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ABSTRACT

A block-structured solution scheme is developed for the analysis of

three-dimensional transonic flows. The scheme is based on the solution

of potential flow equations for individual blocks representing part of

the flow field. Based on a previously developed block-structured grid

generation scheme, appropriate computational grids are generated for each

of the blocks depending on the complexity of the local flow field. The

equations are then solved to provide a solution of a large problem in

terms of an assembly of smaller problems for each block.

Numerical results illustrate the applicability of the method for a

three-dimensional flow field around a wing profile (NACAOO12). Different

block structures are analyzed to demonstrate the robustness and the ac-

curacy of the developed method. Finally a three-dimensional wing-body

5 configuration is analyzed and the results are compared with previously

obtained single block solutions.

The method is expandable to the solution of Euler and Navier-Stokes

equations. It is also suited to be executed in a parallel processing

environment.
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I INTRODUC'i'ION

The solution of three-dimensional, transonic flows around complex

aircraft configurations requires considerable computational effort. The

capability to solve such large problems relies heavily on the availability

of larger and faster computers. Over the last twenty years, considerable

progress has been made in terms of hardware available for solving compu-

tational fluid dynamics problems. Rakich [1], in his introduction to the

1973 AIAA Computational Fluid Dynamics Conference, compared machines like

IBM 360/67 to the kinds of CDC Star and Burroughs ILLIAC. At the time,

parallel and vector machines were recently introduced and being applied

to the solution of computational fluid dynamics problems. In 1983, F

further hardware development has resulted in vector machines like CRAY

X MP or CYBER-205 [2]. Such comparisons may indicate the kind of progress

in computer power we may expect in coming years. It snould also be men-.

tioned that these types of machines have also become much more widely

available to the researchers in the field. In the next five years, we

expect the major emphasis in hardware development to be in terms of multi-

processing capabilities and larger memories rather than drastic changes

in computational speeds.

The computation of flow problems using vector machines has resulted

in comparisons of computational speeds with other machines. For example,

Chima and Johnson [3], compared Euler and Navier-Stokes solutions for

transonic flows through a cascade of airfoils on two different computers:

IBM 370/3033 and CRAY 1-S. In their comparisons, they have employed different

levels of grid refinement for which they employed a Lax-Wendroff scheme.

It can be seen from such comparisons, however, that the evaluation of the

Z-, 
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efficiency of a particular hardware configuration is not straight-

forward. It depends on the computational scheme and it is also strongly

related to the computational grid employed in the analysis. It is pos-

sible to define a computational fluid dynamics problem on a box-type grid

structure with MxNxK grid points in each direction. One can then specify

the efficiency of a numerical scheme for such a rectangular grid struc-

ture and for a given hardware configuration.

A second problem to be considered is the number of grid points in a

single block which can be fitted in a particular vector machine. If the

strategy is to fit a single block with a regular grid structure around an

aircraft geometry, the number of grid points required to model the complete

flow field can grow very rapidly. Attempts are being made to improve this

situation by embedding blocks with several levels of grid refinement in-

side a regular but coarser grid structure [4]. Until now, the most

popular strategy for solving large computational fluid dynamics problems

has been, a) to develop computational schemes which are fast on regular

grids and, b) to model irregular geometries using regular grid structures.

Our work has been directed in applying finite element methods for

solving fluid mechanics problems. This method provides an alternate ap-

proach over the ones discussed above for the solution of the same problem.

One of the important features of this method is the possibility of using

irregular grids that can be fitted efficiently to simulate irregular flow

fields around complex geometries. It provides sufficient flexibility to

design a computational grid around a complex aircraft geometry [5]. It

also provides the freedom to modify an existing grid to provide a better

approximation basis for the employed numerical scheme. i

The applications of irregular grids, however, require development of

2



numerical schemes where no regularity of the nodal connectivities is

assumed. Our work has been aimed at developing such numerical schemes

[6] where we can exploit the advantages of irregular yet more efficient

grids. As it will be discussed in the following sections, rather than

employing point or line relaxation schemes, we use block-relaxation

schemes. Such schemes produce a uniform convergence rate for all of the

eigenvalues of a differential operator inside a block. It is not affected

by the occurence of an irregular grid structure inside a block. Such

schemes have two basic constraints for solving large problems: a) the

size of the block operator grows proportional to the size of the block

and, b) the geometric definition of an irregular grid requires much more

1data than a regular grid, thus considerable information has to be generated

or read-in during each relaxation step.

Based on the above considerations, we have been working on develop-

ing a block-by-block solution scheme. The main objective of this

approach is to divide a large problem into smaller components in terms

of a series of blocks. Rather than attempting to solve a large problem

P most efficiently on a single processor, we divide the problem into smaller

ones and try to develop an "intelligent" strategy which is suitable for

parallel processing. Parallel processing for large systems is a popular

subject addressed by many researchers today. Our main objective is to

exploit the physical characteristics of the problem where each block

corresponds to a sub-volume in physical space. We developed a "sub-

structuring" scheme where each of the "sub-structures" corresponds to a

particular flow region. One can then design grids, use efficient solu-

tion schemes for each of the sub-regions depending on the characteristics

pof the flow field, and allocate computer resources in a parallel process-

3
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ing environment in a most efficient manner. We can summarize our progress

in this area along the following lines:

* Development of a block-structured grid generation scheme [5],

- Development of a variational formulation for solving potential,

Euler, and Navier-Stokes equations in a unified form [7], and

• Development of a block-structured solution scheme for solving the

steady-state flow equations through a relaxation scheme.

In this report we will present only a short summary of the first two steps.

We will mostly concentrate on the basic features of the block-structured

solution scheme and its application to three-dimensional transonic poten-

tial flows.

A. Block-Structured Grid Generation Scheme

The generation of grids around a complex aircraft configuration is

not a straight-forward task. It requires considerable understanding of

the surrounding flow field. One has to provide a grid which will produce

accurate results at all critical regions. Yet, excessive refinement of

three-dimensional grids is not possible even when the largest computers

Ware available. One has to be able to generate a computational grid in

such a manner that a block of grid points can be controlled and modified

after inspection. The optimum grid configuration for each of the critical

flow regions can be quite different, yet, they have to be connected to

each other. The grid generation techniques to be employed for this purpose

should be sufficiently general to model any complex configuration.

