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A Birth and Death Process Approximation For the
Slotted ALOHA Algorithm

INTRODUCTION

. DMany authors have concerned themselves with the bistable behavior of

the finite-user slotted ALOHA protocol under heaving loading. Recently

'eslon used a catastrophe-theoretic approach to demonstrate that under a

fluctuatino load the protocol suffers hysteresis as well as bistability.

fie uses results from catastrophe theory to give a possible improved con-

trol algorithm.

Central to Nelson's approach is a diffusion approximation of the queue

of backlogged users. This approximation has the advantage of yielding a

continuing probability density for the process, thus allowing the use of

(stochastic) catastrophe throry. Unfortunately, as will be seen later, the

E2,:oximation requires difficult numerical integration and yields no

closed form solution.

t i e -ein( r-;,osed here that the process should remain discrete, and

t,;it it cq L r ,roxiiiated reasonably well as a birth-death process. This

illows rapid cnputation of the approximate stationary distribution.

THE SLOTTED ALOHA MODEL

Assuiie there are N users, each of whom wishes to send packets across

t'e comvunication3 channel at various times with equal probability. Time

Vi, divided into -qual slots, and all packets are no bigger than one tine

slt. Note that if two or more users attempt to use the channel at once,

Approved for publie release I
distribution unlimited.

85 12 6 032
S....... ....................... ., .. *...... . .-..-



2.

their packets collide (i.e. become garbled), and no packet is transmitted

successfully. These packets must still be transmitted at some future time;

hence users of previously collided packets are referred to as backlogged.

, Those users who are not backlogged are called idle. Using these labels

* the ALOHA protocol can be defined. At the beginning of each slot each

idle user receives a packet to transmit with probability pO; these newly

arrived packets (arrivals) are immediately transmitted; each backlogged

user transmits its packet with probability pl; In case of a successful

transmission, the user reverts to being idle. Note that the users are

independent of one another, and their transimission attempts are indepen-

dent across time. It should also be noted that by definition a backlogged

user has only one packet which it must transmit; buffering is not allowed.

This model can readily be modelled by a Markov chain Xt on 0,1,...,N

in which the states of the process represent the number of backlogged users.
The transmission probabilities Pij Pr{Xt+l Xt

1.3 t l = i} are given below:

P = (l - po)N  empty queue, no arrivals

P = 0 empty queue, if one packet
arrives it is sent successfully

P INPk(1-Po)Nk 2 < k < N: empty queue, collisions
Gk Rj 0 0

Pn,n-k =0 k > 2: no more than one packet can be
sent at a time

PNn,n-1 (1-Po Pl(1-P l  : no arrivals, one line transmission

Pn,n (-Po-) N(-np1(PIl)n-1 ): either no arrivals and no suc-
cessful line transmissions or

+(N-n)pol-Po) N n-(-(-Pl)n): one arrival which is successfully
transmitted

P n,n+l= (N-n)p0 (l-po)Nnl(l-(l-.Pl)n): one arrival which is blocked by
line transmissions

Pn fN-nkk N-n-k
Pn,n+k k k~p(l- n-) more than one arrival.
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These transition probabilities make for a fairly complitated Markov chain.

The only "nice" property is that all the entries below the subdiagonal

are zero (by condition (4).

NELSON'S APPROXIMATION

It is common to assess the stability or instability of an infinite

Markov chain by looking at the drift and variance of each state (Lamperti

1960). These are defined as the expected jump and the expected squared

jump:

A
di = E(Xt+1 - XtX t = i) = E(j - i)Pij

A 2
= E((Xt+ l - Xt) Ixt = i) = Z (U - i)2PijJ 1

for finite chains, such as the one under consideration, stability is of

no consequence, but the qualitative behavior of the chain can be assessed

by finding the places at which the drift changes sign. Aceession 7or

As Nelson states, the drift and variance for the N-user slotted NIS GRA&I
DTIC T1B

ALOHA are given by Unannounc !
Justification

di = (N-i)p 0 - (S1(i) + So(i)) By

vi = (N-i)p 0((N-i)p 0 + (_po)) + Sl(i) - So(i) Distribution/_.
Availability Codes

.;nere Avail and/or
.N-i-) •o Dist Special

Sl(i) = iPl( Pl)(i-l)(l 0 P )(N-i) 1.

