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ABSTRACT

A block-structured solution scheme is developed for the analysis of
three-dimensional transonic flows. The scheme is based on the solution
of potential flow equations for individual blocks representing part of
the flow field. Based on a previously developed block-structured grid
generation scheme, appropriate computational grids are generated for each
of the blocks depending on the complexity of the local flow field. The
equations are then solved to provide a solution of a large problem in
terms of an assembly of smaller problems for each block.

Numerical results illustrate the applicability of the method for a
three-dimensional flow field around a wing profile (NACA0012). Different
block structures are analyzed to demonstrate the robustness and the ac-
curacy of the developed method. Finally a three-dimensional wing-body
configuration is analyzed and the results are compared with previously
obtained single block solutions.

The method is expandable to the solution of Euler and Navier-Stokes

equations. It is also suited to be executed in a parallel processing

environment.
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I. INTRODUCVION

The solution of three-dimensional, transonic flows around complex
aircraft confiqurations requires considerable computational effort. The
capability to solve such large problems relies heavily on the availability
of larger and faster computers. Over the last twenty years, considerable
progress has been made in terms of hardware available for solving compu-
tational fluid dynamics problems. Rakich [1], in his introduction to the
1973 AIAA Computational Fluid Dynamics Conference, compared machines Tike
IBM 360/67 to the kinds of CDC Star and Burroughs ILLIAC. At the time,
parallel and vector machines were recently introduced and being applied
to the solution of computational fluid dynamics problems. In 1983,
further hardware development has resulted in vector machines like CRAY
X MP or CYBER-205 [2]. Such comparisons may indicate the kind of progress
in computer power we may expect in coming years. It snould also be men-
tioned that these types of machines have also become much more widely
available to the researchers in the field. In the next five years, we
expect the major emphasis in hardware development to be in terms of multi-
processing capabilities and larger memories rather than drastic changes
in computational speeds.

The computation of flow problems using vector machines has resulted
in comparisons of computational speeds with other machines. For example,
Chima and Johnson [3], compared Euler and Navier-Stokes solutions for
transonic flows through a cascade of airfoils on two different computers:
IBM 370/3033 and CRAY 1-S. In their comparisons, they have employed different
levels of grid refinement for which they employed a Lax-Wendroff scheme.

It can be seen from such comparisons, however, that the evaluation of the

st '.‘_~.'-~.._ .‘.'..' '.._ ":f:‘-f:’ (.-‘ . ».‘ ‘.‘ .v.- '.‘ . e \_.-v _‘-‘. .‘.,‘._ ) A»_. ..“ e
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efficiency of a particular hardware configuration is not straight-

N
TR S

forward. It depends on the computational scheme and it is also strongly
ll related to the computational grid employed in the analysis. It is pos-

sible to define a computational fluid dynamics problem on a box-type grid

.
e
PR

structure with MxNxK grid points in each direction. One can then specify

the efficiency of a numerical scheme for such a rectangular grid struc-

> |

ture and for a given hardware configuration.

A second problem to be considered is the number of grid points in a
single block which can be fitted in a particular vector machine. If tie
strategy is to fit a single block with a regular grid structure around an
aircraft geometry, the number of grid points required to model the complete
= flow field can grow very rapidly. Attempts are being made to improve this
situation by embedding blocks with several levels of grid refinement in-

side a regular but coarser grid structure [4]. Until now, the most

ll popular strategy for solving large computational fluid dynamics problems

- has been, a) to develop computational schemes which are fast on regular

ti grids and, b) to model irregular geometries using regular grid structures.

|l Our work has been directed in applying finite element methods for

i solving fluid mechanics problems. This method provides an alternate ap-

2; proach over the ones discussed above for the solution of the same problem.

g; One of the important features of this method is the possibility of using =
53 irregular grids that can be fitted efficiently to simulate irregular flow ;i
i fields around complex geometries. It provides sufficient flexibility to E;;
e design a computational grid around a complex aircraft geometry [5]. It ff
E§ also provides the freedom to modify an existing grid to provide a better '

PR

approximation basis for the employed numerical scheme.

s
fi

The applications of irregular grids, however, require development of

vl
[Wa iy




o — Landh A A~die bt abaic- el - sl Sl bl e Wil E et A S e R
L i m e e e aibi e ant i~ abg=nlin® ol = AN P i~ pesk g - o

S numerical schemes where no regularity of the nodal connectivities is
assumed. Our work has been aimed at developing such numerical schemes

!! [6] where we can exploit the advantages of irregular yet more efficient

grids. As it will be discussed in the following sections, rather than

A employing point or line relaxation schemes, we use block-relaxation

;i

schemes. Such schemes produce a uniform convergence rate for all of the

R
.J‘

eigenvalues of a differential operator inside a block. It is not affected
by the occurence of an irregular grid structure inside a block. Such
schemes have two basic constraints for solving large problems: a) the
size of the block operator grows proportional to the size of the block
- and, b) the geometric definition of an irregular grid requires much more
data than a regular grid, thus considerable information has to be generated
or read-in during each relaxation step.

Based on the above considerations, we have been working on develop-
!l ing a block-by-block solution scheme. The main objective of this
approach is to divide a large problem into smaller components in terms
of a series of blocks. Rather than attempting to solve a Targe problem

a most efficiently on a single processor, we divide the problem into smaller

ones and try to develop an "intelligent" strategy which is suitable for

.‘.*
.

:; parallel processing. Parallel processing for large systems is a popular

1
I

. subject addressed by many researchers today. Our main objective is to ??

exploit the physical characteristics of the problem where each block

corresponds to a sub-volume in physical space. We developed a "sub-
structuring" scheme where each of the “sub-structures" corresponds to a

particular flow region. One can then design grids, use efficient solu-

tion schemes for each of the sub-regions depending on the characteristics

{ TN

of the flow field, and allocate computer resources in a parallel process-
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- ing environment in a most efficient manner. We can summarize our progress

in this area along the following lines:

!l - Development of a block-structured grid generation scheme [5],
) - Development of a variational formulation for solving potential,
ig Euler, and Navier-Stokes equations in a unified form [7], and
- + Development of a block-structured solution scheme for solving the
;; steady-state flow equations through a relaxation scheme.
;i In this report we will present only a short summary of the first two steps.
= We will mostly concentrate on the basic features of the block-structured
23 solution scheme and its application to three-dimensional transonic poten-
R tial flows.
E

‘ A. Block-Structured Grid Generation Scheme
- The generation of grids around a complex aircraft configuration is
o not a straight-forward task. It requires considerable understanding of
'l the surrounding flow field. One has to provide a grid which will produce
ti accurate results at all critical regions. Yet, excessive refinement of

three-dimensional grids is not possible even when the largest computers
o are available. One has to be able to generate a computational grid in
. such a manner that a block of grid points can be controlled and modified
after inspection. The optimum grid configuration for each of the critical
- flow regions can be quite different, yet, they have to be connected to

each other. The grid generation techniques to be employed for this purpose
~£ should be sufficiently general to model any complex configuration.
o In terms of generating a block-structured grid generation scheme, a
finite element approach provides certain advantages. As discussed above,

ii since irregular grids are allowed in a finite element solution scheme, it

%
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is easier to design grids individually for each block and then assemble
them together. In comparison, the global mapping techniques used for grid
generation requires additional computations to provide appropriate coupling
of the blocks [8].

