RD-A162 144 FIIDINB TEST-M‘D-TRERTHEIT PROCEDURE USING PMLEI. /1
OHPUTRTION(U) DUKE UNIV DURHRM NC DEPT OF CONPUTER
SCIENCE L D D ET AL. OCT 85 CS-1983

UNCLASSIFIED RFOSR-TR-85-1049 RFOSR-BZ-OZO F/li 1274

N

If m 2.5
=ik
s
= lleE
llizs fes pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

ST L T RN e e e S TR T I Y O NE R ege
PR T . M An¥ St Sl it A Jhah iy " o e i e I s R Ak G b Al Sl S el S A e s
Pl Sl

- - M FRASUEL Al rent s 4 i.‘ﬂ
(O)
",CUM Ty CLASS!FIC y E!’gﬂ'm.ﬂ Dlll‘lnraul)‘

REPORT DOCUMENTATION PAGE
Rﬁb .-“!'R- 8 5-_ 1 04 9 2. GOVYT ACCESSIO

4. TITLE (and Subtitie)

AD-A162 141

Finding test-and-treatment procedures Technical paper
using parallel computation

6. PERFOAMING ONG. REPORT NUMBSER

CS- 1985- 23
T AGTROR(S) S. CONTRACT ORGRANT NUMBEN(S)
L. D. Duval, R. A. Wagner, Y. Han, D. W. Loveland " AFOSR 83-0205
9. PERFORMING oac.»uzhﬂou NAME AND ADDRESS 10. ::ggn.n'lot.L‘musr'T.. m.o.ucr TASK
Computer Science Department .
Duke University Anor @3ad/ A7
Durham, North Carolina 27706
11. CONTROLLING OFFICE MAME AND ADDRESS - 12. REPORT DATE
October 1985
Same a) = \Y 3. NUMBER OF PAGES '
} 23
T4 MONITORING AGENCY NAME 6 ADDRESS(// @ifferan(from Contrelling Office) | '3. SECURITY CLASS. (of this repert)
Air Force Office of Scientific Research U\{‘U\f‘(g”m
Air Force System Command M URES
Bolling AFB) Sa. %ﬁéﬁ:{'{"""’" DOWNGRADING H
Washington, DC 20332
T76. OISTRIBUTION STATEMENT (of Bhie Rapert)
Al~aa
orroved for pl o roinnn,
1
distribution un'in wd
17. DISTRMBUTION STATEMENT (of the sbetract entered in Block 20, i &ifferent trom Raepert) W

18. SUPPLEMENTARY NOTES

Submitted for publication

19. KEY WORDS (Cantinue en reverss alde il necessary and idenitify by Block mmner)

Parallel algorithms, NP-hard problems, complexity

20. ABSTRACT (Centinue on reverse side if neceseary and identify by Bleck mumber)
A parallel algorithm for the NPrhard problem test-and-treatment is

e~

ONC FILE COPY

presented for a machine whose number of connections is —gL, where p is the

P_
"

.

P
:_'
VL
.
»
;-

number of processing elements (PEs), and where the PEs are simple enough such

30 PE machine is

03

(S 1

e Wt
CS)

that a machine with 220 PEs is currently implementable and 2

DD %57 V473 woimion o 1 mov 6818 OBsOLETE

Ntn

SECURITY CLASS)

N

L T L Y
.‘. .v- ...'. R e N I A
o e N % L)
ot

K .'-‘. Caam et
NETEAT N ACADPEAEAC A Lf IL.‘_‘,‘_ L‘.l..f\‘lp "hk'l.' (-f ot

K I N A AL RN A N A S s

LS AN A A AL AL S Tt B A b dheun e A |

‘ﬂé z’:\ ¢
%}‘u" aL)

20. Abstract continued
feasible. The speedup of O(IEEB) is realizable because we are able to transform

the dynamic programming solution into the ASCEND/DESCEND scheme with

considerable attention to the communication problem. This algorithm is realized
on the Boolean Vector Machine, a fully designed cube-connected-cycle system

where processor alleocatinon and nther control issuee have been faced., The particn-
lar NP-hard problem is of independent interest; it generalizes the binary testing
problem by introducing treatments on an equal basis with tests. Applications of
this test-and-treatment problem are found in medical diagnosis, systematic biol-

ogy, machine fault location, laboratory analysis and many other fields.

et R RS e el R N A AR AT AR A R s S S I R A
AR S I ARSI IO I Yot R A A ‘- YD PV ': AN AR LRSI COR R R R O ’ T e

Vs
»
-—

At \"H"" N/ *v—“_""- ',1)) “‘i!‘r'l";\.'b £ e Al e

REPRODUCED AT GOVERNMENT EXPENSE

TN T R Y T ST
-
. f
- .. AR

DISCLAIMER NOTICE ""‘z

THIS DOCUMENT IS BEST QUALITY -
PRACTICABLE. THE COPY FURNISHED R
TO DTIC CONTAINED A SIGNIFICANT Y
NUMBER OF PAGES WHICH DO NOT o
REPRODUCE LEGIBLY. e

[4
L]

v

-
R 1ad

R

[4

- '

N

.‘_ "‘".l 'l '1 “- .-

% . ,u‘ n' l'. .
[}
ek

LR N)
7/

».-"..‘ DA -',_-',' .
!

3 3
- a
, |
[J _ r .']
*. e R I R B I TR L P B
= : B LR M e ;'T:—:q
- L3 P R o : " 5
'\ SN)
........................ PREST RS e Tt A ""
PRI NS A TR A NS TR — L VA S SN IS IR O Loat o (:‘ s-F s _o‘ h’!;" "t. .f'"; '&\ \ e

- - - T v
T T U o, S N T Sl B Wi A, £ M

AR eng oo oA Sl iere e IS 2t B Bk et S st 2k -

CS-1985~23

rinding iest-and-Ireatment Yrocedure:s Using
Parallel Computation

Louis D. Duval
Robert A. Wagner
Yijie Han
Donald W. Loveland

Department of Computer Science
Duke University

Acceasion For .

