
AFOSR-TR. -1O1

TEXAS A&M UNIVERSITY
College Station, Texas

___ ___ __ ___ ___ __ ___'^

NONLINEAR DYNAMIC RESPONSE

OF

COMPOSITE ROTOR BLADES

Annual Letter

(~J Prepared by

Dr. John. J. Engblom

Wand DTICI
Dr. Ozden 0. Ochoa

,DECO09. 19'
of the

Mechanical Engineering Department

Texas A&M University

Submitted to the

-Air Force Office of Scientific Research

United States Air Force

Approved for ptiblic releaSOI

distribution Lulimuited.

ME 4786-83-10 Contract No. F49620-82-K-0032
October 1983

Reproduced From 8 2 60 71-
Best Available Copy 87127 2



NONLINEAR DYNAMIC RESPONSE

OF
COMPOSITE ROTOR BLADES

44

Annual Letter

Prepared by

*Dr. John J. Engblom,

and

Dr. Ozden 0. Ochoa

of the

Mechanical Engineering Department

Texas A&M University

P

Submitted to the

Air Force Office of Scientific Research
United States Air Force

IZo

ME 4786-83-10 Contract No'. F49520-82-K-0032

October 1983

D
,C 

-4,

*I



SEUIWCLASSIFICATION Or TIlS PAGE fIhon Dsr. Enferod.-

REPORT6 DOCUMENTA'TION PAGE READR COMPLTING ORM

_V REPORT "U114LIR 12 GQVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMSER

NFOSRT- e.; 4 '<,~ji-
A TITLE fad Subtutie, 5 TYPE of REPORT & PERIOD COVERED

Nonlinear Dyn~niic Response of Composite Rotor ~ n u l~
BlaesI Sept 1982 - 31 Aug 1983
Blades 6 PERFORMING 0140. REPORT MUMOER

ME 4785-83-10
AUTWOR, a COTRACT OR GRNT NUMBULR(O) -

*John J. Engblom, Ozden 0. Ochoa 42'--K03

ZATONNAM AD ADRSS10. PROGRAM ELEMENT. PROJECT. YAA *

9 PERFORMING OSISANIZAINNM N DRS A &A It ORUNIT NUNSERS-A

Texas A&M University j/; NI

Mechanical Engineering Departm2nt P 0'3 7/rt242
CollegeStation, TX 77843

% I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/MAtq Oobr18
Buildin 410I1. fuMBER OF PAGES

Bolling AFB, DC 20332 37 plus Appendices79
I.MONITORING AGENCY NAME & ADDRESS(5i dilifererif froen Confrollinl Office) IS. SECURITY CLASS. (of thie reort)

Uncl assified

1ISee fc-L ASSi FiC ATION/DOWN GRADING
SCHEDULE

16. DISTRIEUIION STATEMENT (o1 (I- Report)'

Approved for Piublic Releasi, Distribution Unlimited

I?. ogIRiBUTIC't STATIFMENT (fa the abstract entered In &tch! 20, It different from RePoen)

I0, SU&IPPLEENWARY NOTES

19. KEY wORDS (Continue on reverse tide It necessary and Identify by block ntnber)

-,Coinposite Material s Interlaminar Siiear and Wormal Stresses, ...
Nonlinear Dynamic Response -Assumed YDi spl acement-. and Hybrid fModels,

~ .Damage Mechanisms . .

Large,,Displacement F6rmnulation. -' 4.':f<w ',

20. AOSTRACT (Continue on revere. etd* Of noceeee'v and Identify by block rnmibe?)

Summnarized are research activities related to,ironlinear Dynamic Response
of Cbmposite Rotor B'fades(. -Fundamen~tal to the analysis is the development of
a continuum formulation that can accurately account for the effects of inter-
laminar shear and interlamirar normal stress variation thru-the-thickness of,
a laminate. Technical highlights of the research efforts to date are presented 7*:
for each of the~proposed tasks; 4*Iamely, Nonlinear DIsplacement Formulation for
COmposite Media.- Incorporate amage Meichanisms into Dynamic Response Formulation
and Correlation of Formulated Response Model with CxEperimental data., so- 'P2

D 'POR 1473 ztoTnoN Fi-vIsi sn



tic

SECURITY CLASSIFICATION OF THIS PAGEflh7wen Date Entered)

.4 20. included is a list of papers and abstracts submitted for publication/
presentation as a result of the first year efforts.

r

4-.