The developed block-structured grid generation scheme can be summariz-
ed in terms of the following steps: If the aircraft can be considered as
as assembly of the body, engines, wings, and many other components, one
has to provide appropriate grids for each of these components. Figure 1
i1lustrates the work performed for generating the details of the air-
craft geometry. As can be seen in this figure, several sections are
digitized to obtain the geometry and a three-dimensional representation of
the body is obtained. A series of blocks are then constructed around the
aircraft to model the flow field. The block structure for this problem
is shown in Figure 2. As can be seen from this figure, the block struc-
ture is irregular, i.e., it includes openings between the blocks, it has
irregular blocks (tetrahedrons) and finally some of the blocks are voids.
The developed grid generation scheme can treat such an irregular block
structure. One can design quite irregular grids in each of the blocks,
yet attach the blocks in an organized fashion, as shown in Figure 3.
Details of this approach can be found in reference [5].

The main objective of the work described in the present report is to
determine the optimum computational procedure in terms of number of compu-
tations and number of data transfers for analyzing such irregular block
structures. Generation of a block-structured grid provides the most
natural way to develop a block-structured solution scheme. It also pro-
vides an insight for designing the most efficient solution scheme for a

particular problem.
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Construction of the aircraft geometry.

Figure 1.
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Construction of blocks around an aircraft geometry.

Figure 2.
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o B. Solution of Flow Problems in Terms of Clebsch Variables
i: The ultimate objective in computational fluid mechanics is to solve
'l Navier-Stokes equations for three-dimensional turbulent flows. Since
- such a proposal is computationally costly, a general and yet quite effi-
ai cient approach is to solve these equations only in flow regions where
viscous effects are important. One of the most successful applications
f' of computational fluid mechanics has been in the area of solving potential
§¥ flow problems together with boundary layer corrections. We have attempted
- to achieve such a simplification in a general manner by using a new formu-
§( lation of the physical problem. Rather than using the velocities and pres-
“ sure as the primitive variables, we decomposed the velocity vector into ir-
i‘ rotational, rotational-inviscid and viscous components by using a Clebsch
transformation [9]. This enables the solution of the general problem in
terms of potential, Euler, and Navier-Stokes approximations at different
.' flow regions which in our case are defined as blocks. The objective is to
] provide general yet efficient solution schemes as well as appropriate com-
;S, putational grids in a block-structured flow domain for all three cases.
'. For analyzing potential flows, it is common to employ the velocity
i potential as the primitive variable. One can write the velocity vector
Zé in terms of a velocity potential as follows:
;" u=71 (1) :
E: and proceed to solve the conservation of mass equation. In this case, E
?: the conservation of momentum and energy are automatically satisfied [7]. E
e A second step in the approximate solution of flow problems is the Euler f
;; equations. In this case, one can write the velocity field in terms of ;
; the entropy and total enthalpy as follows: :
i U = Vo + Hin + ST (2) ;

¢
¢
]
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“ where ¢, n, A are a set of Lagrange multipliers [9]. Here the equations
:j for the conservation of mass, entropy and total enthalpy have to be solved.
ll Finally, for viscous flows, the velocity field can be written in terms of:
’ u = V¢ + Hvn + SVYA + viscous terms. (3)

Here the viscous dissipation has to be calculated together with the
- shear stresses on the solid walls for a given velocity field.
In the foregoing three levels of approximation, one can observe
o that the number of variables and the number of equations increases
parallel to the complexity of the model. If we assume that in one flow
o region (a block), we will be solving Euler equations,while at a neighbor-

ing block the potential flow equations are sufficiently accurate, the inter-

face boundary requires specification of S and H to be a constant along

7;3 the boundary. Only one equation is solved in the irrotational flow region,

- while three equations are solved in the block with the rotational flow.

" Another point to be remembered is the relationship between the flow

- models and the computational grids. One can easily realize that more

%: complicated models require much finer grids. For example, the solution

|! of two-dimensional, transonic potential flows around a semi-circle requires

- a much coarser grid than the one for solving the Euler equations for the

ii same geometry [9]. If the convection of vorticities generated by the shock

g is considered, one has to design much finer grids to capture such a :;
i:: phenomenon. E;;
1_‘ ;S
- C. The Necessity for Block-Structured Solution Schemes >
*: For the development of a block-structured scheme the methodology Lﬁ
B described above was employed. The computational strategy is based on the ii
ii capability of generating grids with varying degrees of refinement for each ;%
; 3
" D2

13
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block and solve potential, Euler, or Navier-Stokes equations for each
block depending on the characteristics of the flow field. As it will be
discussed later, accurate and efficient implementation of the boundary
conditions between neighboring blocks 1is extremely important in a block-
structured scheme.

The most important consideration which necessitates the use of a
block-structured solution scheme is the size of the problem. We do not
expect to have computers large enough to fit the problems we are interested
in into their main memory during the next five years. In terms of storing
the geometry information describing an irregular geometry in a general
form, data transfer becomes a major problem. If one employs auxiliary
storage to store large amounts of uata, the computational scheme can easily
become I/0 bound when large amounts of data have to be transferred.
Depending on the size of the problem and the type of information to be

stored, one can even sometimes deplete these types of storage facilities.

The approach we have taken here is to develop a block-structured
solution scheme, where it is possible to use the available computer

resources in a most efficient manner. For a given problem one has to

make decisions in terms of designing a computational grid. Depending on ﬁ
the size of the problem, the computer resources available, and the char-

acteristics of the flow field, we can decide on the size of the blocks.

In the developed numerical procedure, based on physical insight, one can

decide the manner in which iterations should be performed and the data should

be transferred between the blocks. If we have a supersonic pocket develop-

ing inside a single block, we may choose a particular iterative procedure for

solving this problem. We may decide to iterate on that block more often than

the others. The objective here is to develop "intelligent" schemes where

14

PRI RN . PAa R
l‘:.{'..-‘\/; Wt ol LA‘, zi'&'ﬁ



o 2 ' aa it adas a* e dat padopye lad davegen vt A lint Ak Ante ety il N

i 758

rJ'A s
PR

™

'.- '.'. \

v i M T T W P TR W IR T (YW TR IS A YRR RARS L . T T e -

efficiency can be improved as we learn more about the details of the
fluid mechanics problem and we can plan and revise our computational
strategy.