NTlS GRAL
prIc T8
Unannatis 3]

Juc,tificr:iicxlﬁ‘____..-—-—-‘

By e ”_—____U____———-‘
D‘lat‘l‘lbLtiOn/ —
Avqile it ‘{ COdes
o Au i1 md/or
pist ‘ Cpecial ,/"—\\\\
]
\ 1 ”i";"f‘.('p]‘.":'i}/"
J .
Iﬂ 0' 0"7‘
) NOTICE Op o (EUEIPIC R ev oy
, Tl g, - (APSC,
50
LATRHES o
Chter,

Approved forpublic releage;
distrin, '

tlonunlimited,

p5 12 6 0832

ST PR AT BTN SRR B S5 S v
RN A AL

Finding Test-and-Treatment Procedures Using Parallel

L 5 5 e,

Computation
« Loxss D. Duval
L~ Robert A. Wegner
- Yijée Hen
o Donald W Lovelznd
¥ Department of Computer Science
Duke University
N Durbham, NC 27706
: oY /J //m o
- }—74 1'7 /"‘"" "F/"; ":’/‘ll"lA/,\‘
'X ABSTRACT - ' Ve
' BEGAT AN
A parallel algo ‘thm for the NP-hard problem tesbmd-tregtmem' = .)__) L, e
presented for a machine whose number of connections is , Where p is the —_— :
number of processing elements(PEs), and where the PEs are simple enough such
that s machine with 2% PEs is currently implementable and PE machine is
. feasible. The speedup of O(%E;)/is realizable because we are able to transform
- the dynamic programming solution into the ASCEND/DESCEND scheme with
considerable attention tq the communication problem. This algorithm is realised
on the Boolean Vector Machine, a fully designed cube-connected-cycle system
where processor allocation and other contro} issues have been faced. The particu-
Jar NP-hard problem is of independent interest; it generalizses the binary testing
., problem by introducing treatments on an equal basis with tests. Applications of
.. this test-and-treatment problem are found in medical diagnosis, systematic biol-
= ofy . machine fauli jocation, laboratory analysis and many other fields. A
~ Index terms — Paralle! algorithm, NP-hard problem, complexity.

October 3, 1985

® Work reporied berein is partially supported by the Air Force under grant aumber AFOSR 81-0221 and
AFOSR 830205

"
-

e m - R g R T S UL A - KR e AT T T
B S (S G N S R O NN N NGy

—

v

>
'l

i) T,rﬁ. ¥
BN ot et

Finding Test-and-Treatment Procedures Using Parallel

Computation

ouis D Duval
Robert A. Wagner
Yiyie Hen
Donald W. Lovelond
Department of Computer Science
Duke University

Durbam, NC 27706

1. Introduction

The test-and-treatment prt;blem originally defined by D.W. Loveland is a generalisation of
the bipary testing problem studied by many researchers(see [1}{2](6][7]{11]). This problem is of
independent interest since it finds applications in medical diagnosis, systematic biology, machine
fault location, laboratory analysic and many other fields. A parallel dgorithm. for this problem is
presented which is implemented oo the Boolean Vector Machine{BVM), a machine formed by con-
pecting many tiny PEs into a cube-connected-cycle network. The PEs are o small that a machine
with 2% PEs is implementable using current VLSI technology, and even 2% PE machine is feasi-
ble. By handling the communication problem carefully we are able to transform the dynamic pro-
gram solution into the ASCEND /DESCEND scheme. This solution to the communication problem

and a careful algorithm design for generating control bits solves the PE allocation problem. As »

3p connections

result we are able to achieve O(To-’;—p) speedup on such a machine with only 7

* Work reported herein is partially sepported by the Air Force under grant sumber AFOSR 81-0221 and
AFOSR 83-0205.

R
b
b

»T* V'T" "'.' ," -ﬁ"'r"'

e
i,

R0

& Ja Pl o e

K

L

.............

among p PEs.

It bas been shown[3](6] that finding optimal solution to the binary testing problem is in gen-
eral NP-hard; that is, no polyromial algorithm on sequential machines is known. Since the test-
and-treatment problem generalizes the binary testing problem, the test-and-treatment problem is
also NP-hard. With the development of VLSI technology parallel machines with thousands and
even millions of processing elements(PEs) will be available. It is now practically possible to speed
up the computation considerably by trading huge _number of PEs for speed. Solutions to the NP-

complete problems on parallel machines have appeared in the literature/4)(8]. Paralle] algorithms

T
are considered to be good if the speedup S =-f-l- achieved is equal or close to p, where T} is the
’

time complexity of a paralle] machine with ¢ PEs. It is especially of practical interest when these
algorithms can be implemented on "practical® parallel machines efficiently, since PE allocation
problem must be taken into account and communication between PEs must be handled carefully.
In this paper we present s pu:;llel algorithm approach to the problem. The Boolean Vector
Machine(BVM) (16] is the pan!l.el computation model we have chosen, s mode! that uses the
Cube-Connected-Cycle(CCC) [13] structure. For the BVM, each processing element(PE) of is con-
nected to three other PEs by a ope-bit wide conpection path. It has been estimated that a B\V\M
with 2% PEs is feasible. Such a buge paralle! machine could be used to solve ﬁodenmized NP-
complete or NP-bard problems. The time com'plerity and processor complexity of the TT algo-
rithm on this machine model are respectively O (kp (k +logN))* and O (N2*), where k is the size
of the universe which is a set of objects containing the malfunctioned one, p is the precision

required, N is the total number of the tests and treatments’available. This result represents a
speedup of 0(-5%;), with regard to the known sequential algorithm which could be obtained by

modifying the backward induction algorithm given by Garey|l). The logp in the speedup is
accounted for the communications needed among the PEs. As can be shown by a simple fan-in

argument,)k +logN) time is required for the communication among O (N 2') PEs. Considering

o Logarithms 1p this paper are to the base 2

. .
o e e

- \d A - - v v - R
R A S A R A AU A S e b il il (Al te Ll A A S i 0o 8 00 00 2°4 0 & B 0d e g ot mres e o o v

-3-

that each PE in our machine bas only three links to other PEs, this logp factor is quite reason-

able.

Of particular interest here is the fact that O (—’—) speedup is shown for a machine so sim-

, logp
ple in structure that the number of PEs on the order of 2*(=10°) is feasible. For 2% PEs, approx-

imately 15 elements(say, disease candidates) could be processed in paralle] (assuming worst case

possibilities) to find the best treatment for the true disease even if all possible tests and treat-

ments were available(ie. N=0(2"). A speedup of roughly 10° could thus be realized over a

e
Lataat o A

sequential processing of a test-and-treatment problem with 15 candidates. (This allows for the

! parallelism of 64 bits that a sequential machine might possess.)

