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ABSTRACT

Tnis thesis demonstrates the use cf the Dempster-Shafer
theory of evidence on the battlefiell. The use of the

theory in a Decision Aid or Decision Support System for the
Intelligence Analyst will speed the force commander's

Command and Control Cycle.
The Command and Control Cycle is modelled and a benefit

of enhanced command and control is described. The
Dempster-Shaf er theory is discussed using tactical iattle-
field exaxples. A Dempster-Shafer Decision Aid is presented
as weli as methods for improving computational speed. A
specific application area, Situation Development Analysis in
the All Source Analysis System (ASAS) is proposed.
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"A. BACKGROUNE

The nature or battle is rapidly changing.

The development of modern warfare is outstriping our
ability to manage it effectively. The speed1 power and
sophistication of modern weapons dnd the po ieical and
geographical complexities of potential eattlefields in
places like Europe and the liNdle East have placed the
commander in a rapidly moving, data-rich environment.
(Ref. 1: P. 50]

Many publication on the state of the modern battlefield

use the saae descriptive adjectives: intense, dynamic,

mcbile, rapidly changing, data-rich, etc. The quoted

article goes on to stress that modern decision aids are

needed to assist the- battlefield decision maker "...by

expanding his ability to rapidly and effectively analyze the

data necoming available." [Ref. 1: p. 50] However, to

assist the force commander on the battlefield, much military

research has emphasized the need to help the field commander

and staff in deciding a course of action in critical battle-

field situaticns CRef. 2].

B. THE PROBLZ,

"The commander's decisions on the battlefield are prima-

rily inflaenced by three factors: the environment, the enemy
"force, and the friendly force. The only factor that the

force cor.mander can directly ccntrol is the friendly force.

If this contrcl is to be eftective, the commander must have

intelligence about the environment, and the enemy force. In

particular, the commander in the Airland Lattlefiold needs a

rapid, acc'irate assessment of the current enemy situation

and the enemy's intentions.
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The commander's information requirements place an ever

increasing responsibility on the intelligence analyst. Raw

data from battlefield sensors must be converted to intelli-

gence as rapidly as possible. without a proper under-

standing of the enemy's capabilities and intentions, the

likelibcod of selecting an appropriate course of action is

extremely small.

C. THESIS OBJECTIVES

The prim'ary objective of this thesis, is to demonstrate

the use of the Dempster-Shafer theory of evidence on th.

battlefield to help correlate data for predicting enemy

intentions. Specifically, the thesis will:

1. Demonstrate the use of the Dempster-Shafer theory of
evidence in a tactical military intelligence decision

aid.
2. Create a decision aid prototype that, uses the

Demps ter-Shafer theor y.
3. Analyze techniques for reducing the computational

complexity and calculation time required for

Dempster-Shafer.

To understand the role of evidential reasoning on the
battlefield, Chapter II of the thesis will discuss the
tactical command and control process. It will also describe

* the problem cf the intelligence analyst, unaided by an

Sevidential decision aid, as he deals with the bombardment of

battlefield data. Ennancement of the comuand and control

cycle will be discussed, leading to an example show±nq tile

" benefits of an improved cycle.

In Chapter iII, the concept or evidential reasoning will

be introduced. Two methods for- evidential reasoning,

. Boolean Logic and Bayesian :nference, will be investigated

to expose their shortcomings for use in battle field

13
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"situations. The Dempster-Shafer theory of evidence, its
• •advantages and disadvantages will be presented.

"Chapter IV will describe the Dempster-Shafer theory
decision aid created to assist the military intelligence
analyst. The aid functions in a cyclical process, receiving
each bit of data from the user, combining it with previous
data, and presenting its conclusions to the user,. Reduction
in computational complexity aDd calculation time of the
Dempster-Shafer method are also discussed. These computa-
tional tecaniques speed up the hierarchical summations
required by the Dempster-Shafer theory; but they also reduce
the scope of the problem. The reduction methods can be
applied to evidential reasoning on the battlefield.

Chapter V discusses the battlefield intelligence
analyst's job of Situation Development Analysis, a specific
"application area for the Dempster-Shafer decision aid. The
enhancement of Situation Development Analysis by a
Dempster-Shafer decision aid will lead to benefits Ob
improved command and control.

- A listing of, tue PASCAL code written for the decision
aid in Chapter IV is contained in Appendiz A.

i..



..... I. BATTLEFIE__D _COURA__) AND2 CONTROL

The opportunity for battlefield applications of the

Dempster-Shafer theory of evidence stems from the need to

shorten a- commander's command and control cycle. With a

shorter cycle, a force commander can recognize enemy inten-

tions and strike quickly enough to disrupt the enemy opera-

tion. With a quick reaction, the battlefield initiative can

be seized before the opposing force can react to the new

situation. The now weakened and off balanced enemy force
will be easier to defeat. This'process.of convertiug data

into action more quicKly than the opponent is referred to as

turning within the enemy's decision cycle.

Reducing the commander's command and control cycle time

requires tae capability to react more quickly than ever
before. The faster and deeper that the friendly force can

interdict the etiemys forces, the more successful the

operation.

Enhanced command and control has emerged as a solution

for dealing with a dynamic and data enriched battlefield

while reducing the commander's reaction time. This chapter

will discuss the command and control cycle, the data flow in

the cycle, current enhancements to the cycle, and present an

example that shows the benefit of reducing cycle time by

enhancing command and control.

A. THE CONISAND AND CONTROL NETWORK

Command and control is an extremely complex battlefield

function by ,hich the commdndei and staff .Lllocat.

resources, direct unit movement, and coordinate operations.
Command and control can be modelled as 'a continuing cycle

15



within a network of nodes as illustrated in Figure 2.1.

lithin this cycle are processes, depicted as the nodes, that

can be enhanced to reduce cycle time. These nodes gave been

described in many ways by many experts [Ref. 3], but will be

designated here as Collection, Interpretation, Decision, and

Action.

DATA
,COLLECTION -- -- INTERPRETATION

t t

z

I.

~~ION~ ~ ORDERS ~ O

Figure 2. 1 Command and Control Cycle Network.

To understand the command and control network, and the

cycling within it during battle, it is necessary to investi-
gate each node of the network. Within each node, functions

that can be enhanced or eliminated may be discovered. The

improvement of node efficiency will reduce cycle time and

help in the effort to interdict the enemy force as early as

possible.

The iLodes of the cycle network lepicted in Figure 2.1

are as follows.

16



1. Colec ion

The Ccllection node of this network describes the

activity of gathering data about friendly and enemy forces

by all means available. Miller and Cushman [Refs. 5,1],

describe this activity as sensing, but sensing may include

the recogniticn or interpretation of the data received. For

purposes of this thesis, sensors only gather the data and do

not modify it in any way.

Collection is a continuing process and does not

realize divisions between battles or battlefields. A sensor

may receive data that may has no effect in its area of oper-

ation. Yet, this same data may be of critical importance to

the commander. Nonetheless, all of this data will be trans-

mit ted to the Interpretation node.

2. I n___le.r_e tati o.n

Interpretation is the coimbination, evaluation, and
translation of raw data into intelligence. The result of
this act~.vity is an understandizg of the battlefield situ-

atior, including enemy intentions.

Interpretation, like Collection, is a continuin;

process. The intelligence analyst must deal with the
continuous stream of relevant and irrelevant. data arriving
from the Collection node. Decision aids are used to help
the intelligence analyst comprehend the entire battlefield

picture presented by this onslaught of data.
The arc connecting the Collection and Interpretation

node indicates flow in both directions. As the battletieli
situaticn develops, sensors may be directed to change posi-

tions or sense other areas of the tattlefield.
Consequently, tne connecting arc depicts coordination
between these nodes.

17
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3. =1isioLQ

After recognizing the enemy intentions, the friendly
force must react. This node describes the commander's deci-

sion process that chooses the course of action which opti-
mizes possibility of friendly success given Lhe interpreted
course of enemy actian. This success can be measured by the
minimization of friendly losses, the maximization of enemy
losses, or by any measure oi effectiveness or any measure of
performance considered essential by the commander.

It is' possible that the commander, does not have

enough information to justify a course of action. He may
then request more data collection or direct surveillance in
other areas. The commander will inform the Interpretation
node of his issential Elements of Information (ESI) or
Priority Intelligence Requirements (PIR), those intelligence
iteus of the utmost importance to the force. Therefore, the
arc connecting the Interpretation and Decision nodes is
bi-directional.

4. A~ctio n

The last node of the network represents the movement
of troops into battle executing the course of action irom
the Decision node. This activity may range from a compli-
cated maneuver to a reactionary tactic in a surprise
encount er.

The arc from the Decision to Action• node is uni-
directicnal. This does not mean that subordinate commanders
dc not coordinate or respond to superiors, but it depicts
the final orders or the higher-level commander after all

planning is accomplished.

The ccmmand and control network ends in the flow of
data from tte Decision node to the Action node, see Figure
2.1, and therefore, can only function after the preceding
nodes have completed their prccesses.

18



Of .course, the enemy must also cycle through a
similar network during the battle. During operations, each
force must constantly collect, interpret, decide, and. act at
all levels of command within the battlefield. The force
that executes their cycle the fastest will have the battle-
field advantage.

B. ENHANCING THE NETVORK

There are many areas within the command and control
network that can be enhanced by some type of automation.
Stewart, Boss, and Tiede [Ref. 4] have identified functional

areas in any organization where the human processor can be

improved by introducing automation. Many of these areas
have applications in the command and control network. TaDle

1 depicts these processes, the advantage gained by automa-
tion, and the areas of the command and control Network where
they apply.

1. Enhancement Of 2@at_ f.12w Ih~ro_qh The! petwork,

The arcs which connect the nodes of the command and
ccntrol cycle network represent data flow. The Collection
node passes data to the Interpretation node which passes
data, or in this frame, intelligence to the Decision node.
Here, possible courses of action are analyzed to select the
one that best fulfills the commaner's effectiveness
measure. Next, the Decision node sends orders, which

consist of the directions to units in the force, to the
Action node. These force units will then execute the chosen

course of action. .he force units then act or interact with
the enemy forces creating more data to be gathered by the
Collection node and the cycle continues.

Much research has gone into the area of improvinq
data handling and flow within the network [Ref. 5]. The

19
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TABLE 1

AREAS FOR ENDANCERENT BY AUTOMATION

Appi ceable Nan-Machine
Network Man Unaided Machine Interaction

Prcs10 - ft "@chine WJithou HUm Leverage**
Receive/ All Communicates, Mood Increased Effect- Little
Transmit of Sender tive channel cap-

tern andgeneate scity;llard Copy

interpret/ interpretation Only man can flesh, Cnol xed Teedu
aI date out incomplete Pet- human memorytern andgeneate (ass ocilated oper-

new hptheses and atos and acI-
tstd for them Itate hypothe&se

tasIng (csicula--

Cvoluate/ Interpretation Only man can Inter; Can only extend Significant
Coordinate pres In context and human memory and

generate hypotheses, facIlIItate coord-
and In$ights ination based on

a priori rule 6

ProJect/ interpretation Only man can define Can only extend Tremendous
rapolat ion parameters; Itates calculations
involves hypothesis
generation

~*Men-Machine Interaction Leverage is. defined by the author as a measure
of Potential Gain when man Is aided by machine.

Tacti cal operating System (TOS) and the M~aneuver Control
System '(11CS) key on getting data to the commanders and
presenting them with the best representation of the battle-

field through improved communications capabilities.
Incr eas ed data 'flow is an intuitively appealing

means of quickening the command and control cycle, but it

also presents a variety of problems. In a fast moving, data
rich battlefield, data will be flowing on the arc from the
Collection node to the interpretation node at an incredible

rate [Ref. 1]. This flow will easily overwhelm the human

processor at the h~eart of the Interpretation node.

20



In the Interpretation node, the data collected by
all sensors available to the commander and staff (usually
referred to as "all source"$) is transformed by humans into
intelligence. Due to the high speed of input to the
Interpretaticn node and the slow human .interface, the input

to the commander at the Decision node is only as fast as the
intelligence analyst processing the data. In order to main-
tain the required speed, the -,nalyst may tend to ignore or
only briefly review input, losing a more complete battle-
field picture. This problem suggests the need to reduce the
research emphasis from systems that enhance data flow to
systems that support the analyst's conversion of data into
intelligence.

2. Ah__ne_ f The jtwork poY sses

Inside each node of the command and control cycle
data is being processed into a useful form for that partic-
ular node. It these processes inside the nodes are not
streamlined,. the command and control cycle will idle,
waiting for a node to complete its activity. Enhancement of

the network processes will reduce the overall network cycle
time and therefore, improve the command and control or the

force.

a. Collection Ennancements

The Collection node has been improved through
advancements in sensor technolog'y [Ref. 1]. Incz,:ased
range, accuracy, and processing capabilities of sensor
systems have significantly enlarged the data flow to the
Interpretation node.

b. Interpretation Enhancements

The Interpretation node has been enhanced b.
data base management and modern video displays. The analyst

21



can now store, display, and recall data in structured form.
This structured form helps the analyst quickly recognize
trends, correlate data and, basically, use a systematic
approach to the intelligence process. As data flowing into
the node is processed, the enemy situation and intentions
become visible. The analyst uses this data to present the
commander with the best estimate of the situafinn to use in
the Decision node.

With the increasing input to the Interpretation V
node, and the reduced output flow caused by the inefficiency
of the human processor, the need surfaces for some decision
aid to correlate and combine data. A system which would
help the analyst combine evidence to recognize critical
enemy activity, and answer the commander's Essential
Elements of Information (EEI) or Priority Intelligence
Requirements (QIR) is needed. It is this node of the
command and control cycle network which would benefit from
the use of an evidence combination support system.

This support system could use some theory of
inference, Bcolean logic, Bayesian Inference, or Evidential
Reasoning to aid the intelligence analyst in combining
evidence to recognize the. enemy's intent. This evidence
combination technique should also allow for the uncertainty
that confronts the analyst in his human reasoning process.

These specific inference techniques will be discussed in
Chapter III.,H

c. Decision Enhancements

The Decision node is an area which, has received
substdntial attention. In this node the commander and staff
plan future. ccurses of action, wargame these options, and

then select the course with greatest probability of success.
Enemy Co:arses of Action (ENCOA), Forces Comparisor. Model
(FORCECOC), Contingency S-areening Model (CONSCREEN), and

22
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Quick Screening model (QUICKSCREEN) are current models I%
developed for the commander and staff to aid in this deci-

sion process. With the abundance of models available in the
military community related to decision making, this node was
a good candidate for early enhancement by automation

techniques.

d. Action Enhancements

Improving data flow in the command and control

system, along with improving battlefield transportation will " ;"

accelerate the purpose of the Action node by getting troops
to the reguired position on the battlefield in the most

efficient manner as possible.

C. THE CRITICAL NODE

Which node in the command and control network'holds the
key to battl.field success? Clearly, the Collection node
will have a very rich- environment from which 'to gather data

and transmit to the Interpretation node. Every unit on the
battlefield will be forwarding data to be interpretel.

The commander and staff may plan continuously for every
conceivable enemy course of action. Forces will be posi-
tioned to provide as much deterrent as possible to the
enemy. ,

Sub-units will plan for movement to each battle position
for each friendly course oi action directed by higher head-
quarters. Therefore, recognition or interpretation of the
enemy course of action becomes the limiting factor in the
command and ccntrol cycle.

If the initial enemy attack into NATO positions in
Western Europe, or any activity- during war, can be

predicted, the commander can commit his forces, especially
the reserve forces kept for this purpose, to repel the

23



opponent. The Interpretaticn node is the trigger to this

action. It must be accurate, effective, and as streamlined
as possible. The entire network process hinges on the crit-

ical role of the Interpretation node,
How much of a difference will enhancement of this node

by evidential reasoning, or any method for that matter, and
the resultant reduction In command and control cycle time,

make on the battlefield?

D. BENEFIT OP REDUCED COMMAND kND CONTROL CYCLE TIME, IN

RNiM PLE

An example [Ref. 5], is proposed to demonstrat,-. the
benefit achieved at a critical battlefield confrontation by
reducing the commana and control cycle time.

In a European type scenario, units are deployed with the
mission of maintaining some force ratio threshold (RTH) in
all sectors of operation in order to prevent an enemy break-
throuqh. Assume there is a predetermined critical sector in
which the enemy has chosen to attempt such a breakthrough.
The force Ratio in the Critical Sector (RCS) will be
computed as:

RCS R (t) / B(t) (2.1)

where R(t) is the total number of major tank/anti-tank
systems in the attacking (Red) force at time (t), and B(t)

is the same identifierfor tue defending (Blue) force. Both
force describers are functions of time to allow for attri-
tion and reinforcement by reserve forces. The Red forces
are divided between critical and non-critical sectors. The
Blue forces have in pcsition a reserve force containing part

(percentage of force = x) of the total torce. See Figure
2.2 for force dispositions.
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Critical Sector,

R (t) "-,

(1-x)lB (t)

Reserve Force1(3(t)) •:_IL
R(t) = Attacker Strength at Time (t) -

B(t) = Defender Strength at Time (t)--

x = Percentage of Force in Reserve

Figure 2.2 Battlefield Layout.

If RTH is the threshold ratio necessary to prevent, a

breakthrough in the critical sector, the defender must keep

RCS _5 RTH. To accomplish this standcff, the command and

control cy.cle must function in a timely manner so that IF

reserve forces are committed at the correct moment in time

and the reqgired threshold ratio is maintained.

Figure 2.3 shows a hypothetical time comparison of the

attacker/defender schedules for respective comaand and

ccntrol cycles. 'Figure 2.4 shows hypothetical linear force

ratios indicating mission deficiency on -,he part of the

defending force dae to the surprise gained by the attacker's

commitment in the critical sector.

