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AN EFFICIENT RANDOM ACCESS ALGORITHM

FOR PACKET BROADCAST CHANNELS WITH LONG PROPAGATION DELAYS

M. Georgiopoulos, L. Merakos, and P. Papantoni-Kazakos
Electrical Engineering & Computer Science Department

University of Connecticut
Storrs, CT 06268

Abstract

This paper introduces and analyzes an efficient algorithm for the random

accessing of a broadcast channel by a large number of packet-transmitting,

bursty users. Thp algorithm uses a mini-slot overhead, per packet, to extract

detailed information regarding possible packet collisions. In the event of a

collision, this information is used by the algorithm for accelerating the

collision resolution process. The maximum stable throughput and the mean

packet delay induced by the algorithm are evaluated via a systematic analysis

method. The packet delay characteristics indicate that the proposed algorithm

is well suited for operation on satellite channels, over a wide range of input

ptraffic rates.

This work was supported by the U.S. Office of Naval Research, under the contract
N00014-85-K-0547, and the National Science Foundation, under the grant

*. ECS-81-19885.
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1. INTRODUCTION

We consider the random-accessing of a broadcast communication channel,

(such as a satellite link, or a ground radio channel), by a large number of

independent, packet-transmitting, bursty users, whose cumulative uacket

generating process is Poisson. Overlapping transmissions result in a collision,

and all the packets involved must be retransmitted. Users monitor the channel

activity and acquire some form of feedback information associated with packet

transmissions. The feedback information, whose specific form depends on the

* precise model at hand, is then used by the users for scheduling packet transmissions

and retransmissions in accordance with a distributed control scheme, referred

to as random-access algorithm (RAA).

Given a specific model for the available feedback information, the performance

" of a random-access algorithm is commonly measured in terms of the packet delay

characteristics that it induces, and the maximum throughput that it attains.

For the Poisson infinite-population user model, the maximum throughput is defined

as the maximum input rate that the algorithm maintains with finite mean packet

delay. A random-access algorithm is called stable if its maximum throughput is

:* greater than zero.

The design and performance of a random-access algorithm depend, critically,

on the availability, quality, and timely acquisition of the feedback information,

- which in turn depend on the channel and user characteristics of the specific

application at hand. Among the several aspects that characterize the feedback

information structure we distinguish the following: 1) feedback level, 2) feedback

" dela. The feedback level specifies what kind of information, regarding the

transmission activity on the channel, can be extracted by the users who monitor

the channel. The feedback delay specifies when this information becomes available

" to the users, and is defined as the time it takes for a user to determine the

. current transmission activity on the channel. To be specific, let us assume that

"..€ .'J" ." .'2 "" .'22 €2 "%*€"..'-" .' 2. " "¢€22€ .'.... ... u-'.' '. - . -. *.*..*' ."*
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packets are of equal length, the channel is slotted with slot size equal to the

packet transmission time, and that the users initiate transmission only at slot

boundaries. In this case, the feedback information is commonly modeled as providing

the "outcome" of each slot, at the end of each slot. (i.e., the feedback delay is

assumed equal to one slot), where various such outcomes may be distinguished,

depending on the feedback level. The most thoroughly studied feedback level is

the ternary, which distinguishes among empty, busy with one packet (or successful),

and busy with at least two packets (collision) slots. It has been shown that, under

ternary feedback, the achievable maximum throughput cannot exceed 0.587 packets per

slot [1]; the most efficient algorithm known to date attains a maximum throughput

of 0.487 packets per slot [2]. In some applications, due to special modulation,

coding and encryption techniques, or to channel noise conditions, ternary feedback

might not be easily available. In such applications a binary feedback model is

* •more realistic, and includes the following cases (3]: Distinguishing between either

collision versus noncollision slots, (C-NC binary feedback) or empty versus nonempty

slots, (E-NE binary feedback) or successful versus nonsuccessful slots, (S-NS

binary feedback). Nultiary feedback models have also been considered [4], where

it is assumed that the existence of energy detectors enables users to determine

the number of collided packets within each collision slot, whenever this number

is below a certain limit; however, even with this more informative level of feedback,

the maximum throughput of the existing algorithms does not exceed 0.532 packets per slot.

Given a feedback level, the performance of RAAs can be substantially

improved if the feedback delay is small compared to the packet transmission time.

This is, for example, the case in the multiple access channels used in some local

area networks, where simple RAA's based on carrier sensing [5,61, attain maximum

throughputs close to unity with uniformly low packet delays.

For channels with feedback delay equal to or larger than the packet transmiss-

ion time, improvements in the maximum throughput are hard to obtain, as long as
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the algorithms rely on just the passive observation of channel history. For such

channels, the maximum throughput can be improved by the use of reservation-based

algorithms [7,8]. Reservation algorithms restrict the multiple access contention

problem to a reservation subchannel. The reservation subchannel uses a fraction

of the total channel capacity for the transmission of explicit reservation requests

(mini-packets), and packets are transmitted collision-free following successful

reservation requests. If the reservation overhead per packet is sufficiently

small, reservation algorithms can attain maximum throughput close to unity,

independently of how large the feedback delay is. In channels where the ratio

between feedback delay and packet transmission time is large, however, this

throughput improvement is obtained at the expense of higher mean packet delay at

low input rates, as compared to the mean packet delay induced by stable RAA's.

The reason for this delay increase is that packet transmissions are invariably

associated with a minimum delay equal to the feedback delay of a reservation request.

