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I. CVERVIEW AND SUMMARY

Fundamental to this vwork, is the development of a continuum formulation
that can accurately account for the effects of interlaminar shear and
interlaminar normal stress variation thru-the-thickness of a laminate.
Furthermore, emphasis is particularly on tapered-twisted airfoil geometries
which can be analytically represented as an assemblage of thin to moderately
thick finite elements. To achieve so]ufion efficiencies, the elements

- developed in’this work arelof the triangular/quadrilateral plate type as
opposed to solid type elements. .

On the basis of these requirements and considering viable altzrnatives,
three suitable continuum formulations have been developed and incorporated
within a finite element framework. These are herein denoted as the
(i) Vigher Order Displaccement, (i) Modified-Kirchhoff and (iii) Hybrid
Stress formulations, respectively. A computer code aas been developed to
test the various elements on t: . bazis of ;orrelations with known analytical
and numerical solutions. Linesw s.ﬁi]-diéplacment equations have been
implemented in the code'and many iests have been performed. It is noted
that the code has some unique featurzs, e.g., it can assemble elements
having an unequal number of degrees o freedom at its nodes, it treats
arbitrary ply orientations and it.pertorms integration on a layer-by-lay=r
basis through the Taminate. Herein a layer refers to either a lamina or
to a sub-set of Taminae having equal piy‘orientations. The latter feature
is essential in developing a fully norlinear capabilitv.

Significant efforts have also been devoted to developing a suitable
large displacement formu]ation. Due to the fequirement that interlaminar
stresses be accurately represented, a total. lLagrangian formulation is
utilized and is based upon the complete Green's strain tenéor. A geometric
and large-displacement stiffness formulation has been implemented in tre
computer code based upon a form of the nontinear strain-nodal displacement
relationships suitable for each of the elements under development.

An extensive literature su.vey has been performed to identify analytically
tractable metheds of treating damege accumulation in composites. Since
emphasis in this work is on the develnpment of incremental response solutions,
the computational approach must nave the capabj]ity to (i) predict and
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differentiate betweern relevant failure modes, (ii) mcdify constitutive
equations appropriateiy and (iii) perform equiliprium jterations to assume
stress redistribution based upon the extent of damage. Use of "piecewise
smooth" failure criteria in conjunction with "damage state” variables
provide a good basis for incrementally tracking damage. This approach is
currently being formulated for 1n¢orporation in the computer code. Note
that integration for an element is performed cn a layer-by-layer basis
which allows for “‘naye effects to be characterized at the layer level.

Experimental data of the type required to substantiate damage predictioné

has been assembled to the extent possible. Analyvsis/test correlation.
efforts will be performed when the nonlinear formulation including damage
effects is fully implemented. It is noted that useful experimental data
is quite limited.

Technical progress in this program has been substantially on schedule.
It is believed that the originally proposed three year program can be
,ompleted within the given time frame.

II. SUMMARY BY TASK

This 'section preseﬁts technical highlights of the research efforts to
date for each of the three tasks. Details of the analytical formulation
are presented in the Appendices. '

II.1. TASK I: Nonlinear Displacement Formd]atibn for Composite Media

11.1.1 Continuum Formulation -

Two variational principles, the principle of Minimqm Potential Energy

and the Principle of Modified Complementary Energy, are used to develop
two distinctly different finite element models, the assumed displacement
model and the hybrid stress modé] respectively. These models incorporate
the effects of transverse shear and normal deformation§ whose contribﬁtions
are recognized as essential for accurate Taminate analysis [1-6].

Within each formulation, element stiffness and force matrices are
determined for each element,.these matrices are then assembled to represent
thelfinal system cf eqguations and a solution procedure for the unknown
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nodal displacements are provided. Coordinate transformations to describe
pTy orientations of a composite media are taken into account. The in-plane
stresses are calculated from constitutive relations of orthotropic continuum
whereas transverse shear and normal stresses are calculated from equilibrium
considerations. ' '

The developed elements are tested for Tinear static and dynamic analysis.
The test problems and the results are presented in Section II.1.4. The
finite eﬁement models are herein briefly discussed.

i. Assumed Displacement Model

A. Higher Order Displacement Formulation

The thru-the-thickness effects can be incorported iﬁto an analysis by
choosing a displacement. fieid that eliminates two major shortcomings of

