (.9) was
compared to a hypothesis wita a very slight chance of attack
(-00M), then a likelihood ratio of .9/.061 = 900 would
occur. Ikis lack of cqnstraint'on the magnitude of the

likelihood ratio may lead to inconsistencies as the inter- -

énce progresses through marny likelihood ratios.
. shater and Tversky [Ref. 13] resark that traditiomnal
Bayesian theory has been ccncerned with what they call
observation design. This design deals with outcores of
statistical experiments. ' In the experimental space, the
analyst knows the possible'cutcomes ané ansJers. = Zrior
probapilities <for parameters can be assessed in ad&ance.
Bayesians have gradually extended their experimental space
to the‘area of data analysis where probabilities are not so
clearly defined. This possible over extension of Bayesian
Inference could  lead to its 'partial demise in the bLattie-
field hypothesis‘spéce. 3
This section has not been presented as a critiyue of the
Bayesian zethecd, but as an insight that there are problers
with Bayesian nmethods as with Dempéter—Shafer.
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IV. A COBPUTATIONAL VIEY OF DEMPSTER-SHAFER

A major drawback to the use of Dempster;Shafer'has been
the long calculation time required due to its computational
complexity. For example, the computatibn of Beliefvrequires
time exponential din iTéETAa [Ref. 12]. As part of  this
thesis research a decision aid was created to assist in the
Dempster-Shafer cowputations. Appendix A contains a

- description of the aid, as well as, a listing of the PASCAL
code. This aid shoul& not be considered a fully operétional
military decisiorn aid, but rather a prototype or exazple of
an automated evidence combination technigque, B

The aid is deSigned to lead the user through the -%eps
necessary to set up and use the Denpster-Shéfer theory. The
ajd*'s output has been verified by comparison with manrually-
computed solutions of prokleus using Denpster-Sanafer.
Iderntical results were achieved. The output of the model
used for these checks was Belief, Piausibility and ldass.

Although this exponential computatiornal time factor of
Derpster-3kafer has = been ‘discussed in length,
[ Befs. 6,12,15], no actual computational data was found to
support it. An additional benefit of the aid was the
ability to ncw record these computational times. Also
discovered through the use of the aid, was the memory limi-
tation of the computer after all subsets of the Frame of
Discernment were enumerated. '

' Reduction in the computational compliexity of
Dempster-shafer will be addressed = in this chapter, but
first, a brief discussion of the Dempster-Shafer aid created
will be presented, Efficiency of thé aid in terms of compu-
tational time and memory reguirements will be described in

more aGepth. Then methods of reducing computational
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conpléxity presentéd by Barnett [Ref. 12]), and Gordon and
Shortli ffe, [Ref. 15), will be discussed. A third method of
reducing conputatlonal tlme, Multiple Frames of Discernment,
will be presented ‘ |

A. A DENPSTER-SHAFER DECISION AID

1. Description Of The Aid

The aid is designed for a user familiar with the
Dempster-Shafer theory. The user will first see a screen
inforaing him of the theory used in the aid. 'Next, the size
of the Frame of Discernment is requested. A lettgf of the
alphabet is assigned to each member of the Frame oi
- Discernment. 1f a Frame had five members, THETA would be
represented by (A,3,C,D,E), or 7 members THETA =
(A,B,C,L,E,F,G) etc. The user is then told the PFrame will
ke represented by these letters. ' '

All subbets of the Frame are generated by procedure
"Generate". . For each subset, this procedure creates a
PASCAL record structure that contains the items of Belief,
Mass, ana Plausibility may ke stored. The sets are sorted
- by size by rrocedure "Quicksort® to assist in the search
' éffibiéncY‘throughout the progran. Next, the aid informs
the user of the item rumber for data input. The item number
is jﬁst a means or keeping track of the number or loogs
thrbugh“the ptdgram, which equals the number of data iteus
combined. _ ' ,

The user then enters the set for which he wants to
assign Mass. ' Masses are assigned for all desxred sets and
theny "combined by procedure “Combine usxng the
Dempétet-shafer theory. . .

The user isv thep asked if he désires Beliefs to be
cozputed. If so, 3elief and Plausibility are computed by
procedure "belief" and displayed. The‘ptogtam then returns
to the input pode aud viil cycle until ended@ ty the user.
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2. Efficiency Of The Aid

As p:eviously‘stated, a drawback to the use of
Dempster-shafer is the time reguired to compute Belief. As
discussed in Chapter III, Belief for a set requires the
sumaing of thé Masses of all subsets of the parent set.
Figure 4.1 shows execution time for the computation of
Belief by the aid, 'as vell as, times for the other major
program' procedures. ' ,

The execution time for procedure Generate increases

exponentially. The procedure recursively generates subsets
and must check for repetition of sets as it proceeds. The
nunber of sulsets is exponential in THETA, 2 exp |THETA|.
As the size of THETA grows, the number of subsets grows:
exponentially, and also, the number of repeat subsets to be
checxed and eliminated increases. Fortunately, Generate is
only executed oLce at the beginning of the session. It is
possibie to eliminate the generation of subsetslaltogether
by'reading'in suksets from hard disk or flopby. All subsets
for various Sizes of Frames Of Discernmernts could be stored
and simply read at the beginning of the program.
' - unforturately, the execution time problem for Belief
computations is Lot so' easily solved. Belief will &Le
computed whenever the user desires a status of all ‘the
subsets. 4S the number of subsets grows, this computation
may cause the user an unacceptable waiting time to view
Belief. During this time 'no.inﬁut can be made for new
Masses. The way this program is designed, multiple data
entries can te made without involving the time dintersive
Belief procedure. In a battlefield scenario, the Beliel
computation would be done only ‘when . conclusions were
required, not atfter each data input.- .

Perhaps a greater limitation in using micIo
computers to _ sclve many Ireal vorld proktlems is the liarge
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' memory requirements demanded Ly Dempster-Shafer. Nith this
particular coding scheme using a PASCAL record to represent
each suhset, memory limitations (320K RAM) wvere reached at a
Frame of Discernment size of 9, which equals 2 exp 9 = 512
subset of THEIA.

The military examples used so far in this thesis

bave had a Frame size of three elements and total size of 2

| exp 3 = 8. As seen in Pigu:e 4.1, no noticable time delay
occurs at this level, which is also well within nemory
storage limitations. However, the selection of Frame sizes
akove this l;vel might cause unacceptable delays, especialiy
in real-time hattlefleld applications,

The three methods for reduction in complexxty
mertioned in the introduction will nov be discused.

B. BARNETT'S NETHOD,  SINGLETON HYPOTHESES AND THEIR
COMELESENTS | |

Barnett, fRef. 123, showed that if all the subsets of
the Frame of’ Dlscerﬁment can ke reduced to singleton Lypoth-
eses and their negatioas, computatxonal time will be Teduced
from exponentlal to polynomial order.

Before prdceeding, a new military exaaple will be usei'

to demonstrate the formulation of Barrnett's metiod. The old
example of sector of enemy attack is not well suited for
this metnod since it is difficult for the analyst to reduce
the scppe‘of the problem to singleton hypotheses and their
complements.

A suitable military example for the Barnett method is
the analysis cf frlendly axes of attack or eremy avenues of
approach. ' Assure ‘that the eneny or friendly force naust
choose the best apprbach into the comka* area, given four

~avenues A, B, C and D. These singleton hypotheses and their
conpleménts will be tae only sets considered. This example
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will prchibit the analyst from assigning Mass to any combi-
nation of elewxcnts, such as (A,D), thqugh he 1ay assign Mass
individuvally to (A) and (D). Mass may be assigned in a
sense tor(ﬁ,c,p) by .assigning Mass tc (not A).

1f tﬁe problea at hand can be reduced to subsets using
- oLly the hypotheses,and their complements, this method does
not restrict the 'analyst. He will seek reports.about the
avenues of approach into his sector or responsibility.
These reports will consist of information about the terrain,
wea ther conditioné. naturél and man-made obstacles, etc.
The analyst will then assign Mass to each hypotheses based
Ion thke information and infer the most likely enemy approach
or best friendly axis. - '

1. Pormulatjon Of Barmett's Method

Three steps wvill bpe used to represent ' the foraula-
tion of Barnett's method:
a) Combinaticn of elements and complements. :
i) Comtine evidence confirming each singleton

hypothesis. ~
ii) .Cambine evijence disconfirming each singleton
hypothesis. ‘

Step 1 results in tke formation of 2eX Belie
- functions (N={THETA|), one for each element and
one for each element complement.

b) Combination orf element pairs. Combine the confiraing
and disconfirming evidence for each element. This
step forms N Eelief functions, one tor each element of

.~ THETA. _ ,

c) Combination within THETA. Combine ail elements of

THETA tc produce one Belief functiorn.

Each step of this method@ will now be discussed.
Only three avenues of approach ‘(A,B,C) will now Le consid-
ered to simplify the computations.

-
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a. Step 1: Combination Of Elements And Coaplements

For each singleton, and for each complement, the
Hbss assigned by all evidence received is combined. Using
avenue of approach (A) from the exénple, the evidence
confirming (A) after #eceipt of two pieces of evidence would
be:

MY(d) = ¥1(A) @ M2(d) = 1-(1-M1(A)) «(1-H2(2))
(vhere (') represents Mass at the end of Step 1)

Since only evidence confirming (A) is useq here, Mass is
assigned by M1 or M2 only to (A) or to (THETA), see Figure
4.2. No Mass will be éssigned to (Null set). (1-1(A)) and
(1-42(1)) represent Mass going to THETA from each individual
assignaent. Their product, (1-M1(A)) e(1-M2(A4)) represents
combined Mass going to THETA. The remainder of Mass,
1-(1-M1(4)) e (1-42(A)), goes to (A). No normalization is
requifed since nc Mass goes to the Nnll Set.

' Suppose two more pieces of evidience are
received, M3 and M4, that disconfirm A. Mass from step 1
assigned to (not &) would be:

m*(not A) = 1-(1-N3(not a))e(1-M4(not A))
1 - M'(not A) = Mass assigned to TEETA

This process continues for eack element in
THETA. The result is 2eN Belief functions, where each
Belief function has two components one for each element and
for each coafplement of the element. '

b. Step 2: Combination of Element PpPairs

_ In Step 2, the #Mass for each element and its
complement are combined. Figure 4.3- shovs an orthogonal sum

example of the combination for Mass that supports an iten
‘ard its complement.
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M2 (A)

1-M2 (k) or -
2 (THETA)
M1(2) (ay (a)
M1 (1) * 42 (1) M1(h)e(1-42(a)) '
1-21 ) (A) (THETA)
HITIEETL) | (181 (A))eN2(h) | (1-H1(a))e(1-82(R))

Therefore: M(Aa)

1-(1-M1(2)) «(1-M2(2))
1-(Mass going to THETA)

Pigure

4.2 orthogonmal Combination For Sfep P

1-8* (not 1)

J
{is
) W

M*{(not A) ’
_ . (THETA)
MY (a) (Null Set) (3)
MY (A)ed? (not A) MY () e (1=4" (not A))
1-M* (a) (not A) (T3ETA)
(THETA) (i-M7 (3) )oH' (not A) | (1-M*(A))e(1=4" (Dot A)
orthogonal Combimation Por Step 2.

Fiqure 4.3
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In this step Mass vill be assigned to the 20
element, complenent of the element, THETA and the Null Set. ‘ ;?ii
The Mass going to the Null Set: ‘ . ' _ .