Our algorithm was designed to optimize performance for relatively few tests and treatments,

eg. N=O(k"), for fixed b. Other approaches are reasonable if N=0 (2*) is commonly used.
We note that a few more elements, e.g. 20, can be processed in parallel if N =0 (£?), say. ‘

The test and treatment pr?blem requests the selection of s minimum test-and treatment 1
procedure under an expected cost criteria. The problem arises whenever a fault (disease, system
malfunction) must be treated. The classic example is medical diagnosis and treatment, but other

. applications also are important, such as computer system fault location and correction and logisti-

cal system breakdown correction. In general, the problem exists whenever a sizable population of

complex objects (people, ships, computers) must be maintained at reasonable cost. ' 1

The problem specification consists of & universe U = {0,1,...,k-1} of k objects, each with
an associsted weight P;, and a set of
T.1<i SN,
tests and treatments, each with an associated cost. The T;,1 € ¢ < m, denote tests, and the
T;,,m < i < N, denote treatments. We assume that only opne object is actually faulty, its
identity is unknown, and each object i bas & priors likelibood P; of being the faulty object. Each
test and treatment is specified by a subset of the universe; if the unknown object is in the test or

treatment set then the test responds positively, or "is successful”, or the treatment is successful.

If the test is successful, one eliminates the other objects from ‘consideration (and if negative, one

T T
L R o« v e 1w~
At T

« "t a

L2hanediugh Jau S fharn 4

- T PR St e St S it Pl ot di et St

................

-4-

eliminates the test set of objects), while a successful treatment ends the procedure. A failed treat-
ment means the processing must continue. A successful TT procedure must provide for each
object to be treated; s TT problem specification is edeguate if there exists a successful TT pro-
cedure. With each test and treatment 7; a cost f; of executing that test or treatment is given

with the problem specification.

From the above description we see that a TT procedure is a binary decision tree, with both
test and treatment nodes. A typical TT procedure is given in Figure 1, where the single arc is
used for both test outcomes (the positive outcome to the left by convention) and a treatment
failure, and the double-line arc denotes a treatment set. (The double arc is for emphasis only

since every branch of a successful TT procedure must terminate in & treatment set.)

T, T,
ANNA\

I\ /W
T¢ T, T,

/\

/\
Te T:

U={0,1,2,3,4,5}, P,=1/6 for all i,
T,=2 Te=04, Ty=0,1, T,=01,3,
1'53" T.=02 T7=5, m =3
;=1 for all i.

Fig 1.
The TT procedure Tree has an expected cost defined as follows:
Cost (Tree) = Y (cost of all tests and trestments .
sl

encountered if i is the faulty object) - P;

The desired solution is the procedure which-minimises this cost. Thus

Cost = min Cost(Tree).
al treer
e e e T e e I T P S A R A AT i N e e SASAN
SIS S G N A R IS i W WA AU A R L SRR AL O VLSS AR TR S A O

-
b
EL
-
b.‘
:

v, - TN T LT T e
PR .
ot Lt .

¥

1

v, v %

L
R S N,

3

Rather thap enumerate all the possibl> TT trees and take the minimum cost directly, we
use the approach of dynamic programming and pote that the optimal tree must apply the
minimum cost action (test or treatment) to already optimal subtrees. The optimal subtrees are
obtained by beginning with one-object trees and combining trees as just described. For each one-

object set S of objects we compute the cost C(S) of the minimum TT tree as follows:

C(S)= min (2(S5))
m<i<e
where p(S) = P; for § = {5 }. There is only a treatment component for one-object sets since
the set cannot be split. (Note that we have not normalized the set of weights, 80 technically these
are not TT problems themselves). For an arbitrary non-singleton set S of objects we compute the

cost C(S) as follows:

C(S) = min min (% (S)+ C(S M Tii+ C{S-T})),

hci<m

Jmin (2 (S) + C(S-T.)).

where p(S)= Y p;.

JeS

This definition is from first principles: the value t; is charged to each object subject 0 that
action and the total weight of those objects to be charged is p(S). For tests, one adds in the cost
C(S M T:) of the set S (M) 7, to which the test responds positively (the m set) plus the cost
C(S-T,) of the set S-T; of objects not responding to the test. Treatments terminate action on
the objects of T;, m < i < n, (i.e, treat them) so the only objects needing fu.n.ber action are
the objects in S-T;; we add in the cost C(S-T;). The essence of an argument by induction that
C(S) is correctly computed uses the assumption that C(S r] T;) and C(S-T;) are the correct
costs for the subtrees and then we note from the above description that the correct minimum is

taken to compute C(S).

2. The Boolean Vector Machine

The BVM is a CCC paralle! machine. It is s typical ultracomputer[14]. Since the BVM

commubpicatiop network resembles the Benes permutation network, it can accomplish any permu-

e LA B D e A S S S A i gl Sk Ml g
. R e A A T T T T I Ty Ty T RIS Sl Al el A A Ad B 2|

.6-

tation within O(log) time if the control bits are precalculated [10,/13} Logically the BVM can

be viewed as a bit array shown in Fig. 2.

P P P P P P P P P
E E E E E E E E E
0o 1 2 3 4 5 6 7 8
Reg. A X X X X X X X X X
Rgz R v ¥ ¥ v v x Y b X
Reg. RO x x x x x x x x X
Reg.RI] x x x x x x x x X
Reg.R22 x x x x x x x X X
Reg.R3 x x x x x x x x X
Reg. R4, x x x x x x Xx x X
Reg. R}/ x x x x x x x Xx X
Reg REE x x x x x x x Xx X
[
_ Fig. 2.
L Each row of the bits forms a register. Each column forms a PE. Let r be & positive integer

| and Q =2", there are total _2"° PE’s, as required by a complete CCC network. The number of

registers L depends on the BVM‘implemented Our BVM has L=256 registers.

Each of the group of PE’s (2° & ,...,2" & +5, ...,2" % +2" -1}, 0<¢ <29, form a cycle, thus
the address of PE 2" #i +3 can be represented alternatively as (i, j) with the first component
being the cycle pumber and the second the address within the cycle Within c;cle 1 PE (i. }) is
only conpected to its predecessor (i,(5 +Q-1)% Q)" and its successor (i, (j+1)%Q). In addition
each PE (i, j) is connected to its lateral neighbor (5 "27'5), the cycles are thus connected together.