- the classical plate theory; namely normals remain normal and in-plane

displacements are linear thru the thickness. These shortcomings are
eliminated by prescribing independently the reference surface disp]écements
and rotations of the normal and inc]uding.higher order terms for in-plane
displacements. Tﬁis is acccmplished by the foilowing variation

u(x,y,2) = ug(x,y) + z.x(x,y) + 778, (x,y)
v(x,y52) = volx,y) + z¥(x,y) + 226y (x,y)

wix,y,z) = wo(x,y)

. The neutral surface disp]acements}ére represented by ug, Vo and wg, the

rotation about y-axis is denoted by ¥, and the rotation about the x-axis
jc ?y- The coefficeients of zz, i.e., 9y and ¢y, are contributions from -
transverse deformations [5,6]. ' _ ,

The elements developed are designated as the quadrilateral higher

order displacement (QHD) models. (QHD40 is an eight-noded element with

seven degrees of freedom (three midsurface displacements, two rotations
and two higher order terms for in-plare displacements) per correr node and
three degrees of freedom (transverse nidsurface displacement and two
rotations) per mid-éide node. ' Element QHD28 1is a simplified version of
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QHD40 where the mid-side nodes are eliminated. It should be noted that when
the two higher order terms for in-plane displacements at each corner node are
omitted, QHD28 reduces to the widely used four-noded bilinear plate element
(QHD20).

' The transverse shear and normal stresses of QHD40 dispiay a cubic
variation thru-the-thickness. The displacement field, nodal degrees of
freedom and the resulting stress fields are stated in Appendix IA.

B. Modified-Kirchhoff Formulation

The Kirchhoff-Love assumption for normals to the reference surface is
relaxed by incorporating shear rotations as additional degrees of freedom
in the formulation [9]. Thus the assumed displacement field allows' the
transverse shear deformations but neglects the transverse normal deformations.
The rotations yyx and yy are incorporated in the displacement variation as .
follows. ‘ '

wix,y) = wy(x,y)

u(x,y,z) = up(x,y) - z‘(:—;g +y)

V(x,y,2) = vo(x,y) - Z(~—;— + yy)

The transverse displacement w(x,y) is chosen such that it will guarantee
plausible stress fields which will characterize the transverse effects
accurately. | ' _ '

This approach is implemented in the formulation of an eight-node
duadri]ateral‘elemeht‘with 32 degrees of freedom- QD32, a six-node triangular
element with 27 d.o.f. - TD27 and a seven-node'triangular element with
27 d.o.f.. - TD27M; The stress fields obtained for these elements represents
a quadratic thru the thickness variation for the transverse shear stresses and a
cubic variation for the transverse normal stress. The respective displacement
fields, nodal dégreeé of freedom and stress fields are given in Appendix IB.

ii. Hybrid Stress Model

In this formulation a stress distribution within the interior of the
element is expressed in terms of finite parameters such that eqUi]ibrium»




s satisfied, also an assumed displacement distribution is used on the

' boundary of the element expressed in terms of generalized nodal displacenments

such that the interelement compatibility is retained [4].

The element developed, QHS32, is a four-node quadrilateral with 32
degrees of freedom. In addition to an assumed displacement field it has
a 26-parameter stress field which provides cubic variation for transverse
shear stresses and a quartic variation for transverse normal stress through
the thickness of the Taminate. The stress field along with the assumed '
displacemen; variation is stated in Appendix II.

I1.1.2. Large Displacement Formulation
Inclusion of geometrically nonlinear effecté in the formulation must

be bésea upon both the geametry td be analyzed and upon the type of.stress
prediction capabilities desired. The classical approach to thin plate
analysis has been to use the Kirchhoff-Love assumptions in conjunction
with the nonlinear von Karman relations [11,12]. ' As previously indicated,
the Kirchhoff-Love assumpticns are relaxed in this work to ailow for a
more accurate definition of interlaminar-shear and interlaminar-normal
stress variations. These étfosses can Vary substantia11y‘thrdugh~the-

