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1. INTRODUCTION

1.1 Summary

It is known that large space structures will be subjected to
thermomechanical loadings and environmental conditions which are
likely to degrade the constitutive properties of the structural
materials, thus leading to possible failure of these vehicles.
Therefore, it is desirable to develop new analytical models which
are capable of accounting for these degraded properties so that
design procedures can be improved. There are three important
aspects of such an effort: selection and development of
constitutive models for degrading materials which are applicable
to large space structures, construction of analytic models for
predicting the dynamic response of these structures, and
experimentation to determine the precise nature of the material
parameters to be utilized in the analytical model. These three
components of the research must be tied together into a single
concise effort in order to obtain a useful model.

This research project is a three year effort to develop an
analytic model capable of predicting the response of sgace
structures with degrading material properties under ggasi static
as well as dynamic cyclic thermomechanical 1loading conditions.
This re report details the research completed during the second year
of AFOSR contract no. FU49620-83~-0067.

1 Qi\ Statement of WOrk
\)

A model 1is being developed for predicting the
thermomechanical response of large space structures to cyclic
transient temperature loading conditions. The research is being
conducted in the following stages:

1) selection and specialization of thermomechanical
constitutive equations to be utilized in the analysis of large
space structures;

2) construction (where necessary) of coupled energy balance
equations (modified Fourier heat conduction equations) applicable
to the constitutive models selected in item 1);

3) casting (where necessary) the resulting field laws into
coupled and uncoupled variational principles suitable for use
with the finite element method;

4) finite element discretization of the varjiational
principles for several element types;

5) experimentation to determine material properties to be
utilized in the constitutive models; and

6) parametric studies of the quasi-static and dynamic
response of large space structures undergoing thermomechanically
and environmentally degraded material properties.

The experimental effort (discussed in 5) is'E:Thg supported
by DOD equipment grant no. 841542, The total research effort
outlined above spans a three year period. The following section
details results obtained during the second year.

AT A e e
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2. RESEARCH DURING SECOND YEAR

2.1 Summary of Completed Research

The following tasks have been completed during the second
year of research:

1) development of generalized constitutive equations for
metal matrix composites with distributed damage;

2) experimentation to determine material parameters for the
model developed in item 1);

3) completion of algorithmic development for space
structures with damage induced and spacially variable stiffness
loss;

4) completion of parametric studies for graphite/epoxy
composite space structures using item 3);

5) completion of algorithmic development for viscoplastic
space structures with thermomechanically induced heating;

6) completion of parametric studies for aluminum space
structures using item S); and

7 completion of development of bounding techniques for
hysteretically induced temperature rise in thermoviscoplastic
space structures.

In addition, the following tasks are well underway at the
completion of the second year of research:

1) development of an analytic method for modeling beam-like
structural components with damage induced stiffness loss;

2) development of a finite element model for beam-like
space structures with spatially degrading material properties and
subjected to solar flux heating and radiation bdoundary
conditions; and

3) development of a model for predicting the structural
response of space structures with load induced damage which
causes changes in structural damping.

The items briefly outlined above will be detailed further in
the following sections.
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2.2 Development of Constitutive Equations

As stated in the original three year proposal [1], one
objective of the research was to identify constitutive equations
which account for material property degradation in polymerie
composites, metal matrix composites, and high strength metal
alloys. Constitutive equations for polymeric composites and high
strength metal alloys were found to exist in the research
literature, and candidate models were chosen and reported in the
first annual report [2]. However, no appropriate models for
metal matrix composites were found in the literature. Therefore,
it was decided to develop a constitutive model for metal matrix
composites which would be applicable to space structures[3]. The
current state of this model development will be detailed in this
section.

2.2.1. Generalized Model Development for Metal Matrix Composites

Because metal matrix composites are expected to be utilized
commonly in space structural applications, it was felt that some
constitutive model development was warranted for this class of
materials. The distinguishing feature of metal matrix composites
is the substantial inelastic (either elastic~-plastic or
viscoplastic) nonlinearity which occurs in the matrix. On the
other hand, chopped fiber metal matrix composites do not exhibit
the degree of layered anisotropy observed in laminated continuous
fiber polymeric composites. Due to these differences, the
internal state in metal matrix composites can be significantly
different from polymeric composites, Accordingly, a generalized
model was developed for this material. Although the model is an
extension of previous research on polymeric composites [4], the
mechanics of damage development are totally different. The
details of this model are given in Appendix 6.1. A synopsis of
the {mportant results (s given {n this section.

The model utilizes the thermodynamics with internal state
variables (ISV) [5] to develop the following stress-strain
relations:

Tis * CrgkalE1 7 Xik1 T Sukr T &) o (1)
where dlj = stress tensor,
12 = strain tensor,
Cijkl = constant modulus tensor of the composite,
Akl = ISV representing plastic strain,
“;kl = ISV representing damage, and
221 = thermal strain tensor.

For the case without second phase material and no damage, the
model reduces to classical plasticity equations [6].




Furthermore, for the uniaxial case, the model reduces to
Kachanov's damage model (7] when plastic strain is negligible.

Many of the space structural applications of interest in
this research involve uniaxial stress states, such as in the case
of truss structures, and Euler~-Bernoulii beam structures [8].
Therefore, the uniaxial equations have been studied in detail.
These are, for the isothermal case:

- i
Tex = E(Eyyx = Xqgx ~ “uxx Exx) » (2)

where E is Young's modulus. A graphical representation of this
relation is shown in Fig. 1, where it is shown that the history
dependent damage parameter “Hxx can be determined by observing
the tangent modulus on unloading.

The following section details the experimental effort
developed under the current contract to verify and characterize
the model, as well to develop the internal state variable growth
laws, for a typical chopped fiber metal matrix composite.

2.2.2. Experimental Research on Metal Matrix Composites

The primary objective of the experimental effort is to
develop a technique for determining and evaluating damage in
metal metrix composites. This technique must be capable of
detecting cracks and voids (free surfaces) in the composite.
These c¢racks are generally on the order of microns 1in
characteristic dimension, so that scanning electron microscopy is
required to measure the damage. Specimens have been loaded to
different levels and the damage studied at each increment. Once
the amount of damage is determined it can be input into the
general constitutive model for metal matrix composites(See
Section 2.2.1.). ,

The material used in this study was obtained from ARCO
Metals Silag Operation in Greer, S.C. The ¢nmposition of the
material {s 6061 Aluminum with a twenty percent volume fraction
of F=9 silicon carbide whiskers. Plate is made from the
materials by a powder metallurgy process and cast into billets.
The billets are then rolled, extruded or machined to the desired
shapes. The SiC whiskers average two microns in diameter and
twenty microns long. The composite has a T-6 temper. Tensile
test coupons have been machined in accordance with ASTM E-=8
(Tension testing of metallic materials) to the dimensions shown
in Fig. 2. For the initial portion of the study all specimens
have been machined with the same orientation with respect to the
plate for the purpose of uniformity (with respect to the SiC
whisker orientation). A second phase of the testing involves the
use of tensile test specimens oriented perpendicular to the
initial specimens.

A mechanical test system was necessary to load specimens to
different levels & measure responses so that the damage at
various load levels could be determined. An Instron model 1125
screw~driven test system with 2" wedge action grips was used.
Longitudinal displacement data were obtained by the use of an MTS
model 632.11B-20 1" gage length extensometer. The displacement
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information was amplified by an in-house signal conditioner and
load information was amplified by the Instron controller. Both
load and displacement information were plotted by an analog X-Y
recorder and input to a computer data acquisition system. This
data acquisition system consisted of a DEC model PDP 11/23 Plus
computer with an A to D converter manufactured by ADAC
Corporation. With this system, load, time, and longitudinal
displacement data could be stored and a real time plot of load
versus displacement could be monitored during the actual tests.

The mechanical tests were performed by first loading the
specimen in the Instron, calibrating and zeroing the extensometer
using an extensometer displacement calibrator, calibrating the
load cell and plotter, then securing the extensometer to the edge
of the coupon with rubber bands.

All tests were monotonic with a cross—-head speed of .05
in/min. Several specimens were tested to failure to obtain a
data base about the ultimate strength of the material. After the
mechanical response of the material was determined, specimens
were loaded past yield at 500 pound increments so that the damage
at each increment could be determined.

Once the metal matrix composite coupons were loaded, the
next step in the process was to prepare them for examination
with the scanning electron microscope. Tensile coupons must be
sectioned into pieces that are about 1/2in X 1/2in. This was
accomplished by using a Micro-Matic precision slicing and dicing
machine using abrasive. cutting wheels. Since there was a
question about the degree of anisotropy caused by the fiber
orientation in the plane of the plate, two sections were cut from
each coupon so that the two orthogonal views of the coupon could
be viewed under the microscope. The sectioned pieces were then
mounted in a conductive mounting material (Konductomet 1I)
manufactured by Buehler, Mounting was accomplished by the use of
a Leco PR-22 Pneumatic Mounting Press with a core cycle of nine
minutes at 4200 psi & 300F, The Konductomet I material is
essentially a carbon filled phenolic that 1is designed for
electron microscopy specimen use. After mounting, the specimens
must be polished so that the structure can be seen in a plane.
Polishing is very critical because {f it is not done properly,
detail can be lost or polishing induced artifacts will be
created. The SiC/Al composite presents other problems. There 1is
a vast difference between the hardness of SiC and aluminum.
Unless great care is taken and an appropriate grade of abrasive
compound is used, an uneven terrain is c¢reated by the removal of
the softer aluminum matrix leaving exposed SiC whiskers. The
mounted specimens were wet sanded in one direction on each of the
following grits of sandpaper: 240, 320, 400, 600. After each
grit, the specimen was washed in water to remove any residue,
then sanded on the next finer grit ina different directionuntil
all remaining evidence of the previous sanding direction was
removed. The specimen was then cleaned ultrasonically in MEK.
Diamond abrasive polishing compound was chosen for the fine
polishing. Both the polishing compounds and ¢loths were obtained
from Buehler. This was a necessity because of the hardness of
the SiC particles. Rough polishing was accomplished by using a
polishing wheel with Metadi seven micron polish on a nylon c¢loth.
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3:: Each specimen was polished until all visible scratches from the

) 600 grit sandpaper were removed. The specimens were then
s ultrasonically cleaned in MEK and hand polished with Metadi II
three micron, then Metadi one micron heavy polishing compounds on

. TEXMET polishing cloths. After each change in polishing

- compound, it was imperative to thoroughly clean all residue of
¢ the previous compound. If this is not done properly, a smooth
; polished surface is impossible to obtain because the residual
large pieces of polishing compound remove large pieces of
material along with smaller pieces removed with the finer grain
compound.

After the polishing technique was performed, the polished
surface of the composite was examined under an SEM to verify a
- uniform, smooth surface was present.

= Once the surface was polished, c¢chemical etching was

performed s0 that surface details could be easily seen. A

solution of 10 gr NaOH and 90cec distilled H20 at 150F was used

for approximately 15 seconds to etch the specimen. ~ The specimen

was then rinsed and ultrasonically cleaned in disti{lled water

K followed by ultrasonic ¢cleaning in MEK. The final step in

r preparation of the sample was to apply a thin (T100A) coating of

' gold by vacuum deposition. This is necessary to achieve a good

C e image on the SEM. The SEM operates by having a voltage applied

- to the specimen.” When the voltage 1s applied to the specimen,

S free electrons are released from the specimen., It is these

o electrons that are removed from the orbitals that are received by

. a sensor that forms the image, Light compounds have less free

- electrons, thus the image formed is not as sharp as an image of a

heavy compound. Since gold is a heavy compound, a thin coating

o of it on the specimens provides an electron source, without
- losing surface detail.

After the specimens were sectioned, mounted in the

- conductive mount, polished, etched, and coated, the next step in

TRt the process was to examine them under the scanning electron

T microscope., A Joel JSM=25 Il scanning electron microscope was

used in this study.

Choosing an acceleration voltage for the specimens was a key
consideration. If the voltage was too low not enough electrons
were free to form an image. If too high, charging at interfaces
and edges occurred leaving bright spots on the image and
destroying detail. After experimentation a value of 25kv was
used. Most pictures were taken at 2,000X. This magnification
allowed details of the matrix, whiskers, and interfaces to be
seen along with more macroscopic details such as large voids.
The final product was a series of SEM photographs of the surfaces
of orthogonal edges for specimens under both virgin, loaded, and
o failed condition (see Fig. 3). Along with SEM photographs of
R polished surfaces to reveal internal structure, photographs of
\ fracture surfaces were taken to observe the effect of the whisker
NN reinforcement.

:[: Although this research is not complete at this time, the
i photographs are currently under study to determine the damage
DR state at each load level. These data will then be fed into the
G damage model developed in Section 2.2.1 in order to evaluate the
material constants and complete the model description for the

«
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Fig. 3. SEM Photographs of Chopped-Fiber
Metal Matrix Composite.
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chopped fiber metal matrix composite.
The above section details the M.S. thesis research of Mr. E.
W. Nottorf.

2.3 Space Structural Response Due to Stiffness Loss

Fibrous composites are known to undergo a small but
significant amount of stiffness loss due to load induced
microcracking [3]. This stiffness loss usually occurs over
several hundred thousand load cycles. Due to the stress
dependent nature of the damage, the stiffness loss is spatialiy
variable and concentrated in the areas of high stresses. This
spatial change in the material properties of the structure
results in appreciable changes in the dynamic response of the
structure.

A part of the current research has been to develop
approximate -methods for determining this long term change in
structural response (See Appendix 6.2.). The procedure developed
here is to subject the structure to a dynamic load input which is
in phase with one of the first few fundamental modes of the
structure in the undamaged state. Utilizing the stress field
calculated from this analysis, it is possible to estimate the
spatial dependence in the stiffness loss that a space structure
would undergo by approximating the constitutive equations which
are designed to model long term material degradation. The
approximation enters through the negligence of the actual long
term history dependent nature of the damage process. This
approximation is made for reasons of numerical economy. It {s
theoretically possible to obtain the actual history dependent
response, but this would require many hours of computational
time on a large mainframe computer for realistic space
structures.

Because this procedure i{s approximate, the results should be
considered as qualitative in nature. Consider, however, the case
of a cantilevered space boom, as shown in Fig. 4. In Fig. 5 the
displacement of the axial dimension of the boom is shown for the
third mode as a function of damage induced stiffness loss in the
second mode.

It is ‘clear from Fig. 5 that damage induced by cyclic
loading in fibrous composites will alter considerably the dynamic
response of space structures even for small amounts of damage
induced stiffness loss. Mode shapes are found to change
dramatically, with node points shifting substantial distances in
the structure. These results indicate that active control
devices which are placed based on the {nitial undamaged mode
shapes may require substantial relocation after the structure has
been in operation for a few months or years,

2.3.1. Analysis of History Dependence of Structural Response of
Simple Space Structures with Load Induced Stiffness Loss

Although it i{s not possible to construct a more precise
history dependent structural algorithm for a representative space
structure, a more accurate method is under development at this
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Fig. 4. Typical Beam~-Like Space Structure.
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time for a single beam member with various boundary conditions.
This model will carry out the actual time integration for the
slowly degrading structure as damage accumulates for each cycle.
Using this new model for simplified structures, it will be
possible to determine the actual structural response for a load
input of several hundred thousand c¢cycles., The following is a
brief description of this procedure,

The well known partial differential equation for the free
vibration of a beam is

> 2 At
bx‘(erﬁ‘>+/) 32"- . (3)

where E is Young's modulus, I is the moment of inertia of the
cross~-section, A is the cross-sectional area, is the mass
density, y is the transverse displacement, x "is the axial
coordinate, and t is time.

A number of solutions to the above differential equation are
available in the literature for both uniform (constant cross-
section) and nonuniform (variable cross-<section) with different
boundary conditions. Most of the solutions are for beams with
homogeneous material propertles, These solutions have been
obtained by assuming that the stiffness of a structural element
is constant in time and therefore independent of loading history.
Neither material damage nor environmentally caused degradation
are considered in these analyses.

