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- T"Given the current emphasis on improving all
sl aspects of cost analysis and the primacy of cost 2
e uncertainty in the cost estimation process, it is BEREE
' time to assess the quality of the state-of-the-art T
. -;and look toward improving techniques where needed. :
o An argument supporting the primacy of cost
‘uncertainty analysis and a critical assessment of :
J existing techniques was given in-{i1}x In this , =
ey - . paper, we examine some efforts to apply new -
yi ;)% )  ~-results and insights, both mathematical and
al a L psychological, to the problems of cost uncertainty

analysis. The paper will be treat some new ideas R
pertaining to probability elicitation/encoding using S
& R interactive software and indirect assessment of L
I A Shc uncertainty associated with a CER.
A L 1. PROBABILITY ELICITATION/ENCODING
_ e o h Even in the presence of perfect information
Fd . it /7:7 7 .and the best application of sound cost analysis
3' . - techniques, predicting the cost@® of, say, an
Ay . apogee kick motor (AKM) of & proposed unmanned
) L . gpacecraft entails unknown quantities. One may
f;‘”attcnpt a bottoms-up engineering approach listing
. S e " design costs, material and labor requirenents,
a : S ‘ete,, or use a cost estimating relation (CER)

) . .developed from data on analogous systems and their
) B .. - costs. Whichever approach is taken, perhaps both,
I , the actual cost is not predictable with certainty.
i © + = - 8ince the uncertainty associated with AKM cost

i.this paper. Its meaning will depend on the
L .purpose of the analysis (e.g. first unit cost,

§ : ' @ The term "cost" is used in a generic way in
&
j . nonrecurring cost, life cycle cost, etc.)
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will contribute to the overall system cost
uncertainty, its contribution must be expressed in
some analytically useful form, generally a
probability distribution. Using the CER approach,
suppose that the costs of AKMs are related to
total impulse by the simple linear model

$C1 = a + b(impulae)i + ey

where x is total impulse (measured in lb-sec), SC
is standardized cost, a and b are unknown

-constants, and e represents variability not

accounted for by x, often referred to an error or
random noise. Thinking of the present system and
the historical systems as being a sample from,

-say., & hypothetical population of all possible

AKMs, the parameters a, b, and the variance of the
random noise can be estimated in the usual way.
For any value x* of impulse, the fitted model

A . - *
$C = a + b( X )

‘" can be used to get point estimates and prediction
- intervals for the cost. But what about an

uncertainty distribution over the cost? Even 1f

‘normal theory applies, the predictive distribution

of 8C is only partially known. It depends on the
unknown values of a and b and on the unknown
population variance. Even if these values were
assumed known, as they are in [{7] and (13}, there
is uncertainty about the value x* of the input
variable x (called strategic uncertainty in (1}).
The impulse of the finished product will probably
differ from its designed nominal value since the
required impulse will depend on the weight of the
payload about which there is uncertainty. These
various types of uncertainty are discussed in (11]}.
In order to generate an uncertainty distribution
over 8C, (called a "predictive distribution" since
its purpose is to predict $C), one must quantify
uncertainty about a, b, x, and the random noise
variance. Dirsct probability encoding on some or
all of these quantities is a difficult cognitive
task. New techniques supported by interactive
computer codes have been developed (5] which make
these tasks easier. They will be discussed in the
nsxt section. 8hown in figure 1 is a schematic
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diagram of how the various types of uncertainty
come together to generate the predictive
distribution.

FIGURE 1: CER Uncertainties
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To be specific, what is involved in (direct)
encoding of the uncertainty about x, the impulse?
The analyst may look at data pertaining to the
growth of impulse (i.e. the difference between
nominal and actual) over esimilar AKMs. He may
then assess a few key quantitiss from which a
first approximation to the uncertainty
distribution is generated. 1If he is using the
standard PERT-beta approach (discussed in (11]))
he will assess a lowest possible value (1), a most :
1ikely value (m), and a highest possible value B
(h). A fourth assessment relating to spread (s) -
must also be given. Various ways for doing this
are summarized in (9]. This process can be
thought of as specifying a few conditions (points
or properties) on the cumulative distribution
function (CDF). For example, 1 and h are the two
extreme points, while m specifies the location of
the inflection point. Alternately, a few central
percentiles might be specified and a CDF "faired”
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kR in or fitted mathematically. Behavicral studles
& seem to support this latter method for producing
K better calibrated assessments. See [6] and the

. cited references for more discussion on the

L important cognitive issues involved. Whatever

method is used, the result is a CDF characterizing

RN uncertainty about the unknown quantity.

) Generating an antire CDF based on a few
inputs involves considerable extrapolation. The

%; generated CDF is supposed to embody all relevant

¥ ~information including experience-based subdbjective
judgment of the cost analyst. He should

f€ carefully examine the implications of the fitted

g CDF to insure its fidelity and make adjustments

J& , . where needed. A four-step graphical method was

E proposed in {9] for accomplishing this type of

i adjustment. It involves choosing a beta shape

. from a collection of 9 to 18 graphs. Whenever two

W- consecutive shapes coincide, the analyst is termed

'$ . consistent and the process stops. The suggested

A S four-step method somewhat resembles an earlier

& ' . approach [(10) which was implemented with a

- prototype interactive computer program. Because

of its popularity, the PERT-beta methodology was

3& chosen for this implementation. Software, using

,3 the more versatile and applicable Johnson family

Kh of distributions discussed below, is being

4 developed. Crude pictures of successive output

A screens of the beta code are shown below. User-
supplied inputs are circled.