' thickness for the geometries,of interest, i.e., thin to moderately thick

plate type structures. Fgrthermore, the requirement that these stresses

be accurately determined means that the nonlinear poftion of the strain-
displacement relationship must contain all significant coordinate displace-
ments. The complete Green's strain tensor is utiiized in this work, therefore,
to account for all significant contributions to the int2rlaminar stress field.
With respect to fixed Cartesian ccordinates x, y, and z, the strain tensor

has the form

c, =au 1 [ (34) 2 2 + (Eﬂ):]
ax 2 x 53X
NS A 9 -
o ___g_li+_3_\_/_+ E_li.:_u_+§l.?:l+w!}ﬂ}

xy 3y ax X Iy X 3Y  3IX Dy

where u, v and w represent displacements in the x,y,Z coord1nate directions,
recpe"t1ve1y Note that the other strain components are obtained by a
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suitable permutation. In smail- disp]acement analysis, the'quadratic terms
are neglected to give simply the linear. strain approxlmat1on

Based on the Green's strain tensor, the strain to nodal poxnt displacement
relationship can be specified for elements under development. It takes the form

{e} = [B}{a}

where {e} is the vector of strain components, {A} the vector of nodal point
displacements and [B] a function of derivatives of the element shape functions.
The quadratic terms in the strain tensor result in [B] being a function of
displacement state and, therefore, an incremental equilibrium formulation is
required. The incremental strain-nodal displacement relationship takes 'the
form

tscy = (18,1 + [B,1) {sa3

where {uc} and {6A} represent incremental strains and nodal displacements,
respectively, [Bo] and [BL] are the small and large displacement contributions
to the incremental strains. Based on the incremental equilibrium eguations,

the displacement formulation gives the forcé-disp1acément relationships

; ,
(K] f[BO] [DJ[B,] dV

[

[
Aed
[}
/"__\
(we)
(@]
——
—_f

8,1 + 8] D1(B,) + (81T IDI[B,T ) o

" where [D] is an elasticity matrix obtained simply from the constitutive

equations and integration is over the volume V of the element. {Ko] is
denoted the small-displacement stiffness matrix and [KL] is denoted the
large-displacement stiffness matrix. Since response is also a function
of stress state, the geometrical st1ffness matrix [K ] is requ1yed and is
obtained from

[Kg1 (58} = fé[BL]T{o}dV

v




where {0} is the vector of stress comporients. Note that the hybrid stress
formulation similarly gives force-displicement forms involving the stress
and displacement state.

Inertial effects are analytically treuied as a mass matrix [M] which
is a function of density and the element shape functions (see Appendix III).
These matrix forms are requ1red in formulatirg static/dynamic respense
solut1ons and the incremental equs ]1br1um equations have the general form

1662 + (Irg] + k1 + fg) (60l = o)

where the mass and stiffness matrices represent an assembly of the e]emental
matr1ces previously discussed, {u} and {éu} represent the incremental
displacements and accelerations for the mathematical model and {3F}
represents the vector of incrementally applied forces.

_In developing a geometr1ca11y nonlinear formulation, the effort is
largely ia defining the incremental strain-nodal displacement relationship.
Having developed this relationship for a particular .element, stiffness matrices -
are read‘1y'devc?oped as the praceding equatiohs indicate. These relatiounships
are presented in Append1x IV. The form of these equatiohs is the same for
all elements. '

11.1.3. Computer Implementation

A comruter code has been developed for the purpcse of implerenting the
various continuum formu]at1ons At present, the code per%orms the fnllowing
functions:

(i) element stiffness matrix géneration

(i) element mass matrix generation
(iii) assembly of equ111br1um equations
(iv) decompos1t1on and solution of equ1n1br1um equat1ons

(v) fundamenta} frequency and mode shape calcutation

A characteristic of the elements under development is that node'pbints
can have different numbers of degrees of freedom, i.e., typically mid—side
nodes have fewer degracs of freedom than corner nodes. The code has been
fashioned to handie this condition. A1l c¢f the integration is performed on
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a Tayer-by-1ayer basis thru the thickness of the Taminate. This approach
is fundamental to developing the capability to allow for inelastic material
behavior and, ultimately, to the irnclusion of damage mechanisms in the
formulation.