Considering, for example, a satellite channel where the round-trip propagation

- delay is equal to 270 msec, the use of reservations implies that packets suffer

a delay of at least 540 msec before they reach their destination, even for near

zero input rates. Note that the additional delay introduced by the required

transit time of a reservation request may prove intolerable in application involving

time critical interactive traffic, such as a remote computing, data base query, etc..

Hybrid schemes that combine the better features of random access and reservation

* - access have also been proposed [9,10]. These schemes use TDMA or some other fixed

-: assignment technique for the transmission of reservation packets, and for small

user populations, they have excellent throughput-delay characteristics, However,

.- their performance deteriorates rapidly as the number of users increases, since the

reservation overhead is proportional to the user population size.

In this paper, we present and analyze a RAA that utilizes more detailed

* feedback information than the commonly used ternary feedback to accelerate the

cmol terar *to...~%° v v .- ", ". '.'. *.- S**. *f ".'-"/. " %%'..%.**. %'." ~ "t -. L '\ .% ., .<.-- ." .:''"'%
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collision resolution process, and, therefore, to attain substantially higher maximum

throughput. As explained below, the more detailed feedback information is created

usii a aartial reservation strategy, which is based on the exchange of imprecise

resear on requests conveying only a few "bits" of information; these partial

reservation requests require little bandwidth on the channel, and their size is

independent of the number of the channel users. In contrast to reservation

algorithms, for channels with long propagation delay, the proposed algorithm

exhibits good delay performance in both the low-throughput and the mid-throughput

range.

To create the more detailed feedback the algorithm divides time into contiguous

slots of equal length, taken as the unit of time. Each slot consists of a control

slot (CS) and a data slot (DS). The CS is divided into m control mini-slots (CMS),

each of which is of one bit (or a few bits) duration; the DS is long enough to

accomodate a standard data packet, (see figure 1). Each time a user decides to

transmit a packet, it transmits it in the DS and simultaneously it injects a pulse

in one of the m CMS's chosen with equal probability. It is assumed that at the end

of slot i+P all users can determine without error whether the transmissions in the

i-th slot resulted in a packet collision in the DS (i.e., C-NC binary feedback),

and whether a CMS of the i-th slot is empty (i.e., E-NE binary feedback); P denotes

the channel's propagation delay in slots. The additional feedback information provided

by the CS is used by the users to prevent idle slots and further collisions during

the collision resolution phase, and is the principal mechanism for improving perform-

ance . Since the feedback from each CMS provides information only on the presence

of absence of a pulse, the overhead needed for the GS is small. We shall see that

this small investment of channel capacity results in substantial improvement in the

overall system performance.

The control mini-slot concept, in conjuction with collision resolution

algorithms, has been used by Huang and XU [111, where ternary feedback is assumed
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available from each mini-slot, and Merakos and Kazakos [12], where the mini-slot

feedback is of the binary type considered here. The algorithm considered in this

paper is a generalized version of the second algorithm in [12],and is very similar

to the one proposed and analyzed recently by Huang and Berger [13], [14], after an in-

dependent and concurrent investigation. An important contribution of the present

paper is a novel delay analysis method, which is based on the asymptotic properties

of regenerative processes. The proposed analysis method is of independent interest,

and can be used for evaluating the performance of a large class of RAA's.

_.. V. . .



6

2. ALGORITHM DESCRIPTION AND ANALYSIS

In this section we describe and analyze an algorithm that operates on the

basis of the feedback described in the introduction, when the feedback delay

* is unity, (i.e., when the propagation delay P is zero); this algorithm will be

referred to as the zero propagation delay algorithm (ZPDA). In section 3, we

show how the ZPDA can be modified to operate in a satellite channel, where

P>>l, and we evaluate the performance attained by such modifications.

* 2.1 Description of the ZPDA

The ZPDA is defined by the following two rules:

Rule 1 (First Tiirn Transmission)

All users observe the feedback at the end of each slot and utilize a

counter, called global counter, to determine when to transmit a packet for the

first time. A user initializes and updates his global counter according to the

*" following rule.

The counter is set to I at the beginning of the first slot, then incremented

by (j-l) at the end of each collision slot with j nonempty mini-slots,

and decremented by one at the beginning of each collision-free slot. When

the counter reaches 0 it is immediately reset to 1 and the above described

operation is repeated indefinitely.

Let Gi denote global counter indication at the beginning of slot i, i>O,

* and define the sequence {I }n>O on the channel axis, and the sequence {t }n>0

on the arrival axis as follows:

1 0i, In+imin{i : G iO, > } n=O,l,2,..

to=O, t n+-t n + min (In-tnA)

.* where A is a positive algorithmic parameter.

Using the above sequences, the first time transmission rule can be expressed

as follows:



- . - a PpS 2 . _77_7.

7

[* a

A packet arrived at time instant L is transmitted for the first time in

slot I if tE It , t )
n n' n+1

Rule 2 (Retransmission)

Each user with a packet involved in a collision, determines when to re-

transmit his packet using a second counter, called local counter, in accordance

with the following rule.

Following a collision in which he is involved the user sets his local

*counter to (i-l), if he injected his pulse in the i-th nonempty mini-

* slot. Then, he increments it by (j-l) for each subsequent Collision slot

with j nonempty mini-slots, and decrements it 'uy one for each subsequent

collision-free slot. When the local counter reaches C. the user retransmits

in the next slot.