Reduction of the defender's command and control cycle

will increase B(t), increase attacker attrition, and reduce

the mission deficiency, see Figure 2.5. The time sequence

used in Figures 2.4 and Figure 2.5 correspond to those

schedules depicted in Figure 2.3.
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I $1.
Attacker Activities: •

Ti-Attacker decides to commit main attack force'

T2-lovement of main attack force begins "

T3-Lead elements of main attack force errive in
critical sector

Tit-Last elements of main attack force close incritical sector

Attacker ---I-----------I ----------- I------------------------------
Activity TTi T2 T3 Tt ...

Collect Interpret Decide Act "
Defender ---------- I --------.-. I ------ -------------- ---------- --------
Activity ti t2 t3 t4e t5 t6

Defender Activities:
tl-Defender detects movement of main attack force

t2-Defender interprets time and location of main
attack

t3-Defender decides to commit reserve force to
critical sector

t4-Lead elements of reserve force arrive In
critical 'sector

tS-Last elements of reserve force close in the
critical sector

tb-Reserve fully deployed into new defensive-
positions in the critical sector

Fig-re 2.3 Time Couparison of Attacker
and Defender Cycles (notional).

Although' this is a very simplfstic and hypothetical

situation, it nonetheless demonstrates the advantages that

occur when the co.naand and control cycle is shortenei oy any
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node in the network. The earlier the critical sector can be

reinforced, or the deeper the. attacker can be interdicted,

the more likely the ratio in the sector can be reduced to

R¶I1I.and a breakthrough prevented. Consequently, any reduc-

tion in cycl Ie time can be directly equated to an increase in

effectiveness of the force. Therefore, reduction of the

I interpretation node's processing time by a decision aid

using evidence combination will have a positive effect on

the battle.

To further reduce cycle time, it is possible to

initially have a contingency plan allowing for a major

attack in all sectors of 'the front. once the critical

sector is identified by the Interpret node,, the plan for

t-hat sector would be executed. This contingency would

almost remote the Decision node from the command and control

network. 'This planning concept would reduce the cycle time
by that former amount allocated to the Decision node and

ifurther reduce the mission deficiency.
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A. BACKGROUNS

As battlefield information flows into the Interpretation

node of the Ccmmand and Control cycle, it, must be combined
or fused with prior information to update the understanding

of the enemy situation. As previously discussed, this
process is currently being accomplished by a man-in-the-loop

system that can slow down the entire command and control

cycle [Bef. I]. liethods of evidence combination that can
enhance, not replace, the human inference process will now

be discussed.

The Dattlefield situation of Chapter II described the

commander's aesire to recognize the sector of main attack.

The determination of the enemy's intentions can be viewed as

a test of hypotheses consisting. of all mutually exclusive

sector combihations. Given the knowledge that an attack is

imminent, such as the first battle in a European scenario,

it is the analyst's job to accept or reject these hypoth-

eses. To accomplish this task, the analyst must place

values on each likely sector, or hypothesis, indicating the

probability of an attack in that sector.

The comparison here of battlefield reasoning to

hypothesis testing is logical. The analyst has a set o-2

hypotheses, ccmposed of the sectors of possible attacks, anJ

their multiple conjunctions. These hypotheses indicate

attacks over any one, or any combination, of the sectors in

the force commander's zone of responsirility.

An example of this battlefield- situation will now be
described. It will demonstrate the use of an evilential

reasoning process in the interpretation node. This example

will be used throughout the chapter.
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To begin, suppose the unit Qsing this reasoning enhance-

sent is a U.S. Division. The division's area of responsi-

bility is divided into three brigade sectors (1,2,3). The

enemy attack, assuming this is the state of the battle,

could occur in Sector 1, 2, or 3. If it occurs near a

brigade boundary, or is wide enough to cover more than one

sector, the attack could occur in combinations (1,2) or

(2,3). If a divided attack cccurs, or attacks from adjacent

enemy forces cccur, then (1,3) is a possibility.

The battlefield, or population, is sampled via the

unit's sensors, and the sampled evidence leads the analyst

to accept or reject the hypotheses of attdck locations. In

the case of battlefield sampling, the sampling process takes

place over time.
This chapter will discuss the quality of the evidence

presented to the decision maker, the use of Boolean and

Bayesian methods to evaluate the analyst's hypotheses, and

an in depth look at a technique for evidential reasoning
based on the.Dempster-Shafer theory of evidence.

B. THE QUALI7Y OF EVIDENCE

In the tactical environment, the Interpretation node
will receive information from many sensors, both human and

machine. This information is inherently uncertain, incom-
plete, and sometimes inaccurate. Although less than

optimal, this situation is the nature of the battlefield and

the nature of the evidence received. The term evidence

becomes appropriate here since the information received will

be a basis fcr conclusions or judgements, not a clear answer

to any one hypothesis.
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1. uc tain .vidence

Battlefield sensors cannot describe their sample in

precise detail and, therefore, create inherent uncertainty

in the reports they generate. Some sensors can indicate

movement direction, size of the element, or type of unit

observed. Other sensors may only report that a unit is

moving and may not detect the size or exact location of the

target. None can give a complete description of the event.

The sensor or operator is always uncertain of many attri-

butes of the target. As Lowrance and Garvey recognize

(Ref. 6], the evidence tends to lend varying degrees of

support to one or more hypotheses rather than completely

specify the event.

2. jjcgmle te Evidence

The sensor information will also be incomplete. The
battlefield sensor can only "view" its assigned sector of
search. It can describe what it sees, but cannot lend

evidence to what it cannot see on other parts of the Lattle-

field. The analyst should realize that this incompleteness.
exists, and direct movement of sensors or change sensor

search areas to receive a more complete battlefield picture.

3. Incorrect Evidence

The third characteristic of the information

collected by the sensor is that it could be incorrect. The
operator, interpreter, or soldier reporting could be
completeiv mistaken in their spotting, or the enemy could be

using deceptive techniques to confuse the opposing force.

For these three reasons: uncertainty, incomplete- L
ness, and inccrrectness, the hypotheses or propositions can

only be attributed degrees of support based on the evidence

received. No one piece of information can be accepted as
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complete truth. Therefore, it is the iterative process of

combining information from all sources through time, that

will lessen the damaging effects of poor-quality evidence

and produce good intelligence. To accept or reject the

propositions based on a single, cloudy piece of evidence

would certainly bias the entire intelligence prediction

effort.
What statistical methods can be used to evaluate the

evidence in terms of lending support to the acceptance or

rejection of the hypotheses? Three methods of evaluation
will be discussed. These are: Boolean Logic, Bayesian

Inference, and Evidential Reasoning using the

Dempster-ShafEr. theory of evidence combination.

C. TWO CORION KETHODS FOR EVIDENCE EVALUATION

1. Booi an Logi_

In Boolean logic the hypotheses or propositions can
only be represented as' True or False. Varying degrees of

support are not accepted, and any information relative to
the hypothesis would have to be interpreted as total support

cr total negation.,
As Lowtance and Garvey indicate [Ref. 6], Boolean

logic cannot Capture the partial belief in hypotheses gener-
ated by the ccarse evidence received. The battlefieid will
never be an area for clear cut decisions in black and white,

but will always tend towards decisions that deal with the
"grayness" of the evidence.

Continuing with the Division example, a report is

received of a small unit, an enemy motorized rifle company,

moving towards the Forward Line of Troops (FLOT) of

Sector 1. This activity could be the advance of the enemy's
reserve force indicating a treakthrough attempt, or it cculd

be a feigi.Lng action, cr only a partial repositioning ot
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troops. Based on this activity, the analyst cannot, with

100% certainty, predict that the main attack is coming in

Sector 1 (True) or that it does not indicate an attack in y
Sector 1 (False). Nor does the evidence.negate or support

the possibility of attack in the other sectors.

2. Dzsian Inference

Bayesian methods have been proposed as a basis for.

several decision aids [Refs. 7,8]. However, these methods

have inhierent inefficiencies in dealing with disbelief,

information supporting the compliment of the hypothesis, and

a priori probabilities.

a. Bayesian Formulation

A Sayesian approach [Ref. 7] would consider

various hypotheses, such as an attack in Sector I (Si) given

some datum (D) from a battlefield sensor. The probability

that (Si) is true given the data would be:
F

P(StilD) = P(DISl) * P(SI) / P(D) (3.1)

where:

P(SlID)= posterior probability of the (3.2)

hypothesis given the observed datum.

P(DIS1) = probability of the datum (3.3)

given the hypothesis.

P (S1) =pricr probability of the hypothesis (3.4)

before the datuI.

P(D) = probability of the datum occurring. (3.5)
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The task of determining just this last prob-
ability of a datum occuring on the battlefield, is more than
formidable. Given a fixed set of target describers :

TD = (td(1),td(2),...,td(n)) (3.6)

Where td(l) and td(2) could be map grid coordinates in
easting and northing., td (3) could be the type of unit, td(4)
the size of the unit, td(5) the direction of movement, etc.
The analyst would then express partial beliefs over TD by
distributing belief to the elements of TD.

For example, a report is received about a tank
company in the intelligence analyst's area of responsi-
bility. He must now determine the probability 'of detecting
the tanx company at the reported location. in this case TD

(td(1),td (2)), the set of grid coordinates in the division
zone. Probabilities must be mapped to all grid coordinates
in his area which are maneuverable by tanks. The analyst
then adds the probabilities for td(1) and td(2) corre-
sponding to the reported grid coordinates ox the tank
company to determine the probability of the datum occurring.

Probabilisticly, a piece of evidence will map
the propositicns in TD to the closed interval [0,1]:

m: TD--> [0,1] (3.7)

where

SUM m(td) = 1, for td in TD (3.8)

In other words, the conjunction of all evidence from th-
mapping must equal one, the basis for a probability
statement.
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Then for any proposition defined over TD, such

as the report o-: the tank company (TANK) , the probability of

occurrence 'is:

for all td in TD, (3.9)
Prob(TANK) = SUN a(td), td in (TA NK) a.

The protability ox proposition (TANK) is determined by the
sum. of the probability of all location possibilities that

are elements of the proposition.
It follows that:

Prob(TANK) =1 - Prob (not TANK) (3.10)

ani1 since the environment sums to 1:

SUMi m (td) = ,td in TD (3. 11)

Thus all probabilit7 not in (TANK) would lie elsewhere in
TD, as seen in Eguation 3. 10. The, inherent problem with
this approach is that the sensor operator, the' iatelligence
analyst, or an expert, must determine each a priori prob-

abi.Lity for the. partitioning of TD into its elements

(td (1) ,td (2) ,.td (n) ) given by the mapping m.

This mapping would not be a great problem given

a rich data base fo.i a well-defined environaent. However,

on the battlefield, the sensors will be receiving data on

Ric-co events 'that may only occur once, and depend on time,

weath~er, terrain, or any other target descriptors'used in

(TD) . To compute a priori probabilities given the general,
nature of the situation would be an ~endless task and may not

be acceptable for time-criti~cal tactical decision making..

r
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Using equation 3.1 and this chapter's example of

a main attack against a Division, consider the Bayesian task

of determining the probability of an occurrence. If datum

(D) is the report of the advancing motorized rifle company,

then P (D) is the probability of a such a company advancing.

Immediately the analyst is in a predicament. He 'could make

a calculated guess about this value if an extensive data

base existed. However, there is no data base, and the

analyst definitely does not have the time and may not have

the expertise to concern himself with these detailed

'parameters.

Further, what specific type of company was

observed by the sensor? If it is a reconnaissance company,
then the protability of this datum occurring could be high.

Next, the probability of attack given this datum (P(S1ID))
must be considered. There are now more factors and prob-

abilities with which the analyst must concern himself, most

of which are not known.
If the advancing company is a second echelon

element, then there would be a low probability of the uni:

being in this tcrvard area, unless it is the advance of a
breakthrough attempt.' This probabilistic predicament could

go on and on. Because of the many unknowrLs, Bayesian infer-

ence may not be the most desirable method with whica to deal,
with battlefield evidence combination.-

Also, a Bayesian supporter would say that if
evidence suppcrt'ed two mutually exclusive propositions, -and

there was no reason to consider either over the other, each
should be assigned equal probabilities. So, if evidence

supports proposition (X or Y or Z), with probability 0.6, it

supports individual propositions (X),(Y), (Z) with prob- P.C

ability 0.2. As a result, there is a twofold support of the

disjunction of any two of these propositions over the other.
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If:

P(X or Y or Z) = .6

and

P(X) P(Y)= P(Z) = 0.2

then:

P(X or Y) = 0.2 + 0.2 = 0.41 = 2 * P(Z)

However, there was no evidence received to indicate that the

disjunct occurrence (X or Y) was greater than the singleton

of (Z). The only proposition the evidence supported was ("

or Y or Z), and in no way could distinguish it between

subsets of that event.

Further problems result from the inability to

represent ignorance (lack of support) through Bayesian

methods. In the natural reasoning process of the analyst or

human sensor lies a critical and distinct difference between

lack of support for a hypotheses and support for the compli-

ment of a hypcthesis. If (X) and (Y) are the two proposi-

tions under consideration, then in a cognitive frame, lack

of support for (X) does not necessarily equate to support in

If:

P(X or Y or Z) 0.6

then in Bayesian terms:.

1 - P(X or Y or Z) = P[not (X or Y or Z) ] = 0.4

Of u'txost importance, it is critical to recognize that the

evidence received was incomplete, and this distinction-

between (X or Y or Z) and not(X or Y or Z) cannot be made.

Due the sensor's restricted sampling of the battlefield, the

evidence can only support the disjunction, not refute it.

The concerns of representing uncertainty arad

ignorance while dealing with battlefield-quality evidence
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lead to the theory of evidence proposed by Arthur Dempster

and Glenn Shafer. This is not to say that Bayesian

Inference should not be used on the battlefield. On the

contrary, if the probabilities for the use of Bayesian

Inference are available and if 'the analyst can distribute

probabilities to single elements, then definitely Bayesian

Inferenceshould be used. However, if these conditions are

not met, and tremendous assumptions would be required to

meet the Bavy.3sian prerequisites, then Dempster-Shafer should

.e considered as an alternative.

D. THE DERPSUER-SHAFER THEORY

ThiE theory of evidence combination was conceived by

Arthur Dempster [Ref. 9], and later developed by one of

Dempster's students, Glenn Shafer [Ref. 10]. It is a theory

of evidence because it dea)s with support of propositions
based on evidence. It allows for quantifying ignorance, or

/ hlack of knowledge, as well as uncertainty. It uses a term,

plausibility, to indicate lack of belief in a proposition

rather' than suggesting support of the compliment of the

proposition. The term, Belief, is used to indicate support

"for any proposition.

1. Formulation

The Frame of Discernment, the set of ali mutually
evclusive propositions, is represented by: THETA. The

domain of THETA is the set of all possible subsets of THETA.

Domain Size = 2 exp ITHETAI subsets (3.12).
(2 raised to the magnitude of THETA 'subsets)

An example of a Frame ot Discernment would be the

"three brigade sectors or the division zone in which the main
enemny attack could occur. In this case THETA = (1,2,3),

assuming 3 brigades in a division.
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The dcmain would be :

(1,2,3) (1,2) (1,3) (2,3) (1) , (2) , (3)

which are all the subsets of THETA. Although the Null Set,
., will always be a subset of THETA, it will never have
Belief and will not be listed as a subset in the rest of the

calculations in the chapter.

The mapping of probability assignments to the propo-
sitions is done by a Basic Probability Assignment (BPA),
referred to as Mass (M), which satisfies:

:M( Null Set) = 0 (3. 13)

and

SUM 1(i) = 1, i in THETA (3. 14)
(the sum of Masses over THETA = 1).

Support for any proposition (Z) is given by
"" 1elief(X), or Bel(X), defined as:

Bel(X) = SUM I(i), i in X (3. 15)

Belief is the sum of all the" M.-ses of all subsets of the
- .proposition. The Belief of, (X) is the measure of the .Mass
* constrained to sta7 somewhere in (X) [Ref. 12]. Belief of

an attack in sectors (1 or 2 ) would equal:

Bel(1,2) = M1(1,2) + M (1) + M1(2)

Related to Belief is Plausibility or the Upper
- Probability Function defined as the tctal probability M1ass
* that has potential for moving into (X)

4
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I

II

:" Plaus (X) = 1 - Bel (not I) (3.16)

In the example,

Plaus(1,2) = 1-Bel[not(1,2)] = 1-Bel(3)

* The Doubt of (IX) or Dou(X):

' Dou(X) = Bel(not X) (3. 17)

is the measure of probability forced to stay out of A.

Dou(1,2) = Belf not (1,2)] = Bel(3)
"It follows that:

Plaus(A) _> Eel(A) 2 M(A) (3. 18)

In contrast with Bayesian Inference, Dempster-Shafer
"allows motion of Masses throughout the frame or discernment
since each Mass need not be constrained to single elements
within THETA. Therefore, no requirement exists to commit
Masses to elements past the level of recognition contained
in the report, constrained by the sensor's limite:l

* capabilities.
"If evidence received indicates an attack in Sector 1

or Sectcr 2, the support need not be divided between the two
* propositions, (1) and (2) . If movement, of enemy forces

towards the frcnt occurs on a road bisecting the two zones,
it is not necessary to say that:

. P( = P (2) 1/2 P (1,2)

I but instead, the evidence can be assigned to the superset:
""(1,2).

