
0-12 £41 FXNOING TEST-RND-TRERTMENT PROEIIS IN PAALI Uj

COMPUTATION(U) DUKE UNIV DURHAM NC DEPT OF COMPUTER
SCIENCE L D DUVAL ET AL. OCT 85 CS-1995-23

UNCLSSIFIED RFOSR-TR-85-1049 RFOSR-83-3265 F/O 12/1 ML

Ils

- ~r% '2.8. -2.5

Q11 1.02 12.2
_1.8

11111!=25*24
1111- 11 116I

MICR~OCOPY RESOLUTION TEST CHART
N~ATIONAL 8SOAEAU OF SANDAROS 1963 -A

.,,,

..

a -h-1R 8 - 1 049 2.L GOVTf ACCESSIO

4. ITE (ndSimals)AD-A 162 141
Finding test-and-treatment procedures Technical paper
using parallel computat ion S. PERFORMING 014G. REPORT NUMBER

7. AUTHOR(s) I. CONTRACT ORt GRaN T NUMUeav'.):
L. D. Duval, R. A. Wagner, Y. Han, D. W. Loveland AFOSR 83-0205

9. PERFORMING ORGANIZATION NAME AMID ADDRESS SO. PROGRAM ELEMENT. PROJECT. TASK

Computer Science Department AE OEUI UBR

Duke University 030 V
Durham, North Carolina 27706

It. CONTROLLING OFFICE NAME AND ADDRESS 12I. REPORT DATE

C-4) October 1985
12. NUMBER OFPAGES

14I. MONITORING AGENCY NAMIE IS ADORESS(II 4101110inrt hti C611191111ilk. Ofic) 23 EC RT CLASS. (Of mid. Uopon)

Air Force Office of Scientific Research UPIAS f
Air Force System Command Uri_____________

Boiling AFB ISAL DECASIiICATIN/00NGRAONmG

Washington, DC 2032
16. DISTRIBUTION STATEMENT iftsfble Apart)

Anroved for rv'cr~~~

17. DIST OttBUT ION ST ATEMNT (of 0o abstract onted M la~ck "~,I 401arl hvifm Xeit)

18. SUPPLEMENTARY NOTES

* Submitted for publication

It. KEY WORDS (Csmtinue an revers side of twocesswr are Idenitif~ 6,? btlck

Parallel algorithms, NP-hard problems, complexity

20. ABSTRACT (Conthnmaa ,evwea e It nocesy and Identify by bleck mmber)

A parallel algorithm for the NP-hard problem test-and-treatment is

- presented for a machine whose number of connections is 2- It where p is the

LL.j number of processing elements (PEs), and where the PEs are simple enough such

___20 230 PE machine is
L.-. that a machine with 2 PEs is currently implementable and2

DD JAN7s 1473 EDITION *I I1Mev 65 is OBSOLETE

20. Abstract continued

feasible. The speedup of O(-oop) is realizable because we are able to transform1 ogp

the dynamic programming solution into the ASCEND/DESCEND scheme with
considerable attention to the communication problem. This algorithm is realized
on the Boolean Vector Machine, a fully designed cube-connected-cycle system
wvhee processor allocati'n and ther control issues have been f-ced. The partI''1-
lar NP-hard problem is of independent interest; it generalizes the binary testing
problem by introducing treatments on an equal basis with tests. Applications of
this test-and-treatment problem are found in medical diagnosis, systematic biol-
ogy, machine fault location, laboratory analysis and many other fields.

V v
.7

REPRODUCEb AT GOVERNME NT EXES

DISCLAIMERNTIE

NUDSCIEROPGSWIHD NOTC

REPRODUCE LEGIBLY.

CS-1985-23

"indlng 'rest-and-Treatment vroceoure.1, Using
Parallel Computation

Louis D. Duval
Robert A. Wagner

Yij ie Han
Donald W. Loveland

Department of Computer Science
Duke University

_AcCessi°n For

NTIS GF.kl

D7IC T; -

Ju .t *- :

Ki DistributIon/
Avali .dit'f Codes
,- iA- i.~ L8id/or

DlsA rx Ypctal ,",

Approved fr pb2 C release
d i nt ri j-.t ion n l.,

12 6 0

Finding Test-and-Treatment Procedures Using Parallel
Computation

Lous D. DavaI
Rebert A. Wilmer

Department of Computer Science
Duke University

Durham, NC 27706

ABSTRACTe

Aparallel ag tmfor the NP-hard problem teak-and-treatmntw iag
presented for a mach ze whose number of connections is #., iwbiepsth

number of processing ehezenta(PtEs), and where the PEe are imile enough such
that a machine with 20 PEs is currently implementable and 2*'PE machine is

feasible. The speedup of Oe(Z -)is realizable because we ame able to transform

the dynamic programming solution into the ASCEND/DESCEND scheme with
considerable attention t9 the communication problem. This algorithm is realized
on the Boolea= Vector Machine, a fully designed cube-connected-cycle system
where processor allocation and other control issues have been faced. The particu-
Jar NP-hard problem is of independent interest; it generalizes the binary testing
problem by introducing treatments on an equal basis with tests. Applications of
this tet-and-treatment problem are found in medical diagnosis, systematic biol-
og7 machine fault location, laboratory analysis and many other fields.

% ~Index term-- - Parallel algorithm, NT-hard problem, complexity.