In terms of generating a block-structured grid generation scheme, a

finite element approach provides certain advantages. As discussed above,

since irregular grids are allowed in a finite element solution scheme, it

4



is easier to design grids individually for each block and then assemble

them together. In comparison, the global mapping techniques used for grid

generation requires additional computations to provide appropriate coupling

of the blocks [8].

The developed block-structured grid generation scheme can be summariz-

ed in terms of the following steps: If the aircraft can be considered as

as assembly of the body, engines, wings, and many other components, one

has to provide appropriate grids for each of these components. Figure l

illustrates the work performed for generating the details of the air-

craft geometry. As can be seen in this figure, several sections are

digitized to obtain the geometry and a three-dimensional representation of

the body is obtained. A series of blocks are then constructed around the

aircraft to model the flow field. The block structure for this problem

is shown in Figure 2. As can be seen from this figure, the block struc-

ture is irregular, i.e., it includes openings between the blocks, it has

irregular blocks (tetrahedrons) and finally some of the blocks are voids.

The developed grid generation scheme can treat such an irregular block

structure. One can design quite irregular grids in each of the blocks,

yet attach the blocks in an organized fashion, as shown in Figure 3.

Details of this approach can be found in reference [5].

,';7 The main objective of the work described in the present report is to

determine the optimum computational procedure in terms of number of compu-

tations and number of data transfers for analyzing such irregular block

structures. Generation of a block-structured grid provides the most

natural way to develop a block-structured solution scheme. It also pro- -,

vides an insight for designing the most efficient solution scheme for a

particular problem.

5
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Figure 1. Construction of the aircraft geometry.
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Figure 2. 'Continued.
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B Solution of Flow Problems in Terms of Clebsch Variables

The ultimate objective in computational fluid mechanics is to solve

Navier-Stokes equations for three-dimensional turbulent flows. Since

such a proposal is computationally costly, a general and yet quite effi-

cient approach is to solve these equations only in flow regions where

viscous effects are important. One of the most successful applications

of computational fluid mechanics has been in the area of solving potential

flow problems together with boundary layer corrections. We have attempted

to achieve such a simplification in a general manner by using a new formu-

lation of the physical problem. Rather than using the velocities and pres-

sure as the primitive variables, we decomposed the velocity vector into ir-

rotational, rotational-inviscid and viscous components by using a Clebsch

transformation [9]. This enables the solution of the general problem in

terms of potential, Euler, and Navier-Stokes approximations at different

flow regions which in our case are defined as blocks. The objective is to

provide general yet efficient solution schemes as well as appropriate com-

putational grids in a block-structured flow domain for all three cases.

For analyzing potential flows, it is common to employ the velocity

in terms of a velocity potential as follows:

u = (1)

and proceed to solve the conservation of mass equation. In this case,

the conservation of momentum and energy are automatically satisfied [7].

A second step in the approximate solution of flow problems is the Euler

equations. In this case, one can write the velocity field in terms of

the entropy and total enthalpy as follows:

u v + Hn + Svx (2)

12



where , n, X are a set of Lagrange multipliers [9]. Here the equations

for the conservation of mass, entropy and total enthalpy have to be solved.

Finally, for viscous flows, the velocity field can be written in terms of:

u V V + HVn + Svx + viscous terms. (3)

Here the viscous dissipation has to be calculated together with the

shear stresses on the solid walls for a given velocity field.

In the foregoing three levels of approximation, one can observe

that the number of variables and the number of equations increases

parallel to the complexity of the model. If we assume that in one flow

region (a block), we will be solving Euler equations,while at a neighbor-

ing block the potential flow equations are sufficiently accurate, the inter-

U face boundary requires specification of S and H to be a constant along

the boundary. Only one equation is solved in the irrotational flow region,

while three equations are solved in the block with the rotational flow.

3 Another point to be remembered is the relationship between the flow

models and the computational grids. One can easily realize that more

complicated models require much finer grids. For example, the solution

of two-dimensional, transonic potential flows around a semi-circle requires

a much coarser grid than the one for solving the Euler equations for the

same geometry [9]. If the convection of vorticities generated by the shock

is considered, one has to design much finer grids to capture such a

phenomenon.

C. The Necessity for Block-Structured Solution Schemes

For the development of a block-structured scheme the methodology

described above was employed. The computational strategy is based on the

capability of generating grids with varying degrees of refinement for each

13



I oV'

block and solve potential, Euler, or Navier-Stokes equations for each

block depending on the characteristics of the flow field. As it will be

discussed later, accurate and efficient implementation of the boundary

conditions between neighboring blocks is extremely important in a block-

structured scheme.

1The most important consideration which necessitates the use of a

block-structured solution scheme is the size of the problem. We do not

expect to have computers large enough to fit the problems we are interested

in into their main memory during the next five years. In terms of storing

the geometry information describing an irregular geometry in a general

form, data transfer becomes a major problem. If one employs auxiliary

storage to store large amounts of data, the computational scheme can easily

become I/O bound when large amounts of data have to be transferred.

Depending on the size of the problem and the type of information to be

* stored, one can even sometimes deplete these types of storage facilities.

The approach we have taken here is to develop a block-structured

solution scheme, where it is possible to use the available computer

*. resources in a most efficient manner. For a given problem one has to

make decisions in terms of designing a computational grid. Depending on

the size of the problem, the computer resources available, and the char-

acteristics of the flow field, we can decide on the size of the blocks.

In the developed numerical procedure, based on physical insight, one can

decide the manner in which iterations should be performed and the data should

be transferred between the blocks. If we have a supersonic pocket develop-

ing inside a single block, we may choose a particular iterative procedure for

solving this problem. We may decide to iterate on that block more often than

the others. The objective here is to develop "intelligent" schemes where

14



efficiency can be improved as we learn more about the details of the

* "fluid mechanics problem and we can plan and revise our computational

3strategy.

In this report we will discuss only the solution of the potential

-'. equation using a block-structured solution scheme. However, we will

comment on its generality and its applications to more complex flow

models.

15
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II. A BLOCK-STRUCTURED SOLUTION SCHEME FOR POTENTIAL FLOWS

A. Potential Flow Problem

The analysis of compressible, irrotational flows requires only the

solution of the following conservation of mass equation:

Y(pu) = 0 in , (4)

where u is the velocity vector, p is the density and Q is the flow region

to be analyzed. The density is a function of the local velocity which can

be written as follows:

I
p = C(K2  u.u)Y-I (5)

In the above equation, C, K and y are known constants. The boundary condi-

tions require the specification of the normal mass flux on the boundary

surface r.