UNLSIFE



TABLE OF CONTENTS

Page

1. Overview and Summary'

II. Summary by Task 2,

, II.1. Task I: Nonlinear Displacement Formulation for Composite Media 2

11.1.1 Continuum Formulation 2

5
11.1.2 Large-Displacement Formulation

11.1.3 Computer Implementation

11.1.4 Analytical Verification 10

11.2. Task II: Incorporate Damage Mechanisms into Dynamic Response 11

Formulation

11.3. Task III: Correlation of Formulated Response Model with 13

Experimental Data

III. References 14
Accesion For
NTIS Cpn,;&I1

" IV. Tables and Figures R16

V. Related Activities ........ ............. 36

BY .................... .....
VI. Appendices I;t IU ti . "_

j~.. 1
or,



I. OVERVIEW AND SUMMARY

Fundamental to this work is the development of a continuum formulation

;' that can accurately account for the effects of interlaminar shear and

interlaminar normal stress variation thru-.the-thickness of a laminate.

Furthermore, emphasis is particularly on tapered-twisted airfoil geometries

which can be analytically represented as an assemblage of thin to moderately

thick finite elements. To achieve solution efficiencies, the elements

developed in this work are of the triangular/quadrilateral plate type as

opposed to solid type elements.

On the basis of these requirements and considering viablealternatives,

three suitable continuum formulations have been developed and incorporated
Z*. within a finite element framework. These are herein denoted as the

4(i) Pighe'rOrderDisplaccment, (ii) Modified-Kirchhoff and (iii) Hybrid

Stress formulations, respectively. A computer code ias been developed to

test the various elements on :,! bais of correlations with known analytical

and numerical solutions. Lin6, :., 1l-displacment equations have been
implemented in the code'and many -i.ests have been performed. It is noted

that the code has some unique fea-juyes, e.g., it can assemble elements

having an unequal number of degrees c? freedom at its nodes, it treats

arbitrary ply orientations and it performs integration on a layer-by-layer

basis through the laininate. Herein a layer refers to either a lamina or

toa sub-set of laminae having equal ply orientations. The latter feature

is essential in developing a fully nonlinear capability.

*Significant efforts have also been devoted to developing a suitable

large displacement formulation. Due to the requirement that interlaminar

stresses be accurately represented, a totalLagrangian formulation is

, utilized and is based upon the complete Green's strain tensor. A geometric

and large-displacement stiffness formulation has been implemented in f'e

computer code based upon a form of the nonlinear strain-nodal displacement

relationships suitable for each of the elements under development.

An extensive literature suvey has been performed to identify analytically

tractable riethcds of treating damage accumulation in composites. Since

emphasis in this wo-rk is on the devel'nment of incremental response solutions,

the computational approach must iiave the capability to (i) predict and
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differentiate between relevant failure modes, (ii) mcdify constitutive

equations appropriately and (iii) perform equilibrium iterations to assume

stress redistribution based upon the extent of damage. Use of "piecewise

smooth" failure criteria in conjunction with "damage state" variables

provide a good basis for incrementally trackino damage. This approach is

* currently being formulated for incorporation in the computer code. Note

that integration for an element is performed on a layer-by-layer basis

which allows for "'iage effects 'to be characterized at the layer level.

Experimental data of the type required to substantidte damage predictions

has been assembled to the extent possible. Analysis/test correlation

efforts will be performed when the nonlinear formulation including damage

effects is fully implemented. It is noted that useful experimental data

is quite limited.

Technical progress in this program has been substantially on schedule.

It is believed that the originally proposed three year program can be

completed within the given time frame.

II. SUMMARY BY TASK

This section presents technical highlights of the research efforts to

date for each of the three tasks. Details of the analytical'formulation

are presented in the Appendices.

II.1. TASK I: Nonlinear Displacement Formulation for Composite Media

II.1.1 Continuum Formulation

Two variational principles, the principle of Minimum Potential Energy

and the Principle of Modified Complementary Energy, are used to develop

two distinctly different finite element models, the assumed displacement

model and the hybrid stress model respectively. These models incorporate

the effects of transverse shear and normal deformations whose contributions

are recognized as essential for accurate laminate analysis [1-6].

Within each formulation, element stiffness and force matrices are

determined for each element, these matrices are then assembled to represent

the final system of equations and a solution procedure for the unknown

F-,
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nodal displacements are provided. Coordinate transformations to describe

ply orientations of a composite media are taken into account. The in-plane

stresses are calculated from constitutive relations of orthotropic continuum

whereas transverse shear and normal stresses are calculated from equilibrium

considerations.