In this report we will discuss only the solution of the potential
equation using a block-structured solution scheme. However, we will

comment on its generality and its applications to more compiex flow

models.
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IT. A BLOCK-STRUCTURED SOLUTION SCHEME FOR POTENTIAL FLOWS

lq A. Potential Flow Problem

: The analysis of compressible, irrotational flows requires only the
solution of the following conservation of mass equation:

- V(eu) =0 ingq, (4)

where u is the velocity vector, p is the density and @ is the flow region

to be analyzed. The density is a function of the local velocity which can
be written as follows:

1
- yeu)! (5)

p = C(K2

[~ ] In the above equation, C, K and y are known constants. The boundary condi-

tions require the specification of the normal mass flux on the boundary

surface T.
i ousn = f on T (6)
.~ where f is a known function specified on the boundary and n is the unit
El normal vector. By using the condition for irrotationality, one can sub-
. stitute the velocity potential to eliminate the velocity vector as follows:
| u = v (7)

The conservation of mass equation then becomes second-order,
v-(pv8) = 0 in Q (8)
where the velocity potential has to be assigned an arbitrary value at one
point to remove the singularity due to the introduction of equation (7).
- Since, the conservation of mass equation has to be satisfied for the entire
flow domain, over a closed boundary, i.e.,

¢T' puen dr = 0 (9)

f% the specified value of ¢ can be arbitrary.

4
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The objective of the present analysis is to develop a relaxation

scheme for obtaining a solution to the above steady-flow equations.

B. Formulation of the Problem in a Block-Structured Form

For developing a block-structured solution scheme, we will define the
problem over a series of flow regions which we will call blocks in the
following form:

v-(pve;) = 0 in @

on-vo, = f, on T, (10)

when . and T, are the block volume and block surface for each block, o ]

where i indicates the block number. The boundaries can be further classi-

fied in two parts: the boundaries between the neighboring blocks and the

global boundary of the entire flow region. We can distinguish the corre-

sponding boundary conditions as follows:

onevd. = f. on T, (1)
pnevd. = g, on T, (12)

where rio is the global boundary and ric is the inter-block boundary for

th block. Of course, some blocks may have no connection to global

the i
boundaries.

The problem can then be defined as the solution of conservation of
mass equation (10) for each block, together with the determination of un-
known inter-block boundary fluxes g; - This can be achieved through an
additional constraint which specifies that the velocity potentials are

continuous across the inter-block boundaries. We can define the corre-

sponding variational problem in the following form:

- \ = ]3
s1.= ) Jy, oueyae; &V + fro fioeg AT+ fre gydeg dr = 0 (13

17
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By taking variations with respect to ¢, we can derive the differential

2,

equation in equation (9) and the boundary conditions in equations (11)

Y

and (12). Also, since we assumed that 94 is an unknown, we can take a

variation with respect to 95 This produces the additional constraint

o
AR

equation in terms of the compatibility of velocity potentials across

FP neighboring block boundaries as follows:
‘ 2 fr? ®; 695 dr =0 (14)
% . o —_ . |
o Since, the same g9; is employed for neighboring blocks, this constraint
fj will involve the velocity potentials which correspond to the grid points
- on such blade pairs as follows:
L . 2,5 " %,5° 0 (15)
¥; where i and n are the two neighboring blocks and j is the number for the if:
: boundary surface between these two blocks. Z;g
At this point one can introduce the finite element formulation, where ffl
the flow region is divided into first a series of blocks and then a group Q;i
of finite elements. The distribution of velocity potential over each ;ﬁj
element for block number (i) is approximated by: %ﬁﬁ
o:(x.y,2) = N (x,y,2) o4, (16) fﬁi
where Ny is called a shape function (a simple polynomial) and ¢ is the %%é
nodal value of the velocity potential at node number k. One can also ap- :§§
proximate the unknown boundary fluxes along the block interfaces in terms E;;
of nodal flux values as follows: ﬁz
-
gj(s,t) = ﬁk(s,t) Mk (17) ;g;
where ﬁk is a two-dimensional shape function for node k and (s,t) are the g;
two-dimensional coordinates along the boundary surfaces. After substituting F?
R
i
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the finite element approximations and taking variation with respect to

nodal values of velocity potentials, one can write the following set of

discrete equations

[}

t
Ay o Qi’j 25 F; (18)

1>

Where A, F, C» & and ) are global matrices for each block (i) defined by

assembling element matrices for each element e.

- t t t
Ai e f\,]_ PN+ NN+ NN, ) Y (19)
Fie = J'Fo pefe N dI' (20)
1,€
_ . 4
Ci,joe =~ Jrc oM N ar (21)
i,e
. = . 22
Z‘J [)\k]J ( )

Here, i indicates the number of the block, j indicates the number of the
sui face, k is the node number and e is the element number. For o>0, the
coefficient matrix in equation (19) is symmetric and positive-definite.
The variation with respect to nodal values of boundary fluxes (xk),
produces a set of constraint equations defining the compatibility of velo-

city potentials between the blocks:

; Ci 58 =0 (23)

. picks up all the nodes

As can be seen from the above equation, matrix C, j

on surface j located on the block i and assembles the constraint conditions.

In coupled form equations (17) and (20) can be written as follows:

! t
(4,1 [ 1| {Legd|  |LFD

- (22)
e 51001 | (o3| (el
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For a block structure shown in Figure 4, the equation (24) can be written

in the following form:

K a0 o ctoo | e JF,
Ay 00 G0 41 |5
0 A 0 9;,1 92,2 7Y
- 0 0 A3 0 i, (8- |E (25)
| G11Ga2 0 0 M |°
S 0 GaC,0 O | a0

-~
LA

Here, there are three-blocks and two inter-connecting surfaces. In the

W above equation, the coupling matrices for each row of A equations represent
the contribution to a surface from the nodes located on the two neighboring
blocks. As indicated above, unknowns are the nodal velocity potentials

O and the nodal boundary fluxes Ay (g1 i = 1,3) are the potential

H

vectors for each block and (}j j =1,2) are the vectors for each surface.