* pu'n = f on r (6)

where f is a known function specified on the boundary and n is the unit

normal vector. By using the condition for irrotationality, one can sub-

stitute the velocity potential to eliminate the velocity vector as follows:

u = VP (7)

The conservation of mass equation then becomes second-order,

v-(pv) = 0 in Q (8)

where the velocity potential has to be assigned an arbitrary value at one

point to remove the singularity due to the introduction of equation (7).

Since, the conservation of mass equation has to be satisfied for the entire

flow domain, over a closed boundary, i.e.,

u n dr = 0 (9)

the specified value of ¢ can be arbitrary.

16
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The objective of the present analysis is to develop a relaxation

scheme for obtaining a solution to the above steady-flow equations.

B. Formulation of the Problem in a Block-Structured Form

For developing a block-structured solution scheme, we will define the

problem over a series of flow regions which we will call blocks in the

following form:

K i ) 0 in oi "

. pn-_V i  f on ri  (10)

when s2i and ri are the block volume and block surface for each block,

where i indicates the block number. The boundaries can be further classi-

fied in two parts: the boundaries between the neighboring blocks and the

global boundary of the entire flow region. We can distinguish the corre-

sponding boundary conditions as follows:

pn'v = fi on rio  (11)

Pn'v =gi on ric (12)

where ri0 is the global boundary and r. c is the inter-block boundary for

the ith block. Of course, some blocks may have no connection to global

boundaries.

The problem can then be defined as the solution of conservation of

mass equation (10) for each block, together with the determination of un-

- known inter-block boundary fluxes gi. This can be achieved through an

additional constraint which specifies that the velocity potentials are

continuous across the inter-block boundaries. We can define the corre-
sponding variational problem in the following form:

:' nfv.V D i dV + fr o f i. dr + c i dr = 0 (13)

17
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By taking variations with respect to P, we can derive the differential .'

equation in equation (9) and the boundary conditions in equations (11)

and (12). Also, since we assumed that gi is an unknown, we can take a

variation with respect to gi. This produces the additional constraint

equation in terms of the compatibility of velocity potentials across

neighboring block boundaries as follows:

I rc0 6gi dr =0 (14)

Since, the same gi is employed for neighboring blocks, this constraint

will involve the velocity potentials which correspond to the grid points

on such blade pairs as follows:

-ij - n,j = O (15)

where i and n are the two neighboring blocks and j is the number for the

boundary surface between these two blocks.

At this point one can introduce the finite element formulation, where

the flow region is divided into first a series of blocks and then a group

of finite elements. The distribution of velocity potential over each j
element for block number (i) is approximated by:

4i(xyZ) = Nk(x'Y'z) 0ik (16)

where Nk is called a shape function (a simple polynomial) and 4k is the

inn nodal value of the velocity potential at node number k. One can also ap-

proximate the unknown boundary fluxes along the block interfaces in terms

of nodal flux values as follows:

1. gj~s~t = Nk(st) Xjk (17)

where Nk is a two-dimensional shape function for node k and (s,t) are the

two-dimensional coordinates along the boundary surfaces. After substituting

18



the finite element approximations and taking variation with respect to

nodal values of velocity potentials, one can write the following set of

discrete equations

A1 -i + c, xj = F. (18)

Where A, F, C, I and X are global matrices for each block (i) defined by

assembling element matrices for each element e.

* A = p(N,xN t + N, N,t + N,zN,t dV (19)
e = ,e - YZ

F.,e eeN dr (20)

Ei ~ie fr e e-

ij= -fr Pe! N' dr (21)
I , e

_j =(22)

Here, i indicates the number of the block, j indicates the number of the

sui Face, k is the node number and e is the element number. For p>o, the

coefficient matrix in equation (19) is synnetric and positive-definite.

The variation with respect to nodal values of boundary fluxes (x),

produces a set of constraint equations defining the compatibility of velo-

city potentials between the blocks:

2 Ci j -i : 0 (23) -.

As can be seen from the above equation, matrix Ci, j picks up all the nodes

on surface j located on the block i and assembles the constraint conditions.

In coupled form equations (17) and (20) can be written as follows: -

[Ai] [c" [ i] I [F.]

~ [9 [x. k~1 (24)
[C 19] [- ,] [-

19
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For a block structure shown in Figure 4, the equation (24) can be written

in the following form:

A, 0 Q ct 1 0 2- E -

:;i 2 2 :t,1 2 F2
-- 1

0 At C~ t
2 -2 2 92l -2,2 ~2

0 0 A3  C3,2 -3 E 2 (25)

91,1 92,1 2 Q 0 X 0

2 C2,2 93,2 2 0 2

Here, there are three-blocks and two inter-connecting surfaces. In the

above equation, the coupling matrices foreach row of A equations represent

the contribution to a surface from the nodes located on the two neighboring

blocks. As indicated above, unknowns are the nodal velocity potentials

D k and the nodal boundary fluxes Xk" (1.-i = 1,3) are the potential

vectors for each block and (x j, = 1,2) are the vectors for each surface.

In general, the surfaces can be described by an independent set of

nodes and the nodal values of X vectors do not have to be necessarily

positioned on the same physical point in space as of the elements of the

o vectors. However, in the applications presented in this paper, the same

grid point locations were used for both o and x vectors.

C. Basic Considerations for the Development of an Iterative Solution

Scheme for Block-Structured Equations

One can, of course, attempt to solve the coupled equations directly

in the form of equation (24). Matrices A. correspond to individual co-

efficient matrices for each block. Most of the computational effort in

solving such a system will involve the treatment of the coupling matrices

I.,
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Figure 4. Three-block structure for a sample problem.
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between the blocks. In the developed procedure, we attempt to solve the

coupled equations by using an iterative procedure. For the description

of this iterative procedure, let us consider a simpler system consisting

of two blocks and a single coupling surface. In this case, the equations

can be written as follows:

t

- 2 t : 2(26)

- 1, 9 2,1 2 -2

§L l -2 1 L -I1 -1

Here Al' and A2 represent the Laplace operator for the two blocks. CI

and C 2,1 are matrices for defining the coupling between the two bloc-

Let us also consider a linearized discrete variational problem in the

following form:,

A- t-
2il-t1 -2-2-2 -'tli +1 -2,1 T2

1-1 (27)

p It can be shown that the variation of the above functional with respect to

Tl' 12 and xproduces the above set of equations.