M"(Null Set) = M'(A)e¥'(not 1) ‘ AT

must be removed and so the Masses are aocwpalized by the . ol
factor: -

1—&'(A)ou(not A) (1 - Mass going tb the Null Setf

Mass going to (A) in this step,‘u"(l), will be the combined
Mass of the intersection of M'(A) and 1-M*(not A), the Mass
'6£ the complement that was aséigned to THETA from Step 1.
The same analcgy is true for the combined Mass going to (not
A) in Step 2, M"(not i), see Fignre #4.3.

Bcw the number of Belief functions has been
reduced froa ZeN to ¥, one for each element and complenment
pair. 2 The resultant Masses are represented bj Barnett as p
and ¢, where: ‘ -

E"(x)”= He(A)e(1~-4'(not A))/ (1-M* (D) *M*'(nOt 1))
M"(not A)= M' (not A)e (1-4'(A))/ {1-M* (A)eM* (ROt A))

P
c

Also, the Mass assigned to THETA after coambination in Step 2
is represented by r: ' ‘

r=1-p-¢

and the variakle, d, used later in Step 3 for normalization

is the Mass assigned to the coaplement of the element and to

THETA. - "d"™ isc used in Step 3 to compute the Plausibility of
each element and is identified now for later computatibns;
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[
C. Step 3: Combination Within THETA

Now the N Belief functions must be reduced to
one by combination within the Frame of Disceranment. Tae
exanple Frame in this chapter:  (4,B,C), will be wused to
demonstrate ccmputations in Step 3. All results from Step 2
will be represented as a functioa of their element, i.e.:

- p(a)

= un“)
-C(A) = M"(not A)
r(ad) = 1-p(A)-c(a)
d(a) = £ (A) + c(r)

The normélizing factor, K, for the overall
Belief functicn is:

K = 1/(PROD d(i))e(1 + SUN p(i)/d(i)) (4. 1)
- EBOD c (1), i in THETA ‘ '

or:
1/Id(l)°d(3)°d(c)°(1 + P(A)/d(k) + P(B)/d(B)
+ p(C)/d(C)) - C(A)-C(B)-c(c)]
Belief for each item (i) 1s then computed bv-
Bel (i) ='K(p(i)OPROD d(j)v . (4.2)

+ r(i)e PROL c(j)), Jj#i

then:
Bel(A) = Kep (A) »d(B)ed (C) + T (A) ecC (B) *c(C)

. Belief for the complement of the item is computed by:

Bel(not(i)) = Ke[ (PROD d(i)e(SUM p(j)/d(])) (4.3)
+ c(i) *PRODA (J) - PROD c(i)], J*i

65 .

R s

e r
AR A
N

-

*y
e
7

o

(’l
[k}

LR
s
v

o ik l‘.rifﬁ'.l‘. v,




LA

Bel (act A) = K[ (d(R)*d(B) *d(C))*(p(B)sd(B) + p(C)/d(C))
+ c(h)*d(E)ed(C) - c(A)ec(B)ec(C)]
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All Belief is computed in this manner to pr oduce
one Belief function. Evidential Intervals arze then computed
as follovs:

5

Evidential Interval (i) = [Bel(Ad),Bel({not A) ]

. The following numerical solution of the entire
method using the example will ke presented .to aid ic the
understanding of this sethod.

Eight items of evidence are received and Masses
are assigned as follows: ' '

Item 1 d(A) = 0.6
Item 2 H(mot B) = 0.3
Item 3 M(C) = 0.4
Iten 4 H#(B) = 0.8
Iten S uinot A) = 0.5
Item 6 M(not C) = 0.2
Item 7 &{C) = 0.7
Item 8 M4(C = 0.1

Step 1: combine evidence for each iteﬁ and each complement.
Only:  (C) has multiple evidence and is combined a-.

1-(1—h1(C))-(1-n2kC))o(1-u31C))
1 = (1 = 0.4)e(1 - 0.7)e(1 - 0.1) = C.838

MY (C)
a4 (C)

Step 2: combire the element and its cosplemant:

S p(A) = H"(A) = M'(A)e(i-H" (DOt A))/(1-m'(A)-x’(not a))
P(A) = M"(3) = (U.6)®(1-0.5)/(1-(0.6)*(0.5)) = 0.429
c{a) = M" (not A) = H* (not A)

e {(1-1'(A)) /(1-1° (1) *¥' (not 3))
C{A) = (0.5)* (1-0.6)/(1-(0.6)*(0.5)) = 0.286
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r(d) =1 - p(a) - c(d)
r(ad) =1 = 0.429 - 0.286 = 0.285
d(a) = c{(A) + Cc(A) |
d(A) = 0.285 + 0.286 = 0.571
p(B) = (008) .(1"0. 3)/(1- (0.8) .‘0-3)) = °o737
€(B) = (0.3) ¢(1-0.8)/(1-(0.8)¢(0.3)) = 0.079
£() =1 - 0.737 - 0.079 = 0.184
d(B) = 0.184 + 0.079 = 0.263
p(C) = (00838).(1-002’/(1"(0.838).(002)) = 00805
c(C) = (0.2)%(1-0.838)/(1-(0.838)(0.2)) = 0.039
£(C) = 1 - 0.805 - 0.039 = 0.156

= 0.156 + 0.039 = 0.195

3 (c)
Step 3:

K= [ (<571)e(.263) e (+195) (1 + .429/.571 ¢ .737/.263
" 4 .805/.195) = (.286)%(.079)e(.039) ] = 8.998

Computation of Beliefs:

3.9880 (.4290.2630.195 + .2850.079¢.039)

Sel (A) = = . 091
Bel(E) = 3.988¢ (.737¢.571¢.195 + .184e.286¢.156) = .360
8el(C) = 3.986e (.805¢.5710.263 + .156e.2860.079) = .496
Bel (not A) = 3.988 (.029e(.737/.263 + .805/.195)
+ .2860.263+.195 - .001) = .856 |
Bel(moct B) =3.988e(.029e(.429/.571 + .805/.195)
+ .014) = .620 |
Bel(not C) = 3.988e (.029 (.429/.571 + .737/.263)
4+ 014) = U467
The Evidential Intervals would them be:
A: [0.091,1-0.856] = [0.091,0.144] |
B: [0.360,0.380] - |
C: [0.496,0.535] |
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2. computational Iime Eor Barpett's Method

A program was written to assist in the computations
of Barnett's method. The -program also enabled comparison of
computational time and memory requirements with ' the normal
Dempster-Shafer method. A program listing for Barnett's
method is contaihed in Appendix B. This program was written
__ as a research tool and does not have the user friendly
ﬂ enhancements of the Dempster-shafer decision aid in
- Appendizx A.

'~ Pigure 4.4 shows the. timed computations for the
: Barnett method. Thke computer memory (320K RAM) could store
if . a Frame of Discernment of up to 1000 items compared to 9 for
: full'DempSterrSharer. Figure 4.5 compares the Belief calcu-
lation times for Barnett with the times already shown for
_ the Dempster-Shafer aid. ' , A
ii ' B Barnett's method offers a very appealing ard tigme
efficient use of Dempster-Shafer in a system where the
following criteria are met: ‘
" a) The Frame of Discernment can be adequateliy represented

‘ .." AR
* AR AT AR
v A T TR

by the singleton elements and their complements.
p) All evidence can be divided into confirming and
disconfirzing categories for each hypothesis.
'EZ Thé example of the avenues of approaca scénario
L ’ could be well represented ty ‘this method. as shown,
evidence Dased on terrain, weather, obstaclés, etc., could
be - combined using Barnett's method. The resultant
Evidertial Intervals would then ke compared to'dete;mine tae

most likeiy ernemy route, or the best frierdly route.
!..:
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C. GORDON AND SHORTLIFFE METHOD, BIBR;RCHICAL HYPOTHESIS
SPACE

, Gordon and Skortliffe [Ref. 15] agree tnat if evidence
confirms or disconfirms singleton hypotheses, then Barnett's
method produces the desired time reduction. However, there
are mani cla§ses of probleas where hore flexibility is
required. If the hypothesis spacél can be reduced to a
strict hierarchy, many more real world problems could te
handled. Gerdon . and Shortlifie wuse +this nierarchical
~approach in tkeir work with MICIN, a medical diagnostic aid,

70




but it 'is alsc vell suited to a military examplé vhere enemy
intentions are being deterrined. _'
The example of enemy attack can be expanded so that the

‘analyst has tc consider the overall enemy intention: attack,

reinforce, defend, delay, or withdraw. These iantentions can
be structured into a hierarchical tree such as that in
Fighre 4.6. Grouped in this mahner, "the example nowv fits
the method prcposed by Gordon and -Skortliffe.

=Iill1 A = Attack
S e
[CRE D = Dela
é{\\ //\\ E = Withdraw. i
B O Cg

VARRN
O B

Pi§ureﬂl.6 Eneay Inteation Hierarchical Tree.

The epemy intentions are divided into two main groups,

. aggressive (attack,reinforce), or regressive (defend, delay,

vithdraw). 1The regressive intentions are further divided
into stationary (defend) and aotionary (delay, .withdraw)
intentions. Each element or subject in the tree has only

one parent, for a strict hierarchy. Since the eneny is
capable of only one major tactic in the zone of considera-
tion, therelis no interesg in the pair {attack,defend), or
other such ccobinations that have no meaning to the acalyst.
iAlso, the analyst nustvhavé the capability to separate
sensor data intoc support for these elesents of the hierarch-
ical tree. The evidence received will only apply to tkese
elements in the tree and their complements.

n
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. Roraulation Of Gordon and Shortliffe's ethod

This hierarchical apprdach proceeds similarly to the
singletcn hypctheses method. All evidence is divided into

" confirming or disconfirming parts, only now there are pairs,

triplets, etc. to which this evidence may pe assigned. As
in Barnett's method, three steps will be used in the combi-
nation c¢f evidence: _ ‘ ‘
a) Combine evidence for each element and each element
complement. y '
i) Combine all confirming evidence. Same as.
Barnett!'s first step.
ii) Ccmbine all disconfirming evidence
b) Combine al. confirming evidence in THETA.
c) Combine disconfirming evidence  with ‘.bonfirming
evidence from Step 2.
 Before proceeding, the hierarchical tree of Figure
4.6 will be split into a tree with the elements of THETA, T,.
and one with the cospleméents of T, Tc, see Figure 4.7 Since
it is the superset of botk trees, (THETA) itself, is not
included in either tree.

T = (AB,CDE,DE,A,B,C,D,E)
L Tec = (notAB,notCDE,notDE,nots,nots,notC,notp,notE)

FEQidence will be combined for IT| + {Tci items = 16, ani
finai belief will be computed after Step 3 for |T| + THETA =
v17 itegs versus 2 exp 5 = 32 items for .the full
Dempster-Snafer method. Thesé reductions will decrease

cceputational times and storage reguiremenfs.
The steps for Gordon and Shortliffe's Method are as
follows. ' o
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Pigure 4.7 'Biérarchical Tree Of Elesments And Complements.

a. Step 1: COpbine Evidence For Elements And For
Cciplements

Use  Barnett's equations to coapute ccmbined
evidence for each element and each compleuent:

Mt (i) = 1-(1-n1(i))(1-u2(i)). i in THETaA (4.4)

Where ('j indicates Mass after Step 1 and (") will indicate
Mass after Step 2. -

N(R) = 1-(1-M1(R)) o (1-H2(A))
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Each element (i) will now have a Mass ﬁ'(i)( acd a Mass
1-M' (i) assigned to TRETA. It is necessary to identify the
Mass that each element's combimation sends to THETA for use

in later steps. ‘Let M'i (THETA) equal the dass assigned to

THETA by element (i) during step 1.
N'A (THETA) = 1-M' (A)
The Masses for (mot i) would then be:

¥'(not A) = 1-(1-M1(not a)) e (1-MZ (not A))
M'notA(THETA) = 1-M'(not 1)

There are now 2¢N Belief functions, N in T and N
in Tc. Step 2 will reduce the N Belief functions in T to
one Belief fugction. ' i

b. Step 2: Combine 211 Confirming Evidence in
’ THETA.