Due to the occurrence of load induced and history dependent
damage in composite materials, these previously obtained results
represent unrealistic approximations of the actual structural
behavior (See, for example, Appendix 6.2). In particular, the
resonant frequencies and mode shapes of the structure can be
severely altered by the introduction of spacially variable
damage. These parameters {n turn can have a substantial {impact
on the active control algorithm to be employed for control of
flexible body modes. By introducing material damage and
environmentally caused degradation, the stiffness of a structure
is no longer a constant, since it will change substantially
according to the stress distribution and the history of external
loading. The stiffness loss may change the natural frequencies
and mode shapes substantially. With the material damage and
environmentally caused degradation involved, the differential
equation becomes difficult if not impossible to solve in closed
form.

The concept of internal state variables (ISV) i{s introduced
to represent the history dependent change of stiffness. An
internal state variable D is utilized as a local ISV representing
the damage state. Together with the ISV growth law, the finite
element solution technique can be modified to account for the
history dependent stiffness of the beam element, with resulting
field equations

LM]i¢}1+CK3i}3 = Lo} .
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The above set of second order ordinary differential equations for
each element is combined to represent the eigenvalue problem for
the beam structure.

The occurrence of damage will cause the loss of stiffness,
that is, the stiffness {s history dependent. Experimental
results indicate that the time scale for damage and degradation
is very long compared to the first fundamental frequency of the
Structure. Therefore, the mathematical algorithm is treated as
linear with slowly varying coefficients. In this research,
particular interest is being placed on the natural vibration
solution of a beam structure with history dependent stiffness and
the investigation of the possible effect of material damage and
stiffness reduction on the natural frequencies and mode shapes of
planar beam structures with various boundary conditions (free-~
free, clamped~<free, clamped-~clamped and simply supported).

The research also focuses on the investigation of the
internal state variable representation of the damage phenomenon.
The damage in a composite material includes a sequence of
microstructural and macrostructural events such as microvoid
growth, matrix cracking, fiber matrix debonding, interior laminar
cracking, edge delamination and fiber fracture. The most
significant effect of damage on the material properties is that
the stiffness will be substantially changed during the life of
the component. The constitutive equation for a composite
material could be represented as

T. gre- eT) , (6)

where E is Young's modulus, which will change according to the
damage D as

E = Eg(1 = D) . (M)
The subscript o represents the initial condition. The damage
D is an internal state variable describing the damage phenomenon

during the life of the composite structure, which is governed by
the internal state variable growth law

D = £(&,T,D) . (8)

Since the damage phenomenon is not fully understood at this
time some approximations to equation (8) will be made in the
research in order to reasonably predict the damage behavior.

The above section details the Ph., D, thesis work of Mr. Y,
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2.3.2. Development of a Structural Model with Temperature Field
Induced Damage

~ For many space structures the primary source of cyclic
loading will be due to thermal strains induced by solar and earth
radiation. The determination of the temperature field in this
analysis comprises a difficult matter in itself. The following
is a description of a model currently under development which
will account for thermal effects on the damage process.

The anticipated construction of large space structures using
composite materials has stimulated interest in the relationship
between material damage and structural response. Early research
concludes that during the normal life cycle of an LSS, damage, in
the form of a reduction of stiffness up to 25%, should be
expected. In addition, as little as 5% reduction in stiffness
has been shown to significantly alter structural response. The
current research attempts to study in more detail the
relationship between damage and stress-strain distributions in a
simplified space structure. Emphasis is placed on analyzing the
structure under a set of accurate thermomechanically induced
loads. The full impact of thermal loads has previously been
largely ignored. Many studies have analyzed structures composed
of truss type elements. This results in neglecting bending by
the members themselves. For structures made with materials of
high conductivity, this is not inaccurate. However, composite
materials have low conductivities and therefore undergo 1large
thermal gradients through their cross section. To incorporate
these expected thermal moments, the models to be studied will be
composed of beam type elements.

The outlined boundary value problem is complicated by
several factors. First, a one way coupling between temperature
and displacements exists., It is one way in that displacements
depend on temperatures. Secondly, the problem is nonlinear due
to the introduction of radiation boundary conditions. Thirdly,
there are constantly changing thermal 1loading conditions due to
varying earth-structure-sun orientation. Finally, geometrical
factors such as shadowing and interelement radiation and
conduction exist. These factors combine to create a highly
complex problem (See Fig. 6.).

Several simplifying assumptions to the geometry and
environment of the structure can be made without compromising the
usefulness of the result. For a structure composed of 1long thin
members which are sparsely placed, interelement contributions may
be neglected. Each member can be treated as an 1isolated,
independent body absorbing thermal radiation and in turn emitting
its own radiation. For a structure in a geosychronous or other
high earth orbit the effects of earth emitted radiation and earth
reflected solar radiation are minimal. Furthermore, LSS such as
solar collectors, antennas, and telescopes will have space-fixed
orientations. This will result in steady-state thermal
conditions due to solar radiation of nearly constant direction
and intensity. This steady-state thermal condition also results
in negligible axial temperature gradients (See Fig. 7.).
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The solution method to be outlined here i{is a completely

numerical one. The algorithm consists of five parts, as shown
in Fig. 8. Finite el=2ments are used to construct the temperature
' field through the cross-section of a beam member. This

temperature distribution is then converted to thermal forces and
moments using the following equations:

.
e

8-

P EL Eoty AT dA

o)
: r =
[. My _-f ExXr AT ZdA
| A
- - Fote ATV dA . (9)
;- Here E represents Young's modulus,o(T is the coefficient of
2 thermal expansion, A is cross~sectional area, AT is the change
3 in temperature, and y and z are the distances to the geometric
E centroid. These 1loads are first calculated in the 1local
r coordinates of the cross~-section and then transformed into the

global coordinates of the structure. These global thermal forces
and moments then serve as input to another finite element
Ve routine. The output from this is the stress and strain
o distribution in a beam member. The final step is to predict the
distribution of damage in each member based on the stress
v history. Once the damage {s known, a new stress-=strain field may
. be generated for the current damage state.
The beam code {3 a standard transient one dimensional code
and i{s the result of application of the standard finite element
- formulation to the governing differential equations:

™ e - _(Ma-M:T)
. e ax* ) 422
' - T
' dwo = My +My7)
ox* g Iyy *
L T
SN dUo _ (P+P)
;; where Ugs Vs Wg = centroidal displacements in the x, y, and z

coordinate directions,

P, My. M, = axial force and moments,

z
. PT. MyT. Mz‘r = thermally induced axial force and moments
r E1 s Young's modulus,

oy Iyy'. I,, = modulus weighted moments of inertia, and
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* . .
A = modulus weighted cross-sectional area.

For more details about the above formulation see reference 8.

In order to place equations (10) in a variational form, each
must be multiplied by a separate test function and integrated
over the volume of a typical element. The resulting equations
may then be discretized in the standard way.

The heat transfer code is less general, The code 1is
developed from the general formulation for heat transfer in a
plane geometry:

pcﬂ; = aéx(/& g)-*—;%/(ky %;) @
’ (11)

with boundary conditions

_
k3l + ky %7“”7 - 8~o<+h/71’r)*2°'(7;4'T4)' (12)

with variables defined as follows:

kx, ky = thermal conductivities,

Q = internal heat generation,
lx' 1y = direction cosines,

ay = flux normal to surface,
>7¢ = absorptivity,

h = film coefficient,

T, = ambient temperature,-

& = emissivity,

g = Boltzman's constant,

Tr = reference temperature,

density, and

>

Cv = gpecific heat.

Because of the steady~state conditions the governing equation
reduces to the following:

> T T
o =57<(kx%'x)+b%’(ky?}7J"‘@ Y

All nonlinearity resides in the boundary conditions (12). To set
up the finite element formulation, equation (11) is cast i{nto its
variational or weak form by multiplying by the test function &T
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and integrating over an element volume.('le

ST
0~ [ L&k ) +53 (ky §)] 8T a2 = [ Q6T a2

‘e . (14)

Integration by parts and the substitution of boundary conditions
ylelds the following equilibrium equation in which B 1s the
boundary of an element:

[ LLE k% 3 an = [, asTdn

+f8[5,,o( + h(Ta-T) +£.O’/‘I?—T4)]5Td13 . (15)

Discretization of equation (15) results in the following set of
equations for a single element:

[CKET+LRIT = [a”] s

KNLI contains the unknown temperatures raised to the 3rd power.
Because of this the solution of the equations requires that K
be approximated by a set of known temperatures and then update%
through iteration until the correct temperature field is
obtained.

Equation (16) may be recast in the following form:

frmd= [k ims + Dk litt - {at = lof

Newton Iteration can then be used to solve (17):

[ 75417 = - [ fir); .

where 3¥ i bK’Me e €
T2 (5T s ki vk

and n=number of degress of freedom per element and AT is the
temperature correction on the Kth iteration. To increase the
accuracy of the solution, load steps are used. Convergence of
the solution is assumed if [3f/3T] remains non-singular and the
load steps are small. Equation (18) gives the final form of the
equations to be solved:

[E7%fary ™= ja}* - ([ ]+ Cku) i7

The process of ultimate failure in a composite is preceded
by a series of events such as transverse cracking, delamination,
fiber breakage, and fiber-matrix debonding. This sequence of

. 17
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microstructural and macrostructural phenomena is termed damage.
Global material properties such as stiffness and ultimate
strength can be substantially altered by an accumulation of
damage.

This research models damage as a load history dependent
reduction in stiffness of the structural members. The
distribution of the damage will be dependent on the resulting
stress field. The members most heavily stressed will incur the
greatest degree of damage. The intensity of the damage will be
determined through the use of a power law degradation of
stiffness. Therefore the degradation of the modulus is given by

E/= E, L1 - (d-/%jn] ,  (20)

where E' is the reduced modulus, E, i1s the initial modulus, (is
the stress in the member, rhax is the ultimate strength, and n
is some power.

The power law model is simplistic. In reality the models
are expected to be quite complex. Work is currently being done
to construct these models for future work in this area.

This research has two goals. The first is to investigate
the sensitivity of stress-strain distributions in beams to damage
induced by thermomechanically induced loads typical of their
proposed environment. The second is to provide a numerical
algorithm to be used in future research to provide thermal
loadings for structural members. Expansion of the algorithm to
include interelement contributions and transient thermal 1loads
is suggested to enlarge the geometries and environments that can
be studied.

The above section details the M.S. thesis research o. Mr. J.
D. Lutz.

2.4 Space Structural Response Due to Damping Change

In a vibrating structure mechanical energy is continuously
converted to other forms of energy via irreversible thermodynamic
processes, and this energy 1lo0s3s 1is partially exhibited in
structural damping. The energy dissipation may be caused by
thermal flux, material inelasticity, friction, creation of new
boundaries via fracture, chemical processes, or other sources.
The emphasis of this research (s to develop a model capable of
predicting this damping for composite materials undergoing load
induced damage.

A damping measure which is commonly used i{s the quantity of
energy D dissipated during one cycle of harmonic motion. The
maximum potential energy V stored in the structure is related to
the energy dissipated by the loss factor n given by

D
7{ = zn-V . (21)

When the structure is built up from elements with known
damping characteristics a proper damping matrix can be determined

- E P e T I e Y Y. e
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yielding the fundamental structural dynamics problem

[mI1x] + [eITed +Celinl = { £

, (22)

in which x is the vector of discrete coordinates, f(t) is the
vector of forcing functions, and [M], [C], and [K] are the system
mass, damping, and stiffness matrices, assembled from the
individual matrices of structural finite elements. The damping
and stiffness depend on the damage in the structure.

For the LSS these matrices are very large, and the
coordinates become highly coupled. Thus, the direct solution of
the equations of motion becomes time-consuming and expensive. A
very common way to analyze damped structures is to use a modal
approach, which is permitted when only the response of the
structure within a certain frequency range is of interest. Then
the response can be expressed by means of a limited number of
vibration modes. The reduction of the extent of the calculations
is the advantage of this approach.

The modal matrix of eigenvectors can be calculated from the
undamped free vibration problem

(m]ix]+ Ceix)= Lo)  en

Modal equations can be obtained from the transformation

Zd-’ﬁﬂi?\ . (2W)

where (4] is the matrix of the eigenvectors and q is the vector
of time dependent generalized coordinates. In general, the
damping matrix in transformed coordinates is nondiagonal, so that
the modal equations are coupled.

As an alternative to the assumption of modal damping, the
equations of motion can be uncoupled without restrictions on the
damping matrix [C], other than that it be symmetric. By
selecting a different set of generalized coordinates, equation
(22) can be reduced to

M*c%(U*K‘%U‘)’ Yie) . (25)

where
q(t) = [kT(t):xT(t)]T is a 2N dimensional state vector, and

Y(t) = [f‘T(\:):OT]T is a 2N dimensional generalized force
vector.

Furthermore,
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The associated eigenvalue problem becomes
- o -
/\Mﬁ*“ia“o . (26)

which can be reduced to the form

where, assuming that M* is nonsingular
I N B

-1 < _ e -M
A= ~MT TS s MK

The solution consists of 2N eigenvalues A; and 2N eigenvectors.
Because the matrices M and K are real, i Ai is an eigenvalue,
then 71 is also 3n eigegvalue. The eigenvectors are orthogonal
with respect to M and XK .

The damping factor for composites has been observed to
increase with damage. Plunkett [11] found that the damping
factor could be calculated from the crack density as a function
of strain level and the strain volume fraction.

If it is assumed that the energy dissipation in a material
depends on the local strain state and its time history the
damping factor can be of the form

W\- £(D) , (28)

where D is the history dependent damage parameter. An internal
state variable theory, [4] can then be utilized to relate the
damping factor with a given damage state. Thus, response
calculations can be made for large space structures,

The research detailed in the above section is the Ph. D.
thesis work of Mr. S. Kalyanasundarum.

2.5 Temperature Change Due to Hysteretic Heating

It 1s envisioned that many space structural components will
be fabricated from aluminum alloys. Furthermore, it has been
suggested that utilizing these components in their post-yielded
state can lead to enhanced passive damping of the structure due
to hysteretic strain energy conversion to heat. For viscoplastic
structures this is a complex nonlinear two-way coupled problem in
that the conservation of energy is coupled via the temperature to
the other field equations [9].
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e The purpose of this portion of the research has been to

. construct a model capable of predicting the structural response
. of a viscoplastic space structure to thermomechanical loading.
} The primary emphasis is placed on the prediction of the
‘ temperature rise accrued in typical viscoplastic members due to

hysteretic loss during cyclic loading.
The general formulation of this problem was completed during
the first year of research [10]. During the second year the

. model has been applied to a typical space truss structure made of
aluminum members (See Appendix 6.4). The structure is assumed to
- be coated with special high emissivity materials, and is

subjected to various levels of solar and earth radiation. The
problem is complicated not only by the thermomechanical coupling,
but also by the nonlinear constitutive equations and radiative
boundary conditions.

As shown in Fig. 9, the predicted temperature rise for an
input cyeclic loading at 5 Hz can be very substantial in spite of
the fact that the radiation boundary conditions provide a
structural heat loss mechanism.

The algorithm developed in reference 10, although
o comprehensive in nature, is very computationally expensive to
F utilize. In fact, it is so costly as to preclude the analysis of

the response of a structural member undergoing several thousand
.- load cycles. Therefore, alternative procedures were considered
& for analyzing the temperature profile as a function of time.
i This research has resulted in the completion of the three part
o paper described in Appendices 6.5 through 6.7.
* . The principal result obtained from this research is the
g determination of upper and lower bounds for the hysteretically
b induced temperature rise as a function of load history, geometry,
g and material properties. As shown in Fig. 10, these bounds
f verify the results obtained in Appendix 6.4,
S On the basis of these results it is concluded that material
I- inelasticity in viscoplastic structural members should be used as
ol a passive damping mechanism only with extreme caution. The
‘ temperature rises associated with this damping process can be so
A severe as to compromise the integrity of the structure.
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The following research has been published during the second
research year:

1. Kalyanasundaram, S., Lutz, J. D., Haisler, W. E., and Allen,
D. H., "Effect of Degradation of Material Properties on the
Dynamic Response of Large Space Structures," Proceedings 26th
AIAA/ASME/ASCE/AHS Structures, Dynamics, and Materials
Conference, April, 1985 (Appendix 6.2).