Since solution of the equilibrium equations is a vital component in
the overall solution strategy, it is appropriate. to discuss the numerical
methodology ﬁsed in solving these equations. The intent is to obtain a

higher ordered variaticn of the transverse shear and normal stresses

(oxzs 0yz> and oz;) than can be obtained via the equilibrium equations.
The soiution procedure can be thought of ‘as described below. Assume that
the in-plane stresses (oyy, Cyys and ny) within each layer of a particular
slement have been determined at selected locations, i.e., through solution
of the consfitutive equations. In the code as presently written, these
locations are specified as the eleméent centroid and element nodal points.

The equiliorium equat1ons {(in the absence of body forces) have the indicial
form '

%ijsj = 0

from which it follows that the thru-the-thickness shear stress variation can
be written in numerical form for the ith layer as

onz-i = ’(CXX5X + Oxyay)i‘ Z]

. and

beyzi = ~(oxyx * Gyyayly 22

Here, the 1eft- hand sjde rerresents the change in- stress from the lower to

_the upper surface of the ith layer and 4Z; is the thickness of the ith layer

at a particular location. The derivatives with respect to x and y in the
expressions above are readily computed; this is because in-plane stresses
within a layer are related to element displacements through derivatives of

element shape functions in conjunction with a material definition.
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. For an n layered laminatr, n equations can be written ir terms of
both the unknown shear stresses at layer interfaces and the shear stresses
at the laminate surfaces. Assuming the laminate has shear-free surfaces,
the equations above give n equations in n-1 unknowns, so that, the equation
set is over-determined. The equations have the matrix form below.

~.
I '

/ g
//
e
s
'
-~
\N_——/—\V———-—’
1

e
n x {n-1) ‘ (n-1) x 1 (nx 1)
where I,. ="(“xx%x + Oxy’y)i AZi and o,,. represents the shear stress

‘acting at the interface of the j—lth and jth layer. A simiiar egquation

set is obtained by replacing °xz; with Oyz; and Ix21 with Iyz . These

equations are solved by utilizing a least-squares orthonorma]1zat1on
procedure [13]. Due to the simplicity of the terms in the coefF1c1ent
matrix, a concise closed-form solution is obtained. Having determined the
transversé shear stresses, thé transverse normal stress variation is
determined thirough the numerical form of the third equilibrium equat1on
far the ith 1ayer.

~(oxzsox + 0

bozzy = yzoy)y bZ;

As before, the left-hand-side represents the change in stress through the
jth layer. Appropriate polynomial functions are utilized to describe the
éx7 and Tyz in-plane variation. These functions are differentiated to
obta1n the right-hand-side of the eguations above. Again the equation set
is overdetermined because the normal tractions are known at the laminate

surfaces. Solving for c,, proceeds, therefore, in identically the same
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manner as discussed in calcdlating Cyz and Oz Parenthetically, inclusion
of body forces at a later date can be accomplished with Tittle difficulty.

I1.1.4. Analytical Verification

An approach to the successful application of Higher Order Displacement
type elements, i.e., for thin to moderately thick geometries, is to utilize
reduced numerical integration where as this is not necessary for Modified-
Kirchhoff Formulation. This approximation technique brings along the choice
of implementing it overall or selectively to the strain énergy components.
For the QHD formulation, only the transverse shear components are integrated
with reduced order. The integration order may affect the physical behavior
of the element by introducing spurious zero energy modes.. It is desirable
to have only rigid body modes since there does not yet seem to be a generally
accepted method of controlling the additional modes. For QHD40, 3x3 Gaussian
quadrature along with the 2x2 quadrature for the transverse shear components
is employed. QHD28 and QHD20 formulations are similarly integrated with
2x2 and 1x1 Gaussien gquadratures. Mampu]atwn of qaad ature rules nay
result in undesirable element behav1or The presence of spurious zero
energy modes in addition to the rigid body modes may detract from overagl
performahce. A spectral(eigenvalue) test is conducted With and without full
quadrature to observe the zero energy modes of the QHD elements. The
guadrature order, the number of zero eigenvalues and the corresponding
number of spurious zero energy modes for QHD40, QHD28 and QHD20 are Tisted
ja Table 1. The . spurious modes of QHD28 are illustrated in Figure 1.