At this point we can define a second variational problem as follows:
*

Instead of the unknown flux vector x, we assume a known flux vector X

Then we can write the following variational problem:

*1 t 1 *t .t* +.

Ti ITI + 2 T2 -2T2 + l (CIlI2 + 2,12

I - D - 2 E2 
(28)

Taking variation wii respect to PI and 42' we can write:
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. E2 (29)+ C2 -1

We can prove a certain Theorem, from the solution of the above two varia-

K.. tional problems:

Theorem. If x is any arbitrary flux distribution on a boundary

surface, the solution of equation (29) produces upper and lower bounds to

the solution of the original problem of equation (26).

The validity of the above statement can now be shown. The solution

of the above equations can be written as:
~*

L- .- ,lt-l -l -1 -I -,~1 -

= F- A- I {X(30)
-2 -2 -2 2 -2,.1-1

The nodal potential vectors which correspond to the nodes on the interface

can be written from the above solutions as follows:

* A1 *T,'1 -C~ I -- Cll-1F ,1 C ,_ '

* A1  - -lct *(31)

C2,11_2 C2,1A2 F2 _2,182 .2,1_3

We can write the exact solution of equation (26) in a similar form,

c_2,1tl £2,1A21_2 - C (32)

The difference of equations (31) and (32) produce the following rela-

tionship:

91 11 i*1 C '01-91 1(
-1

l - . : C - X*) .(33)

23
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If we assume that @- and @-2 are close to the exact solution and can be I
written in the following form:

@- = lI + small terms

T2 = k2T2 + small terms (34)

where k1 and k2 are unknown constants, equation (33) can be re-written

as follows:

(kI  - 1) C, 1  @- = CC, ' I1

. (k2  1) C 2,C 1 ( -9*) (35)

By using the compatability condition for the exact solution from equation

(26) as follows:

91,1 11 + C2,1 2 0 , (36)

and since both matrices A1 and A2 are positive definite and by using equa-

tion (35) we can show that when

k1 > 1 - k2 < 1 (37)

or

k < 1 k2 >l (37)
1 2

i.e., -and 2 provide upper and lower bounds to the solution of velocity

potentials on the boundary.

A similar proof can be made for a second problem. This time, let us

assume that we start with a set of approximate velocity potential vectors

for each block, -* and -2' such that the compatability condition at the

boundaries is satisfied as follows:

CII TI + C2,1 = 0 (38)
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which means that for the approximate solution, the nodes at both sides

of the interface between two blocks possess the same 4 distribution,

yet equation (32) is not satisfied. In this case, by solving equation

(38) together with the following set of equations,
"' * t. * =F

A11 + C1 ,1 ,l

* t *
A t * = F2  (39)-22 + 2,1-1,2 -2

we obtain a different set of flux vectors X ll and X 1,2 on each side of

the boundary surface. If we solve equation (39) for the velocity poten-

tial vector as
* - - ~Act -I

*~~ * t

c F Ct - (40)
-2 -2 -2 -2 -2,1-1,2

and substitute into equation (38), we can write the following relationship:

Ll1  - C111 10, + '2,182 -2 - -2,1-2 -2,1-1 ,2=

On the other hand, the summation of the two equations in equation (32)

produces the following relationship

+ = F Ct X + C2 1F
_l,ll C2,112 -l, 1 -1l - _l,1l -1,11 1 2,182 -2

- C A ct (42)2,182 -2 1 1,l

Combining equations (41) and (42) one can then write,

C - Ct - Ct (43ClI -1C l (- l - -l~ I -C2,1A21-2 ,1 (- l - -1,2) ( )

L Again by making a similar approximation as in the case of equation (35)

and by recognizing that both matrices A 1 and A 2 are positive-definite,

one can show that vectors X-* and 1,2 produce upper and lower bounds to

the correct flux vector at the boundaries which can be stated as follows:
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Theorem. If D is any arbitrary velocity potential distribution on

a boundary surface, the solution of equation (39) produces upper and lower

bounds to the solution of the original problem of equation (26).

Based on the above discussions, an iteration procedure was developed

using the following principles:

. * *
- calculate (P and (2 from equation (29) which provides bounds for

the solution at the boundary (C1l and ClT),

- calculate an estimate of o at the boundaries based on Dl and 2 9

- solve equation (25) by assuming the velocity potentials at the

boundaries. Since o values at the boundaries are specified, X values

are not necessary at this step,

- using equations (38) and (39), calculate X and X2,l which provide

bounds for the next estimate of A,

- calculate a new estimate of x based on X and X

- repeat the iteration procedure.

The above proofs only demonstrate that at each iteration, a new set

of upper and lower bounds are obtained for boundary fluxes and boundary

velocity potentials. The next step is to show that the above iterative

scheme is stable. Also it is necessary to understand the important factors

effecting the rate of convergence.

Computationally, the efficiency of the above scheme is based on the

assumption that a large system can be divided into a series of blocks which

can be individually stored in the main storage area of a computer. Blocks

• can be processed individually in this scheme while the calculation of the

surface fluxes is done through a relaxation scheme for each surface without

ever solving a large system of equations. These computational considera-

tions will later be discussed in detail.
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D. The Convergence Characteristics of the Iterative Scheme

To understand the convergence characteristics of the iterative scheme,

let us again consider the simple two-block model.

Start the solution by assuming an initial flux vector at the bound-p..,

0
ary: A-. Then, from equation (30), we can calculate the potentials

as follows:

A- A1F lC t 0

' A0 (44)LL ( 2-2F1 -2 -2,1 1

" Calculate the potential vectors on the boundary surface and

average two vectors on the boundary by using an averaging vector

CL.

2,1 = C2,1 2 (45)

,.',~~O - (D - , + (1 -a() -hj \:

• Calculate the boundary fluxes at the same boundary by solving the

following pairs of equations for each block by specifying poten-

tials on the boundary surface or constraints.