* October 3, 1985

* * Work reponed herein is partially supported by tbe Air Force under grant sumber AFOSR 31-02l sad
* AFOSR AS&020&

Finding Test-and-Treatment Procedures Using Parallel

Computation

Robert A. Wayner

Yijie Ron

Donald 1W' Loveland

Department of Computer Science

Duke University

Durham, NC 27706

* 1. Introduction

The test-and-treatment problem originally defined by D.W. Loveland is a generalization of

the binary testing problem studied by many researchers(see 111U2][117]I11i). This problem is of

independent interest since it finds applications in medical diagnosis;, systematic biology, machine

fault location, laboratory analysis and many other fields. A parallel algorithm for this problem is

presented which is implemented on the Boolean Vector Mbachine(BVM), a machine formed by con-

necting mnany tiny PEs into a cube-connected-cycle network. The PEs are so small that a machine

with 220 PEs is implementable using current VLSI technology, and even 2" PE machine is feasi-

ble. By handling the communication problem carefully we are'.ble to transform the dynamic pro-

gram solution into the ASCEND/DESCEND scheme. This solution to the communication problem

and a careful algorithm design for generating control bits solves the PE allocation problem. As a

result we are able to achieve 0 (2)speedup on such a machine with only k connections
logp .2

* *Work reported hertin is partiaUl) supported by the Air Force under grant numuber AFOSR 814221 and
* AFOSR M3-0204.

IF - X. -.

-2-

among p PEs.

It has been shown[3][6 that finding optimal solution to the binary testing problem is in gen-

era) NP-hard; that is, no polynomial algorithm on sequential machines is known. Since the test-

• . and-treatment problem generalizes the binary testing problem, the test-and-treatment problem is

also NP-hard. With the development of VLSI technology Parallel machines with thousands and

even millions of processing elements(PEs) will be available. It is now practically possible to speed

up the computation considerably by trading huge number of PE for speed. Solutions to the NP-

complete problems on parallel machines have appeared in the literature[41181. Parallel algorithms

L T,
are considered to be good if the speedup S=- achieved is equal or close to p, where T is the

time complexity of a parallel machine with i PE. It is especially of practical interest when these

algorithms can be implemented on 'practical" parallel machines efficiently, mince PE allocation

problem must be taken into account and communication between PE. must be handled carefully.

In this paper we present a parallel algorithm approach to the problem. The Boolean Vector

Machine(BVM) (In] is the parallel computation model we have chosen, a model that uses the

Cube-Connected-Cycle(CGC) 113j structure. For the BVM, each proceming element(PE) of is con-

nected to three other PE* by a oDe-bit wide connection path. It has been estimated that a BVMI

with 2s' PEa is feasible. Such a huge parallel machine could be used to solve moderate-sized NP-

. complete or NP-hard problems. The time complexity and proeeor complexity of the TT algo-

rithm on this machine model are respectively O(kp (k+lo#N))" and O(N 2'), where k is the size

of the universe which is a set of objects containing the malfunctioned one, p is the precision

required, N is the total number of the tests and treatments;available. This result represents a

speedup of 0(,---) with regard to the known sequential algorithm which could be obtained by

%ogjP

modifying the backward induction algorithm given by Gareyjl]. The logp in the speedup is

accounted for the communications needed among the PEs. As can be shown by a simple fan-in

argument, rl(k +IogN) time is required for the communication among 0 (N2') PEA. Considering

* 14gr;tbms m tba papet are to the but 2

-"',..:,.. - ." " . ." .". ." .,,,*' **' .' ." :"*" - .- -:-... : -* .. . * :

-3-

that each PE in our machine has only three links to other PEa, this logp factor is quite reason-

able

Of particular interest here is the fact that O (---) speedup is shown for a machine so sim-

log,

pie in structure that the number of PEa on the order of 2" (- I) is feasible. For 2m PEa, approx-

imnately 15 elements(say, disease candidates) could be processed in parallel (assuming worst case

possibilities) to find the best treatment for the true disease even if all possible tests and treat-

*" ments were available(i.e. N O(2'). A speedup of roughly 106 could thus be realised over a

sequential processing of a test-and-treatment problem with 15 candidates. (This allows for the

parallelism of 64 bits that a sequential machine might possess.)

Our algorithm was designed to optimize performance for relatively few tests and treatments,

e.g. N-=O(k'), for fixed b. Other approaches are reasonable if N=O(2') is commonly used.

We note that a few more e.lements, e.g. 20, can be processed in parallel if N=O((), say.

The tet and treatment problem requests the selection of a minimum test .and treatment

procedure under an expected cost criteria. The problem arises whenever a fault (disease, system

malfunction) must be treated. The classic example is medical diagnosis and treatment, but other

.- applications also are important, such as computer system fault location and correction and logisti-

cal system breakdown correction. In general, the problem exists whenever a sizable population of

complex objects (people, ships, computers) must be maintained at reasonable cost.

The problem specification consists of a universe U {0,1,...,J-i) of k objects, each with

an associated weight Pi, and a set of

T,, 1< i <: N,

tests and treatments, each with an associated cost. The Ti, 1 1 i < 9, denote tests, and the

Ti, m < i < N, denote treatments. We assume that only oce object is actually faulty, its

" identity is unknown, and each object i has a priori likelihood Pi of being the faulty object. Each

*. test and treatment is specified by a subset of the universe; if the unknown object is in the test or

treatment set then the test responds positively, or 'is successful", or the treatment is successful.