It is also noteworthy to observe the effect of reduced integration on
the representation of the generalized forces. In order to illustrate the
effect, the forces associated with the transverse diép]acement of a corner
node are sketched in Figs. 2A and 2B for QHD28 with and without reduced
integration respect1ve]y

To demonstrate the performance of QHD40, QHDZB and QD32 in comparison
to classical piate theory and elasticity solutions, the example problems
of Table 2 are solved.
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'Example 1. Simply Supported:Square Plate with Sinusoidal Load.

The results, given in Tables 3 and 4 are comparisons of the elasticity

- solution of Pagano to those calculated via the QHD40D, QD32 formulations.

Figires 3A-B and 4A-B display the transverse normal stress variation for
QHD40 and QD32 respectively at the'centeﬁ‘and at a point on the edge of
the plate respectively.

Example 2. Simply Supported 3quare Plate with Uniform Load.

The results presented in Figure 5 and Figure 6 display the difference
between the QHD formulation and the classical piate theory. The bending
stresses displayed in Figure 6 for QHD28 are in close agreement xith those
of QHD40 hut the transverse shear stresses of Figure 5 present rather poor

correlations. The transverse shear stresses and bending stress of QHD32
are as shown in Figures 7 and 8.

Example 3. Cylindrical Bending

The transverse shear stress, Oy,» calculated via‘the QHD40 .and QC32 .
formulations 1s illustrated in Figure 9 and 10 respectively. The bending
stress oyy Of QHD40 is displayed in Figure 11 and o, of QD32 is shown in
Figure 12.  The results are compared to the elasticity solution obtained

by Pagano. ,

Verification of the dynamics portion of thevcomputer code has been
limited thus far due to the emphasis placed on obtaining good statical
'results, A first check has been performed, howeVer, in calculating *he
fundamerital frequency of a simply suppurted (isotropic) plate. The
ca]cuiated freguencies for elements QHD28, QHD4O and. QD32 are all within.
25 of the c]oséd-form solution for a simple 36 element p1éte model.

I1.2. TASK II: Incorporate Damage Mechanisms into Dynamic Response Formulation

The literature survey performed has been quite helpful in terms. of
delineating the viable apbroaches to ihc1uding damage mechanisms in the
analysis. Relcvant failure modes of interest include those Tisted below.
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(i) fiber fracture
(ii) fiber-matrix debonding - ‘
(i11) matrix cracking (parallel and transverse to fibers)
(iv) delamination '
Several smooth failure criteria, e.g.; [14-17] have been developed in
recent years to represent the failure of cpmposites. These criteria, to

. varying degrees, can predict "failure" but do not identify a particu]a?

mode of failure. In performing incremental "damage" analysis, it is
essential to both predict failure and to charactekizelit, e.g., do fibers
rupture, dces delamination occur, etc. The computational approach must,
therefore, differentiate between viable failure mode~ and appropriately
alter the constitutive equations on an incremental basis. This can be
accomplished by impementing a piecewise smooth failure criteria, e.qg.,
[18] in the finite element formulation. The gene:al failure criteria is
then comprised of m separate inequalities of the form

Fj ({s}) <1 5 j=1,2,0..,m

at each layer level within each element. These criteria can differentiate

between (i) tensile and compressive fiber failure, (ii) tensile and compressive

matrix failure and (iii) delamination at layer interfaces. .
As progressive damage occurs throughout incremental Toading {whether

it be static or dymamic), it is essential that violation of failure criteria

ineﬁua]ities be reflected in modification of the material properties. This
can be achieved by including damage state variables [19] in the constitntive
equations to reflect "stiffness reduction.” These equations‘can be
represented as

{c} = [D][v]{e}
where [D] represents the material matrix and [v] contains the damage state

variables. The latter provide the basis for changing the Djj terms based
upon the extent to which the failure criteria are violated.
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In. conjunction with the above it is essential to perform equi]ibrium
iterations within each analysis increment. This is required to assure that

-stress redistribution is properly accounted for as damage progresses.

Currently the approach to model1ing "damage mechanisms" is under development
for implementation in the formulations.

