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A Birth and Death Process Approximaticn For the
Slotted ALOHA Algorithm

( TNTRODUCTION

\‘“*J) Many authors have concerned themselves with the bistable behavior of
the finite-user slotted ALOHA protocol under heaving loading. Recently
Mesion used a catastrophe-theoretic approach to demonstrate that under a
fluctuating load the protocol suffers hysteresis as well as bistability.

He uses results from catastrophe theory to give a possible improved con-

trgl algorithm,
Central to Nelson's approach is a diffusion approximation of the queue
. of backlogged users. This approximation has the advantage of yielding a
i continuing probability density for the process, thus allowing the use of

{stnchastic) catastrophe throry. Unfortunately, as will be seen later, the

aoproximation requires difficult numerical integration and yields no
closed form solution.

Tt is heinc oroposed here that the process should remain discrete, and
tnat il can be approximated reasonably well as a birth-death process. This
allows rapid computation of the approximate stationary distribution.

———

THE SLOTTED ALOHA MODEL

Assuine there are N users, each of whom wishes to send packets across

the communications channel at various times with equal probability. Time

iv divided into cqual slots, and all packets are no bigger than one time

slot. Note that if two or more users attempt to use the channel at once, [
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their packets collide (i.e. become garbled), and no packet is transmitted
successfully. These packets must still be transmitted at some future time;
hence users of previously collided packets are referred to as backlogged.
Those users who are not backlogged are called idle. Using these labels
the ALOHA protocol can be defined. At the beginning of each slot each
idle user receives a packet to transmit with probability Po} these newly
arrived packets (arrivals) are immediately transmitted; each backlogged
user transmits its packet with probability Py In case of a successful
transmission, the user reverts to being idle. Note that the users are
independent of one another, and their transimission attempts are indepen-
dent across time. It should also be noted that by definition a backlogged

user has only one packet which it must transmit; buffering is not allowed.

This model can readily be modelled by a Markov chain Xt on 0,1,...,N
in which the states of the process represent the number of backiogged users.

The transmission probabilities Pij 4 Pr{Xt+] = j]Xt = i} are given below:

Poo © (1 - pO)N : empty queue, no arrivals
PO] =0 : empty queue, if one packet
- arrives it is sent successfully
:‘: ( ) < . 1e9
i POk IRj 0(1 po) 2 <k < N: empty queue, collisions
- Pk =0 k> 2: no more than one packet can be
. ’ sent at a time
i Pn,n—] = (I-pO)N'"n p](l-p])n']: no arrivals, one line transmission
] - -
- Pn n s (1—p0)N n(1-np](1-p])n T): either no arrivals and no suc-
S ’ Nen-1 n cessful line transmissions or
+(N~n)p0(l-p0) (l-(l—p]) ): one arrival which is successfully
transmitted
Pointl = (N-n)p0(1—pO)N’"'kl-(l-p])"): one arrival which is blocked by
! ’ line transmissions
g N-n
Prant { k }po(l po)N n-k, more than one arrival.
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These transition probabilities make for a fairly complitated Markov chain.

The only "nice" property is that all the entries below the subdiagonal

are zero (by condition (4).

NELSON'S APPROXIMATION

It is common to assess the stability or instability of an infinite
Markov chain by looking at the drift and variance of each state (Lamperti

1960). These are defined as the expected jump and the expected squared

jump:
A - - .
d; = E(Xpyy - xt{xt = i) = 3;(3 - 1)P1.j
Vo S E((ean - X)2|X, = 4) = 1 (5 - )%
i t+l t t ; 1J
for finite chains, such as the one under consideration, stability is of
no consequence, but the qualitative behavior of the chain can be assessed
by finding the places at which the drift changes sign. - ————
wfgssion Tar
As Nelson states, the drift and variance for the N-user slotted| NTIS GR&sI ;i&
DTIC T#3 i
ALOHA are given by Unannouncod o
Justificotion |
. . - . . b
Vi = (N=1)py((N=1)pg + (3-pg)) + Sy(i) - So(H) Distrivution/
Avalilability Codes
#here e Avail and/or )
_ i . / Dist Special
50010 = (N=1)pg(1-py) =11 (1-p ) nstimy
0 0" "Fo ] (T 24
N = ip. (1-py LicD) (N-i) 3
Sp(3) = ipy(1-p) T (1-py) : m./ Y
He approximates the behavior of the queue by defining a diffusion process
on  (G.N) by taking the same functional form for the drift and variance,
but allowing 1 to be real valued (instead of integer valued). To make
o e b A Lo S S DU S SN S R S e O U S S
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the distinction clear, the real valued functions will be denoted as

u(x) and oz(x). He then defines the c-drift function as Zuzxz
a“{x
X
and the c-potential function as V(x) 8 J Z%%§% ds . (These are
o (s

are denoted as "c-drift" and "c-potential" to make the connection of
the drift and potential functions used in catastrophe theory while keeping
the stochastic nature of the model distinct from its deterministic analog).
It should be boted that v(x) = -2n s(x) where s(x) 1is the scale density
of the diffusion process.