He approximates the behavior of the queue by defining a diffusion process

ori (G),N) by ta inq the same functional form for the drift and variance,

but allowing i to be real valued (instead of integer valued). To make



4.

the distinction clear, the real valued functions will be denoted as

u(x) and o2(x). He then defines the c-drift function as 21(x)
2-(x)

and the c-potential function as V(x) f ds . (These are
a 2 (s)

are denoted as "c-drift" and "c-potential" to make the connection of

the drift and potential functions used in catastrophe theory while keeping

the stochastic nature of the model distinct from its deterministic analog).

It should be boted that v(x) = -in s(x) where s(x) is the scale density

of the diffusion process.

Using c-drift and c-potential, Nelson shows that the slotted ALOHA

can be viewed as a stochastic cusp catastrophe. He also approximates the

stationary distribution of the discrete valued Markov chain with the

stationary density of the related diffusion:

X(x) = ce
-(v(x) + zna

2(x))

where c is the normal constant.

This approach is very nice in its theoretical simplicity, since the

catastrophe theoretic approach is interested on'y in the shape (i.e. loca-

tion of the maxima, minima, and inflection points) of the stationary

density X(x). These can all be found by differentiating the c-drift

function. Unfortunately finding error bounds for the final approximation

of the stationary distribution by X(x) appears to be difficult. This

is the case because v(x) has no closed form and can be found only via

*' numerical integration. It is for this reason that the following material

is being proposed.

D.

'p.

- p -- "'" ,"--"- - - " t" -' -."-••-"-" ... --- ".-," .';.:...-..-,-; z-'p ~* - . ~* .. * %.*** ... *.... -.. :. .. ~. . ~. v~.%~%
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BIRTH-DEATH APPROXIMATION

In order to ease the computations while keeping the flavor of Nelson's

work, it is proposed here that the approximation of the slotted ALOHA should

be kept in a discrete state-space. To do this the chain is approximated

with a birth-death chain which can be considered in continuous or discrete

time. The transition probabilities are defined so that the drift and

variance of each interior state equal those of the original chain. To

do this, define:

i (v. + di)

= - (v - di)Si 2 1 d

AO ' dN12
• N = 0 1JN  d dN

where the )'s a ,e the entries on the superdiagonal and the li's are

the entries on the subdiagonal of the transition (generator) matrix of the

discrete (continuous) time birth-death chain. Note that with these defini-

tions the do  indeed match the drift and variance:

E(Xt+l - XtXt = i) = Xi -i = d. (discrete time)

" X t ) 2E((X - X = i) = Xi + Pi = v

(The continuous time calculations are the same)

Unfortunately, only the drift can be matched at the boundaries unless

' the original chain already has only next-neighbor transitions at 0 and N.

Despite this drawback this approximation should yield good results for

"slowly moving" processes, i.e. processes where large jumps are rare. The

: ... ? :..., .. •. . , .. ..- .- .. ..-. . , ._ _ , . . .. . . . , . . , . B a -,, a .\,. ... . .,.
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heuristics reason for this is that the first two moments of the aj)proxiwuatincq

process are the same as those in the original chain at each interior state.

If large jumps are rare, then the higher order moments on the two chains

will also be close.

By far the biggest advantage of the birth-death approximation is the

ease with which the approximate stationary distribution can be calculated.