• Ct x* .l -l t +  - , - , .,
S-(46).-L~ ~l C11-l,t = hj(6 -

and

+ *

A2 -2,t + C2,1 1,2 E2

-92,1 -12,t : - B,l(4 ),"-n

In the above equation values of the right-hand-side vectors are known.
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pAverage x 1 and X2, solutions at the boundaries with a second IA
averaging parameter 6

, + (1 - ) - 1 (48)

By combining equations (44 - 48) we can write the following recur-

rence relationship:

n+l n.(

=C + DX (49)

where the coefficient matrix D can be written as follows:

Here Al,l and A2,l are reduced coefficient matrices related to the bound-

ary surface in the following form:

l 9: -Cl, -Al jC,
2 2,1 62 _(51

The rate of convergence depends on the eigenvalues of the coefficient

matrix D, which can be simplified as,

D= (1 - - + 2ca)I - a(l )A 1 -a(l - )Al_ _ (52)

where I is the identity matrix. In the case of two equal size blocks with

81 = 2 , D can be written as follows:

D = (1 - 2a - 26 + 4ai)I

In this case for a = :0.5, an exact solution is obtained after one step.

E. Stability Limits for the Iterative Solution Scheme

To illustrate the bounds for convergence of the developed scheme, a

simplified one-dimensional model will be utilized. In this case, the co-

efficient matrix becomes a scalar, d and matrix can be represented

by another scalar r. Of course A2  , becomes I/r. Then, the coefficient

28



matrix in equation (52) can be written as

d = 1 - - B + 2ct - a(l -a)r - a(l -)/r (54)

The stability condition for this system, which requires

-1 < d < 1 (55)

i, becomes

S 2 > a + - 2a + a(l -o)r + a(l - )/r > 0 (56)

For example, a = = 0.5, this condition can be written as follows:

2 > 0.5 + 0.25r + 0.25/r > 0 (57)

Since r is positive for positive-definite systems, the stability conditionp.,

requires

3 - v8 < r < 3 + v (58)

In a general case, r represents the ratios of eigenvalues of neighboring

blocks.

As can be seen from the above expression, the relaxation scheme is

convergent only for a narrow band of ratios of eigenvalues. This means

that if the neighboring blocks are not similar in terms of shape, size or

grid refinement, one cannot expect convergence from the iterative scheme.

Of course in a general system, a series of eigenvalues are involved which we

do not have prior knowledge of. The above results were obtained for

" = =0.5. A more general representation of the bands are shown in

figure 5.

In order to improve the ratio of convergence, we introduced a relaxa-

tion parameter w into the scheme in the following manner:

Once the estimates for velocity potentials were calculated and an

average was computed in equation (45), the velocity potentials for

each surface vector was relaxed in the following manner:

29
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.:, = -P + (1 - ) -'1t

T2,1 - wlB,2 + (1 - w) -¢2,l (59)

• The second part of equations (46) and (47) were then modified as

follows:

9C2,1 ¢2,t = 1 ¢2,1 (60)

* An average for x vector is again calculated from equation (48).

However, in this case, the X vector is relaxed again with the same

relaxation factor to calculate the fluxes for each surface as follows:

d * 6 1-WXW1 w) (61)
llJ -l'l = W-1 1 -)- l -1,2 : -1 +  (l -(61

In this case the coefficient matrix D can be written in the following form:

0 = [I - wa - w + 2wac]I - 8w(l - a)AA 21 - Wa(l - B)A2AiI (62)

The stability condition for the one-dimensional case requires that

2 > w [a + B - 2aB + s(l - c)r + c(l - a)/r] > 0 (63)

In comparison with the stability condition in equation (56), in this case

I ( becomes the controlling factor. Figure 6 illustrates the bounds for

stability with different relaxation parameters w for a fixed value of

= = = 0.5. In the actual computations, as it will be discussed later,

both were fixed at 0.5 and the stability was controlled by only changing

For a general problem, r becomes the ratio of the largest eigenvalue

for one block to the smallest eigenvalue of the neighboring blocks or vice

versa. The magnitude of the largest eigenvalue of the coefficient matrix

for a block depends on the size of the smallest element. On the other
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hand, the smallest eigenvalue becomes lower with the increasing size

of a block. Thus, we expect small relocation parameters to be employed

when large blocks are connected with small blocks with excessive grid

refinements.

It remains an interesting problem to experiment with different values

a and a for each block interface since there is no requirement for a and

a to retain constant values during the iteration scheme.

p 3
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III. COMPUTATIONAL PROCEDURE

In the above discussions, we tried to summarize the fundamental

principles and objectives in designing the present computational scheme.

In this section, we will try to describe the numerical procedure in detail,

emphasizing its computational aspects. A flow-chart summarizing the iter-

ative scheme is shown in figure 7. In this flow-chart, block surface

means one surface of a block attached to another single neighboring block.

A simple example for a two-block structure is shown in Figure 8.

As can be seen from this flow-chart, the first step is to initialize

the density of each element in all blocks and assign a boundary flux dis-

tribution for all global boundaries and inter-block boundaries as defined

in equations (11-12). In actual computations, we may initialize the problem,

for example, by setting the densities to zero everywhere and by assuming

Si the flux boundary conditions at the upstream to be valid for all block

boundaries.

We then perform the first set of operations. We consider each of the

blocks one at a time. There is no order to the sequence in which the

blocks are operated on. Given a series of processors, these block opera-

tions can be distributed among these processors. For each block we per-

- formed what we called operation A, as described in figure 9. This oper-

ation involved the solution of the conservation of mass equation for each

*. block individually under the set of given boundary fluxes as specified in

equations (11-12).

One problem in this operation, which was mentioned previously, was

the necessity to specify the velocity potential at one grid point due to

the singularity of the system. It was pointed out that this value could

36



Initialize

for each block

Balance Flxes (OPERATION C

Sole heBaic Problen (OPERATION A

FOR EACH BLOCK SURFACE

(EXCE FOR GLOBAL

BlnePotentialOPRTNE

17OR EA.CY BLOCK

Solve Conjugate Problern (OPERATION B

FOR EACH BLOCK SURFACE

Balance Fluxes (OPERATION D

Figure 7. Flowchart of the Block-Structured Solution Scheme.
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Figure 9. Operation A: Definition of the Basic Problem for a Block.
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be arbitrarily chosen if the conservation of mass for the entire block was

satisfied as stated in equation (14). For this purpose, we first scaled

the mass fluxes over the entire boundary which was called operation C in

the flow-chart as shown in figure 10. Details of this scaling process

will be discussed later. After the operation A was performed, a set of

velocity potentials was obtained and stored for each block in equation

(31)) as individual sets.