All coniirming evidence in THETA, all of which
is in T, will now be combined. '
The combined evidence for THETA, K" (THETA) is:

M7 (TAETA) = Ke<EFROD H'i (THETA), i in T (4.5)

This is the product of all Mass assigned to THETA 'by all
elements in T. Now compute the combined evideace for all
otrer elemernts in T:

M (i) = KeM*(i)ePROD M'j(1HETA), i in T, (4.6)
j not a superset of i h

The Mass of element (i) in Step 2 is the product of its #ass
witn the Mass assigned to . THETA by ail otaer 'sets in T
except (i), and supersets of (i). Element (i) cannot
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coabine with Mass that it assigned to THETA. In addition,

it carnot receive Mass from a superset's assignment to

THETA. The evidence that was assigned to a superset of (i)

vas not coaclusive enough to assign it to element (i) .
Allowing (i) to combine with M'J(THETA), (j) a superset of
(i), would allos assignment of Mass from which (i) was

earlier restricted. This is not acceptable under
beupster—Shafer. The Mass for element (A) in the example

would be:

% (A) = K-u'(Aion'a(rnBTA)-u'CDE(TEETA)-
M*C(THETA) oM*DE(THETIA) e M *D(THETA) eM'E (THETA)

‘ These célculatiops continue for all elements in
T. The normalization factor, K, is the inve:se of the sua
of all the new Hasses:

K = 1,508 M%(i), i in T or i = THETA ' (4.7

There are now N+1 Belief functions, N in Tc and
one in T. Step 3 will reduce these to ore Belief function.

C. -Step 3: Combine Disconfirming And Confirming
Evidence '

Step 3 will now combine T and Tc to produce one

Belief function. Each element of Tc will combine with T.
Step 3 uses an approximation to 3, the orthogonal sum, which

will be designated as a'. E"(i) @' M"(not i) will kave non.

zero value ~on only (T union THETA),
(ABCDE,AB,CDE.D&,A,B,C.D,E).I Any Belief norusally assigned
by @ to g, g not in T, will instead, by ', be assigned to
the first ancestor of q in T. For'egample:

(not E) @' (CDE) = (ABCD) 3@ ({CDE)
_but (ABCD) & (CDE) = (CD), which is not in T.
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In this case the Mass that would have been assigned to (CD)
vill be assigned to (CDE) the first ancestor in T.
, Ihere are three cases for step 3 comblnatlons.
For each case thete are two elements involved, one froaz Tc,
(not Y), and cre from T, (X). The comtination case is based
on the relaticnship'of (Y) and (X).

1. Case 1: X is a subset of Y:

M (X) = KeM" (X)eM"notY (THETA)
For example:

M" (a) @' M"(not AB), A is a subset of A3
M(A) = KeMM™ (A) eM"notAB (THETA) '

2. Case 2: X & Y = (Null Set), i.e. X & notY = X

a) Case 2(): If (X union ¥) in (T union THETA):
M(X) '= K[M" (X) % H"(X union Y)eM"(not Y) ]

"FOT exampie: .
an @ u“(not DE), C & DE = (Null Set),
CDE ‘in (T union THETA), thererfore:
M(C) = Ke[H"(C) + U" (CDE) *M"(not DE) ]

b) Case 2(b): If (X union Y) not in (T union THETA)
then the Mass of (X) is not changed by the combi-

nation: ‘ . S RN
M(X) = KeM(X) AN

B" (C) @' M"(not E), C & E = Null Set, . . ©
CE not in (T union THETA), thererore: ,
M(C) = KeM" (C) . . . A

3. Case 3: X is a proper super set of ¥ ' o , N

a) Case 3(a): If X & nctY is a set in T:
M(K) = Keid" (X)eM®notY (THETA)
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M" (CDE) @' M"(notC), CDE & ABDE = DE, a set in
(T union THETA) : '
B(CDE) = KeM" (CDE)eMnotC(THETA)

b) Case 3(b): If X & notY is not a set in . T (this
case assigns Mass to the superset, which in-all
cases is X due to the strict hierarchy and unique
parent reguirements). B

M" (notkE) a"u"(cnz),‘ascn & CDE = CD, not in (T
union THETA), but CDE is the first ancestor of CD
B(CDE)l=‘K0H(CDB)

. This process continues with each elément froama Tc cowbining
with each element in T using one of the case rules. K, the
normalizing rfacter is computed after  each itération of (not
Y) ffom TIc. |

Normealization is done by summing the Masses in

(T union THETA) and dividing ali Hasses by that value.

K = 1/SUM M(i), i in (T union THETA) : (4.8)

A shortcoming of the wmethod descrited by Gordon

and Shortlirie is that step 3 aséigns all fass to (T union

THETA) . No Mass remains in the complement sets, thnerefore
it is not possible to compute Evidentiai Intervals,

[Bel(A) ,1-Bel {not A) J. All comparisons between hypotheses )

must pe done cn Belief alone.

The following examfple of this method is proﬁided
for clarification. . The hierarchical tree shown e€arlier in
.Figure 4.4 still applies. '

Masses are assigned as follows:

AB(THETA) = 0.6

41(aB) = 0.4, 4

M(not CLE) = 0.3, M ROtCDE(THETA) = 0.7
4(DE) = 0.6, M DE(THETA) = 0.4
4(2) = 0.4, M A (THETA) = 0.6
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M(C) =0.2, M C(THETA) = 0.8
4(A) = 0.3, - M A(THETA) = 0.7

Therec is only one element in Tc = (not CDE),
in T.

Step 1: ‘
(A) is the only element with multiple Masses:

M'(a) 1-@1(A))e(1-H2(a))

q'(a) 1-(1-0,4)-(1#0.3) = 0.58
M'A (THETA) = 1-0.58 = 0.42

Step 2: Combine all corfirming evidence in T.

M"(THETA) = KeM'ABC(THETA) M'DE(THETA)
eM*A(THETA) oM 'C (THETA) |
= Ko (0:9)e (0.5) e (0.42)e (0.8) = Ke (0.081)

MW (AE) = KeM* (AB) M*A (THETA) eM'DE (THETA) eM*C (THETA)

= Ke (0.1)e (0.42) e (0.5) (0.8) = Ke (0.017)

M"(DE) = KeM' (DE)eN'A (THETA) *M'2B (THETA)
= Ke(0.5)e (0.42)(0.9) = Ke (0.189)

M" () = KOH'(A)OubDE(TBETA) ‘
= Ke(0.58) ¢ (0.5) = KO(O_.29)I

M"(C) = KeMN?! (C) eM'AB(THETA)eM*A(THETA) eM*DE (THETA)

= Re (0.2)e (0.9)® (0.42)e (0.5) = Ke (.038)

'K = 1/The sum of all Masses in (T union THETA)
= 1/&:1"(IHET'A) + 4" (AB) + M®(DE) + HM(A) + M (C)

= 1/(0.151) + (0.017) + (0.189) + (0.29)
= 1/0.685 = 1.46 '

Normalize the masses in T.
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The elemsents in T are:
M"(THETA) = (1.46)e(.151) = .221
M"(AB) = (1.46)¢(.017) = .025
M"(DE) = (1.46)e¢(.189) = . 276

"MU(A) = (1.46)e¢(.29) = .QZ;
M8 (C) = (1.46)e{.038) = «055

Total = 1.0

The elements in 1Tc afe:
M"(not CDE) = V.3 M"notCDE(THETA) = 0.7

Step 3:

1. M*(notCDE) 'a- M" (THETA), THETA a saper set of AB =>
Case 3 = / .
THETA & (not CDE) = THETA & 4B = AB .in (T union
THETA) . . ' .
"M (TBETA) = KeM"(THETA)eM"notCDE(THETA) 1In thi$
case, Mass would normally go to (THETA) and AB, see
Figure 4.2, here (THETA) its combined Mass for this
.iteration, and later when M" (not CDE) a' 4" (AB)
occurs, AB will rece ive its combined Mass. This is

an iterative process versus the normal one step
Denpster-Shafer combiration. B

d (TBETA) = (.221)e (.7) = 0.155(normalization will
cccur later) :

2. H"(not CDE) @' M"(AB), ABECDE = Null Set, (AB union
CDE) in (T union THETA) => Case 2
_H(AB) = [4(AB) + M (ABCDE) et (not CDE) ]
= [.025 + (.221)¢(.3)] = .091

3. #"(not CDE) @' M"(DE), DE subset of CDE => Case 1
¥ (DE) = M"(DE) *Mno tCDE (THETA)
= (.276) (.7) = .193
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4. M(not CDE) ! H"(l); CDEfA = Null Set => Case 2, (A
union CDE) not in (T union THETA)
M(A) = M(d) (but will be normalized)
= ,423

5. M®(pot CDE) a* M"(C), C a subset of CDE => Case 1
M(C) = M"(C)eN"not CDE(THE TA)
= (.055)e(.7) = .039

Compute K, the normalization factor.
K 1/ sum of Masses in (I union THETA)
J155 + 091 ¢ 193 + .423 + .039 = .901

Normalized Masses:
#(THETA) = .155/.901 = .172

M(AB) = .091,.901 = ~ .101
¥ (LE) = .193/.901 = .214
M@A) = .423/.901 = 470
M(C) = .039/.301 = .043
"Total = 1.0

This process of combining elements frcm Tc with those in T
would continue wuntil all eiements have been coambined, ir
this example there was only one. Comparison of Lypotheses
would then be done based on £inal Belief values: .

Bel (AB) = M(AB) + M () = .101 + .470 = .571
Bel (DE) = M(DE) = .214
Zel (d) = .470
Bel(C) = ..043
= Bel (D). = Bel(E) = 0.0

Bel (B)

Tais would show strongest Belief (.571) iL an aggressive
eneny action (A&), which stands for attack or reinforce.
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2. ‘Sgaeﬁxszigasl Time For The Gordon and Shortliffe
Method : '

A p:égtan vas written to assist in the computations
using the Gordon and Shortliffe technigue. A listing of the
program is contained in' Appendix B. This program, like tke
prograe for Barnett's method, does not have the user
friendly enhancenents of the Dempster-shafer decision aid in.
. Appendix A. ' The purpose of the program was ‘to assess the
time calculation advantage of this method and determirne.
nemory requirements. .

?igure 4.8 shows a comparison of the Belief computa-
tions for the three methods discussed so far. Belief coampu-
tations for Gordon and Shortlirffe are the same as the full
Dempster-Shafer, except there are fewer sets for which
ccmputationsAare necessary.: The tinme reduction occurs since
many of the subsets of THETA are not considered. '

' The maximum number. of subsets that can occar under
the unigue parent restriction of the method are: (2ed - 1).
This rumter results from a descending crggtibn path from
THETIA, sepatatinq one element at a time. Kow instead of
having 2 exp N elements for which Belief nust be compated,
'theré;are only (2eN-1). Foi a THETA of 17 elements, instead
of having 2 éxp‘10"= 1024‘e1ements, there wmay only be a
maximum orf 2010 - 1 = 19 elements. This size reduction
aelps explain the computation times in Figure 4.8.

| The computer memory (320K BAM) could store up to a
Frame of Discernment of up to 500 itens using tne Gordon ard
Shaortliffe method versus 1000 for Barnett and 9 for the full.
Dempste:-shafer; | ‘

Gordon and Shortliffe's method is a . practical and
eificient use of TCempster-Shafer 1in a systen where the
following criteria are met: ‘

a) a strict hierarchy of elements exists and eachk element

has only c¢ne parent.
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Pigure 4.8 Comparison Of Belief Computational Times.

b) A1l .evidence can 'be divided into confirming and
discornfiraing categories for each hypothesis. |

The example of the overall eneny intention fits well

within the limits of this method. However, the coaparison

of the hypotheses of the intentions would have to be made on

the result of Belief alone.