2. Allen, D. H. and Haisler, W. E., "Predicted Temperature
Gradient in a Thermomechanically Heated Viscoplastic Space Truss
Structure,” Proceedings 26th AIAA/ASME/ASCE/AHS Structures,
Dynamics, and Materials Conference, April, 1985 (Appendix 6.4).

In addition, paper no. 1 listed above has been submitted for
publication to the Journal of Spacecraft and Rockets, and paper
no. 2 has been accepted for publication by the Journal of
Spacecraft and Rockets.

The following paper has been submitted for publication:

1. Allen, D. H., "Predicted Axial Temperature Gradient in a
Viscoplastic Uniaxial Bar Due to Thermomechanical Coupling,"”
submitted to the International Journal for Numerical Methods in

Engineering (Appendix 6.3).
The following papers are to be submitted for publication:

1. Allen, D. H., Nottorf, E. W., and Harris, C. E.,"A
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Matrix Composites,” to be submitted to Fractography of Modern
Engineering Materials, ASTM Special Technical Publication
(Section 6.1).

2. Pilant, M. S. and Allen, D. H., "Analysis of a
Thermoviscoplastic Uniaxial Bar Under Prescribed Stress," to be
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6.5-6.7).

In addition, the following report not listed above has been
completed during the second year of research:

1. Wren, G. and Allen, D. H., "Development of a Theoretical
Framework for Constitutive Equations for Metal Matrix Composites
with Damage," Texas A&M University Mechanics and Materials
Center, Report No. MM 4875-85-9, June, 1985 (Appendix 6.1).
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4., PROFESSIONAL PERSONNEL INFORMATION

4,1 Faculty Research Assignments

1. Dr. D. H. Allen (Co-principal Investigator) - development of
constitutive equations for polymeric composites, metal matrix
composites, and high strength metal alloys; development of
variational principles and finite element methods for two-way
coupled thermoviscoplastic media; experimental methods for
material model development.

2. Dr. W. E. Haisler (Co-principal Investigator) - development
of finite element algorithms for truss and beam structures with
material property degradation; sensitivity studies for large
space structures with material property degradation.

3. Dr, M. S. Pilant (Investigator) - development of solution
algorithms for coupled thermoviscoplastic media.

4.2 Additional Staff

1. Mr., B. Harbert (Lab Technician) - experimental lab support.
2. Mrs. T. Marquez (Secretary) -~ secretarial support.

3. Mr. S. Kalyanasundaram (Ph.D. Research Assistant) -~ modeling
of large space structures with damage induced stiffness loss and
damping increase; expected completion.date May 1986.

4y, Mr. Y. T. Chang (Ph.D. Research Assistant) - modeling of
history dependent behavior of beam-like structures with spacially
and history dependent damage.

5. Mr, E. W, Nottorf (M.S. Research Assistant) -~ development of
experimental techniques for determining load induced damage in
metal matrix composites; expected completion date August 1985.

6. Mr, G. Wren (M.S. Research Assistant) -~ development of
general theoretical model for constitutive equations for metal
matrix composites with damage; expected completion date August
1985.

7. Mr. J. D. Lutz (M.S. Research Assistant) - modeling of damage
dependent space structures in the presence of solar flux and
radiation boundary conditions; expected completion date December
1985,
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5. INTERACTIONS

- 5.1 Papers Presented

< Presentations have been given during the second year at the

- following conferences:

" 1. D. H. Allen - 26th SDM Conference, April, 1985.

" 2. W. E. Haisler - 26th SDM Conference, April, 1985,

3. M. S. Pilant - SIAM Annual Spring Conference, June, 1985,
Papers have been accepted for presentation at the following

conferences:

1. D, H. Allen - 3rd Forum on Large Space Structures, July,

1985.

2. W. E. Haisler - 3rd Forum on Large Space Structures, July,
N 1985.
: F 3. D. H. Allen - 22nd Society of Engineering Science Meeting,

October, 1985.
y, D. H. Allen - ASTM Symposium on Fractography of Modern
Engineering Materials, November, 1985.

5.2 Awards and Achievements

. 1. Dr. Allen has been named Associate Editor of the Journal of
C Spacecraft and Rockets,

2. Dr. W. E. Haisler has been named Head of the Aerospace
Engineering Department at Texas A&M University.

) ! 3. The textbook entitled Introduction to Aerospace Structural
- Analysis, co-authored by Drs. Allen and Haisler, has been
published by John Wiley.

4, Dr. W. E. Haisler has been named to the Halliburton Chair at
Texas A&M University.

5. Drs. Allen and Haisler have been named Texas Engineering
Experiment Station Research Fellows for 1984-1985,

. 6. Dr. Allen has received the General Dynamics Award for
oy Outstanding Teaching and Research in the College of Engineering
at Texas A%M University.

7. Dr. Allen has been tenured and promoted to the rank of
Associate Professor.

. 5.3 Other
[

1. Drs. Allen and Haisler have made a total of eleven research
related trips during the past year.
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.- ABSTRACT
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A continuum mechanics framework is utilized herein

to construct constitutive equations for metal matrix composites

‘ s with damage. Matrix plasticity and microcracking are modelled via
the c¢oncept of internal state variables. Imposition of

thermodynamic constraints results in a set of stress-strain

I e un mne g

relations which are dependent on damage and plastic strain. These
equations are specialized to a one-dimensional case and it is
then demonstrated how the material parameters may be determined

experimentally.
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INTRODUCTION

The characterization and modelling of matrix
plasticity, cracks and other forms of microscopic damage in metal
matrix composites is developed herein using the principles of
continuum mechanics. The theory developed incorporates globally
averaged, history dependent, thermodynamically constrained
constitutive relations and utilizes tensor valued internal state
variables to model history dependent energy dissipative

(irreversible) phenomena.

The two primary energy dissipative phenomena
considered are inelastic strain and damage. Depending on the
complexity of the material under consideration, these internal
state variables can be scalar or tensor valued functions. Since
these phenomena are inherently history dependent, the
specification of the internal state variables representing
inelastic strain and damage and their associated growth 1laws

introduces history dependence into the boundary value problem.

There exist many phenomena in the microstructure of
a material which can be classified into energy

dissipative/irreversible processes. These include crack

formation, dislocation movement and arrangement, grain boundary
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sliding, chemical changes and frictional losses due to rubbing of
fractured surfaces. Therefore, some degree of clarification is
required regarding how inelastic strain and damage are to be
defined. In this paper, all damage will refer to c¢racks in the

material microstructure.

Results obtained from previous research into the
constitution of crystalline solids [1,2] indicate that for the
class of materials into which metal matrix composites is
classified, the inelastic strain tensor is treated as a second
order tensor valued internal state variable. The primary
mechanisms of inelastic strain are postulated as those of
dislocation density (drag stress) and dislocation arrangement
(back stress) which are themselves zero order (scalar) and second
order tensor valued internal state variables respectively.
Research into the kinematics of crack initiation and growth
presented in this paper as well as reference [3] postulates
damage to be a second order tensor valued internal state

variable.

The damage is assumed to Dbe statistically
homogeneous within a representative volume element, which is
assumed to be small in comparison to the body of interest. Under
the condition of small scale statistical homogeneity, all

continuum based conservation laws are assumed to be valid on a

global scale in the sense that all changes in the continuum




problem resulting from internal damage are reflected only through
alterations in the constitutive ©Dbehavior. Therefore,
microstructural phenomena such as cracks qualify as damage and
their effects on the performance of a material can be reflected
through the constitutive relations. However, macroscopic and/or
nonhomogeneous damage states such as large scale surface cracks
are treated as boundary effects which must be reflected in
conservation laws via changes in the external boundary conditions

rather than in the constitutive relations.

DEVELOPMENT OF THE CONSTITUTIVE RELATIONS

We now proceed to develop specific constraints on
constitutive behavior. In this analysis the following assumptions

are made:

a. thermomechanical coupling is non-zero,

b. electrical and magnetic effects can be
neglected [4] as these can be either
controlled or or their effect on the body of

interest calculated,

c. infinitesimal deformations, and
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d. in the absence of damage or at constant damage

state the material behavior 1is initially

linear thermoelastic and isotropic.

Field Parameters

Consider a body occupying a closed region V with
material points X, = (x1,x2,x3). In an analagous method to that
proposed by Coleman and Gurtin [5], it is postulated that the
following state variables are required to fully characterize the

state of all material points x, within a body at all times ¢t:

J
a. displacement field u; = ui(xJ,t) (1)
b. stress tensor 0y = °1J(xk’t) (2)
c. body force per unit mass £, = ri(xj’t). (3)
d. heat flux vector q = qi(xj,t) (8)
e. internal energy per unit mass u = u(xJ,t) (5)
f. heat supply per unit mass r =r(x,,t) (6)

J
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g. entropy per unit mass S = s(xj,t) Q)
h. absolute temperature T = T(xj.t) (8)
and
k k
i. aij = aij (xm,t) Kk =1.euese,n (9)

where aiJk are a set of n second order tensor valued internal
state variables necessary to model inelastic deformation and

damage.

Field Equations

The following pointwise field equations , written
in differential form, are assumed to hold for all media

undergoing infinitesimal strains:

a. conservation of linear momentum
OIJ’J + pfi = puy (10)
b. conservation of angular momentum (assuming

negligible body moments):
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1y = % (11)

c. kinematics:
eij = 1/2 (ui,,j + uj,i) (12)
d. conservation of mass:
dp/dt = 0 (13)
e. conservation of energy:
3
. -
- . pu = °i,1é13 " a4,y % er (14)

v
2

i
'

second law of thermodynamics

Dae mm an a0

.
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:

pY = p8 - pr/T + (qJ/T) (15)

vJ

where Y is the specific entropy production rate. Equation (15)

together with the Clausius-Duhem inequality:

Y20 (16)

A A amecess g
: .

is assumed to hold for all processes. It should be noted that

although equation (15) introduces one additional equation, it
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‘ simultaneously introduces a new variable, namely Y. Therefore,
E equation (15) alleviates no degrees of freedom. However, although
b
; ; inequality (16) cannot itself specify any degrees of freedom, it

- will impose constraints on the allowable form of the constitutive

equations.

In the foregoing analysis the body force vector,
inertial effects and body moments will be assumed to be

negligible and the conservation of mass is trivially satisfied.

Helmholtz Free Energy

We now define the Helmholtz free energy per unit

mass:

h=u-Ts (17)

where h is the arithmetic sum of the total internal energy (u) of
a body and the internal entropy production (irrecoverable energy
loss) (Ts) dissipated during a process. Thus, the Helmholtz free
energy represents the net available internal energy within a body

following any process.

It follows that:
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Q=h+Ts + TS (18)

Equation (18) can be substituted into equation (14) and this

!! result then combined with equation (15) and inequality (16) to
give:
- - - T - - >
pTY ph - pTs + % 1k1 qng/T 20 (19)
- where
r

- The field equations (10), (11), (14), (15) and (16)
are combined with conditions applied on the boundary B of a body

L to specify the complete field problem.

.- Constitutive Relations

Suppose that the displacements u and temperature T
:f are specified. Then the method of Coleman and Noll [6] can be
. used to obtain the spatial and time distribution of the body
~ force vector (f) and the heat supply (r) from the conservation of
'{ linear momentum and energy equations respectively, assuming that
the displacement and temperature fields are specified.

—
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Constitutive relations can then be constructed [7] from the

remaining state variables and their spatial derivatives. The form
of the constitutive relations used including internal state

variables and their associated growth is postulated as follows:

p
oij = oij(ekl'T’gk'akl ) (21)

- p
u u(ekl,T,sk,akl ) (22)
s = 3(e, ,,T,8.,Q Py (23)

k1’ **®k’"kl

Q= q (e 1sTo8, s, F) (24)

i 17kl 7Kk’ Tkl

and
a,_, 4 P

@ le (Ekl'T'gk’akl ) (25)

The form of equations (21) through (24) implies
that all constitutive equations are evaluated in the specified
state (xJ,t)f For this reason L
observable state variables since they can be determined from

u, 8 and q are termed

equations of state for all times t even though there ig implicit

history dependence via the internal state variables aklp‘ In

addition, from the definition (17) and the form of equations (22)
and (23) it follows that:

h = h(e Py (26)

k1' T8y 1




il Rt St et g Siar Pl e et A it BaliC e P SRR - ol S e

Note that:

1) the constitutive relations (21) through (24) are
. equations of state and therefore cannot contain time rates of
change of state variables;

2)- the principles of 1local action and equipresence [8,9]
hold for equations (21) through {(24), but need not be satisfied
in the zrowth laws [equation (25)];

3) the superscripts p and q in equation (25) range from
one to the number of internal state variables required to fully
characterize the inelastic response and the damage state of the
body;

y) the growth 1laws by their definition embody time
dependence and can therefore contain both spatial and time
derivatives of state variable arguments. If equations (25) are at
all times integrable in time then the following is an equivalent

expression to (25):
In

-'- t
aijk(xm,t) -f Qijk(xm,t') at (26a)

where t 1s the time of interest and t' is a dummy variable of

integration. Therefore, it is apparent that a k are not directly

; . i

observable at any time and must be considered as internal or

hidden state variables.
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Internal State Variables Considered

When a body denoted by B is subjected to some
traction or deformation history as shown in Figure 1, it will
undergo a thermodynamic process which will in general be

irreversible to some degree.

This irreversibility 1is 1introduced by such
phenomena as dislocation movement and growth, fracture (both
micro-= and macroscale), friction (due to rubbing of fractured
surfaces), grain boundary sliding, deformation ¢twinning and
chemical changes. However, due to the relative magnitudes of
these energy dissipative processes the two primary internal state
variables postulated to be of interest in this analysis are those

of inelastic strain (a ) representing dislocation phenomena and

11
damage (°u1j> representing microcracking. Although there may
exist some interrelationship between these variables, they are

considered to be independent as they represent different physical

phenomena.

The two microstructural mechanisms which are
considered to have the greatest prominence [10] at temperatures
less than one half the melting temperature of the material under

consideration are:

a. Drag Stress (az): representing locally averaged

.....
-----
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Figure 1
Arbitrary Body Subjected to Applied Tractions
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dislocation density and producing isotropic

hardening; and

b. Back Stress (a3ij): representing the locally

averaged dislocation arrangement and producing

kinematic hardening (Bauschinger effect).

Factors Influencing the Growth of Inelastic Strain.

The primary independent internal state variables

influencing the growth of damage are considered to be the

historical inelastic strain and damage states, back stress and

drag stress.

The growth 1law for the inelastic strain is

therefore postulated as follows [11]:

where:

‘N“'l .'. * . N A
dernied Wa Y e

G1gg = MegpsTraggr0p005,0ay,9)0,," (27)
02 = &2(€kloToa1kllaapa3kl|aukl) (28)

a3ij = “3ij(ekl’T’ui1J'a2’a3iJ'GUKl) (29)
A = scalar valued function of state
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and 0,,' = deviatoric stress tensor

13

It should be noted that the back stress and drag
stress represent mechanisms which physically exist. However,
dislocation arrangement and density are microstructural
phenomena. Although they influence the growth of the inelastic
strain, they do not directly enter into the stress-strain

relations because they are not kinematic quantities.

Factors Influencing the Growth of Damage.

Damage is defined in this analysis as intergranular
mechanisms such as grain boundary sliding, microvoid growth and

microstructural cracks.