The developed elements are tested for linear static and dynamic analysis.

The test problems and the results are presented in Section 11.1.4. The

finite element models are herein briefly discussed.

i. Assumed Displacement Model

A. Higher Order Displacement Formulation

The thru-the-thickness effects can be incorported into an analysis by

choosing a displacement, field that eliminates two major shortcomings of

the classical plate theory; namely normals remain normal and in-plane

displacements are linear thru the thickness. These shortcomings are

eliminated by prescribing independently the reference surface displacements

and rotations of the normal and including higher order terms for in-plane

displacements. This is acccmplished by the following variation

u(x,y,z) Uo(X,y) + Z.x(X,y) + 7 ,x(X,y)

v(x,y,z) vo(x,y) + z\,(X,y) + z2 y(X,y)

w(x,y,z) : wo(x,y)

The neutral surface displacements are represented by uo , vo and wo , the

rotation about y-axis is denoted by II and the rotation about the x-axis

is . The coefficeients of z2 , i.e., cx and cy, are contributions from!y
transverse deformations [5,6].

The elements developed are designated as the quadrilateral higher
t order displacement (QHD) models. QHD40 is an eight-noded element with

t _ seven degrees of freedom (three midsurface displacements, two rotations

and two higher order terms for in-plane displacements) per corner node and

Nthree degrees of freedom (transverse nidsurface displacement and two

rotations) per mid-side node. Element QHD28 is a simplified version of
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QHD40 where the mid-side nodes are eliminated. It should be noted that when

the two higher order terms for in-plane displacements at each corner node are

omitted, QHD28 reduces to the widely used four-noded bilinear plate element

(QHD20).

The transverse shear and normal stresses of QHD40 display a cubic

variation thru-the-thickness. The displacement field, nodal degrees of

freedom and the resulting stress fields are stated in Appendix IA.

B. Modified-Kirchhoff Formulation

The Kirchhoff-Love assumption for normals to the reference surface is

relaxed by incorporating shear rotations as additional degrees of freedom

in the formulation [9]. Thus the assumed displacement field allows the

transverse shear deformations but neglects the transverse normal deformations.

* The rotations yx and Yy are incorporated in the displacement variation as

follows.

w(x,y) : wo(x,y)

u(x,y,z) =,Uo(X,y) - Z( + )X)

V(x,y,z) = vo(x,y) - Z( + 'y)

The transverse displacement w(x,y) is chosen such that it will guarantee

plausible stress fields which will characterize the transverse effects

accurately.
This approach is implemented in the formulation of an eight-node

quadrilateral element'with 32 degrees of freedom- QD32, a six-node triangular

element with 27 d.o.f. - TD27 and a seven-node triangular element with

27 d.o.f..- TD27M. The stress fields obtained for these elements represents

a quadratic thru the thickness variation for the transverse shear stresses and a

cubic variation for the transverse normal stress. The respective displacement

fields, nodal degrees of freedom and stress fields are given in Appendix IB.

ii. Hybrid Stress Model

In this formulation a stress distribution within the interior of the

element is expressed in terms of finite parameters such that equilibrium
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is satisfied, also an assumed displacement distribution is used on the

boundary of the element expressed in terms of generalized nodal displacements

such that the interelement compatibility is retained [4].
The element developed, QHS32, is a four-node quadrilateral with 32

" degrees of freedom. In addition to an assumed displacement field it has
a 26-parameter stress field which provides cubic variation for transverse

shear stresses and a quartic variation for transverse normal stress through

the thickness of the laminate. The stress field along with the assumed
displacement variation is stated in Appendix II.

11.1.2. Large Displacement Formulation

Inclusion of geometrically nonlinear effects in the formulation must

*} be based upon both the geometry to be analyzed and upon the type of stress

prediction capabilities desired. The classical approach to thin plate
analysis has been to use the Kirchhoff-Love assumptions in conjunction
with the nonlinear von Karman relations [11,12]. As previously indicated,
the Kirchhoff-Love assumpticns are relaxed in this work to ailo ' for a
more accurate definition of interlarninar-shear and interlaminar-normal

stress variations. These stresses can vary substantially through-the-

thickness for the geoietriesof interest, i.e., thin to moderately thick
plate type structures. Furthermore, the requirement that these stresses

be accurately determined means that the nonlinear portion of the strain-
displacement relationship must contain all significant coordinate displace-

. ments. The complete Green's strain tensor is utiiized in this work, therefore,
to account for all significant contributions to the intarlaminar stress field.
With respect to fixed Cartesian coordinates x, y, and z, the strain tensor

has the form

-au~ 1 [ u2 2 +ex a-- + - (3u) + (IV
a X x 2 ax x

Y = __0 +U. v [u +3u v + v )v + 2 LYxy ay x L 3 y 5x Xy TV x -y|

where u, v and w represent displacements in the x,y,z coordinate directions,
respectively. Note that the other strain components are obtained by a
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suitable permutation. In smail-displacement analysis, the quadratic terms

are neglected to give simply the linear, strain approximation.