The BVM is a bit-oriented machine. Only Boolean function operations are allowed. Each of
its instruction involves possibly register A and B and at most another register. Its instruction has
the form:

{AorR[jj}, B =1, g(F, D, B) {IF or NF} <set>;
Two assignment operations will be simultaneously performed by executing this instruction.

The first assigns f{F, D, B) to either A or R[)} the second assigns g(F, D, B) to B f and g are any

* As ic the C language(d., K, /, £. |, * are the modulo, integer division, and, or, and extlusive-or operstiont
respectively

N T —— " " \eana, |

Boolean functions of three arguments. F may be A or R[j;. D may be AN or Ri{j’.N. N denotes a

peighbor PE of PE (c, p). It can be:
S: successor PE (¢ ,(p +1)%Q);

P: predecessor PE (¢ ,(p +Q -1)%Q);

L. laterad PD{¢ 2%,
XS: even successor exchange PE (¢ ,p "2°;
XP: even predecessor exchange =P if p is even;
XP=S if p is odd;
1. input obe bit to PE (0, 0), PE (2° -1,Q -1) outputs one bit at the same time. All other PEs

get bits from their predecessors except PEs (., 0), which get bits from PEs (.-1, Q-1).

The {IF or NF} <set> denotes the activate/deactivate set. <set> is a subset of {0, 1, ...,
2"-1). IF <set> means all the PE’s (i, j), 0<+ <2° and je<set >, will be activated while the
remaining PE’s will be deactivated. The meaning of NF <set> is just the opposite. If the part

{IF or NF} <set> is not present in the instruction, then all the PE’s are activated.

There is a special register, register E. which is used as an enable/disable register. PE i will
be enabled or disabled according o whether its bit of E register is 1 or G. E register itself is

always enabled.

The value of PE's will not be aflected{except that of register E} if it is deactivated or dis-

abled.

For further details of the BVM, the reader is referred to 15}, [16].

8. Hypercube Algorithm

A hypercube connection petwork has been suggested [12] as a network for comnecting

together an array of PEs. The bypercube connection network connects PE x to any PE whose
sddress differs from x in exactly one bit. Thus a machine of 2° PEs will bave each PE connected

to # PEs. Since the hypercube network seems to be more regular than the CCC, and each PE bac

» >'
Ve
yo
28
»,
o

I ATt

............................

..................
..

more connections o other PEs, in many situations designing a hypercube algorithm is more con-
venient and straightforward than designing a3 CCC network algorithm. Unfortunately with n PEs
a hypercube petwork requires about nlogn /2 links. With a CCC connection only about 8n/2

links are needed.

An algorithm is in the ASCEND(DESCEND)!13; form if it consists of a sequence of basic
operations on pairs of data, where the addresses of the pairs differ successively in bit 0, bit 1, ...,
bit p-1 (bit p-1, bit p-2, ..., bit 0), here and henceforth bits are counted from the least significant
bit.

Preparata and Vuillemin showed in {13} that the ASCEND/DESCEND algorithms can be
executed on the CCC petwork fairly efficiently. Precisely speaking, thege hypercube network
algorithms can be simulated on 3 CCC at a slowdown of a factor of 4 o 6, regardless of the net-
work sizes. Thus designing an ASCEND/DESCEND algorithm for a hypercube, and transform-
ing it into a CCC dgorit.hl.n seems to be a reasonable way of designing an efficient CCC algo-
rithm. .

In the CCC the links connecting the lateral PEs are called highsheaves. Highsheaves
correspond to the high-order bit connections in the bypercube. The number of high-order bits is
Q. the number of bits of the cycle number. The lowsbeaves are virtual links in the CCC which
correspond to the low-order bit connections in the hypercube. There are r bits for the lowsheaves.

The lowsheaves connections in the CCC is formed by shuflling or unshuffling data inside eycles.

4. Several Important BVM Algorithms

Several important BVM dgor_ithms are presented bere..‘l'hese algorithms are useful in pro-
gramming the BVM. The cycle-ID and the processor-ID are the most basic modules which are
used in almost all BVM algorithms. Broadcasting and propagation algorithms handle the typical
datafiow patterns on the BVM. These algorithms or their adapted version are used to construct

the test-and-treatment algorithm. As we present these algorithms, we'll also discuss how to gen-

erate the control bits for these algorithms. Although these control bits can be precalculated, it

-~ ™ \\'\\\/‘-’—:ﬂ,"-i\\w,- .ﬂ-.._vr.'_".r“'r_l ‘-'-:—,'-‘.~.-_-'_'"' T Y - Ly ~ T e - - - - - o S

-9-

will save the precalculation time and the runtime storage when these contro} bits sre generated on
the fiy.
1. Cycle-ID

There are two ways of viewing the cycle-ID. The first is that PE (i, j) holds the jth bit of
cycle number i. Thus the bits heid by all the PLlis 1n cycle 1 form the cycie pumber i. in the CUC
petwork the latera! links correspond to the high-order bit links in the hypercube. The alternative
way of viewing the cycle-ID is that the bit of the cycle-ID PE i holds is 1 iff PE i is at the 1-end

of its lateral link. For the CCC with n=64 PEs, the cycle-ID is shown in Fig. 3.

PEO ¢ *r 0 r 0 1 0 1 € 1 0 1 O 1I O 1
PE 1 0 o1 1 0 6 1 1 0 o0 1 1 0 O 1 1
PE 2 6 0 o 0 @ 1 1 1 0 0 0 O 1 1 1 1
PE 3 6 0 6 0 06 0 0 0o 1 1 1@ 1 1 1 1 1
€ ¢ ¢ € ¢ ¢ ¢ € € ¢ € ¢ ¢ ¢ ¢ ¢
y ¥y ¥y Yy Yy Y Yy Y Y Y Y Y Y Yy Y
¢ . € € ¢ ¢ ¢ ¢ € € ¢ ¢ € ¢ ¢
11 r 1 r1r 111 1 1111
e e e £ e © e e e e € e ¢ e e e
0o o o 0 o 0 o o 0 0 1 11 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
Fig. 3.

the digit at cycle i and PE j represents the bit held by PE j in eycle i.

In [15] the following algorithm is given for generating the cycle-ID. The time complexity is

: O(logn).

"_t: cycle-ID()

{

» A=1]; .
A=Al /oinputabit0to PEO s/
for(i=1; i<Q; i++) {

A=A & AL;

- A=Al

» }

- for(i=1; i<Q; i++) {

g A=A & AL;

o A=AP;

), !

