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ESTIMATION OF POWER SPECTRA FROM DATA CONTAINING RECURRING PULSES

Roger F. Dwyer

Naval Underwater Systems Center
New London, CT 06320

The discrete Fourier transform is defined as
ABSTRACT follows,

There are many physical sources that
generate recurring pulses. Rotating fans and N-i
propellers are two examples. The objective of X(K) . (i1fN) 1: x(i) exp(-j2.Ki/N)
this paper is to present a signal processing i-o
methodology to extract recurring pulses from
data. The method relies on obtaining discrete
frequency components over a band or discrete and its inverse
temporal components over a time interval. It is
shown that the results for the time and frequency N-1
domains are duals of each other. These ideas are x(i) . (1/4-N) E X(K) exp(j2wKi/N)
then generalized to the spatial domain by
including an array of sensors. It is shown that Ko
the time-spatial domain and the
frequency-wavenumber domain are also duals of For an interval of time consisting of N
each other. samples let the data be represented by a

succession of pulses recurring every r seconds.

INTRODUCTIO" This can be written as follows,

The physical principle of extracting w-1
recurring pulses from data relies on obtaining w-
discrete discernable components either in the x(i) 6_e [i - (i + kr)]
frequency or time domain. Data from rotating kgo
machinery usually produce discrete harmonically
related frequency components. On the other hand,
discrete recurring temporal pulses are produced Where a( ) is the Kronecker delta function.
by other sources. For example, helicopter- Here, i represents the sample on which the
radiated noise [1]. first o? w pulses starts.

We shall first consider a signal processing Notice that the spectrum of the above
methodology for a single sensor, to extract process is given by
recurring pulses or harmonically related
frequency components. The results for these two
cases are related through a time-frequency X(K) * (w/,r) exp[-j2w(i + W-1T ) K/N] *
duality principle. In addition, the extracted g
components are equivalent to the maximum
likelihood estimate. On the other hand, for an r wWKlNI
array of sensors the signal processing metihd for Lsin(wK/)
these two cases are related through a
time-spatial-frequency-wavenumber duality
principle. The location of the peaks of this spectrum

are found from the solutions to the equation
In the paper the data are assumed to be

filtered to the desired passband and
appropriately A/D converted. sin(wKr/N) = 0

which are given by, K . (N/,)I o , for
o < K < N-i, and Io - 0,1,2....

.4.. .
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Therefore, r controls both the number and We will now define a diagonal (NxN) operator
locations of the discrete components. As w * a matrix Qwhich is applied in the frequency domain.
the spectrum of the process will approach a
purely line spectrum. The extracted time domain data v~rtor

This example reveals the principle on which doafte the maix by ise apredsint r ec
the signal processing method is based. Namelydmi sgvnbyteepeso
all the information associated with recurring
pulses is contained at discrete frequencies. The F-10F x
dual of this result is that all the information
associated with the recurring pulses i.s contained
at discrete time locations. Notice that the time domain transformation

F-IQF is real. If we subtract !E from x we

MATRIX METHOD obtain the resultant data vector, A~

The discrete Fourier transform and its Rax-F1 .
inverse can be conveniently discussed in terms of x FlF~
matrices and vectors.

Let If Qat (identity matrix), then, IR- (zeroLet vector).

W xO), x(1). .... x(N..1))T Whereas, if Q . 0 (zero matrix), then ~-x
Therefore we can choose Q to obtain the desired

be a vector of time domain data samples. Here T result.
represents transpose. In applications the elements of the diagonal

matrix Q are chosen to represent the locations
Similarly, the frequency domain data is where the discrete components occur in the

given by the vector frequency domain.

(X~o) X~jv X(NI))TFor example, let Ne,1024, and let there be
X - X(0, X1), ... X(N))Tfour exact solutions located at K-0, 256, 5121

and 768.

where the two vectors are related through the Then Q, *diag [qij; ij-,1,...., 1023]
transformation

where,

and F is a (NxN) transform matrix representing qjj 0 ,a m  ,25,52 n 5the OFT operation as follows: 0,otherwise

1 1x(jwN 1x(j~2N e... 1(-1/
1 exp(-j2*2IN) exp(-j2w4lN) . . . exp(-j2v2(N-1)N)

F -(11N) 112 I
1 exp(-j~w(N-Z)/N) exp(-j2w2(N-2)/N .. exp(-j2v(N-.2)(N-1)/N)j

Li exp(-j2w(N-1)/N) exp(-J2w2(N-1)/N) . . . exp(-J204f-1) (N-1)IN)
and its inverse exists and is denoted by

1 1 1 . 11
I exp(J2u/N) exp(j~w2/N) . .exp(j2v(N-1)/N)

F- IN12 1 exp(j2w2/N) exp(J2w4/N) ... exp(j2w2(N-1)/N)

1exp(j2w(N-2)/N) exp(j2v2(N-2)/N) . . . exp(j2v(N-2)(N-1)/N)
Uexpd21r(N-10/) exo(j2w2(N-I)/N) . . . exp(j2*(N-I)(N-1)/I)
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Therefore, Therefore, for this example, the extraction
method is nearly perfect even with additive
noise. In practice the matrix method will be

F-IQF (4/N)E limited by the ability to choose the appropriate
operator matrix Q.

We shall now compare this method with the
where, maximum likelihood (ML) estimate [2]. Let,

10 100010001.. .000100
0100010001.. .000100 zax+n
0 00100010001 .. .0001 - - -
000100010001.. . 0001
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 be the data. Here n is i.i.d. Gaussian noise.

