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Preface

This reprint report was prepared under NUSC Project No. A75031, "Data
Adaptive Detection and Estimation," Principal Investigator Dr. Roger F.
Owyer (Code 3314), Program Manager Dr. N. Gerr, ONR (Code 411 (SP)).

The author of this report is located at the
New London Laboratory, Naval Underwater Systems Center,
New London, Connecticut 06320.
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,% ) ( ' The discrete Fourier transform is defined as

- ’ ABSTRACT follows,

ol e

VU There are many physical sources that

y generate recurring pulses. Rotating fans and N-1 . ] ]
propellers are two examples. The objective of X(K) = (Il\fi) }E: x(i) exp(-j2«Ki/N)

this paper is to present a signal processing

methodology to extract recurring pulses from

data. The method relies on obtaining discrete .

- frequency components over a band or discrete and its inverse
temporal components over a time interval, It is

shown that the results for the time and frequency

T domains are duals of each other. These ideas are x(i) = (1/\rﬁ) sff X(K) exp(j2#Ki/N)
K=0

=0

PRl -

then generalized to the spatial domain by
including an array of sensors. [t is shown that

- the time-spatial domain and the

3 frequency-wavenumber domain are also duals of For an interval of time consisting of N
C4 each other. samples let the data be represented by a

- succession of pulses recurring every r seconds.
e This can be written as follows,

INTRODUCT ION : ¢ s

- The physical principle of extracting w-l

-, recurring pulses from data relies on obtaining . . .

", discrete discernable components either in the x(i) = :E: s(i - (1g + kr)]

N frequency or time domain. Data from rotating K=0

L. machinery usually produce discrete harmonically

S related frequency components. On the other hand, . )

discrete recurring temporal pulses are produced Where §( ) is the Kronecker delta function.

¥ by other sources. For example, helicopter- Here, iq represents the sample on which the
20 radiated noise [1]. first of w pulses starts.

- We shall first consider a signal processing Notice that the spectrum of the above

A methodology for a single sensor, to extract process is given by

D" recurring pulses or harmonically related

) frequency components. The results for these two |

cases are related through a time-frequency X(K) = (w exp[-j2u{i_ + Ex2r) KIN] =

D . duality principle. In addition, the extracted (k) = { /\rﬁ) pL-j2x( g 2 ) ]
- components are equivalent to the maximum

N likelihood estimate. On the other hand, for an sin{wxwKr /N

i array of sensors the signal processing metiod for ;‘;T%T;R77ﬁ% .
W these two cases are related through a

" time-spatial-frequency-wavenumber duality . .

* principle. The location of the peaks of this spectrum

are found from the solutions to the equation

Y In the paper the data are assumed to be
w3 filtered to the desired passband and .
y appropriately A/D converted. sin(«Kr/N) = O
[

’ which are given by, K = (N/r)I4, for

0 < K< N-1, and g = 0,1,2, ... .
-
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Therefore, r controls both the number and

locations of the discrete components. As w » e,
the spectrum of the pracess will approach a
purely line spectrum.

This example reveals the principle on which
the signal processing method is based. Namely,
all the information associated with recurring
pulses is contained at discrete frequencies. The
dual of this result is that all the information
associated with the recurring puises is contained
at discrete time locations.

MATRIX METHOD
The discrete Fourier transform and its
inverse can be conveniently discussed in terms of

matrices and vectors.

Let
% = (x(0), x(1), ..., x(N-1))T

be a vector of time domain data samples. Here T

represents transpose.
Similarly, the frequency domain data is
given by the vector

X = (X(0), X(1)y «vey X(N1))T

where the two vectors are related through the
transformation

We will now define a diagonal (NxN) operator
matrix Q which is applied in the frequency domain.

The extracted time domain data vactor xg,
after the matrix Q is applied in tic frequency
domain is given by the expression

xg = F-10F x

Notice that the time domain transformation
F-1QF is real. If we subtract xg from x we
obtain the resultant data vector, xp,

%R = x - F-1gF x.
If Qul (identity matrix), then, xp = 0 (zero
vector),

Whereas, if Q = 3'(zero matrix), then xp = X.