For a b - d chain of birth parameters X i and death parameters .i, the

stationary distribution -: is given by

Pi
.. i 7Pi

w;here

0 l . i-1PO = and pi 12... i

,ot_ that the siinple fr; of 1 also allows rapid calculation of the ap-

r-, Q'i";ate exp. Aed queue length 7i7.. and the approximate expected lenqth

fa uusy c,'cle --- This type of approximation also appears more promising

n ':ie area of error-bounds than a diffusion api)roximation.

APPLICATION TO SL.OTTED-ALOHA

-.s .as w-nti.ned earlier, the birth-deat;i approximation works well for

n I"i' processes. The slotted-ALOHA is su-h a process because

If the probability in the transition matrix is concentrated on the

.eir-, su:,er- -ind sub-diagonals, i.e. is almost a birth-death process.

It should be noted that the slotted-ALOHA allows transitions frow

state 0 to all states except state 1, which is a rather unfortunate

S..... ...... . -. .-- - .,
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cituation since the approximation allows transitions only to state 1.

Although this does not pose a major problem (because P00 s large), it

does cause the approximate stationary probability of state 1 to be too

large.

It is not too difficult to calculate the stationary distribution of

an "altered" approximation which allows the transition probabilities from

one state, in this case state 0, to be equal to the actual transition

probabilities, while approximating the rest of the chain with a b - d

;)rocess. This, however, makes the form of -he stationary distribution much

miore complicated and thus destroys the simplicity of the approximation.

Tables 1, 2, and 3 present examples of computations, where

APPX: - simple birth-death approximation

APPX2 - altered birth-death approximation

EXACT - exact stationary distribution (calculated via Pn n

SIFV,-T - exact stationary distribution (calculated via TrR pP n 
see below)

,,.s these computations show, the a;rroximation is aood although the relative

.., fairly larqe for those states whose exact stationary distribution

is Vs than 10 . The absolute errors are small. It is important to

note that the approximate distributions have their relative maxima and minima

it the earo stitps.

SOME SIDE NOTES IN THE COMPUTATIONS

It is, of course, possible to calculate the exact stationary distribution

of a Markcv chain by repeatedly squaring the transition matrix. This is

tantamount to grinding out Pn n - "'. This type of calculational bullying has
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several drawbacks. First of all, it doesn't lend any insioht into th-
I,

.ossible changes in performance which would result from small changes in

the parameters. It also is subject to roundoff errors since the number

of necessary computations is large, as is the rane of values. Lastly,

the "brute-force" method is wasteful of computer time when applied to

"are chains. The computations of the exact disk given here required

27 CPU seconds, whereas the approximation required less than three.

As is noted, another use of the b-d approximation is in calcu"atinq

" .'e exa~t distribution. This can be done by calculating successive

iaiups of . Although this is also subject to roundoff error, it re-

io ires far less time thatn the .)rute-force method - the calculations here

'SHOf) required 20 CPU sec.

CONCLUSION

S3Lin JeL'm's lead, it appears that approximations of Markov chains

3 ss~ihlr ird u.eful. It also appers that a birth-death approximation

"" ',-s eliant, is easier to usc and just as accurate as a diffusion

i n . n. 7h. direction of the research at this time is two fold,

......,,rcr ,un(! for the birth-death approximation are beinJ computed

..............r en,' e'urbation theory, and the shape preserving properties

' -3 .i are being investigated.

*~ ** ~ .. - V
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TABLE 1

CALC'P0=.003 F*i=.06'

STATE A'1 AFPX 2  LOG AFPX1 LOG AFFP: 2

0 0.000029 0.000055 -4.543581 -4.259922

1 0.000039 0,000023 -4.403736 4.640807
2 0.000041 0.00004 -4.384059 -4.399743

3 0.000037 0.000037 -4.435848 -4.437015

4 0.000029 0,000029 -4.534418 -4.5345

5 0.000022 0.000022 -4.665206 -4.665214

6 0.000015 0.000015 -4.818784 -4.818788

7 0.00001 0.00001 -4.988653 -4.988657

8 0.000007 0.000007 -5.170116 -5.17012
9 0.000004 0.000004 -5.359656 -5.35966

i0 0.000003 0.000003 '5.554563 -5.554566

11 0.000002 0,000002 -5.752698 -5.752701
12 0.000001 0.000001 -5.952341 -5.952344