The second set of operations included the treatment of each of the

surfaces. This was called operation E in the flow-chart and is illus-

trated in figure 11. In this case, for each surface, velocity potentials,

_-T calculated from individual blocks, were picked, averaged by using equation

(46) and relaxed as defined in equation (60). Again each surface was ad-

dressed and processed individually. However, a certain restriction exist-

ed here which was due to the fact that a block may have several surfaces.

When processing a particular surface, data for a particular block may not

be readilyavailable in a parallel processing environment since it could

be addressed at the same time by another surface.

The last loop was again a block operation. This was called operation

B, as shown in figure 12. For each block, we picked the averaged and

relaxed values of surface potentials. We imposed these values on bound-

ary conditions as given in equations (39) and solved the conservation of

mass equation one more time but with this new boundary condition. The

outcome of this operation was the boundary fluxes for each block. This

information was written on a surface file again to be averaged and relaxed.

- Thus, each time a block was processed, its contribution to the flux balancinq

(operation D, shown in figure 13) was simultaneously performed as indicated

in the flow-chart.
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Figure 10. Operation C: Balancing of Block Fluxes.
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Figure 11. Operation E: Balancing Potentials for Two Blocks.
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Figure 13. Operation D: Flux Balancing on Block Boundary Surfaces.
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A. O tThe details of these operations are listed below.

A. Operation A_:

Operation A involves the iterative solution of the potential flow

equation for each block as defined in equations (10-12). We employ an

iterative procedure for each block as summarized below:

At each iteration, equation (18) has to be solved to determine the

nodal values of the velocity potentials. Rather than solving equation

(18) directly, we employ the following iterative procedure:

0o n+l = Fi - n An n (64)i~i - i ,jj -i-i(6 )-.

Here n indicates the iteration step, where o and x vectors are calculated

from the previous iteration. Coefficient matrix An is determined by using

the densities obtained from the previous iteration step. A? is calculated .-

at the first step by employing a fixed density distribution.

The right-hand-side vector is calculated for each element of a block
•n

and assembled as a block residual vector. Matrix A is never assembled

but calculated element-by-element to be multiplied by a vector consisting

of the nodal values of element velocity potentials. The left-hand-side

coefficient matrix is a symmetric, positive-definite matrix which can be

decomposed only once and stored. In this case, each time a residual vector

is determined for a vector, a forward-backward substitution operation is

performed on this coefficient matrix. The size of the coefficient matrix

is equal to the number of the grid points in a block times the half of the

Lwavefront. For example, for a regular grid of 10 x 20 x 30 grid points,

the wavefront would be equal to 10 x 20 x 2 80. If sufficient core is

not available to store such information, the coefficient matrix has to be

assembled and decomposed at each iteration step.
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In our computations, considerable time was spent 
in terms of formulat- .t

ing the residual vector. This computational time can be reduced consider-

i ably if the matrices in equations (19-22) can be stored and read-in at

every iteration step. Only the density has to be recalculated at each

iteration. In this case, the core requirements increase by approximately

84 x number of elements for each block.

The details of the above iteration scheme have been previously presented

in detail [12]. Its convergence rate depends strongly on the manner arti-

ficial density is included in the computations. The same scheme has been

applied without any modification to the block-structured scheme. As it

will be shown later, no significant reduction in the rate of convergence

was observed after the application of the block-structured 
solution scheme 7-

as compared to solving the same problem as a single block.

* B. Operation B

Operation B involves the solution of conservation of mass equation

for a slightly different problem. In this case, the velocity potentials

at the inter-block boundaries are specified and the normal mass fluxes at

the same boundaries have to be determined. This problem can be defined as

,p, follows: Consider the solution of the conservation of mass equation,

V.(Pvo) =0 i n Q

with

pu-n f on r°

and

p=p onrc (65)

The variational problem can then be written as follows:
= z d + dr + i (Pi-p) dr (66)

fro 4.ifi frc (4-p
ii 2 2

r-.
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In this case, the Lagrange multiplier yi on the boundary surface r indi-

cates the unknown boundary flux to be determined which corresponds to the

known velocity potential distribution as defined by p(s,t).

After substituting the finite element approximation, the governing

equations can be written as follows:
..- [ ,l

Ai Dij l i Fi

0j iYj (67)

Here, .vector represents the unknown mass fluxes on each surface grid
'3'

point that is connected to a neighboring block surface. The solution of

equation (67) can be written as follows:

- = (DjAIDi,j)l [Djij " j] (68)

where i is the block number and j is the surface number.

As can be seen from equation (68), the mass fluxes at the inter-block

boundaries can be written in terms of mass flux vector at global boundaries

S(F) and the known values of the velocity potential vector at the inter-

block boundaries (ei). The first part is a constant vector through the

iterations while, pj vector is recalculated at each iteration. The co-

efficient matrix, in equation (68), is simply the reduced form of the

matrix Ai where all of the grid points on the boundaries are eliminated.

This coefficient matrix is different then the one employed in Operation

A. Again by using a constant coefficient matrix scheme, D can be calculated

only once and stored. For a block of 10 x 20 x 30 grid points it will

have a size of 8 x 18 x 28. It will also have a wavefront of 2 x 8 x 18. -

There is a basic difficulty in the above computational scheme. Let

us assume that a block has six surfaces and all of these six surfaces are
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attached to neighboring blocks. In this case, the pj vector has to be cal-

culated from all six surfaces. However, there is no restriction to ensure

that the velocity potentials calculated from each surface are continuous

along the edges connecting such surfaces. A unique value cannot be

assigned to _P to form the pj vector at these points. Thus, the above set

IP of computations in equation (68) has to be performed for each surface

individually.

C. Operation C

Consider a single block with a series of boundary fluxes on each sur-

face. For a rectangular block this would mean six individual surfaces.

In the present scheme, all of these fluxes are calculated individually

through computations involving the neighboring blocks. We also know that

we can solve the conservation of mass equation only if it is satisfied

globally for the entire block. To ensure such a condition, the total

mass flux is calculated from equations (11) and (12) as follows:

f f dr + frc g dr=e (69)

Since the boundary conditions on the global boundary is exact, the error

can be distributed to the other boundary surfaces in the following manner:

Jc Igj dr = Q

g =g - gI (70)

This process ensures that the conservation of mass is always satisfied

before Operation A is performed.