11.3.3 TASK III: Correlation of Formulated Response Model with Experimental.

Data

Some quantitative data relating to the impact damage of cohposite
specimens has been assembled [21-28]. It will be utilized along with any

‘additional data obtained.to perform analysis/test correlations. Since the

nonlinear formulation including damage effects is not complete; no use of
the test data has been made to this point. Much effort has been devoted,

however, to correlating the analysis witi both closed-form and numerical
sp]dtions as previously discussed.
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Table 1. Spurious Zero Energy Nodes of the QHD Family

' Number of Zero Number of Spurious
Quadrature Order Eigenvalues ' Modes

- 3x3 with 2x2
QHD40 for transverse 6 0
shear terms :

' 2x2 with 1x1 '
QHD28 - for transverse 9 3
shear terms

2x2 with 1x1
QHD20 for transverse . 8 2
o shear terms
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Figure 1. Spurious zero energy modes of QHD28

Figure 2. Genera’ized forces associated with the transverse
displacement w, of a corner node with full quadrature
as shown in (A)'and with reduced integration as in’
(B) for GHD28. . ' S

Figures 3 & 4. Transverse normal stress, o;,, variation for QHD40

‘ and QD32 fespectively, at (A): center of the plate
(07 = 0;/100) and at (B): a poirt on the edge of
the plate (o, = 1002).

Figures 5 & 6. Thru-the-thickness oy, variation in element #6.
' Oyz variation in element #31; in comparicon to
CPT results (Oxz = 0y,/100, Iz = cyz/IOO) for
_QHD40 and QD3Z respectively.

» Figures 7‘& 8. Comparison of bending stresse., of QHD40, QHD28,
- and QD32 to that of CPT in element #36.
(6 = 5,/100)

xz» for QHD4O & Q032 in
comparison to elasticity solution of Pagano in
. element #20. = ¢,,/100)

Figures 9 & 10. Transverse shear stress, ¢
(o4,

Figures 11 & 12. Bending <tress, oyy, variation of QHD40 and QD32
respectively in comparison to elasticity solution
in element #1. (o, = 3&/100)
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Fig. 3A
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Fig. 3B
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V. RELATED ACTIVITIES

, Following is a list of abstracts and papers that have been submitted

+ for presentation/publication as a result of the present research efforts.

(A11 co-authored by J.J. Engblom and 0.0. Ochoa)

s Abstracts Submitted

25th Structures, Structural Dynamics and Materials Conference, Palm Springs,
California, May 14-16, 1984 '

"Through-the-Thickness Stress Predictions for Advanced Composite Material
Configurations"

,Symﬁosium cn Advances and Trends in Structures and Dynamics, waéhington, bC,

October 22-25, 1984

"Interlaminar Stress Predictions for the Nonlinear Response of Composite
terial Configurations”

and

"Inclusion cf Damage Mechanisms in Finfte Element Formulation of Composite
Material Configurations” ' c

* Papers Submitted

International Journal for Numerical Methods in Engineering

"Thru-the-Thickness Stress Prédictiqns for Advanced Composite Material
Configurations" '

eInvited Paper to be Presented

SECTAM XII, Callaway Gardens, Georgia, May 9-11, 1983

“A Higher Order Displacement Formulation for Natural Vibration of Plates"’
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. The schedule of work performance is presented below for the three year
‘program. This schedule is as criginally proposed as no changes are requested.

WORK SCHEDULE BY TASK

YEAR YEAR 2 | YEAR 3
TASK 7 3 Z DOLLARS
Dollars [Complete |Dollars Complete |Dollars|Complete
‘Task 1 ||35485 45 35485 | 90 7886 | 100 78356
TASK 11 ||30468 25 31475 50 61973] 100 123916
TASK 111 || 2253 10 7567 44 12710 100 22530
ooLLARS || 68206 78827 82569 225302




APPENDIX IA - HIGHER ORDER DISPLACEMENT MODELS
NODAL DtGREES OF FREEDOM:'
Corner Nodes - {ug Vo W ¥y ¥y d ¢y}T

Mid-side Nodes - {wg vy vy} T

DISPLACEMENT FIELD:
LU T U+ ozy, 278y
v - \ 2
V= vg o2y + 2%

W= W
" where; : |
Vos x> ¢y': {1xy xy}T {a}
Wo» Uxs Yy D {1 xy x? xy y? X3y xy®) {3}

STRESS FIELD:

i. From constitutive relations - of = cijgij (orthotropic mat.)