By using the two values of Belief and Plausibility,
"support ror a proposition or hypothesis can ne expressed by

- an interval as follows.
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Evidential Interval (EI) - [Bel(X),Plaus(X) ] (3. 19)

where the difference, Plaus(X) - Bel(X), can be referred to

as the Ignorance remaining about (X):

Ig(X) = Bel X) - Plaus (X) (3.20)

If IgiX) - 0, there exists no mass available to move

into (X). Further, if Ig(X) = 0 for all p:':opositions, the

system is Bayesian. This is true since this would require

that all masses be distributed to singletons ia the fraae of

THETA. For this reason, Bayesian Inference can be described

as a subclass of the theory cf Belief functions [Ref. 14].

Table 2 show some examples of these Evidential Interval

values.

- I TABLE 2

I EXIAPIES OF DENPSTER-SHAFER EVIDENCE INTERVALS

SX (0,1) => No knowledge at all about (X).

X 1(0,0) => (X) is false.

X (1,1) => (X) is true.,

X(0.2i,1) => Evidence provides partial
.0 85support for (X).

X •(0,10. 85) => Evidence provides partial'
support for (not xF.

X (0.25,0.85) => Probability of (X) is between
0.25 and 0.85;i.e., the evidencel
simultaneously provides support I
for both -(X) aný (not X).

42



I

In the continuing Division example, a report is

received indicating a strong possibility of attack in Sector

(I or 2) represented as (1,2) and a slight possibility of

attack in Sector 3, represented as (3) 6 The analyst assigns

Mass(1,2) = 0.6 and Mass(3) = 0.2. The remainder of mass

(0.2) cannot be assigned elsewhere, so is assigned to the

set representing the entire frame, Hass(1,2,3) = 0.2. These

Mass values Aust be determined in some way by the analyst.

He may use probabilities derived from prior analysis of

enemy tactics if available, or may use mis own Judgement

based on knowledge of enemy tactics. The latter method will

be further discussed in Chapter V. For nor assume that the

analyst has determined these values.

Belief is now limited to those sets whose subsets

have Mass or:

Bel(1,2,3) = M(1,2,3) + if(1,2) + N1(1,3) + M.(2,3)

+ M(1) + 11(2) + n (3)

= 0.2'i 0.6 + 0.0 + 0.0 + 0.0 + 0.0 + 0.2 = 1.0

Bel(1,2) M 11(1,2) + M (1) + A (2) = 0.6+ 0.0,+ 0.0 = 0.6

Bel(2,3) = 1(2,3; + M1(2) + M (3) = 0 + 0 + 0.2 = 0.2

Bel(1,3) = M(1,3) + M (1) + 11(3) = 0.0 + 0.0 + 0.2 = 0.2

,Bel(3) = M (3) = 0.2

Bei(1) = Bel(2) = 0.0 (They have no mass assigned)

As seen in the above example, since THETA exhausts all

proposition possibilities, the Belief in THETA is always

equal to 1.0. The Plausibility and Evidential Interval for
(1,2) would be:

Plaus(1,2) = 1 - Bel(not(1,2)= 1 - Bel(3)

= 1 - 0.2 = 0.8

Evidential Interval [Bel(1,2),Plaus(1,2) ]

C -o.6,0.8]
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The Igncrance would be:

Ig(1,2) = 0.8 - 0.6 = 0.2

The Evidential Intervals (EI) for all the sets are:

EI(1,2) = [0.6,0.8]

EI(2,3) [0.2,1.0]

EI(1,3) [0.2,1.0]

ZI(1) = o0.0, 0.8
E'r(2) = (0.0,0.8]

51(3) = (0.2,0.4]

2. Com__patioA 2 glidence

Dempster-Shafer allows for the combination of

evidence from knowledge sources or sensors on the battle-

field. Given two 'ass assignments M1 and M2 new Masses are

cc.&puted by the orthogonal sum M1 M 52 (where 8 represents

orthogonal sum) defined as:

M(Null Set) = 0.0 (3.21)

M(A) = (SUM (MI(X) M M2(Y) ]}/K (3.22)

where (X & Y) = (A); (6 represents intersection)

K = 1 - SUM [MI(X) * M2(Y)J ]{X X& ) = Nall Set

= SUM [1(Xy) .12(Y)], (X & Y) * Null Set

From Equation 3.21, the Mass assigned to the null set must

equal 0. This is accomplished by the normalization of the

Masses assigned to all other sets. The normalization

factor, K, is equal to 1 - the Mass assigned to the null set

after combination. K is also egual to the sum of the Masses

assigned to the subsets of THETA (less the Null Set) after

combination.
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'The neV Mass# or combined Mass assigned to (A) is

the orthogonal sum of the sasses (divided by the

normalization factor) where (I & Y) W= (). This orthogonal
sum combination technique can be further shown by the unit
square in Figure 3.1.

W(X)h Ma (YL..

-r--T Ma(A) X M(~
aAl) ecatei to:
A Int X

,I~e

"I (C)

Unlt Squara

Figure 3.1 Unit Square Example of Crthogonal Sum.

Continuing with the example, a second report is

received by the- division intelligence analyst for which he
assigns Masses as follows:

M2(1,3) = 0.3

M12(2) = 0.,1

62(1,2,3) = 0.4
(where M2 designates second report).

Figure 3.2 shows the orthogonal sur, of these example Masses.

45



II
M20.°2,3),, M?•(1.3),, M12(21-

0.4 0.3 0.3
I I I i iii i

MI(1.2.31" (1,2,3) (1,3) (2)

0.2 0.06 1 0.06 0.06

MI (1.) 2

0.6 0.24 0.18 0(18

3() NO Set'

0.2 0.08 0.06 I 0.06 -
I I II i iiill

Yigura 3.2 orthogonal sun of Example Masses. iiqi

The Ncrmalizing Factor (K) in this example is:

K = 1-G.06) =.94 .(1-ass assigned to the Null Set)

New nornalized Masses are:'

M 11, 2,3) = .08/.94 = .085
M(11,2) = .214/.9{1 = .215-5

(1,3) = .06/.908 = .060
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d (2,)= 0.0 (not an intersection set

in orthogonal sum)

H(1) = .18/.94 = .192

N (2) = (.06. .18)/.94 = .255

A (3) = (.08 + .06)/.94 = .149

New Beliefs are computed as follows:

Bel(1,2,3) = .085 + .255 + .064 + .192 + .255 + .149

Bel( 1,2) = .255 + .192 + .255 =.502

Bel(1,3) = .064 + .192 + .149 = .405

Bel(2,3) = 0.0 + .255 + .149 = .404 (has belief even

though no Nassdue to Mass in its Subsets)

Bel(1) = .192

Bel (2) = .255

Bel(3) =.149

The new Evidential Intervals are:

El (1,2) =..502,.851].

EI(2,3) = (.404,.808]

EI(1,3) = [.405,.745]-

EI(1) = f.192,.59.6

EI(2) = [.255,.595]

EI(3) = [.149,.4981

These results show strongest Belief in the pair

(1,2) due mainly to the assignment of Mass = .6 to this set

from M1. Belief in (1,3) and (2,3) are approximately equal,

.405 ar.d .404 respectively. Belief for sinle 'elements is

strongest for (2) due mainly to its Mass assignment FLiom M1.

The final Beliefs follow from the Mass assignments, which is

appealing.

Also note the changes in the Evidential Intervals

after combination. The intervals have narrowed for most
p-u
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sets and no set has a Plausibility of 1.0. The Ignorance [J

(Plausibility - Belief) for all sets except (1,2) has

decreased.

3. Indpendence q& Anowledge jources

A point of interest in Dempster's rule of coabina-

tion is the independence of knowledge sources or indepen-

dence of' reports from the same source. How does this method
deal with multiple sightings from same or different sensors?

IZ the sighting or sensor data' come from different

knowledge sources, then this evidence can be considered

collected frcu independent elements. Sensors will occupy
different terrain positions and have varying operating char-

acteristics and capabilities. As such, these know.ledge

sources will derive enough independence for this method to

produce desired results.
If the same sensor reports the same data, these

reports are nct independent in the sense that they come from
the same source. However, if the same sensor reports on the
same unit of activity, but the location or aby other repor-
table characteristic of the unit changes, then this is

ccnsidered sufficiently independent. An example would be

reports on movement direction of a target. This reporting
wculd be considered izdependent for the purpose of indi-

cating a coniidence towards or away form a hypothesis

[Ref. 11].
If the same sensor is reporting on an activity that ," .'.

does not move, a nigher headguarters location, then this
should be used as Lew evidence. It confirms headquarter

location and also the fact they are not moving (shown by
many reports from the same sensor) and therefore may indi-
cete something to the ahalyst to be included in the evidence

combination.
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Conflict over the Dempster-Shafer theory of evidence

arises from the following:

a) Normalization. This. is the normalizing of resultant
Masses after combinati on. Mass that would go to the

null set is ignored and Masses going to THETA are

normalized.
b) Total Conflict. When total conflict of evidence

occurs, Mass for all sets sums to zero. The normal-
izing factor (K) is equal to zero, and the attempt to
divide by K, of course, fails. This case is the same

as sending all mass into the null set.

However, there are several explanations to reduce
concern over these events.

(1) !ormalization. Consider Masses tending to
support conflicting propositions. propositions that have no
intersection. The :lass in this event flows into the null
set indicating conflict between Masses' from knowledge

sources. Since this conflict occurs due to uncertainty
about the situation at hand, as more evidence is received
conflict will diminish.

Also, as certainty toward the correct
proposition increases so does ability to decrease the number
cf elements in THETA. Then, less conflict will occur in the
evidence from seL!sors and the need for an evidence commina-
tion technique that deals with uncertainty diminishes. But,

this is not the case on the battlefield, where the sensors
are spread over great distances across division fronts.

These sensors are directed toward different areas of the
front and a grfFt diversion of information is desired by the
intelligence analyst through a wide variety of contacts.

'Normalization, then, as just a means of
dealing with the conflicting nature of evidence. The
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measure or weight of conflict is represented by the magni---

tude of the normalizing factor (K). K indicates how much.

conflict o'ccurs between the current 3ass assignment and the

resultant Mlass values of previous assignments. If the set ,-p

,of all possibilities is the Frame of Discernment, the null

set cannot occur. The, Mass assigned to it represents

conflict, a ncrmal occurrence whet~ so many sensors report so
varied data. The Mass cannot remain in the null set, there-
fore all aasses are normalized.

A large measure of conflict occurs in the
following exraple:

51(A) = .99
Ml1(B) = .01

32(c) = .99

12(B) =.01

M1 .3 M2 yield:
M1(B) = .0001
31.(Null Set) ý.9999

Normalized results are:

K 1 - .9999 = ..0001

dl a 52 (B) =.0001/.0001 l .C, a questionable result

However, if in fact (A,BC) were the only

possible results,' this conclusion is logical. Only through

combining this battieiield-q lality. evideL.;e and dealing with

inherent uncertainty can the anal.yst react, conclusions about

the hypotheses, If the rigorous methods lixe Bayesian

Inference cannot be used,. then Dempster-Shafer seems 'tor
offer a l.ogical alternative.

(2) Total conflict. T]'e sec,)nd shortcomiag,

total conflict of evidence, is caused by total combined mass

going to the null set aborting any combination effort. This
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occurs by assigning total Mass from two knowledge sources to,
sets with no intersection, such as:

MI(A B) = 1.0 .

32(CD) = 1.0

i1 3 M2 X) 1=0

since:

[ (A,B) . (CD) = , Null Set

However, is it possible to be 100% certain
of (A,B), yet at the same time, to be 100% certain of (C,D)?

No, this situation and resulting conflict are unacceptable

and can only be resolved by the realization that,again, the
analyst is dealing with uncertainty. Inaccuracies in knowl-
edge sources cannot allow assignment of probability Masses
in this manner.

As further proof, consider the following
example [Ref. 12]. A fair die is rolled and knowledge
source one places all .lass in the proposition that the
number is even, H1 (EVEN) =1.0. Conflicting evidence from
knowledge source two places all Mass in the proposition that
the number is odd, M2 (ODD) = 1.0. The result of combination
assigns all lass to the null set since (EVEN & ODD) = Null.
Set, and the combination fails.

This examrjle shows that this occurrence
would tend to violate the assumption of uncertainty of the

evidence and also falsify any logical reasoning process.

The analyst cannot let this occur under any method of

evidence comlination.

E. BAZ-S' RULE OF CONDITIONIUG

Ii a battlefield situaticn, using Bayes' conditioning

rule to combine evidence does not seem to generate more
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satisfying results than those achieved by the

Dempster-Shaf er method.
A probability distribution m would be transformed by

Bayes' Rule to m' by the receipt of additional information. 17

It is necessary to restrict the domain of m to elements of

(X) when using this rule. Bayes' rule is:

for all i in THETA: (3.23)

2'(i) 0.0, if i not in (X)

m'(i) = m(i)/(1-k), if i in (X)

where:

k = SUi m(i) < 1, i in (X) (3.24)

Or from equation 3.1:

P(SlID) P(DIS1) * P(S1)/P(D)

Using the results of the prior knowledge source report

outcome, P(S1), P(SlID) is updated by the probability of the

neQ datum, P(D), and probabilit3 of the datum given the

hypothesis, P (D I S1).

A more tractable form of the equation can be constructed

using likelihcod ratios where:

P(S1ID)/P(S2jD) = [P(S1)/P(S2)1]P(DIS1)/P(DIS2) or

P(SlID)/P(S21D) = [.2(Sl)/P(S2) ]-L(DIS1:S2)

where L(DIS1-S2) = P(DIS1)/P(DIS2) and is called the likeli-

hood ratio favoring hypothesis S1 over S2.
Now since P(SljD) + P(S21D) must equal one, the final

values for pcsterior probabilities are determined by their

ratio. it is no longer necessary to determine the prob-

ability of tne datum (P(D)), nor is it necessary to assess

the probabilities P(DIS1) and P(DIS2) if the likelihoo-

ratio L (DIS1:S2) is used. However, it may be easier to
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"compute the likelihood ratio based on the probability
P(DIS), which will be demonstrated in an example.

The following example using this Bayesian method is
presented. Three hypotheses under consideration are:

SI = attack in Sector 1
S2 = attack in 'Sector 2
S3 = attack in Sector 3

The first difficulty encountered using this approach is
determining prior probabilities. Should they be calculated
using the first piece of evidence, or be based on other
knowledge. In this example there is no reason to favcr one
over the other, so assign equal probabilities: P(S1) = P(S2)
= P (S3) 00.333.

The first piece of evidence received (Dl), indicates
strong possibility of attack in Sector 3 (S3). To ease
computation, all likelihood ratios will now *be based on
Sector 3, i.e.: L(D1IS1:S3), L(DIIS2:S3) and L(DlIS3:S3)
will be used. Table 3 column L(D1IS(i)I:S3) lists the like-
lihood ratios based on this first piece of evidence.
* The likelihood ratios can be computed in. the following
manner. Datum 1 (D1) indicated a high probability of attack
in Sector 3, say P(D1|S3) 0.8. To compute likelihood
ratios, a comFarison must be made with the other hypotheses.
If D1 indicates a small probability of attack in Sector 1',

(Si), say 0.10, then the likelihood ratio L(D1ISl:S3) =

.1/.8 = .125. As previously stated, this likelihood ratio

could have aisc been determined by saying that the prob-
ability of attdck in Sector 3 based on the datum is eight
tirues greater than attack in Sector 1.

The ratio for Sector 2 and 3 will be .2/.8 .250, or
attack in Sector 3 is four times mort likely than attack in
Sector 2, based on the datum.
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The next piece of evidence received (D2) assigns the

following likelihood ratios:

L(D2ISI:S3) = .70/.50 = 1.4

"L(D21S2:S3) = .80/.40 = 1.6

L(D2g53:S3) = 1.0

Now update all posterior probabilities for comparison

- using the three equations and three unknouns:

P(S(i)ID)/P(S31D) = [P(S(i))/P(S3) ] * L(D1IS(i)):S3)

, . L(D2IS(i):S3), for all i

and solve simultaneously.

Column P (S(i))ID) of Table 3 (where D represents all

evidence received) shows the final posterior probabilities.

Now comparisons of hypotheses may be made using these poste-

rior prcbabilities.

TABLE 3
. BAYESIAN INFERENCE EXAHPLE USING LIKELIHOOD RATIOS

"" I P(S(i)) L(DlIS(i):S3) L(D2IS(i):S3) P(S(i)ID) "

:Si- 1 .333 .125 1.4 .. 11-
"S2 .333 .250 1.6 .254

"S3 -.333 1.0 1.0 .635

Pl(Sl(i)) Erior probability

I L(D1IS(i):S3) = Likelihood Ratio from rirst datum I
I L(D21s5(i):3) = Likelihood Ratio from second datum I

I P(S(i) ID) P ?osterior probability

:.:I __54__
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There are several problems encountered using this
approach. First, how should the prior probabilities be
chosen? If they are equally likely, then equal probabili-
ties could be assigned as done in this example. It may be
better to use the first piece of evidence receive, but these

priors must sum to one. If the initial evidence indicates a
. strong possitility of attack in Sector 1, but lends no

"support to the other hypotheses, how should prior probabili-
ties be assigned to the other hypotheses? Some prior prob-
"ability must be assigned to the other hypotheses, if not,

-5! they will always have a posterior probability of zero.
Second, there can be a lack of consistency in assignment

"of likelihoods. There is no constraint to the magnitude of
"the ratio. In the example, a likelihood ratio of 1.4 was
used. Yet, if a strong indicator of attack (.9) was
"compared to a hypothesis with a very slight chance of attack
(.001), then a likelihood ratio of .9/.001 = 900 wou.d
occur. This lack of constraint on the magnitude of the
likelihood ratio may lead to inconsistencies as the inter-
ence progresses through many likelihood ratios.