-]

In general, the surfaces can be described by an independent set of

nodes and the nodal values of ). vectors do not have to be necessarily

J
!! positioned on the same physical point in space as of the elements of the
o ¢ vectors. However, in the applications presented in this paper, the same
N -

grid point locations were used for both ¢ and ) vectors.

e
2 o '-'1

C. Basic Considerations for the Development of an Iterative Solution

Scheme for Block-Structured Equations

foas

One can, of course, attempt to solve the coupled equations directly
in the form of equation (24). Matrices ei correspond to individual co-
efficient matrices for each block. Most of the computational effort in

solving such a system will involve the treatment of the coupling matrices
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between the blocks. In the developed procedure, we attempt to solve the

coupled equations by using an iterative procedure. For the description

of this iterative procedure, let us consider a simpler system consisting
of two blocks and a single coupling surface. In this case, the equations

can be written as follows:

_ c 1 L
h 0 Gl inl b

o A, ¢t le,] = |F (26)
0 A Gl (%] 7|k

G0 %00 ST

- - L S

Here A;, and A, represent the Laplace operator for the two blocks. €,
and gz 1 are matrices for defining the coupling between the two block-
Let us also consider a linearized discrete variational problem in the

following form:

- 1t . 1.t t
=5 01A8y + 5 0R005 + A(Cy ;8 + €y 4 8))

F te (2%)

It can be shown that the variation of the above functional with respect to
¢, &, and A produces the above set of equations.

At this point we can define a second variational problem as follows:
Instead of the unknown flux vector ), we assume a known flux vector 5*.

Then we can write the following variational problem:

~%

«t o«
n = 1

A +'| A*+ *+C *
21 Aoy 3 by Ao+ ag (G 18y + Gy 405)

N} —
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%* t *
B R R B A
* t *
Aty + Gy 4)y = Fo (29)

We can prove a certain Theorem, from the solution of the above two varia-
tional problems:

Theorem. If 5* is any arbitrary flux distribution on a boundary
surface, the solution of equation (29) produces upper and lower bounds to
the solution of the original problem of equation (26).

The validity of the above statement can now be shown. The solution

of the above equations can be written as:

* .- =1t L *
3= B - A Y
LA S PS
= B B Aoy (30)
The nodal potential vectors which correspond to the nodes on the interface

can be written from the above solutions as follows:

C, 105 = C; 1AT'Fy - €y JATTCE
<1,1=1 0 21,11 -1 0 21,1 1,1
* -1 -1t . *
Cp 122 = G5 1R Bp - G5 4A5C5 42 (31) »
We can write the exact solution of equation (26) in a similar form, Eii
. -1 1.t 2
R TSI LI A T IS IR TR 1 =
C, 101 = Co 1AVE, - €, 1A50CE 2 (32) =
L2181 7 22,172 T2 7 T21%2 t21 o
The difference of equations (31) and (32) produce the following rela- <
tionship: ???
* - -1t * o
Gyl =9 = G By G- ) f?ﬂ
* . -1t * 3
C2,1(22 = 22) = G5 3R Gp (2 - 1) (33) =
23 s
g e g e e S T e e e A
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* *
If we assume that ¢, and ¢, are close to the exact solution and can be

written in the following form:

= _ |

*
2y = kygy + small terms

*
22

s

ky2, + small terms (34)

where k] and k2 are unknown constants, equation (33) can be re-written

EEE |

as follows:

,.
P

1

B

*
A-1)

‘,.
"

_ 1t
(ky = 1) Gy 8 = G 98 Gy

2 - = 1t -
s (ky = 1) Coq 8= Cp By Coq (- 2) (35)

r

By using the compatability condition for the exact solution from equation

(26) as follows:

co WD

ity 20, (36)
.. and since both matrices A] and 52 are positive definite and by using equa-
-I tion (35) we can show that when
f’;'.
n or
v k1 <1 -+ k2 >1 . (37)
" i.e., 9; and 9; provide upper and lower bounds to the solution of velocity

potentials on the boundary.

o A similar proof can be made for a second problem. This time, let us g
- assume that we start with a set of approximate velocity potential vectors g
. for each block, 9: and 9;, such that the compatability condition at the %
if boundaries is satisfied as follows: E
i :
v R 9; t 9; =0 (38) g
" A
v, N

N G SR LR

!! 24
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which means that for the approximate solution, the nodes at both sides

e

4 of the interface between two blocks possess the same ¢ distribution,
yet equation (32) is not satisfied. In this case, by solving equation

B (38) together with the following set of equations,

& x  t %

Mo *Gah s

Qz Aty * S5 M0 = (39)

o we obtain a different set of flux vectors 5;’] and 5;,2 on each side of

& the boundary surface. If we solve equation (39) for the velocity poten-

? tial vector as

[ oy = A'Fy - AT g

L * _ - -1.t

N PR TR, (40)

;ii and substitute into equation (38), we can write the following relationship:

| a8 By - G S g ¢ Gah B - G R G 2 0 (D)
On the other hand, the summation of the two equations in equation (32)
produces the following relationship

g _ 1 -1t -1

3 Cat G2 =Gk B - Gl Gah Gk

5 ORI RIOR (42)

i Combining equations (41) and (42) one can then write,

N GBI (g =2y ) = - GG (- 3y ) (43)

13 Again by making a similar approximation as in the case of equation (35)
and by recognizing that both matrices 5] and 52 are positive-definite,
one can show that vectors 3:,1 and &:,2 produce upper and lower bounds to

i% the correct flux vector at the boundaries which can be stated as follows:
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Theorem. If ¢ is any arbitrary velocity potential distribution on

a boundary surface, the solution of equation (39) produces upper and lower
bounds to the solution of the original problem of equation (26).

Based on the above discussions, an iteration procedure was developed

using the following principles:

- calculate 9; and 9; from equation (29) which provides bounds for
the solution at the boundary (C,¢ and (,¢),

- calculate an estimate of ¢ at the boundaries based on 9; and 9;,

- solve equation (25) by assuming the velocity potentials at the
boundaries. Since ¢ values at the boundaries are specified, A values
are not necessary at this step,

- using equations (38) and (39), calculate 5;’] and 5;’] which provide

bounds for the next estimate of 1,

*
- calculate a new estimate of A based on }; 1 and 5; 2

repeat the iteration procedure.

The above proofs only demonstrate that at each iteration, a new set
of upper and Tower bounds are obtained for boundary fluxes and boundary
velocity potentials. The next step is to show that the above iterative
scheme is stable. Also it is necessary to understand the important factors
effecting the rate of convergence.

Computationally, the efficiency of the above scheme is based on the
assumption that a large system can be divided into a series of blocks which
can be individually stored in the main storage area of a computer. Blocks
can be processed individually in this scheme while the calculation of the
surface fluxes is done through a relaxation scheme for each surface without
ever solving a large system of equations. These computational considera-

tions will later be discussed in detail.
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D. The Convergence Characteristics of the Iterative Scheme

To understand the convergence characteristics of the iterative scheme,

let us again consider the simple two-block model.
Start the solution by assuming an initial flux vector at the bound-

ary: &?. Then, from equation (30), we can calculate the potentials

as follows:

* -] -1.t .o
H=hh - N4y
* .-l -1t .o
2y = B by - B Gy (44)

- Calculate the potential vectors on the boundary surface and

average two vectors on the boundary by using an averaging vector

.
* _ *
"o 408
* _ *
210 %1% (45)
* _ * *
g1 = o8y, + (1 -a) 2,

- Calculate the boundary fluxes at the same boundary by solving the
following pairs of equations for each block by specifying poten-

tials on the boundary surface or constraints.