* If the test is successful, one eliminates the other objects from -consideration (and if negative, one

" - " '. ".... . -- -"" ." - .* " V -. * -*- " - - -
• *J.*.

;- -4-

* eliminates the test set of objects), while a successful treatment ends the procedure. A failed treat-

ment means the processing must continue. A successful TT procedure must provide for each

* object to be treated; a TT problem specification is adequate if there exists a successful TT pro-

.. cedure. With each test and treatment T, a cost . of executing that test or treatment is given

with the problem specification.

From the above description we see that a TT procedure is a binary decision tree, with both

test and treatment nodes. A typical TT procedure is given in Figure 1, where the single arc is

used for both test outcomes (the positive outcome to the left by convention) and a treatment

failure, and the double-line arc denotes a treatment set. (The double arc is for emphasis only

since every branch of a successful TT procedure must terminate in A treatment set.)

T3 T4

" /\ /\\
* / \/I\\

To T 6/T,

/\
To T-

U-{10,1,2,3,4,5), Pi =1/6 for al i,
TI-2, TrV-},4, Ts==0,1, T4=0,11,3

T&-4, T4=012. T-=5, m =3
.=l for all i.

Fig 1.

The TT procedure Tree has an expected cost defined as follows:

Cost (Tree) - (cost of all tests and treatments
iy

encountered if i is the faulty object)- Pi

The desired solution is the procedure whicbhminimises this cost. Thus

C"t m min Cost(Tree).
49/ greet

,-5.

Rather than enumerate all the possib? TT trees and take the minimum cost directly, we

use the approach of dynamic programming and note that the optimal tree must apply the

minimum cost action (test or treatment) to already optimal subtrees. The optimal subtrees are

obtained by beginning with one-object trees and combining trees as just described. For each one-

object set S of objects we compute the cost C(S) of the minimum T7 tree as follows:

C(s)= min (4,.Ps))

where p (S) = Pi for = (j). There is only a treatment component for one-object sets since

the set cannot be split. (Note that we have not normalized the set of weights, so technically these

are not TT problems themselves). For an arbitrary non-singleton set S of objects we compute the

cost C(S) Ws folows:

c(s)= min,, mi (tsp(s)+ c(s n Ti) + C(S-',)),

mi (t,(S) + C(S-T,)).

where p (S) =
tJis

This definition is from first principles: the value t,. is charged to each object subject to that

action and the total weight of those objects to be charged is p(S). For tests, one adds in the cost

C(s T,) of the sets f 7'T to which the test responds positively (the test set) plus the cost

C(S-T,) of the set S- Tj of objects not responding to the test. Treatments terminate Action on

the objects of Ti, m < i < a, (i.e., treat them) so the only objects needing further action are

the objects in S-Ti; we add in the cost C(S-T). The essence of an argument by induction that

C(S) is correctly computed uses the assumption that C(S h- T) and C(S-T) are the correct

costs for the subtrees and then we note from the above description that the correct minimum is

taken to compute C(S).

2. The Boolean Vector Machine

The BVM is a COC parallel machine. It is a typical ultracomputer[14]. Since the BV"M

communication network resembles the Benes permutation network, it can accomplish any permu-

*' tation within O(log n) time if the control bits are precaIculated 110:!13' Logically the BVM can

, be viewed as a bit array shown in Fig 2.

P P P P P P P P P
SE E E E E E E E E

0 1 2 3 4 5 6 7 8
Reg. A x x x x x x x x x
Roov v f x ...

Reg. R[IO x x x x x x x x x
Reg. R[1] x x x x x x x x x
Reg.R121 x x x x x x x x x
Reg. R13] x x x x x x x x x
Reg. R14' x x x x x x x x x
Reg. R151 x x x x x x x x x
Reg. R[6 x x X x x x x x x

Fig. 2.

Each row of the bits forms a register. Each column forms a PE. Let r be a positive integer

and Q =2', there are total 2' PEs, as required by a complete CCC network. The number of

registers L depends on the BVM implemented Our BVM has L=256 registers.

Each of the group of PE's (2' e ,...,2" e,.+j, ...,2' "s +2'-1), 0<i < 2
Q , form a cycle, thus

the address of PE 2' i+j can be represented alternatively as (i, j) with the first component

being the cycle number and the second the address within the cycle Within cycle i PE (i. I) is

only connected to its predecessor (i,(j+Q-I)%Q)" and its successor (i, (j+l)oQ). In addition

each PE (i, j) is connected to its lateral neighbor (i 2ij), the cycles are thus conpected together.

The BVM is a bit-oriented machine. Only Boolean function operations are allowed. Each of

its instruction involves possibly register A and B and at most pnother register. Its instruction has

the form:

{A or Rjj}, B = f, g(F, D, B) (IF or NT) <set>;

Two assignment operations will be simultaneously performed by executing this instruction.

The first assigns f(F, D, B) to either A or Rjj], the second assigns g(F, D, B) to B f and g are any

* As it the C ianguagel'. , /, &. j, art the modulo, isLeger divisiov. ud, or, Lnd exclusive-or opersiont
respectively

U

7-

Boolean functions of three arguments. F may be A or R[j'. D may be AN or R'jl.N. N denotes a

* neighbor PE of PE (c, p). It can be:

S: successor PE (e,(p +I)%Q);

P: predecessor PE (c ,(p +Q -1)%Q);

XS: even successor exchange PE (c ,p ^2);

XP: even predecessor exchange XP=P it p is even;

XP=S if p is odd;

I. input one bit to PE (0, 0), PE (2 Q -I,Q-1) outputs one bit at the same time. All other PEs

get bitz from their predecessors except P& (., 0), which get bits from PE (.-, q1).