Therefore we can choose Q to obtain the desired
result.

In applications the elements of the diagonal
matrix Q are chosen to represent the locations
where the discrete components occur in the
frequency domain.

For example, let N=1024, and let there be
four exact solutions located at Ka0, 256, 512,
and 768.

Then G, = diag [qij; i,3=0,1,..., 1023]

where,
XwFx
1, at iaj = 0, 256, S12, and 768
and £ is a (NxN) transform matrix representing %5 = {
the DFT operation as follows: « 0, otherwise
1 1 1 .. 1 T
1 exp{-j2=/N) exp(~j2x2/N) .. exp(~j2e(N-1)/N)
1 exp(-32#2/N) exp(-j2=4/N) e exp(-J2»2(N-1)/N) -
Fe izl e
: ~
1 exp(-32v(N-2)/N) exp(-32s2(N-2)/N . . .  exp(~j2n(N-2)(N-1}/N) -
|1 exp(-j2e(N-1}/N) exp(-j2#2(N-1)/N} . . . exp(-ch(N—l)(N—l))NL e
and its inverse exists and is denoted by ﬁh
-‘.
11 1 . 1 ) R
1 exp(j2e/N) exp(j2«2/N) .« exp(j2e{N-1)/N) "
1 exp(J2«2/N) exp{j2x4/N) . o exp(J2#2(N-1)/N) i;
F’l - (1/")112 . =3
",
i exp(j2a(N=-2)/N) exp(j222(N~2)/N) . . . exp{(j2w(N-2){N-1)/N) g.
[1 exp(j2n(N-1)/8) exp(j2#2(N-1)/N) . . . exp(J2n(N-1)(N-1)/N) | -
:\
i
SN
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Therefore,
F-10F = (4/N)E

where,
[100010001...000100
0100010001...000100
00100010001...0001
000100010001...0001
1000100010002...00

E-:
;
0
0
100010001...000100
0100010001...00010
00100010001 ...0001
000100010001...000

(1028 x 1024)

The extracted data vactor for this example
is found from the expression

k'(‘/")fl-i

So that, the extracted data vector is equal
to the original data vector. The reason for this
is that, in this examplie, all the information was
Tocated at discrete frequencies. Now, if we add
noise of the form n then

zZ=x*n
and
g =(4/M) Ex* (4/N)En
=x*(4N)ENn

which reduces to, 2g ~ x. Since the noise
is random, the noise vector will not match the
transformation E and consequentiy the noise will
be effectively averaged out.

The resultant data vector is obtained from
the expression,

%R =x - (4/N) E x = 0.

Adding noise again we obtain,

3 =0- (4N En =n.

= afla~ 2 B i Y 2% inta Batulinf it o S fie die aosn ~l-r'.n1rni‘t"

Therefore, for this example, the extraction
method is nearly perfect even with additive
noise. In practice the matrix method will be
Timited by the ability to choose the appropriate
operator matrix Q.

We shall now compare this method with the
maximum likelihood (ML) estimate [2]. Let,

z=x*n

be the data. Here n is i.i.d. Gaussian noise.
We want to estimate the deterministic waveform x
at each sample point. These sample points will
be denoted by a. The. ML estimate of a is given
by the procedure. Choose the value of a, say 3,
that maximizes f(z;a), where, here, f( T is a
multidimensional Baussian probability density
function. Since, the waveform is a recurring
pulse of duration h, the estimate reduces to the
expression

wel
3 = (1/w) }[: x(ig~i+nk)
ka0

for i=0,1,2...,h=1. So, each sample of the pulse
is averaged over all respective samples of the
successive pulses, This is exactly what the
transformation F-1QF performs.

For a sinusoid, which is periodic, tne same
type of transformation, but dependent upon
frequency, will evolve from the extraction
procedure. Here, however, two components are
associated with each sinusoid [3].