1-Bel (not X),

The aqalyst would not know the
remaining about each of the
hypothesis. ' '
Skortcomings of this method are:
a) Loss of ability ‘to compute Evidentiél,Intervals as
discussed earlier. '
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b) Order dependence on coabination. Gordon and
Shortliffe mention that their -approximation to the
Dempster-Shafer combination can be order dependent
when a get,and its parent have only one descendent.

D. MULTIPLE FRAMES OF DISCERNMENT

One final method of reduciug complexity, multiple Frames

of Discernment, will now bhe discussed. This method may use
any of the computational tochrijues ‘discissed so far. .Its
reduction in cqnplexity comes from the separation of the
Frame into Smaller, more manageakile catégoriés with which
the analyst can work. , Computation of Belief for these
smailer Frames should now fail into the reasoaeble area of

- Dempster-Shafer calculation times,

The obvious requirement for this method isa logical
separation nf elements in the original Prame of Discernment.
Once the elements are separated into nultiple Frezes, iteas
from different Frames cannot be comparei for they are now
part of différent -Belief functions. -

~ As an example or this nmethod, consider an expanded
version of the enemy intentions problem. The analyst still
desires to determine the overall intention. If the inten-

" tion is attack, ke wants to know which sector is nmost

likely. He also desires to know if the enemy intends to use

~nuclear weapons, no matter what the tactic. The Frame of

Discernzent ncw has 9 items:
‘1. Attack, Sector 1
2. Attack, Sector 2
3. Attack, Sector 3

4. Eeeinforce ‘
5. . fLeferd : -
6. Delay '

7. Withdraw

~




8. Use Nuclear Weapons

9. Not Use Nuclear Weapon

A hierarchy. ot elements exiété, ‘but as described in
Chapter III with the sector example, unique parents do not
exist. For exaample, let the Frame of Discernmeat be repre-
sented as:. A,B,C,D,B,P,G,H,I where:

= Attack, Sector 1

= Attack, Sector 2

= Attack, Sector 3

= Reinforce

Lefend

= Delay

= Withdraw

= Use Fuclear FKeapons

H I Q W m Y 0w
' "

= Not (Use Yiaclear Weapons

Now (ABC) is a multiple unique“parent for (AB), (BC) and
(aC), put (A) has two parents (AC) and (AB). The same situ-
ation exists for (B) and (C). Therefore, Gordon and
Shorliffe's methcd would not work here.

The full Derpster-Shafer method would create 2_exé 9
subsets, which according tp'Figure 4.1 would reguire about
100 seconds for Belief computations. Some of the pairs of
elements of THETA, as'discussed earlier in theIGordon aLi
Shortliffe method, would not be of irterest to tae aralyst.

.A solution to this dilemma 1s separating the problem into

three Frames of Discernment. Each Frame will use one of tthe

corputational methods discussed. Any of the methods may be

used where applicable in the multiple frames. Ail three are

used bhere to show the diversity of this method.

The overall inteation of.the eneny is still desired, so
use the Gordon and Shortliffe metnod for the Eramé:
(AT,D,E,F,G),I where KAT) is the attack intention and O

~

through G remain as described aktove.
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Use Barnett's method for the question of the enemy's
intent to use nuclear weapons, (H,I), and use the full
Dempster-shafer method to determine sector of attack.
Caution must be exercised when discussing the most likely
sector of attack for that Belief is conditioned on the
Belief that the overall intent is attack. |

The timed calculations would now be:

Full bempsier-shafer: 3 elements in THETA = approximately
1. second : ' -

Gordon and Shortliffe: 5 items in THETA = approximately 1
second ‘ '

Barnett: 2 itmes in THETA = approximately 1 second

This complex and inefficient problen has nov been reduced to
a very manageable calculation for the intelligence analyst
using Dembster-shafef. .
Evideuce received while using this method of multiple

Frames of Discernment, does not need to be separated into
one of the multiple Frames. Cn the contra:y, a .report indi-
cating an-attack wWith nuclear weapons could be used for all
the Frames if applicable. The Belief values of the various
Frames vill nct be conmpared and are pof calculated using the

- Masses of the other Franmes.

Intermediate results car be saved on a disk and recalled
when more relevant data arrives. Therefore, one machire
could keep all three methods running in an aimost simulta-
neous state,

The method of Multiple Frames of Discernment is a viable
alternative to the full Dempster-Shafer method if the Frame
is separable into distinct categories.
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v. §II!AIIQ! DEYELOPBENT ANALYSIS, AN ARRLICATION AREA FOR
DEBPSTEE-SHAPER '

In Chapter II, the battlefiéld intelligence process was
modelied as the Interpretation node in the cohmand and
control cycle. 1In this node, informatiom was processed into
intelligence by the analyst. Chapter III proposed the
Dempster-shafer theory of evidence combtination as an aid for
the analyst in tue Interpretation node. A decision aii ani
three computational techniques for reducing calculation time

- for the Dempster-Shafer theory were presented in Chapter 1IV.

'Enharcement of a specific . job application in tke
Intelligencé node, through the use of the Dempster-Shafer
theory and a decision aid similar to the ome in Chapter IV,

- will now be analyzed. This specific job area, Aramy Ddivision

Situation Development Analyst {DSDA), was chosen due to its

relevance to research conducted by ®AJ L. Baltezore, U.S.
Arm?, in  his thesis at the Naval Postgraduate School

{Ref. 16]. , ,
Baltezore's thesis proposed a Decisioa Support Systen

hardware layout to assist the aralyst in conducting situ-

ation assessment at Jivision level. A Knowledge Bas-:d
System (KBS) was designed to conduct automated aralysis

concerning possible courses cf eneay attack. The use or

Denpster-Shafer in this KBS will now be explored. Fhile not
evaluating any specific technigque, Baltezore proposed that
scme method of inference should be used to aggregate battie-
field ipformatiorc stored in the data base. The Kncw ledge
Pased System of the Division Situation Developuent Analyst
aLnd ‘an dintention assessaent capability using the speed of
Dempster-Shafer with small Frames of Discernment (Quick

Assessrent Cagability), will be used as specific exaarles of
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actual Interpretation node duties that can be enhanced by

Deapster-Shafer.
' The jobs of the DSDA will be briefly discussed as will
the structure of the KBS. The use of a Deampster-Shafer

theory in the Xnovledge Based System as well as a Quick‘

Assessaent Capatility through a decision aid will be
evaluated. ' o -

A. DIVISION SITUATION DEVELOPHENT ABALYSIS

Situvation Analysis at the division level 1s performed
vwithin the All Source Production Section (ASPS) of the All
Source Analysis System (ASAS). see Figure 5.1, [Ref. 16:
P.25)e The ASAS. is an Army project to establish a'system
that maximizes the product;vity of. Intelligence and
Electronic %Warfare (IEN). Through enhanced productivity,
the Interpretation rode will process information imto intel-

ligence more quickly,  speeding up the command and control

cycle.
. The D1v1510n Situation Development Analyst is usually

tne senior intelligence analyst in the All Source production
Section. Using a proad view of the enemy forces, the DSDA
must determine key enemy ob jectives, rank potential.énemy
ccurses of action, and identify key targets, comnmard and
ccntrol nodes, or everts indicating a specific course of

action. The analyst bases his assessment of the enemy.situ4

ation on data passed through bhis work station {Ref. 16: p.
32].

As descrited in Chapter III, this data is inherently
uncertain and incoaplete. Using this data, the analyst must
interpret d4as much as possible about the enemy intent as
quickly as possible.’ Figure 5.2- depiéts,the analyst's
production cycle.  The analyst wotld use the proposed
Knowledge Sased System to assist him in determining the
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Within this structure

g : possible courses of enemy action.
exists the potential use of Dempster-Shafer.

\\‘
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Pigure 5.2 Analyst's Prodaction Cycle.

B. THE KNOWLEDGE BASED SYSTEHN

the Knowledge Based System is
concerning possible
KBS will be’

As previcusly stated,
provide automated analysis

designed to
Analysis of the

R ' courses of enemy action.
i limited to the structure of the system and the internal
- , ' tbeory which ‘correlates the data.
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_ the sector of attack, is desired through
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1. Knowledge Based Systep Structuze

Baltezore's proposed structure for the KBS is shown
in Pigure 5.3. This KBS interacts with the analyst through
the Tnterrogation Module to determine the type' of analysis
desired. For example, is the enemy intertion Attack, (one
of the examprles used in. Chapter IV)?  The Situation
Assessment Processor accesses the Knowledge Base to deter-
mine a rule list associated with the type of analysis

desired. Using all data available, £he KBS then establishéS‘

a probalbility value associated with, the specified course of
action. The Explaration Generator presents the analyst with

' the course of action considered, its probability value, and
a rule audit trail of the deduction process.

2. Knowledge Based Systen Theory

The KBS deduction theory is based on work dome by
Ben-Basset and Freely, [Ref. 17), who proposed the usé ot

classes, features, and relevancy pointérs to conduct situ-
ation assessient.

a. Classes

Classes are used to define battlefield situ-

ations of interest to'the analyst. For example, attack,

reinforce, defend, delay, withdraw are enemy situations that

may be reprecented as classes. If the general class is

known, sucn as attack, then the specific location, such as
ahaleis. This
characteristic is analogous to the Dempster-Shafer frame of
diScernment. '

b. Features

Features are bits of informatiou, such as thae
context of a report, related to the situation ard used to
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determine the class. For instance, -presence of an indepen-

R
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dent tankh battalion (ITB) in the division zone would support A
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second echelon unit normally.uséd as a lead attack element
in a breakthrough atteapt. An
classes is shcwn in Table 5. 4.

example of features and

Class of.Bnemj Intentionﬁ Attack

Features 2 not 2
Massing of mechanized elements 0.8 0.3
Extensive artillery preparation 0.8 0.3
Artillery positions concentrated - 0.8 0.2 i
Corcentratjon of mass toward 2.7 0.3
either or both flanks
Location of enemy troops in 0.8 0.3
forvard assenbly area _
Location o£f suppl and evac- 0.7 0.3
uation installation well fcrwvard :
Increased air reconnaissance 0.8 .
Movement of additional trocps . 0.
toward the front '

Figure 5.4 Feature Probability support For Class.

C. Relevancy Pointers

Relevancy Pointers are used to reduce the exgert

systems search for features‘supporting classes. - Separate
features suck as the number and type of tanks may be used to
determine the presence of the ITB.

bezen identirfied,

If the unit has already
then it is nct necessary to use the rules
w:ich determine the type of unit. Ir this manner relevancy

pcinters speed the assessment process. Relevancy pointers

are siwmilar tc antecedent rules in a rule-basel systenm.
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The significance of features and their support

for the different classes under consideration are aggregated
by sona'theo:y of evidence combipation. Features, as infor-

matio., may support several classes,  "The support of theses
features for specific classes vwould now be combined to
provide an overall indicator of support for the class.

C. PROBLENS WITH THE KNOWLEDGE BASED 3YSTEM APPROACH

The use c¢f a rule base and a priori probabilities for

feature suppcrt of classes can be considered an expert
systea approach to the situation assessment task. The KBS
conducts the actual analysis, the analyst merely gqueries the

systen. The problenm with an expert-type system approach is
similar to that of a Bayesian approach, an endless task of

defining and wpdating the rule base. .