The {IF or NF) <set> denotes the activate/deactivate set. <set> i a subset of t0, I,

2" -1). IF <set> means all the PE's (i, j), O<i < 2
Q and je< et >, will be activated while the

remaining PE's will be deactivated. The meaning of NT <set> is just the opposite. If the part

(IF or NF) <set> is not present in the instruction, then all the PE's are activated.

There is a special register, register E. which is used as an enable/disable register. PE i will

*" be enabled or disabled according to whether its bit of E register is I or 0. E register itslf is

* always enabled.

The value of PE's will not be affected(except that of register E) if it is de4ctivated or di.-

abled.

For further details of the BVM, the reader is referred to.15], 1161.

3. Hypercube Algorithm

A hypercube connection network has been suggested 112] as a network for connecting

together an array of PEs. The hypercube'eonnection network connects PE x to any PE whose

Saddress differs from x in exactly one bit. Thus a machine of 2' PEas will have each PE connected

to s PEe Since the hypercube network seems to be more regular than the CCC, and each PE ha

v..

. .-.................. ,.............,.....,.............. ,.. ,..., ,..-.,. ,.,.,,,-,,. , ,..

more connections to other PEs, in many situations designing a hypercube algorithm is more con-

venient and straightforward than designing a CCC network algorithm. Unfortunately with n PEs

a hypercube network requires about a logn /2 links. With a OC connection only about Sn/2

links are needed.

An algorithm is in the ASCEND(DESCEND)[13' form if it consists of a sequence of basic

operations on pairs of data, where the addresses of the pairs differ successively in bit 0, bit I,

bit p-I (bit p-1, bit p-2, ..., bit 0), here and henceforth bits are counted from the least uignificant

bit.

Preparaxa and Vuillemin showed in [13] that the ASCEND/DESCEND algorithms can be

executed on the CCC network fairly efficiently. Precisely speaking, these hypercube network

algorithms can be simulated on a CCC at a slowdown of a factor of 4 to 6, regardless of the net-

work sizes. Thus designing an ASCEND/DESCEND algorithm for a hypercube, and transform-

ing it into a CCC algorithm seems to be a reasonable way of designing an efficient COC algo-

rithm.

In the 0CC the links connecting the lateral PEs are called higheheaves. Highaheaves

.. correspond to the high-order bit connections in the hypercube. The number of high-order bits is
*'" Q. the number of bits of the cycle number. The lowaheaves are virtual links in the CCC which

correspond to the low-order bit connections in the hypercube. There are r bits for the lowsheaves.

*- The lowsheaves connections in the CCC is formed by shuffling or unshuffling data inside cycles.

4. Several Important BVM Algorithms

Several important BVNM algorithms are presented here. 'these algorithms are useful in pro-

gramming the BVM. The cycle-ID and the processor-iD are the most basic modules which are

* used in almost all BY'M algorithms. Broadcasting and propagation algorithms handle the typical

dataflow patterns on the BVM. These algorithms or their adapted version are used to construct

the test-and-treatment algorithm. As we present these algorithms, well also discuss how to gen-

erate the control bits for these algorithms. Although these control bits can be precalculated, it

10.
-,"

will save the precaculation time and the runtime storage when these control bits are generated or,

the By.

1. Cycle-ID

KI There are two ways of viewing the cycle-ID. The first is that PE (i, j) holds the j-th bit of

cycle number i. Thus the bits held by alI the PkLs m cycle i form the cycie number i. in the uv;

network the lateral links correspond to the high-order bit links in the hypercube. The alternative

way of viewing the cycle-ID is that the bit of the cycle-ID PE i holds is I if PE i is at the 1-end

of its lateral link. For the CCC with n=64 PEs, the cycle-ID is shown in Fig. 3.

PE 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
PE 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
PE 2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
PE,3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

c c c c c c € € c c c c e € c c

y y y y y y y Y y y y y Y Y y y

cc c c c c c C c c c C c c C C

e e e a e e e e e e e e e e e e
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Fig. 3.

the digit at cycle i and PE represents the bit held by PEj in cycle i.

In 115] the following algorithm is given for generating the cycle-ID. The time complexity is

o0ogn).

cycle-IDO

-A=-I;
A=A.I; /* input a bit 0 to PE 0 ./
fori=-1; i<Q; i++) {

A=A & A.L;
A=A.1;

)
A=A.P;

for(i=I; i<Q; i++) {
ArA & A L;
A'-A.P;

I.7

~~. +... .,.+ ,.. .. ,........ , '.. . .: :: +. .

10.

2. Proc essor-ID

The processor-Il) is defined as the pattern of addresses such that each PE holds it-s own

address. For 8 PEs the processor-if) is shown in Fig. 4.

Rij 0 0 0 0 1 1 1 1
Rfi+1I 0 0 1 1 0 0 1 1
R~i+21 0 1 0 .1 0 1 0 1

Fig. 4.