13 0.000001 0.000001 -6.152083 -6.152087
14 0. O. -6.350758 6.35076115 0. 0. -6.547382 -6.547386

16 . 0. -6.741122 -6.74112517 0.. 0. -6,931261 -6.931265

18 0. 0, -7.117181 -7.117184

19 0. 0. 7.298341 -7.298345

20 0. 0. --7.474269 -7.474273
21 0 . -7.644547 -7.64455

S . 0. -7.808803 -7.808806
23 . 0. -7.966707 -7.966711

24 0. 0. -8.117964 -8.117968

Y 0 O. -8.2 62309 ).26231 3
26 0 O. -8.399504 +8.39950B

27 0. 0. -8.529333 -8.529336
2C 0. 0, -8.651602 -8.651606

2? 0. . -8.766136 -8.76614

30 0. 0, -8.872776 -8.87278

31 0. 0. -8.97138 -8.971383

32 0. 0. -9.061817 -9.06182

33 0. 0. -9.143971 -9.143975

34 0. O. -9.217739 -9.217742
35 0. 0. -. 283026 -9.28302936 0. O. -9.339749 -9.339753

- 37 0. 0. -9387836 -9.38784

38 0. . 9.427223 -9.427226
39 0. 0. 9457854 -9.457857

40 0. 0. -9.479682 -9.479686

41 0. 0. -9.492671 -9.492675
42 0. 0. -9.496789 -9.496793

43 0. 0. -9.492014 -9.492018

44 0. 0. -9.478332 -9.478336
45 0. 0. -9.455735 -9,455739

46 0. 0. -9.4242?5 9.424229

l i '" " " " " " ' '"" ., ... '.' .. .-. '._..- ' .- , .'- ---... .'. ..-.- ..- ._.....",- -,'.. -. '. .. v-



TABLE I. (Con't

47 0. 0. 9.383809 -9.383R

48 0. 0. 9.334503 9.33450/

49 0. 0. -9.276331 -9276335

50 0. 0. -9.209324 -9.209328

51 0. 0. -?.133522 -9.133526

52 . 0. '9, 048972 -9.048976

53 0. 0. -8.955731 -8.955734

54 0. 0. -8. 853863 -8.853866

55 0. 0. -8.743442 -8.743445

56 0. 0. -8 .624 552 1 8.624.