Shafer and Tversky [Ref. 13] remark that traditional
Bayesian theory has been ccncerned with what they call
observation design. This design deals with outcores of
statistical experiments. In the experimental space,' the
analyst knows the possible outcomes and answers. Prior
probabilities for parameters can be assessed in advance.

Bayesians have gradually extended their experimental space

to the area of data analysis where probabilities are'not so
"clearly defined. This possible over extension of Bayesian
Inference could lead to its partial demise in the Lattie-I
field hypothesis space.

This section has not been presented as a critiquae of th?

Bayesian zethcd, but as an insight that there are problers

"with Bayesian methods as with Dempster-Shafer.

55
3-

-"---.----'-: ---.-.-. -." -. - -." -"-"-." .-"-".".-' ". " v ..". -.'[." .."."-."-"-".-' ".•• '.?" ".v -<.- -'" " :



IV. I COMPUTATIO!_L _I_ 0! OFDEMPS-SliHAFER

A major drawback to the use of Dempster-Shafer has been

the long calculation time required due to its computational

complexity. For example, the computation of Belief requires

time exponential in ITHETA4 [Ref. 12]. As part of this

thesis research a decision aid was created to assist in the

Dempster-Shaf er coAputations. Appendix A contains a

description of the aid, as well as, a listing of the PASCAL

code. This aid should not be considered a fully operational

military decision aid, but rather a prototype or example of

an automated evidence combination technique.

The aid is designed to lead the user through thE -teps

necessary to set up and use the Dempster-Shafer theory. The

aid's output has been verified by comparison with manually-
computed solutions of problems using Dempster-Shafer.

Identical results were achieved. The output of the model
used for these checks was Belief, Plausibility and 3ass.

Although this exponential computational time factor of

Derpster-Shafer has been discussed in length,

[Refs. 6,12,15], no actual computational data was found to
support it. in additional benefit of the aid was the

ability to ncw record these computational times. Also

discovered through the use of the aid, was the memory limi-
tation of the computer after all subsets of the Frame of

Discernment were enumerated.
Reduction in the computational complexity of

Dempster-Shafer will be addressed in this chapter, but
first, a brief discussion of the Dempster-Shafer aid created

will be presented. Etficiency of the aid in terms of compu-
tational time and memory requirements will be described in

more depth. Then methods of reducing computational
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complexity presented by Barnett (Ref. 12]# and Gordon and

Shortliffe, (Ref. 15], will be discussed. & third method of
j reducing computational time, Multiple Frames of Discernment,

will be presented.

A. A DEMPSTUR-SHAFER DECISION AID

1. Descrjtion 2f The A

The aid is designed for a user familiar with the
Dempster-Shafer theory. The user will first see a screen
informing him of the theory used in the aid. 4ext, the size
of the Frame of Discernment is requested. A letter of the
alphabet is assigned to each member of the Frame of
Discernment. If a Frame had five members, THETA would be
represented by (ABC,D,E) , or 7 members THETA =

(A,B,C, 0 E, F, G) etc. The user is then told the Frame will
be represented- by these letters.

All subsets of the Frame are generated by procedure
"Generate'. ' For each subset, this procedure creates a
PASCAL record structure that contains the items of Belief,
Mass, aria Plausibility may he stored. The sets are sorted
by size by procedure "Quicksort." to assist in the search
efficiency throughout the program. Next, the aid informs
the user of the item number for data input. The item number
is just a means ot keeping track of the number oa loops
through the program, which equals the number of data items

combined.
The user then enters the set for which he wants to

assign Mass. Llasses are assigned for all desired sets and
then •combined by procedure "Combine" using the

Dempster-Shaf er theory.
The user is then asked if he desires Beliefs to be

"" computed. If so, 3elief and Plausibility are computed by
* procedure "Belief" and displayed. The program then returns

to the input mode and will cycle until ended hy the user.
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2. GLeGXf bSk-

As previously stated, a drawback to the use of

Dempster-Shafer is the time required to compute Belief. As

discussed in Chapter III, Belief for a set requires the

summing of the masses of all subsets of the parent set.

Figure 4.1 shows execution time for the computation of

Belief by the aid, as well as, times for the other major

program procedures.

The execution time for procedure Generate increases

exponentially. The procedure recursively generates subsets

and must check for repetition of sets as it proceeds. The

number of subsets is exponential in THETA, 2' exp ITHETAI.

As the size of THETA grows, the number of subsets grows

exponentially, and also, the number of repeat subsets to be

checyed and eliminated increases. Fortunately, Generate is

only executed once at the beginning of the session. It is

possible to eliminate the generation of subsets altogether

by reading in subsets from hard disk or floppy. All subsets
for various sizes of Frames of Discernments could be stored

and simply read at the beginning of the program.

Unfortunately, the execution time problem for Belief
computations is not so easily . solved. Belief will be

computed whenever the user desires a status of all the

subsets. As the number of subsets grows, this computation

may cause the user an unacceptable waiting time to view,

Belief. During this time ' no input can be made for new
masses. The way this program is designed, multiple data

entries can te made without involving the time intensive
Belief procedure. In a battlefield scenario, the Belief

computation would be done only when conclusions were

required, not after each data input.-

Perhaps a greater limitation in using Mic"o
computers to solve many real world problems is the iarge
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memory requirements demanded by Deapster-Shafer. With this
particular coding scheme using a PASCAL record to represent

each subset, memory limitations (320K RIM) were reached at a
Frame of Discernment size of 9, which equals 2 exp 9 512

subset of TIIEUA.

The military examples used so far in this thesis
have had a Frame size of three elements and total size of 2

exp 3 = 8. As seen in Figure 4. 1, no noticable time delay
occurs at this level, which* is also well within memory
storage limitations. However, the selection of Frame sizes
above this level might cause unacceptable delays, especially

in real-time battlefield applications.

The three methods for reduction in complexity

mentioned in the introduction will now be discused.

B. BAIRETT'S aETHOD. SINGLETON HIPOTHESES AND THEIR

CON ELE ENTS

Barnett, [Ref. 12), showed that if all the subsets of
the Frame of Discernment can be reduced to singleton hypoth-
eses and their negations, computational time will be reduced
from exponential to polynomial order.

Before proceeding, a new military example will be usei
to demonstrate the formulation of Barnett's method. The old
example of sector of enemy attack is not well suited for
this method since it is difficult for the analyst to reduce
the scope of the problem to singleton hypotheses and their
complements.

A suitable military example for the Barnett method is
the analysis cf friendly axes of attack or enemy avenues of 4
approach. Assure 'that the enemy or friendly force must L
choose the best approach into the combat area, given four
avenues A, B, C and D. These singleton hypotheses and their
complements will be the only sets considered. This example
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will prchibit the analyst from assigning Mass to any combi-

nation of ele;e.nts, such as (A,D), though he iay assign Mass

individually to (A) and (D). Mass may be assigned in a

sense to (B,C,D) by assigning Mass tc (not A).

If the problem at hand can be reduced to subsets using
only the hypotheses and their complements, this method does

not restrict the analyst. He will seek reports about the

avenues of approach into his sector or responsibility.

These reports will consist, of information about the terrain,

weather conditions, natural and man-made obstacles, etc.

The analyst will then assign Mass to each hypotheses based

on the information and infer the most likely enemy approach

or best friendly axis.

1. Z~E__:j. of aBarnett~ Me~thog

Three steps will De used to represent the formula-
tion of Barnett's method:

a) Combinaticn of elements and complements.

i) Combine evidence confirming each singleton
hypothesis.-

S ii) CQmbine evidence disconfirming each singleton

hypothesis.
Step 1 results in the formation oZ 2oN Belief
functions (N=|THETAI), one for each element and

one for each element complement.
b) Combination ot element pairs. Combine the confirming

and disconfirming evidence for each element. This

step forms N Belief functions, one for each element of

THETA.

c) Combination within THETA. Combine all elements of
THETA tc produce one Belief function.

Each step of this method will now be discussed.
Only three aveAues of approach (A,B,C) will now be consid-
ered to simplify the computations.
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a. Step 1: Combination Of Elements And Complements *p - *•

For each singleton, and for each complement, the

Mass assigned by all evidence received is combined. Using

avenue of approach (A) from the example, the evidence

confirming (A) after receipt of two pieces of evidence would -

be:

M' (A) = 3 1 (A) ' M2 (A) = 1-11-M1(A() .11-M 2(A)1
(where (') represents Mass at the end of Step 1)

Since only evidence confirming (A) is used here, Mass is

assigned by Mi or M2 only to (A) or to (THETA), see Figure

4.2. No Mass will be assigned to (Null Set). (1-M,1(A)) aild"

(1-32(A)) represent Mass going to THETA from each individual

assignment. Their product, (1-M1(A)) e(1-N2(A)) -represents

combined Mass going to THETA. The remainder of Mass,

1-(1-M1 (A)). (1-42I(A) , goes to (A). No normalization is

required since nc Mass goes to the Null Set.

Suppose two more pieces of evidence are
received, 113 and M4, that disconfirm A. Mass from step 1
assigned to (not A) would be:

V'(not A) = 1-(1-13(not A))e(1-M4(not A))

1 - M' (not A) = Mass assigned to THETA

This process continues for each element in

T HETA. The result is 2*N Belief functions, where each

Belief function has two components one for each element n ard

for each comFlement of the element.

D. Step 2:'Combination of Element Pairs

In Step 2, the Mass for each element and its'

complement are combined. Figure 4.3- shows an orthogonal sum
example of the combination for Mass that supports an item

and its complement.
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M2()1-12 (1) or __

M2 (THETA)

ll (A) (A) (A)
fi1 (A) e*M2 (A)a A)•(-H(}

1 -8 1 I(A I(A) (THET 1 )e(1-1(A))

or -K1l(I HETA) (I-MI(A)) MH2 (A) ( 1-l111 () e 1-3.2 (1l) .i.

Therefore: M1(A) =1-(1-Mll(I))ll-12(A))

= 1-(Mass goi-g to THETA)

Figure 4.2 Orthogonal Combination ,For Step 1.

M ('not A) 1-'°(not A)I (THETA)

8' (A) (Null Set) (A)

Il' (A),'.d (not A) MI (A)-(1--•' (not A)) .,-

1-III(A) (not A) 1 (T-11' (A))A
SI

(THETA) (1-11t (A)e *' (not A) (1-MI.0All*(1--'lnct A)

Figure 4. 3 Orthogonal Combination For Step 2.
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In this step Mass will be assigned to the

element, complement of the element, THETA and the Null Set.

The Mass going to the Null Set:'

M"(Nuli Set) =,MI (A)eM'(not A)

must be removed and so the Masses are nocualized by the

factor:

1-MI' (A)*M (not A) (I- Mass going to the Null Set)

Mass going to (A) in this step, M"(&), will be the combined

Mass of the intersection of i' (A) Fnd 1-M' (not A), the Mass

of the complement that vas assigned to THETA from Step 1.

The same analcgy is true for the combined Mass going to (not

A) in Step 2, M1"(not A), see Figure 4.3.

Nicv the number of Belief functions has been

reduced from 2*N to N, one for each element and complement

pair. The cesultant Masses are represented bj Barnett as p
and c, where:

p = f"(A) "= M'(A)*(1-8'(not A))/(1-Ml (.1M' (not A))

c = M"(not A)= M' (not A)9 (1-30 (A))/(1-M' (A).M'(not A))

Also, the Mass assigned to THETA after combination in Step 2
is represented by r:

r= 1-p - c

and the variatle, d, used later in Step 3 for normalization"'
is the Mass assigned to the complement of the element and to

THETA. "d,, is used in Step 3 to compute the Plausibility of

each element and is identified now for later computations.

d= r + c
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c.Step 3: Coabinati.on Within THETA

Nov the 9 Belief functions must be reduced to

one by combination within the Frame of Discernment. The

example Frame in this chapter: .(A,B,C), will be used to

demonstrate ccmputations; in Step 3. All results from Step 2

will be represented as a function of their element, i.e.:

P (A) M" (Ah)

.c(A) = M" (not A)

r(A) = 1 -p JA) -c (A)

d(A) = r (A) 4 c (A)

The normalizing factor, K, for the overall

Belief functicn is:

K =1/(PROD d(i))*(1 + SUM p(i)/d(i)) (4.1)

-EROD c41) , i in THETA

or:

K =*-14d(A)*d(B)*d(C)*(1 + p(Aj/d(A) + p(B)/d(B) r

+ p (C) /d (C)) c (A) e (B ec (C)J

'Belief for each item (i) is then computed by:

Bel~i) X (p(i) 'PROD d(j) (4.2)

+ r(i)* PROD c(j)), j~i

then:

Be I A) K Kp (A) .d(B) d (C) + r (A) .c(B) oc (C)

Belief for the complement of the item is computed by:

Bel(not(i)) K*f(PROD d(i-).C(tJM p(j)/d(j)) (4.3)

+ c(i)oPROI~d(j) -PROD c(i)], j#i
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Bel(zot A) = K (d(A)ed(B) od(C)) (p(B)/d(B) + p(C)/d(C)) '

+ c (A) *d (2) *d C) - C (A)Oc (B) eC (C)J

All Belief is computed in this manner to produce
one Belief function. Evidential Intervals are then computed

as follows:

Evidential Interval (A) = [Bel(A) ,Bel(not A) I

The following numerical solution of the entire
method using the example will be presented to aid in the

understanding of this method.

Eight items of evidence are received and dasses

are assigned as follows:

Item 1 d(A) = 0.b

Item 2 H (not B) = 0.3

Item 3 M (C) = 0.

Item 4 H(E) = 0.8

Item 5 M(not A) = 0.5

Item 6 & (not C) = 0.2

Item 7 8 (C) = 0.7

Item 8 M (C) = 0.1

Step 1: combine evidence for each item and each coziplement.

Only,(C) has multiple evidence and is combined a-'.

.4' (C) = 1- (1-M1 (C)) .(1-d2 (C)) *(1- 3'(C))

3 ( = 1 - (1 - O.9) (1 - 0.7) (1 - 0.1) = C.838

Step 2: combine the element and its complement:

p(A) = M"(A) = 1k (A)1(-M I (not A) )/M(-li' (A). * (not A))

p(A) = M"(A) = (0.6)&(1-0.5)/(1-(0.6)-(0,,5)) 0.429

c(A) = M1"(not A) = .'(not A)
• -( 1- (A)) / (1- A , (.A) 1 (.-,( t A,- - -

c(A) = (0 5)-(1-U.6)/(1-(0.6) (0.5)) = 0.286

6b
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Sr(A) = 1 - p(A) - c(A)

r(1) = 1 - 0.429 - 0.286 = 0.285

di(A) = rl(A) +c(A)

d(A) = 0.285 + 0.286 - 0.571

p(B) = (0.8) e(1-0.3)/(1-(0.8)e(0.3)) - 0.737

-'c(B) = (0.3)*(1-0.8)/(1,-(0. 8)(0.311 = 0.079

r (B) =1 -0.737 -0.079 =0.184

d(B) = 0.184 + 0.079 = 0.263

p(C) = (0.838)1(1-0.2)/(1-(0.838)e(0.2)) = 0.805

* c(C) = (0.2)e(1-0.838)/{1-(0.838)-(0.2)) = 0.039

* r(C) = 1 - 0.805 - 0.039 = 0.156

d(C) = 0.156 + 0.039 = 0. 195

. Step 3:

K = 1/ (.571).(.2663).(195) (1. + .429/.571 + .737/.263

/+ 805/.195) - (.286)1-.079)1.(039) ] = 8. 998

"Computation of Beliefs:

BelI(A) = 3.9881. 429*.263-.195 + .285*.079-.039) = .091

Eel(E) = 3.988 (.737e.571o.195 .184*o.286o.156) = .360

* Bel(C) = 3.988-(.805-.571,.263 + .156*.286,.079) = .496

Bel(not A) 3.988(.029o(.737/.263 + .805/.195)

+ .286-.263-. 195 - .001) = .85b

BelOnot B) =3.988e(.029-(.429/.571 + .805/.195)

+ .014) = .620

* Bel(not C) 3.988*(.029,(.429/.571 + .737/.263)

+ .014) = .467

The Evidential Intervals would then be:

A: r0.091, 1-0.856] = [0.091,0.1441

fs: [0.360,0.380]

C: [0.496,0.53-]
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i~ .2. Co2_2_utationU _Time PSI Ba_rEett.! Method

A program was written to assist in the computations

of Barnett's method. The.program also enabled comparison of

computational time and memory requirements with the normal

Dempster-Shafer method. A program listing for Barnettts
method is contained in Appendix B'. This program was written

as a research tool and does not have the user friendly

enhancements of the Dempster-Shafer decision aid in

Appendix A.

Figure 4.4 shows the, timed computations for the

Barnett method. The computer memory (320K RAN) could store

Sa Frame of Discernment of up to 1000 items compared to 9 for

full Dempster-Shater. Figure 4.5 compares the Belief calcu-

lation times for Barnett with the times already shown for

the Dempster-Shdfer aid.
Barnett's method offers a very appealing and time

efficient use of Dempster-Shafer in a system where the

following criteria are met:

a) The Frame of Discernment can be adequately represented

.. by the singleton elements and their complements.

b) All evidence can be divided into confirming and

disconfirsing categories for each hypothesis.