*

£t o*
Mo et&am 7

* _ *
G0 %,t = %, (46)
and
* * _
RO 7R IR R !

*

%
C2,1 22,6 =~ %, (47)

In the above equation values of the right-hand-side vectors are known.
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*
- Average 57 p and 2, 4 solutions at the boundaries with a second

Py

averaging parameter 8

T

] _ * *
M o= BNyt (1 - B) 52’] (48)

. ;l"

By combining equations (44 - 48) we can write the following recur-

E‘ rence relationship:
i e (49)
E where the coefficient matrix D can be written as follows:
- - -1 ~-1 %
5 D = (A - (1 - 8)A,] [wA]’ - (1 - a)Ay'] (50) -
& B i
‘ Here é] 1 and éz 1 are reduced coefficient matrices related to the bound- )
t‘ ary surface in the following form: =
e
- Ap=Cy 1 A CE
E: -1 21,1 =1 1,
I t
Ar =1 B o (51)

The rate of convergence depends on the eigenvalues of the coefficient
matrix D, which can be simplified as,

D= (1-a-8+28) - 8(1 -a)hhy' - all - B)AA] (52)
where I is the identity matrix. In the case of two equal size blocks with

Ay = Ay, D can be written as follows:

D=(1-2u- 28+ 4ag)l

In this case for « = 8 = 0.5, an exact solution is obtained after one step.

RS

ey

E. Stability Limits for the Iterative Solution Scheme K

To illustrate the bounds for convergence of the developed scheme, a o

simplified one-dimensional model will be utilized. In this case, the co- o
efficient matrix becomes a scalar, d and 5{152 matrix can be represented ;;i

-1~ cad

by another scalar r. Of course 52]5], becomes 1/r. Then, the coefficient —
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matrix in equation (52) can be written as

AR

d=1-0a-8+2a8 - B(1 ~a)r - a1l - 8)/r (54)

The stability condition for this system, which requires

- 1<d <1 (55)

O becomes

- 2>a+B=-2u08+8(1 -a)r+a(l -8)/r>0 . (56)
o For example, a = 8 = 0.5, this condition can be written as follows:

2> 0.5+ 0.25r + 0.25/r > 0 (57)

.. Since r is positive for positive-definite systems, the stability condition

\:'j: . requires

o 3-/8<r<3+/8 (58)

- In a general case, r represents the ratios of eigenvalues of neighboring

?E blocks.

As can be seen from the above expression, the relaxation scheme is

. convergent only for a narrow band of ratios of eigenvalues. This means

r- that if the neighboring blocks are not similar in terms of shape, size or

’ grid refinement, one cannot expect convergence from the iterative scheme.

!g Of course in a general system, a series of eigenvalues are involved which we 'LL
;: do not have prior knowledge of. The above results were obtained for ;E
S{ a =8 =0.5. Amore general representation of the bands are shown in ;Q
g: figure 5. :i‘

In order to improve the ratio of convergence, we introduced a relaxa- Eﬁ

E; tion parameter w into the scheme in the following manner: 2:
5 - Once the estimates for velocity potentials were calculated and an ~?
e average was computed in equation (45), the velocity potentials for |
- each surface vector was relaxed in the following manner: —
n 2]
:

i! 29 o
5

«

.-. - .. ¢ -_-. '-"~ PR . .'.,.. . “'-"‘i )

AL R J.-,- “.,' T .. ._4 R _ PRI "r _____ NGRS . SR \\o
t-- A‘.r .r.".‘.- «'.’I-(. O I e L“lm'h.!_l:.i:h\.ﬂs R R A R W VTSP Iy O DUV STV TN 3. .98, ¥ 3,




P— LAt e oan s s o T
e YT k AR

A .d.ﬂﬁl. MU |

‘g pue 0 JO san{eA uaAaLb
404 U 40} punoq 43MO| 3yj 4O uoLjeLsep ‘eG aunbL4

30

©
o
v139




"9 puB © 4O San|eAn UaALb
‘ 404 4 404 punoq uaddn ayj jo uotietdep  “qg d4nbiLy

1 6°0 8°0 ‘ L0 9°0 S0 LY €0 2°0 ;0 0°0

I )

o
<
x
o
-l
<T
-

|
|

B R R

- et - i e e i ‘

— 02 “

¢ \\ \ \l\\\t\ m O ...
/ —T

t°0

N
\
w
o

31

©0
(e]
v134




"4'“
>

iy ol

N
P

™ &2 a

81,0 T wg,p (1 -w) gy

%

82,0 " g,z * (1 -u) 2, (59)

« The second part of equations (46) and (47) were then modified as

follows:
* —-
G109, " &1

Co,1 82,6 " - 8,1 (60}

« An average for ) vector is again calculated from equation (48).
However, in this case, the A vector is relaxed again with the same
relaxation factor to calculate the fluxes for each surface as follows:

Mo en -y = (- (61)

In this case the coefficient matrix D can be written in the following form:

D= [1 - ua - g + 200811 - 8o(1 - a)AyA;' - wa(l - BYAAT  (62)

The stability condition for the one-dimensional case requires that
2>w[a+8-2a8+8(1 -a)r+a(l -8)/r]>0 (63)
In comparison with the stability condition in equation (56), in this case
w becomes the controlling factor. Figure 6 1illustrates the bounds for
stability with different relaxation parameters « for a fixed value of
a =8 =0.5. In the actual computations, as it will be discussed later,
both were fixed at 0.5 and the stability was controlled by only changing
w.
For a general problem, r becomes the ratio of the largest eigenvalue
for one block to the smallest eigenvalue of the neighboring blocks or vice
versa. The magnitude of the largest eigenvalue of the coefficient matrix

for a block depends on the size of the smallest element. On the other
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.. hand, the smallest eigenvalue becomes lower with the increasing size

- of a block. Thus, we expect small relocation parameters to be employed

ll when large blocks are connected with small blocks with excessive grid

“ refinements.

o It remains an interesting problem to experiment with different values
!? o and g8 for each block interface since there is no requirement for a and
2 B to retain constant values during the jteration scheme.
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ITI. COMPUTATIONAL PROCEDURE

In the above discussions, we tried to summarize the fundamental
principles and objectives in designing the present computational scheme.
In this section, we will try to describe the numerical procedure in detail,
emphasizing its computational aspects. A flow-chart summarizing the iter-
ative scheme is shown in figure 7. In this flow-chart, block surface
means one surface of a block attached to another single neighboring block.
A simple example for a two-block structure is shown in Figure 8.