£(22, x?, ¥?)

o
u

1

oy = f(zz’ x2, y*)
f(zz’ x.?, y2)

ii. From equilibrium considerations - ojj,5 =0

'Oxz = f(23, x, y)
Oyz = f(zayl X, )’)
Ty7 = f(z?%)
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NODAL DEGREES AF FRIEDQM: | :
{ug vo vy Uy Vy Oy 2y}

" DISPLACEMENT F1fip:

' . 2
U+ U oz, + 2%

VoS v+ ziy + 2%

vhere;

, L T
Ups Voo Ygs Uy ¢y’ ix’ ¢y, ol xy xyr {0

STRISS FIELD:
1. From constitutive relations - 0 = ijaij (orthotropic mat.)

Sy EOT{27

s X, ¥)

oy = f{27, x, v)

= f'(?"" 5 y}

Y

ii. From constitutive consideratiors - $ij.j = 0 -
Oxz = F(Z!) -'.

ety

L

constant

e
NN

L3
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APPENDIX IB - MODIFIED KIRCHHOFF FORMULATION'

QD32
NODAL DEGREES OF FREEDOM:
Corner Nodes {wg v w 2u %ﬂ Yy Y 37
Mid-Side Nodes {w 2%}T
n
DISPLACEMENT FIELD:
w=f(x, y)
'Ww o N
uslg - Z(ﬁ; %)
V=, - Z(3y + {y)

where:

Ugs Vor g y {1 xy xy}T{d}

{2}

w={lxyx*xyy x*x%y xy? y® x* <’y xy® y* x*y xy*:

STRESS FIELD:

i. From constitutive relations - ¢y = Cy574; (orthotropic mat.)

ogx = flz, x*, y7)

f(z, x*, y°)

3
"

i

f(z, x*, y*)
ii. From equilibrium considerations - “ij,ij = 0

2 .2 Y
Ixz f(Z s X Y

Cyz - f(zzv x29 yz)

f(z?, x, y)

Uzz




TD27M

NODAL DEGREES OF FREEDOM

Corner Nodes O fug vg W My Ty
X -‘.y'

{w 24,7 ' - Mid-side Nodes W

Center Node {w == =}

DISPLACEMENT FIELD

x
It

f(x, y)

<
"
j =
o
]
~N
——
|
+
x
o —

where;
. . ’ T
Ugs Vor x> y {1 x. y} {al}
. s T S 203 G4 3 2.2 3 T Ay
Wil xy x® xyy x° xXyxy' 'y x' x'y Xy xy' 'y : -p:

STRESS FIELD

i. From constitutive relations - 0yE cijsij (orthotropic mat.)

o = flz, X, ¥)
= f(z, ¥, y*)

Tyy

Cxy = flz, ¥, y)

ii. Ffom equilibrium considerations - tieij t 0
"""XX = f(Z:, X y)
oyz = f(zzf-x, y)

f(z?)

1Y

Cz2z




APPENDIX II - HYBRID-STRESS FORMULATION

DISPLACEMENT FIELD:

where;

STRESS FIELD:

U=

X
"

UO,

Q
[

+

Xy

- oy 2"‘

. Qrs32

" 2
Uo + ZJX + 2 ¢x

Wo + 26,

| T
Voo h')x. \Uya Pz ¢X’ ¢y : {1 x y X‘Y} {a}

= (8 +82 x + B3y + Buxy) + z(85. +8g x + B7y + Bgxy)

27 (By + Byox + By - %quxy)

= (8 + B1ax + 3yy - Byxy) + 2(615 + 335X + 817y + Bz xy)

2'7‘(.319 “Ey - dpy t %‘ BuXY)
o1 o h2, h2. ~ h? h?
o + (=855 - 380 + 38 )x+ (-8, - 3810 - Fénly

t (=39 - Bus)xy] + 2 [83% Byx + gy + (-% Bg- ;,3“ 13 )xy]

2[5 + By X+ By + (%259*}‘3’2519)")’],

XZ

yz

= (j-h - 'Z)[-g%ﬁm +.By ) + By + ("89*‘81'9)’(]
+ %(hz- 2?) [ + 895 + Bgy - %(59 +31§)X] |

+ %(-hL 23)['310 - %:59)’ tBp * %2(39*’ 819 )x]

i

(-h - 2) I- !3’- egﬁgeu )+ (=89 - B9 )y - 8,x]