Also, thé rules used to determine the support of ‘a
feature for a class are not well defined. Table 5.4 showed
bypothetical values of feature support tor the attack inten-
tion. The adjectives used,."massingﬁ and "extensive", are
very indistinct. The <rules using them would then require

some way of inferencing this indistinct adjective <from the-

data base (“fuzzf sets"). For example, extensive prepara-
tion would need to be defined as number of artillery rounds
in an hour, cr number of targets engaged in a specific time
period. If the data base suprorted these criteria, then the
rules base could deduce that extensive preparation has
occurred.

Unfortunately, this use of explicit rules and indistinct
features id an expert syétém can lead to' a fglse sense of
security of the battlefield. . The analyst is dependeni on
tte internal design of the system.. He is receiving the
~System's analysis ana may tend to discredit his own inter-
pretation of the situation. Further, it is douttful whether
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any commpander is presently ready to allow his analyst to
adcept a situvation assessment from a black box". The
‘commander has too much risk associated with his decision
based on this analysis to acceét a fully automated analysis.
Cushman, [Ref. 1], suggests that a commaander will not be
‘inclined to accept black box analysis , but instead sugport
gradual automation kased on transparent aids which allow the
apalyst to retain control. ' '

A decision aid, similar to that in Chapter IV, used in a
guick assessment capability, is a complimentary alternative
to the Knowliedge Based System. This aid would act more as a
parallel process with the analyst reflecting his view of the
tattlefield rather than an "expert" view given by the zules
created by the "experts", The analyst is the expert in Eis
division and .cannot rely on rules or features created by
other.

Fuar thermore, the features suggested by Ben-Basset,
[Ref. 17: p.486], were not intended for dogmatic application
in all battlefield situations, but acc given as a guide to
the analyst fcr the analyst to use [Ref. 18: p.  T-11. The
Lempster-Shafer aid would be deéendent on the amnalyst and
his inputs rather than the apalyst depending on the expert
‘systen. skile " the analystuwould use these 1indicators as
guides to assign Mass values, he . would be free - to change
support values based on his knowledge of the situation and
his prior experience. | '

D. THE DEA4PSTER-SEAFER THEORY IN SITUATION DEVELdPHENT
ANALYSIS ‘ ' '

The Dempster-Shafer theory could bte used in two ways in
the DSDA. First, it could be used within the Knowledge
Based Structure proposed by Baltezore. Dempster~Shafer

would be the combination technique used to aggregate the

9u




feature probabilities and prodhce the overall Belief for

each class. The feature probabilities would bhave to be
represented as Masses and adhere to the definition of Mass
presented  in Chapter I11. The use of the Gordon and

Shortliffe @method was discussed in Chapter IV using the
veianple of determine overall eneny intentions. This tech-
nigue would reduce internal Kncwledge Based System inference
time and provide an efficient combination of evidence. ‘
Second, the aid could be used as a quick assessaent
‘device for the analyst. This use wculd be most relevant’
when the analyst can narrow the scope of the class. If the
‘general class was attack and the analyst nas'concerned with
the sector of attack, the Dempster-Shafer aid would be used
to determine Eeliéf for sector possibilities. This scopé oL
dse was reprecsented through examples in Chapters III acd IV
using the sector of attack example. ,
The aid = would serve as a reflection of the analyst's
assessmernt of the battlefield as time progresses and regorts
are received, Using Belier values, the analyst will recog-
nize the nost likely sector of attack acd .advise the
comzander. Using Ignoténce values, the aralyst will reposi-
tion or reorient sensors to investigate lack of knowledge of

activity.

1. Advantages Of The Quick Assessrent Jse

. There are three‘maiu advantages to the quick assess-
mert use over tse knowledye based éyStem: ' '
a) Atsence of Lule Ease
b) Absence or Data Base

C) Scpeed
a. Alsence of Rule 3ase

The analyst is not dependert on a predefined
rule base to deduce support for the sector Iof attack. He
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‘capability.

vill coansider each»repoft and assign Mass values based on
his understanding of the -eneay. This nndetstanding will
come froa battlefield experience and knowledge gained from

experts ﬁhrough instruction.

b. Aalsence Of Data Base

The reports‘received in the juick assessment
capability wili stiill be stored in some. data base for future
use. However, the analyst would not search through prev1ous

data, but interrret each piece as it is received.

C. Sgeed

~ Fer each rule used, the XBS must satisfy the
precedeﬁt {(if pcrtion), to allov use of the antecedent (then
pertiorn). This process requires the continual search of the
data base for conditions that satisfy the rule preéedent.
Hitﬂ a large rule base, such as that needed in the RBS
structure to define all types of eneny act171ty, the cycling-
tize would ke prohibitive for a real time assessment

If time is availablée, the KBS procedure uould Lte
u=ed to determine eremy intent, but if a ,uick assessmernt is
desired, as discussed in Chapter JI, tbhe alternative capa-~
pility of Dempster-Shafer is the better option.

'E. EELEVANCY OF DE!PSTER*SBA?ER "TO SITUATION DEVELOEMENT

ANALYSIS

It should be obvious that tre examples used irn precediry
chapters ave the same as the mission oojectives of the
the
Dempster-suafer theory Ain this specific part ct th=2

h

Situation  Development - Analyst. Tne use o

Inteliigence node will speed the aralytical process,
providing 'the commander fast and accurate intelligerce
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support . This enhancement will reduce command and control
cycle time and gain the benefit of this reduction discussed
in Chapter 1II.
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VI. SURSARY ABD CONCLUSYIONS

A. SUHNARY

This tkesis has descnstrated the use of the
Dempster-shafer theory of evidence in 'a decision aid to
reduce coamand and control cycle time on the battlefield.
The reduced cycle time allows the battlefield coamander to
interdict the enemy force earlier and gain a ‘decisive
advantage. o

The command and control cycle w~as modelled as a network
to investigate data flow and network processes," The
Interpretation node was determined to be the critical node
and also a candidate for enhancement through application of
the Dempster~Shafer theory. The  Deapster-Shafer approach
was preseanted as a plauslble evidence combination techaijue
when uncertain, lncomplete, and ipcorrect evidence must ce
compiced in a battlefield env1ronment

Three aethods for teducxng the c0uputatzonal complexlty,
of the Dempster-Shafer theory, Barnett, Gordon and
Shortli ife, and sultiple Frames of Discernaent, were demon-
strated. These methods ali_ have restrictioans involving
traie-oifs between flexibility or scope and tinme efficiency.
Military examgles that met these restrictions were presented.
to demonstrate their possible use on the battlefield. A
decision aid tased on the Dempster-Shafer theory was created
and discussed. ' The aidl eased tne cowmputationa2l burder of
Dempster-Shafer and allowed comparisons of computatioaal
speed with the three reduction methods. .

A specific application area for the Dempstér-Shafer
theory, Situatiot Assessment in the 'All Source Aralysis
System (ASAS) ° was <Jescribed. The task of situation
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assessaent provided a good example c£ a process in the
Interpretation node that'can'be enhanced by Deapster-Shafer.

B. CONCLUSIONS

Dempster-sShafer vas not freserted is a "cure-all® for
evidence combination. Nor was it preseated as a replacerent
for more probabilisticly rigorous techniques such as,

‘Bayesian Inference. The use of Dempster-Shafer in this

thesis showed a 1logical method of coabining d4ata on the
battlefield tc help the analyst determine enemy intentions.

The flexibility cf Dempster-shafer in hapdling battlefield-

quality evidence should not be lost in discussions over its
shortcomings. Tke intelligence analysc‘land tattlefield -
comaander need to make the best use of 11l data available in
the acst efficient and accurate manner possible.
Dempster~Shafer is a viable technique to ‘assist ir  this
process. S

The use of Deﬁpster-shafer in the Knowledge Based Systen

- proposed by -Baltezore would allow the irtelligence analyst
. tc conduct automated analysis. The analyst would access tte

data base of evidence and receive Belief values for his
hypotheses of enenmy intent;ons; The wuse of the Baraett,
Gerdon and Shortliffe, or multiple Frames of Discernment

‘metnods, wner applicable, would allcw for the nost rapid

ccnputation of Belierf. ,
Automated analysis in this manner would allow access to

'mcre data tuan the human processor could handle. Many

analysts could use the same system over a period of tiume to
analyze ttends' in the enemy activity. Furthermore, the
aralyst now Las a backup systeam to his manual method of
analysis. He ~ c¢an make the mostbuse of the human-machine

leverage aiscussed in Chapter II.
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C. AREAS FOR PURTHER ANALYSIS

This thesis kPkas only begun to investigate the use of
Dempster-Shafer on the battlefield. The determination of
mass values rLased on reéeipt cf evidence has been left to
the aralyst. .The task of determining these values for
Dempster-Shafer, or any combination method, is formidable.
Chapter Vv discussed the problenm 6f a rule base with explic-
itly assigned probarilities. Onfortunately there does rot
exist a data base from which probabilities of enemy inten-
tions based on tactics can be extracted. '

samet, [Bef. 19), bas said that each sensor report nas a
reliability and accuracy associated with it. These features
cculd weight the Jdass values assigned by the expert or
analyst. The integration ofi these reliability and accuracy
values into the Denpster-Sharfer mass values has npot Leen
discussed.

The Knowledge Bawsed System hardware of a Decision

‘Support System, suchk as that'propOSed Ly Baltezore, must be

designed to accept an évxdence combipation technique{
These are tut a few of the areas that are left for
further exploration of Deapster-Shafer on the battlefield.
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APRENDIX A
THE DENPSTER-SHAFER DECISION AXID’

This appendix contains the listing of the code created
for the decision aid and an explanation of the procedures.

. In general, the aid is a continuous loop that procpts the

user for input from each knowledge source report received.
It requests set zdentlflcatlon and mass ass;gned to that
particular set. The aid then combines the new input with
the current mass values using Dempster~$hafer. New Belieis
are computed ‘only if directed by the user and taea d;sp;ayed
to reveal the currert status of knouledge about the Frame.

The program is written in Turbo PASCAL for an IBd
compatible computer. 2 pain user routine and fourteen
procedureé, called throughout the routine, make up the
proyram. See figqure A,i for the program's Flow Diagram.

As stateq; the program is composed of the following

procedures.

A. BAIN PROGEHAA

The mair program, DS (Dempster-Shafer), is an executive-
like program that reacts to the wuser's dJdesires. It

‘initially sets up . the PASCAL Record Structure that wili

ccntain those items of information necessary for use in the
Frogram by Dempster-Shafer computations. These’itemsjare:

1. Mass (Current Mass). 4

2. Ierpmass (Temporary storage for Coﬁbined‘ﬂass).

3. ﬂewmass {User HMass input from Knowledge bource).

4. Belief (Current Belief). -

5. ID (3Set Descrxbér).

6. Value (Number of Items in Set ID).
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Intttalfze

Set LD

Generate
Sets

Sort Sets Be11gf

Enter Mass

Combine

s Belfef

Figure A.1 Flow Diagram for the Decision aid Progrhn.

102




An array is then created to allow for the maximunm nqnber
~of items in the Frame of Discernment which the computer can
store. ,

Next, the main program begins a calling seguence of the
procedures. Withir one of these procedures, nahy other
procedures may be called to accomplish the task at hand.
After the aid is ready for user input, the main program asks
if the user desires to continue. If the answer is yes,‘then
" the ptogrém cycles ragain. 1f no, .then the user is allouéd
to request 'a final display of the output (Belief,
Piausibility, and Mass) and the program terminates. '

The first piocedu:e called by the program is Copycite.