ﬁ In the first screen, the user is prompted for

b the standard PERT input: 1, m, h. A beta density

3f with the PERT variance is generated. Some

) selected percentiles are displayed along with the

beta shape parameters and other descriptive

‘ information (UNC is the "UNcertainty Coefficient”
5 defined in [(4). It is the standard deviation

38 divided by that of a uniform distributicn over the
2. same range. Thus, since attention is limited to
SN unimodal betas, UNC = 1 indicates a most diffuse
i\ opinion. (Smaller values indicate less
uncertainty.) A menu of available modifications is
printed and the user is prompted to select an

K o option.
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FIGURE 2-1: 1Initial selection
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The output of the initial specification is shown
above along with the menu. Option 1 is selected
and the shift value entered producing

- FIGURE 2-2: Result of shifting the density
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The modified (solid) and previous (dash) densities
are shown in figure 2-2., Percentiles and other
descriptive information is listed for both
densities and the menu repeated. Option 2 (alter
the variance but not the range) is chosen and a
"flattening”" of 10% 1s specified.
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FIGURE 2-3: Result of flattening the density
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The flattening effect is evident while 1, m, and
h are unaltered. Option 3 allows one to set any

or all of the parameters. Option 3 is selected and
alpha is changed to 2 resulting in

FIGURE 2-4: Result of adjusting parameter(s)
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Alpha has been changed from .92 to 2 thus shifting
the mode to the right.
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Option 4 allows the user to expand or contract one
‘tail while keeping the mode and cother tail fixed.
Here, the right tail is expanded by 10X.

FIGURE 2-5: Result of adjusting one tail
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The user can recover a previous density by
exercising option 5. This saves having to start
all over if a mistake is made along the way.
Here, the user recovers graph n = 2, It is
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Percentile information is valuable for checking
consistency. If figure 2-1 accurately captures
the analyst's uncertainty about larger costs, the
odds against the cost exceeding 27.378 are 3-1.
If the analyst likes the left part of the picture
but feels that 3-1 odds are too generous, he may
use option 4 to lengthen the right tail. 1If he is
uncomfortable with giving or taking even odds that
the cost will not exceed 22.192, then some sort of
shift may be indicated. 1Including percentile
information would enhance the graphical selection -
"gchema proposed in ([9]). :
There is no scientific reason for using beta
distributions (or any other, for that matter) in ;
quantifying cost uncertainty. Arguements supporting e
other choices (e.g. triangular [14], Weibull (8]) '
‘are usually based on ease of computation. In this
day of the inexpensive and powerful microcomputer,
computational ease at the expense of flexibility
of application seems like a poor tradeoff. The
main criterion for judging the suitability of a
family of densities should be its richness of
possible shapes. A particularly nice shape-rich
family which seems to have been overlooked was
proposed by N. L. Johnson (3] and bears his nane.
A clear account 1is given in the text {2]. The
family is much richer in shape possibilities than
the beta family. 1Its skewness (beta 1) and
kurtosis (heta 2) cover the entire Pearson plane
shown in figure 3 with subfamily Sb covering the
regiosn above the lognormal line and subfamily Su
covering the region below. The lognormal family
belongs to the Johnson family and is denoted S1.
By contrast, Weibull and triangular shape
parameters are resricted to the curves shown.
A particularly nice feature of the Johnson family
is that its percentiles can be calculated using a
table of standard normal probabilities. This
facilitates Monte Carlo simulation work. Research
on fitting these distributions to subjective
assessments is underway (12) and preliminary
results are encouraging.

AR

{-
‘ .
y . . i ¢ g . ., g vam .,

R Tah i emn R W S . L st A PR NS TIRE JORFOC Y W DPRr S N SR B Y LN MR a0 a3 20 LY Tal W Ci2 i Yam S Pk Gy

AL m PRI WU A SEPUERNPIL VLS I FLURE XL ORI




-9 -

FIGURE 3: Skewness and Kurtosis of Several
Pamilies of Densities
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2. CER UNCERTAINTY

In Section 1, three sources of uncertainty
which contribute to cverall CER uncertainty were
identified. The task of gquantifying opinion about
model parameters such as a and b is necessary in
order to generate an uncertainty distribution over
the subsystem cost. Direct assessment of a joint
distribution is particularly difficult. 1In a
recent paper (8], a technigque has been developed
to indirectly assess this distribution. Opinions
expressed by the analyst are treated as data to
estimate the model parameters. By asking
questions about the predictive distribution at
various values of the independent variables, it
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can be inferred what the prior distribution has to
be in order to be consistent with these
assessments. The elicited assessments are in the
form of gquantile of the predictive distribution.
This approach was taken in the belief that ' s
quantiles are "less subject to erratic behavior, Co
easier to think about, and consequently easier to

elicit." Consistency checks are made in the N
process so that answers that appear to be out of : “F
‘line with other answers can be called to the "
attention of the user. The techniques have been

implemented with an interactive program on the

TROLL experimental system operated by MIT. With 7
proper training, this new approach may become a C
useful tool in cost uncertainty analysis. : o
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