As the arrangement, density and growth of
dislocations will effect the growth parameters (rate, direction)
of any damage existing in the microstructure, the primary
internal state variables influencing the growth of d;mage are
considered to be inelastic strain, the previous damage state,
back stress and drag stess. Therefore, the growth law for damage

is postulated as:

“uij = °u13(ekl'T’°1k1’°2'°3k1’“ukl) (30)
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o~ for isotropic conditions:

Oyyj = FlepgrTooqgr0psag150y,1)8; (31)

It should be noted that although damage is

obviously a directionally related quantity and therefore

s tensorial in nature, it is difficult to distinguish
phenomenologically between damage and drag stress since both can

h
b
L
3
5 ?; interpreted as stiffness reducing mechanisms.

T

Functional Form of the Helmholtz Free Energy.

As the inelastic strain and damage are postulated
to be the primary independent internal state variables affecting
the constitution of the materials considered herein and both are
functions of the back stress and drag stress, the Helmholtz free

energy is postulated to have the following form:
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Thermodynamic Constraints.

Thermodynamic constraints on the form of the

]
)

'j~ constitutive relations [equations (21) through (24)] can be
- accomplished using the Coleman-Mizel procedure [12] under the
=
assumption of the Clausius-Duhem inequality [equation (16)]. In

Y

r this procedure, the Helmholtz free energy [equations (32)] is
I - implicitly differentiated with respect to its arguments as
o

L follows:

-

.
&F .

' h = ah/aeklekl + Oh/JT T + Bh(agmgm

: (33)
i + 3h/301ija1ij + Bh/aauijauiJ

Substitution of equation (33) into the inequality (19) results

- in:
|
i, iy
DTY - [Okl(emn.T,Sm,Gmn ) " pah/aekl(emn,T.Sm.Gmn )]ekl
N { .
_ - [od/3T(e W T 8,0, ") + psle,T,8 ,a ') 1f
i 1,
5 ~ pbh/Bgi(emn.T,gm.amn )8, (34)
)
SRS _ K i K i
.:: - pah/aqij (emanogm’amn ) Ql,j (amngmoam )
r = q,(e Tgai)s/TZO
] 3 mn’ " '"m’"mn ‘®J
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where i assumes the values of 1 and 4 representing the inelastic
strain and damage respectively. On the basis of this technique it
can be shown that the satisfaction of the First and Second Laws

of Thermodynamics will lead to the following conclusions [2]:

h = h(e s Tray,qoay,,) (35)

o5 = pah/aeij (36)

s = = dh/aT (37)

u=nh=+Ts (38)

and &ijq = Qijq(ekl’T’“1k1’°2'03k1'°ukl) (39)
Note that:

1) thermodynamically —constraining the

constitutive relations removes the dependence of the Helmholtz
free energy on the temperature gradient gk.

2) the above thermodynamically constrained forms
of the constitutive relations [equations (36) through (38)] show
an intrinsic dependence of stress, entropy and internal energy on

the Helmholtz free energy.

Following the Coleman-Mizel procedure, inequality




(34) reduces to:
Kk k
pTY = —pan/amiJ 2, - qjgj/T 20 (40)

where the first term is called the internal dissipation and the

last term is dissipation due to heat conduction.

Coleman and Gurtin [5] utilize inequality (40) to

prove that:
q; = kIJsJ + O(IgJI) (ln)

l' at an asymptotically stable equilibrium state where k is the

iJ
positive semidefinite thermal conductivity tensor. It will be
assumed herein that these conditions hold and the higher order

terms in equations (41) will be neglected.

Therefore, the specification of the Helmholtz free
energy function [equations (35)] will completely define the
constitutive equations (21) through (23) and equations (41) will
define the constitutive equations (24). Thus, |if the' internal
is state variable growth laws (39) can be determined the field

problem will be completely specified.
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. The Local Averaging Process
':;'. Constitutive relations (21) through (24) are
m theoretically pointwise in nature; that is, they are applicable

to fixed infinitesimal material points. However, there is no
practical method to construct experiments on material points
since at the microscopic level the continuum assumption becomes
invalid. Therefore, to obtain constitutive relations which are

- applicable to a continuum, it is considered acceptable to

construct constitutive equations by subjecting local specimens to
i surface deformations or tractions which 1lead to spatially
) homogeneous stress and strain fields so that some local average
. of the pointwise observable state variables can be determined
directly from the effects on the boundaries of the specimen.
! As shown in Figure 2, the scale of the smallest
) dimension of a local specimen is generally constructed to be at
'.E: least an order of magnitude larger than the scale of the largest
-~ material inhomogeneity. This sizing assists in preserving the
continuum assumption while still averaging out the effects of
tf; point defects such as crystal lattice dislocations. Conversely,
- the scale of the largest dimension of a typical specimen should
be small compared to the scale of the boundary value problem of
. interest. This constraint i{s necessary in order to preserve the
[ notion that the constitutive equations are indeed pointwise in
= nature.
L
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- The 1local rather than pointwise constitutive

oo equations that result from experimentation are assumed to be of

N o e o o

the same form as pointwise equations (21) through (25). For

!! example, in the uniaxial test described in Figure 2 it is
{ customary to define the following:
3

0,4 = 1/4 o”dxzdx3 (42)
- Bl
F’ €9 = VL[ &,,dx, (43)
and L
" TS T(a1'a2’a3) (uu)

where L 1is the 1local specimen gage 1length, A 1is the

cross—~sectional area in the x2-sx3 plane, and (a1,a2,a ) is some

3
arbitrary point on the surface of the specimen. Utilizing these

f
SN quantities, it is then hypothesized that:
: 0, (e, Tha . P) = 3, (E,.,T.a. ") (45)
118110 % 11 811200 %
[ %
L. where
. aklp - 1/V[ aklpdx1dx2dx3 (46)
o v

and all quantities with bars represent the locally measured state

variables.

Although equations (45) represent an often used way
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of relating pointwise to experimental results, the local

averaging process is nevertheless prone to shortcomings since the
definitions (U42) through (44) all represent nonunique relations

between pointwise state variables and o k and their

130 €130 T %43

- - = — Kk
locally defined counterparts °1;' eiJ' T, °1j .
an infinite number of distributions aklp(x1,x2,x3) which will

There are in fact

result in identical values for aklpf However, assuming that the
scale of any inhomegeneities is small and that the distribution
of aklp is random, the specimen will be statistically homogeneous
and the relation between Eklp and aklp will be approximately one
to one. Note that for clarity the overbar will be excluded from

expressions.

Determination of the Constitutive Equation Form.

To evaluate the constitutive form of the stress
tensor and the entropy from the equalities given in equations
(36) and (37), the pointwise Helmholtz free energy per unit mass
is expressed as a second order Taylor Series expansion in the
independent state variable arguments as follows:

h=A+8B

+ 1/2C + DAT + 1/2EAT?

13513 13k1%13%k1

* /26 4109 13% 1t By

Fii%1y
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1/2J1jklauijahkl + KijsiJAT + Lij°1ijAT (u7)

505587 * Niga®i5%01 ¥ O15K1%15%kK1

Pijk1% 1j%K1

If second order effects are neglected then the
stress tensor can be evaluated from equation (36) by

differentiating equations (47) with respect to the strain tensor

as follows:

04 = pbh/aeij
ie 0545 = D(Bij + Cijklekl + KijAT (u8)
* N %kt %4 gk1%ky’
Now define:
R
pBiJ = oiJ
~pK, AT = C T
PRy 1jk1%k1

(48a)

"N sk1®k1 T Cigka®e

=P04 5k1%k1 = Cijk1® 4kl




BN SN A A A L S AR A A Sl M A A A A0 'l S ALt h SPa b B N e T T Tl Tt R Al Btk SRl Bl B __1

li Substitution of equations (48a) into equations (48) yields:
= R T
5 % %3 *Ciskil®k1 T %kl T %uk1 * Sk ) (49)
-
where °in = residual stress tensor, and

T
€
J

B i‘

The expression for entropy can be readily obtained

= thermal strain tensor.

by differentiating equation (47) with respect to temperature.

A coupled heat equation can also be obtained by

substituting equation (18) into (14), imposing the conditions of

l' equations (35) through (37) and then subtituting the Helmholtz

free energy =xpression into the result [3].

Description of the Internal State.

Consider an arbitary region denoted by B as shown
in Figure 3. (The body B is assumed to be small on a scale to a
boundary value problem of interest). Now consider an arbitary
local element denoted as L with external surfaces S1 which are
chosen normal to a set of Cartesian coordinate axes (xl,xz,x3) as
shown in Figure 4. Although the element L is an intrinsic part of

the body B, it can be thought of as being removed from B and the

: ".'-!'_-",- AR N

R A N .. e e
: -'J'ﬁ')L‘A") ’J"-' IR AP A A P4
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General Bounded Continuum of Interest




Figure 4

Local Volume Element V
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newly created surfaces subjected to appropriate boundary

conditions so that the response of the element L to an imposed
boundary condition is identical to that of the element when it is
located in B. The scale of L is chosen so that its dimensions are
small compared to the dimensions of B. However, the dimensions of
L are also large enough to guarantee statistical homogeneity of
the material properties and existing defects even though the
total surface area of the defects may be the same order of

magnitude as Si1.

Internal surfaces resulting from fracture are
labelled S2. The volume of the element is defined to be V, which
includes the volume of any damage (cracks and/or voids) denoted

as v .
¢’

In order to describe the internal state, we first
consider the kinematics of a typical point O with neighboring
points A and B as shown in Figure 5. Before deformation lines 0A
and OB are orthogonal as shown in Figure 5a. After deformation we
imagine that the 1lines joining O',A' and B' are as shown in
Figure 5b and just at the instant that deformation is completed,
a crack forms normal to the plane of AOB through point 0' as
shown in Figure 5c¢. Furthermore, point O' becomes two material
points 0O' and 0O'' on opposite crack faces and points A' and B'
deform further to points A'' and B''. It is assumed that all

displacements, including crack opening are infinitesimal so that
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......................
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Figure 5

Kinematics of the Damage Process

a) Point O Prior to Deformation,

b) Point O After Deformation and Pr1or
to Fracture Process,

¢) Point O After Fracture.
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the observer at an appropriate observation distance from point O
sees only the deformation A'' QO' B''. The strain associated with
this deformation is appropriately called an observable state
variable. However, the strain of interest is associated with
A''0''B''. Therefore, it 1is essential to construct an internal

state variable which will relate these two strain descriptions.

We therefore construct the vectors uc connecting O
and 0'' and nc describing the normal to the crack face at 0' as

¢ can be used to

shown in Figure 6. It should be noted that u
construct a pseudo-strain representing the difference in rotation

and extension of lines A''QO''B'’.

The rate of change of surface energy released per

unit local volume due to cracking in L [3] is given by:

¢
u - = ~1/pLVL JELILY ds (50)
S,

Assuming that any cracks in the body recover elastically, that
i3, close upon the removal of the load, then we further assume
that this process is reversible and that tractions T can be

applied at point O' which will close the crack:

c c._c
u o= 1/vaL/ T,%," ds (51)
S2

Using Cauchy's formula Equation (46) can be placed in the form:
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Description of the Internal State at O
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e
u o= 1/ v 054 Uy My ds (52)

where the subscripts denote quantities associated with the actual
crack geometry.

¢ and nc describe the

Guided by the fact that u
kinematics of the cracking process at point 0, we now define the
following second order tensor valued internal state variable to

describe damage:
c
i 0y (53)

We now define the locally averaged internal state

variable describing damage to be:

Oyyy = k/pLVL uinJ ds (54)
v

where Sc = surface area of cracks, and

k = a constant resulting from the simplification of

equations (U48) to equations (49).
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Mathematical Model for Damage

The damage model considered in this paper
classifies damage as a displacement related mechanism; current
models [13] classify damage as a stiffness reducing mechanism.
For the case of infinitesimal strains, the following section
demonstrates that the model proposed herein is consistent with

these existing models.

Kachanov's reduced stiffness model [13] is given

by:

T
935 = Biy * Coger’ (k1 " %1 T Sk ) (55)

Equations (55) can be shown to be equivalent to equations (u8a)

by first equating as follows:

T

Cijkil®k1 ™ %Mkl " %K1 T Sk )

(55a)

T

kl )

*Ciykn"(Ck1 = ¥qpq " €

Now let:

Cisk1" = Cijk1 = Yijk1mn®4mn (56)

then (55a) becomes:

T

Cijkil®k1 ™ %1k1 ™ %1 " k1 )

T
- (cijkl i *1Jk1mn°umn)(€k1 " %y T Sy )

T
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T
=> Ciik1%k1 = Yijmnk1%k1 ®mn ~ %1on ~ Can )
=> [c -y (e. = a =~ ¢ T)]a =0
13kl ~ Yijmnk1‘®mn T *tmn T €mn 0 %uk1
Therefore,
T
¥ k1o T %mn T Smn ) " Cijkl (57)

UNIAXIAL FORM OF THE MODEL

For the purpose of this analysis, the temperature
field is assumed to be significantly less than 1/2Tm. Therefore,
if thermal strain is neglected, the uniaxial isothermal form of

equation (44) is given by:

o= oR + E(e = @ - “M) (58)

Consider the input strain profile shown in Figure
7. The stress-strain curve resulting from a uniaxial tension test
of a metal matrix coupon using this strain profile is'given in
Figure 8. De..o.e the slope of the elastic portion of the load-=up

curve as (E) and the slope of the unloading curve as (Et)‘

The slope (Et) is defined as:
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Figure 7

Input Strain Profile

Figure 8

Stress-Strain Curve
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E, = do0/d¢ (59)

. Thus, differentiating Equation (58) with respect to the strain

- tensor gives:

™
A E, = EC 1 - aa1/ae - bau/be) (60;
If the specimen is unloaded following the
application of a traction or deformation field the inelastic
- strain remains constant as the strain energy (oc) has

substantially decreased due to the decrease in the applied stress

~ (0). This is shown diagramatically in in Figure 9.

\ Therefore, for unloading:

301/35 =0 (61)
u
and Equation (60) becomes:
[
ﬁ - E, = EC 1 = da,/3¢) (62)

. Now, if the aluminium matrix is linear elastic on
* N unloading then Et is constant on unloading and the implication is
3

3

that:

E ! aaulbe = constant (on unloading) (63)
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Inelastic Strain vs Input Strain Curve

Figure 10

[ Damage vs Input Strain Curve
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The curve corresponding to this result is given at Figure 10.

EXPERIMENTAL VERIFICATION OF MODEL

In order to qualitatively verify the supposition
that the inelastic strain tensor (°1ij) can be regarded to be an
internal state variable, consider ihe example of a uniaxial bar
subjected to applied displacements such that the end tractions
will be evenly distributed., It is customary to deduce the
inelastic strain in an experiment of this {ype by utilizing the
output from a loadcell to determine the stress and then make use
of equations (58) to determine the elastic strain. However,
equations (58) entail the damage tensor (“uij)’ Therefore an
experimental procedure is required to distinguish between
deformation due to inelastic strain (back stress and drag stress)

and that due to damage. The procedure proposed is demonstrated by

equations (61) and (63) and illustrated in Figures 9 and 10.

Therefore, it is proposed that the inelastic strain
and damage resulting from an applied stress or deformation field
can be distinguished experimentally; the inelasti¢ strain is

obtained from the unrecovered strain and the damage is related to

the change in slope between the loadup and unloading portions of

e e e T Y TR TR T A P S ol P i
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the stress-strain curve.

CONCLUSIONS

The foregoing analysis has developed a constitutive
model for the inelastic deformation of a continuum with damage.
Following the application of thermodynamic¢ constraints on the

form of the constitutive relations and a kinematically

Justifiable definition of the Helmholtz free energy, a
constitutive equation relating the stress tensor to the total
? I' strain tensor, the inelastic strain tensor and the damage tensor

- was developed. Experimental results from uniaxial tests carried
out on aluminium matrix material with silicon carbide fibres has

determined that a global measure of microstructural damage could

be directly related to the slope differential between the load-up

and unloading curves on the uniaxial stress-strain plot [14].
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EFFECT OF DEGRADATION OF MATERIAL PROPERTIES
ON THE DYNAMIC RESPONSE OF LARGE SPACE STRUCTURES

S. Kalyanasundaram®*, J. D. Lutz®, W. E. Haisler®#*, and D. H. Allen¥*#*
Texas A&M University
College Station, Texas 77843

Avstract.