The algorithm for generating the proceusor.ID is as follows:

Processor-ID()

1. RIS]=cycle-IDO;
2. for(i=1; i<Q; i++){

for(j=0-; j<Q; j++){I
ifqi%2=-0) RfS+jj=R[S+jl"X IF fe Ii<e<Q-i);
else R[S-~j]uR[S+jl.XS IF fe I i<e<Q-i);

for(j=0;- j<r; j+-i)

Recall that RITiS, Rli)XS, Rji].X are the Rji]'s successor, even succssr exchange and

even predecessor exchange respectively. The function bitqp, q) is the p-tb bit of q. The timing is

O(o~) Here we give an example of the execution of the algorithm. In Fig. 5, (i) is the pattern

created altoer the execution of the statement labeled i in the algorithm.

*3. Broadcasting

The broadcasting algorithm is used tq broadcast data from one PE to all the other PEe. In

(9] Nassimi and Sahni studied data broadcasting on SIM machines, here we oly consider the

* broadcasting on the BNNI This algorithm and the algorithms for propagation will be presented as

ASCEND hypercube algorithms, for the transformed BVMi algorithms look much complicated and

. -ll -

S 0000 I000 0100 1100 0010 1010 0110 1110 ...

(1)

S 0000 1000 0100 1100 0010 1010 0110 1110 ...
$+1 0000 0001 1000 1001 0100 0101 1100 1101
S+2 0000 0010 0001 0011 1000 1010 1001 1011 ...
S+3 0000 0100 0010 0110 0001 0101 0011 0111

(2)

S 0000 1111 0000 1111 0000 1111 0000 1111
S+I 0000 0000 1111 1111 0000 000 1111 1111 ...
S+2 0000 0000 0000 0000 1111 1111 1111 1111 ...
S+3 0000 000 0000 0000 0000 0000 0000 0000

(3)

S-2 0101 0101 0101 0101 0101 0101 0101 0101 ...
S-I 0011 0)011 0011 0011 0011 0011 0011 0011 ...
S 0000 1111 0000 1111 0000 1111 0000 1111

S+I 0000 0000 1111 1111 0000 0000 1111 1111 ...
S+2 0000 0000 0000 0000 IIII 1111 1111 1111 ...
S+3 0000 0000 0000 0000 0000 0000 0000 0000 ...

(4)

Fig 5. An instance of n=64.

provide little insight into the algorithms. Let the total number of PEs be 2". Let j<i> denote

the i-th bit of j and j#i denote the binary number which is obtained by complementing the i-th

bit of j. The following algorithm broadcasts the content of PE 0 to all the PEs.

Broadcasting0{
SENDER=0;
SENDER(PE[IO])=I;
for(i=0; i<m; i++)

foral] PEj];
if I-END(PEjj], i) && SENDER(PEDj#i])

PE[jl = PE[j#i];
SENDER(PEjj]) = SENDER(PEUj#i);

}

. SENDER is a register. SENDER(PE0') is tle bit belonging to both register SENDER and PE 0.

" I-END(PElj', i) is true when i-tb bit of j is 1. For a 16-PE array, the broadcasting process is

shown in Fig 6.

-. *' .,.*::---.,V :~~ *** *

12-

I. 0000 -> 0001,
2. 0000-> 0010, 0001 -> 0011,
3. 0000-> 0100, 0001 -> 0101,

0010-> 0110, 0011-> 0111,
4. 0000-> 1000, 0001- 1001,

0010-> 1010, 0011-> 1011,
0100-> 1100, 0101-> 1101,

""0110-> 1110, 0111- 1111.

Fig. 6.

The algorithm is an ASCEND algorithm, thus O(m) time is enough to execute the

transformed algorithm on a 2"-PE CC computer.

To run this algorithm on the BVM, the control bits must be considered. The approach we

choose works as follows. First an arbitrary register SENDER in the BVM is chosen. Set every bit

of SENDER to 0 by using one instruction. Then input a bit I to the bit belonging to both PEo

and register SENDER. Afterwards this bit will be broadcast in the instruction PEijI-PEI#i],

and the content of register SENDER will be used to identify the sender. If the number of bits to

be broadcast is k, then the algorithm takes 0(km) time.

4. Propagation

Propagation refers to propagate data from one set of PEs to another set. We consider two

kinds of propagation here.

The i-PE group is the set of PEA whose addrees have exactly i l's. The first kind of pro-

• pagation considered here propagates data from the N-PE group to the (N+I)-PE group such that

"*" PE j in the (N+1)-PE group receives data from PE k in the N-PE group iff when k<i>l then

j<i>,=l.

Example:

N-2. For the iS-PE array, PE 0111 receives data from

PE 0110, 0101 and 0011. #

The algoritum is shown below:

............ "...-...-,*
- - - --, * * - . **Q** ..

Propagationl()

for(iO0; i<m; i++)
fora PEj)

if SENDER(PELj#i]) Lk I-END(PE[j], i)
PEj] -= OOMBINTPElj], PEDj#i]);

'2")

The time complexity is O(m). 11 the propagation needed requires data to 0ow through the

0-PE group, the I-PE group, ..., the m-PE group, then the algorithm must be used m times and

the timing will be O(m2).

K-fi It might seem possible to enable all the PEs in the (N+I)-PE group, thus allowing the pro-

pagation to be done more naturally. However in many situations in which the algorithm is used,

data are propagated from the O-PE group to the I-PE group to the 2-PE group,..., to the N-PE

group, but initially no PE knows which group it belongs to except the PE in the O-PE group

which is PE 0. Thus a PE in the (N+I)-PE group will know that it is in the (N+I)-PE group

from the fact that the sender is in the N-PE group and it itaelf is at the 1-end of the eommunica-

tion link. Certainly one can generate the procemor-1) and count the number of l's in it to decide

to which group each PE belongs, but that involves more overhead.