Based on the Green's strain tensor, the strain to nodal point displacement

relationship can be specified for elements under development. It takes the form

e}l [B]{A}

K-.'2 where {1} is the vector of strain components, {A} the vector of nodal point

displacements and [B] a function of derivatives of the element. shape functions.

*'" The quadratic terms in the strain tensor result in [B] being a function of

displacement state and, therefore, an incremental equilibrium formulation is

required. The incremental strain-nodal displacement relationship takes'the

form

60} ([Bo] + [BL]) {

* where (u_} and {6A represent incremental strains and nodal displacements,

respectively, [Bo] and [BL] are the small and large displacement contributions

to the incremental strains. Based on the incremental equilibrium equations,

the displacement formulation gives the force-displacement relationships

[K0 ] =v f [B0 [DI][B 0] dV

V

[KL] =f ([B [D][BE] + [B] [D][B] + [BL]T[D][Bo]) dV

v

where [D] is an elasticity matrix obtained simply from the constitutive

equations and integration is over the volume V of the element. LKo] is

denoted the small-displacement stiffness Matrix and [KL] is denoted the

.large-displacement stiffness matrix. Since response is also a function

of stress state, the geometrical stiffness matrix [KG] is required and is

obtained from

* [KG]{SA} f [BL  a}dV

v
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where {a} is the vector of stress components. Note that the hybrid stress

formulation similarly gives force-displicement forms involving the stress

, and displacement state.

Inertial effects are analytically treIed as a mass matrix [M] which

* is a function of density and the element share functions (see Appendix III).

These matrix forms are required in formulatig static/dynamic response

solutions and the incremental equilibrium equations have the general form

*[N](~u1 + (K + [KL] + [KG]) {6u} {6F

* where the mass and stiffness matrices represent an assembly of the elemental

matrices previously discussed, {6u} and {6u} represent the incremental

displacements and accelerations for the mathematical model and {SF}

* represents the vector of incrementally applied forces.

In developing a geometrically nonlinear formulation, the effort is
largely in defining the incremental strain-nodal displacement relationship.

Having developed this relationship for a particular element, stiffness matrices
are readily devloped as the preceding equations indicatc. Thesc relutiunships

are presented in Appendix IV. The form of these equations is the same for

all elements.

11.1.3. Computer Implementation

A comruter code has been developed for the purpose of implementing the
various continuumformulations. At present, the code performs the following

functions:

(i) element stiffness matrix generdtion

(ii) element mass matrix generation

(iii) assembly of equilibrium equations

(iv) decomposition and solution of equilibrium equations

(v) fundamental frequency and mode shape calculation
A characteristic of the elements under development is that node points

can have different numbers of degrees of freedom, i.e., typically mid-side

nodes have fewer degrecs of freedom than corner nodes. The code has been

fashioned to handle this condition. All of the integration is performed on
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a layer-by-layer basis thru the thickness of the laminate. This approach

is fundamental to developing the capability to allow for inelastic material

behavior and, ultimately, to the inclusion of damage mechanisms in the

formulation.

Since solution' of the equilibrium equations is a vital component in

the overall solution strategy, it is appropriate to discuss the numerical

methodology used in solving these equations. The intent is to obtain a

higher ordered variation of the transverse shear and normal stresses

(Gxz, °yzt and uzz) than can he obtained via the equilibrium equations.

The solution procedure can be thought of'as described below. Assume that

the in-plane stresses Oxx, cyy', and axy) within each layer of a particular
-lement have been determined at selected locations, i.e., through solution

of the constitutive equations. In the code as presently written, these

,. locations are specified as the element centroid and element nodal points.

lhe equilibrium equations (in the absence of body forces) have the indicial

form

Olj,j 0

from which it follows that the thru-the-thickness shear stress variation can

be written in numerical formnfor the ith layer as

AOxzi : -(Cxx,x + axy'y)j "Zi

and

Acyzi ('+xyx + yy,y Zi

Here, the ieft- hand-side rerresents the change 4n stress from the lower to

the upper surface of the ith layer and AZi is the thickness of the ith layer

at a particular location. The derivatives with respect to x and y in the

expressions above are readily computed; this is because in-plane stresses

within a layer are related to element displacements through derivatives of

element shape functions in conjunction with a material definition.