In this paper the effect of degradation of
material properties on structural frequencies and
mode shapes of Large Space Structures (LSS) is
investigated. The difficulty and cost of
maintenance of LSS make it a necessity to design
these structures to operate with a certain amount
of load-induced damage. This damage is commonly
observed in fibrous composite media.

Sensitivity studies conducted on
representative space truss structures indicate that
degradation of material properties may have a
significant effect on the structural mode shapes
and frequencies. For even small amounts of
reduction in stiffness (10%), frequencies and nodal
locations may change significantly. It 1is clear
that these effects must be taken into consideration
when designing control systems for Large Space
Structures.

Introduction

Due to economic constraints, it is projected
that advanced high strength-to-weight ratio
aerospace materials will be utilized in future
generation space structures. Such materials
include polymer and metal matrix fibrous
composites, which are known tg émdergo a certain
amount of load induced damage.”’ These materials
are also expected to undergo a certain amount of
environmentally induced damage or degradation, thus
resulting in significant stiffness losses.

Experimental research on advanced composite
materials indicates that the material may undergo
up to 15 percent 1loss (n stiffness due to
thermomechanical fatigue, which causes a variety of
damage modes in the structure. Additional loss of
stiffness may be attributed to elevated temperature
and chemical changes due to solar radiation and
other environmental effects. This reduction In
stiffness affects the dynamic response which in
turn is critical in the development of control
systems for LSS. In this paper, sensitivity
studies will be presented which investigate the
effect of stiffness loss on structural frequencies
and mode shapes,

The advent of the space shuttle has made
possible the development of LSS. Control systems
for stabilizing and maneuvering these very large
space structures, especially those for precise
pointing, will require extension of current
technology.

* Research Assistant, Aerospace Engineering

#%  Pprofessor and Head, Aerospace Engineering
Associate Fellow AIAA

8% Assistant Professor, Aerospace Engineering
Member AIAA

Although large size by itself does not arouse

concern, structural flexibility resulting from
minimizing the structural weight in non-=
gravitational rields may present problems.

Extremely large structural flexibility may result
in large amplitudes and low frequencies (.01 to 10
Hz) which may create new complications for control
designers.

As an example of the precision required1 , a
typical radiometry application may utilize a 200
meter antenna with an effective beam width of 0.01
degrees and have requirements limiting the
vibratory beam shift to less than 0.005 degrees and
dynamic surface distortions to 1less than 1mm.
Maneuvering or maintaining the altitude of such a
satellite leads to flexible body motion which must
be well predicted and controlled.

The importance of interaction between control
systems and vibratory response has cauagg
considerable research in LSS control systems.
The current practice of guaranteeing a large
separation between modal frequencies and the
bandwidth of control will not be adequate in future
applications. The combination of large size and
payload-weight restrictions will drive structural
frequencies down and the need for more accurate
pointing will drive the control system bandwidth
up. When sufficient frequency separation becomes
impossible, there exists a need for adaptive
control systems. This leads to further research in
the design of structural control systems actuator/
sensor placement, and distributed sensing and
actuation as opposed to co-located sensors and
actuators.

Techniques for achieving modal control of LSS
will require a more accurate knowledge of modal
characteristics. Optimum sensor and actuator
placement will be greatly i{nfluenced by modal
effects which must be known to a greater degree of
precision.

Problem Summary

In order to investigate the possible effects
of material degradation on the dynamic response of
LSS, a representative space truss structure has
been selected in the shape of a long boom as shown
in Flg. 1. Using several loading histories, stress
distributions have been obtained for each truss
member. The resulting stress distributions can be
used in a material damage model to define material
degradation and resultant stiffness reductions.
Using the reduced stiffness properties, modal
analyses have been conducted on the structure to
show the effect of material degradation on natural
frequencies, mode shapes and nodes. Details of the
finite element model, material degradation model,
and numerical results are presented below.
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Fig. 1

Space Truss Structure

Model Description

Material Degradation Model

The process of ultimate failure of composite
materials is preceded by a sequence of
microstructural and macrostructural events which
are termed as damage. These events may be due to
transverse cracking, delamiqgg*en. fiber breaking
and fiber-matrix debonding. The mechanical
response of the structure {s affected by this
damage. Global material properties like stiffness
and residual strength may be substantially altegg
during the life of the structural components.
Some of the analytical studies q?r modeling damage

include shear lag concept, fracture based
concepts,,,_,, and internal state variable
theories, Although important progress has

been made, current understanding of damage is not
complete.

Damage i{n polymeric composites is modelled in
this paper as a load history-dependent reduction in
stiffness in each structural element. The internal
state variable theory (ISV) 1is used for modeling

mechanical Dbehavior and 125?3 stress strain
relationship {s of the form,
T
04" c'ijkl (‘kl € ) (1)

In this case, the ISV are assumed to be
second order tensor valued and to enter only
through the modulus tensor. C'1Jk1 is the
effective modulus tensor given by

I S
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vhere apmﬁ are a set of r internal state
varlables12 which are given by the following set of
ISV growth laws,
1 BN q
@ n Q mn(ckl.'r.ukl ) (3)
At low homologous temperatures these

materials are assumed to be rate insensitive so
that the above model will result in quasi-elastic
(rate independent) equations in which inelasticity
is reflected only through the slowly dearag198
modulus tensor. Experimental evidence '
indicates that the time scale for degradation of
ct K is very long compared to the frequencies and
mo&é ghapes of representative structures. It Is
therefore sufficient for many space structural
applications to treat equations (1) in the degraded
state only.

The stress-strain relationship for the truss
elements 1is a one-dimensional approximation of
equations (2) given by

T
- ] -
Oex E (exx ¢ xx) S
where Ox and €yx are the unfaxial stress and
strain, eT is the thermal strain, and E' is the

axial stir?ﬁiss of the truss element given by
E' =E (1 = qa) (5)

where E is the undegraded axial stiffness and q is
a Sscalar valued parameter representing the
integrated effect of all damage modes such as
matrix cracking, interlaminar (fracture, Cfiber
breakage, and fiber-matrix debonding.

Experimental research on composite materials
ind.cates a power law degradation of ff1?§
stiffness as a function of stress history.. '
Hence the damage ISV growth law is assumed to be of
the form

o n
e =k, (°/°max) (6)

where k, and n are material parameters, o is the
maximum stress in the structure, and o {s eﬁe axial
stress in each truss element. For constant stress
amplitude, equation (6) may be integrated in time
to give the following approximation

[ n'
u(tl) - k', [o(t')/omax] &)

where k', and n' are material parameters which may
be time &ependent.

A power law form of damage is used herein for
simplicity and for an initial attempt at modeling
the structural response with damage. In reality
the damage laws will be more complex 15nd are
currently being developed for future work.

Finite Element Model

Figure 1 {llustrates the geometry of the
representative space truss used to simulate an
antenna boom. This structure {s sixty feet long
with 10 bays, six feet long by three feet wide.
The finite element model has 124 space truss
elements and 44 nodes., In the initial undegraded
configuration, the material properties are the same
for all members with the following values:
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Material type: Graphite eppxy (Hexel)
Young's modulus E = 21.5x10 531
Cross sectional area 3 1.0 in

Density = 0.065 1lb/in

Coefficient of thermal expangion - 2):10-6 1n/1n/°F
Reference temperature = 89.6 F
Each truss member i3 {dealized with a

atandard six degree of freedom truss element of
constant cross section, Because the structure is
idealized as linear with slowly varying material
properties, conventional linear finite element
methodology may be used t?6grfte global equations
of equilibrium of the form

(M1{q) + [K1{q} = (Q} (8)

where [M] is the mass matrix, [K] is the stiffness
matrix, {q} {3 the nodal displacement vector, and
{Q} {s the nodal force vector. The stiffness
matrix (K] is dependent on the spatially variable
damage state a which varies from element to
element. Standard eigenvalue extraction may be
performed; ir this case, 3ubspace iteration was
used to obtain the first five frequencies and mode
shapes.

Spatial Distribution of Degradation

The spatial distridution of degradation and
stiffness reduction of LSS will be complex and
dependent on loading and environmental history.
For the present investigation, wherein material
degradation i{s assumed to be a function of stress
history, it was necessary to make some assumptions
about the corresponding stress history and spatial
distribution of stresses within the LSS.

Two approaches were used to obtain candidate
stress histories/distributions for predicting the
stiffness degradation. In one case, the stress
distribution was obtained for an assumed thermal
load history/distribution. Secondly, a modal
approach was used wherein {t was assumed that
primary degradation occurred In the first two
bending modes of the structure. After computing
the mode shapes for the first two undegraded
bending modes, the nodal displacements were used to
compute a corresponding stress distribution.

In each case, the degradation model given by
equation (7) was then used to obtain degraded
properties for each truss member assuming that the
element stressed the most was degraded a specified
percentage. The resultant structure with degraded
properties has spatially variable stiffness that
varies from element to element. Mode shapes and
frequencies were then computed with varying maximum
percentages of degraded properties.

Discussion of Results

Natural frequency and mode shape responses
have been obtained for several stress-induced
degradation test cases as descridbed above for the
representative space Lr..s structure shown in Fig.
1. This particular truss structure geometry,
representing a segment of a boom, s similar to
ones being used for other PACOSS related work.
Assuming the boom is fixed on one end (at x=0), the
five lowest frequencies (for the virgin structure)
are equal to 3.4 Hz, 4.5 Hz, 4.6 Hz, 19.2 Hz, and
20.3 Hz. The first mode {s a combined torsion-~
{nplane shear mode, the next two modes are bending
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modes about the z and y axes, respectively, and the
fourth mode is a pure torsion mode.

The first case considers the boom structure
shown in Fig. 1 (which is assumed to be fixed on
one end) with a thermal gradient over the cross-
section. It i3 likely that one surface of the
space structure will become significantly hotter
than the other surface due to solar heating,
attitude of the structural elements and shadowing
effects. To investigate the effect of this thermal
gradient through the depth of the truss, the
stresses in each element wﬁge calculated by
specifying a temperature of 122°F for the members
on the top surface, 80.6 F for the members on the
bottom surface and 100°F for the diagonal members
connecting the top and bottom surface. With this
thermally-induced stress distribution, the axial
stiffness of each element was degraded by using
equation (7). The maximum level of degradation
(loss of stiffness) was set to a prescribed
percentage for the element with the highest stress
and remaining elements were degraded according to
their stress level by using equation (7). The
value of n' in equation (7) was assumed to be 0.75.

In Fig. 2 the first three natural frequencies
are plotted for different levels of damage. The
effect of damage on the natuwral frequencies is
clear. Increasing the level of damage reduces the
stiffness of the space truss and this in turn

. drives the natural frequencies down significantly

even for modest damage states., For a maximum loss
of 25% in axial stiffness (for the highest stressed
members), the first three natural frequencies are
reduced by about B8%. Since mode shapes are

" n
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Fig. 2 Effect of Damage on Natural Frequencies
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‘ r important for designing the control systems of the
large space structures, it is desirable that they
.. be constant with time. Although it was found that
‘k, there was no appreciable change in the first mode
- shape between the undegraded and degraded cases,
higher modes were altered due to material
. degradation. Flgure 3 is a plot of the 2
' :- displacement for the second mode shape along the

length of the space truss (2=0, y=0). Significant
-~ changes in the mode shape and node locations as a
function of percent degradation are observed. The
sign of the modal displacement is reversed near the
: free edge for the degraded and undegraded cases and

er the location of the node (zero displacement)
’ changes appreciably. Figure 4 is a similar plot of
the y displacement along the length of the space
truss for the third mode.

-
1
-

72 144 218 288 360 432 804 L] 0
The value of n' in equation (7) was varied
HORIZONTAL POSITION from 0.25 to 1.0 to study {ts effect on the mode
shapes. It was found that the trend in mode shape
changes was similar for different n'. Figure 5
v . illustrates this point. Here the z displacement
- for the second mode is plotted along the length of
' LEGEND the space truss for different values of n' (maximum
- O-“”“g: reduction in axial stiffness was 20%). The plot
o | a=10% DAMAGE indicates that increasing n' (i.e., decreasing the
- ® Pt A-R Hv nonlinearity of the degradation model) tends to
' O=25% DAMAGE increase the changes in the modal displacements.
: Such nonlinearity becomes increasingly important
when stresses vary spatially over the structure,
i.e., some members are highly stressed compared to
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Fig. 5 Effect of Material Degradation Exponent
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The next two sample cases consider the
situation where we assume that primary degradation
occurs in the first two bending modes. For
simplicity, it is assumed that damage occurring in
one mode does not affect the damage in any others,
i.e., no damage induced coupling of modes. In
reality, this may not be the case and will be
considered in future research.

In the first case, we consider the case where
degradation has occurred in the first bending mode,
i.e., degradation is based on stresses calculated
from the modal displacements corresponding to the
second mode shape. Figure 6 shows the resulting
first three natural frequencies for different
levels of damage. For a maximum reduction in

stiffness of 258 the first three natural
frequencies decrease by 8.6%, 9.2% and 7.6%,
respectively. There {s little change in the first

mode shape for the degraded and undegraded cases.
Figure 7 is a plot of the z displacement for the
second mode shape along the length of the space
truss and shows that the modal displacements change
quite drastically for the degraded structure. The
displacement at the free edge 1is nearly 30 times
the magnitude of the undegraded case for a maximum
damage of 25% (the sign of the displacement is also
reversed) and the location of nodes alsc change
considerably. Figure 8 indicates similar changes
in the y displacement for the third mode shape.
The fourth mode (torsional) is relatively
unaffected by the degradation of matertal stiffness
properties. This 1s as expected because the
present analysia assumed that primary degradation
occurred in the first two bending modes. Different
results would be expected if significant stiffness
reduction occurred in the primary torsion mode.

4.0
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.0

LEGEND
 FUNDAMENT AL FREQUENCY
O- SECOND NATURAL PREQUENCY
4= THIRD NATURAL PREQUENCY

s 1 18 20
MAXIMUM DEQRADATION (%)

Fig. 6 Effect of Damage on Natural Frequencies
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Resuylts have also been obtained for the case
where damage is assumed to occur in the third mode
(second bending mode). As {n the previous examples
there {s no appreciable change in the first mode
shape between the undegraded and degraded cases.
The z displacement corresponding to the second mode
shape {s plotted in Fig. 9 for different levels of
damage. The displacement at the free edge 13 very
large in the damaged states as compared to the
undegraded state. Figure 10 illustrates similar
results for the third mode shape. These results
show that the mode shapes and node points may
change significantly for even small damage amounts.

Conclusions

This study has attempted to investigate the
possible effects of material damage and stiffness
reduction on the modal response of LSS. Large
space structures constructed of fibrous composites
will experience some stiffness reductions produced
by load-induced and environmentally-induced damage
of the material. To what extent this will occur s
uncerta'n at this point but even small damage
amounts appear to be significant.

The present work has shown that load-induced
degradation of material properties may have a
significant effect on the structural frequencies
and mode shapes. For the representative boom
structure considered here, even small amounts of
materfal stiffness degradation (10%) produce
frequency and node shifts which appear to be
significant. It is not inconceivable that mode
shapes, node locations, and frequency distribdbutions
will change over the plant design life in such a
way that the structure response is very much
different from the virgin structure. Such changes
in plant response would require "robust® control of
a nature which may not be possible with present
technology. Consequently, {t {s {mportant that
these effects be taken into consideration when
designing the control systems for large space
structures.