Remarks

1) As it can be seen from Rule 1, the ZPDA divides the arrival axis into

- contiguous time intervals [tnt+ ), n>O. The packets (if any) arrived in the

interval [t n,tn+1 ) are first transmitted in slot I n. If there is a collision in

I , the collision is resolved, (i.e., the collided packets are eventuallyn

successfully transmitted), during slots In+1, In+2,... ,In+l-1, in accordance to

Rule 2. This is illustrated in figure 2, where a collision of three packets

is resolved.

The interval [t n,t n+) will be referred to as the n-th enabled arrival interval

(EAI); the interval (I n,In+) will be referred to as the n-th collision resolution

nn* interval (CR1), and the instants In ,n>O, will be referred to as collision resolution

instants.

2) Rule 2 defines a collision resolution algorithm (CRA), which is a simple

modification of the well-known Tree CRA 1 18 1. The modification consists in

utilizing the feedback information provided by the m CMS's to skip the empty
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branches in an m-ary tree search, and, therefore, accelerate the collision

* resolution process.

" 3) The algorithm utilizes an elementary window flow control mechanism on the

arrival axis by not allowing the length of an EAI to exceed A. The window size

A will be optimized for throughput maximization.

2.2 Delay Analysis of the ZPDA

Consider the random access system operating with the ZPDA over the time

interval [0, 4-). Let the arriving packets be labelled n-1,2,..., according

to the order of arrival. We define the delay, Dn, experienced by the nth packet
Jn

* as the time from its arrival at the transmitter until the completion of its

successful reception by the receiver, (so that D =P+l, when the nth packet is
n

"" successfully transmitted beginning at the same moment it arrives at the trans-

* mitter - for the ZPDA, P=O). We are interested in evaluating the mean packet

delay induced by the ZPDA.

From the rules of the algorithm it can be readily seen that, at each collision

resblution instant, all packets arrived before time t have been successfully

transmitted, and the. packets arrived in the interval ft n,I n)have not accessed

the channel yet. Let d In -t nn>0; d will be referred to as the lag at I .n nn- n n
Since t0=0 , 10-i , we have d 0=1. Let T OI 0  and define T i+ as the first collision

resolution instant after Ti, i=0,1,2,..., at which d mi.
Ti+l

From the operation of the algorithm it can be seen, after a little thought,

that the delay process {Dnn>l "probabilistically restarts itself" at each instant

Ti, i>O. The interval [Ti,Ti+i), i>0, will be referred to as the ith session;

since the packet arrival process (Poisson) is memoryless and has independent

*increments, the session lengths, Ti+I-Ti,i>O, are independent, identically

distributed (i.i.d.) random variables.

", 
OF
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Let R., i>0, denote the number of packets successfully transmitted in the1

interval (T0 ,Ti]. (Note that R. denotes also the number of packets arrived

during [O,T -l)). Accordingly, C.= R -R i>O, is the number of packets1 1 Ri+l-i' -

successfully transmitted during the ith session. The sequence {R i}i> is a

renewal process, since {C i i> is a sequence of nonnegative i.i.d. random

variables. Furthermore, the delay process {D I is regenerative with respect
n 11>l

to the renewal process {Ri> with regeneration cycle CO; that is, the process
1 i>o- 0

{D Ri+n}nl, for every i>O, is a probabilistic replica of the process {Dn I

The regenerative probabilistic structure of the delay process makes it

possible to express its asymptotic behavior in terms of quantities that refer

only to one regeneration cycle of the process. This is made precise by the follow-

ing elegant and powerful result from the theory of regenerative processes [ 15 1-

Theorem 1
C.

If C4E(C )<- and S E(i0 D then there exists a real number D such that

* D l 4 ~ 1 ~0 i 1 wi ~1 1 n
["D=l* E iDi =1A - E{il} E D w.p.l

A n = =1 C

Furthermore, if, in addition to the finiteness of C and S, the distribution

of C is not periodic, then {DnIn>l converges in distribution to a random

variable D. , and

E (D) = s
|C

In our case, the distribution of C is clearly not periodic; thus, provided
0

that both C and S are finite, the limiting average, the limiting expected

average, and the mean of the limiting distribution of {Vn}n>l , exist,

coincide, and are finite; their common value D will be referred to as the mean

packet delay. Note that D can be computed using only the per cycle quantities

C and S.

Next we develop two systems of equations, whose solution is then used to

compute the mean cycle length C, and the mean cumulative delay over a cycle S.

* " • -°% ° ° . . . - * . .. o° •. . . ° " . . • .* . . - * . ... • . . °- . . . . , . . . - . . -°•. .• •
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2.2.1 Computation of the quantities C and S.

Consider first the mean cycle length C. If the mean session length

H '- E{Ti+1 - Ti}, i>O, is finite, then by Wald's theorem we have that

C = X H (1)

To determine H we proceed as follows.