For example, let the frequency of a sinusoid
be ke256. Then the operator matrix Q will have
two nonzero components located at qi; (i=j=256
and 768). The transformation will reduce to the
following,
0-1010-1...01
10-101
1

-1
F QF=(2/N).

e e 0l Or!

0
» 01_
(1024 x 1024)

It is clear from this result that the exact
sinusoid, including phase, will be extracted.

Now consider a frequency domain
transformation. This procedure is a dual of the
time domain transformation.
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The extracted frequency domain data vector,
Xg is given by the expression

Xg = FQgF-1x

Where Qp is a diagonal operator matrix applied
in the time domain. Now, FQpF-* will be
complex in general. But the transformation
performs a similar operation as its time domain
dual. Namely, it averages the appropriate
frequencies to produce the extracted data
vector. This is also equivalent, under the
stated conditions, to the ML estimate.

The resultant frequency domain data vector,
XR, is given by the expression,

XR = X - FQeF-1x

Transforming this result into the time
domain we obtain the result,

3R = [1-Qe] x.

The transformation [I1-Q¢] is equivalent to
the ideal-nonlinearity discussed in [3,1]. This
means that .if we can identify the recurring
pulses, or if we have a priori knowledge of them,
in the time domain and apply the transformation
{1-Q¢] we will have subtracted the frequency
domain ML estimate from X.

Suppose the nonzero components of (¢ are
located at the sample points, 0, 256, 512 and
768. _Then the transformation will also reduce to
FQeF-l = (4/N)E.

An important application of this method is
obtaining the power spectrum of a signal when
recurring impulsive interference is present,
The resuitant data vector will demonstrate the
ability to remove this interference.

From the above result we obtain the power
spectrum from the the expression

T T
R i !

R X

=R

Therefore, the resultant power spectrum is
obtained by subtracting the power spectrum of
ég from the power spectrum of the original

ata. An error analysis of this procedure was
discussed in [4].

SPATIAL DOMAIN

These results can be generalized for an
array of sensors. The two-dimensional discrete
Fourier transform is given by the expression

I 5
X(LK) = (INM)(IAR) D7 3~ x(3,1)e
J=0 =0

exp[-j2=(JL/M + iK/N)]

where, J=0,1,...,M-1 represent the spatial
sensors, i.e., x(0,i) is the first sensor at the
j-th time sample. If, Nel, x(J,0) and X{L) will
have the same relationship as x(i) and X(K) did
before. But, now, J represents spatial position
and L spatial frequency. )

It is convenient to write this equation in
matrix form.

Xpw = Frw SFw XTS

where, Xgy s a (MNxl) vector and Fpy is a

block diagonal (MNxMN) matrix. Each block is the
(NxN) matrix F. The other matrix Sgy is a

(MX x MN) matrix of the form,

SFw =

11 P |

[ le-j2x/M le=i2r(M-1)/M ]
(LMY |. ’

I

[
le=i2n(M-1)}/M _ | .Ie-JZt(N-l)(M-l)/ﬂJ

where [ is a (NxN) identity matrix, and x5 is
a (MNx1) vector.

Ade now define a (MNxMN) diagonal operator
matrix Qpy, so that

Sew %ts

E -1 -1

%rs = 5w Frw Y Fru
is the extracted data vector of the time-space
domain.

The dual of this result is the following,

£ 1 -l
%ew = Frw Sew Qes Sew Fru fru

Where Qts is a (MNxMN) diagonal operator matrix
applied in the time-space domain.




SUMMARY

Since there are many physical sources that
produce discrete spectra or discrete temporal
components, a signal processing methodology was
developed to take advantage of these phenomena.
If a source produced discrete frequencies then
all of the information associated with the source
is contained at those discrete frequencies. B8y
extracting only those frequencies a time domain
enhancement was possible. By considering the
transformation of the method it was revealed that
the extracted data is equivalent to a maximum
lTikelihood estimate under the assumption of
i.i.d. Gaussian noise. A dual relationship was
shown to hold for discrete temporal components.
These results were then generalized for an array
of sensors. In this case the results revealed a
time-space-frequency-wavenumber duality.
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