As can be seen from this flow-chart, the first step is to initialize
the density of each element in all blocks and assign a boundary flux dis-
tribution for all global boundaries and inter-block boundaries as defined
in equations (11-12). In actual computations, we may initialize the problem,
for example, by setting the densities to zero everywhere and by assuming
the flux boundary conditions at the upstream to be valid for all block
boundaries.

We then perform the first set of operations. We consider each of the
blocks one at a time. There is no order to the sequence in which the
blocks are operated on. Given a series of processors, these block opera-
tions can be distributed among these processors. For each block we per-
formed what we called operation A, as described in figure 9. This oper-
ation involved the solution of the conservation of mass equation for each
block individually under the set of given boundary fluxes as specified in
equations (11-12).

One problem in this operation, which was mentioned previously, was

the necessity to specify the velocity potential at one grid point due to

the singularity of the system. It was pointed out that this value could
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C
‘ be arbitrarily chosen if the conservation of mass for the entire block was
|~ satisfied as stated in equation (14). For this purpose, we first scaled
la the mass fluxes over the entire boundary which was called operation C in
. the flow-chart as shown in figure 10. Details of this scaling process 1
will be discussed later. After the operation A was performed, a set of %
- velocity potentials was obtained and stored for each block (g: in equation !
s (31)) as individual sets.
The second set of operations included the treatment of each of the h
j’ surfaces. This was called operation E in the flow-chart and is illus- ’
: trated in figure 11. In this case, for each surface, velocity potentials, ?
- calculated from individual blocks, were picked, averaged by using equation ;
&

(46) and relaxed as defined in equation (60). Again each surface was ad-
dressed and processed individually. However, a certain restriction exist-

ed here which was due to the fact that a block may have several surfaces.

m-
¢ 8

When processing a particular surface, data for a particular block may not
be readilyavailable in a parallel processing environment since it could

be addressed at the same time by another surface.

!l The last loop was again a block operation. This was called operation

B B, as shown in fiqure 12. For each block, we picked the averaged and

@5 relaxed values of surface potentials. We imposed these values on bound-

- ary conditions as given in equations (39) and solved the conservation of

5‘ mass equation one more time but with this new boundary condition. The

iji outcome of this operation was the boundary fluxes for each block. This

= information was written on a surface file again to be averaged and relaxed. ;
E? Thus, each time a block was processed, its contribution to the flux balancing ;
. (operation D, shown in figure 13) was simultaneously performed as indicated

in the flow-chart.
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.- The details of these operations are listed below.

A. OQOperation A
Operation A involves the iterative solution of the potential flow

equation for each block as defined in equations (10-12). We employ an

iterative procedure for each block as summarized below:
:z At each iteration, equation (18) has to be solved to determine the
:: nodal values of the velocity potentials. Rather than solving equation
é: (18) directly, we employ the following iterative procedure: ;ij
ASeTt! = Fp - cb - alel (64) "‘3
IN Here n indicates the iteration step, where ¢ and 1 vectors are calculated ;;é
‘ii from the previous iteration. Coefficient matrix e? is determined by using ffj

the densities obtained from the previous iteration step. A? is calculated 'fﬁ
E at the first step by employing a fixed density distribution. iﬁi
i. The right-hand-side vector is calculated for each element of a block

and assembled as a block residual vector. Matrix A? is never assembled
Ez: but calculated element-by-element to be multiplied by a vector consisting

of the nodal values of element velocity potentials. The left-hand-side
F coefficient matrix is a symmetric, positive-definite matrix which can be
b decomposed only once and stored. In this case, each time a residual vector
- js determined for a vector, a forward-backward substitution operation is
{i performed on this coefficient matrix. The size of the coefficient matrix Lo
2 is equal to the number of the grid points in a block times the half of the t:?
& wavefront. For example, for a regular grid of 10 x 20 x 30 grid points, ;;;
&. the wavefront would be equal to 10 x 20 x 2 = 80. If sufficient core is 1;;
" not available to store such information, the coefficient matrix has to be Z?Z
& assembled and decomposed at each iteration step. ;;3
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In our computations, considerable time was spent in terms of formulat-
ing the residual vector. This computational time can be reduced consider-
" ably if the matrices in equations (19-22) can be stored and read-in at

every iteration step. Only the density has to be recalculated at each

) {‘.’.

. iteration. In this case, the core requirements increase by approximately
" 84 x number of elements for each block.
S The details of the above iteration scheme have been previously presented
:E in detail [12]. Its convergence rate depends strongly on the manner arti-
i4 ficial density is included in the computations. The same scheme has been
i; applied without any modification to the block-structured scheme. As it
o will be shown later, no significant reduction in the rate of convergence
C was observed after the application of the block-structured solution scheme
§T as compared to solving the same problem as a single block.
. B. Operation B

Operation B involves the solution of conservation of mass equation
for a slightly different problem. In this case, the velocity potentials
at the inter-block boundaries are specified and the normal mass fluxes at

the same boundaries have to be determined. This problem can be defined as

W follows: Consider the solution of the conservation of mass equation,
v v-(pv0) = 0 in @
N with
\ puen = f on r°
E; and
23 ¢ =P on r’ (65)
v The variational problem can then be written as follows:
i ™= UQ%"Y"’i'Y"’i do + [l ¢;f; dr + [c yi(e;-p) dr (66)
i 2 2
F

™
&
e
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In this case, the Lagrange multiplier Y; on the boundary surface Fc indi-
cates the unknown boundary flux to be determined which corresponds to the
known velocity potential distribution as defined by p(s,t).

After substituting the finite element approximation, the governing

equations can be written as follows:

-3 913

(XS]

i Ei
0 .
B;

i3 Y13 (67)

Here, i jvector represents the unknown mass fluxes on each surface grid
point that is connected to a neighboring block surface. The solution of
equation (67) can be written as follows:

. . = (0F A0, .

-1 ¢t
8,5 = (05,58 0y 50 10 54F

Fi - el (68)
where 1 is the block number and j is the surface number.