Let I(d) be a collision resolution instant at which the lag is equal to

d; let T(l) be the first collision resolution instant after I(d) at which the

lag is equal to one. The interval [I(d), T(l))is called a d-session. Next

we define the following random variables:

hd : the length of a d-session

t. : the length of the first CRI of a d-session
d

Note that, by definition, H = E(hI),

From the description of the algorithm we have that the lags at two successive

collision resolution instants satisfy the following relation.

td- if d < A

d = 1 i (2)
i2l d -  +Zd if di> A

[,j 1
i

From (2) and since do =1, we deduce that d c A, for every i_>O, where A is a
0 i

denumerable subset of the set of positive real numbers; specifically

A = {d d-k-iA>l; ki integers)

From the operation of the algorithm and in view-of (2), it can be readily

deduced that the hdt d c A, satisfies the following relations:

t if t =1-v'-" d f d =  I

h ,l<d<A (3.a)d (d + h if d>l

di
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h d d + h d-A+L , d>A (3.b)

If we let Hd - E (hd), then taking expectations in (3) yields

d  E (t + i-2 pd(i) Hi l<d < A (4.a)

Hd - E ( t d) + i pd(i) HdA+i d > A (4.b)

where Pd M is the probability distribution of tddeA. Note that for d > A ,

E (td) - E (tA ), since when the lag is greater than A the enabled

interval is of length A. Thus, the sequence fHddcA satisfies the following infinite

dimensional system of linear equations

xd = bd + JA cdt xt , d C A (5)

where bd - E (Ld), l<d<, bd E (tA), d > A , and where cdt , d,t A, are

nonnegative coefficients that can be appropriately identified from (4).

Since H H l1 ,.Ve have from (1) that C X HV Thus, to compute C we need

to compute H This will be done by solving system (5). Before examining the solu-

tion of system (5), however, we first develop a similar system of equations that

can be used to compute the mean cumulative delay S. For the development of such

* a system we need the following definitions:

wd : the sum of the delays experienced by all the packets that were successfully

transmitted during a d-session.

S Wd : the sum of the delays experienced by all the packets that were successfully

transmitted during the first CRI of a d-session.

The operation of the algorithm yields the following relations for the

wd , dcA.

d.

.", - . . . - .,. . ¥.. . . .. , -.-.- ,., - .- , -.--- , . -. : - ',,' , -
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Sd if 1d  I

w = , I <d< A (6.a)

W bid + Wtd if td >1

Wd = bd +W , d > A (6.b)

If we let W E (wd), then taking expectations in (6) yields

Wd = (wd 2 Pd(i) Wi , 1 < d < A (7.a)

Wd = E (wd) + i=l d WdA+i , d > A (7.b)

From (7) we have that the sequence [W },d c A, satisfies the following infinite
d'

dimensional system of linear equations

Xd = bd +tAcdtxt ,d EA (8)

where bd = E (bid) , d c A , and the nonnegative coefficients Cdt, d, t c A

are as defined in system (5).

The mean cumulative delay S can be computed from the solution of system (8),

since, by definition,

s = Wi (9)

Before proceeding to the solution of systems (5), and (8) we elaborate on

E (wd). With reference to figure 3 we define the following

n : the number of packets successfully transmitted during the first CRI of a
d

d-session (Note that nd is also the number of the Poisson arrivals in the

enabled arrival interval (tn t n+l)).

ud the sum of the delays of the packets that were successfully transmitted during

Id

-D**

*-J* . * *5,
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the first CRT of a d-session,measured at time tn+I .

v d the sum of the delays of the packets that were successfully transmitted

during the first CRI of a d-session after the first CR1 begins.

Using the above defined random variables we can express W d as follows

W d = Ud + Vd if 1 < d < A (10.a)

W d uA + vA + nA (d-A) if d > A (10.b)

Taking expectations in (10), and using known properties of the Poisson

process we obtain

E ( = E (vd) + Ad2  if l<d< A (ll.a)

n IA 2

E (wd) = E (vA) + -- + X A (d-) if d > A (ll.b)
d 2

" Solving systems (5) and (8)

Formally, both system (5) and system (8) always have an infinite solution

Xd = + -, d c A. The following theorem specifies a sufficient condition under

which both systems have nonnegative finite solutions (0< xd < -, dcA , d < + w)

that coincide with the corresponding algorithmic sequences induced by the ZPDA,

*and gives upper and lower bounds on such solutions.

Theorem 2

S_ If

A > E (eA) (12)

then (i) system (5) has a solution [yd d c A, and system (8) has a

solution {z d e A , such that

d

".

%*. *~ .~**.' * ~ * * ~.. .
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cu d + OL-< Yd < a u d + u  d A (13)

and

y d2+ 6ud+ -< Y d2 d 6 + , d c A (14)

where u Bu e $ Yu ,' u ' u C are real coefficients whose expressions are

given in Appendix A.

(ii) the algorithmic sequences {Hd d e A and {Wdl d c A coincide with the

solutions {yd) d c A and {zd I d c A , respectively.

The proof of theorem 2 is given in Appendix A.

Under (12), theorem 2 gives the following bounds on Hd, Wd, d c A.

a d; + B (0)Hd < H < Hd (0) =a d uA(5d<H H 0 ~cd+ *d A (15)
u t d - d-d u u

2 u Amd~ W 0 Ad 2 +d dA(6:: ~ ~ud 2 + 6ud + Ct (0d-< ( O) A yud 2 + 8ud + Cu d c A (16)
Yu +6 + d- Wd u u u

The above ;initial bounds can be improved using the method described below.