D. Operation D

Operation D involves the balancing of fluxes as calculated from

neighboring blocks. As indicated in equation (64), at the end of
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Operation B, a set of boundary fluxes are calculated on each surface.

In general, we can describe such surfaces with a set of discrete points.

Let us assume that block Al which is joined to this particular surface

has ml grid points while block A2 attached to the same surface by m2 grid

points. Let us also assume that m lm 2 fn and all three sets do not physi-

cally match in space with each other.

By using a finite element procedure, we can employ a shape function

as defined in equation (17) for each surface in the following form:

gj(s,t) = Nk(st)Xi,k(k=l,n)

gi,j(s,t) Nk(st)xi j,k(k=l,ml)

Ngm,j(s,t) N k(st)Xm,j,k(k=lm 2) (71)

-"Where X i,k represents the nodal fluxes on the surface nodes, X i~j~k and

m~jk the nodal fluxes on the surface nodes of the neighboring blocks

i and m. Then, by following the averaging scheme in equation (49) and

the relaxation scheme in equation (61), it is possible to evaluate

9+ j = 22i j + (1 - P)2m,j

n+l = n+l + (I _

n+l wq+l n
= + (1 - (72)

In the case of blocks with matching grid points on the neighboring

surfaces, the above operation is conducted directly on the nodal values

of the k vector.

It should be mentioned that the above operation is in fact a block

based operation. For each element of the block, X vector is calculated

for each surface and stored on a surface based file according to the
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equation (72). After each block is processed, the outcome is the 9ij

or 9m,j vector on each surface. The computational cost of the operation

is based on the effort in accessing such a surface file. For example,

when one block is processed, the computed surface fluxes has to be written

on each of the surfaces attached to that block. The same surface will

then be accessed by the two blocks it is attached to. If a surface infor-

mation file is kept in main memory, which includes both surface fluxes and

geometry of the elements on both side of this surface, all of the above

information exchange can be directly made in the main memory. Otherwise,

an auxiliary file has to be accessed for storing such information. Know-

ing the connectivity of the blocks and the sequence in which this informa-

tion has to be accessed, one can optimize such an operation for directing

large systems.

E. Operation E

Operation E is very similar to Operation D but somewhat more direct.

Velocity potentials are calculated from each surface, averaged and relaxed.

Again a block based information file is generated which involves the

velocity potentials for each of the grid points for a block. At each step,

the surface potentials are updated once.

F. File Structure of the Operation -

Two types of basic information are necessary for the operation: Velo-

city potentials and boundary fluxes. This information is stored for both

Operations C and D in the following manner:

1. Block file

This file includes the following information for each block:
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- Velocity potentials for each node

- Geometry of all the elements

- Shape functions for all of the elements

- Element coefficient matrices in equations (19 - 22)

- Decomposed coefficient matrices for a block.

This file is read in for one block at a time. All blocks can be

processed sequentially or in any order.

2. Surface file

This file includes the following information for each surface:

- Surface fluxes for elements on both sides of the surface

- Geometry of the elements on both sides of the surface

Shape functions for these elements

- Element matrices for these elements.

If we review the flow-chart, the following I/O operations are

observed: Operations A and C require access to the block file while

Operations B and D require access to the surface file.

In the application of the method on an IBM 4381 com,..er with 12

megabytes memory, the block and surface files were split into smaller

files. Velocity potentials and boundary flux vectors were kept in main

memory at all times, while the other information was read in when a parti-

cular block or surface was processed. This way most of the information

transfer to the neighboring blocks in terms of averaging and relaxing

was performed in the main memory.
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IV. DISCUSSION OF RESULTS

To illustrate the applicability of the developed numerical procedure,

a series of test cases was analyzed. As discussed in the previous sections,

the convergence rate and bounds of convergence for this scheme depends

on the size of the blocks and the grid refinement in each block. One can

expect variations on the size of different blocks and the necessary grid

refinement for each block in the case of complex three-dimensional flows.

To test the robustness of the scheme, blocks were chosen in some cases in

a way which was considered to be least favorable for convergence of the

scheme. The test cases include several two-dimensional cases analyzed

using the developed problem as well as a fully three-dimensional case as

follows:

A. Incompressible flow around a NACAOO12 airfoil

B. Compressible, subsonic flow around a NACAO012 airfoil (M = 0.6)

C. Transonic flow around a NACAOO12 airfoil (M = 0.83)

D. Transonic flow around a wing-body configuration (M = 0.90,

30)

A. Analysis of Incompressible Flow Around a NACAOO12 Airfoil (M.n 0.001)

in

Two types of block structures were employed for the analysis of this

test case. The first case involved a one-dimensional block distribution

in the flow direction with three blocks and two intermediate surfaces.

This block structure is shown in Figure 14a. The number of grid points

employed in each of the blocks are also shown in this figure. The generated

grid for this block structure can be seen in Figures 14b - 14d. The second

type of block structure, shown in Figure 15, involved twelve blocks and

I.-
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No. of Grid Points

* Incompressible flow 8x 703 lOx 7x3 7x 7x3

Transonic flow 21xl6x3 31x16x3 21xl6x3

Figure 14a. Three-block grid structure for the analysis of ~

53 *



Figure 14b. Computational grids (3-block) for the analysis
of flow around a NACA0012 profile.
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Figure 14c. Assembled computational grids (3-block) for the
analysis of flow around a NACA0012 profile.
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P No. of Grid Points

Figure 15. Twelve-block grid structure for the analysis
of flow around a NACA0012 profile.
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twelve intermediate surfaces. In this case, blocks of different sizes

were placed in all three principal directions to test the robustness of

the numerical scheme. The assembled grids for both types of block struc-

tures are identical in both cases and are shown in Figure 16. Both grids

were considerably coarse with only ten elements over the airfoil but they

still provided adequate accuracy for the solution of this simple program.

The numerical results obtained for an inlet profile of M. = 0.001
in

from the three-block and twelve-block grid structures were compared with

the exact solution of this problem, as shown in Figure 17. In both cases

no relaxation was employed and both required about 35 iteration steps for
t,¢

convergence.

B. Analysis of Compressible Subsonic Flow Around a NACAO012 Airfoil (M. 0.5)
in

For the solution of this test problem the same three-block and twelve-

block grid structures described in case A were employed. The obtained

numerical results are compared in Figure 18 with results from a single-

block C-type grid with (61) x (50) grid points.