."- %"‘l. .'. ." ‘l‘ .-

-
.t U . L e T e . .
[PPSR I SRR, Y SRR L

1t e

s

PP
RSN

2. Processor-ID

The processor-ID is defined as the pattern of addresses such that each PE bolds its own

address. For 8 PEs the processor-ID is shown in Fig. 4.

P P P P P P P P
E E E E E E E E
¢ ¥ 2 & ¢+ 5 & 7
Rij © 0 o 0 1 1 1 1
Rli+1] 0 o0 1 1 o 1
Ri+2) 0 1 0 1 0 1 0 1
Fig. 4.

The algorithm for generating the processor-ID is as follows:

Processor-ID()

1. R[S]=cycle-IDX);
2. for(i=1; i<Q; i++) {
R(S+i)=R!S+i-1];
R[S+i]=R[S+i].§;
}
8. for(i=0; i <Q/2; i++)
for(j=0; j <Q; j++) {
if{i%2==0) R[S+j]=R[S+j] XP IF {e | i<e<Q-i};
else R[S+jl=RIS+jIXS IF {e | i<e<Q-i};
)

4. for(i=0, i<Q: i++)
for()=0; j<r; j++)
R{S-j-1i=bit(r-j-1, i) IF { i };
}
Recall that R[iiS, R(i]XS, R[i|XP are the R|i]'s successor, even successor exchange and
even predecessor exchange respectively. The function bit(p, q) is the p-th bit of q. The timing is
O(log’n). Here we give an example of the execution of the algorithm. In Fig. §, (i) is the pattern

created after the execution of the statement labeled i in the algorithm.
3. Broadcasting

The broadcasting algorithm is used tp brosdcast data from one PE to all the other PEs. In
[9] Nassimi and Sahni studied dats broadcasting on SIMD machines, here we only consider the
broadcasting on the BVM. This algorithm and the algorithms for propagation will be presented as

ASCEND bypercube algorithms, for the transformed BVM algorithms look muchk complicated and

S+1
S+2
S+3

S+1
S+42
S+3

§2
§1

S+1
S+2
S$+3

[% l: Il '! ‘l v'

g

0101
0011

§888

Broadcasting()

SENDER=0;
SENDER(PE|0])=1;

1000

1000
0001
0010
0100

1111

0101

0011
1111

for(i=0; i<m; i++)
forall PEjj;
if 1-END(PE|j), i) && SENDER(PE|j#i))

PE|j! = PE|j#i);

0100

0100
1000
0001
0010

1111

0101
0011

1111

-11-

1100 0010
1)
1100 0010
1001 0100
0011 1000
0110 0001
2
1111 0000
1111 0000
0000 1111
0000 0000
3
0101 0101
0011 0011
1111 0000
1111 0000
0000 1111
0000 0000
(4

1010

1010
0101
1010
0101

1111

1111

0101
0011
111

1n

Fig 5. An instance of n=64.

SENDER(PE|j)) = SENDER(PE|j#i]);

}

1-END(PE|j., i) is true when i-th bit of j is 1. For s 16-PE array, the broadcasting process is

shown in Fig. 6.

0110

0110
1100
1001
0011

1111
1111

0101
0011

1111
1111

1110

1110
1101
1011
0111

1111
1111
1111

0101
0011
1111
1111
1111

provide little insight into the algorithms. Let the total number of PEs be 2™ . Let j<i> denote
the i-th bit of j and j#i denote the binary pumber which is obtained by complementing the i-th

bit of j. The following algorithm broadcasts the content of PE 0 to all the PEs. '

SENDER is a register. SENDER(PE|0]) is the bit belonging to both register SENDER and PE 0.

1.

2. 0000 -> 0010, 0001 -> OOll,

3. 0000-> 0100, ©001-> 0101,
0010 -> 0110, 0011 -> 0111,

4. 0000 -> 1000, 0001 -> 1001,
0010 -> 1010, 0011 -> 1011,
0100 -> 1100, 0101 -> 1101,
0110-> 1110, O111-> 1111.

Fig. 6.
The algorithm is an ASCEND algorithm, thus O(m) time is enough to execute the

transformed algorithm on a 2™ -PE CCC computer.

To run this algorithm on the BVM, the control bits must be considered. The approach we
choose works as follows. First an arbitrary register SENDER in the BVM is chosen. Set every bit
of SENDER to 0 by using one instruction. Then input a bit 1 to the bit belonging to botb PE[0;
and register SENDER. Afterwards this bit will be broadcast in the instruction PE[j}=PE]|j#i],
and the content of register SENDER will be used to identify the sender. If the number of bits to

be broadcast is k, then the algorithm takes O(km) time.

4. Propagation

Propagation. refers to propagate data from one set of PEs to another set. We consider two
kinds of propagation here.

The PE group is the set of PEs whose addresses have exactly i 1’s. The first kind of pro-
pagation considered here propagates data from the N-PE group to the (N+1)-PE group such that
PE j in the (N+1)-PE group receives data from PE k in the N-PE group iff when. k<i>=1 then
j<i>=1.

Example:
N=2. For the 16-PE array, PE 0111 receives data from

PE 0110, 0101 and 0011. ¢

The algoritum is shown below:

.................

..................

Propagation]()
for(i=0, i<m; i++)
forall PE|j]
if SENDER(PE|j#i]) &£& 1-END(PE}j}, i)
PE|j} = COMBINE(PE|j], PE[i#i));
The time complexity 18 O(m). If the propagation needed requires data to iow through the
0-PE group, the 1-PE group, ..., the m-PE group, then the algorithm must be used m times and
the timing will be O(m?).

It might seem possible to enable all the PEs in the (N+1)-PE group, thus allowing the pro-
pagation to be done more naturally. However in many situations in which the algorithm is used,
data are propagated from the 0-PE group to the 1-PE group to the 2-PE group,..., to the N-PE
group, but initially no PE knows which group it belongs to except the PE in the 0-PE group
which is PE 0. Thus a PE in the {(N+1)-PE group will know that it is in the (N+1)-PE group
from the fact that the nn;lc'r il.in the N-PE group and it itself is at the 1-end of the communica-
tion link. Certainly one ean gener.au the processor-ID and count the number of 1's ib it to decide

to which group each PE belongs, but that involves more overhead.

Another kind of propagation requires data o propagate from the N-PE group to the M-PE
group, where without loss of generality we assume N < M. PE k in the M-PE group will get the
data from PE j in the N-PE group such that if j<i> =1 then k<i>=1.