Consider the case wherre we want to improve the upper bound on Hd. To this end,

"- define

H E( + Pd(i) Hi- Hd +  
t d + au(E(t )d) -(l+Xd)exp(-Xd)(au +6),

l<d<,&, (17.a)

H(1)A E(t) + I p()-(0) H(O)+ E(I )-a(AE() d >A, (17.b)

d A iTiiA "d-A+i d A u(AE(A) dA

Under (12), the coefficients a, B have been chosen so that
u

H() <H ( 0 )  d e A (18)

d d
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Given a natural number N >2, define, for n >1,

(n) N-i Mi)(n-1) +( )
H E( d ) + J-2 Pd H iN Pd' ,i H l <d<A (19. a)

H ()6E~t) No (i H(n-i) p (i) H(0) +1 A<d<N (9b
* d = (A) i-4 PA Hd-A+i + i=N A~ Hd-A~i9b

0

where N 0 is the maximum integer satisfying d-A+N 0<N

*For n>l, combining (17) and (19) yields

=H d + J2 Pd (Hi - H ) l<d<A (20.a)

H(n) =H (1) 0 ( (n-i) H(0) AdN(0b
* d d + , i PA~i d-~i , Ad< (2.

From (17), (18), and (19) we have that, for every d e (1,N) the

* sequence {HE[) is a monotonically decreasing sequence of upper bounds ond n>O

i(n)

H .* The upper bound H d) n>l,, d C [1,N4) can be computed using (20). In (20),

A is taken to be rational so that d assumes finitely many values in the interval

-[1,N). The probabilities pd(i) , 1<i<N, 1<d<A, are obtained, in a recursive form

using the rules of the algorithm in conjuction with straight forward combinatorial

Sarguments; their expressions can be found in [ 16

To improve the lower bou.J( Hd on Hdo we follow the same procedure except
Ha now E (0) i ue id o H (0)

Hd wherd this results in a monotonically increasing

sequence, {(n)Hd )n0 of lower bounds on Hd for d C (1,N). The same method can be

used to obtain a monotone decreasing W of upper bounds, and

a monotone increasing sequence {()W d }n>O ,of lower bounds on W ds for d c [1,N).

S"

4-
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P

2.2.2 Mean packet delay bounds and maximum stable throughput.

From theorems 1, 2 and (1), (9) we have that, under (12),

Do < D <_ D0 (21)

where

()w+W )  Y+1u+

1 U U + 0 A u uIiuDo A (0) ) ' - (0)U1 D = (0u+) )
C~ U,

The bounds given by (17) can be improved using the method described at the

end of the previous section. The improved bounds are

D < D<Dn (22)n -

-" where
(n) ,(a)

'"D.1 1 Dn 1 1l
D I, DP) 1,2,....

n Hn)1

The bounds gi.vn by (21) or (22) are valid for all X's for which inequality

' (12) is satisfied. In Appendix B, it is shown that inequality (12) holds if

) < X (m,A)

where, for given m, 1(m,A) is maximized for A - A* " The values of 3 (m,AM)

- and A are given in table 1, for different values of the parameter m. Table
m

2 gives the lower bound D5 , and the upper bound D5 on the mean packet delay D

for different values of m and for A A , where A is a rational number close
m m

to A , (selected for convenience in the computation of the bounds).

°m*

% 4'
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If we define the maximum stable throughput, , of the ZPDA as

* A
n sup {X0 : D < - for all X c [O,X 0)}0

then, for given m, ) (m,A ) is a lower bound on n, since (12) is only sufficient

• for D to be finite. It can be easily shown, however, that the lower bound in

(13), increases to infinity as E(tA) increases to A, or equivalently as A

increases to X(m,A ); thus, n-=(m,A ). A more intuitive argument can also be
m m

used to show that (12) is a necessary condition for finite mean packet delay.

Since the algorithm spends on the average E(A) units of time to successfully transmit

the packets arrived during A units of time, inequality (12) is necessary for the

ZPDA to keep up with the arrivals.

Finally, note that to account for the overhead created by the m control bits

- per slot the maximum stable thoughput n should be normalized to

"°1

1 + m r/L

where L is the length of a standard data packet in bits, and r is the length of

a CMS in bits. However, since the feedback from a CMS is of the E-NE type, r can

be made very small--theoretically, I bit. On the other hand, L is of the order of

1000 bits. Thus, the reduction in throughput due to the overhead is small. The

same normalization should be applied to the results listed in table 2; the

values of X should be divided by (1 + m r/L), and the values of the delay bounds

should be multiplied by (1 + m r/L).

,oe
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3. ADAPTATION OF THE ZPDA TO THE SATELLITE CHANNEL

Consider now a channel where the propagation delay, P, is much larger than

the packet transmission time. A typical example is a satellite channel where the

round-trip propagation is equal to 0.27 sec. if packets of 1125 bits are transmitted

with a rate of 50 kbits/sec, then P - 12 slots. Thus, the users of a satellite

channel learn the outcome of a transmission P(>>l) slots after the end of the

transmission, (i.e, the feedback delay is equal to P+l slots, where P>>l).

The simplest way to deal with the problem of non-zero propagation delay is to

treat the random-access channel as P =P+l interleaved zero-propagation delay channels.

In this scenario, slots i, i+P, i+2P,... of the actual channel form slots 1,2,3,...

of the i-th interleaved channel, i=l,2,...,P. The Poisson arrival stream is sub-

divided into P interleaved substreams each one of which is served by a different inter-

leaved channel in a time division (TD) manner. Specifically, a new packet that arrives

during slot J-i, J>l, is assigned to the interleaved channel corresponding to slots

j,j+P, j+2P,...