Although preliminary, this study suggests the
need for a more accurate knowledge of the physical
nature of material degradation i{n fibrous
composites, {ts influence on structure stiffness,
and how material degradation will affect the long-
term modal characteristics for large space
structures.
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ABSTRACT

The thermomechanical response of a uniaxial bar with thermoviscoplastic
constitution is predicted herein using the finite element method. After a
brief review of the governing field equations, variational principles are con-
structed for the one dimensional conservation of momentum and energy equationms.
These equations are coupled in that the temperature field affects the displace-
ments and vice versa.

Due to the differing physical nature of the temperature and displacements,
first order and second order elements are utilized for these variables, respec-
tively. The resulting semi-discretized equations are then discretized in time
using finite differencing. This is accomplished by Euler's method, which is
utilized due to the stiff nature of the constitutive equations.

The model is utilized in conjunction with stress-strain relations devel-
oped by Bodner and Partom to predict the axial temperature field in a bar sub-
jected to cyclic mechanical end displacements and temperature boundary condi-
tions. It is found that spacial and time variation of the temperature field

is significantly affected by the boundary conditions.

TABLE OF SYMBOLS

t - time

P - axial internal resultant force

p. - axial externally applied force per unit length
x = axial coordinate dimension

0 = axial stress component

A - cross-sectional area

T - end traction in units of force per unit area

8 = surface area
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Table of Symbols (cont.)

Sc - area of the longitudinal surface of the bar

€ = axial strain component

u - axial displacement component

a, - internal state variable representing axial inelastic strain

E - Young's modulus in the axial coordinate direction

o - coefficient of thermal expansion in the axial coordinate direction
T - temperature

T - reference temperature at which no deformation is observed at zero load
a, — internal state variable representing drag stress

q - axial component of heat flux

k = coefficient of axial thermal conductivity

C_ - specific heat at comnstant elastic strain

p - mass density

r - internal heat source per unit mass

L =~ length of the bar
INTRODUCTION

It is well known that mechanical and thermodynamic coupling are signif~
icant in metallic solids [l-11]. The author has recently developed a model
capable of predicting this coupling effect in thermoviscoplastic.metals f12].
In the previous paper a cyclic strain control loading on a sample of IN10O at
1005°K (1350°F) was used to predict a temperature rise of approximately 3.7°K
per cycle when the strain amplitude was 2% and the specimen was adiabatically
insulated.

The focus of the current research is to consider the effect of thermal

boundary conditions on this same process. The introduction of these
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conditions causes the strain and temperature fields to be inhomogeneous even
though the stress field is homogeneous if the bar is prismatic. This spacial
variation in the field variables causes the process to be difficult to model
because the thermomechanical constitutive equations are highly nonlinear stiff
differential equations. In this paper the finite element method is utilized
to spatially discretize the dependent variables displacement and temperature,
and the finite difference method is employed for timewise discretization.

This process results in a set of highly nonlinear algebraic equations.

Since the thrust of this research is to obtain accurate results without
regard to numerical efficiency, the results are obtained via the relatively
inefficient but accurate method of simply utilizing successively smaller time
steps along with refined spatial mesh to obtain a convergent and therefore
accurate solution for the temperature and displacement fields both spatially
and as a function of time for a cyclically imposed end displacement.

The physical interest in the problem is to determine the effect of
temperature boundary conditions on the predicted temperature rise in a bar sub-
jected to cyclic mechanical loading. It is found from the analysis that the
introduction of these nonadiabatic boundary conditions causes significant axial
temperature gradients. Since nonadiabatic conditions cannct be avoided in
experimental research, it is concluded that experimental tests of this type
should be viewed with caution when their purpose is to construct.constitutive

relations.
PROBLEM SOLUTION

Field Problem Description

The following field equations are given:
a) equilibrium [13],

® =-p, (X , (1

x
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where the axial resultant P is defined by

! P Ef odA s and (2)
A

3 ‘l..";.‘

5t Py Ef Teyds s (3)
~, S
c
P - b) strain-displacement relation
du ]
€= E ’ (4)
o

¢) thermomechanical constitution,

g = E[e - o - a(T - TR)] . (5)
Il 1o
) _Tt- = Qi(e, T, Gj) > i = 1,2 FY and (6)
aT .
. q=-kg Q)

where z is the total number of internal state variables; and

d) conservation of energy

da )
- 1 2 0 3T _ 3 _ 9T _ 3 -
[(Ea Eal + EaTR) e + Ea“ T at] Ea T Te pcv Tt 3#} + pr 0 . (8)

The conservation of mass is satisfied trivially and the second law of thermo-
dynamics has been previously shown to be satisfied by the above equations [l4-

16]. It should be noted that equilibrium equation (1) satisfies equilibrium

T

in the axial coordinate direction only in an average sense over the cross-section.
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The above 6+Z equations (excluding definition (3)) define a nonlinear
. initial-boundary value problem (together with appropriate thermal and mech-
anical initial and boundary conditions) in which the following dependent vari-

ables are sbught as functions of x and t: o, €, u, q, T, P, and ai.

For convenience the domain is defined to be of length L, so that boundary

-
e and initial conditions are of the form:
- X
u(x,0) = u0 = known
initial conditions 5 (9
T(x,0) = T’S = known
s and
F
g u(Q,t) = ug = known or P(g,t) = PS = known
&
. essential u(L,t) = ui = known or P(L,t) = PIt‘ = known natural
boundary boundary
conditions T(Q,t) = Tg = known or q(0,t) = qg = known conditions. (10)
. A - L
T(@L,t) = T = known or q(L,t) = q_ = known
[ ] t t

It is now assumed that 0 = g(x) so that equation (2) reduces to

P = 0A . (11)

mmal .

Therefore, substituting (4) into (5) and this result into (11) gives

P = m[% - o, - o - TR)] : (12)

The above result is now substituted into (1) to obtain

%; {EA g—: -a - a(T - TR)] } = -px(x) s (13)
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- which represents the differential equation relating displacements and temper-
‘ ature to the applied load Py x).
v Equations (4) and (7) are next substituted into energy balance law (8)
:j and this result is integrated over the cross-sectional area A to obtain
= da
du 1 2 o 9T 3%u _ T
A [(E = I-:OL1 + Ea’rR>—§E + Ea“ T 3t] AEx T 3% A OCV Ty
3 3T
- — —_ = =ADQY
+ A (k ax) AP . (14)
E
o where it has been assumed that all field variables depend on x and t only.
- Now define
r
[ - - 3T aT
: Q_fqu fkadi « Ty (15)
, A A

Careful inspection of equations (13) and (14) will indicate that these
equations, together with internal state variable growth laws (6) and initial
and boundary conditions (9) and (10), represent a well-posed boundary value prob-

lem in terms of the 2+z dependent variables u, T, and ai.

Solution Procedure

The field problem is to be solved analytically using the semi-discretized
finite element technique with timewise finite differencing. In order to ac-
complish this, differential equations (13) and (14) must first be wvritten in
a suitable variational form.

Variational Equatiomns

Consider first equation (13). This governing equation is integrated against
a suitably smooth test function v = v(x) over the domain of some element Qe:

< < :
Xe . x xe+1




. .\
.

0 'l

Xet]
[ v[%{m[g—:-al-a(T-TR)]} +Px]dx=0 . (16)

Integrating by parts results in

X orl Xet+l
- EA-B—‘—’ ig-a-a(T-T)dX"‘ VEAiq-G'OL(T’T)
Bx ax 1 R ax 1 R

xe e

e+l
- f v p,dx X (7)
X

Substituting equation (12) into the boundary term thus results in

X

e+l
av | 3u =
o T N
X
e
e+l
-v(xe+1) P(xe-i-l) + v(xe) P(xe) - / v pxdx . (18)
X
e

Now consider equation (14). Once again the governing equation is inte-
grated against a suitably smooth test function w = w(x) over the domain of the

element § :
e

e+l 3a
du 1 2 9T
f w 1A [(E ™ - Byt Ea‘I‘R>5—t + Eo? T _ac]
X

e

3%u oT ) aT
"AET 3rax T A% 3 T A (

kﬁ)*’ Aprpdx =0 . (19)




Integrating the heat flux term by parts results in

e+1 aa
o dw 3T du 1 2., OT
il [ kA 2= == + WA (E 3w - Bt Eor.TR>——at + E0’T 57
X
e
-
32y

-EaT T dx = w(xeﬂ) Q(xe+l) - W(xe) Q(xe)

xe+].

.. + wA | pC 3 _ pr ) dx (20)

v ot ’

F P

e
where equation (15) has been substituted into the boundary terms.

L
, . Finite Element Spacial Discretization

Quadratic displacement and linear temperature fields are now chosen within

each element:

3
e e
B u(x,t) = 151 u by o, x <x<x_, , and (21)
~ 2 e e
. T(x,t) = 151 T, ¢i » X <X <X _ (22)
. where ui = ui (t) and T: = T:(t) are the nodal displacements and temperatures,

respectively, and w: = w:(x) and ¢§ = ¢i(x) are quadratic and linear shape

functions, respectively [17].

[ Appropriately, v and w are endowed with the properties of u and T, respec-

tively, so that

.....

.
&

ote P L LS
AT AL SURE R SRR



AN AR A R A DA A% A S A M A N A e i e A S DA e hhe She Phe SN AR RS AR SR IFA TN AR AR5 A A Bt b '-.-*rr“r,*"
= v = w: i=1,2,3
- .e
l w7 i=1,2 . (23)
-::: Substitution of equations (12) and (21) through (23) into variational principle
(18) results in
[ ]
R X
e+l dw?' 3
N _ EA —1 9 I o %)
b - dx |3x\.: 3 73 1
- J=1
. X
e
)
! ; -Q Z TS ¢ dx=-xpe(x ) P(x_ ., +lpe(x)P(x)
- j=1 IR R iY e+l e+l’ ive e
|-
; Fetl
. e
- [ vipdx . 1=1,2,3 . (24)
X
e

The above may be written in the following compact form

e —————
CCN

b o
- 3 e 2 e .e e
+ = =
) .Z Kij uJ z Sij Tj Fi R i 1,2,3, (25)
j=1 j=1
1
|
t where
X
- . T
- Kjy = - EA o= oo dx £=1,2,3; §=1,2,3 ; (26)
i x
e
xe.+1 e
§¢. = EAaiw—ie i=1,2,3; 1 ; (27)
1j = dx ¢j 92,33 j = »2 H
x
e
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L[
Fi = f EAT{x— (--or.1 + aTR)dx
X
e
xe-H.
e .
-P(xi) - f xpi pxdx s i=1,2,3. (28)
X

Similarly, substitution of equations (21) through (23) into equation (20) re-

sults in
P e
etl do. 2 3
f - Klg_x' z T%J‘? +Acpi [(E %—;( z uew;_e)_ml
Xy j=1 J j=1
+ Eocc)-aﬁ + Eaz( £ T%e)a—( . TeCPe)
R/ Ot j=1 j"ijet\, nm
2 3
e,e) 32 e e
ce () ()]
J=1 m=]
e e T+l e J 2 e.e
¢i(xe+l) Q(xe+1) - ¢i(xe) Q(x ) +x f ¢, AfoC, —t(i Tm¢m)_ pr| dx,
e
i=1,2 (29)

Equations (29) may be written in the following form:

3 - e 2 - e j'xe+1 e 2 e e 2 dT:l e
2 XK,,u,+ L S,, T, + ¢, A|lEa?l = T, ¢ I
j=1 5 I j=1 i 73 x i j=1 b ge1 98 D

10

NS |




[N
2 . 3 du: dlp: 2 dT: .
-Ed I T.¢, I w—s— }]-pC L — ¢ )+ prjdx
. =1 j J m=1 dt dx v m=1 dt m
)
Vo
Xotl e aal
- = - - —— i =
} f q>i A( Ea, + Eo:.TR) oy Q(xi) , i=1,2, 30)
Xe
where
—e Xetl e dwj aal
- K, = xf AE ¢7 7 5 dx i=1,2; j=1,2,3; and (31
L e
),
g s .
[
Lo o
r e jf‘e+1 d¢‘; d¢
g L. = = kA — d 3 i =1,2; j=1,2. 32
' , ij x dx X 1 J (32)
i e
o Finite Difference Timewise Discretization
o
Time dependence in equations (6) and (30) is handled via finite differ-

n
’ encing. Although higher order approximations may be used, Euler forward dif-
ference approximations are now entered for the time rate of change of ui, T:,
and u®.
m
aalec e e '
5o 60 = log (x,t +A48) - o (x,t)]/A¢, k=1,...,z (33)
T, . .
Fr (t) = ['rm (t + At) - Tm (t)1/4¢, m=1,2, and  (34)
du®
=2 (t) = [uS (t +At) - u® (£)]/At m=1,2,3 (35)
dt m m i Ok
11
e RN R D T Ty e S e e R




Substitution of (33) through (35) into finite element equations (30) gives

X e e
+1 2 2 /T (t + At) - T (t)
o ST e [m][ (e )¢:]

z
j m=]

= e e e
. ; Teqf g (um(t + At) - um(t)\ awm
j=1 '3 1 At ] ox

[ 2 'r:(: + At) - T:(:) .
-pC m§1( XS )(bm + prpdx

X e+l 3a,
= - f Aq)e {-Ea, (t) + EaT,] — (t)
x i 1 R° ot
e

-Qx) 1=1,2. (36)

The above may be written as follows:




where

il

i2

Hij

Xetl
- e Ea - . 3 = o =
Cijk = / A¢i AC ¢ ¢k dx , i=1,2;3 1,2; k 1,2, (38)
X
e
xe+1
- e Ea?
Dil Z - f Ad)i it ['I' (t)(¢) +T (t) ¢ ¢2] dx, i=1,2 , (39
X
e
Xetl
Dy, = - f A¢i Z‘z ['r ()¢ 4’2 + T (t)(¢2) ] dx, i=1,2 , (40)
X
e
xe-l-l a]‘be
- e Ea e " 'j : . - . -
By - f aol B2 o ax 1=1,2,; k=1,2; § = 1,2,3, (41)
X
e
X
e+l e e
oY oy dys
= e Eo 1 2 3 -
= / A¢1At[ (v ¢13 +u(t) ¢13 (t) ¢1 e :Idx,i 1,2, (42)
X
e
X
= ™ At By (o) au{'+ £)¢° aw;+ (£)05 ¢3 dx , 1=1,2 , (43)
= 1 At ¢’2 ax “2( % 5% “ ’ Bl
X
e
X
e e pcv e
z - A¢1F¢j dx . i=1,2; j=1,2; ' and (44)
xe
) e+l . pcv 2
= - Aqbi it jfl Tj(t)¢j + pr | dx
X

e+l 30.
- / A¢: [-Ea (c) + Ea'r ] 3—— (t) dx




Equations (37) may be written equivalently as follows:

3 2
IR, ui+ I ST, IS aF (46)
where K:j and'f: are as defined previously, and
= - —e 2 e
Kij = Kij + X Eikj Tk s and (47)
k=1
=e = 2 e
S;.-S¥, + £ C,.. T +D ., +G, . +H . (48)

ij ij k=1 ijk "k ij ij ij

The above equations may be adjoined with equations (25) to obtain the following

set of nonlinear equations for each element.

[ e : e ] e
K| s o F
1
! =
i (49)
i
X! §° T¢ e
i
" 2x3 x2 < 5xl 5x1
5x5

where all nonlinearity is contained in [S], {F®}, and {F°}.

Global Assembly and Boundary Conditions

Global assembly is accomplished in the standard way using the Boolean

matrix [17]. Interelement continuity is guaranteed by setting

P + 2 L g , and (50)
2 P

e e+l

05 + oSt = 0 ) (51)

Boundary conditions are implemented in the standard way: 1) essential

boundary conditions are handled by placing one on the diagonal of the
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appropriate row and zeros off diagonal in the stiffness matrix, and the speci-

fied value of the essential variable on the right hand side; and 2) natural

boundary conditions are implemented directly to the right hand side.