E. PROCEDURE COPYRITE

Procedure Copyrite is just a “cover sheet" for the aid
identifying the theorj used in the aid, and the creator.
The next call is to procedure Initialize.

-Co PROCEDURE INITIALIZE

Procedure Initialize requests the number of items in the
user's Frame cf Discernment, It ther determines the letter
of the alphabet correspornding to the end of the size of the
Frage,i.e., 5 = E, 7 = G. The letters of the alphabet will
then be used as identifiers for each separate set.: This use
of letters allows for set operations within PASCAL.

The number of sets that can be made from the Frawme is
then computed, where size = 2 exp W, N = nuanber of iteas in
the franme. _ '

Procedure Set Up is called next.
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D. PROCEDURE SET OF

This procedure sets up the first two subsets of the
Frame of Discernment. Those <sets are the entire Frare,
letters ®A" through the end lettér, and the null set, letter
n2t, used only fcr easy identification. '

Procedure Levels is next.

-

E. PROCEDURE LEVELS

1

Procedure Levels is used to compute the number of coubi-
nations of set size N 'split into subsets of size N\through
1. In other words, N items N at a time, ¥ iteas N-1 at a
time, through ﬁ items 1 at a time.

The results of this procedure are stored'in‘an array and

-are used to help reduce "doéioop"- cycle time. In a loop

where it is necessary to check subsets of the current set,
as when Belief is computed, the size of the curreant set is
determined oy its Value (number of items in set). Then only
the sets with value less than .this are checked for subset
possibility.: This action elizinates unnecessary checks of
pcrent sets that cannot be subsets of the current set.

The rext call is to Procedure Generate.

F. PROCEDURE GENERATE

Procelure Generate is a complex recursive routine to
create all subsets of the Frame of Discermment including tke
null set. . When the Frame is large, it is the nmost tine
ccasuning prccedure in' the prdgram. Figure A.2 shows a fplot
of some procedure execution times versus number of items ia
the Frame of Ciscernment.. '

‘ Starting with the set of the entire Prame, Procedure
Gencsrate creates new sets by removing one character at a
tine from the current set. All subsets of the new set are

then createa by a recursive call to generate.
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Figure A.2
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'

The coméutation time is higb since identical sets are
created in the recursive calls. Duplicate sets must bLe

checked for apd eliminated. As the fra.e size grows, this

time factor is compouhded, See Pigure A.2.
The next grocedure called is Quicrsort.

6. PROCEDURE QUICKSORT

Quicksort, like Generate, is a rccursive routine that
sorts the sets according to the humber of iteﬁs in the set
IP. This resulcing sorted array of records allows for a
more efficient check for subsets. L subset can only cccur
at a lowar level of Value (number of itexs in set ID) than
its superset. Theréfore, loops computing Belief or
Plausikility peed only check lover 1eveis of sets and not
the entire tree of sets.

Quicksort is almost unaffected by the number of items in .

the Frame of Liscernment due to its efficiency, see Figure
A.2. | ' |

If the -user desires to continue with the ‘progras,
Procedure Entermass is then called. ‘ '

H. PROCEDURE ENTEEMASS

Entermass is tke main user input procedure that assigns
new rass values to those ' sets identified by the current

~knowledge source.
The first time calleg, Ectermass allows the user to

request a Jisplay of all the various sets that can occur.

The user may then print this' list for future reference.

The aird tnen prompts the user for the identity oif the
set and the mass to be assigned to that set. Set identities
are checked tc insure they are in the domain of the Frame of
Discernment. dass is checked for . containment in the set
[0, 11.
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Total mass entered during the current session is checked
to make sure it does'.not exceed 1.0. Set ID are also
checked to see if mass has -already been assigned'to the set
during this session. If so, the user can change tye mass
value, or leave it at the current value.

When the total mass entered egquals 1.0, tpe nevw masses
are combined with the old mass value.

This combination is done using Procedure Combine.

I. PROCEDURE CONBINE

This procedure combines masses using Dempster's Rule of.
Combination and then normalizes the new masses. . Current
masses(masses at the end of the previous session) are tken
replaced with the new combined mass values. _

Time of wexecution of. the procedure is reduced by
liniting the coabination to only those sets that have a mass
from tne previous ses§ion, and those sets that were assigned
masses during tke current session. This efficient operation
keeps exequticn time tc a minimum, see Figure A.2.

The intersection-set of sets with masses are then iden-
tified and assidned .the new hasses. After all orthogonal
sums (See Chaptet'III) are computed, new masses are assigned‘
back to tne Record for each set. . .

If there is mass assigned to the rull set, by default
the wass assigned to the other sets does rot total 1.0, then
the masses are normalized.

The Normalizing Factor is displayed to the user. New
masses are calcuiated ana assigned to the sets. The user is
then asked if computation of Beliefs is desirei.

J. PROCEDURE BELIEF -

The counputation of Belief is a very time consuming
pFrocess since tihe mass for all subsets of each set must be
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sunpsed. The execution time for Procedure Belief is shown in
' Figure A.2. '

Both value (part of the Record) and Levels (created Ly a
procedure) are used to reduce the scarch time for subsets to
cnly those sets with the possibility of Leing a subset.
Only those sets at lower levels of the Record structure may
be subsets. - After Belief values are computed, they are
, assigned back to the Record for each set.

- The Belief, blausibility, and Mass for each set are then
displayed to the user.

K. PROCEDURE DISPLAY

Display is a procedure that writes ail sets,fron higher
order to lower, to the screen with their respective Eelief,
Plausibility, and Mdass. However, only those sets with
Pelief values greater than zero are displaved. The screen
will display  only 12 sets at a time to allow easy viewing
and, if desired, printing by the user. ‘ 

Lfter this step, the masses from the next know ledge
source are then entered and the process continues.

L. ADDITIONAL EROCEDURES

There are several procedures used throughout the prograa
.not mentioned above that are described here.

‘1. Procedure Display2

Display2 is the :procedure used in the first itera-
tion of Entermass that, if requested by the user, disglays

all the sets(cﬁly set IDs).
2. Procedure Checkanswer .

Checkarswer is a procedure used to insure the answer
tc Yes or No gquestions is in the correct fornm.
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3. zggggdnrg Maxinteger

daxinteger is used in the Conmbine Procedure to limit
the search for ', the set cortaining the result ' of the inter-
section of two masses., Since the sets are sorted, it is
cnly necessary to look in - the lowest level (or highest value
in a high to low sorted array) of the two Set IDs combinel.

4. Procedure Factcrial

This procedure is wused in Procedure Levels ana
conputes the factorial of a number. This result is used in
the computation of combinations for the values in the Levels

array.
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Listing of the PASCAL program used in the Decision Aid.

'ptogram ds;

const :
tempsize = 512;

type A

: - node = record {stores data relative to d-s}
mass : real;
tempmass : real;
newmass : real;
‘belief : real:
plausible : real;
1d : set of char;
value: integer;
end: {node}

branch = array(l..tempsize] of node;
var -

‘integer;
k,enditem : char;
tree : branch;
goodanswer, continue : boolean;
ch44,contanswer, beliefanswer : char;
“levelend : array(l..29] of integer;
tempmasscntr : array[l..25) of integer;
oldmasscntr : array[l..tempsize] of integer;

{include the following procedures in this main program)}

{S1 belief.pas}

{$i factorial.pas]

{Si levels.pas]

{Si copyrite.pas}

{$i generate.pas]

{$i setup.pas}

{Si checkanswer.pas}

{$i initialize.pas} ‘
{$1 guicksort.pas} ' .
$i sort.pas] '
i1 display.pas]

i display2.pas}

1 maxinteger.pas}

i combine.pas}
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{$i entermass.pas]

begin {main}’

itemnumber:=g; [keeps track of the number of evidence
combined} ,

{begin calling sequence}
copyrite;

initialize;

setup;

levels(numitems):

ch44:= ‘a‘;

writeln;

textcolor(14); :
writeln(' Generating SubSEtsS .eeeecccesead');
generate(tree([2],ch44);

writeln; ’
writeln('’ Sorting SubSets ..ccescceesansse’);

textcolor(1l5):;

one:= 1l;

quicksort(one,size);

for 11:= 1 to size do {Lnltlallze set values}
begin
treeli1i]. bellef~- J.0;
tree{ii].mass:= G.0;
end; { for}

clrscr;

writeln;
wrlte]n(l*****t*f******i********r****t*******************i**

**i*****t*');

writeln('Your Frame of Dlscernment has been expanded into
all Subsets');:

writeln{'and the Null Set'):

writeln('As tach Item Of Evidence Is Received, You Will Be
Prompted ');

writeln('For The Mass DlStflbuthn )
wrlte]n('***************************************************

TrkkrakIAA ),
’

writeln;

{check for users ‘desire to continue)
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continue:= true;
while continue do
begin

repeat {until goodanswer}
writeln;
writeln('====> Do You Wish To Cont1nue? Y or N');
textcolor(l2);
writeln(' A No Answer Will Exit Program');
textcolor(l5); : ’
read (kbd,contanswer);
writeln (contanswer);

checkanswer (contanswer,goodanswer); {checks to see
if in Y,y,N,n}

until goodanswer:;

if contanswer = 'n' then
continue:= false;

if contlnue then
entermass(xtemnumber numitems);
wrlteln-, .

repeat f{until goodauswerx
writeln;
‘writeln; ‘ '
writeln ('====> Do You Wish To Display Belief? Y or

read {(kbd,beliefanswer);
writeln (beliefanswar);
checkanswer (beliefanswer,goodanswer);
until gcodanswer;
1f beliefanswer = 'y' then
begin ' :
‘belief; ' . .
display: ’
end; {1f]}
end; {while}

end.{mainj

procedure setup; f{creates initial 2 sets, null and
theta(entir frame)}

begin
treellj.1d 3= ['2'];: {null set}
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'treetll.value-- ﬂ. .
~ree{2].id := [‘a ..endltem], {entire frame}
tree[2).value:= numitems; {number of elements in set id}

cntr:= 2;

K\ LR

-

Py

end; { setup}
' procedure initialize; {user procedure to determine size of

frame}

.
O NS
tete’s

var , :

1,j ¢ integer;

ok : boolean;

begin

for j:= 1 to 5 do
writeln;

~rY ¥ v e
LN A T

AR

repeat {until ok}

o

> writeln('====> Enter Number of Items in Frame of
wo Discernment'); :

N {s1-} readln (numitems) ($I1+};

e ok:= (IOresult = 0);

b if not OK then '

P} begin

textcolor(l12);

writeln('*** Improper answer, retry');
textcolor{l5);

end; {if}.