Suppose now that the ZPDA is executed independently on each of the P interleaved

channels. Then, clearly, the maximum stable throughput of the channel coincides with

that induced by the ZPDA, i.e, X(m,A* ). The induced mean packet delay, DTD, is given
m T

' by (23),

DTD = P(D- ) + (23)
TD 2 2

where D is the mean packet delay induced by the ZPDA. (23) follows from the fact

that on the average a new packet waits half a slot before the next channel slot

1of the interleaved channel it is assigned to begins, and P (D- ,) channel slots

until it is successfully received at its destination.

o N' V
*° , ° . . . .. ... . ...* *
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Bounds on DTD are obtained by substituting the bounds on D, found in section

2.2.2,in (23). Figure 4 shows these bounds for different values of m, and for

P = 12 slots.

Statistical time division (STD) is an alternative rule for assigning packets to the

P interleaved channels. This rule assigns waiting packets to the first available inter-

leaved channel. Specifically, let I denote the instant on the channel axis at which

a CRI ends in any of the P interleaved channels; let also s be the time on the

arrival axis for which it is known that all packets generated in the interval

S[sI s) have not accessed any of the P channels yet. Then, all packets arrived in

. the interval [s, s+min (Is -s,A)) are transmitted in slot Is , i.e., they are assigned

to the channel to which slot I belongs. The point s is updated as in the ZPDA,s

i.e., at each I , s- s+min (I -s,A); initially s=P, since at the beginning of the
s

* operation of the system and for the first P slots packets are assigned to the P

channels according to the TD rule. It is expected that the STD assignment rule

* induces improved delay characteristics as compared to those induced by the TD

-. assignment rule, especially when the traffic is light to moderate. There are

two reasons that support this claim, First, in contrast to TD, with STD no

channel is idle while there are packets waiting for their first transmission.

Second, since the arrival axis is not subdivided a priori, as in the TD rule,

the CRI's start resolving enabled intervals of length closer to the optimal

window size A. However, due to the interdependence in the operation of the

interleaved channels, at this point we have not been able to analyze the delay

characteristics induced by the interleaved system operating under the STD

rule. The simulated mean packet delay performance is shown in figure 5 for

mf16. For comparison purposes, in the same figure we have included the mean

* packet delay curve for m=16 induced by the TD assignment rule. It is clear that

-,*..... -. :.. . . '- - , *.-*? .. '- ...'-, .* . -.. -... ...... - -. . ,., . ,...:. ,-:. . ,' .'. :-.-...*.-,*...,,,.-,-,*% ,* *-.
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the STD scheme offers considerable delay performance improvement as compared

to the TD scheme. In the same figure, the straight line at 25 slots (two times

the round trip propagation delay plus one) corresponds to the minimum mean packet

delay induced by any reservation scheme. As it can be seen from the figure, in

the satellite environment the proposed schemes outperform any reservation

scheme, at least for low to moderate input traffic values.
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Appendix A

Proof of Theorem 2

Part (i)

(0)
Let E be the space of sequences X = {x d: A-R. Given Y EE, define

1I(j1 AiuchO, l, of(A-i)

_______(j)Y d d tF-A Cdt "t'""

where b d' Cdt , d,tEA, are defined in system (5). The sequence {Y(J)},

j=01,2... geeraed y (-1) will be called the power sequence of system

(5) with initial point Y(.

Let = a d+6, dA. To establish the existence of a solution
u u

such that Oy <ad + 'u , dcA it suffices to choose au,B u so that

d ) < ( 0 ) for every dCA (A-2)

Under (A-2) and since bd > 0 cdt > 0, d, tsA, we have, that

o - Y(+l) < ( deA, j=O,1,2,... (A-3)
-d -d'

Thus, under (A-3), the following limit exists

l-m. =d deA (A-4)

Passing to the limit as j- in (A-i) shows that the sequence Y solves

system (5).

From (A-3), (A-4) we have that

0< Y < a  ud +_Ou dcA

Next we choose a , 8 so that (A-2) is satisfied.
U U
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After straightforward manipulations, by (A-i), we obtain

= y0)+ E(td) + a(E( -d p (1) 1 < d < A (A-5.a)

d dY u d 'P~l) a- --~

Syd (0) + E(Z ) -u (A-E(A)) , d> A (A-5.b)

From (A-5.b) we see that (A-2) is satisfied only if condition (12) in the

theorem holds. Under (12),it can be readily seen from (A-5.a) that (A-2) is

satisfied if we choose a u as follows

E(ZA)

au A E(t , a u sup (V(d))
U 1<d<A

E(Ld) + au (E(d) - d p - )
where (d) d Pd d , and where Pd( = (1+-d) exp (-Ad).

To construct a lower bound on yd we lt y(0) = ad + Ot, deA., and we choose at

and Ot such that

y(0)< y(1) , deA (A-7)

From (A-5) it can be readily seen that (A-7) holds if

ua = u  - inf (*(d))

' £ _<d<A

where au' i(d) are as given above.

The expectations E (Yd), 1 < d < A, needed for the computation of the

' coefficients of the linear bounds can be computed as shown in Appendix B.

System (8): Similarly to system (5), the solution Z - (z d}dCA to system (8)

may be obtained as the pointwise limit of its power sequence {Z(J)I, J=O,1,2,...,

defined by

* .* w *..".~..

. . ..=*
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z j + l ) =b + c (J) d A (A-8)
d d zEd

provided that Zd is such that

(0) > ,Z(1) < Z(0)
d ( < (0) , for every dEA (A-9)

Under (12),it can be shown by direct substitution in (A-8), that (A-9) holds if

we choose 0 )  Yud2 +6d+ ,where
d u u u

Yu 2(A-E(t A))

E(wA) -A2 + Y (A2 + E(e ) -2 A E(ZIA))
6=uA
u A- E(ZIA)

Cu= sup (¢(d))
1<d<A

E(Wd) + y.(E(z2) -d 2 ) + 6u(E(/d) -d)
*(d) = (l+Xd) exp(-Xd) - ( u + u)

Under (12),and for every deA, the sequence z J  is non-increasing; thus

zd < yu d 2 + 6ud+Cu.