U\

~7
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For an n layered laminate, n equati ons can be written ir terms of

both the unknown shear stresses at layer interfaces and the shear stresses

at the laminate surfaces. Assuming the laminate has shear-free surfaces,

the equations above give n equations in n-1 unknowns, so that, the equation

* set is over-determined. ThE equations have the matrix form below.

' XZ 2  I

I I I

'[ :

-xzn Xzn

n x (n-i) (n-i) x 1 (n x 1)

where IxZi :-( xx"x + Oxy~y)i AZi and oxzi represents the shear stress
acting at the interface-of the j-1 th and ,jh layer. A similar equation

set is obtained by replacing cxzj with ayzj and Ixzi with Iyzi. These

equations are solved by utilizing a least-squares orthonormalization

procedure [13]. Due to the simplicity of the terms in the coefficient

matrix, a concise closed-form solution is obtained. Having determined the

transverse shear stresses, the transverse normal stress variation is

determined through the numerical form of the third equilibrium equation

for the ith layer.

Ozzi = -(xzx + oyzy)i Zi

As before, the left-hand-side represents the change in stress through the

ith layer. Appropriate polynomial functions are utilized to describe the
0xz and jyz in-plane variation. These functions are differentiated to

obtain the right-hand-side of the equations above. Again the equation set

is overdetermined because the normal tractions are known at the laminate

surfaces. Solving for czz proceeds, therefore, inidentically the same

.I
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manner as discussed in calculating x and oyz . Parenthetically, inclusion

of body forces at a later date can be accomplished with little difficulty.

11.1.4. Analytical Verification

An approach to the successful application of Higher Order Displacement

type elements, i.e., for thin to moderately thick geometries, is to utilize

reduced numerical integration where as this is not necessary for Modified-

Kirchhoff Formulation. This approximation technique brings along the choice

of implementing it overall or selectively to the strain energy components.

For the QHD formulation, only the transverse shear components are integrated

with reduced order. The integration order may affect the physical behavior

of the element by introducing spurious zero energy modes., It is desirable

to have only rigid body modes since there does not yet seem to be a generally

accepted method of controlling the additional modes. For QHD40, 3x3 Gaussian

quadrature along with the 2x2 quadrature for the transverse shear components

is employed. QHD28 and QH020 formulations are similarly integrated with

2x2 and Ixi Gaussian quadratures. Manipulation of quadrature rule.s may ,

result in undesirable element behavior. The presence of spurious zero

energy modes in addition to the rigid body modes may detract from overall

performance. A spectral(eigenvalue) test is conducted with and without full

quadrature to observe the zero energy modes of the QHD elements. The

quadrature order, the number of zero eigenvalues and the corresponding

number of spurious zero energy modes for QHD40, QHD28 and QHD20 are listed

ia Table i. The.spurious modes of QHD28 are illustrated in Figure 1.

It is 'also noteworthy to observe the effect of reduced integration on

the representation of the generalized forces. In order to illustrate the

effect, the forces associated with the transverse displacement of a corner

node are sketched in Figs. 2A and 2B for QHD28 with and without reduced

integration respectively.

To demonstrate the performance of QHD40, QHD28 and QD32 in comparison

to classical plate theory and elasticity solutions, the example problems

of Table 2 are solved.
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Example 1. Simply Supported Square Plate with Sinusoidal Load.

The results, given in Tables 3 and 4 are comparisons of the elasticity

solution of Pagano to those calculated via the QHD40, QD32 formulations.

Fig: res 3A-B and 4A-B display the transverse normal stress variation for

QHD40 and QD32 respectively at the center and at a point on the edge of

the plate respectively.

Example 2. Simply Supported Square Plate with Uniform Load.

The results presented in Figure 5 and Figure 6 display the difference

between the QHD formulation and the classical plate theory. The bending

stresses displayed in Figure 6 for QH028 are in close agreement Aith those

of QHD40 but the transverse shear stresses of Figure 5 present rather poor

correlations. The transverse shear stresses and bending stress of QHD32

are as shown in Figures 7 and 8.

Example 3. Cylindrical Bending

The transverse shear stress, a calculated via the QHD40.and QD32.
formulations is illustratedin Figure 9 and 10 respectively. The bending

stress xx of QHD40 is displayed in Figure 11 and oxx of QD32 is shown in

Figure 12. The results are compared to the elasticity solution obtained

by Pagano.