Example:

M=3, N=1], for the 16-PE array, PE 0111 will get data

from PE 0001, 0010, 0100. %

Though the first propagstion algorithm may be used for this purpose, it is relatively slow.

Tbhe alternative way to do it is shown in the following example.
Enmple:

p=4, dats will propagate from the 1-PE group to the ¢

PE group.

OO R AARC R Y MR A SRR S A A A AL A A G A S ek Melh Pl A An s Aol e R hecaie - S e B
Initially data are in PEs 0001, 0010, 0100, 1000.
1. 0001 does not transmit. 0010 -> 0011, 0100 - > 0101, 1000 -> 1001.

2. 0001 -> 0011, 0011 does not transmit, 0101 -> 0111, 1001 -> 1011, 0011

combines the data coming from 0001 and the data inside itself.

0011 -2> Giii, 0111 does ot trauswii, 31Gii ->> 1iii, 0111 cowbines the

[2]

data coming from 0011 and the data inside itself.

4. 0111 -> 1111, 1111 does not transmit, it combines the data coming from

0111 and the data inside itself. #

Now we shall discuss the generation of the control bits. We use one bit in each PE to indi-
eate if it is a legal sender. Only PEs with this bit set have the right to send. In the sending pro-
cess the sender will not discard this bit. The receiver acquiring this bit will become a legal sender.
If the receiver gets two b.it.s from two senders, it must combine the data and the contro! bits
(using a logical or opention). Notice that this is different from the scheme in the propagation of
the first kind, since bere immedis;ely after the receiver gets the data it becomes a sender. In the
propagation of the first kind, s sender or a receiver remains the same until all the PEs in the {i +

1}+PE group have been connected to the PEs in the i-PE group.

Initially PEs in the N-PE group are identified as senders. Only PEs in the ﬁgber PE groups

- can get dau'from lower PE groups. To contro] the direction of the dataflow on the BVM the

3 cycle-ID should be used.

The algorithm is as follows :

Propagation2()

for(i=0; i<m; i++)
forall PEjj):
if SENDER(PE[j#i]) && 1-END(PE}), i)

PE[j} = COWINE(PEFJ'). PE[j#i]):
SENDER(PEj]) = SENDER(PE|i#i});
}

...........

. ® . .
.......

5
ARSI SRS

CASL A At G A Sk el Pl S i Al ‘V‘f‘vﬁ“‘f‘v"ﬂ"'v*r\"‘_"q

Pao® a

S e L N R N R R N T T T T v
-15-
The timing is O{m)=0(logn).
§. A Paralie! Algorithm for the Test-and-Treatment Problem

In actual computation we’ll assign an array M(S, k| to calculate C(S):
MSjl=tp(SHC(SAOT)+C(S-T;)0<i<m, and M|S s|=4;p (SHC(S-T;)m <i <N,
therefore i

C(S)=min {M|S,i]|0Si<N}.

The paralle] algorithm is given below:

TT(S, T, P, t)
{
foreach i: 0<=i<N do {
TP|S,)=t (S) if #S > 0,
. 0, if #S =0,
M(S i) = |INF, stheruwiae.
}
for(j=1; j<=#U; j++) {
foreach (S, i): U D S and #S=j and 0<=i<N do {
M|S i|l=M|S-T;.s};
M[S }+=TP|Si};
if(i <= m) M[S,i]l+=M{SOT:.i];
}
foreach (S,i}: U O S and #S=j and 0<=i<N do
M|S i]j=min(MiS,z]| 0<z <N}
)
}

#S in the algorithm denotes the size of set S.

Note that the conditions S (M} T, 9€¢ and S-T7; 9€¢ will be taken into account automatically.
If S(\T;=¢ and T; is a test, then S-7;=S. Since § is initialized to infinity(INF), we have:

M[S,i]=4p(SHC(SOT; +C(S-T;)=t p (SHC(S)=INF.

So it will be excluded in the minimization or C(S) will be INF depending on whether or not
there is a M{S,ji such that M[S,j'<INF. The same reasoning applies if 7; is a treatment or if
S-T;=¢(then SMT;=S).

The j-loop is needed because when we calculate M|S,i} we should have all the C(SMT)

e R S S SR S L Sy SOy i, Uy, Syt Pt NN PP DU 0 A O 0 ey

and C(S-7;) available.

6. The ASCEND/DESCEND Algorithm

Can our parallel TT algorithm be transformed into the ASCEND/DESCEND form?
Observe that if we assign 8 PE to each (S, i) pair then M(S,i] and TP[S,i] are placed at the
different sections of the same PE, thus the instruction M[S,i} +=TP|S,i] can be executed in paral-
lel by all PEs at once. However the instruction M [S,i =M [S-T;,i] , M(S i]+=M [sr"T. |
and the minimization require communications between different PEs.

The minimization part of the algorithm can be transformed into the following ASCEND

form:

for{t=0; t<log N; t++)
foreach(S,i): U 2 S and #S=j and 0<i <N do
M|S,i]=min(MS,i], M;S, igt]); :
where ig#t is the binary num.ber obtained by complementing the t-th bit {from right) of i.
Suppose N =27 (otherwla we let Ty=Ty,=..=T, ,=U and all of them will be
trestments with cost INF), after executing M(S,i|=min(M(S.i], M|S,i#0]),
M:S,jl=MIS j+1]=min(M!S,j’. M{S,j+1]), where j=0, 2,..., N-2.
Assume after executing M[S,i’=min(MS,i!, M[S.i#(q-1))):
M{S,)|=MS,j+1]=..=M!S j +2'-1]=
min(M|S,j|, M[S,j+1],..., MIS,y +2°-1]),
for j: 5 /2'") is even.
After executing MIS,ij=min(MS,i], M[S, ifq)) MiS,jl=NI[S j+2! J=min(M(S,j}, MIS,j+2*]),
I’or' i 3)/(2') s even and O<j<N. By induction we know ‘now:
MS,jj=M]S,j+1}=_..=M][S,j+2! *'-1}=min(MS,j], MiS,j+1],..., M[S,j+2* *!-1].
Let q=p-1, all the PEs associated vith. set S will get the minimum value. Fig. 7 shows an

example with p=3.