The construction of a lower bound y/d 2 +6 d +Ce on zd is similar to that
of the upper bound; the coefficients YT ' 6., and Ct are given below

Y6 , = inf ((d))l<d<A

The expectations in the expressions of the coefficients Yus 6u9 cut t can be

computed as shown in Appendix B.

Part (ii)

The proof involves two steps. In step 1 we show that the solutions found in

part (i) are unique in the class of sequences
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E = {X :sup I < 00
2 ~deA d2

In step 2, we show that the algorithmic sequences (H dI dcA, and {Wd I dcA

belong to E2 P and, therefore, coincide with the corresponding unique solutions

in E 2"

Step 1: As in[17], we shall call the system

xd = Bd + tEACdtXt, dcA (A-10)

majorant of the system

Xd = b + E c deA (A-11)
d tAdt x t

• .if the following inequalities hold:

Icdtl <Cdt, bd < Bd , d,tCA

A solution of a system of type (A-11) that is a pointwise limit of its power

- sequence with initial" point X( 0 )  0 0, is called its principal solution.

With the above definitions, we state Lemas A.1, A.2 below, which are essentially

*theorems I, II, & 2 of [17].

Lemma A.1 If the majorant system (A-10) has a nonnegative solution S, then both

system (A-10) and.(A-li) have principal solutions S*, S*, respectively. Moreover,

0 < s l< < ,deA.

Lemma A.2 If the majorant system (A-10) has a nonnegative solution S, then the

*principal solution S* of system (A-11) is unique in the class E(S*) C E, defined as

- follows

~*.% .
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E(*) xE E: sup I-<d }

dcA W *
d

Furthermore, S* is the pointvise limit of any power sequence of (A-Il), with

initial point any point in E(*)

Using the above lemmas, we shall show that both the solution Y ={ydI dcA of

system (5), and the solution Z -{ zd} deA of system (8) are unique in E2. We start

with system (8). Since system (8)has a nonnegative solution, Z, and is majorant of

itself, from lemma A.1, it has a principal solution Z* - {z} d .A According to

lemma A.2, the solution Z* is unique in the class

IxdI
E(Z*) - {XEE : sup- <00)dCA z d

provided that z(O)e E (Z*). Since by definition (see part (i)), Z(Oe E2 , the

solution Z will be unique in E2, if E(Z*) E 2. To show that the latter holds, we use

the following lemma whose easy proof is omitted.

Lemma A.3 Let F ={f d deA, G -{gd}ddA be two sequences in E. If

(a) fd >-O'gd >0, deA

(b) sup -- <o
deA gd

• fd
(c) inf- >0

deA gd

then I. XdI IXdI

sup l---<00 iff dsup- ,X E;
d<adXA T dd

i.e., the classes EF {X E: -Auxd "<and E -{xdE:

.:.; ,-. G .. ..

~d g I
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Let {Z }, n=0,1,2,..., be the power sequence of system (8), with

zdO d . Clearly

Z(l) b' > e > 0, for every dcA. (A-12)

Also, it can be shown by induction that,

~ (n).1
zd  n E( d ) - - n (n-i) X A(A-E(ZA)) (A-13)

for every deA, n >1 , such that d > n A. For d > 2 A, let n = I- 1 in

(A-13), where LxJ denotes the maximum integer not exceeding x. Then, using

the inequalities E(wd) > A A (d-A) + AA  , (see (ll.b)), [ &J > 1 -1, anddd 2d

A L J < d in (A-13) yields

X)> 2 _ X A d , d > 2 A (A-14)
d 2

From Lemma A.1 and the fact that

b' > 0 , c 0 d, teA, we have that

d d > 0 ,deA, n > 1 (A-15)

From (A-12) and (A-15) we obtain

* > c > 0 , dcA (A-16)

*. From (A-14), (A-15), and (A-16) we conclude that,

if Zd
- > 0 (A-17)?.dA d2

" From (14),and the inequality z* < zd , (lemmaA.l), we have

sup zd < O (A-18)
deA d2

- Finally, from (A-17), (A-18), and lemma A.3 we have that E(Z*) E2 "Teo
""To establish the uniqueness in E 2 of the solution Y - {yd} dCA of system (5)

' .-, -- - •-• .- .- • -, .- ." . . -• . . . . - -.. "-- ,. . ' - " ',' . '. .,'' '' V ', . : . '' ''-.-.'' .'''J4' ''. .-



27

we proceed as follows. Comparing the constant terms bd of system (5) to the

constant terms bd of system (8) we can readily show that there exists a positived

number M<-, such that

bd < Mb' , for every deA (A-19)

From (A-19) we have that system (A-20)

X -b c Xt  , dcA (A-20)
d d tcA dtt

is majorant of system (5). Also, note that the sequence Z = {d } dA Yd Mzd dcA

solves system (A-20), since Z - {z d is a solution of system (8). Furthermore,
d dcA

system (A-20) has a principal solution Y - {z-*d with
d dcA

I - Mz , deA (A-21)

ddwhere Z* - {zd I is the principal solution of system (8)