Using c-drift and c-potential, Nelson shows that the slotted ALOHA
can be viewed as a stochastic cusp catastrophe. He also approximates the
stationary distribution of the discrete valued Markov chain with the

stationary density of the related diffusion:

K(x) = Ce—(v(x) + Znoz(x))

where ¢ 1is the normal constant.

This approach is very nice in its theoretical simplicity, since the
catastrophe theoretic approach is interested on’y in the shape (i.e. loca-
tion of the maxima, minima, and inflection points) of the stationary
density x(x). These can all be found by differentiating the c-drift
function. Unfortunately finding error bounds for the final approximation
of the stationary distribution by x(x) appears to be difficult. This
is the case because v(x) has no closed form and can be found only via

numerical integration. It is for this reason that the following material

is being proposed.




BIRTH-DEATH APPROXIMATION

In order to ease the computations while keeping the flavor of Nelson's
work, it is proposed here that the approximation of the slotted ALOHA should
be kept in a discrete state-space. To do this the chain is approximated
with a birth-death chain which can be considered in continuous or discrete
time. The transition probabilities are defined so that the drift and
variance of each interior state equal those of the original chain. To

do this, define:

>
"

1
7 (vj + dy)

hot
1]

1
i =7 vy -dy)

>
it

do U2=0

Ay = 0 =d

"N T N

where the )'s are the entries on the superdiagonal and the u's are

the entries on the subdiagonal of the transition (generator) matrix of the
discrete (continuous) time birth-death chain. Note that with these defini-

tigns the dO indeed match the drift and variance:

E(X

41~ KelXy = A i i (discrete time)

2 oy L -
- X)X, = 1) = Ap g Ty
(The continuous time calculations are the same)

Unfortunately, only the drift can be matched at the boundaries unless
the original chain already has only next-neighbor transitions at 0 and N.

Despite this drawback this approximation should yield good results for

"slowly moving" processes, i.e. processes where large jumps are rare. The
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heuristics reason for this is that the first two moments of the approximating
process are the same as those in the original chain at each interior state.
If large jumps are rare, then the higher order moments on the two chains

will also be close.

N TR ATCRR ==

By far the biggest advantage of the birth-death approximation is the

- - -
T

ease with which the approximate stationary distribution can be calculated.

I for a b - d chain of birth parameters A and death parameters ..., the
;{ stationary distribution -~ 1is given by
o )
. .
i,
where
E Aty ohs
P =1 and P uou] u1—]
17277
‘inte that the simple for i of - also allows rapid calculation of the ap-

crocimate exp.oted queue length Tivi and the approximate expected length
1

~f 3 busy cscle -— . This type of approximation also appears more promising
0

‘n the area of error-bounds than a diffusion approximation.

APPLICATION TO SLOTTED-ALOHA

s was rentioned earlier, the birth-death approximation works well for
siowly  oving” processes. The slotted-ALOHA is such a process because
mmat of the probability in the transition matrix is concentrated on the
“eaipn-, suner- and sub-diagonals, i.e. is almost a birth-death process.
It should be noted that the slotted-ALOHA allows transitions from

state 0 to all states except state 1, which is a rather unfortunate
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cituation since the approximation allows transitions only to state 1.

Although this does not pose a major problem (because Poo's large), it

« e's s 8 8 2

does cause the approximate stationary probability of state 1 to be too
large.

It is not too difficult to caiculate the stationary distribution of
an "altered" approximation which allows the transition probabilities from
one state, in this case state 0, to be equal to the actual transition
prohahilities: while approximating the rest of the chain witha b - d
grocess. This, however, makes the form of “he stationary distribution much
rore complicated and thus destroys the simplicity of the approximation.

Tables 1, 2, and 3 present examples of computations, where

APPX1 - simplie birth-death approximation
APPX2 - altered birth-death approximation

EXACT - exact stationary distribution (calculated via PP~ )

n
. SHN.T - exact stationary distribution (calculated via =R PP s
& see below)

L5 these computations show, the aprroximation is aood although the relative

P
etatets

creor i fairly larne for those states whose exact stationary distribution
is ies: than 10'5. The absolute errors are small. It is important to

aote that the approximate distributions have their relative maxima and minima

1t the cane states.