Solution of the Nonlinear Algebraic System

Initial conditions are used for the first time step. The time step At
is supplied for each load increment and boundary conditions are incremented
directly from supplied input functions.

The internal state variable o, is handled in equations (23) and (45) by

1
using equations (35). a, is initialized according to reference 18. The non~-
linear stiffness matrix [?] is initialized using nodal temperatures and displace-

ments from the previous time step. The displacements and temperatures at time

t+At are then estimated directly and without iteration by utilizing equations (49)

for very small time steps.




- g R R
r\ EREE R SR T et AR R R e L S e L T L g r—— \yomn e

EXAMPLE PROBLEMS

In order to completely define an example problem it is necessary
to specify internal state variable growth laws (6). Numerous models
have been proposed for crystalline metals [18,19]. Since it is not the
purpose of this research to compare these models, a relatively
established model proposed by Bodner and Partom [20] has been chosen.
This model contains two internal state variables: the inelastic strain
%i (01) and the drag stress (u2). The growth laws for these variables are

given by

: 2 g (n+1\(az\2n
@1 7V3 0 Tg] o (375‘)(—02‘) (52)

.i and

. a, o
a, = m(Zy - @) 0a;- A 21( 2z ZI) s (53)
1

where DO, n, m, Z YA and r are exberimentally determined material

r
T constants.

o For the purpose of modeling the temperature gradient in a specific
component, a hypothetical problem has been chosen using material
properties representative of Inconel 100 at 1005% (1350°F). The
material and geometric properties are given in Table I. The géometry is
v representative of a cylindrical uniaxial bar which is 2.50 inches long
and 0.25 inches in diameter. It has previously been shown that Bodner
and Partom's model accurately predicts the stress-strain behavior of

té IN100 under uniaxial loading conditions for both monotoni¢ and cyelic

strain controlled loadings {12,18].

...........

\. IIIIII " l.- l-. b . hd
et N e Zaixf.t.qs.\ RN,




eC,,

Table I.

5.032 MPa/°K

13.14 x 10'6 in/in/°K

21.0 x 10°% MPa m?

secsK
146.86 x 10° MPa
7.12557 x 107> m°

1005°K

.06350 m

10 x 103 in/in

0.70
2.57

1015.0

600.0

2.66
0.0019

Material Properties for IN 100 at 1005°K (1350°F)
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Utilizing :hé material properties described above, the following
effects have been studied using the model developed herein:

1) the effect of variation of strain rate on the timne dependence
of temperature at the midpoint of a monotonically extended uniaxial bar
which is insulated on the longitudinal boundaries [Figs. 1-4];

2) the spacial variation of temperature for the case above [Fig.

51;
and

3 the effect of end temperature boundary conditions on the
temperature at the center of a uniaxial bar which i{s held at fixed
temperature at the end points and subjected to cyclically imposed end
displacements [Figs. 6 and 7].

Examples 1 and 2 are constructed primarily to determine the effects
of thermomechanical heating on the stress-strain behavior of uniaxial
constitutive specimens. It is found in examples 1 and 2 that if a
specimen is mounted in an experiment;l apparatus which has massive grips
simulating a fixed temperature boundary condition there can be
substantial axial temperature gradients induced in a time dependent
boundary layer near the ends of the specimen. On the other hand, these
boundary conditions do not appear to substantially affect the predicted
stress-strain behavior, especially when the strain measurement is taken
between the thermal boundary layers near the grips. Therefore, it would
appear that the standard procedure for obtaining stresses and strains in
uniaxial bars is not substantially affected by mechanically induced,
axial temperature gradients when the grips are at fixed temperature
equivalent to the initial specimen temperature and the bar is loaded

monotonicalaly. However, it should be noted that massive grips which

_are mounted outside a furnace could, by their much lower temperature
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1400.0 ¢~

1200.0 p= ————teme

1000.0

800.0

600.0

400.0

200.0

€ - 0.0142 SEC71 (T, = 100%°K)

€ = 0.00142 SEC™1(To = 10059K)

€ = 0.000142 SEC-1(T, = 10C5°K)

¢ = 0.0142 SEC—1 (FULLY INSULATED)

¢ = 0.00442 SEC-1(FULLY INSULATED)

& = 0.000142 SEC-1(FULLY  _ga®"
INSULATED) L5

§ g 1 i 3 ) ]

.004 .006 .008 .010
ABSOLUTE STRAIN (x=L/2)

Fig. 1. Predicted Stress vs. Strain for a Uniaxial Bar
Pulled at Various Constant Strain Rates. -
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——— T, = 1005°K

————— Ty = 1005°K .
e=eeeeeme FULLY INSULATED Pre
o= o= == ee= FULLY INSULATED s

TEMPERATURE CHANGE (°K)

ABSOLUTE STRAIN (x=L/2)

Fig. 2. Predicted Temperature vs. Absolute Strain fgr Monotonic
Deformation Histories Described in Fig.l. (€= +.0142 sec=1)
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Fig. 3. Predicted Temperature vs. Absolute Strain for Monotonic
Deformation Histories Described in Fig. 1. (€= +.00142 sec-1)
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- Fig. 4. Predicted Temperature vs. Absolute Strain for Monotonic
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than the initial speciman temperature, may induce significant error in predicted
strains if the strain is measured by dividing relative displacement by some
gage length.

The final example demonstrates that under cyclic loading conditions the
above conclusions may not necessarily be true, especially when the specimen is
subjected to high-cycle fatigue and at high strain rates. There is definitely
a trend towards an increasing mean temperature in the bar, and this mean tempera-
ture is strongly affected by the thermal boundary conditions as well as the
loading rate. Although it would be interesting to determine the mean temperature
rise in a cyclic fatigue test, the current algorithm precludes this analysis due to
the extremely large computer times necessary to predict only a few cycles of
response (approximately 43.8 CPU minutes on an Amdahl 470/V6 for the example
demonstrated in Figs. 6 and 7).

Example 3 also demonstrates another interesting phenomenon which may be
significant in large space structures. If the bar is perfectly insulated the
mean temperature rise per cycle for the relatively slow loading rate shown in
Fig. 6 is 3.7°K, whereas if the ends of the bar are held at a fixed temperature of
1005°K, the mean rise is 1.0°K per cycle. Faster loading rates show less difference
between the adiabatic result and the fixed end temperature result. Since many
of these structures are expected to be extremely fleiible truss-like configurations,
a typical metallic member which undergoes some yielding (which might be desirable
in order to induce natural damping) might in fact undergo substantial enough
heating during vibrational response such that the material properties could be
adversely affected, thus resulting in a material related failure of the structure.
However, further investigation is needed on this last issue since it is expected
that the primary form of heat flux off of space structures will be via radiation

on the longitudinal surfaces of the truss member. Since the current analysis
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has treated these surfaces as insulated, no general statements can be made at

l this time regarding thermomechanical heating in space structures.
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CONCLUSION

The current research has attemped to demonstrate the effects of
mechanical lcading on one~-dimensional temperature gradients in a class
of viscoplastic media. Due to the nonlinearity and stiffness of the
field equations, it was necessary to utilize a numerical algorithm.
This algorithm has been shown to be very inefficient for solving even
one-dimensional examples. Therefore, it is apparent that significant
refinement of the procedure will be necessary before multi-dimensional
analyses can be performed by this method. Specifically, it would be
significant to determine the effect of transverse temperature gradients
on the stress-strain behavior of constitutive specimens. Furthermore,
the effects of thermal boundary conditions on the longitudinal surface
needs attention. The author is currently studying a perturbation
technique for more efficient solution of these issues.

The above points notwithstanding, the current research demonstrates
some important results. These are:

1) The axial temperature gradient in a viscoplastic uniaxial bar
is strongly affected by the thermal boundary conditions on the ends.

2) The end temperature boundary conditions can cause temperature
gradients which are substantial enough to induce spacial variations in
stress and strains which invalidate the standard procedure of using
average quantities, although when grips are mounted within a furnace at

spacially constant temperature, it appears that the standard procedure

is accurate.
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3) There is a trend toward increasing average temperature in
cyclically loaded bars; whether or not this effect is significant is

strongly dependent on the thermal hboundary conditions and the loading

rate.

29




AL TR I S T A A I vl SRR S ahed Gl oo — oy
r’“ R RO A I RN A i N Y D SR A St A i it St Shath dhd s Sl Yo it < -Sh Bram b w Aden AAme A a2 b Ao an)

ACKNOWLEDGEMENT

. The author gratefully acknowledges the support provided for this
research by the Air Force 0Office of Scientific Research under contract

no. F49620-83-C~0067.

30

et Tttt ‘. SO N O T R T T e WTe T T T R S A N S VO T L T L -
L e ‘. r"}‘ \' ‘._ - ~ ..._ \‘ ". . ‘e : ST o e T ¥ ~ . s ettt et e A .-\.-\.-_ .':'.'\ ,'.
hy nra _-\_A\.a *.




A (1]

(2]

€3]

{b (4]

==

€51

(6]

(7]
i - (8]

{91l

(10]

(1]

(12]

(13]

REFERENCES

J.M.C. Duhamel, Memoire sur le calcul des actions moleculaires
developpees par les changements de temperature dan les corps
solides. Memoires par divers savans, vol. 5, pp. 440-498, (1838).

F. Neumann, Vorlesungen uber die theorie der elasticitat der festen
Korper und des lichtathers. Leipzig, 107-120, (1885).

B.A. Boley and J.H. Weiner, Theory of Thermal Stresses. Wiley, New
York, (1960).

O.W. Dillon, Jr., An experimental study of the heat generated
during torsional oscillations. J. Mech. Phys. Solids, vol. 10,
235-244 (1962).

0.W. Dillon, Jr., Temperature generated in aluminum rods undergoing
torsional oscillations. J. Appl. Mech. 33, vol. 10, 3100-3105
(1962).

O.W. Dillon, Jr., Coupled thermoplasticity. J. Mech. Phys. Solids,
vol. 11, 21-33 (1963).

G.R. Halford, Stored Energy of Cold Work Changes Induced by Cyclic
Deformation. Ph.D. Thesis, University of Illinois, Urbana, Illinois
(1966).

O.Ww. Dillon, Jr., The heat generated during the torsional
oscillations of copper tubes. Int. J. Solids Structures, vol. 2,
181-204 (1966).

W. Olszak and P. Perzyna, Thermal Effects in Viscoplasticity. IUTAM
Symp., East Kilbride, 206-212, Springer-Verlag, New York (1968).

J. Kratochvil and R.J. DeAngelis, Torsion of a titanium elastic
viscoplastic shaft. J. Appl. Mech. vol. 42, 1091-1097 (1971).

E.P. Cernocky and E. Krempl, A theory of thermoviscoplasticity
based on {nfinitesimal total strain. Int. J. Solids Structures,
vol. 16, 723-T41 (1980).

D.H. Allen, A prediction of heat generation in a thermoviscoplastic
uniaxial bar. Texas A&M University Mechanics and Materials Center
Report no. MM 4875-83-10 (July 1983), (accepted for publication by
Int. J. Solids Structures).

D.H. Allen and W.E. Haisler, Introduction to Aerospace Structural
Analysis. John Wiley (1985), in press.

31




[14] B.D. Coleman and M.E. Gurtin, Thermodynamics with internal state
variables. J. Chem. Phys., vol. 47, 597-613 (1967).

[15] J. Kratochvil and O.W. Dillon, Jr., Thermodynamics of crystalline
elastic-viscoplastic materials. J. Appl. Phys., vol. U1, 1470-1479
(1970).

[16] D.H. Allen, Thermodynamic constraints on the constitution of a
class of thermoviscoplastic solids. Texas A&M University Mechanics
and Materials Center, Report no. MM 12415-82-10Q, December (1982).

(17] J.N. Reddy, An Introduction to the Finite Element Method. McGraw-
Hill, New York (1984).

(18] T.M. Milly and D.H. Allen, "A Comparative Study of Nonlinear Rate-
Dependent Mechanical Constitutive Theories for Crystalline Solids

at Elevated Temperatures, Virginia Polytechnic Institute and State
Unjversity, March, 1982 (M.S. Thesis).

(19] D.H. Allen and J.M. Beek, "On the Use of Internal State Variables
in Thermoviscoplastic Constitutive Equations," Proceedings 2nd
Symposium on Nonlinear Constitutive Relations for High Temperature
Applications, June, 1984,

[20] S.R. Bodner and Y. Partom, "Constitutive Equations for Elastic-
Viscoplastic Strain-Hardening Materials," J. Appl. Mech, Vol. 42,
385-389 (1975).

32




» T W W e e e T e .

e e AR AR A S S LGRS S A

I

v,
y 4

3

-
l“ l}

¥,
s

R

0

r

APPENDIX 6.4




Mechanics and Materials Center
TEXAS A&M UNIVERSITY

College Station, Texas
|

PREDICTED TEMPERATURE FIELD IN A THERMOMECHANICALLY
HEATED VISCOPLASTIC SPACE TRUSS STRUCTURE

v ———

o D. H. ALLEN
in W. E. HAISLER

MM-4875-85-1 JANUARY 1985




Padama Sa o J0 St S dind Jie deam gied Supe dhve SaseUeds Stttk AaStis et 2adh St Thaft et S S AU A S Al ASRCE A S R

AR *Ale s AL Al e b A  adaad et b sal Tl Aall Sadl sl Sndh Tl Sl Sadt e

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
unclassified NA
2e. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
NA unlimited
v, oscussusm:ﬂomoowuemomc SCHEDULE
n.:': ' v
L~ 4. PERFOAMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S]
MM-4875-85-1 NA
- )
r 6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7. NAME OF MONITORING ORGANIZATION
- (1f applicebdle) ; .
’ Aerospace Engr. Dept. NA Air Force Office of Scientific Research
P-
[~ 6c. ADDRESS (City, State and ZIP Code} 7o. ADORESS (City, State and ZIP Code)
- Texas A&lf Unj..versity Bolling AFB
College Station, Texas 77843 Washington, D.C. 20332
[ 8a. NAME OF FUNDING/SPONSORING - 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT [DENTIFICATION NUMBER
r ORGANIZATION (I spplicsbie) NA
- ir Force Office of Scien, Res.
"‘ 8c. ADORESS (City, Stats end ZIP Cods) . 10. SOURCE OF FUNDING NOS.
Bolling AFB PROGRAM PROJECT 1':3« woa:oumr
Washington, D.C. 20332 BLEMENT NO. NO- : '
- F49620~83-C-D067
- 11. TITLE (Inciude Security Classification)
b Predicted Temp. Field in a Thermomechanjcally
- 12. PERSONAL AUTHONRN(S)
. D.H. Allen and W.E. Haisler
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORAT (Yr., Mo.. Day) 18. PAGE COUNT
i Interim FROM TO January 1985

16. SUPPLEMENTARY NOTATION

P . 17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
S siEL0 | GAoue sus. GA.