3 ) 2
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until ok:

writeln (numitems);
enditem:= chr(numitems + ord('a ) l),

writeln;
writeln{'*** pPrame of Discernment has ',numitems 3:3,
and will be listed');
writeln; .
writeln('as Character 3«<t a tnrough ',enditem );
size:= 2;

for i:= 1 to numitems-1l'do {computes 2**n}

size:= size * 2; .

iltens

wnd; {initialize} ,
procedure copyrite; {cover display}

var

11 :'lnteqer;
dummy : char;
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begin .
textcolor(15);
textbackground(l);

clrser;

for ll:=1 to 5 do

writeln; :

writeln(' YOU ARE ABOUT TO USE A DECISION AID
CREATED TO COMBINE ')

writeln; - ‘

writeln(’ . EVIDENCE USING THE DEMPSTER~SHAFER
THEORY OF EVIDENCE ')

. writeln; ‘ o

writeln(' ' COMBINATION
P‘;

writeln;

writeln; :

textcolor(l12);

writeln(' CAUTION!I!: Only those willing to venture
beyond'); ‘ : o

writeln(* : , Bayesian Inference should:
continue'};

textcolor(14);

writeln;

writeln;

writeln{(' \Written by CPT William H. Cleckner, US Army
- as a prototype'):; , '

writeln(' decision-aid for combining intelligence and
determining an.');

writeln(' enemy commanders main attack sector.'):

for 1l:= 1 to 5 do

‘ writeln;

textcolor(l5);

writeln(' Push any key to continue');

read (kbd,dummy);

relrscr;

end; .
procedure generateivar rl : node; var beginitem : char);

{conducts a recursive call to generate subsets])
var .
1,j : integer;
chl,chll : char;
newset : boolean;
‘begin

for chl:= beginitem to enditem do {remove a character
at a time until nullset reached}
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begin
if chl in rl.id then
- begin
tree[cntr + 1}.id:= rl.id - [chl];
if treelcntr + 1].id <> [] then
begin
‘entr:= cntr + 1;
newset:= true;

for' j := 1 to cntr - 1 do {check for repeat
character sets}
' ' begin
if (tree[;].zd = tree[cntr] id) and newset
then
begin
newset:= false; |
cntr:= cntr - 1;
end; {1£]}
end; { for}

if (newset) then {1f set not created before,
generate its subsets} ‘
begin ‘
treelcntr].value:= rl.value - 1;
chll:= succ(chl); :

. generate(tree[cntrJ, chll);.

end {if}

end; {if}
end; {1£}
end; { for}
end; {generate}
procedure quicksort(var first : integer; var last :
integer);

var ‘
1, j., dividingline : 1nteder;
temporary : node; ‘

begin :
‘ a:3= first;

j:= last; : C
diviaingline:= treel(first + last) div 2].value;
repeat f , : ‘

while treelil.value > dividingline do

i:= i+l; :
while treelj].value < dividingline do
if i <= 3 then
begin
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temporary:= treeli]:
" treeli]:= treel(j]:

tree([j]l:= temporary:

1:= i+1;

je= j-1:

end;

until 1 > j;

if first < j then quicksort(first, j):
if i < last then quicksort(i, last);

end;[quicksort}

procedure entermass(var item ¢ integer; var numitems
integer);

{enter new evidence temporary sets}

label
1o, 29;

var '
goodentry, goodanswer, ok : boolean;
displayanswer,ch3,ch33,changeanswer : char;
check, tmass : real; .

qq,nn,kk, jj,mm,i : integer;

teupset : set of char;

tempid : string(291];

begin

item:= item . + 1;

clrscr; B
writeln ('*** You are entering the mass distribution for
item number:'): o

writeln;

Cwriteln ('-=> ',1tem :4);

writeln;

if i1tem = 1 then (ask user if needs display of

sets} ‘
begin
repeat {until goodanswer}
writeln ('====> Do you need a display or all tne
sets? Y or N'); ' -
writeln; : _ e
writeln (' This Feature Will Only Appear

Once so Use');
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writeln (' PrtSc key for hard copy of

sets ');
writeln;
read (kbd,displayanswer);
writeln (displayanswer);

checkanswer (displayanswer,goodanswer); {insure

YyNn}
- until goodanswer;
clrscr; ' ‘
if (displayanswer = 'y') or (displayanswer =
'Y') then ' ‘
: begin o o
display2; {display if requested}
end; {if} '

end; {if]

for nn:= 1 to size-1 do
begin :
tree{nn)].tempmass:= 3.0;
tree(nn].newmass:= @.9;
end; { for} '

repeat
goodentry:= true;
check:= 9.0;
count:= 1:

while check < $.9999999 do {end while 1s label 24}
begin .
tmass:= J.3d;

repeat {until goodanswer label 10}
tempset:= [];
writeln;

repeat {until ok} ,
writeln ('====> Enter Set ID.: '):
{s1-} readln (tempid) ($1+};"
ok:= (IOresult = {J); :

if not OK then
begin
textcolor(l2);
writeln('*** Improper answer, retry');
textcolor(15); T
end; [if]
until ok:

writeln (tempid);
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for ii:=1 to length(tempid) do {check for
set in frame} :
begin
if (tempid{ii] in ['a ..end1tem]) and
not (tempid{ii] = ' ') then
goodanswer:= true
else
begin
goodanswer:= false;
textcolor(l2);
writeln;
_ writeln ('*** Set ID not in Frame,
Retry');
textcolor(15);
goto 149;
end; {1f}

tempset:= tempset + [tempid[iil];
{create tempset of id} )
end; { for}

{check for attempt to enter mass for set already accessed}

for gq:= 1 to size-l do
hegin .
if (tempset = treelqql.1d) and
(tree(qq].tempmass>2.0e+J3) then

begin
repeat {until goodanswer}
writeln;
textcolor(12); -
: writeln('’ You Have Already Entered A
Mass For Set ', tempid,' = ',tree{qql.tempmass :6:3);

: writeln(' Do You Wish To Change This
Input? Y or N'): o :
‘textcolor(15);
read(kbd, changeanswer):
checkanswer (changeanswer,goodanswer);
until goodanswer;
: if (changeanswer = 'y') or
{changeanswer = 'Y') then
‘ ‘ pegin
check:=check = treefqq]. tENPMdSS'
goto 19;,
end '
else
goto 29;

.end; {if}
end; { for}

118

bbbt T S VY R T T N




19: until goodanswer;

‘repeat f{until ok}

writeln;
writeln' ('====> Enter (Mass for Set'):.

{$1-] readln (tmass) {$I+};

ok:= (IOresult = @);
1f not OK then
* begin
textcolor(12):
writeln('*** Improper answer, retry');
textcolor(l5):
end; {if}

until ok:
wrlteln‘(tmass :8:5);

for jj:= 1 to cntr-1 do {assign new masses to
tree}
begin :
if tree(jjl. ld = tempset then
begin '
tree[jj].tempmass:= tmass;
tempmasscntrlcount]:= jj;:
end; {1f}
end; { for}
writeln;
count:= count + I-

Check:= check + tmass;
textcolor(l4); '
* write ('Total iass = ',check :8:5);
. write (' (*** Reminder: Total Mass Must i~ = 1.9
to exit loop ***)'}). : :
textcolor(15);
writeln;

20 : end; {while}

if {check <= . 9999999) or (check >= 1.0039001) then

begin

goodentry:= false; -

writeln;

‘textcolor(12);

writeln ('*** yarning, Mass Totd\ = ',check :4:2,°
Is Greater Than' 1.9 *rk ), '
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writeln;

writeln ('*** You Must Input Al)l Masses For This
Item Of Evidence ***');

textcolor(1l5);

writeln;

VTS AR

f

for i:= 1 to count do
tree[tempmasscntr[i]].tempmass:= 0.0;

end; {if} 2
dntil goodentry} 'Q
.-!

&

if item > 1 then
combine; {return newmasses in tree}

e ag

if item = 1 then {do not combine}
begin - '
oldcount:= count;
for kk:= 1 to count do '
begin - '
treeLtempmasscntr[kk]] mass:=
tree[ tempmasscntr{kk]].tempmass; {reassign newmasses to

AR,

ot wet oy ut v VY gg S0P

tree}
oldmasscntrlkk]:= tenpnasscntr[kk],
end; { for}
end,le}, ' ‘ ~ ' . 2

end; {entermass|
procedure combine;

{combines evidence using dempster-shafer}

var
h,hn,j,3j,i,ii,k,kk,Jj2,high, tempcount : integer;
normalrfactor, totalmass, tempmass 3 real;
intersection : set of char:
tempoldmasscntr : arrayLl..temp51ze] of 1nteqer-

Bl A Jala R FJURN o SV LSBT P

begin

-
.

v

textcolor({ld);
writeln(' Lomblnxng Masses ............'):
textcolor(15); . .

t2mpmass:= J.4; g
totalmass:= J.9Y; : - .
tempcount:= (J; ' N
{ check for 'intersection and increment newmass by mass "
product]} E
-
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for j:= 1 to oldcount do

begin
for i:= 1 to count do
begin ’ A
intersection:= tree[oldmasscnetr[jl].id * .

tree[tempmasscntr{ill.id;
1f intersection <> [] then
begin

maxinteger(tempmasscntr[i],oldmasscntr{j],high);
for jj:= levelend[tree[hlgh] value+1]+1 to
levelend(treelhigh]. value] do-
begin
if tree(jj]. id = intersection then
begin
tree{jj].newmass:= tree[jjl.newmass +
tree[oldmasscntt[)]].mass * tree[tempmasscntr[i]].tempmass;
tempcount:= tempcount + 1;
tempoldmasscntr[tempcount]:= jj;
for ii:= 1 to tempcount-l do
if tempoldmasscntr[ii] = jj then
tempcount:= tempcount-l;

end;: {if)
end: { for}
end; {if}
end:; [ for) -
end: { for} ' . ‘

oldcount:= tempcount;
for kk:= 1 to oldcount do
oldmasscntrlkk]:= tempoldmasscntr[kk],

for j2:= 1 to size-1 do
tree(j2].mass := 0.9;

for n:= 1 to oldcount do [assxgn combined masses back to
tree! :

begin

totalmass:= totalmass + tree[oldmasscntr[h]] newmass;

tree{oldmasscntr{h]].mass: ,
tree[oldmassentr{hl].newmass:

end; [ for}

{if mass assigned to nullset (by default that totalmass
assigned to } ‘

{sers <> 1.0) then normalize} -

if totalmass < 1.J then

vegin v
normal factor:= totalmass;
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textcolor(14); ‘
writeln('Normalizing Factor = ', normalfactor :6:3);
. textcolor(15):

for k:= 1 to oldcount do : .
tree{oldmasscntrfk]]. mass:=
tree{oldmasscntr{k]].mass/normalfactor;
end{if}

else , . . : . :
writeln('’ Normalizing Factor = ',totalmass :6:3);

end; {combine} . '
procedure belief; {sums masses of all subsets and assigns to
parent} ' '

var
i,i2,n,n2,notvalue : integer;
d : char; :
" notset : set of char;

begln
textcolor(l4);:

-writeln(' Computing BeliefS.eveessocacs'):

textcolor(15);

for n:= 1 to 51ze-l do
begin
tree[(n].belief:= tree{n].mass;
for n2:= ((levelend[tree[n].valuel])+l) to size-1l do
{only checks its mass(n) and those sets with}
begin
if treefin2].id <= treef{n)].id then ' :
tree[n] belief:= tree(n].belief + tree[n2].mass;
{if subset then increment bellef}
‘ end: { for}
end,{for}

-

for 1:= 2 to size-1 do
begin
notset:= ['a'..enditem] - tree{1].1d;
notvalue:= abs(tree[i].value - numitems);

for i2:= (levelend[notvalue + 1] + l) to
levelend{notvalue] do
begin -
1f tree(12].id = notset then
treeli]. plau51ble-— 1 - treel[i2].belief;
end; { for} :
end; { for}
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end; {belief}
procedure display: {displays set ids, beliefs, masses}

var
jj : integer;
ch,dummy : char;

begin
clrscr;
for jj:= 1 to size-1 do
"~ if tree[jjl.belief > 9.0 then
begin
‘textcolor(13);
weiteln(® ———— ) - ———— -—— ——
textcolor(l5);
write (' Set ID: '):
textcolor(l4); .
for ch:= 'a' to enditem do
begin
., if ch in tree(jjl.id then
write(ch);
end: [ for}
textcolor(1l5);
write (' Belief =

- '):textcolor(l14);write(tree[jjl.belief :6:3);

textcolor(15);

write (' Plausibility =
‘)itextcolor(l4);write(tree[jj].plausible :6:3);

textcolor(l5);

write (' Mass = .
');textcolor(l4);write(tree(jjl.mass :6:3);

cextcolor(ls).

writeln;

1f (jj mod 12) = 2 then f{allows scrolling to stop
temporarily]
begin
» textbackground(l4),
.write('Push Any Key to Continue Dlsplay )
textbackground(1):
writeln; :
read(kbd, dummy);
end; {if}
end: { for}
end; {display} ' -
procedure display2; {displays only set :ids to choose from 1in
procedure entermass} '

var
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jj : integer;
~ch : char;

begin
clrscr;
for jj:= 1 to size=l1l do
begin '
write (' Set ID: ‘');
for ch:= 'a' to enditem do
begin
if ch in tree[jjl.id then
write(ch);
end; { for}
writeln; _ ,
end; { for}
end; {display2]}

procedure levels(var itm : integer);

var
tlevel : array(l..23] of integer;
i : integer;
numerator : real;

begin
levelend{itm + 1]J:= 0;
numerator:= factorial(itm);
for i:= 1 to itm do
tlevel{i]:= trunc(numerator / ( factorxai(l-l) *
facrtorial (itm=-i+1) )}

for 1:=1 to itm do
levelend{i1tm=-1+1]:= tlevel[i] + levelend(itm=-i+2];
end; [ Yevelend]} ‘

procedure checkanswer(var answer : char; var test :
boolean);

{checks to see if answer in set Y y N n returns talse if
not } .

begin i .