Verification of the dynamics portion of the computer code has been

limited thus far due to the emphasis placed on obtaining good statical

results. A first check has been performed, however, in calculating the

fundameihLal frequency of a simply supported (isotropic) plate. The

calculated frequencies for elements QHD28, QHD40 and QD32 are all within.

2,0 of the closed-form solution for a simple 36 element plate model.

11.2. TASK II: Incorporate Damage Mechanisms into Dynamic Response Formulation

The literature survey performed has been quite helpful in terms of

delineating the viable approaches to including damage mechanisms in the

analysis. Relcvant failure modes of interest include those listed below. ..
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(i) fiber fracture'

(ii) fiber-matrix debonding A'

(iii) matrix cracking (parallel and transverse to fibers)

(iv) delamination

Several smooth failure criteria, e.g., [14-17] have been developed in

recent years to represent the failure of composites. These criteria, to

varying degrees, canrpredict "failure" but do not identify a particular

mode of failure. In performing incremental "damage" analysis. it is

essential to both predict failure and to characterize it, e.g., do fibers

rupture, does delamination occur, etc. The computational approach must,b

therefore, differentiate between viable failure modee and appropriately

alter the constitutive equations on an incremental basis. This can be

" accomplished by impementing a piecewise smooth failure criteria, e.g., c
[18] in the finite element formulation. The~gene:-al failure criteria is

then comprised of m separate' inequalities of the form

* Fj ({cF}) < 1 ; j = 1,2....,I

at each layer level within each element. These criteria can differentiate.

between (i) tensile and compressive fiber failure, (ii) tensile and compressive

matrix failure and (iii) delamination at layer interfaces.

As progressive damage occurs throughout incremental loading (whether

it be static or dynamic), it is essential that violation of failure criteria

inequalities be reflected in modification of the material properties. This

can be achieved by including damage state variables [19] in the constititive

equations to reflect "stiffness reduction." These equations can be'

represented as

where'[D] represents the material matrix and [5] contains the damage state

variables. The letter provide the basis for changing the Dij terms based

upon the extent to which the failure criteria are violated.
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In, conjunction with the above it is essential to 'perform equilibrium
piterations within each analysis increment. This is required to assure that

stress redistribution is properly accounted for as damage progresses.
Currently the approach to modelling "damage mechanisms" is under development

A for'implementation in the formulations.

11.3.3 TASK III: Correlation of Formulated Response Model with Experimental

Data

Some quantitative data relating to the impact damage of composite

specimens has been assembled [21-28]. It will be utilized along with any
additional data obtained.to perform analysis/test correlations. Since the
nonlinear formulation including damage effects is not complete* no use of
the test data has been made to this point. Much effort has been devoted,

a however, to correlating the analysis wit) both closed-form and numerical

solutions as previously discussed.

, K

64
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Table 1. Spurious Zero Energy Nodes of the QHD Family

I Number of Zero Number of Spurious
Quadrature Order Eigenvalues Modes

3x3 with 2x2
5HD40 for transverse 6 0

shear terms

2x2 with IxI
QH028 for transverse '9 3

shear terms

W2x with lxl
* QHD20 for transverse 8 2

shear terms i

I ,

! a

iI'
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Figure 1. Spurious zero energy modes of QHD28

Figure 2. Genera'ized forctb dssociated with the transverse

displacement wo of a corner node with full quadrature

as shown in (A) and With reduced integration as in

(B) for QHD28..

Figures 3 & 4. Transverse normal stress, z, variation for QHD40

and QD32 respectively, at (A): center of the plate

(OZ :Oz/100) and at (B): a point on the edge of

the plate (-Oz l0dz).

Fiqures5 & 6. Thru-the-thickness yxz variation in element #6.

,yz variation in element #31; in comparison to

CPT results (F-xz = /100, 0 = ay/100) for

QHD40 and QD32 respectively.

Figures 7 & 8. Comparison of bending stressL. of QHD40, QHD28,

and QD32 to that of CPT in element #36.

0 = xF/1O0)

Figures 9 & 10. Transverse shear stress, a, for QHD40 & QD32 in

comparison to elasticity solution of Pagano in

element #20. (0 =  /100)
xZxz

Figures 11 & 12. Bending stress, oIx, variation of QHD40 and QD32

respectively i.n comparison to e-asticity solution

in element #i. (Fx = -x/100)

x I I
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V. RELATED ACTIVITIES

Following is a list of abstracts and papers that have been submitted

for presentation/publication as a result of the present research efforts.