Another kind of propagation requires data to propagate from the N-PE group to the M-PE

group. where without loss of generalut we assume N < M. PE k in the M-PE group will get the

data from PE j in the N-PE group such that if j<i>= l then k<i>=1.

Example:

M-3, N=l, for the 16-PE array, PE 0111 will get data

from PE 0001, 0010, 0100.

Though the first propagation algorithm may be used for this purpose, it is relatively slow.

The alternative way to do it is shown in the following example.

Example:

n-4, data will propagate from the i-PE group to the d-

PE group

KA
)°-".

14-

Initially data are in PEa 0001, 0010, 0100, 1000.

1. 0001 does not transmit. 0010 -> 0011, 0100 -> 0101, 1000 -> 1001.

2. 0001 -> 0011, 0011 does not transmit, 0101 -> 0111, 1001 -> 1011, 0011

combines the data coming from 0001 and the data inside itself.

3. 01i1 -> GIuI, Oii doet not Lra~mii, 10ii -> !II, 0111 cuuibineb the

data coming from 0011 and the data inside itself.

4. 0111 -> 1111, 1111 does not transmit, it combines the data coming from

0111 and the data inside itself. #

Now we shall discuss the generation of the control bits. We use one bit in each PE to indi-

cate if it is a legal sender. Only PEa with this bit set have the right to send. In the sending pro-

cess the sender will not discard this bit. The receiver acquiring this bit will become a legal sender.

If the receiver gets two bits from two senders, it must combine the data and the control bits

(using a logical or operation). Notice that this is different from the scheme in the propagation of

the first kind, since here immediately after the receiver gets the data it becomes a sender. In the

propagation of the first kind, a sender or a receiver remains the same until all the PEs in the (i +

I)-PE group have been connected to the PEs in the i-PE group.

Initially PEe in the N-PE group are identified as senders. Only PEs in the higher PE groups

can get data from lower PE groups. To control the direction of the datafiow on the BVM the

cycle-ID should be used.

The algorithm is as follows

Propagation2(){
for(i-O; i<m; i++)

forall PEj];
if SENDER(PE[j#i]) && I-END(PE[], i)

-" {

PE[j! - COMBINE(PE[j], PE~j#i]):
SENDER(PEDj]) = SENDER(PEjj#i]);

.... * .. , ,.,....................-.. ,-,.'.. .'..,

The timing is O(m)=O(ogn).

S. A Parallel Algorithm for the Tent-and-Treatment Problem

In actual comiputation we'll assign an array MIS, k] to calculate C(S):

zj,i]-iP (s)+c(sflT)+C(S-Tj,O.i <m, and M jS,u]'=4p (S)+C(S-Tj),m <i <N,

* therefore

C (S)-n:,({[S'iJI I0< i< N).

The parallel algorithm is given below:

TT(S, T, P, t)

foreach i: 0<-i < N do
TP [S,:J]t. sp (S), if #S > 0,

forbj= I; i<=#U; 14+) {
foreach (S, i): U D S and *S--j and 0<-i < N do{

MiS,fl=M IS-Ti, i'

if(i < - rn)m[is,ii-infT,,i]

foreach (S,i): U =- S and #S=j and O<=i<N do
MIS's]=mint(AIS'X'i I <: <N),

#S in the algorithm denotes the size of set S.

Note that the conditionsSflTj -,A and S - Ti will be taken into account automatically.

if sflT, and T, is a test, then S - 7'j =rS. Since S is initialized to infinity(INF), we have:

mis,iJ-.p (S)+C(sflTi)+ c(s -Ti))=t P (s)+ c(S)=INF.

So it will be excluded in the minimization or C(S) will be INIF depending on whether or not

* there is a M[S~JI such that M[SjlkINT. the same reasoning applies if T is a treatment or if

S - #thens Sf -S)

The j-loop is needed becau". when we calculate MIS,ij we should have all the C(SflT,

-16-

p
and C(S- T) av ilable.

S. The ASCEND/DESCEND Algorithm

Can our parallel TT algorithm be transformed into the ASCEND/DESCEND form?

Observe that if we assign a PE to each (S, i) pair then MIS,i] and TPSi] are placed at the

different sections of the same PE, thus the instruction MIS,i] +fTPIS,i] can be executed in paral-

lel by all PEe at once. However the instruction MIS,il= MIS-T, ,i] , MjS,ii+-M[SfTi,,i]

K- and the minimization require communications between different PEs.

The minimization part of the algorithm can be transformed into the following ASCEND

form:

for(t=0; t<log N; t++)
foreach(S,): U D S and #S-=j and O<i <N do

~MjS'i]=min(M['S'i], MS$, i~tl);

where i#t is the binary number obtained by complementing the t-th bit (from right) of i.

Suppose N=2' (otherwis we let TN=TN,T,,_]=U and all of them will be

treatments with cost INF), after executing MIS ifmin(MS I, MiS,i#O),

M'Sj!=M[Sj+l]=min(MS,j'.M[S,j41]), where j=O, 2,..., N-2.

Assume after executing M[S,i]=min(MjS,i , MjS,i#(q-1)]):

M[S,j]=MS,j+lJ=...=MSi +2' -11=

min(M[S,jI, MS,j+],..., M!S,j +2' -1]),

for j: j/2' -1 is even.

