
(0+.

Cost Uncertainty Assessment Methodology:

• New Initiatives

by

K . T . W a l l e n t u s.o < : . . : / ; O T :

C.lemson University

Presented at the

19th Annual Department of Defense

'Lost Analysis Symposium
Xerox Training Center

Leesburg, Virginia

September 17 - 20 1985

fmi pubne rol=*s d dNU
dlbutbuU'5 UIsIZd maw"

mlI -



AAccession For

FNTIS 

GRA&Ik
DTIC TABB

zLanarounc edd

J Stificatio

COST UNCERTAINTY ASSESSMENT METHODOLOGY:
NEW INITIATIVES By_

Distribut ian/

KC. T. Wallenius Availability Codes
Clemson University 'Avail anýd)ox.

Dist ISpocial

OVERVIEW E

-Given 'the current emphasis on Improving all
aspects of cost analysis and the primacy of cost
uncertainty in the cost estimation process, it is
time to assess the quality of the state-of-the-art

.,and look toward improving techniques where needed.
An argument supporting the primacy of cost
.uncertainty analysis and a critical assessment of
existing techniques was given.-i1rr-4A41j;;. In this

* paper, we examine some efforts to apply new
-'results and insights, both mathematical and
psychological, to the problems of cost uncertainty
analysis. The paper will be treat some new ideas
-pertaining to probability elicitation/encoding using

V/ interactive software and indirect assessment of
1he uncertainty associated with a CER.

1. PROBABILITY ELICITATION/gNCODING

Even In the presence of perfect Information
~'*~ndthe best application of sound cost an~alysis
techniques, predicting the cost@ of, say, an
apogee kick motor (AKM) of a proposed unmanned
spacecraft entails unknown quantities, one may
.attempt a bottoms-up engineering approach listing
design costs, material and labor requirements,
etc., or use a cost estimating relation (CER)

* developed from data on analogous systems and their
L~costs. Whichever approach is taken, perhaps both,
the actual cost is not predictable with certainty.
Since the uncertainty associated with AICH cost

*The term "cost" is used in a generic way In
A',this paper. Its meaning will depend on the
ipurpose of the analysis (e.g. first unit cost,

A ~nonrecurring cost, life cycle cost, etc.)
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will contribute to the overall system cost
uncertainty, its contribution must be expressed in
some analytically useful form, generally a
probability distribution. Using the CER approach,
suppose that the costs of AKMS are related to
total impulse by the simple linear model, $Ci$C a + b(impulse)t + e$ •

where x is total impulse (measured in lb-sec), $C
is standardized cost, a and b are unknown .

-constants, and e represents variability notaccounted for by x, often referred to an error or

random noise. Thinking of the present system andthe historical systems as being a sample from,
..say, a hypothetical population of all possible
AKMs, the parameters a, b, and the variance of the "1
random noise can be estimated in the usual way.
For any value x* of impulse, the fitted model

SW + b( X*

pcan be used to get point estimates and prediction
intervals for the cost. But what about an
uncertainty distribution over the cost? Even if
normal theory applies, the predictive distribution
of BC is only partially known. It depends on the
unknown values of a and b and on the unknown
population variance. Even if these values were
assumed known, as they are in (7) and (13), there
is uncertainty about the value x* of the input
variable x (called strategic uncertainty In (1)).
The impulse of the finished product will probably
differ from its designed nominal value since the
required impulse will depend on the weight of the
payload about which there Is uncertainty. These
various types of uncertainty are discussed in (11l.
In order to generate an uncertainty distribution
over SC, (called a "predictive distribution" since
its purpose is to predict $C), one must quantify
uncertainty about a, b, x, and the random noise
variance. Direct probability encoding on some or
all of these quantities is a difficult cognitive

* task. New techniques supported by interactive
computer codes have been developed (a) which make
these tasks easier. They will be discussed in the
next section. Shown in figure 1 is a scheomtic
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diagram of how the various types of uncertainty
come together to generate the predictive
distribution.

FIGURE 1: CER Uncertainties
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To be specific, what is involved in (direct)
encoding of the uncertainty about x, the impulse?
The analyst may look at data pertaining to the
growth of impulse (i.e. the difference between
nominal and actual) over similar AKCH. He may
then assess a few key quantities from which a
first approximation to the uncertainty
distribution is generated. If he is using the
standard PERT-beta approach (discussed in (11])
he will assess a lowest possible value (1), a most
.likely value (m), and a highest possible value
(h). A fourth assessment relating to spread (a)
must also be given. Various ways for doing this
are summarized in (9]. This process can be
thought of as specifying a few conditions (points
or properties) on the cumulative distribution
function (CDF). For example, 1 and h are the two
extreme points, while m specifies the location of
the Inflection point. Alternately, a few central
percentiles might be specified and a CDP "faired"
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in or fitted mathematically. Behavioral studies
seem to support this latter method for producing
better calibrated assessments. See (6] and the
cited references for more discussion on the
Important cognitive issues involved. Whatever
method is used, the result is a CDP characterizing
uncertainty about the unknown quantity.