SOME SIDE NOTES IN THE COMPUTATIONS

It is, of course, possible to calculate the exact stationary distribution
of a Markov chain by repeatedly squaring the transition matrix. This is

tantamount to grinding out P" n >~ This type of calculational bullying has

¥
-.
.
e a e e e mamaeae maa e At e Gt e et et et Nt e A RS
P T C L O, O T O L UL TR TR SO ot




St e T F LR LT e eaee—"py
L T T Ny
° T R T TR T T T Ty
o i 2o ]

RS ) ’T’W“ .

N 7,
[oe]

) several drawbacks. First of all, it donesn't lend any insight into the

b .
rossible changes in performance which would result from small changes in

L

the parameters. It also is subject to roundoff errors since the number

v -

of necessary computations is large, as is the range of values. \lLastly,

S,

the "brute-force" method is wasteful of computer time when applied to

A
.

ey [
A _'- LI

“ar;e chains. The computations of the exact disk given here required

¢7 CPU seconds, whereas the approximation required less than three.

As is noted, another use of the b-d approximation is in calculating

e exa.t distribution. This can be done by calculating successive

jatues of -p", Although this is also subject to roundoff error, it re-

wires far less time thatn the brute-force method - the calculations here

"SHOPT) required 20 CPY sec.

CONCLUSION

Taving Neluon's lead, it appears that approximations of Markov chains

~eopossihle and useful. It also appers that a birth-death approximation

less elegant, is casier to use and just as accurate as a diffusion

[,
teoanan

prrroomation, The direction of the research at this time is two fold,

rasel s errar cnunds for the birth-death approximation are being computed

“teotne end ¢ orercurbation theory, and the shape preserving properties

“nn oare being investigated.
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TABLE 1
CALC'FO=,003 F1=,06"

STATE AFF ] AFFND LOG AFFPH] LOG AFFXD
0 0.000029 0.000055 “4,543581 T4,259922
1 0.000039 0,000023 T4,403736 T4,640807
2 0.000041 0.00004 ~4,384059 T4,399743
3 0.,000037 0.000037 T4,435848 T4,437019
4 0.000029 0.,000029 T4,5334418 T4.5345
5 0.000022 0.000022 T4.,665206 T4,665214
é 0.000015 0.00001%5 T4,818784 T4,818788
7 0.00001 0.00001 T4,988653 T4.988657
8 0.000007 0.000007 T5.170116 T5.17012
@ 0.000004 0.000004 T5.359656 T5.35966