Since system (A-20) is majorant of system (5), from lemas A.2, we have that the

solution Y - {y d I is unique in the class

E(Z*) - {XcE : supL >-}
dcA -i

d

provided that Y(0) £ E(Z*). From (A-21) we have that E(Z*)-E(Z*). However, it has

already been shown that E(Z*) - E2 ; thus, E(Z*) E 2 " Since, by definition (see part

(i)), y(O) cE2 9 we conclude that Y is the unique solution of system (5) in E2"

Step 2

Here, we show that the mean session length sequence {Hd I dcA belongs to the class E2

n A min (hd n), n-1,2,3,..., dcA, where h is the length

of a d-session. Clearly,

o < h h , a.e., d£A (A-22)
-d d
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If we let H E{h}, then from the definition of hd and the operation of thed de d

algorithm we have that

-n < bd + c n ,dcA (A-23)
-d d- d tM dt Ht'

nh
Also, since h< n a.e., deA, the sequence {H } dEbelongs to E2, for every n.dlo -ic hd _c

Using (A-23) and the fact that Y { dgA is a solution of system (5) that belongs

to E2 it can easily be shown that

2n H d < Y d ' dCA, n=0,1,2,... (A-24)

From (A-22) and the monotone convergence theorem we have

n
H lid , dA (A-25)

From A-24) and (A-25) we conclude that Hd  Yd; thus (Hd } dcA c E2 Since

{Hdl dEA solves system (5) it coincides with its unique solution Y in E2 "

The proof for the mean delay sequence {Wd } d.A is similar.|d

.1*
&

° C - ** ... * * * *

* C *o. . C. .
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Appendix B

2Computation of E(/d). E(f2) and E(v)

Let X denote any of the random variables d' or v and define
d d' or Vdo ndfn

E(Xdlk): The conditional expectation of the random variable Xd, given that the

enabled arrival interval contains k packets, k > 0.

The conditional expectation E(XdIk) does not depend on d; therefore, we may

write oX

X Ed) = -dE(Xdk)  (B.1)
d k=O IXk!IB)

Note that, since the length of an enabled interval is at most A, we have that

E(Xd) = E(XA  for d > A

Define L = E(tlJk), Mk E(Zik), and V = E(v lk), k > 0. Using the rules ofk k

the algorithm, the quantitits Lk, Mk, and Vk, k > 0, can be computed recursively,

as follows.
k

L0 = L ; Lk = I + M E b (k,lI/m) L, k > 2,

*- where

k 11)k-

M 0 - =

k k-i k-k1k Ek1 qk(kl,k 2, k >_ 2,
Mk4l+m jl=bj(k,1/m)M + 2 (Lk-l) + m(m-l) k1 l k2=l k2 ,) Lk Lk2

where

"k'1 1) k I +k2  2 k-k
q k!k 2 !(k-kl-k2) (M (1m

k 2 1 -2.. ="V 0  0, V1  I

Vk k+m J= bi(k.1I/m) V + - b(k

,'.. .. . .. .. .. ... .- .. ... .. , .... .. . .. .... .. , ..-... ..... .-..- ....,.......... . . ..,.. ....... ,...... , ,., ",., ... . . . . . . . . ... , . . -. . ~ . .. -,..* . . . . , . . . . . . , . . , . . . . . ' ? , . ' . , - , , , , . ' ?
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Using the above recursions, a finite number, M, of terms from the infinite

series (B.1) can be easily computed. Also, for large K values, and based on the

recursive expressions, simple upper and lower bounds on E{X1 Ik} can be developed.

Those bounds can be used to tightly bound the sum

Z E( -k) Xd (Xd)k
k,,M+l k

The condition A > E(LA.

* Given the algorithmic parameters A and m, and in view of (B.1), the condition

A > E(LA) in theorem 2 can be equivalently expressed as A < X(m,A), where

(mA) f sup fX: A > krE Lk A k!

-. .*.. *** . . ~\,~a * *
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m (r,A) Am
m m

2 0.5021 2.739
3 0.5782 3.182
4 0.6168 3.665
5 0.6424 4.347
6 0.6621 5.422
7 0.6785 6.476
8 0.6924 7.179

10 0.7145 8.051
12 0.7317 8.636
14 0.7456 9.091
16 0.7572 9.492
18 0.7672 9.847
20 0.7758 10.174
22 0.7834 10.479
24 0.7902 10.766
26 0.7963 11.025
28 0.8019 11.303
30 0.8070 11.555
32 0.8116 11.801

Table 1 The maximum stable throughput

K(m,A ), and the optimal window length
m

A for the ZPDA.

m 4 m 8 m 16

D5  D5  D5  D5  D5  D5

0.1 1.7068 1.7068 1.6820 1.6820 1.6724 1.6724
0.2 1.9945 1.9945 1.9233 1.9233 1.8958 1.8958
0.3 2.4494 2.4494 2.2749 2.2749 2.2088 2.2088
0.4 3.3041 3.3041 2.8426 2.8426 2.6795 2.6795
0.5 5.5664 5.5665 3.9299 3.9299 3.4589 3.4589
0.6 33.8550 34.1730 7.1034 7.1040 5.0305 5.0305
0.65 - - - - 6.7409 6.7414
0.68 - - 44.1240 44.6640 - -
0.7 - - - - 11.1590 11.1870
0.74 - - 32.1660 33.0430

Table 2 The lower bound D5 and the upper bound D on D,

for the ZPDA.
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