Generating an entire CDP based on a few
inputs involves considerable extrapolation. The
generated CDF is supposed to embody all relevant

:.information including experience-based subjective
judgment of the cost analyst. He should
carefully examine the implications of the fitted
CDF to insure its fidelity and make adjustments
where needed. A four-step graphical method was
proposed in (9) for accomplishing this type of
adjustment. It involves choosing a beta shape
from a collection of 9 to 18 graphs. Whenever two
consecutive shapes coincide, the analyst is termed
consistent and the process stops. The suggested
four-step method somewhat resembles an earlier
approach (10] which was implemented with a
prototype interactive computer program. Because
of its popularity, the PERT-beta methodology was
chosen for this implementation. Software, using
the more versatile and applicable Johnson family

- of distributions discussed below, is being
developed. Crude pictures of successive output
screens of the beta code are shown below. User-
supplied inputs are circled.

In the first screen, the user is prompted for
the standard PERT Input: 1, m, h. A beta density
with the PERT variance is generated. Some
selected percentiles are displayed along with the
beta shape parameters and other descriptive
Information (UNC is the "UNcertainty Coefficient"
defined in (4]. It is the standard deviation
divided by that of a uniform distribution over the
same range. Thus, since attention is limited to
unimodal betas, UNC - 1 Indicates a most diffuse
opinion. (Smaller values indicate less
uncertainty.) A menu of available modifications is
printed and the user is prompted to select an
option.
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FIGURE 2-1: Inltlal selection
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The output of the Initial specification is shown
above along with the menu. Option 1 Is selected
and the shift value entered producing

FIGURE 2-2: Result of shifting the density
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The modified (solid) and previous (dash) densities
are shown in figure 2-2. Percentiles and other
descriptive Information Is listed for both
densities and the menu repeated. Option 2 (alter
the variance but not the range) Is chosen and a
"flattening" of 10 is specified.
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FIGURE 2-3: Result of flattening the density
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or all of the parameters. Option 3 is selected and
alpha Is changed to 2 resulting in

FIGURE 2-4: Result of adjusting parameter(s)
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Option 4 allows the user to expand or contract one
tail while keeping the mode and other tail fixed.
Here, the right tail is expanded by 10%.

FIGURE 2-5: Result of adjusting one tail
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The user can recover a previous density by
exercising option 6. This saves having to start
all over if a mistake is made along the way.
Here, the user recovers graph n - 2. It is
assigned sequence number 6 in

FIGURE 2-6
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Percentile information is valuable for checking
consistency. If figure 2-1 accurately captures
the analyst's uncertainty about larger costs, the
odds against the cost exceeding 27.378 are 3-1.
If the analyst likes the left part of the picture
but feels that 3-1 odds are too generous, he may
use option 4 to lengthen the right tail. If he is
uncomfortable with giving or taking even odds that
the cost will not exceed 22.192, then some sort of
shift may be indicated. Including percentile
information would enhance the graphical selection

"-scheme proposed in (9].
There Is no scientific reason for using beta

distributions (or any other, for that matter) in
quantifying cost uncertainty. Arguements supporting
other choices (e.g. triangular 114], Weibull [8])
are usually based on ease of computation. In this
day of the inexpensive and powerful microcomputer,
computational ease at the expense of flexibility
of application seems like a poor tradeoff. The
main criterion for judging the suitability of a
family of densities should be its richness of
possible shapes. A particularly nice shape-rich
family which seems to have been overlooked was
proposed by N. L. Johnson (3] and bears his name.
A clear account is given in the text (2]. The
family is much richer In shape possibilities than
the beta family. Its skewness (beta 1) and
kurtosis (beta 2) cover the entire Pearson plane
shown in figure 3 with subfamily Sb covering the
region above the lognormal line and subfamily Su
covering the region below. The lognormal family
belongs to the Johnson family and is denoted S1.
By contrast, Weibull and triangular shape
parameters are resricted to the curves shown.
A particularly nice feature of the Johnson family
is that its percentiles can be calculated using a
table of standard normal probabilities. This
facilitates Monte Carlo simulation work. Research
on fitting these distributions to subjective
assessments is underway (12] and preliminary
results are encouraging.

A 1. ...i..
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FIGURE 3: Skewness and Kurtosis of Several
Families of Densities
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2. CER UNCERTAINTY

In Section 1, three sources at uncertainty
which contribute to overall CER uncertainty were
Identified. The task of quantifying opinion about
model parameters such as a and b is necessary in
order to generate an uncertainty distribution over
the subsystem cost. Direct assessment of a Joint
distribution is particularly difficult. In a
recent paper (5], a technique has been developed
to indirectly assess this distribution. Opinions
expressed by the analyst are treated as data to
estimate the model parameters. By asking
questions about the predictive distribution at
various values of the independent variables, it

flp f JVfI .S-3-I hi=- S- At t * , . ih
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can be inferred what the prior distribution has to
be in order to be consistent with these
assessments. The elicited assessments are in the
form of quantile of the predictive distribution.
This approach was taken in the belief that
quantiles are "less subject to erratic behavior,
easier to think about, and consequently easier to
elicit." Consistency checks are made in the
process so that answers that appear to be out of
,line with other answers can be called to the
attention of the user. The techniques have been
implemented with an interactive program on the
TROLL experimental system operated by MIT. With
proper training, this new approach may become a
useful tool in cost uncertainty analysis.
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