After executing MS,in=mjn(S, MIS, i#-) M:jSjl=ju- Sj+2'9 -min(MSjj, MIS,j+2' 1),

for j: j/(29) is even and O<j <N. By induction we know now:

MIS,j=M[Sj+ 1] ...- M[Sj+2' -I]min(MIS], MMSj+2' '-1.

Let qu-p-1, all the PEs associated with set S will get the minimum value. Fig. 7 shows an

example with p-3.

Now consider the instruction:

'.5

.'

- 17 -

i initial value t= 1 2 3

0 5 1 1 0
S 1 11 0

2 6 2 1 0
3 2 2 1 0
4 3 0 0 0

.. 5 4 3 0 0

6 0 0 0 0
7 7 0 0 0

Fig. 7.

foreach (Si) M'S,i]=MIS-T, ,].

Can this operation be transformed into the ASCEND/DESCEND> form?

Let us begin by expanding it into its component operations as follows:

foreach (S,i) do {
RISi]=M[S-T ,i);

This emphasizes that, if 4 unique PE holds each element of M[Sa], some communication

between PEs is needed. The variable R is introduced to handle the possibility that the PEs

involved are not in fact neighbors, so that each item of information must be passed along a chain

* of PEs before it reaches it- destination. For simplicity, we also assume that R[S,i i is located some-

where in the memory of the same PE that also holds M!Si,, for eac ditict pair (Si).

Consider now the operation

For each S and i, this operation is well-defined, since the set S-T is uniquely determined

by S and T,, thus ensuring that each PE which receives information during this activity receives

information from only one PE. However, the converse is not true: a given PE may send its infor-

mation to several others, as the example shown in Fig. S.

Thus MA0,i] will send its value to R f[,ij, R[{O,i], R[J(),i] and R[(0,1),i], and M[{2),i]

will send its value to the other four PEA In general, M[S-Ti,iJ must be broadcast to

Ri(S-T)UV,i], for each V such that SnT. V. The following loop accomplishes the

L 2P **-* ~ ~ %-> -

U={O0,1,2), T= (0j)}.

lfS is: S-T is:

40)

41,0) .
(2) 44)

(2,0) (2)
(2,11 121

(2,1,0) (2)

Fig. 8.

required broadcast, for a i, 0 < i<N:

for(e=O; e<k; e++)
foreach (S,i): U D S and 0< <N and e csflTi do

RIS,i1=RJS-(e) ,i];
MISJi]=R[SJi];

Continuing the previous example, Fig. 9 shows the value of Q, just after the e-tb iteration

of the loop.

S e: 0 1 2

40) 40) 4

41,0) 41,0) 41) 0 0
12) 42) 42) (2) (2)

(2,0) (2,0) 42) {2) 42)
12,1) (2,1) (2,1) (2) 42)

(2,1,0) (2,1,0) 42,1) (2) (2)

Fig. 9.

Let Is =i tU I i : 1), then just before e takes on vahkje t, R i(S- T.)u(SfTi,flg.it
*holds MIS-T,,iJ. For this is true initially, before e takes on value 0, since 1-=0 and

R(IS- T,,i] holds M IS-Ti,i). Assuming the statement was true before e was set to t, the loop

body, executed with e set to t causes certain elements, of array R to change in value. Specifically,

*whenever IeSflT,, R[S,ai is replaced by R[S-ft),i]. Suppose aTs fTi then

*~ SfTi,fl -SfTi 1f.., and R (S-T.)u(sfnTrflni)t m is unchanged, and held M[IS - T,i

prior to this execution of the loop body, by the inductive assumption. Suppose instead that

.

L, - -- .-

t iS fl 7,. Then R ;(S - T,)U(s n 7 ,) I j is changed to this iteration of the loop.

Since Xn1, =(xn,_,)u(xn{,o). and ftS nS=snTl T1ft).
Because teS n Ti , It Ti. thus tvq-Ti , and

(S-Ti)U(S znTini,)-{ti}=(S-T)U(Sf"Tn, f Ts.), by the inductive assumption,

=" -S - 8, Hence, after the assignment,

R i(ST-T)-($SfTn I,),i)-M[S-T.i] also.

Finally, after all iterations of the loop on e, It U, and Sl n fni =s n Ti. Thus, for all

S -and i. R ISi,=M iS-Ti,").

Similarly, the operation

if (i < 9) M S,i]+=MISfnTii]

can be resolved into:

Q is,il---misnt,.,ii;
if(i<=m) M'S,ij+ =Q!Si];

Again, CoDCentrating on the operation RS,i]=M[SnTj,i], we observe that value

MlSfT. ij can be broadcast to each PE holding Q[vu(snT ,i1, for every V such that

S-T, ; 1'. symmetry with the previous argument, the following loop performs this operation:

for(e==O; e<k; e++)
foreach (S,i): U D S and O<i <N and e cS -T do

Q'Si-Q!5- (e},i];

The complete algorithm now appears as:

1*"

I,

,,. , , >. '. _' j..c:, -:. : 2:cJ , .:K -.... .-.......... .- , ••

.20.-

* TT()

foreach i: 0<-i < N do4
iI(#S >0) TP[S,ij tj 'p (S)
Mj0,i=0;

for(j=d: i<=k; j-i-) j
foreach (S,i): P1 (S ,i)4

Q~) =RSi=j~
for(e=O0; e<k; e++)4

foreach (Si): PI(S,i) and ceSflT

foreach (S,i): P ,(S,i) and e S -T

foreach (S,i): P(S,i,j){

if(i<=mn) MIJS,i]+=Q!S,il1;

for(v-0,. t<kig N; t+i+)
freach (S i): P(S,ij)

Where P(,)=US and 0<i <N, and P(S,ij*iPj(S,i) and #S=j

7. Implementation Schemes

On the BVM each PE will stand for a pair (i,),where i and ,j are binary numbers and ij,[the concatenation af i and j, is the address of the PE. lij, the number of bits in i, is k. The comn-Lponent i denotes a subset s or u, a c S iff a-th bit of i is 1. j is the index of a test or a treatment.