As can be seen from equation (68), the mass fluxes at the inter-block
boundaries can be written in terms of mass flux vector at global boundaries
(Ei) and the known values of the velocity potential vector at the inter-
block boundaries (Ei)' The first part is a constant vector through the
iterations while, B; vector is recalculated at each iteration. The co-
efficient matrix, in equation (68), is simply the reduced form of the
matrix A; where all of the grid points on the boundaries are eliminated.
This coefficient matrix is different then the one employed in Operation
A. Again by using a constant coefficient matrix scheme, D can be calculated
only once and stored. For a block of 10 x 20 x 30 grid points it will
have a size of 8 x 18 x 28. It will also have a wavefront of 2 x 8 x 18.
There is a basic difficulty in the above computational scheme. Let

us assume that a block has six surfaces and all of these six surfaces are

e R LY T e - T
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attached to neighboring blocks. In this case, the pj vector has to be cal-
culated from all six surfaces. However, there is no restriction to ensure
that the velocity potentials calculated from each surface are continuous
along the edges connecting such surfaces. A unique value cannot be
assigned to ¢ to form the B; vector at these points. Thus, the above set

of computations in equation (68) has to be performed for each surface

individually.

C. Operation C

Consider a single block with a series of boundary fluxes on each sur-
face. For a rectangular block this would mean six individual surfaces.
In the present scheme, all of these fluxes are calculated individually
through computations involving the neighboring blocks. We also know that
we can solve the conservation of mass equation only if it is satisfied
globally for the entire block. To ensure such a condition, the total

mass flux is calculated from equations (11) and (12) as follows:

f dr + gdr = ¢ (69)
T rc

(0]
Since the boundary conditions on the global boundary is exact, the error
can be distributed to the other boundary surfaces in the following manner:

fre lgl dr =Q
g=9-5ld (70)

This process ensures that the conservation of mass is always satisfied

before Operation A is performed.

D. Operation D

Operation D involves the balancing of fluxes as calculated from

neighboring blocks. As indicated in equation (64), at the end of
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Operation B, a set of boundary fluxes are calculated on each surface.
In general, we can describe such surfaces with a set of discrete points.
Let us assume that block A; which is joined to this particular surface
has m, grid points while block 52 attached to the same surface by m, grid
points. Let us also assume that m]#m2+n and all three sets do not physi-
cally match in space with each other.

By using a finite element procedure, we can employ a shape function

as defined in equation (17) for each surface in the following form:

gj(s ot) = Nk(s’t))‘i ,k(k=] »n)
gi 3(5t) = N(s,thry 5 (k=l,m))

9,3 (S:t) = N(s, Ay 5 (k=T,m)) (71)

Where L represents the nodal fluxes on the surface nodes, and

L3k
An ik the nodal fluxes on the surface nodes of the neighboring blocks
i and m. Then, by following the averaging scheme in equation (49) and
the relaxation scheme in equation (61), it is possible to evaluate

n+1

95 =Rgi,;* (0 -plgy 4

g?t} - wg?+1 + (1 - “)9?,j
9:;‘1.:; = m99+] + (] - w)g:]’j (72)

In the case of blocks with matching grid points on the neighboring
surfaces, the above operation is conducted directly on the nodal values
of the A vector.

It should be mentioned that the above operation is in fact a block
based operation. For each element of the block, ) vector is calculated

for each surface and stored on a surface based file according to the
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kﬁ equation (72). After each block is processed, the outcome is the 9i,j Eg
> or g ; vector on each surface. The computational cost of the operation "
!I is based on the effort in accessing such a surface file. For example,
H‘ when one block is processed, the computed surface fluxes has to be written
E, on each of the surfaces attached to that block. The same surface will
- then be accessed by the two blocks it is attached to. If a surface infor-
3 mation file is kept in main memory, which includes both surface fluxes and
E% geometry of the elements on both side of this surface, all of the above
" information exchange can be directly made in the main memory. Otherwise,
an auxiliary file has to be accessed for storing such information. Know-
- ing the connectivity of the blocks and the sequence in which this informa-
- tion has to be accessed, one can optimize such an operation for directing
7 large systems.
i E. Operation E
' Operation E is very similar to Operation D but somewhat more direct.
Velocity potentials are calculated from each surface, averaged and relaxed.
Again a block based information file is generated which involves the
!! velocity potentials for each of the grid points for a block. At each step,
o the surface potentials are updated once.
|
\,g F. File Structure of the Operation N
“t Two types of basic information are necessary for the operation: Velo- E;
:% city potentials and boundary fluxes. This information is stored for both »
- Operations C and D in the following manner: j;
1. Block file B
. This file includes the following information for each block: é
;

» °

.....
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Velocity potentials for each node

Geometry of all the elements

Shape functions for all of the elements

Element coefficient matrices in equations (19 - 22)

Decomposed coefficient matrices for a block.
This file is read in for one block at a time. Al1 blocks can be
processed sequentially or in any order.

2. Surface file

This file includes the following information for each surface:

Surface fluxes for elements on both sides of the surface

Geometry of the elements on both sides of the surface

Shape functions for these elements

Element matrices for these elements.

If we review the flow-chart, the following I/0 operations are
observed: Operations A and C require access to the block file while
Operations B and D require access to the surface file.

In the application of the method on an IBM 4381 com,..er with 12
megabytes memory, the block and surface files were split into smaller
files. Velocity potentials and boundary flux vectors were kept in main
memory at all times, while the other information was read in when a parti-
cular block or surface was processed. This way most of the information
transfer to the neighboring blocks in terms of averaging and relaxing

was performed in the main memory.
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IV. DISCUSSION OF RESULTS

To illustrate the applicability of the developed numerical procedure,
a series of test cases was analyzed. As discussed in the previous sections,
the convergence rate and bounds of convergence for this scheme depends
on the size of the blocks and the grid refinement in each block. One can
expect variations on the size of different blocks and the necessary grid
refinement for each block in the case of complex three-dimensional flows.
To test the robustness of the scheme, blocks were chosen in some cases in
a way which was considered to be least favorable for convergence of the
scheme. The test cases include several two-dimensional cases analyzed
using the developed problem as well as a fully three-dimensional case as
follows:

A. Incompressible flow around a NACA0012 airfoil

B. Compressible, subsonic flow around a NACAO012 airfoil (M_ = 0.6)

C. Transonic flow around a NACA0012 airfoil (Mm = 0.83)

D. Transonic flow around a wing-body configuration (M_ = 0.90,

a = 39)

A. Analysis of Incompressible Flow Around a NACAGQO12 Airfoil (Min = 0.001)

Two types of block structures were employed for the analysis of this
test case. The first case involved a one-dimensional block distribution
in the flow direction with three blocks and two intermediate surfaces.
This block structure is shown in Figure 14a. The number of grid points
empioyed in each of the blocks are also shown in this figure. The generated
grid for this block structure can be seen in Figures 14b - 14d. The second

type of block structure, shown in Figure 15, involved twelve blocks and
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No. of Grid Points

Incompressible flow 8x 7x3 10x 7x3 7x 7x3

Transonic flow 21x16x3 31x16x3 2]X]5X3

Figure 14a.