1f answer in ['y','Y','n','N’'] then’
test:= true o

else : -
begin
test:= false; :
writeln('*** Answer was not in acceptable form, retry')
end; {elsel v
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end: {checkanswer}

var

procedure maxinteger(var a : integer; var b : integer;
largest : integer);

{determines the maximum of two integers (used in procedure
combine) } '

begin .
if a > b then ,
largest:= a ' ’ ‘ |

else ,
largest:= b;

end; {mininteger]} -
function factorial (n : integer) : real;

var
fact,j : real;
i : integer;
begin

fact:= 1;

for i:= 1 to n do . o
fact:= fact * 1;

factorial:= fact:

end;
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APPENDIX B
THE METBODS OF BARNETT AND GORDON AND SHORTLIFFE

This appendix contains the listing of the code created for the
methods of Barnett and Gordon and Shortliffe described in Chapter
IV. Note that Step 2 of Gordon and Shortliife is not complete.

It was written to comput: Relief conputation times.
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Listing of the PASCAL program'forraarnett's method.

'program dsbarnett;

c&nst
tempsize = 190;

type
node = record
id ' : set of char;

p : real;
Cc : real;
r ¢ real;
d : real;

ptemp : real;

ctemp : real;

bel : real; ' ;
belcomp : real; '
end; {node}

branch = array[l..tempsize] of node;

var , :
position,ltem, numitems, size, i, j, k : 1nteger;
dprod, cprod, normfac, s, sprime, ratio, -bigc, bigd
real; .

tree : branca;

tempid : string(20];

finished, done : boolean;

donans, finans,n,y,enditem, dummy, ¢h : char;

begin

writeln('enter number of items in frame'):
readln{numitems); ‘ '
enditem:= chr(numitems + ord{('a‘')-l);
S$1zZe:= numltems;

for i:= 1 to size do
begin :
with tree[1] do
begin ‘
id:= [cnr(i + ord('a')-1)1;

2= U.0;
cs= 9.9; -
‘r:= ¥.0;
d:= B‘ag'
ptemp:= 93.0;
ctemp:= J.9;
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' end; {with}
v end; { for]}

done:= false-
repeat[unt11 done}

LR S

..f'

finished:= false; :
repeat{unti) finished} o .
writeln('enter set id');
readln(tempid);
for j:= 1 to size do
begin
if [tempid] = tree[j].id then
position:= j;
end; { for}

WYy

PRSI
LI
st Y

writeln('enter mass that supports: ',tempid);
readln(tree[posltion] ptemp);

writeln('enter mass that supports comp11ment of: ',tempid);
readln(tree[position].ctemp);

writeln;

wfiteln('Step One and Step TWO:eeososnos'):

w1th tree[position] do

beyin

s:= 1=-((l-ptemp) * (l-p)).

sprime:=1-((l-ctemp) * (l=c));

p:=(s*(l-sprime))/{(l-s*sprime);
:=(sprime*(1-s))/(l-s*sprime);

r:=1-p-c;

d:=c+r;

writeln('p,c,r,d',p,c,x, d),

end; {with]}
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writeln('finished? y or n'):

5
e readln(flnans),

i? 1f (finans = 'y') or (finans = 'Y') then
— finished:= true;

- until finished;

i writeln-

- writelr; -

s writeln('Step Three.................');

N p

::::’, bigc:=1.0;

oy bigd:= 1.4d;

}}:. ratio:=¢.93;

r=

e
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for k:= 1 to size do

begin

with tree(k] do
begin
rat1o:="ratio + p/d-
bigd:= bigd * d;
bigc:= bigc * c;
end; {with}

end; { for}

ratios= 1 + ratio;
normfac:= L/((blgd » ratxo)—bxgc)

writeln('ratio, normfac, blgd, bige,
‘,ratio,normfac,bigd,bigc):
for i:= 1 to size do
begin C ,
cprod:= 1.4;
dprod:’-'l.ﬂ: :
for j:=1 to size do
if j <> i then
begin
cprod:= cprod * treeljl.c;
dprod:= dprod * tree(j].d ;
end; {if]} .
with treeli] do
begin :
bel:= nornfac*((p*dprod) + (r*Cprod)), '
belcomp:t= normfac * ( bigd * (ratio -'1 = (p/d)) +
c*dprod - bigc); ;
. end; {with}
end;{forl
readln(dumnmy);
clrscr: ,
for j:= 1 to s.zé do
begin
textgolor(l3)

textcolor(15):
write (' Set ID: ');
textcolor(14); .
for ch:= 'a' to enditem do .
begin
1f ch in treo[;] id :hen
write{ch);
end; { for}
textcolor(15);
write (' . Belief = -
');textcolor(l4);write(treel[j]. bel 26:3);
textuolor(lS)

-
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write (' Plausibility = ');textcolor(14);write(l-
tree[j].belcomp :6:3);
wrlteln-

if (3 mod 12) = G then {allows scrolling to stop
temporarily} '

begin
textbackground(14);
write('Push Any Key to Continue Display'):
‘textbackground(1l):;
writeln;
read(kbd, dummy);
end; {if}

end; [for}

LR B R R IV E A AN B

A ‘writeln('done-end program, y or n?');

| readln(dondns),

~ 1f (donans = 'y') or (donans s.'Y ) then
done:= true;

until done;

,  end.{main]}

l Listing of the PASCAL program for Gordon and Shortliffe
) method. .

program dsshort;

i const
tempsize = 190;

type .
node = record
id : set of chnar;
p : real;
c : real;
rp ¢ real;
rc : real;
ptemp : real;
ctemp : real;
bel : real;
end; {node}

branch ='arr6y[1..temp51ze]‘of node;

var
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‘tempset : set of char;

position,item, numitems, size, i, j,

dprod, cprod, normfac, s, sprime, ratio, bigc,
real:

tree : branch;

setid, tempid : string{20];

finished, done : boolean:

donans, finans,n,y,enditem, dummy, ch : char;

k : integer;
bigd

begin

writeln('enter number of items in theta'):
readin{numitems);
enditem:= chr{numitems + ord{‘'a')-1l);

- writeln(’enter number of sets to include thata' }:

readln(sxze),

for i:= 1 to size do

beyin , '

with treeli] do
begin

HEd U.lﬂ;
c:= B8.0;
rp:= 4.9
rc:= 3.0;
ptemp:= Y.
ctemp:= ¢.d
" bel:= @.3;

end; {with}

end; { for}

.. e

treeflj 1d:= [‘a‘..enditem]);
for 1:= 2 to size do
began ‘
tempset:=[];
writeln('enter set id for set number ',i);
readln(setld)
for j:= 1 to ‘ength(setld) do
tempset:= tempset + [setxd[)}].

with treef{il} do
- begin
id:= tempset;
end; {with}
end; { for}

done:= false;
repeat{until donel
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finished:= falge;
repeat{until finished})
writeln('‘'enter set id');
readln(tempid); S
tempset:=[];
for j:= 1 to length{tempid) do
tempset:= tempset + [tempialj11;

for j:= 2 to size do
begin
if tempset = tree(i].id then
position:= j; ‘
end; { for}

writeln('enter mass that Supports: ‘', tempid);
readln(cree[position].ptemp):
writeln(‘enter mass that Supports ¢
readln(ttee[position].ctemp):
writeln:

writel.n('Step One...........f’):
with tree(position] do
’ begin
t= 1=-((l-ptemp) * (1-p));

sprime:=1-({l-ctemp) * {1-c)); .
P:=(s*(1l-sprime))/(l-s*sprime};
c:=(sprime*(l~s))/(I-s*sprime):
rp:=1l-p; : 4
Ic:=]l~c;
end; {witn} .

writein('finished? Yy or n');
readin{finans);

1f (finans = 'Y') or (finans = 'Y') then
finisned:= truye:

until finlisned;
writeln;
writeln(‘sStep Two..........ﬂ......‘):
for i:=1 to size do
begin : ,
treell]j.p:= tree[l],p * treel1]).rp;

writeln('p,rp '.tree[l],p,tréeEiJ.rp);
end; {for} '

-

for i:= 2 to size do
begin i
for j:= 2 to size do
begin
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if(3-<> i) or not(tree[x].1d<=tree[3].1d) then
tree[i].p:= treelil.p * treeljl.rp:
end; { for}
end; { for}

normfac:= 9.9;
for i:= 1 to size do
normfac:= normfac + treelil.p;

writeln(‘'normfac', normfac);
normfac:= l/normfac;:

for i:= 1 to size do ‘
treeli].p:= tree[1]l.p * normfac;

writeln('Step 3ecessccccsscccocs');

for i:= 2 to saize do
begin :
for j:= 2 to size do
“begin
"if tree[jl.id ='['a'..endatem] - treeli].id then
tree(jl.p:= tree[jl.p * treeli].c;

if tree[jl.id <= tree(i].id then
tree(jl.p:= tree(jl.p * treelil].rc;
-end; { for}
end; {for}

normfac:=0.4;

for 1:= 1 to size do
begin :
normfac := normfac + tree[1i].p:
end; { for}

for j:= 1 to size do
begin A
tree{jl.p:= treeljl.p/normfac;
end; { for} .

for 1:= 1 to size do

begin

treeii]j.bel:=0.0;

for j:= 1 to size do
begin .
if treeljl.id <= treel[i].1d then

tree[i].bel:= tree{1].bel + treeljl.p:

end: { for}

end; { for}
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clrscr;
for j:= 1 to size do
begin
textcolor(l3); ,
writeln(' ‘ ————— ' -

- -'):
textcolor(1l5):; '
write (' Set ID: '):
textcotor(14);
for ch:= ‘a’ to enditem do
begin-
'if ch in tree[J] id then
write(ch);
end; { for}
textcolor(15);
write (' Belief = :
‘);textcolor(14); wr1te(tree[3] bel :6:3);
textcolor(15);
write (* Mass = ');textcolor(l4);:;write(treeljl.p

writeln;

if (3 mod 12) = J then {allows scrolling to stop
temporarlly}
begin
textbdckgrOund(14),
write('Push Any Key to Lontlnue Display'}:
textbackground(l):;
writeln;
read (kbd, dummy ) ;
end; {if]
end; { for}
writeln('done-end program, y or n2?');
readln(donans),
1f (donans = 'y') or (donans = 'Y'). tnen
done:= true;

until done:

end. {main}
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