The example of the avenues of approach scenario
could be well represented by this method. As shown,

"evidence based on terrain, weather, obstacles, etc., could
be combined using Barnett's method. The resultant

Evidential Intervals would then be compared to determine the
most likely enemy route, or the best friendly route.
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* STEPS 1 AND 2: COMBINE WITHIN SET

X C0

0 20 40 60 60 100

"-" SIZE OF FRAME OF DISCERNMENT

a STEP 3: COMBINE WITHIN FRAME,
COMPUTE BELIEF

""LJ

I ''
0 20 40 60 so 100

I SIZE OF FRAME OF DISCERNMENT

V. Figure 4.4 Computation Times For Barnett's Method.'
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COMPARISON OF BELIEF COMPUTATIONS

----- FULL DEMPSTER-SHAFER

40

0
_z
U,

BARNETT METHOD

o\

0 10 20 30 40 50

0SIZE OF FRAME OF DISCERNMENT

Figure 4.5 Comparison Of Barnett With Full Dempster-Shafer.

C. GORDON AND SHOFRTLIFFE METHOD, HIERBARCHICAL HYPOTHESIS

SPACE

Gordon and Shortliffe [Ref. 15] agree tiiat if evidence

confirms or disconfirms singleton hypotheses, then Barnett's

method produces the desir'ed time reduction. However, there

are many clatses of problems where more flexibility is

required. If the hypothesis space can be reduced to a

strict hierarchy, many more real world problems could Le

handled. Gcrdon and Shortliffe use this nierarchical

approach in their work with MYCIN, a medical diagnostic aid,
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but it 'is also well suited to a military example where' enemy

intentions are being determined.

The example of enemy attack can be expanded so that the

"analyst has tc consider the overall enemy intertion: attack,

reinforce, defend, delay, or withdraw. These intentions can

be structured into a hierarchical tree such as that in

Figure 4.6. Grouped in this manner, the example now fits

the method proposed by Gordon and.Shortliffe.

/ a A Attack
B = Reinforce
C = Defend
D- Dela

, \ E Vithhraw

/ \

Figure.4.6 Enemy Intention Hierarchical Tree.

The enemy intentions are divided into two main groups,

aggressive (attack,reinforce), or regressive (defend, delay,
withdraw). Ihe regressive intentions are further divided
into stationary (defend) and zotionary (lelay, withdraw)
intentions. Each element or subject in the tree has only

one parent, for a strict hierarchy. Since the enemy is
capable of only one major tactic in the zone of considera-
tion, there is no interest in the pair (attack,defend), or
other such combinations that have no meaning to the analyst.
Also, the analyst must have the capability to separate
sensor data into support for these elements of the hierarch-
ical tree. 7he evidence received will only apply to these
elements in the tree and their complements.
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This hierarchical approach proceeds similarly to the
singletcn hypctheses method. All evidence is divided into
confirming or disconfirming parts, only now there are pairs,
triplets, etc. to which this evidence may be assigned. As

in Barnett's method, three steps will be used in the combi-

nation cf evidence:

a) Combine evidence for each element and each element
complement.

i) Combine all confirming evidence. Same as,

Barnett's first step.

ii) Ccmbine all disconfirming evidence
b) Combine al.- confirming evidence in THETA.

c) Combine disconia raing evidence with confirming
evidence from Step 2.

Before proceeding, the hierarchical tree of Figure
4.6 will be split into a tree with the elements of THETA, T,
and one with the cosplements of T, Tc, see Figure 4.7 Since
it is the superset of both trees, (THETA) itself, is not

included in either tree.

T = (AB,CDI,DE,A,B,C,D,E)

u= (notAD,notCDE,notDE, not•,not3, notC,notD,notE)

Evidence will be combined for ITI + jTcj items = 16, an.
final belief will be computed after Step 3 for 1TJ + ThETLA
17 items versus 2 exp 5 = 32 items for the full

Dempster-Snaafer method. These reductions will decrease
computational times and storage requirements.

The steps for Gordon and Shortliffe's Method are as

follows.
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Tc

/ \ /

/ /

I "

Fiqure '4.7 Hierarchical Tree Of Elements And Complements.

a. Step 1: Combine Evidence For Elements And For

Ccxplements

Use, Barnett's equati,.ns to compute combinei
evidence for each element and each complement:

•' i) I- I-M (i) (-M2(-i)) i in 'THETA (4.4)

Where (') indicates Mass after Step 1 and (") will indicate

Mass after Step 2.

' (A) = 1-(1-IMl(A)) * (1-12(A))
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Each element (i) will now have a Mass M' (i) and a Mass

1-M'(i) assigned to THZTA. It is necessary to identify the

Mass that each element's combination sends to THETA for use

in later steps. 'Let M'i(THETA) equal the iaass assigned to

THETA by element (i) during step 1.

M'A(IHETA) = 1-M' (A)

The Masses for (not A) would then be:

31'(not A) = 1-(1-1l1 (not A)) * (1-M2(not A))

M'noth(THE7A) = 1-M'(not A)

There are nov 2oN Belief functions, N in T and N

in Tc. Step 2 will reduce the N Belief functions in T to

one Belief function.

b. Step 2: Combine All Confirming Evidence in

THETA.

All confirming evidence in THETA, all of which
is in T, will now be combined.

The combined evidence for THETA, K'6 (THETA) is:

M"(THETA) K=EROD K'i (THETA), i in T (4.5)

This is the product of all Mass assigned to THETA by all
elements in T. Now compute the combined evidence for all

other elemeLts in T:

M"(i) = KeM'(i).PROD M'J(IHETA), i in T, (4.6)

j not a superset of i

The Mass of element (i) in Step 2 is-the product of its' nass
with the Mass assigned to THETA by all other sets in T
except (i), and supersets of (i). Element (i) cannot
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combine with Mass that it assigned to THETA. In addition,

it cannot receive mass from a superset's assignment to

THETA. The Evidence that was assigned to a superset of (i)
was not conclusive enough to assign it to element (i).
Allowing (i) to combine with fMIJ(THETA), (J) a supers.et of
(i), would allow assignment of Mass from which (i) was
earlier restricted. This is not acceptable under

"Deapster-Shafer. The Mass for element (A) in the example

would be:

M11() = Koel (A) oM'B(THETA) e'CDE(THETA).

M' C(THETA) eM'DE(THEIA) eM'D(THETA) W'E (THETA)

These calculations continue for all elements in
T. The normalization factor, K, is the inverse of the sua
of all the new [lasses:

K 1 /SUM I '(i), i in T or i THETA (4.7)

There are now N+1 Belief functions, N in Tc and

one in T. Step 3 will reduce these to one Belief function.

c. Step 3: Combine Disconfirming And Confirming
Evidence

Step 3 will now combine T and Tc to produce one
Belief function. Each element of Tc will combine with T.
Step 3 uses an approximation to 3, the orthogonal sum, which
will be designated as W'. M",(i) a' 1,,(not i) will have non.
zero value on only (T union TH3ETA),

(ABCDE,AB,CDE,DL.,A,B,C,D,E). Any Belief normally assigned
by @ to g, g not in T, will instead, by 4', be assigned to

the first ancestor of q in T. For example:

(not E) a' (CDE) = (ABCD) a (CDE)

but (ABCD) & (CDE) (CD) , which is not in' T.
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In this case the Mass that would have been assigned to (CD)

will be assigned'to (CDE) the first ancestor in T.

There are three cases for step 3 combinations.

For each case there are two elements involved, one from Tc,

(not Y) , and cne from T, (X). The combination case is based

on the relaticnship of (Y) and (X).

1. Case 1: X is a subset of Y:

M(IX) = KoMO, (X) *MlnotY (THETA)

For example:

fl (A) V' NO (not AB) , A is a subset of AB

4(A) = KoM" (A) .MlnotAB(THETA)

2. Case 2: X & Y = (Null Set), i.e. X & not! = X

a) Case 2(a): If (X union Y) in (T union THETA):

M(X) = K[M1i(X) + 9"(X union 1)eMI,(not Y)]

For example:

f" a' M"(not DE), C & DE = (Null Set),

CDE 'in (T union THETA), therefore:

M(C) = KOC•"(C) + ll" (CDE) ol@@(not DE) J

b) Case 2(b): if (X union Y) not in (T union THETA)

then the Mass of (X) 'is not changed by the combi-

nation: .

1i(X) = K•M(X)

fil(C) &I' M"l(not E), C & E = Null Set,

CE not in (T union THETA), theretore:

M (C) = KoM" (C)

3. 'Case 3: X is a proper super set of Y'

a) Case 3 (a): It X & nctY is a -et in

S(K) = KLl" (X) M "notY (VIE E A)
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f" (CDE) a' " (notC), CDE S ABDE = DE, a set in
(T union THETA)

H(CDE) = Keff"(CDE) .NnotC(THETA)

b) Case 3(b): If X & notY is not a set in T (this I.

case assigns Mass to the superset, *which in-all
cases is X due to the strict hierarchy and unique

parent requireaents).

f"lnotE) ('1 M(CDE), ABCD & CDE : CD, not in (T

union THETA), but CDE is the first ancestor of CD
fl(CDE) : KoM(CDE)

This process continues with each element from Tc combining
with each element in T using one of the case rules. K, the -
normalizing factcc is computed after each iteration of (not

Y) from Tc.
Normalization is done by summing the Masses in

(T union THETA) and dividing al.. Masses by that value.

K = 1/SUM M (i), i in (T union THETA) (4.8)

A shortcoming of the method descrited by Gordon
and Shortlirfe is that step 3 assigns all dass to (T union
THETA). No Mass remains in the complement sets, therefore
it is not possible to compute Evidential Intervals,
[Bel(A) ,1-Beil (not A)]. All comparisons between hypotheses
must oe done cn Belief alone.

The following examFle of this method is provided
for clarification. The hierarchical tree shown earlier in
Figure 4.4 still applies.

Masses are assigned as follows:

I(AB) = 0.4, d AB(THETA) = 0.6

M(not CDE) = 0.3, H notCDE(THETA) = 0.7
=(DE) 0.6, " DE(THETA) 0.4

.1(A) = 0. 4, H A(THETA) = 0.6
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M(C) = 0.2, E C(THETA) = 0.8 %elf

HI(A) - 0.3, Ah(THETA) = 0.7

•- xThere is only one element in Tc =(not CDE), there are four

inT.

Step 1:

(A) is the only element with multiple Masses:

N'1A) = 1-(H1(A)),(1-M2(Al) V

S'(A) = 1-(1-0. 4)a(1-0.3) 0.58

M'A (THETA) = 1-0.58 = 0.42

Step 2: Combine all comfirming evidence in T.

M"I(THETA) = R.M'ABC(TI-ETA) *M'DE(THE.LA)

oM'9A(THETA) eM'C(THETA)

= K.(09)o (0.5)0(0. 42) (0.8) = K-(0.08 .1)

M1 (AB) = K., (AB) *MIA (THETA) oM.DE (THETA). C (THETA)

= K (0.1) (0. 42)o(0.5). (0.8) = K. (0.017)

K"(DE) = KeM' (DE)e9I'A(THETA)e'kB (THETA), -

= e(0.l5)e(O. 42)e(0.9) = K4 (0. 189)

"(A) = KOM' (A) *M'DE(THETA)

= KO(0.58)1(0.5) K-(0.29)

W" (C) = KeO' (C).oM' AB(THETA) *MI' A(THETA) eN'DE (THETA)

= Ko(O.2)lO(0.9)l(0.42). (0.5) = K.(.038)

K 1/The sum of all nasses in (T union THETA)

=1/l" (THETA) + N O"(AB) + M" (DE) + H"(A) + M" (C)

= 1/(0.151) + (0.017) + (0.189) + (0.29) + (0.038)

= 1/0.685 : 1.46

Normalize the masses in T.
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The elements in T are:

N"(THETI) = (1.46)o(.151) - .221

X"(AB) = (1. 46)(.017) = .025

II"(DE) = (1.'46)1(.189) = .276

, IA) -= f1.46)*o.291 - .423
N1C1- (1.46)*(.038) = .055

Total = 1.0

The elements in Tc are:

11"(not CDE) U.3 ["notCDE(THETk) = 0.7

Step 3:

1. 1"(notCDE) 3 H" (THETA), THETA a saper set of AS =>

Case 3

THETA & (not CDE) = THETA & AB = AB in (T union

THETA)

f (THETA) = Ko#' (THETA) oMI"notCDE (THSTA) In this

case, Mass would normally go to (TiHETA) and AB, see

Figur'e 4.2, here (THETA) its combined Mass for this

iteration, and later when H" (not CDE) &' V" (A B)

occurs, AB uill receive its combined Mass. This is •

an iterative process versus the normal one step

Dempster-Shafer combination.

I(TEETA) = (.221) (.7) = 0.155(normalization will

cccur later)

2. d"(not CDE) a' M" (AB), ABSCDE = Null Set, (AB union

CDE) in (T union THETA) => Case 2

M (AB) = (M (AB) + M (ABCDE) -N (not CDE) ]

.025 + (.221) * (-3) ] = .091

3. d"(not CDE) @' "I(DE), DE subset of CDE => Case 1

S(DE) = Ni (DE) o MnotCDE (THETA)

(.276)-(.7) .193
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4. 8(not CDE) &I 11"(A), CDEFA N Null Set => Case 2, (A

union CDE) not in (T union THETA)

N (A) = M (A) (but will be normalized)

.423

5. fl" (not CDE) &I 11" (C) * C a subset of CDE => Case 1

8 (C) =MII(C) soil'notCDE (THETA)

(.055)o(.7) =.039 k,..

Compute K, the normalization factor.

K = 1/ sum of Mlasses in (T union THETA)

=.155 + .091 + .193 + .423 + .039 =.901

Normalized1 Masses:

N(THETA) = .155/.901 =.172

11(AB) = .091/.901 = .101

11 (D E) = .193/.901 = .214

M1(A) = .423/.901 = .470

11(C) =.039/.901 = .043

Total =1.0

This process of combining elements from Tc with those in *r

would continue until all elements have been combined, i

this example there was only one. Comparison of hypotheses

would then be done based on, final Belief values:

hel (AB) M I(AB) + M (A) = 10 1 + .470 =.571

Be! (DE) M (J-E) .214

"Iel(A) =.470

Bel (C) =.043

Bel (B) = Bel (D).= Bel(--) =0.0 0

Tiii hldsow strongest Belief (.571) iL~ an aggressive

enemy action (AL), which stands for attacX or reinforce'.
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A program was wri'tten to assist in the computations

using the Gordon and Shortliffe technique. A listing of the

program is contained in Appendix B. This program, like the

program for Barnett's method, does not have the user

friendly enhancements of the Dempster-Shafer decision aid in

Appendix A. The purpose of the program was to assess the

time calculation advantage of this method and determine,

memory requirements.

"Figure 4.8 shows a comparison of the Belief computa-

"-" tions for the three methods discussed so tar. Belief compu-

* tations for Gordon and Shortliffe are the same as the full

Dempster-Shafer, except there are fewer sets for' which

computations are necessary. The time reduction occurs since

many of the subsets of THETA are not considered.

The maximum number of subsets that can occur under

the unique parent restriction of the method are: (2*h - 1).

This number, results from a descending creation path from

THETA, separating one element at a time. Now instead of

having 2 exp N elements for which Belief must be computed,

there are only (2f-l1). For a THETA of 1' elements, instead

of having 2 exp 10 = 1024 elements, there may only be a

maximum of 2e10 - 1 = 19 elements. This size reduction

helps explain the computation times in Figure 4.8.

The computer memory (320K RAN) could store up to a

Frame of Discernment of up to 500 items using tne Gordon andC Shortlifte method versus 1000 for Barnett and 9 for the filli

Dempster-Shaf er.

Gordon and Shortliffe's method is a practical and

-efficient use of Dempster-Shafer in a system where the

following criteria are met:

a) A strict hirarchy of elements exists and each'element

has only cne parent.
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COMPARISON OF BELIEF COMPUTATIONS

0 ..--- ----- FULL DEMPSTER-SHAFER

z BARNEU7 METHOD
0- 0 - 1
U I(

"GORDON+SHORTLIFFE --------.

0 10 20 30 40 50

SIZE OF FRAME OF DISCERNMENT

Figure'4.8 Comparison Of Belief Computational Times.

S b) All evidence can 'be divided into confirming and

disconfiraing categories for each hypothesis.

* The example of the overall enemy intention fits well

within the limits of this method. However, the comparison

S of the hypotheses oi the intentions would have to be made on

"the result of beliet alone. The analyst would not know the

_ Ignorance, 1-Eel(not X), reldining about each of the

hypothesis.

ShOrtcomings of this method are:

"a) Loss of ability to compute Evidential Intervals as

"" . discussed edrlier.
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b) Order dependence on combination. Gordon and

Shortliffe mention that their approximation to the

Dempster-Shafer combination can be order dependent

* when a set and its parent have only one descendent.

D. MULTIPLE BRINES OF DISCERANENT

One iinal method of reduciug complexity, multiple Frames
o of Discernment, will now be discussed. This method may useI..-.

. any of the computational tochni.lues discussed so far. Its

reduction in complexity comes from the separation of the

Frame into smaller, more manageable categories with which

the analyst can work. Computation of Belief for, these

smaller Frames should now fall into the reasonable area of

K Dempster-Shafer calculation times.

The obvious requirement for this method is~a logical

separation of elements in the original Frame oZ Discernment.

"Once the elements are separated into multiple Fr•;es, .items

from different Frames cannot be compared for they are now

part of different.Belief functions.