i0 0.000003 0.000003 T5.554563 T5.5534566
0.000002 0,000002 T5.752698 T5.7352701
0.,000001 0.000001 T5.,952341 T5.952344
0.000001 0.,000001 T6.152083 T6.152087
O, 0. ~6.,350758 T6.350761
G, 0. “6.547382 T6.547386
0. 0. T6.741122 T6.741125
0., 0. T6.,931261 T6.931265
0, 0, ~7.117181 T7.117184
0. 0. ~7.298341 T7.298345
0. 0. T7.474269 T7.474273
0. 0. T7.644547 T7.64455
O 0. ~7.808803 ~7.808806
(6 0. T7.966707 T7.966711
9. 0. T8.117964 "8.117968
O. 0. T8,262309 “8.262313
0. 0. “8.399504 8.399508
0. 0, —8.,529333 “8.529336
. O. 8.651602 T8.4651606
0. 0. 8.,766136 “8.76614
O, 0. ~8.872776 ~8.87278
0. 0. “8.97138 “8.971383
Q. 0. 9.061817 "9.06182
0. 0. T9.143971 T9.143970%
Ce 0, T9.217739 T9.217742
0. 0. T9,283026 79,283029
0. 0. T7.339749 "9.339753
0. 0. ~9.3878364 ~9.38784
(VN Co T9.427223 T9.427226
0. 0. T9.457854 "9.457857
0. 0. “9.4796482 T9.479686
0. 0. T9.492671 T9.492675
0. O “9.496789 T9.496793
0. 0. T9.492014 T9.492018
0. 0. "9.478332 "9.478336
0. 0. 9.455735 “9.,455739
0. 0. T9.424225 9.424229
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TARLE 1. (con't}
47 0. 0. 79.383809 T9.38381 ¢
48 0. 0. "9.334503 9.334L0
49 0. o. T9.276331 T9.276335
50 0. 0. T9.209324 T9.209328
51 0. 0. T2.,133522 T9.,133526
52 (VI 0. T9.048972 T9.0489764
53 0, 0. “8.955731 “8.,955734
54 0. 0. “8.853863 T8.8538664
55 0. 0. “8.743442 T8.743445
56 Q. 0. TB8.624552 T8,624550
57 0. 0. "8.,497286 T8.,49729
5] 0. 0. “8.361749 8.361752
59 0. Q. ~8.218055% ~8.,218058
14 0. 0. “B.066331 “8.066335
61 9. 0. T7.906717 T7.906721
2 0. 0. T74739365 T7.739369
63 0. 0. T7.564443 T7.564447
64 0. 0. ~7.382133 ~7.382137
65 0. 0. T7.192635 T7.192639
b6 0. 0. T6.996165 T6.996169
&7 0. 0. T4.792961 T6.792964
658 Q. 0. T6.58328 T6.583284
&7 O. 0. TH 367405 T6.367408
¢ 0.000001 0.000001 64145642 T6.14564%
71 0.000001 0.000001 T5.918327 ~5.91833
;e 0.,000007 0.,000002 T5.485826 T5.68583
73 0.0000G4 0.000004 ~5.448541 T5.448544
74 SL.000006 0.000006 T5.20691 T5.206914
7% 1.,000011 0.000011 T4.,961417 T4.9614201
e’ 4.00001% 0,000019 T4.,712592 T4,712595
27 0.000035 0.000035 T4.,461014 T4.461021
6 G.G0Q0462 0.070062 T4,207342 T4,207345
e .01 7,000112 T3.952278 T3.952282
L 0. 00201 0.000201 30696622 T3.696626
L L3610 (.000362 T3.441258 T3.441262
o O.O0065 0.0006% "3.187177 ~3.187181
R 0.00114 0.00114 T2.935493 T2.935496
a L0000 a 0.002054 2.68746 T2.687464
1Y LN0ILPS 0.003593 T2.444506 T2.444509
v V06191 0.006191 T2.,2082596 T2,20826
G.010457 G.010407 “1.980583 ~1.980587
Yy GL,017232 ¢.017232 T1.763454 T1.7636358
e 0.027542 0.027%542 “1.560003 T1.560007
w0 0.042401 0.0424 T1.372629 T1.372632
7 0.0m2306 0.062356 T1.205119 T1.,205123
7 0.086728 0.,0867.7 “1.061841 ~1.0618475
IR N, 110665 0,112664 “0.948211 T0.948215
S 4 D, 134550 0.134551 “0.87111 “0.871114
W 0.134691 0.14469 T0.839559 T0.839563
Vi 0. 134181 0.13618 “0.865884 “0.845888
5 W 10/7662 0.107661 T0.967936 0986794
28 0.067004 0.067004 “1.17389¢9 “1.173902
Y 0.029167 0.029166 71.535114 ~1.535118
o 0.004657 0.0068%6 T20176752 20176756
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STATE SHORKT 1.OG SHORT
0 0.000044 ~4,360016
1 0.000036 ~4,444273
2 0.00004 “4.,396149
3 0.000033 ~4.484199
4 0.,0000264 ~4,582656
5 0.000019 ~4.,712498
4 0.000014 ~4,857873
7 0.00001 “5.,016323
8 0.000007 J.183849
9 0.000004 357937
10 0.000003 "5.536503
11 0.000002 T5.717892
12 0.,000001 “5.90074
13 0.000001 ~46.,083908
14 0.,000001 6266431
15 0. ~6.,447484
16 0, 6 626352
17 0, ~6.802414
18 0. ~6.975129
19 0. ~7.144026
20 0. ~7.308692
21 0, ~7.4648773
22 0. ~7.623961
2 0. ~7.773998
2 0. "7.918664
25 0. -8.,05778
2 O, ~8.1911964
2 0. ~8.318791
28 0. ~8.,440462
29 0. “8.556116
30 0. “B.665664
31 0. ~8,769004
- 32 0. ~8.866019
. 33 0. ~8.,956558
v 34 0. ~9.040433
i 35 0. ~9.11740°9
; 36 0. ~9.,187199
.o 37 0. ~9.249448
: 38 0, ~9.303837
. 39 0. ~9,349894
\ 40 0. ~9.387217
' 41 0. ~9.415392
l 42 0. ~9,434043
: 43 0, ~9.,442855
44 0. ~9.441594
45 0. "9.,430119
46 0. ~9,408383
':"5 "'."-.' q._f,_-‘ f :' i a._.f .-";.?KL‘; 'l;kﬁ -L '_:_:_\..\ AN -. v :: TR OO AR
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TABLE 2.