(All co-authored by J.J. Engblom and 0.0. Ochoa)

* Abstracts Submitted
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"Interlaminar Stress Predictions for the Nonlinear Response of Composite

Material Configurations"
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Material Configurations"
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International Journal for Numerical Methods in Engineering

"Thru-the-Thickness Stress Predictions for Advanced Composite Material

Configurations"
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The schedule of work performance is presented below for the three year

program. This schedule is as originally proposed as no changes pre requested.

WORK SCHEDULE BY TASK

YEAR I YEAR 2 YEAR 3
TASK % DOLLARS

Dollars Complete 1Dollars Complete Dollars Complete

TASK I 35485 45 35485 90 7886 100 78856

TASK II 30468 25 31475 50 61973 100 123916

TASK III 2253 10 7567 44 12710 100 22530

DOLLARS 68206 74527 82569 225302

<Ii
NJ



APPENDIX IA - HIGHER ORDER DISPLACEMENT MODELS

QHD4D,

NODAL DEGREES OF FREEDOM:

Corner Nodcs " {Uo Vo Wox y x 0y}T.

Mid-side Nodes - {w4 x T-

DISPLACEMENT FIELD:

U = 0 + Z X + Z2tx

V vo + Z~y + Z2

w : w 0  4

where;

U0, Vo, X, x y : x y xy}T {x}

wo, :!x, py : {1 x y x2 xy y2 x3y xy3)T{}

STRESS FIELD:

i. From constitutive relations - i  Cijc;j (orthotropic mat.)

Cxx  f(z2, x2, y2)

cyy f(z2 , X2 , y2 )

Cxy f(z2 , x2, y2) 4

ii. From equilibrium considerations - oij,j 0

Cxz = f(z 3 x, y)

7y Z f(z3'9x, y)

= f(z3)
zz



QHD23

NODAL DEGREES ,r F7~~

~0 0 ') ,,"

DISPLACEIMENT F1EFAj:

~j+ + Zy X + Z2A

v v i z"'~ + Z .1

Ww

where; 
-

S. R"-IS FI1E LD:

1.From ccnszi:tive relatio ns c = Cijj-j (orthotropic rnat.)

i i. Froai corstitutiv c co r 1 d ra t iD s -ij 0

Oxz f( 2 Y

c f(z)



APPENDIX 18 MODIFIED KIRCHHOFF FORMULATION

QD32

NODAL DEGREES OF FREEDOM:

Corner Nodes (w0 v w . - . - YXYY
y l

Mid-Side Nodes aw~an

DISPLACEMENT FIELD:

w f(x,yA

u -o z.(2 + ),X)

v v - (2 + )

where:

x : y yTI

X2 =y {i x 2 3 X2 XY y3  x x3y xy3  4~ 4' xy Ti>

STRESS FIELD:

i. From constitutive relations -,, Cij ,ij (orthotropic mat.)

=yx f ( z, x, y")

=f(z, X2, y2)

O = f(z, X2, y2)

i. From equilibrium considerations -0

xz= f(z2, X' y

y Z= f(Z2, X1, Y2)CI

Ozz =f(z
3, X, y)



TD2 7 TD27M

NODAL DEGREES OF FREEDOM

{w jw IT T
fU0 V0 W -yx y Corner Nodes {u0 v0 w ~- x y~

Tw7n Mid-side Nodes 1 T

Center Node {w "W T;

DISPLACEMENT FIELD

w =f(x, y)

u -o _z +

= 0  ),x

where;
T

U0 , v0  X1 xy~

W {1X y x, Xyy X3 Xy Xy2 y3 4' 3y 2y2 Xy /.T

STR~ESS FIELD

i. From constitUtive relations -, -i (orthotropic mat.)
=f(z, xf

CFyy = f (Z, X2 , y2)

c = f(z, x , Y,)

fl. From equilibriUM considerations - 'U'ij 0

c'yz f(z 2 ,. X, y),

17Z f(s)



APPENDIX II - HYBRID-STRESS FORMULATION

PS32

DISPLACEMENT FIELD:

U: u0 + Z x + Z2¢X

v Vo + ,y + Z2 y

w w wo + Zzz

where;