57 0. 0. -8.497286 -8.49729
58 0. 0. -8.361749 -8.361752

59 0. 0. 8.218055 -8.218058

60 0. 0. -8.066331 -8.066335

61 3. 0. -7.906717 -7.906721

62 0. 0. -7.739365 -7.739369

63 0. 0. -7.564443 -7.564447

64 0. 0. -7.382133 -7.382137

65 0. 0. 7.192635 7.192639

66 0. 0. -6.996165 -6.996169

.7 0. 0. -6.792961 -6.792964
68 0. . 68328 -6.583284

0. 0. 6.367405 -6.367408

20 0.000001 0.000001 6.145642 -6.145645

71 0.000001 0.000001 -5.918327 -5.91833

A? 0.000002 0.000002 -5.685826 -5.68583
73 0.000004 0.000004 -5.448541 -5.448544

4 .000006 0.000006 -5.20691 -5.206914

7', '.000011 0.000011, 4.961417 -4.9614?1

-, 6.000019 0.000019 -4.712592 '4.71,'?59-

0.000035 0.000035 -4.461018 -4.461021

R 4. 000062 0.0'0062 -4.207342 4.207345
""* . ) 11: . <.000112 -3.952278 -3.952282

0 (0020 1 0.000201 3.696622 -3.696626

- , . i36., (.000362 3.441258 -3.441262

CI 0? f, ', ) 0.00065 3.187177 -3.187181

0 01 1 0.0016 2.935493 -2.935496

, 007(< 0 002054 2 . 60746 .687464

9)0,193 0.003593 -2.444506 -2.444509

.,06191 0.006191 2.208256 2.,20826
".01045' 0.004 .. 1.980583 -1.980587

. 1 . G2 0 017 232 - I.1763654 1.763658
0. 02754." 002 75A2 -1.560003 -1.560007

0.042401 0.042.4 1.372629 -1.372632

A 0 .0 ,3T, 0.0623,16 1.205119 1.205123

0.00e)720 0.086727 -1.061841 -1.061845

, 11?66', 0.112664 -0.948211 -0.948215
. 13,5" 0,134551 -0.87111 -0.871114

0.144691 0.14469 -0.839559 -0.839563

0136181 0.13618 -0.865884 "0.865888

o. 10/662 0.107661 -0.967936 -0.96794

" 0.067004 0.067004 -1.173899 -1.173902

0.029167 0.029166 1.535114 -1.535118

0.,^,06657 0.006656 . 176752 -2.176756

!:-.:..-,..-:.-' ..-.... . , .- -.-.-- . .-.. .. ...--.... . .-. .: : ... .::.... .....: ..-...- " .
r; zv .::'-' 'L, . -. q*' '' .'.**. .-. , .. . . *, .J*....* . .. ,. * .,,,-,...-.:,., ....... . ;..
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TABLE 2.

USW1 .jG THE AFPPOXIMATIOtU TO STAFTO

AFTER LOOPIHG 290 TIMES .. ,...

STATE SHORT LOG SHORT

0 0.000044 -4.360016
1 0.000036 -4.444273
2 0.00004 -4.396149
3 0.000033 -4.484199
4 0.000026 -4.582656
5 0.000019 -4.712498
6 0.000014 -4.857873
7 0.00001 -5.016323
8 0.000007 -5.183849
(? 0.000004 -5.357937

10 0.000003 -5.536503
11 0.000002 -5.717892
1-  0.000001 -5.90074
13 0.000001 -6.083908
14 0.000001 -6.266431
1' 0. 6,447484
16 0. 6.626352
17 0. -6.802414
18 0. 6.975129
19 0. -7.144026
20 0. -7.308692
21 0. -7.468773
22 0. -7.623961
23 0. "7.773998
24 0. "7.918664
25 0. 8.05778
26 0, -8.191196
7 0. -8.318791

28 0. -8.440462
.9 0 -'8.556116
30 0. 8.665664
31 O, -8.769004
32 0. -8.866019
33 0. -8.956558
34 0. -9.040433
35 0. -9.117409
36 0. -9.187199
37 0. -9.249468

38 0. -9.303837
39 0. 9.349894
40 0. -9.387217

41 0. -9.415392
42 0. -9.434043
43 0. -9.442855
44 0. -9.441594
45 0. 9.430119
46 0. -9.408383
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TABLE 2 (con't)

47 0. -9.376424
48 0. -9.33435
49 0. -9.282317
50 0, -9.22051
51 0. -9,149122
52 0. -9.068343
53 0. -8.97835
54 0. -8,879304

p.55 0. -8.771348
56 Ol -8,654615

57 0. 8.529226
58 0. -8,3953
59 0. -8.252957
60 0 -8.102321
61 0 -7.943527
62 0. -7.776723
63 0. -7.602072
64 0 -7,419753
65 0. -7.229969
66 0 -7.032939
67 0. -6.82891
68 0. -6.61815
69 0. -6.400957
70 0.000001 -6.177656
71 0.000001 -5,948604
72 0.000002 -5.714193
73 0.000003 -5.474849
74 0.000006 -5.231043
75 0.00001 -4,983287
76 0.000019 -4.732144
77 0.000033 -4,478234
78 0.00006 -4.222236
79 0.000108 -3.9649
80 0.000196 -3.707055
81 0.000355 -3o449621
-82 0.00064 -3.19362