As an example or this method, consider an expanded

version of the enemy intentions problem. The analyst still

desires to determine the overall intention. If the inten-

"" tion is Attack, he wants to know which sector is most

likely. He also desires to know if the enemy intends to use

nuclear weapons, no matter what the tactic. The Frame of

Discernsent ncw has 9 items:

1. Attack, Sector 1

. 2. Attack, Sector 2
3. Attack, Sector 3
4. £ einforce

S5. Lefend

6. Dela y
7. Withdrau
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8. Use Nuclear Weapons

9. Not Use Nuclear Weapon

A hierarchy ot elements exists, but as described in

Chapter III with the sector example, unigue parents do not

exist. For example, let the Frame of Discernment be repre-

sented as:, A.B,C,D,E,F,G,H,I where:

A = Attack, Sector 1

B = Attack, Sector 2

C = Attack, Sector 3

D = Reinforce

E = refend

F = Delay

G = Withdraw

H = Use Nuclear Weapons

I = Not Use "'1clear Weapons

Now (ABC) is a multiple unique parent for (AB), (BC) and

(AC), Dut (A) has two parents (AC) and (AB). The same situ-
ation exists for (B) and (C). Therefore, Gordon and

Shorliffe's methcd would not work here.

The full Dempster-Shafer method would create 2 exp 9
subsets, which according to Figure 4.1 wouid require about

100 seconds for Belief computations. Some of the pairs oZ

elements of THETA, as discussed earlier in the Gordon auL"A

Shortliffe method,' would not be of interest to the analyst.

A solution to this dilemma is separatIng the problem into
three Frames of Discernment. Each Frame will use one of the

computational methods discussed. Any of the methods may be
used where apFlicable in the maltiple frames. All three are

used here to show the diversity of this method.
The overall intention ot the enemy is still desired, so

use the Gordon and Shortliffe method for the Frame:

(AT,D,E,F,G) , where (AT) is the attack intention and D

through G remain as described above.
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Use Barnett's method for the question of the enemy's

intent to use nuclear weapons, (H,I), and use the full

Dempster-Shafer method to determine sector of attack.

* Caution must be exercised when discussing the most likely
sector of attack for that Belief is conditioned' on the
Belief that the overall intent is attack.

i The timed calculations would now be:

"Full Dempster-Shafer: 3 elements in THETA = approximately
1 secona

I Gordon and Shortliffe: 5 items in THETA = approximately 1
second

' Barnett: 2 itmes in THETA = approximately 1 second

This complex and inefficient ;roblem has now been reduced to
I a very manageable calculation for the intelligence analyst
"* usinq Dempster- Shafer.

Evideuce received while using this method of multiple
* Frames of Discernment, does not need to be separated into
I one of the multiple Frames. On the contrary, a report indi-

"cating an-attack ",'ith nuclear weapons could be used for all
the Frames if applicable. The Belief values of the various

Frames will net be compared and are not calculated using the

Masses of the other Frames.
Intermediate results can be saved on a disk and recalled

:hen more relevant data arrives. Therefore, one machine
could keep all three methods running in an allmost simulta-
neous state.

The method of Multiple Frames of Discernment is a viable
alternative to the full Dempster-Shafer method if the Frame

is separable into distinct categories.
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In Chapter II, the battlefield intelligence process was
modelled as the Interpretation node in the command ani

control cycle. In this node, information was processed into

intelligence by the analyst. Chapter III proposed the

Dempster-Shaf'er theory of evidence comhination as an aid for
the analyst in tCe Interpretation node. A decision aid and

three computational techniques for reducing calculation time

for the Dempster-Shafer theory were presented in Chapter IV.
Enharcement of a specific job application in the

Intelligence node, through the use of the Dempster-Snafer

theory and a decision aid similar to the one in Chapter IV,

will now be analyzed. This specific job area, Army Division

Situation Development Analyst (DSDA), was chosen due to its

relevance to research conducted by MAJ.L. Baltezore, U.S.

Army, in his thesis at the Naval Postgraduate School

[Ref. 16].

'Baltezore's thesis proposed a Decision Support System

hardware !ayout to assist the analyst in conducting situ-

ation assessment at livision level. A Knowledge Bas--d

System (KBS) was designed to conduct automated analysis

concerninq possible courses cf enemy attack. The use of

Dempster-Shafer in this KBS will now be explored. While not

evaluating any specific te.-hnique, Baltezore proposed that
some method of inference should be used to aggregate, battie-

field information stored in the data base. The Knowledge

Pased System of the Division Situation Development Analyst

and an iintention assessment capability using the speed of

Dempster-Shafer with small Frames of Discernment (Quick

Assessment Ca fability), will be used as specific exaaples of
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actual Interpretation node duties that can be enhanced by

Deapste r-Sh af er.

The jobss af the DSDA will be briefly discussed as will

the structure of the KBS. The use of a Dempster-Shafer

theory in the Knowledge Based System as well as a Quick

Ass'essaent Capability through a decision aid will be

evaluated.

A. DIVISION SITUATION DEVELOPNENT ANALYSIS

Situation Analysis at the division level is performed

within the All Source Production Section (ASPS) of the All

Source Analysis System (ASAS)', see Figure 5.1, [Ref. 16:
p. 2 5]. The ASAS. is an Army project to establish a system
that maximizes the productivity -of. Intelligence and

Electronic Warfare (IZW). Through enhanced productivity,

the Interpretation node will process information into intel-

ligence more quickly, speeding up the command and control
cycle.

The Division Situation Development Analyst is usually

the senior intelligence analyst in the All Source Production
Section. Using a broad view of the enemy forces, the DSDA

must determine key enemy objectives, rank potential enemy

ccurses of action, and identify key targets, command and

ccntrol nodes, or events indicating a specific course of
action. The analyst bases his assessment of the enemy situ-

ation on data passed through his work station (Ref. 16: p.

32].

As descrited in Chapter III, this data is inherently
uncertain and incomplete. Using this data, the analyst must

interpret ds much as possible about the enemy intent as

quickly as possible. Figure 5.2- depicts the analyst's

production cycle. The analyst would use the proposed

Knowledge -'ased System to assist him in determining the
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possible courses of enemy action. Vithin this structure

exists the potential use of Dempster-Shafer.

Sl I4M • MUO II ; wi

Pigure 5.2 Analyst's Production Cycle.

B. TUBl KNOWLEDGE BASED SYSTER

As previcusly stated, the knowled-ge Based System is

desigied to provide automated analysis concerning possible
courses of enemy action. Analysis of the KBS will be

limited to the structure of the system and the internal

theory which correlates the data.
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Baltezore's proposed structure for the KBS is shown

in Figure 5.3. This KBS interacts with the analyst through

the Tnterrogation Module to determine the type of analysis

desired. For example, is the enemy intention Attack, (one

of the examples used in Chapter IV)? The Situation

Assessment Processor accesses the Knowledge Base to deter-

mine a rule list associated with the type of analysis

desired. Using all data available, the KBS then establishes,

a probability value associated with., the specified course of

action. The Explanation Generator presents the analyst with

the course of action considered, its probability value, and

a rule audit trail of the deduction process.

2. Kn_£wXl•d_•e Ba~se• 'S.s~t~aSeom•qrxl-

The KBS deduction theory is based on work done by
Ben-Basset and Freely, [Ref. 171, who proposed the use of
classes, features, and relevancy pointers to conduct situ-

ation assessmEnt.

a. Classes

Classes are used to define battlefield situ-

ations of interest to the analyst. For example, attack, •"

reinforce, defend, delay, withdraw are enemy situations that
may be represented as classes. If the general class is

known, such as attack, then the specific location, such as
the sector of attacK, is desired through analysis. This

characteristic is analogous to the Dempster-Shafer frame of

discern ment.

b. Features

Features are bits of informatiorn, such as the
context of a report, related to the situation and used to
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determine the class. For instance, -presence of an indepen-
dent tank battalion (ITB) in the division zone would support

the class, at.tac k. An independent tank battalion is a
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second echelon unit normally used as a lead attack element

in a breakthrough attempt. An example of features and

classes is shcwn in Table 5. 4.

Class of Enemy Intention: Attack .

Massing of mechanized ele ments 0.8 0.3 ',:gIExtensive artillerypreparation 0.8 0.3

artillery positions concentrated' 0.8 0.2

Concentration of mass toward 1.7 0.3
either or both flanks

Location ol enemy troops in 0M8 0.3
forward assembly area

Location of suppl and evac- 0.7 0.3 1
uation installation well fcrvard

Increased air reconnaissance 0.8 0.4 ..

movement of additional trocps 0.8 0.4
toward the front

Figure 5.4 Feature Probability Support For Class.

c. Relevancy Pointers

Relevancy Pointers are used to reduce the expert

systems search for features supporting classes. Separate

features such as the number and type of tanks may be used to

determine the presence of the ITB. If the unit has already

been identified, then it is not necessary to use the rules

w'ich determine the type of unit. In this manner relevancy

pointers speed the assessment process. Relevancy pointers

are siwilar tc antecedent rules in a rule-based system.
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The significance of features and their support
for the different classes under consideration are aggregated'

by some. theory of evidence combination. Features, as infor-
aatio., may support several classes. The support of theses

features for specific classes would now be combined to
provide an overall indicator of support for the class.

C. PROBLEKS 1ITH THE KNOWLEDGE BASED 31STER APPROACH'

The use cf a rule base and a priori probabilities for

feature suppcrt of classes can be considered an expert
systea approach to the situation assessment task. The KBS
conducts the actual analysis, the analyst merely queries the
system. The problem with an expert-type system approach is'

similar to that of a Bayesian approach, an endless task of
defining an! !!;dating the rule base.

Also, the rules used to determine the support of a
feature for a class are not well defined. Table 5.4 showed

hypothetical values of feature support for the attack inten-
tion. The adjectives used, "massing" and "extensive", are

very indistinct. The rules using them would then require
some way of inferencing this indistinct adjective irom the,
data base ("fuzzy sets"). For example, extensive prepara-
tion would need to be defined as number of artillery rounds

in an hour, cr number of targets engaged in a specific time
period. If the data base supported these criteria, then the

rules base could deduce that extensive preparation has

occurred.
Unfortunately, this use of explicit rules and indistinct

features in an expert system can lead to a false sense of
security of the battlefield. The analyst is dependent on

tLe internal design of the system.. He is receiving the
system's analysis ana may tend to discredit his own inter-
pretation of the situation. Further, it is doubtful whether
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any commander. is presently ready to allow his analyst to

accept a situation assessment from a "black box'#. The

commander has too much risk associated with his decision

based on this analysis to accept a fully automated analysis.

Cushman, [Ref. 1], suggests that a commander will not be

inclined to accept black box analysis , but instead support -. '

gradual automation based on transparent aids which allow the

analyst to retain control.
k decision aid, similar to that in Chapter IV, used in- a

quick assessment capability, is a complimentary alternative
to the Knowledge Based System. This aid would act more as a %-%

parallel process with the analyst reflecting his view of the
hattlefield rather than an "expert" view given by the rules

created by the "experts". The analyst is the expert in his
division and cannot rely on rules or features creatcd by
other.

Farthermore, 'the features suggested by Ben-Basset,
[Ref. 17: p.486], were not intended for dogmatic application

in all battlefield situations, but a:-s given as a guide to

the analyst fcr the analyst to use [Ref. 18: p. T-11. The

D empster-Shafer aid would be dependent on the analyst and

his inputs rather than the analyst depending on the expert ¶

system. While the analyst wouild use these indicators as

guides to assign Mass values, he would be free to change

support values based on hij knowledge of the situation and *' .°.. -

his prior experience.

*D. THE DE.IPSTER-SHAFER THEORY IN SITUA~TION DEVELOPMENT-

ANkLYSIS

The Dempster-Shafer theory could be, used in two ways in

the DSDA. First, it could be used within the Knowledge -

Based Structure proposed by Baltezore. Dempster-Shafer

would be the combination technique used to aggregate the

rgl
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feature probabilities and produce the overall Belief for

each class. The feature probabilities would have to be

"represented as Masses and adhere to the definition of Mass

presented in Chapter III. The use of the Gordon and

"Shortliffe method was discussed in Chapter IV using the

example of determine overall enemy intentions. This tech-
nique would reduce internal Kncwledge Based System inference

time and provide an efficient combination of evidence.
Second, the aid could be used as a quick assessment

device for the anafyst. This use would be most relevant
when the analyst can narrow the scope of the class. If the

"general class was attack and the analyst was concerned with
"the sector of attack, the Dempster-Shafer aid would be used
to determine Belief for sector possibilities. This scope of
use was represented through examples in Chapters III and IV

using the sector of attack example.

The aid would serve as a reflection of the analyst's
assessment of the battlefield as time progresses and reports
are received. Using Belief values, the analyst will recog-
nize the most likely sector of attack anl advise the
commander. Using Ignorance values, the analyst will reposi-
tion or reorient sensors to investigate lack of knowledge of

activity.

1. Advan taies Of The QguiCk Assessment gse_

There are three main advantages to the quick assess-
ment use over tte knowledge Dased system:

a) Absence of Lule Base

b) Absence or Data Base

c) Speed

a. Absence of Rule 3ase

--he analyst is not dependent on a predefined

rule base to deduce support for the sector of attack. He
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will consider each report and assign mass values based on

his understanding of the enemy. This understanding will

*i come from battlefield experience and knowledge gained from

* experts through instruction.

b. Absence Of Data Base

The reports received in the jaick assessment
capability will still be stored in some data base for future
use. However, the analyst would not search through previous
-data, but interpret each piece as it is received.

c. Speed

For each rule used, the KBS must satisfy the

precedent (if pcation) ,' to allow use of the antecedent (then
pcrtior.). This process requires the continual search of the
data base for conditions that satisfy the rule precedent.
With a large rule base, such as that needed in the KBS
structure to define all types of enemy activity, the cycling
time would he prohibitive for a real time assessment
capability.

If time is available, the KBS procedure would be
used to determine eremy intent, but if a 1uick assessment is

desired, as discussed in Chapter II, the alternative capa-
Dility of Dempster-Shafer is the better option.

E. RELEVANCY OF DEBPSTER-SHAFER TO SITUATION DEVELOPMENT

ANALYSIS

It should be obvious that the examples used in preceding

chapters are the same as the mission oojectives of the
Situation Development Analyst. Tne use of the

Dempster-Shafer theory in this specific part of the
Intel~i qence node will speed the analytical process,

providing thE commander fast and accurdte intelligence
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support. This enhancement vili reduce command and control

"cycle time and, ain the benefit of this reduction discussed

in ChapteL II.
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*.This thesis has demcnstrated the use of the

Dempster-Shafer theory of evidence in a decision aid to
reduce command and control cycle time on the battlefield.

The reduced cycle time allows the battlefield commander to

interdict the enemy force earlier and gain a 'decisive

advanta ge.

The command and control cycle was modelled as a network
to investigate data flow and network processes. The

.'- Interpretation node was determined to be the critical node
k and also a candidate for enhancement through application of

the Dempster-Shafer theory. The Dempster-Shafer approach
was presented as a plausible evidence combination technigue

when uncertain, incomplete, and incorrect evidence ,iust be
combined in a battlefield environment.

Three methods for reducing the coinputational complexity,

of the Dempster-Shaier theory, Barnett, Gordon and
Shortliife, and multiple Frames of Discernient, were demon-

strated. These methods all have restrictions involving

trale-offs between flexibility or scope and time efficiency.

Military examples that met these restrictions were presented,

to demonstrate their possible use on the battlefield. A

decision aid based on the Dempster-Shafer theory was created

and discussed. The aid eased tne computational burden of
Dempster-Shafer and allowed comparisons of computational

speed with the three reduction methods.

A specific application area for the Dempster-Shafer

theory, Situation Assessment in the All Source Analysis
System (ASAS) was described. The task of situation
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assessment provided a good example cf a process in the

Interpretation node that can be enhanced by Dempster-Shafer.

B. COICLUSIONS

Dempster-Shafer was not presected as a "cure-all', for

evidence combination. Nor was it presented as a replacement
for more prcbabilisticly rigorous techniques such as,
Bayesian Inference. The use of Dempster-Shafer in this
thesis showed a logical method of combining data on the
battlefield tc help the analyst determine enemy intentions.
The flexibility cf Dempster-Shafer in handling battlefield-
quality evidence should not be lost in discussions over its
shortcomings. The intelligence analysc and battlefield
commander need to make the best use of -ill data available in
the mcst efficient and accurate manner possible.
Dempster-Shafer is a viable technique to assist in this
process.

The use of Dempster-Shafer in the Knowledge Based System
proposed by -Baltezore would allow the intelligence analyst
tC conduct automated analysis. The analyst would access the
data base of evidence and receive Belief values for his
hypotheses of enemy intentions.' The use of the Barnett,
Gcrdon and Shortliffe, or multiple Frames of Discernment
methods, wrhen applicable, would allcw for the most rapid
ccmputation of Belief.

Automated analysis in this manner would allow access to
mcre data thian the human processor could handle. Many
analysts could use the same system over a period of tilde to
analyze trends' in the enemy activity. Furthermore, the

* analyst now has a backup system to his manual method of
analysis. He can make the most use of the human-machine

"*" leverage aiscussed in Chapter 17.
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C. AREIS FOB FURTHER ANALYSIS

This thesis has only begun to investigate the use of

Dempster-Shafer on the battlefield. The determination of

mass values based on receipt of evidence has been left to

"the analyst. The task of' determining these values for

"Deapster-Shafer, or any combination method, is formidable.

Chapter V discussed the problem of a rule base with explic-
itly assigned probatilities. Unfortunately there does not

exist a data base from which probabilities of enemy inten-
tions based on tactics can be extracted.

I Samet, [Ref. i9], has said that each sensor report has a

reliability and accuracy associatec1 with it. These features

could weight the 3ass values assigned by the expert or
analyst. The integration of these reliability and accuracy

values into the Dempster-Shater mass values has not been

discuss ed.

The Knowledge BazseA System hardware of a Decision
SuFport System, such as that proposed by Baltezore, must be

designed to accept an evidence combination technique.

These are but a few of the areas that, are left for
"further exploration of Demp3ter-Shafer on tae battlefield.