Now consider the instruction:

.. L

2 [* R PR oS S e ST P S S S S e T S L S B PR . - . . & (SR S]
.“I.‘ at e > ny, * LIV T SN -q‘ 2., -%e L R e L P YR ST TRAC R W O _.-...-_‘n.‘\-.._.. L e Lt
AT T it A T gt e R Y I O M A S R S R Sy SR T I

[
(-]
o«

initial value | t=

0 5
1 1
2 6
3 2
4 3
5 4
6 0
7 7

-

OO WL N N e e
O OO O s st bt b
o0 CCO0O0COOC

foreach (S,i) M!S,il=M|S-T; 1].
Can this operation be transformed into the ASCEND/DESCEND form?

Let us begin by expanding it into its component operations as follows:

foreach (S,i) do {
RIS{j=M[S-T; i);
MIS.i|=R|S,i};
} .

This emphasizes t.hat.'if a unique PE bolds each element of M[S,j], some communication
between PEs is needed. The vur;able R is introduced to handle the possibility that the PEs
involved are not in fact neighbors, so that each item of information must be passed along a chain
of PEs before it reaches its destination. For simplicity, we also assume that R{S.i; is located some-

where in the memory of the same PE that also holds M{S,i}, for each distinct pair (S,i).
Consider now the operation

R[S, i|J=M|S-T;).

For each S and i, this operation is well-defined, since the set S-T; is uniquely determined
by S and 7;, thus ensuring that each PE which receives inforn;ation during this activity receives
information from only one PE. However, the converse is not true: a given PE may send its infor-
mation to several others, as the example shown in Fig. 8.

Thbus M [¢,i] will send its value to R [#,s], R[{0},i], R[{1}.i] and R[{0,1},i], and M[{2}.i]

will send its value to the other four PEs. In geperal, M [S-T;,/] must be broadcast to

R{(S-T;)U".n'], for each V such that SMT;2V. The following loop sccomplishes the

:

L.‘
l"

:

» .

B
0

U={01,2}, T={0.1}.

IfSis STis:
¢ ¢
{0} ¢
{1} ¢
{1,0} é
{2) {2}
{2.0) {2}
1} 1)
{2.1,0} {2}

Fig. 8

required broadecast, for all i, 0<{ < N:

R[S,il=MS,i];
for(e=0; e<k; e++)
foreach (S,i): U 2 Sand 0<¢ <N and e ¢S 7T; do
R[S,i]=R[S-{e},i;
M]S,il=R]S,i);

Continuing the previous example, Fig. 9 shows the value of Q. just after the e-th iteration

of the loop.

S ' e . 0 1 2

¢ é ¢ ¢ ¢

{0} {0} é ¢ ¢

{1 {1} {1} o ¢

{1,0} {1,0} {1} ¢ é
{2} {2} {2} {2} {2}
{2.0} {2.0} {2 {2} {2}
{21} {21} {21} {2} {2}
{2,1,0} {210} {21} {2} {2}

Fig. 9.

Let ;={yeU | <t}, then just before e takes on vale t, R(S-T;) (SO T: N i) 1]
bolds M |S-T;,i]. For this is true initially, before e takes on value 0, since J_;=¢, and
R{S-T;,i] holds M |S-T,,i]. Assuming the statement was true before ¢ was set to t, the loop
body, executed with e set to t causes certain elements of array R to change in value. Specifically,
whenever teSMT;, R[S,] is npl;céd by R[S-{t},i]. Suppoee (TSMT; then

SOATNL=SAOTiNh-1. and RS-\ HSN T)i).¢] is unchanged, and beld M [S-T; i

prior to this execution of the loop body, by the inductive assumption. Suppose instead that

.19 -

teSMT,. Then RI(S-T)NJ(S MO T: /i)1 is changed to this iteration of the loop.

v

R

. K
1

Since XL =(XL)UX 1) ad teSOT, SOTAL=SAT Aot}
Because teSMOT:, teT;. thus tesS-T;, and
(S-TOUSATIAEHO=S-TOUSATAT), by the inductive assumption,
RIS-TONESNOT M) =M iS-Tii]. Hence, aiter the assignment,

R(S-T)N(S AT) I=M[S-T; i] also.

Finally, after all iterations of the loop on e, I, =U, and SNOTiNL=SNT:. Thus, for al

Sandi RS 1=MiS-T; il
Similarly, the operation

if (1 <m) M[S,l']+=M|5nT,- Ky
can be resolved into:

QIS.i|=M[SNTisl;
if(i <=m) M[S.i]+ =Q'S\i};

Again, concentrating on the operation R|[S,i|=M (S nT" 4], we observe that value
M[SMT,.i] can be broadcast to each PE holding Q [V J(S(MT:).i], for every V such that

S$-T7, 2 V. By symmetry with the previous argument, the following loop performs this operation:

QISil=MS,;:
for{e==0; e<k; e++)
foreach (S,1): U D S and 0<i <N and ¢eS-T; do
QiS.ii=QIS-{e},i];

The complete algorithm now appears as:

A% ARRDCOR: | SO ol Skl
NS R e, A

v
D)

-F ‘

A AR .-Y. v

e 0 Gt e AR
.

h 4
[}

- - e - -y
e MRCANMAS AN NNL JOCA

-
3
AT o L e e e L e e e e ettt A ek e e ettt e e e N
--
QP N PUREAT At T ety e e e Tt T T e e e e e e e e R S R R A R

RAARCASRC ARl ARt Sl aaary i e Afa 4 4 S G- dua Se & b shhe San 4o e o -
. . - DS i Y - . . \Y - Bl K C'_.'.- w\".'.. Ty .‘-'."'." A el Al St it At an Seve g At gile aed and o . L2 A i o gt |

TT()
{

foreach i: 0<=i<N do {
if(#5>0) TP[S.ij=t; * ()
M{¢'I)=0:

if(#5>0) MS,i|=INF;

} .

for(i=1; j<=k; j++) {
foreach (S,i): P,(S,f) {
QIS,ij=R[S,ij}=Ms,i];

for(e=0; e<k; e++) {
foreach (S.i): Py(S.7) and e eSMT: {
RiS.i!=R[S-{e} ,i];

foreach (S,i): P(S,i) and ¢ eS-T; {
QS.i=QIS-{e}i]:
}

}

foreach (S,i): P(S,i,j) {
M;iS,i!=RiS,i};
M[S,il+=TP[S,i);
ifli<=m) MiS,ij+=Q|S,i};

for(t=0; t<log N; t++)
foreach (S.,i): P(S,i,) {
M’S ii=min(M;S,i| MIS,i#t]);
}

}

}
Where Py(S,7)=U 28 and 0S¢ <N, and P(S,i5)=P,(S,i) and #S=j.
7. lmplementation Schemes
On the BVM each PE will stand for a pair (i, j), where i and j are binary numbers and ij,
the concatenation of i and j, is the address of the PE. i, tb; ;iumber of bits in i, is k. The com-
ponent i denotes a subset Sof U,a ¢ Siff a-th bitofiis1.jis t.l;e index of a test or a treatment.
Example:

k=4, PL 011011 stands for (6110, 11), the set S denoted

T e q A 2w w2 2 Sin o8 o ————

by i is {1. 2}, the index number of the test or the treat-

tud
[l

Lt

ment ks 3 #

Ry

"}"‘

-

v.l
L

R
.