Three-block grid structure for the analysis of
flow around a NACA0012 profile.
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Figure 15. Twelve-block grid structure for the analysis
of flow around a NACA0012 profile.
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o twelve intermediate surfaces. In this case, blocks of different sizes iﬁ
" were placed in all three principal directions to test the robustness of Ei
!l the numerical scheme. The assembled grids for both types of block struc- f%

tures are identical in both cases and are shown in Figure 16. Both grids ‘
were considerably coarse with only ten elements over the airfoil but they
!! still provided adequate accuracy for the solution of this simple program.

}-: The numerical results obtained for an inlet profile of Min = 0.001

}EES from the three-block and twelve-block grid structures were compared with
- the exact solution of this problem, as shown in Figure 17. In both cases
o no relaxation was employed and both required about 35 iteration steps for
v convergence.

& B. Analysis of Compressible Subsonic Flow Around a NACA0O12 Airfoil (Min = 0.5)
;. For the solution of this test problem the same three-block and twelve-
x block grid structures described in case A were employed. The obtained
'I numerical results are compared in Figure 18 with results from a single-
block C-type grid with (61) x (50) grid points.
The agreement with the one-block solution is very good considering
!? the coarseness of the grid. The number of iterations required for conver-
gence was about 40 for both cases and no relaxation factor was employed.
C. Analysis of Transonic Flow Around a NACA0012 Airfoil (Min = 0.83)
S: Again two types of block structures were employed in the analysis.
First, a three-block structure shown in Figure 14awas tested with blocks
« distributed only in the flow direction. The second case, shown in Figure T%
19, was a twelve-block structure involving blocks distributed in two dimen- g
sions. This time two blocks were employed over the airfoil surface to
ii provide a complicated test case for locating the shock. The grids pro- ;%
p 58 =
F< :
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Figure 16. Assembled computational grids (12-block) for the
analysis of flow around a NACAOO12 profile.
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duced for both block structures were identical but considerably finer than
those employed in the ones used for incompressible flow problems. A
ll cross-section of the grid is shown in Figure 20a. In Figure 20b the grid
distribution over the airfoil surface can be seen. The grid employed

> (71)x(16x(3) = 3308 total grid points with a 30 element distribution over

15 the airfoil. The distribution of elements for each block is shown in
t :
Figures 14a and 19. K

The numerical results obtained from the three-block and twelve-block

grid structures were compared with results obtained with a single-block

Ty R

z,

C-type grid and are shown in Figure 21. Both results compare favorably

s X DD

o with the single-block solution, obtained from the C-type grid shown in
= Figure 22. The number of iterations required for convergence was about
450 in both cases and involved a variable relaxation factor « in the range Ej
of .01-.55. éy
.l D. Transonic Flow Around a Wing-body Configuration (M_ = 0.90, o = 39) -]

A 24-block grid structure was chosen for analyzing the transonic flow

problem around a wing-body configuration as shown in Figure 23. The

<8

details of the generated grid are shown in Figure 24. The number of grid

- points in each block is listed below:

Block No. No. of Grid Points
w B111 7x8x4
R B121 14x8x4 X
B131 7x8x4 o
o~ B112 7x8x4 “
X B122 14x8x4 M
B132 7x8x4 F
B211 7x8x1 )
- B221 14x8x1 :
g B231 7x8x1 i

B212 7x8x1
. B222 14x8x1
iﬁ B232 7x8x1

<
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transonic flow around a NACA0012 profile.
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A section of the grid for the analys

Figure 20a.
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Figure 21. Transonic flow (Min = 0.83) results for
(- flow around a NACA0O12 profile.
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Grid geometry along the wing cross-section.
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Expanded view of the block grids for the first
column of blocks for the wing-body problem.
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Figure 24f. Expanded view of the block grids for the second
column of blocks for the wing-body problem.
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Expanded view of the block grids for the fourth
column of blocks for the wing-body problem.
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Figure 24h.
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o Block No. No. of Grid Points
[+
i B311 7x8x6
B321 14x8x6
. B331 7x8x6
- B312 7x8x6
. 8322 14x8x6
{j B332 7x8x6
o B411 7x8x4
B421 14x8x4
B431 7x8x4
F? B412 7x8x4
B422 14x8x4
B432 7x8x4
E3 The total number of grid points is 8207. Comparison of obtained results

as obtained from the previous solution of the same grid as a single block
[6] is shown in Figure 25.

As can be seen from these results, the 24-block solution reproduces
the single block solution reasonably well. The differences between the
two results can be attributed to the coarseness of the grid in terms of
computing mass fluxes between the blocks.

The number of jterations required for convergence in this case was

550 and involved a variable relaxation factor w in the range of .01-.75.
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Figure 25.
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Comparison of the pressure distribution at the

wing root for single block, multi-block and
experimental results.
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V. CONCLUSIONS

The procedure described in this report involves the solution of tran-
sonic potential flow equations using a block-structured approach. The
basic objective of this research was to develop methodology for analyzing
large flow problems involving complex geometries. The developed capabili-
ties include,

- the generation of a computational grid around a complex geometry

based on a block-structured grid generation scheme,

- the analysis of such a system by using a block-structured solution

scheme for transonic potential flows.

The grid generation procedure was presented in previous publications.
The block-structured solution scheme is presented in this report only for
potential flows. It involves the solution of conservation of mass equation
on a block-structured basis in terms of the velocity potential ¢. Each
block is stored independently and analyzed in the computer. Iterations
involve solution of conservation of mass equation for each block as well as
balancing the mass flux between the neighboring blocks.

The procedure is expandable to the solutions of Euler and Navier-
Stokes equations. In the case of Euler equations, equation for the conser-
vation of entropy will also have to be solved. This again will involve the
solution of the equation for each block as well as balancing the entropy
to the neighboring blocks in the flow direction. Such an approach provides
the capability of solving different types of equations approximating the
flow field on the same grid but for different blocks. For a complex air-
craft configuration, the capability to solve potential, Euler or Navier-

Stokes equations at different flow regions is necessary considering the

present computer hardware capabilities and also the complexity of the problem.
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As stated above, the potential flow solution of transonic flows
requires the only the treatment of the conservation of mass equation. In
terms of solving Euler or Navier-Stokes equations, the same equation has to
be treated. In fact, the elliptic nature of the conservation of mass
equation governs the convergence rate of relaxation schemes for all three
types of formulations. Therefore, the efficiency of the computational
scheme in terms of solving the conservation of mass equation for large
systems is of general importance for solving Euler and Navier-Stokes
equations.

Currently the method is being extended to the solution of Euler
equations including solving coupled potential and Euler solutions at
different flow regions. Another important consideration is the application
of the numerical procedure in a parallel processing environment. As
described in this report, the processing of blocks and surfaces can be
performed in any order. This provides considerable flexibility in defin-

ing an optimum solution procedure for a given parallel processor hardware

configuration.
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