1
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THE DE•PSTER-SHAPER DECISION AID'

This appendix contains the listing of the code created
for the decision aid and an explanation of the procedures.

In general, the aid is a continuous loop that prompts the

user for input from each knowledge source report received.
It requests set identification and mass arsigned to that
particular set. The aid then combines the new input with
the current mass values using Dempster-Shafer. New Beliefs
are computed only if directed by the user and then displayed
to reveal the current status of knowledge about the Frame.

The program is written in Turbo PASCAL for an IBLd

compatible computer. A main user routine and fourteen
procedures, called throughout the routine, make up the
program. See figure .,1 for the program's Flow Diagram.

As stated, the program is composed of the following

procedures.

A. RAIN PROGEAd

The main program, DS(Dempster-Shafer), is an executive-
like program that teacts to the user's desires. It
initially sets up the PASCAL Record Structure that will
ccntain those items of information necessary for use in the
program by Dempster-Shafer computations. These items 'are:

1 . Mass (Current Massi.

2. Iempmass (Temporary storage for Combined Mass).
3. Newmass (User Mass input from Knowledge Source).
4. Belief (Current Belief).

5. ID (Set Describer).
6. Value (Number of Items in Set ID).
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Figure A. 1 Flow Diagram for the Decision Aid Program.
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An array is then created to allow for the maximum number

of items in the Frame of Discernment which the computer can
store.

Next, the main program begins a calling sequence of the

procedures. Within one of these procedures, many other
procedures may be called to accomplish the task at hand.

After the aid is ready for user input, the main program asks

if the user desires to continue. If the answer is yes, then
the program cycles again. If no, then the user is allowed
to request a final display of the output (Belief,
Plausibility, and Mass) and the program terminates.

The first procedure called by the program is Copyrite.

1. PROCEDURE COPYRITE

Procedure Co-pyrite is just a "cover sheet" for the aid
identifying the theory used in the aid, and the creator.

The next call is to procedure Initialize.

C.' PROCEDURE INITIALIZE

Procedure Initialize requests the number of items in the
user's Frame cf Discernment. It then determines the letter
of the alphabet corLesponding to the end of the size of the

Frame,i.e., 5 = E, 7 = G. The letters of the alphabet will
then be used as ideLtifiers for each separate set. This use
of letters allows for set operations within PASCAL.

The number of sets that can be made from the Frame is

then computed, where size = 2 exp U, N = number of items in

the frame.
Procedure Set Up is called next.
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D. PROCEDURE SIT UP

This procedure sets up the first two subsets of the
Frame of Discernment. Those sets are the entire Frare,

letters "'" through the end letter, and the null set, letter
"Z", used only ±cr easy identification.

Procedure Levels is next.

E. PROCEDUREB LEVELS

Procedure Levels is used to compute the number of combi-

nations of set size N split into subsets of size N through
1. In other wordas, N items N at a time, N items N-i at a
time, through N items 1 at a time.

The results of this procedure are stored in an array and

are used to help reduce "do-loop" cycle time. In a loop
where it is necessary to check subsets of the current set,
as when Belief is computed, the size of the current set is
determined by its Value (number of items in set). Then only
the sets with value less than this are checked for subset
possibility. This action eliminates unnecessary checks of
p;rent sets that cannot be subsets of the current set.

The next call is to Procedure Generate.

F. PROCEDURE GENERATE

Proceiure Generate is a complex recursive routine to
create all subsets of the Frame of Discernment including the
null set. When the Frame is large, it is the most time
consuming prccedure in' the program. Figure A.2 shows a Flot

of some procedure execution times versus number of items in

the Frame of Discernment.

Starting with the set of the entire Frame, Procedure
Generate creates new sets by removing one character at a
time from the current set. All subsets of the new set are
then created by a recursive call to generate.
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The computatiou time is high since identical sets are

created in the recursive calls. Duplicate sets must be

checked fOr and eliminated. As the fra' e size grows, this,

time factor is compounded, see Figurg A.2.

The next procedure called is Quicisort.

a. PROCEDURE QUICKSORT

Quicksort, like Generate, is a recursive routine that
.sorts the sets according to the number of items in the set

ID. This resulcing sorted array of records allows for a

more efficient check, for subsets. A subset can only cccur

at a low-3r level of Value (number of items in set ID) than

its superset. Therefore, loops computing Belief or

Plausitility need only check lower levels of sets and not

the entire tree of sets.
Quicksort is almost unaffected by the number of items in

the Frame of Discernment due to its efficiency, see Figure

A.2. r

If the 'user desires to continue with the 'program,

Procedure Entermass is then called.

H. PROCEDURE ENTERMASS

Entermass is the main user input procedure that assigns "

new mass values to those sets identified by the current

knowledge source.

The first time called, Entermass allows the user to -

request a display of all the various sets that can occur.

The user may then print this list for future reference.

The aid tner prompts the user for the identity oi the

set and the mass to be assigned to 'that set. Set identities

are checked to insure they are in the domain of the Frame of

Discernment. dass is checked for containment in the set --

[0, 11.
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Total. mass entered during the current session is checked

to make sure it does not exceed 1.0. Set ID are also

checked to see if mass has already been assigned to the set

during this session. If so, the user can change the mass

value, or leave it at the current value.

When the total mass entered equals 1.0, the new masses

are combined with the old mass value.

This combination is done using Procedure Combine.

I. PROCEDURE COBINE

This procedure combines masses using Dempster's Rule of

Combination and then normalizes the new masses. Current

masses(masses at the end of the previous session) are then

replaced with the new combined mass values.

Time of execution of the procedure is reduced by

limiting the combination to only those sets that have a masst' from tae previous session, and those sets that were assigned
masses during the current session. This efficient operation
keeps execution time tc a minimum, see Figure A.2.

"The intersection-set of sets with masses are tien iden-

tified and assigned the new masses. After all orthogonal
sums (See Chapter Ii) are computed, new masses are assigned
bacx to tue Record for each set.

the If there is mass assigned to the null set, by default

the Lass assigned to the other sets does not total 1.0, then

the masses are normalized.
The Normalizing Factor is displayed to the user. New

masses are calculated and assigned to the sets. The user is

then asked if computation of Beliefs is desired.

J. PROCEDURE BELIEF

I rhe computation of Belief is a very time consuming
process since the mass for all subsets of each set must be

3.3
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"summed. The execution time for Procedure Belief is shown in
Figure A 2.

Both Value (part of the Record) and Levels (created by a

procedure) are used to reduce the search time for subsets to
cnly those sets with the possibility of being a subset.
Only those sets at lower levels of the Record structure may
be subsets. After Belief values are computed, they are
assigned back to the Record for each set.

The Belief, Plausibility, and Mass for each set are then

displayed to the user.

"" X. PROCEDURE DISPLAY

Display is a procedure that writes all sets,from higher

order to lower, to the screen with their respective Belief,

Plausibility, and Mass. However, only those sets with
Belief values greater than zero are displayed. The screen
will display only 12 sets at a time to allow easy viewing
and, if desired, printing by the user.

After this step, the masses from the next knowledge
source are then entered and the process continues.

L. ADDITIONAl FROCEDURES

*. There are severai procedures used throughout the program
. not mentioned above that are described here.

..- "•1. Procedure _Qisrla y2

Display2 is the ,procedure used in the first itera-
- tion of Entermass that, if reguested Lythe user, displays

all thce sets(cnly set IDs).

2. Procedure Checkanswer

Checkarswer is a procedure used to insure the answer
"to Yes or No questions is in the correct form.
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3. kK2"dure Plaiateger

Saxintege; is used in the Combine Procedure to limit
the search for the set containing the result of the inter-

section of two masses. Since the sets are sorted, it is

cnly necessary to look in the lowest level(or highest value

- in a high to low sorted array) of the two set IDs combined.

4. Rtocedu; Z2 ]Eatori

This procedure is used in Procedure Levels and

computes the factorial of a number. This result is used in

the computation of combinations for the values in the Levels
array.
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* Listing of the PASCAL program used in the Decision Aid.

program ds;

const
tempsize =512;

type
node =record Istores data rel~atilve to d-s)

mass : real.;
tempmass :real.;
newmass :real.;
-bet~ief :real.;
pl.ausibl.e : real.;
id : set of char.;
value: integer;
end; [node)

branch =array[1..tempsize] of node;

var
count,ol~dcount, iteznnumber,numi~tems, ii~size~cntr, one

* integer;
k,enditem : char;
tree :branch;
goodanswer, continue bool~ean;
ch44,contanswer, beliefanswer : char;
l~evel~end :array~l..20] of integer;
tempmasscntr :array~l..25J of integer;
ol.dmasscntr array~l..tempsize) of integer;

[include the fol.1.owing procedures in this main program)

[$i factorial..pas)
[$i lTevel..s.pasl
(si copyrite.pas)
[$i generate.pas)
[$i setup.pas]
[$i. checkanswer.pas)
[$i initial.ize.pas)

*[si. quicksort.pasil
- - Si sort.pas)
*[Si display.pasl

[$i dispI.ay2 .pas1
[si znaxinteger.pasl
[si combine.pas)



($i entermass.pas)

begin (main)
itemnumber:=O; (keeps track of the number of evidence

combined)

(begin calling sequence)

copyrite;
"initial.ize;
setup;
"".evel.s(numitems);

ch44:= 'a';

"* writein;
textcol.or(14);
writel.n(' Generating Subsets ............ *);
generate(tree[2),ch44);

- writein;
writel.n(' Sorting Subsets ....... )

"* textcol.or(15);

one:= 1;

quicksort(one,size);

for 11:= I to size do [initialize set values)
begin
tre•LiiJ.bel.ief:= 0.0;
tree[ii].mass:= 0.0,
"end;(for)

c. trscr;
writeln;write in ('*********,************** **** ************************

writel.n('Your Frame of Discernment has been expanded into
"al1l. Subsets');
writeln( 'and the Null. Set'');
"writel.n('As Each Item Of Evidence Is Received, You .il]l. Be
Prompted ');
writeln('For The' Mass Distribution');"*- writ eln( '***************************************************

"writel.n;

icheck for users desire to continue)
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continue:- true;
-. whil~e continue do

begin

repeat [until. goodanswer)
* ~writel~n;

writeln('==> Do You Wish To Continue? Y or N*);
textcolor(12);
writel.n(* A No Answer Wi~l.l. Exit Program');'
textcolor(15);
read (kbd~contanswer);

- writelin (contanswer);

* ~checkanswer(contanswer~goodanswer); [checks to see

if in Y,y,N~nl

until. goodanswer;

if contanswer = 'then
continue:= fal.se;

4.f con~tinue then
ent~ermass (itemnumber, numiterns);

* writelin;,

repeat. [until. goodanswer)
writei~n;
writelin;
writel.n ('====> Do You Wish To Displ~ay Belief? Y or

N')
react (kbd~belilefanswer);

* writel.n (bel~iefanswer);
checkanswer (be1. iefanswer, goodanswer);

* until. goodanswer;

if belilefanswer ='y' then
begin
bel~ief;
displ~ay;
end; [if]

end; fwhil.el.

* end.imainj

*procedure setup; (creates initial. 2 sets, nul~l, and
theta(entir frame)]

* begin
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treelJ.va.ue:- 0;
tree[2].id := ['a'..enditem]; (entire frame)
tree[2].value:= numitems; (number of el.ements in set id)
cntr:- 2;

end; [setup)
procedure initialize; [user procedure to determine size of
frame)

var
i,j " integer;
ok - boolean;

begin
for j:= 1 to 5 do

write.n;

V.. repeat (until. ok)
writel.n('====> Enter Number of Items in Frame of

Discernment');

[$I-) read.ln (numitems) [$I+);
ok:- (IOresul. 0);

if not OK then
"begin
textcol.or(12);
writel.n('*** Improper answer, retry');
textcolor-(15);
end; {if)

until. ok;

U writel.n (numitems);
enditern-= chr(numitems + ord('a')-1);
write.n;
writel.n('*** Fram'e of Discernment nas ',numitems ;3, ' items
and will. be 1.isted');
write)l.n;k• writel.n('as Character S,-t a tnrough ',enditem );

* size:= 2;
ior i:= 1 to numitems-l'do [computes 2**nIsize:= size * 2;

"-' •.•ýnd ;([inlt ala.ize }
procedure copyrite; [cover displ.ay)

var
1.1. :intecier;
dummy cliar;
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"begin
textcolor(15);
"textbackground(1);
,clrscr;
for ll.:1 to 5 do

.* writeln;
writeln(' YOU ARE ABOUT TO USE A DECISION AID

CREATED TO COMBINE
writeln;
writel.n(' EVIDENCE USING THE DEMPSTER-SHAFER

THEORY OF EVIDENCE );
writeln;
write l.n(' COMBINATION

writel.n;
* writeln;

textcol-or(12);
"wr.teln(' CAUTIONLI: Only those willing to venture

beyond');
writel.n(' Bayesian Inference should

continue');
textcolor(14);
writel.n;
write l.n;
writel.n(' Written by CPT Wil.1.iam H. Cleckner, US Army

as a prototype');
"" writel.n(' decision-aid for combining intelligence and

determining an-');
writel.n(' enemy commanders main attack sector.');
"for 1.I.:= 1 to 5 do

* write1.n;

textcol.or(15);
writel.n(' Push any key to continue');

* read (kbd,dummy);.
-cl.rscr ;

end;
procedure generate~var rl node; var beginitem : char);

(conducts a recursive cal.l, to generate subsets)

"var
i,j : integer;
"chl,chll : char;
newset bool.ean;

begin

for ch!:= beginitem to enditem do [remove a character
"at a time until. nul.i.set reached)
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begin
if chi in rl.id thenI begin

tree['cntr -I- 1].id:= rl.id - chi);
if tkee~cntr + 1].id <> [I then

begin.I
cntr:= cntr + 1;

* ~newsettin true;

fo rj :- 1 to cntr - 1 do [check for repeat
character sets)

begin

then if (tree[ Ij).id =tree~cntr).id) and newset

begin
newset:= fal~se;

cntr:= cntr - 1;
* ~end; (.if)

end; (for)

if (newset)' then [if set. not created before,
generate its subsets)

begin
tree~cntr].va1.ue:= rl.val.ue -1;

chll:= succ(chl);
generate(treercntri., chil);-.

* end;(if)

end; (if)
end; (if)

end;[Ifor Ii ~end; (generat~el
procedure qui~cksort(var first :integer; var l.ast

* integer);

var
it j, divid ingl~ine integer;
temporary :node;

begin
i: first;
j:= l.ast;-
diviainyiiie:= tree[(first + l~ast) div 21.vai~ue;-
repeat

while tree'Li].val.ue >dividingline do

whil~e treelj.val~ue < dividinoline do
j:= j-1;

if i <= j tnen
begin
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temporary:- tree[i];
tree[i]:= tree[j];
tree[j]:= temporary;
i:= i+1;j==n j-1;

end;

until i > j;
if first < j then quicksort(first, j);
if i < last then quicksort(i, last);

end;(quicksort)

procedure entermass(var item : integer; var numitems :
integer);

[enter new evidence temporary sets)

label.
1ka,2ki;

var
goodentry,goodanswer, ok boolean;
displayanswer,ch3,ch33,changeanswer : char;
check,tmass : real;
qq,nn,kkjj,mm, i : integer;

I' itempset set of char;
tempid : string[20);

begin

item:= item'.+ 1;
"cl.rscr;
writel.n '('*** You are entering the mass distribution for
item number:');
writel.n;
writeIn ('--> ',item :4);
writel.n;

if item = 1 then task user if'needs displ.ay of
"setsi

." begin

repeat [until. goodanswer)
writel.n ('====> Do you need a display or al.l. tne

sets? Y or N');
writel.n;
writel.n C This Feature Will. Only Appear

SOnce so Use');
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writeln C prtsc key for hard copy of
sets

Write.1n;
read (kbd,displayanswer);
writein (displayanswer);

checkanswer (disp.1ayanswer,goodanswer); [insure
Yyk~nj

until goodanswer;

cI.r Sc r
if (displayanswer = y') or (displayanswer

eye) then
begin
displiay2; (dis'pl~ay if requested)
end; (if)

end; (if)

for nn:= 1 to size-i do
begin
tree~nn].tempmass:= 0.0;
tree~nr.).newmass:= 0.0;
end;lforl

repeat
goodentry:= true;
check:- 0.0;
count:= 1;

whil.e check < 0.9999999 do (end while is label. 20)
begin
tmass:= 0.0;

repeat (until. goodanswer l.abel. 101
tempset:= Ch
write i~n;

repeat (untilI. ok]
writel~n (I====> Enter Set ID.: )

ok:= (IOresul~t.= )
if not OK then

begin
textcol.or(12),
writel.n('** Improper answer, retry');
textcol~or(15);

end; (if)
until..ok;

writel.n (tempid);
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for ii:-l to' iength(tempid) do (check' for
set in frame)I

begin
if (tempid~jii in (a'..enditem)) and

not (tempid~ii) then
goodanswer:= true

else
beg in
goodanswer: = fal~se'
textcoior(12);
writein;
writeln ('*** Set ID not in Frame,

Retry');
textcol~or(15);
goto 10;
end; (ifj

tempset:= ternpset + £ztempidtii]);
(create tenipset of id)

end,-(for)

(check for attempt to enter mass for set. al.ready ac'cessed')

for qq:= 1 to size-I do
beg in
if (tenipset. = tree~qqJ.id) and

(tree~qq . tempmass>O. e+i00) then
begin
repeat [until. goodanswerl

write1. n;
textcol.or(12);-
writel.n(' You Have Al.ready Entered A

Mass For Set ',tempid,' = ',tree~qq].tempznass :6:3);
writeln(. Do You Wish To Chanqe This