.............................
.......................

1

> Ralhsy

‘I

- v w - -

- Y T T YL T T AR AT S i o IR e LR A
. . PERCTRFI A . .
. . P ol -

r - - T
A . .
v 5 i Lo

A A
r‘l.!.? »

»

. Sy,

FLESE AR

CAfu A BASLEie Sl S At S-S Me: A0 AT - Aes fe AN Shte S AMa As e Sban b b 0 i S T e Sa - Bl o)
S ARAN AN AN PR PR AN A - iy
. S - PN . Al Aal e

L A Sha Sans Sae Seae Juge

The activate/deactivate mechanism is very convenient, unfortunately it can oply provide
limited masking capabilities. The enable register can provide any kind of enable/disable patterns,
but generating these control bits is difficult. Here we show bow these control bits are generated

and how the algorithm is implemented by using the algorithms introduced in section 5.

The predicates ¢ ¢S T; and ¢ ¢S-T; can be implemented by using the processor-ID. The
processor-ID bits will let each PE know the set S it represents. T; should be input to the BVM.
The most interesting part of the algorithm is the loop indexed by the variable e. The technique
used bere is the one we introduced in the propagation algorithm. Note that by imposing the con-
ditions eeSMT; and eeS-T; the result becomes R[S, i]=R([S-T;,¢] and
QIS,ij=Q[SMTi.,f]. The dataflow is controlled by the predicate e¢¢SM7T; and ceS-T,.
Because each iteration of the loop indexed by j will increment the size of the sets #S by 1, the
predicate P(S, i, }) can be implemented by using the propagation of the first kind. The cycle-ID

will be used in the propagation algorithm.

8. Conclusion

Many NP-complete problems can be solved on the BVM fairly efficiently, as we illustrate
using the test-and-treatment problem. Indeed, the test-and-treatment problem itself is of real
interest as it has many important applications. A paraliel algorithrn for this problem is presented

and implemented on the Boolean Vector Machine. The communication problem and the PE allo-
cation problem have been solved so that a speedup O (l_o:—p) is achieved. Algorithms used in con-

structing the test-and-treatment algorithm have also been presented and reveal in some degree the

different methods of programming serial and paralle! machines.

References

(1] Garey, M.R. Optimal binary identification procedures. SIAM J. Appl. Math. Vol. 23, No. 2,

Sept. 1972. pp. 178-186.

[2 Garey, MR. and Graham, R.L. Performance bounds on the splitting algorithm for binary

3

4]

[8;

l6}

LX

fs,

o,

(3,

4]

hs;

-92.

testing. Acta Informatica 3, 347-355(1974).

Hyafil, L. and Rivest, RL. Constructing optimal binary decision trees is NP-complete. Inf.
Process. Lett. 5, 15-17(1976).

Kamin, ED. A parallel algorithm for the knapsack problem. IEEE Tran. comput. Vol. C-
23 No. 5, Meay 1084 pp 404-408

Kernighan, BW. and Ritchie, DM. The C Programming Language. Prentice-Hall (1978).

Loveland, D.W. Selecting Optimal Test Procedures from Incomplete Test Sets. Proc. First

Int. Symp. Policy Anal. Inf. Sci., pp. 228-235. Duke University, Durham, NC, 1979.

Loveland, D.W. Performance Bounds for Binary Testing with Arbitrary Weights. Acta

Informatica 22, 101-114(19885).

Mead, C. and Conway L. Introduction to VLSI systems. Addison-Wesley(1880). pp. 305

313.

Nassimi, D. and Sahni, S. ‘Data Broadcasting in SIMD Computers. [JEEE Trans. Computer,

Vol.C-30, No. 2, Feb. 1981.

Nassimi, D. and Sahni, S. Paralle] Algorithms to Set Up the Benes Permutation Network.

IEEE Trans. Computer, Vol. C-31, No. 2, Feb. 1982.

Payne, RW. and Preece, D.A. ldentification keys and diagnostic tables: a review. Jour. of

the Royal Stat. Soc. (Series A) 143(3), 253-242 (1980).

Pease, M.C. The indirect binary n-cube microprocessor array. IEEE Trans. Comput. C-26,
5 (May 1977), 458-473.
Preparata, F.P. and Vuillemin, J. The Cube-Connected Cycles: A Versatile Network for

Parallel Computation. CACM 24,5 (May 1981), 300-309.

Schwartz J.T. Ultracomputers. ACM Trans. Programming Languages and Systems, Vol. 2,

No 4, (Oct. 1980), 484-521.

Wagner, RA. A Programmer’s View of the éoolnn Vector Machine, Model-2. CS-1981-8,

Dept of Computer Science, Duke Univ., Oct. 1881.

A AN L AR A S A MR EAE AR MDA SR T CI R LA AR A R T -

.923.

16, Wagner, RA The Boolean Vector Machine BVM.. IEEE 1983 Con!. Proc. of 10-th Ann.

International Symposium on Computer Architecture, pp. 59-66.

.
,
S R I I N R N i T TUE G RV O AR AL NS R AR LRI AR LAY VSR L
A AP IR Bk Y \ ., O) '.. X% R AR) LA IS SR " - ‘ ' .n“‘ l‘
A RS W . T AP o W W 2 J_-_-LAJ;‘L.LALI Lﬁ\. M&;uﬁkhﬁ;&;‘ W ..h \

DTIC

B Rt sat Smst abr e madi el oy Sy
'-'%‘ . et Lt et

- .
»

»* .
L)

B R T A T T R T T o o A T v T R R R T N T N . . W Wl Tl Wi LT a e ™ b e W e S

b