The agreement with the one-block solution is very good considering

1 _U the coarseness of the grid. The number of iterations required for conver-

gence was about 40 for both cases and no relaxation factor was employed.

C. Analysis of Transonic Flow Around a NACA0012 Airfoil (Min 1 0.83)

Again two types of block structures were employed in the analysis.

First, a three-block structure shown in Figure 14awas tested with blocks

distributed only in the flow direction. The second case, shown in Figure

19, was a twelve-block structure involving blocks distributed in two dimen-

sions. This time two blocks were employed over the airfoil surface to

*provide a complicated test case for locating the shock. The grids pro-
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Figure 16. Assembled computational grids (12-block) for the

analysis of flow around a NACA0012 profile.
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.5

.4I
-Single-block C-type

)K 3-block H-type

o 12-block H-type

0.0 1.0

Figure 18. Compressible subsonic flow (M. 0.5) results
in

for flow around a NACA0012 profile.
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No. of Grid Points

9xllIx3 l3xllx3 16x11Ix3 16xl11x3 l3xll1x3 9xl1 x3

9x 6x3 1 3x 6x3 16x 6x3 16x 6x3 INx 6x3 9x 6x3 -

IIN

Figure 19. Twelve-block grid structure for the analysis of '

transonic flow (Min 0.83) around a NACA0012 profile.
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duced for both block structures were identical but considerably finer than

those employed in the ones used for incompressible flow problems. A

cross-section of the grid is shown in Figure 20a. In Figure 20b the grid

distribution over the airfoil surface can be seen. The grid employed

(71)x(16x(3) = 3308 total grid points with a 30 element distribution over

the airfoil. The distribution of elements for each block is shown in

Figures 14a and 19.

The numerical results obtained from the three-block and twelve-block

grid structures were compared with results obtained with a single-block

C-type grid and are shown in Figure 21. Both results compare favorably

with the single-block solution, obtained from the C-type grid shown in

Figure 22. The number of iterations required for convergence was about

450 in both cases and involved a variable relaxation factor w in the range

of .01-.55.

D. Transonic Flow Around a Wing-body Configuration (M = 0.90, a = 30)

A 24-block grid structure was chosen for analyzing the transonic flow

problem around a wing-body configuration as shown in Figure 23. The

details of the generated grid are shown in Figure 24. The number of grid

points in each block is listed below:

" Block No. No. of Grid Points

B111 7x8x4
B121 14x8x4
B131 7x8x4
BII2 7x8x4
B122 14x8x4
B132 7x8x4
B211 7xBxl
B221 14x8xl
B231 7x8xl
B212 7x8xl
B222 14x8xl
B232 7x8xl
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Cp
-Single-block C-type

-*.89 - 3-block H-type

- - -*- 12-block H-type

-,58

.27

0.0

.36

.95 J75 1.14

Figure 21. Transonic flow (M. ' 0.83) results forin
flow around a NACA0012 profile. 66I
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Fiqure 22. A section of the C-type grid for the analysis of
transonic flow around a NACAOO12 profile.
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Figure 24b. Grid geometry along the wing cross-section.
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Figure 24f. Expanded view of the block grids for the second
column of blocks for the wing-body problem.
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Block No. No. of Grid Points

B311 7x8x6
B321 14x8x6
B331 7x8x6
B312 7x8x6
B322 14x8x6
B332 7x8x6. . j F

B411 7x8x4
B421 14x8x4
B431 7x8x4
B412 7x8x4
B422 14x8x4
B432 7x8x4

The total number of grid points is 8207. Comparison of obtained results

as obtained from the previous solution of the same grid as a single block

[6] is shown in Figure 25.

As can be seen from these results, the 24-block solution reproduces

the single block solution reasonably well. The differences between the

two results can be attributed to the coarseness of the grid in terms of

computing mass fluxes between the blocks.

The number of iterations required for convergence in this case was

550 and involved a variable relaxation factor , in the range of .01-.75.
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o Experiment

a A Single block

* Multi-block
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Figure 25. Comparison of the pressure distribution at the
wing root for single block, multi-block and
experimental results.

79

-V.q



V. CONCLUSIONS

The procedure described in this report involves the solution of tran-

sonic potential flow equations using a block-structured approach. The

basic objective of this research was to develop methodology for analyzing

large flow problems involving complex geometries. The developed capabili-

ties include,

the generation of a computational grid around a complex geometry

based on a block-structured grid generation scheme,

• the analysis of such a system by using a block-structured solution

scheme for transonic potential flows.

The grid generation procedure was presented in previous publications.

The block-structured solution scheme is presented in this report only for

potential flows. It involves the solution of conservation of mass equation

on a block-structured basis in terms of the velocity potential 0. Each

block is stored independently and analyzed in the computer. Iterations

involve solution of conservation of mass equation for each block as well as

balancing the mass flux between the neighboring blocks.

The procedure is expandable to the solutions of Euler and Navier-

Stokes equations. In the case of Euler equations, equation for the conser-

vation of entropy will also have to be solved. This again will involve the

solution of the equation for each block as well as balancing the entropy
to the neighboring blocks in the flow direction. Such an approach provides

the capability of solving different types of equations approximating the

flow field on the same grid but for different blocks. For a complex air-

craft configuration, the capability to solve potential, Euler or Navier-

Stokes equations at different flow regions is necessary considering the

present computer hardware capabilities and also the complexity of the problem.
IQ
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As stated above, the potential flow solution of transonic flows

requires the only the treatment of the conservation of mass equation. In

terms of solving Euler or Navier-Stokes equations, the same equation has to

be treated. in fact, the elliptic nature of the conservation of mass

equation governs the convergence rate of relaxation schemes for all three

types of formulations. Therefore, the efficiency of the computational

scheme in terms of solving the conservation of mass equation for large

systems is of general importance for solving Euler and Navier-Stokes

equations.

Currently the method is being extended to the solution of Euler

equations including solving coupled potential and Euler solutions at

different flow regions. Another important consideration is the application

of the numerical procedure in a parallel processing environment. As

described in this report, the processing of blocks and surfaces can be

performed in any order. This provides considerable flexibility in defin-

ing an optimum solution procedure for a given parallel processor hardware

confi gurati on.
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