UBING THE AFFROMIMATION TO STAFT
AFTER LOOFIMG 290 TIMES,,,,,,.
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TABLE 2 (con't)

47 0. T9.376424
48 0. T9.33435
49 0, 79.282317
50 0. T9.22051
55 | 0. T9.149122
52 0. T9.068343
53 0. “8.97835
54 0. “8.879304
55 0. "8.771348
56 0. "B.654615
57 0. TB.529226
S8 0. “8.3953
59 0. T8.252957
60 0. “8.102321
é1 0. “7.943527
62 0. T7.776723
63 0. T7.602072
64 0. T7.419753
65 0. T7.229949
66 0. ~7.032939
67 0. ~6.828%91
68 0. “6.61815
69 0. T6.400957
70 0.000001 T6.177656
71 0.000001 "5.948604
72 0.,000002 "5.714193
73 0.000003 “5.474849
7 0.000006 T3.231043
75 0.00001 T4,.,983287
76 0.000019 T4,732144
77 0.000033 T4.478234
78 0.00006 T4,222236
79 "0.,000108 T3.94649
80 0.000196 “3.707055
81 0.000355 T3.449621
2 0.00064 "3.19362
83 0.001148 T2.940194
84 0.002039 T2.690626
£9 0.003578 T2.4463464
86 0.006179 “2.209051
az 0.010458 “1.98057
88 0.017238% T1.763089
89 0.027397 “1.559138
?0 0.,042492 T1.371695
?1 0.062471 T1.20432
@2 0.08682¢9 T1.061334
?3 0.112496 T0.948091
94 0.134445 “0.871391
95 0.144493 “0.840153
?6 0.135964 “0.866575
97 0.107559 “0.968352
98 0.067068 T1.173484
99 0.029303 ~1.533092
100 0.006728 T2.172089
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TABLE 3

AFTER STRAIGHTFORWARD EUT TEDIOQOUS CALCULATIONMNS,

(RAISING F TO THE 1,0737E9TH FOWER),,,,,

STATE

O

[y
O VDN W

—
—

—
ry -

——
D W

-
(4}

T =
oo O

-3

t

UEAN R XY
PRI X

%)

26
27
28
29
30
31
32
33
34
X5

34
37
38
39
40
41
42
43
44
4%

46

HacT
0.000018
0.000015
0.000017
0.000013
0.000011
0.000008
0.000006
0.000004
0.000003
0.000002
0.000001
0.000001
0.,000001
0.

0.
0.
00
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Q.
0.
0.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

LOG EMACT
T4,746165
~4,830447
“4,782327
~4,870391
T4,9468858
5.09871
q.~4409a
+402554
r'o'570088
“5.74418
T5.9227464
"6.104126
T6.286952
“6,47008
T6.652537
“6.833483
~7.012188
~7.,18801
“7.360379
T7.528786
77692772
T7.851922
“B8,00586
“8.154241
T8.29475
“8.,433095
“8.563009
“8.686246
“8.802574
"8.911784
T%.013477
“9.108071
“9.194797
T6,273698
79434463
T9.,4074%9
T9.462062
T9.508326
T9.5461%
T9.57544
"9.596114
T9.608097
T9.611324
T9.605742
“9.591302
9.567969
“9.535715
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47
48
49
50

52
53
54
55
56
S7
a8
59
60
61
&2

64
65
66
67
68
69
70
71
72
73
74
79
76
77
78
79
80
81

~”
&

83
84
85
86
87
88
89
90
91
92
73
?4
?5
?6
?7
98
99
100

15.

TABLE 3 (con't)

0.
0.000001
0.,000001
0.000002
0.000003
0.000006
0,00001
0.000018
0.000033
0.000059
0,.C00107
0,000195
0.000353
0.000638
0.001144
0,002035
0.,003575
0.006178
0.01046
0.017263
0.027613
O 04-‘.016
0.062501
0.086857
0.112712
0.134442
0.144475
0.,133946
0.107557
0.067087
0,029327
0.006739

T9.49452
“9.444377
“9.385285
“9.317255
“9.240307
T9.154472
T9.059791
"B.956317
“8.844112
8,723252
“8.5938.24
455929
“8.30968
“8.155206
T7.992648
~7.822167
T7.643936
T7.45B8148
T7.265017
~7.064773
T6.857671
T6.4643989
T6.424029
T6.198121
TH.966627
T5.729939
“5.488486
T5.242736
T4,993203
T4.,740447
T4.,485083
T4,227789
T3.969309
“3+.710466
~3.452174
“3.1935448
T2.941423
T2.691373
T2.446737
“2.209148
~1.980478
"1,762886
~1.558887
T1.371449
T1.204116
T1.061197
“0,94803
“0.8714
“0.840208
T0.866635
T0.968359
“1.173359
“1.532737
T2.171384
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