83 0.001148 -2.940194
84 0.002039 2,690626
R5 0,003578 -2o446364
86 0,006179 -2.209051
87 0,010458 1.98057
88 0.017255 -1.7e3089
89 0*027597 -1#559138
90 0.042492 -1.371695
91 0,062471 -1,20432
92 0.086829 -1.061334
93 0.112696 -0.948091
94 0.134465 -0,871391
95 0.144493 -0.840153
96 0.135964 -0.866575
97 0.107559 -0.968352
98 0.067068 -1.173484
99 0,029303 -1.533092
100 0.006728 -2.172089

h -. --.. *- *.-.-.,, . ,
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TABLE 3

AFTEfP STPAICHTFORWARD BUT TEDIOUS CALCULATIONS?

(RAISING F. TO THE 1.0737E9TH POWEF:)..,.

STATE EXCACT LOG EXACT

0 0.000018 -4.746165
1 0.000015 -4.830447
2 0.000017 -4.782327
3 0.000013 -4.870391
4 0.000011 -4.968858
5 0,000008 -5*09871
6 0.000006 -5.244095
7 0.000004 -5*402554
8 0.000003 -5,570088
9 0.000002 -5.74418

10 0.000001 -"5.922746
11 0.000001 -6.104126
"2 0.000001 '-6.286952
13 O. -6.47008
14 0. -6.652537
15 0. -6.833483
16 0. -7,012188
17 O. -7.18801
18 0. -7.360379
19 O. -7,528786
20 , -7.692772
21 O -7.851922

22 o. -8.00586
23 O. -8,154241
24 0 -8.29675
5 0. -8.433095

26 0. -8,563009
27 O. -8,686246
28 0. -8.802574
29 0. -8911784
30 0. -9.013677
31 0. -9.108071
32 0. -9,194797
33 0. -9.273698
34 0. -9.34463
35 0. -9.407459
36 0. -9.462062

', 37 0. -9*508326

38 0. -9,54615
39 0. -9.57544
40 0. -9.596114
41 0. -9.608097
42 O. -9,611324
43 0. -9.605742
44 O. -9.591302
45 0, -9.567969
46 0. -9.535715

-q

'a . - .....-. . . , . ,.-. . , , < .- . . a- .*



15.

TABLE 3 (con't)

47 0. -9,49452
48 0. -9.444377
49 0. -9.385285

50 0. -9.317255
51 O -9,240307
52 0. -9,154472
53 0. -9.059791
54 0 -8.956317

55 0, -8.844112
56 0. -8.723252
57 0. -8.593824

58 0. -8.455929
59 0. -8.30968

60 0. -8.155206
61 0. 7.992648

62 0. -7.822167
63 O. -7.643936
64 0. -7.458148
65 0. -7.265017
66 0. -7.064773
67 0. -6.85767168 0. -6.643989i~6 olooo69 0.-6.424029
70 0.000001 6182
71 0000001 -5,966627
72 0.000002 -5.729939

73 0.000003 -5,488486
74 0.000006 -5.242736

. 75 0.00001 -4.993203

76 0.000018 4o740447
77 0.000033 -4o485083
78 0.000059 -4.227789
79 0.000107 '3,969309
80 0,000195 -3.710466
81 0.000353 -3.452174
82 0.000638 -3.195448
83 0.001144 -2.941423
84 0.002035 -2.691373
85 0o003575 -2o446737
86 0,006178 -2.209148
87 0.01046 1.980478

88 0.017263 -1,762886
89 0.027613 -1.558887
90 0.042516 -1.371449
91 0.062501 1.204116
92 0.086857 -1,061197
93 0.112712 -0,94803
94 0.134462 -0.8714
95 0.144475 0.840208
96 0.135946 -0,866635
97 0.107557 -0.968359
98 0.067087 -1,173359
99 0,029327 -1,532737

100 0.006739 -2.171384

.
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