T
U0' Vot X' 9 yI ' , Y :{ x y xy}T{ct}

STRESS FIELD:

x = (51 +62 x + + 04xy) + Z(B5 '+B6 X. + a7Y + 08xy)
+Z 2 (B) + al0 x + aIIY - 32B4xy)

cry ( + 313X + a14Y - a4xy) + Z( 1s + 316X + 617Y a. 'xy)

+ z 2 ( 3 19  I-.1 < " Y +  , x X Y 1'

h2  2  h2  h4 %,
xy =[ - + 3- s an + _j 61)X + (-62, s Bo :'-'2 )y"

+ (-39 - 19)XY] + z [623+ - 2 4 X + 625Y+ h h9 n 4

+ z2 [ 26 + B21 x + sy+ (+ -9+ - ',)xy]"

Cxz : (-h - -z) t 10 + p22) + 04y + (-' olg)x]

+ * (hl-  Z2)[a( + 6,5 + 68y -(59 +a,9)X'

13 3+ '(-h3- z3 )['io 264Y + B2+ 2 (69+ 619 )x]
3 h h 2

..,

(-h z 21+ t eH ) *+ - "19)Y 0x]"

+ 1~(h'- Z2)[ .~ 1) 1

+ .~~. (-I0- 1 + 619)y

oz (a9 + F,.)) [-(h + Z)2_ (-2 h3- 3h2z + 3h'+ 4hz + z )

+h 2h,



APPENDIX III . MASS MATRIX FORMULATION

The mass matrix for elements under development is easily arrived at

by considering kinetic energy in the form

whrT~ j p(u2 + ;2 + W2)dV

where u, v and w 'represent displacements, p is the mass density and the

dot superscript denotes velocity. Defining velocities in terms of element

shape functions gives

o( f~Nu}[Nu] iJ Nv)[Nv], + {Nw}[Nw'] dV{A

, V

which is the classical form

- The element mass matrix [M] is, therefore, specified as

[Mj [ p{Nu[Nu] + {Nvi[Nv] + {Nw,[NwJ dV

V

* Note that the shape functions [Ni] involve distance from the mid-plane

of the element to a layer Jenoted'by Z and, therefore, the mass matrix

definition provided not only represents mid-plane inertial effects but

also rotary. inertia as well.



APPENDIX IV - LARGE DISPLACEMENT FORMULATION

Based on Green's Strain. Tensor, the following procedure is utilized

to obtain the large displacement and the geometric stiffness matrices.

Let N be shape functions relating displacements at any point in the

element {W} to nodal displacements {'} such that

T{} =

*Also let {Ni,j}T denote those shape functions associated with the ith

displacement field (i - u,v,w) and ,j" denotes the differentiation with

respect to the jth coordinate, i.e., - where x, = x, x2 = y and x3 = z.

Then, the strain £xx given by

EXX 2 u ?2

can be written as

I" i'' +~x 1N I~{ +T{N} +
.-x tux (Nu'xx +N~x (N9X +{W$x}'N WXI{A}

Similarly; the shear strain y can be represented by
Ex JN 7 + {,x}T}(,p;T +~lrN
= " + {Nv x Tj I Nu'x}TtNu y} + {Nvx}T{Nv y"

*T'Nwx} T Nw,y ' f .

The strain field in indicial notation is expressed by

//

,j

T T

Ni +{Nj~} + N/

2/



Then the incremental representation becomes

j [ ~ ) + {Nj ,)T}{1+(,[{}{Ni]{
++ (6A)T NkN i,~ ji {&k1]

*But the second term can be expressed as

WT [{Nj)T {N :]{JA}

Thus combining terms

-) N ~ ij 31  Nj,i}T]t + jAT[(Nk,i )T {Nk,j) +'Nkj}Nki1~ J
26

Let

[B] [:j~ 1 T +{,}T] {ITMx

T1A} [MyyJ
T

r 4 T . r N T {I[Mxy]

T[

Then

[{M~ T [BM]Z'

where [B0] is the linear coropornent and [6L] *is the large displ'acement component
Having *the definitions for FB 0] and [BL]; the small and large displacement
matrices [K0] and [KL] are represented as

[K] l [ ] j[BO]dV

V 
I

[KU] f [B][D][Bo,] + [BL]TD[U +[o][D][BL}ldV'

Ji1



&iBi

The geef1!tric stiffness matrix is ,so derived from [BLI and it has the'

followi,.- form

[KG] :f (xx[Mxx] + ayy[Myy] + Ozz[Mzz. + Oxy[Mxy ] + axz[Mxz]

V

+ ayzrYz]) dv

Where the a's are the stress components and again integration is on-a

layer by layer basis.

-
,

* 
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