Input? Y or N'):
textcolor(15);
read(kbd, changeanswer);-
checkanswer (changeanswer, goodanswer);

until. goodanswer;
if (changeanswer =y') or

(changeanswer Y') then
oegjin
check:=check -tree~qqj.tempinass;-

goto 10;,
end

el.s e
goto 20;

.end; (if I
end; (for)
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10: until goodanswer;

repeat (until. ok)

writel.n;
writel.n '(==== Enter Viss for Set');
[$I-) readln (tmass) ($I+);

ok:- (IOresul-t = 0);
if not OK then

begin
textcolor(12);
writeln((*** Improper answer, retry');
textcolor(15):
end;{if)

until. ok;

writel.n (tmass :8:5),;

for jj:= 1 to cntr-1 do (assign.new masses to
tree)

begin
if tree[jj].ld = tempset then
begin
tree[jj].tempmass:= tmass;
tempmasscntr[count]:= jj:
end;(if)

end;(for)
writeln;
count:= count + ];

check:= check + tmass;
textcol.or(14);
write ('Total. Iass = ',check :8:5);
write (' C Reminder: Total. Mass Must L- = 1.0

to exit 1.oop ***));
textcol.or(15);
writel.n;

20 : end;(whil.e}

if (check (= 0.9999999) or (check. >= 1.0009001) then
begin
goodentry:= fal.se;
writel. n;
textcol.or(12);
writei.n ('*** Warning, Mass Total. = ',check :4:.2,'

Is Greater Than '1.0
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Of (e*** You Must InPut All. Masses For This
Item OfEvidence ***'); k.I

textcol~or (15);
writeln;

for i:= 1 to count do

en;(ftree~tempmasscr~tr['ij).teznpmass:- 0.0; .
until. goodentry';

if item > 1 then
combine; (return newmasses in tree)

if item = 1 then (do not combine)
beg in
ol.dcount:= count;
for kk:- 1 to count do

begin
tree~tempmasscntr~kk)) .mass:=

treelitempmasscntr~kk)).tempmass; [reassign newmasses to
tree)

oI.dmasscntr~kk] := tempmasscntr~kk];
end; (for)

end; (if) '

end; (entermassf
procedure combine;

icombines' evidence using dempster-shafer)

var
h~hn,j~jj,i~ii,k,kk,j2,high,tempcounL integer;
normalfiactor, totalmrass, tempmass :real.;
intersection :set of char;
tempol~dzasscritr array~1..tempsxze] of integer;

begin

texico 1.or (14);
wri~te.n(' Comnbining masses..............
textcol.or( 15);'

tampass: 0.0
totaI.mass:= 0.0J;
tempcount:= 0;

check for-'intersection and increment newmass by mass
product)
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j for J:- 1 to ol~dcount doI begin
for i:- 1. to count do

begin
intersection:- tree~ol~dmasscntr~j)) .id*

treettempmasscntr~i]].-id;

if intersection <> E)then¾ begin
A maxinteger(temprnasscnt~r~i],o~l.dmasscntrtj),high);

for Jj:' . eve~lend~tree~highl.value~l]+l to
I.eveil.end~tree~high).value) do,

begin
if treetjjj.id =intersection then

begin
tre~e ji].newmassin treeE jj) .newrnass +

tree~oldmasscntr~jJ)l.mass * tree~temp'masscntr~i]j.tempmass;
tempcount:= tempcount + 1;
ternpol~dmasscntrtternpcount] := jj;

for ii:= 1 to tempcount-1 do
if tempol.drnasscntrtii) jj then

tempcount: = tempcount-1;
end; [if)

end; (for)
end; [ifl

end,-[for)
end; (for)

o.dcount: = tempcount;
frkk:- 1 to ol~dcount do

ol.dxnasscntr[kk] := tempol.drnasscntr~kkj;

fo 2: to'size-i do

for n:= 1 to oldcount do [assign combined masses back to

total.mass:= total.rnass + t~ree~o1i.dmasscntr~ri]].newmass;-
teoldmasscntr~h)] .mass:=

treeLol~drnasscntrrhfl.ntewmass;

ifmass assigneci to nul~lset (by aefaul.t that total~mass
assigned to
(sets 4> 1.0) thýý!n normalize)

if total-mass <1.03 then
beyin

norrnal.Eactor:= total~izass;
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*writel.n('Normalizing Factor ,norma~lfactor :6:3.);
textcol.or( 15);

for k:- 1 to oldcount do
tree~o~ldxnasscntr~k)) .mass:-

treetol~dmasscntr~k]).mass/norma.1.factor;
* endfif)

* else
writein(I Normalizing Factor =',,tota.1.mass :6:3);-

* -. end; (,combine)
procedure belief; [sums masses of a~ll.. subsets and dssign's to

* parent)

var
i,i2,n,n2.notvol.ue :integer;

d:char;
not~set : set of char;

begin
textcol.or(14);

.writel.n(' Computing Beliefs ........... ;
* textcol.or(15);

for n:= 1 to size-i do
begin
tree[n].bel.ief:= tree'n].mass;
for n2:= ((1I.evel.endltree~nj.value])+1) to size-i do

[only checks its mass(n) and those sets with]
begin
if tree~n2j..id <= tr~een].ld then

tree~n].bei.ief:= tree~nj.bei.ief + tree~n2].mass;,
(if subset then increment beliefl

end; ifor)
end; (for)

for 1:= .2 to size-i do
begin
notset:= ja'..enditeinj tree~i].1d;-
notval.ue:= absitree~i].vailue - numitems);

for i2:= (1.evel.end~notval.ue + 1] + 1) to
* 1.evel~end'Lnotvalue] do

begin.
if treeti2j.-id =notset then

tree +Ei].p.1.ausibl.e:= 1 -tree~i2].bel.ief;

end; (for)
end; (fori
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end ;([belief I
procedure display; [disp~lays set ids, beliefs,, masses)

* var
:j integer;

ch,dummy : char;

begin
c~lrscr;
for jj:- 1 to size-i do

if tree~jj).be].ief > 0.0 then
begin
-textcol~or(13);
writel~n(---------------------------------------------

----------------------------------- I)

textcol~or(15);
write C Set ID:')
textcolor(14);
for ch: 'a' to enditem do

begin
if ch in tree~jj).id then

write(ch);
end; [for)

textcolor(15);
write C' Belief=

');-textcoli.or(14);write(tree~jj).bel.ief :6:3);
textcol.or(15):

w rite ('Pl.ausibil1ity=
');textcol.or(l14);write(tree~jjj.pl~ausibl.e :6:3);

textcol~or(,15);
write ('Mass=

-' );textcol.or(14);write(treetjj).mass :6:3);
textcol.or(15);
write~ln;

if (jj mod 12) = then [all~ows scrol.1.ing to stop
temporar i ly

begin
textbackground(14);
write(Pu~sh Any Key to Continue Displ~ay');

* ~textbackground (1);
writefln;
read(kbd,dumniy);
end; [if)

end; [for)
end; [displ~ay)
procedure displ~ay2;- [displ~ays only set-ids to choose from in
procedure entermass)

* var
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j. : integer;
ch : char;

begin
cl.rscr;
for jj: I to size-i do

-' begin
write (' Set ID: );
"for ch:= 'a' to enditem do

begin
if ch in tree[jj].id then

write(ch);
"end;(for)

.. writel.n;
"end;(for]

* end;[displ.ay2l

*-•. procedure level.s(var itm : integer);

var
ti.evel. : array[l..20.1 of integer;
i : integer;
numerator :real.;

begin
l.evel.end[itm + 1]:.= 0;
numerator:=' factoria1.(itm);
for i:= I to itm do

tleveJ.[i]:.= trunc(numerator / (factoria.i(i-1) *

factorial(itm-i+1) ));

for i:= I to itm do
1.evel.end[itm-i+1]:= tlevel.[Li + level.end[itm-i+2];

end; (1evelend)

"procedure checkanswer(var answer char; var test.
boolean);

[checks to see if answer in set Y y N n returns false if
* not)

begin
if answer in ['y','Y', 'n','N'i then

test:= true
else

begin
test:= fal.se;
writelnr('*** Answer was not in acceptable form, retry');
end;[el-se)
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." end; (checkanswerl

procedure maxinteger(var a : integer: var b integer; var

largest : integer);

(determines the maximum of two integers (used in procedure

combine)]

begin
"if a > b then

largest:- a

* else
l.argest:- b;

" end ; (minintegerl
function factorial. (n • integer) : real.;

var
factj : real;
i i integer;

"begin

fact:= 1;

for i:= I to n do
. fact:= fact * 1;

"- factorial.:= fact;
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SA -UDIZ_ B
TIM METBODS OF BARNETT AND GORDON AND SHORTLIFFE

This appendix contains the listing of the code created for the
aethods of Barnett and Gordon and Shortliffe described in Chapter
IV. Note that Step 2 of Gordon and Shortliffe is not complete.
It, was written to comput- Belief computation times.
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Listing of the PASCAL program for Barnett's method.

program dsbarnett;

const
tempsi.;e a 100;

type
node = record

id : set of char;
p : real;
c : real;
r : real;
d : real;
ptemp : real.;
ctemp a real;
bel : real;
bel-comp :. real;
end;[node)

branch = array[l..tempsize] of node;

var
position,item, numitems, size, i, j, k integer;,
dprod, cprod, normfac, s, sprime; ratio. bigc, bigd

real;
tree : brdncu;
tempid : string[20';
finished, done : bool.ean;
donans, finans,ny,enditem, dummy, ch : char;

begin

"writel.n(enter number of items in frame');
read'in(numitems);
enditem:= chr(numitems + ord('a')-1);'
size:- numitems;

for i:= 1 to size do
begin

with tree[l] do
begin
id:= [cnr(i + ord('a')-1)];
p:= 0.0;
c:= 0.0;
'r:= IniO;
d.= V..0
ptemp:= 0.0;
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end; (with)
end; [for)

done:- fal~se;I ~repeat [until done)

finished:= false;
repeattuntil. finished)i writel~n('enter set id');
readl~n(tempid);,

.. 7 ~ for j:=l1to size do
begin
if Et~empid) - tree[j).id then

4 position:- j;
end;([for)

writel.n('enter mass that supports: ',tempid);-
readl~n(tree~position] .ptemp);
writel.n('enter mass that supports compl~iment of: ',ternpid)h
readil.n(tree~position . ctemp);
w~riteil.n;
w'riteln('Step One and Step Two ..........)

with tree~position] do
begin
s:= 1-.((l-ptemp) * (1-p));.
sprime:=1-((1-ctemp) * (1-0));
p:=(s*(1-sprime))/'(1-s*sprime);
c:=(sPrime*(1-s))/(1-s*sprime);
r:=1-p-c;
d:=c+r;
writeil.n('p,c,,r,d',p,,crid);

end; [with)

writel~n('finished? y or n');
read 1.n( finans);
if (finans ' y') or (finans Y') then

finished:= true;

until, finished4
write 1. n
write.l.r.;

*writel.n( mStep Three .................. )

ratio:=O.0;
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for k:-n 1 to size do
begin
with tree~k3 do

begin
ratio:-*ratio + p'/d;
bigd:- bigd d;
bigc:- bilc *cr

end; (with)p *ndrtfor)

-. ratio:- 1 + ratio;
normfac:m 1/((bigd *ratio)-bigc);,

write-in('ratio,' normfac, bigd, bigc,3. ',,ratio,normfac,bigd,bigc);
for i:=,1 to size do

begin
cprod:= 1.0 ;
dprod:- 1.0;
for j:1l to size do

ifj <> i then

\ §cpbegin cprod * treecjj.c;
dprod:in dprod * tree~j).d
end;[if)

with tree~ij doN begin
bel.:= norrnfac*((p*dprod) + (r*cprod));
belcornp:= norm'fac *1bigd *(ratio - 1 -(p/d)) +

*c*dprod - bigc);
end; (with)

end;(forlp reaid .n (duwmiy);
ci.rscr:
for j-.= 1 to asze do

* begin
textcol~or'(13);

* writel.n(---------------------------------------------
---------------------------------------- 1)

textdoilor(15);
write C Set ID: )
tex,tcol.or (14);
for ch:= 'a' to enditem do

begin
if ch in tree[jJ.id then

write(ch);
end; (forl

textcol.or(15);
write ('*Belief=

');textcol.or(14).;write(tree~j].bel. :6:3);
textcol.or(15);
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write ( Plausibility ');textcolor(14);write(1-
tree[j].belcomp :6:3);

writeln;

if (j mod 12) = 0 then (allows scrolling to stop
temporarily)

begin
textbackground(14);
write('Push Any Key to Continue Display');

* textbackground(1);
' I writel.n;

read(kbddummy);
end;[if)

end;[for)

writeln('done-end program, y or n?');
readln(donans);
if (donans = 'y') or (donans , 'Y') then

done:= true;

until. done;

end.Imaini

Listing of the PASCAL program for Gordon and Shortliffe
method.

program dsshOrt;

const

tempsize = 100;

type
node = record

id : set of char;
p : real;
c : real.;
rp : real.;
rc : real.;
ptemp : real.-,
ctemp : real.;
bel : real;
end;[nodel

branch = array[l..tempsize] of node;

var
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ternpset x set of char;
positiaon~item, numitems, size, it J, k t integer;
dprod, cprod. normf~ac, s, sprime, ratio, bigc, bigd

real.;
tree s branch;
setid, tempid :string[2031
fi.nished, done abool~ean;
donans, finans,n,y,enditem, dummy, ch achar;

begin

writel~n('enter number of items in theta");
readl~n(numitems);
enditem:4= chr~nunuitems +. ord('a')-1);
writeln('ent~er number of sets to include th-a-ta');
readl.n(size);

for is= 1 to size do
begi
with treel~ii do

begin

c:- 0.0:
rp:= O.i6;
rca. 0.0;

ctemp:- 0.0;

end; (with)
end;f for I

treer1).id:= "i'a' ..enditem3;,
for it-: 2 to size do

begi.n
tempqet: =1:3r

* writeldn('erter set id for set number ',i);
readl.n(setid);

- for j-.= I. to Iength(setid) do
tempset:= tempset + [setidtj]];

* witn tree1:i) do

id=telapset.;
end; (with)

* end:1for)

done:- fal~se;
repeatiuntil. donel
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finiLshed:- false;
repeat (unt il. fini~shed)
Writeln('enter set id');
read.1.n ( temnpid):;

tempset:-[]-
for j:- 1 to length,(tempid) do

tempsetz- tempset + Ctempidfj]j,
for j:-,2,to size do

beg in
if tempset = treeCj.id then

position:um j;-
end; [for)

wrJiteln('enter mass tha~t supports: l,tempi~d),readiln ( rree~positionj . ptexnp);writemn(' enter ma~ss that supports-compliment of: litempid):-readln( tree~position). cternp);
w~raite n;

with tree~position] do
begin
s:= L-((1-ptemp) (1p)
sprime:uI1..(M..ctemp) * (-)p:=(s*( l-sprirne) )I l..s*sprim&);

rp:=1-p;
rc: =1-c;

readlnjflnajns); rn)if (finans - y) or (finanrs 'Y') thenfinished:- true;

unti~l fin'isihed;
wr itel. n;
writeln( Step Two ............... 

. )

for i:=l to size do
be c in
tree~CI.j.p:- tr--ee~lj.p * ree~iJ.rp;wri te-In('pgrp '*treetllj.p,trbeetiJrp);

for i.- 2 to si~ze dobegin
for j:= 2 to size do

begin
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if(j-<c, i) or not(tree~i).id<umtree~jj.id) then
treeti).p:= tree[i).p *tree~j).rp;

end; (for)
end; (for)

normfac:in 0.0;
for i:in 1 to size do

normfac:= normfac + tree~i].p;

writein ( normfac' ,rormfac);
normfac:= 1/normfac;.

for i:= 1 to size do
tree~ij.p:= tree~il.p * normfac;

writel.n( 'Step 3...**........ . . ....

for i:- 2 to size do
begin
for j:= 2 to size do

begin
if tree~j).id ='['ai'..enditem]-- tree~i).id then

tree~j).p:= tree~j).p * tree~i).c;

if tree~j).id <= tree~i).id then
tree~jj.p:= tree~j).p *tree~i).rc';

end;[(forl
end;[(for 1

normfuc:= * U;
for 1:= 1 to size do

begin
normfac := normfac + tree~i].p;
end; (for)

for j:= 1 to size do
begin
tree~j].p:= treetj).plnormfac:
end; (forl

for 1:= 1 to size do
begin
tree Lij. bel1:=O.* ;
for J:= 1 to size do

begin
if tree~jj.id <= tree~ij.id then

treeti].bel.:= tree~ij.bel + tree~j].p;
end;(ffor)

end;(forl
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cirscr;
for j:- 1 to size do

beg in
textcoi~or( 13);

wriei(--------------------------------------------

textcolor(15);
write (C Set ID: )
textcolor(14);
for ch:- 'ar to enditem do

beginf
'if ch, in tree~j).id then

write(ch);
end; (for)

textcol~or(15);
write (' Bel~ief=

* );textcolor(l4);write(tree[j).be~l. :6:3);-
textcol~or(15);
write (CMass - 1);textcol~or(14);write(tree~j2.p

:63; writel.n; j
if (j mod 12) = 0 then (allows scroll1ing to stop

temporaril~y)
begin
textbackgrounid(14);
writ~e('Push Any Key to Continue Displ~ay');
textbackground (1);
wri~te~ln;
read(kbd,dumniy);
end; (if)

endl; for)

writel.n('done-end program, y or n?');
read.1.n(donans);
if (dondns = 'y') or (donans ='Y'),tinen

done-= true;

until. done~;

end. (mcin)
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