+ %(h"- 22) (g, - %(89 + B8Ry *+ 817 + 8)5x]

+

1 . 3 - 3 .
3 (-h3- 23)[b:1.+,"h‘: 39 + Blo)y - gnt *ﬁ)‘.‘mxl

~ - 3_ 2 '! l.+ ahs L
(25 + 245) [-(h + 2)2- (22 gh 2.7y, (3h zhcz )

]
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APPENDIX III - MASS MATRIX FORMULATION

The mass matrix for elements under development is eas11y arr1ved at
by considering kinetic energy in the form

[

J (u + v+ wz)dv
v

Nlr-‘

where u, v and w fepresent.displacements, p is the mass density and the

dot superscript denotes velocity. Defining velocities in terms of element
shape functions gives

= %— [ f S(NGIINGT = (NIINGT + (NIINGT v {a)
v

which is the classical form

[A] [M]\AJ

Nlr—d

* The eicment mass matrix [M] is, therefore; specified as

(M] = .!i gﬁNu}[Nu] + {Nv}[Nv] + {NINGD dv
v ‘
Note that the shape-functions'[Ni] involve distance from. the mid-plane
of the element to a layer denoted by 7 and, therefore, the mass matrix

definition provided not only represents mid-plane inert5a1 effects but
alsc rotary inertia as well. '
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" Similarly; the shear strain €,

- APPENDIX IV - LARGE DUSPLACEMENT FORMULATION

Based on Green's Strain Tensor, the following procedure is utilized
to obtain the large displacement and the geometric stiffness matrices.

Let N be shape functions relating displacements at any point in the
element {§} to nodal displacements {A} such that

{6} = [N]{a}
Also let {Ni,j}T denote those shape functions associated with the jth
displacement field (i - u,v,w) and ",j" denotes the differentiation with
respect to the jth coordinate, i.e., —— where x, = x, x, = y and x, = z.
. . L.‘x N )
Then, the strain e,, given by J '

S \2 "y \2 Sy \2
G G ()
X I X

can be written as

Exx = Mhoxd 102} + 2 2237 iy, 0 ey d & 03 TIN LD 4 DN N

y can be rebresented by

=1 T
Evy = l{Nu,y)

# Wy T+ 02T Tty ) + (g iy )

ERUWSATYRSINPY:

The strain field in indicial motation ‘is expressed by

eqj) = %{[{”i'iﬂ + g e + {A}T[{N.g,,-ﬂ(nk,j)]m}-

e

d

ia}
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Then the incremental representation becomes

LN s

A

(eq5) = %[{{Ni,jﬂ +‘{Nj,i}T}{sa} + (a0} v 1 o302

b I 4

Nty
‘. -

.
»

+ 0} [ Ton 50] m}]
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- But the second term can be expressed as
{Q}T[{Nk,j}T{Nk.i}] {eat

Thus combining terms , : o ' ) ;J

- | 3

(seij) = %[[«:ni,jﬂ # i Jrear s Gl v Tt 3+ T3] {5A}]
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Let

2o, AT, iy, T [
07 = 3T+ 01.07] T
_ {A}I[Myy]
| ‘ . {a} [Myy]
1,..T ; "T‘. . T, . - Yy
_2{_,,; [~Nk’1f ‘Nk’Jb}+{Nk’j} 1Nk”l}] B {A}T[MZZ]
| | | e,
T
{a} [Myz]
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Then

e
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{23350 = [Boliia: + [BLIin

where [B,] is the Tinear component and [BL] is the large displacement component
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Having the definitions for [B ] and [B ], the small and large displacement

matrices [Ko] and [K ] are represented as

Y S )
LY ‘IL&.EL"‘ £

atitrtslate

K1 = f [8017[DICB, Jav -

| <!

RN T A T Teorre. 3 Loy X
[k | [B1°(01{Bo] + [B.17[D1[B] + [B,] [o][sujd»
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The gecrntric stiffness matrix is ~?so derived from [B_] and it has the
follow1. ; form '

(K] =.l~ (GXX[MXX] +v°yy[M¥y] *ogplMpz ] + ny[Mxy] + oyz[My,]
v

+ 0yz[M,,1) dv

\

Where the o's are the stress components and again integration is on a
layer by layer basis.
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