Example:

k=4, PE 011011 stands for (0110, 11), the set S denoted

by i is (1, 2), the index number of the test or the treat-

ment L 3

-21 -

The activate/deactivate mechanism is very convenient, unfortunately it can only provide

limited masking capabilities. The enable register can provide an) kind of enable/disable patterns,

but generating these control bits is difficult. Here we show how these control bits are generated

and how the algorithm is implemented by using the algorithms introduced in section 5.

The predicates e SflT and e eS-Tj can be implemented by using the processor-ID. The

processor-ID bits will let each PE kno- the set S it represents. T- should be input to the BVM.

The most interesting part of the algorithm is the loop indexed by the variable e. The technique

used here is the one we introduced in the propagation algorithm. Note that by imposing the con-

ditions ecSfnT, and e tS-T the result becomes R jS,i]=R IS-T,,i] and

Q S,ij=Qi[SflTi,i]. The datalow is controlled by the predicate ecSnT and eeS-Ti.

Because each iteration of the loop indexed by j will increment the size of the sets #S by 1, the

predicate P(S, i, j) can be implemented by using the propagation of the first kind. The cycle-ID

will be used in the propagation algorithm.

8. Concluaon

Many NP-complete problems can be solved on the BVM fairly efficiently, as we illustrate

using the test-and-treatment problem. Indeed, the test-and-treatment problem itself is of real

interest as it has many important applications. A parallel algorithro for this problem is presented

and implemented on the Boolean Vector Machine. The communication problem and the PE allo-

cation problem have been solved so that a speedup 0 (is achieved. Algorithms used in con-
logP

structing the test-and-treatment algorithm have also been presented and reveal in some degree the

different methods of programming serial and parallel machines.

References

(1] Garey, M.R. Optimal binary identification procedures. SIAM J. Appl. Math. Vol. 23, No. 2,

Sept. 1972. pp. 173-1865

[2 Garey, M.R. and Graham, R.L. Performance boundis on the splitting algorithm for binary

*.1

=, "'~~~~~~~~~~~~~~~~~~~~.'."'."." ,.""..". . " ".... ••-.. ' ".-. '."" ''. ".. '',.' .-.. ,.-'

-22-

testing. Acta Informatica 3, 347-355(1974).

* [~~~I ~ Hyafil, L. and Rivest, R.L. Constructing optimal binary decision trees is NPc pee i

Process. Lett. 5, 15-17(1976).

[~l Karnin, E.D. A parallel algorithm for the knapsack problem. IEEE Tran. comput. Vol. C-

33, No. 5, Ma, 1994. pp 404-408

15] Kernighan, B.W. and Ritchie, D11. The C Programming Language. Prentice-Ha (1978).

l6i Loveland, D.W. Selecting Optimal Test Procedures from Incomplete Test Sets. Proc. First

It. Symp. Policy Anal. Inf. Sci., pp. 228-235. Duke University, Durham, NC, 1979.

17] Loveland, D.W. Performance Bounds for Binary Testing with Arbitrary Weights. Acta

Informatica 22, 101-114(1985).

IS: Mead, C. and Conway L. Introduction to VLSI systems. Addison-Weeley(1980). pp. 306-

313.

19, Nassimi, D. and Sahni, S. -Data Broadcasting ink SM~ Computers. IEETrans. Computer,

Vol.C-30, No. 2, Feb. 1981.

1lo; Nasimi, D. and Sahni, S. Parallel Algorithms to Set Up the Benes Permutation Network.

IEEE Trans. Computer. Vol. C-31, No. 2, Feb. 1982.

jilPayne, R.W. and Preece, D.A. Identification keys and diagnostic tables: a review. Jour. of

the Royal Stat. Soc. (Series A) 143(3), 253-242 (1980).

[12] Pease, M.C. The indirect binary n-cube microprocessor array. IEEE Trans. Comput. C-26,

5 (May 1977), 458-473.

113: Preparata, F.P. and Vuillemin, J. The Cube-Connected Cycles: A Versatile Network for

Parallel Computation. CACM 24,5 (May 1981), 300-309.

* 114,' Schwmartz J.T. Ultracomputers. ACM *Trans. Programming Languages and Systems, Vol. 2,

No 4, (Oct. 1980), 484-521.

115' Wagner, R.A. A Programmner's View of the Boolean Vector Machine, Model-2. 05-1981-S,

Dept or Computer Science, Duke Uni.., Oct. 1981.

- 23-

16' Wagner, RA The Boolean Vector Machine [B\ II. IEEE 1983 Conf. Proc. of 10-th Ann.

International Symposium on Computer Architecture, pp. 59-66.

Io

.- *...] . --.. ,.-* . .'....--*.-. .-. . . .- . - .. -- . ..- ,- -., ,.. , -., -.. -- .,, - ,,, ------ U P-* * . j,, ,. ..-- ,. . .-*S ,.

FILMED

DTIC*