E -We want to estimate the deterministic waveform x
E. at each sample point. These sample points will

0 be denoted by a. The.ML estimate of a is given
0 by the procedure. Choose the value oT a, say ,0 that maximizes f(z;a), where, here, f( T is a 2

0 multidimensional gaussian probability density
1 0 0 0 1 000 1 . . . 000100 function. Since, the waveform is a recurring
0 1 000 000 . . . 000 1 0 pulse of duration h, the estimate reduces to the
001000 1 000 1 .. . 0 000 expression

(1024 x 1024)

The extracted data vector for this example w-1

is found from the expression k, - (1/w) : x(ig-i+hk)
k-O

- (4/N) E x a x for i=0,1,2 .... h-1. So, each sample of the pulse
is averaged over all respective samples of the

So that, the extracted data vector is equal successive pulses. This is exactly what tne

to the original data vector. The reason for this transformation F-1QF performs.
is that, in this example, all the information was For a sinusoid, which is periodic, tne same
located at discrete frequencies. Now, if we add type of transformation, but dependent upon
noise of the form n then frequency, will evolve from the extraction

procedure. Here, however, two components are
"z x n associated with each sinusoid [3].

and For example, let the frequency of a sinusoid
be k=256. Then the operator matrix Q will have

, (4/N) E x + (4/N) E n two nonzero components located at qij (ij=256
and 768). The transformation will reduce to the

+ (4/N) E n following,

01 0 -1 0 1 0 -1 . . . 0

which reduces tO, ZE x. Since the noise -1

is random, the noise vector ;ill not match the -1

transformation E and consequently the noise will F-1 QF(2/N) 0
be effectively averaged out.

The resultant data vector is obtained from 0
the expression, 0 1

(1024 x 1024)
* =X - (4/N) E I m 0. It is clear from this result that the exact

sinusold, including phase, will be extracted.

' Adding noise again we obtain, Now consider a frequency domain

transformation. This procedure is a dual of the

,- (4/N) E n -n time domain transformation.

JLkmL-
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The extracted frequency domain data vector, SPATIAL DOMAIN
- X is given by the expression

These results can be generalized for an
array of sensors. The two-dimensional discrete

IE . FQtF-lX Fourier transform is given by the expression

Where Qt is a diagonal operator matrix applied M-1 N-1

in the time domain. Now, FQtF-  will be X(LK) - (1A (1/N)x(Ji)-
complex in general. But the transformation JMO inO
performs a similar operation as its time domain
dual. Namely, it averages the appropriate exp[-j2t(JL/M * iK/N)]
frequencies to produce the extracted data
vector. This is also equivalent, under the
stated conditions, to the ML estimate. where, J=0,1,...,M-1 represent the spatial

sensors, i.e., x(O,i) is the first sensor at the
The resultant frequency domain data vector, l-th time sample. If, Mal, x(J,O) and X(L) will

X, is given by the expression, have the same relationship as x(i) and X(K) did
before. But, now, J represents spatial position
and L spatial frequency.

SX - FQtF-lX
It is convenient to write this equation in

matrix form.
Transforming this result into the time

domain we obtain the result,
"Fw - FFW SFW ITS

- 1t where, X W is a (MNxl) vector and FFW is a

block diagonal (MNxMN) matrix. Each block is the
The transformation [I-Qt] is equivalent to (NxN) matrix F. The other matrix SFW is a

the ideal-nonlinearity discussed in [3,1]. This (MX x MN) matrix of the form,
means that if we can identify the recurring
pulses, or if we have a priori knowledge of them, SFW
in the time domain and apply the transformation
[I-Qt we will have subtracted the frequencyle -  M  I

domain ML estimate from X. Il-~/ ejvM1/

Suppose the nonzero components of Qt are
located at the sample points, 0, 256, 512 and i
768. Then the transformation will also reduce to Ie-ji w (M-1) /M . . .Ie-j'2(M-1)(M-1)/MJ
FQtF-1 . (4/N)E. a

where I is a (NxN) identity matrix, and L TS is

An important application of this method is a (MNxl) vector.
obtaining the power spectrum of a signal when

recurring impulsive interference is present. We now define a (MNxMN) diagonal operator
The resultant data vector will demonstrate the matrix QFW, so that
ability to remove this interference.

From the above result we obtain the power xE * -1 F 1 F
spectrum from the the expression 45 FW FW QFW FW 5FW !TS

is the extracted data vector of the time-space
*T &T - T 1  domain.! TR  x R Xx FQ tF- x

The dual of this result is the following,

Therefore, the 
resultant power 

spectrum is

obtained by subtracting the power spectrum of
X from the power spectrum of the original xE *FFW 1FW 1 SFW F FW. A eF 

FW
discussed in [4].

Where QtS is a (MNxMN) diagonal operator matrix
applied in the time-space domain.
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SUMMARY

Since there are many physical sources that
produce discrete spectra or discrete temporal
components, a signal processing methodology was
developed to take advantage of these phenomena.
If a source produced discrete frequencies then
all of the information associated with the source

' is contained at those discrete frequencies. 8y
extracting only those frequencies a time domain
enhancement was possible. By considering the
transformation of the method it was revealed that
the extracted data is equivalent to a maximum
likelihood estimate under the assumption of
i.i.d. Gaussian noise. A dual relationship was
shown to hold for discrete temporal components.
These results were then generalized for an array
of sensors. In this case the results revealed a
time-space-frequency-wavenumber duality.
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