!

b

>

g 19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

This paper focuses on the effect of thermomechanically induced heating on the response

— of a single member of a space truss structure which behaves viscoplastically. The
l; governing equations are given for a typical truss member, wherein material inelasticity
e is reflected in constitutive equations via a set of internal state variables, each
characterized by a history dependent growth law. The governing equations are coupled
- in the sense that temperature and displacement are dependent on each other. This dif-

- ficulty, toghether with the fact that the inelastic constitutive equations are nonlinear
and numerically stiff, requires that a computationally complex semidiscretized finite
) element spatial technique be utilized to obtain a solution. This procedure, detailed
e herin, is utilized to predict the response of a typical metallic space truss member under
Bl vibrational or cyclic loading. Particular interest is placed on the temperature rise
in such a member due to hysteretic loss during structural vibrations and in the presence

hr of complex thermal boundary conditions representative of space conditioms. (over)
20. OISTRIBUTION/AVAILABILITY OF ASSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
- UNCLASSIFIED/UNLIMITED [ SAME as meT. O oTic usens O UNCLASSIFIED
. 22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
v {Include Area Code)
1 L DAviD H., ALLEN (409)845-1669
|- DO FORM 1473, 83 APR €DITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

R I UL AL TR - _-._\.\ ~ ﬂ.\ -~ .\.\\ .';
- !. AT -® e n - - \ \
PSRRI .:'.b..“._-.r..r IR J:_.c_ e e



L N T N W W W=y |

Predicted Temperature Field in a Thermomechanically

52 Heated Viscoplastic Space Truss Structure
by

158 D.H. Allen
and

s W.E. Haisler

Aerospace Engineering Department
- Texas A&M University
Bl College Station, TX 77843

to be presented at the

26th SDM Conference
April 5-7, 1985
Orlando, Florida

P Y T T T
. . . . B
. P

MM 4875-85-1 January 1985

AR SR SSRGS i 2 4
Ad . e— B
\ ¢

. BT U TR PR
AT T At ., LRI U A P DI ™ . ~ 3 ) . a® g
T e N e A L N AT A .\}"- S

AR St B T L TP P T IR s 1S T D




e e LI S B T

PP T 7, V. Pu Vv e TR e

[
PREDICTED TEMPERATURE FIELD IN A THERMOMECHANICALLY
HEATED VISCOPLASTIC SPACE TRUSS STRUCTURE
D.H. Allent®
' W.E. Haisler#®
Texas AXM University
College Station, Texas
' Abstract S = surface area
‘F! This paper focuses on the effect of Sc = area of the longitudinal surface of the bar
o thermomechanically induced heating on the
. response of a single member of a space truss € = axial strain component
.. structure which behaves viscoplastically. The
N governing equations are given for a typical truss u - axial displacement component
o member, wherein material inelasticity is
’ reflected in constitutive equations via a set of ! e - internal state variable representing axial
internal state variables, each characterized by a
history dependent growth law. The governing . inelaatic strain
equations are coupled in the sense that
temperature and displacement are dependent on E = Young's modulus in the axial coordinate
each other. This difficulty, together with the
fact that the inelastic constitutive equations direction
- are nonlinear and numerically stiff, requires
f- that a computationally complex semidiscretized a - coefficient of thermal expansion in the
finite element spatial technique be utilized to
:~~ obtain a solution. This procedure, detailed axial coordinate direction
L . herein, is utilized to predict the response of a
- -, typical nmetallic space truss member under T - temperature
- vibrational or cyclic 1loading. Particular
. interest {s placed on the temperature rise in TR - reference temperature at which no
. such a member due to hysteretic loss during ’ .
' structural vibrations and in the presence of deformation is observed at zero
complex thermal boundary conditions
3 representative of space conditions. Example load
— cases are constructed for a typical cylindrical .
- - bar of 6061-T6 aluminum both with and without a, = internal state variable representing drag
o special coatings. Results indicate that
3 significant, possibly even catastrophic, heating stress
. can occur due to thermomechanical coupling. -
- q - heat flux vector
Nomenclature q =~ axial component of heat flux
k = coefficient of axial thermal conductivity
t - time C, - specific heat at constant elastic strain
- P - axial internal resultant force p <~ mass density
Py - axial externally applied force per unit r - internal heat source per unit mass
length L - length of the structural element
. ;5 x - axial coordinate dimension Do‘ n, @, 21, ZI' Zo. r - materlial constant used
. 0 = axial stress component in Bodner and Partom's modcl‘
:} A - cross-sectional area 9 - flux on longitudinal boundary
Tx - end traction in units of force per unit area ¢ - absorbing portion of perimeter of an element
\-’
[* normal to longitudinal axis
- *Assistant Professor, Aerospace
Engineering, Member AIAA qq - solar radiation flux

**Professor, Aerospace Engineering, Qe -
Associate Fellow AIAA E - earth radiation flux
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°§ - absorptivity
- Fg - earth radiation view factor
) Ay - incident angle of solar radiation on
structural component
" Ag = incident angle of earth radiatlon on
- structural component
.1 o, - Stefan-Boltzmann constant = 5.775 x 107"

MPa m/sec/(‘K)“

deep space temperature

Introduction

It is well known that in viscoplastic metals
a certain amount of mechanically induced
hysteretic mechanic energy loss is converted to
heat, thus resulting in a tegpgrature rise in the
medium, In recent research '~ a model has been
. developed for predicting this effect by utilizing
.- thermodymanic constraints together with
constitutive equations of internal state variable
type . Furthermore, {t has bdeen_shown that in a
perfectly insulated uniaxial bar3, as well as in

oy a uniaxial bar with Insulateds longitudinal
T surface and fixed end temperature”, significant
* temperature rise can occur {n the component

during cyclic loading.

(S The purpose of the current research (s to
simulate the response of a typical metallic space
truss structural element (see Fig. 1) {n the
postyfelded state and to determine if significant

.- heating occurs when this component is aubjected
s.}: to cyclic mechanical loading. This problem is of

" interest Dbecause a certain amount of material
inelasticity 1s desirable in order to produce
passive structural damping. The factors of
interest in this simulation are the effects of
- thermal boundary conditions and loading rate on

the thermal reaponse. In particular, it is of
interest to determine {f radiative boundary
‘ ~ 0,:(7‘-?3) x

b
»
i Fig. 1. Typical Space Truss Structural Element.
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conditions on the longitudinal surface of the
truss component are significant enough to carry
off all heat generated due to hysteretic loss.

The paper firat reviews the governing fleld
equations, then briefly discusses the procedure
wheredby a numerical algorithm i{s constructed for
modeling the problem. This is followed by a
detailed discussion of the implementation of
therm2l boundary conditions., Finally, example
results are obtained for representative space
structural components.

Governing Field Equations

The governing field equations were presented

in reference 5 for quasi-static conditions. For
problems involving inertial effects, the
governing equations are as follows:
a) equilibrium6'
3 = p (x) (1
3x
where the axial resultant P is defined by
P -ﬁdA (2)
oy f T, ds €
sc
b) strain-displacement relation
€= 3u %)
9x
¢) thermomechanical constitution,
c-E[e-al-a(T-TR)] (5)
&1- 2_ D° g exp |=-fntl g& 2n
i Ta] 2a J\o (6)
. . a,-2 .\
az-m(zl-uz)aal—Alz1 ; T (7)
1
qe-k 3T (8)
Ix

where a, and are the internal state variables
(ISV) representing inelastic strain and drag
stress, respectively, in the qonstitutive model
developed by Bodner and Partom . Several other

constitutive models have heen developed for
viscoplastic metals, and these are reviewed in
references 1 and 8. Finally,
d) conservation of energy3'5.

[(Ee-Ea +EaTy) 21 + Ea’TAT]-EaT3e -pGIT-3gtor =0

3¢ 3t at 3t ax
9)

trivially

1

Conservation of mass {s satisfied
(under the assumption of small motions in a
closed system), and the second law of
thermodynamics has been previog;*y shown to be
satisfied by the above squations™’ .

The governing equations are adjolne% with
appropriate initial and boundary conditi{ons” such
that a well-posed boundary value problem ls
constructed in terms of the following dependent

e . - .
alaatataetatacr.

S Nl Sl A
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variables which are sought as functions of x and
t: o0,¢,u,q,T,P, ars and a. Due to ISV growth
laws (6) and (7) (as wel% as radiative boundary
conditions), the problem is nonlinear.

Solution Procedure

As described in detail in reference 5 for
the quasistatic problem, the solution i3 obtained
using the semi-discretized finite element
technique, wherein finite elements are
constructed spatially, and finite differencing is
used (n time. The result i{s a time marching
algorithm which i{s reviewed here briefly.

First, equations (4) and (5) are substituted
into (2) and this result s substituted into (1)
to give the following equilbrium equation:

a_{u[au - a,-a(T-Ty )]} P, (X) (10)
Ix Ix

Next, equation (#4#) is substituted into equation
(9) to obtain the coupled energy balance law:
E_ag-Eali-BaTn) %) tea’1aT -2aTa
Ix - - 14 at atax
-oC, AT - Veq +pr = 0 (11)

The r%gult is a set of two coupled partial
differential equations in terms of axial
displacement u=u(x,t) and temperature T=T(x,t).

Variational Principles and Finite Element

Discretization

Selecting a suitably smooth test function
vav(x) over the domain of some element Q :
X < X<yx one may construct the Jollowing
variacioné& principle from equation (12)7:

f e+l pp av[au-u | ~O(T-Tp)] dx =

S DR DHU(x)R(x, )-&eﬂ\rp dx (12)

where the boundary terms result from the standard
integration by parts.

The variational principle for heat equation
(11) 1is constructed by Cfirst integrating this
equation against a test function w=w(x) on n to
obtain

v [(Ee-!u +EaTy)’ 3914847 3T ]-EaT 2%
3t 3c Ixat

e -> >

~pC_ T + V.q +prtdV =0 (13)
T3

Integrating the flux term by parts, assuming that

nonaxial components of flux are negligible, and

substituting equation (8) will thus result in

Xt

w Ja|(E2u-ga +Eat ) 21 + Ea’T 21
Ix T 3t

e
-AEaT 3%u_ - AoC 3T - kA 2w o7 lax
atdx it Ix 9x
4

e+l
-W(xe+1)Aq(xe+l) + w(x )Aq(x )~ e wqdx

X xe
etl
+fwA (oc 3T - or) dx (14)
v ——
x at

Variational equations (12) and (14) are now
discretized by assuming the following

displacement and temperature fields in a typical
element (superscripted e):

T
u(:.t)- L1 1 (t)vi(x) X < X<, (15)

T(x,t)= z

(t)Qi(l) X, <x<X ) (16)
i=1 ’

T

where ,® and T® are nodal displacements and
temperatures, respectively, and wi and ¢i are

quadratic 9and linear shape functions,
respectively”. Furthermore, v and w are endowed
with the properties of u and T. Note that a
higher order element must be used . for
displacement than temperature due to the [fact
that temperature produces strain rather than
displacement.

Timewise discretization is {mplemented via

the following backward finite difference
equations:
e ~ e e -
d'l'm (t)-[Tm(:)-Tm(: At)]/at me=l,2 an
dt
du® (£)s(eo(t) s (t-ae)1/8t ==1,2,3 (18)
m o m
dt

The above equations require small time steps in
order to guarantee numerical accuracy. However,
they are unconditonally stable which is necessary
because ISV gr?uth laws (6) and (7) are
numerically stiff

Substitution ot equations (15) through (18)
into the governing field equations in variational
form will result in the following algebraic
equations:

3x3 5 3xZ
SR {u} - {z-;} (19)
Ke | s® T® Fe
2x3 252 5x1 5x1
5x5

where ([K°1, [s®1, [x®), (s®1, and (F°} are as
described in reference 5, and

='e _=e "egl
F1=Fi-coichx Q0)

X

where ?i is asedeflned in reference 5. The last
term {n the above equation accounts for thermal
flux boundary conditions on the 1longitudinal
surface of an element.

After global assembly and imposition of
boundary conditions equations (19) can be solved
in a time marching scheme in order %to obtain the
nodal displacements and temperatures as functions
of time.

Global assembly of the element equations is
accomplished &n the standard way using the
Boolean matrix’.

Imposition of Boundary Conditions

For a typical space truss structural
element, the boundary conditions are assumed to
be of the following type:

u(o,t) = uz = known
u(L,t) = ut = known @
T(0,t) = r: = known
T(L,t) = T: - known
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and 1"

C_ = 900 J/kg/°K (0.215 Btu/lb/°F)
+ by
qc-o’[qs cos A ¥Fp(1-ag)a cond #Fpdgcos ‘] Y -6 6
4 4 (22) a = 23.8x10 in./in./°%K (13.2x10 in./in./°F)
+ a‘e(T -TD ) " 2
k = 1,27 x 10 ~ MPa m~/sec/°K

where the first term in the above equation is the

L]
solar radiation flux absorbed by the Dbody, the (73.4 Btu/fe/h/°F)

second term is the solar radiation flux rer1ecce3 £ = 71.0 x 103 MPa  (10.3 x 10° pa1)
by the earth and absorbed by the body, the third
term is the earth radiation flux absorbed by the A =6.45 x 10°% w2 (1.00 tnd)
body, and the last term is the flux radiated by
the member to space. . Ty = 295 % (72°F)
The above boundary conditons may be R
implemented to the %ucretized global equations L =3.66 m (12.0 FT)
in the standard way’. Although equation (22)
technically includes the unknown temperature D =10 x 103 o/a
f. field, the component temperature is treated as a o
t' known quantity in this term for each time step. A, = 1.685 x 10‘7 sec !
- This approximation is acceptaw due to the fact 1
that the numerical stiffness of constitutive n = 2.355
s equations (6) and (7) requires extremely small A
s time steps 1in order to obtain an accurate m = 0.1770 MPa~' (1.2205 ksi™h)
solution. . : .
EXAMPLE PROBLEMS C ) Z, = 620.1 MPa (89.93 Ksi)
’ A typical structural element has been 2I = 0.
r modeled with properties shown in TABLE 1. The
' material properties were obtained experimentally r =0,
in the Mechan*ss and Materials Center at Texas 3 3
ASM University © for Al S086 at room temperature, p = 2.66 Mg/m” (0.096 1b/in.”)
which i{s similar to Al 6061-T6. )
Sample cases were constructed for various ¢ = 0.0508 m (0.8333 Ft.) .
cyclic loading rates for two different sets of
thermal boundary conditions, as described in Zg = 387.8 MPa (56.25 Ksi)
TABLE 2. Both cases are considgered to be "worst
cases" in that the component is in a maximum TABLE 1. Material and Geometric Properties for a
radiation flux condition at the maximum Typical Truss Structural Element (from reference
equilibrium temperature during one orbital cycle. .
The two cases differ in the emmisgivity and
absorptivity values for the component due to CASE I CASE II
differences in surface treatment of the
component. For case I, the component |is a, 0.20 (degraded) 0.3218 (degraded)
anodized, and for case II, the component {s
palnt?g with high emmissivity ITTRE-S13GLO white € 0.85 0.2u
paint “. .
We now consider two elements in a large As 0° 0°
space structure (see Fig. 1). Both elements are
constructed of the same material and are qs 1.39 MPa m/sec 0
geometrically identical. However, element one is
painted with the high emmissivity paint described qE 0.20 MPa m/sec 0.20MPa m/sec
above and is in full view of both earth and sun,
whereas element two (s anodized and Is in view of (4,080 km altitude)
earth only. For this case, as described in Table
2, the components have {dentical equilibrium xe 0° 0°
temperatures T, = 295°K(obtained by setting q,=0
in equation (22)). Ty 0°K 0°K
In both cases the structural members have
been subjected to 50 cycles of loading at three ag 0.30 0.30
different frequencies: 1 Hz, 5 Hz, and 25 Hz.
These frequencies have been selected as FE 0.4 0.4
representative of resonant frequencies (n a
representative space structure, For example, a TEQ 296.2°K (73.6°F) 296.2°K
typical structure analyzed in reference 14 has
resonant frequencies of 4.1 Hz and 3.4 Hz in the
first two modes. Because the resonant frequency CASE I - Surface painted with S13GLO white
of the (first mode {in the structural element
itself s 240 Hz, 1inertial effects may be CASE II - Chromic anodized surface
neglected in these examples.
Results for the cases described above are
shown {r Figs. 2 through 8. In Figs. 2 through U TABLE 2. Thermal Properties for Example Cases I
the cyclic stress-strain curve (s shown at the and I (from references 12 and 13). .
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location xsL/2 for CASE I and at all three
loading rates. It is found that in all cases the
specimen reaches cyelic saturation after
approximately five cycles. Thereafter, the
hysteretic energy loss per cycle becomes a
constant value.

In Filgs. 5 through 7 the temperature rise is
plotted for both cases at all three loading
rates. As expected, the amount of temperature
rise increases dramatically with loading rate.
For example, after S50 cycles the total
temperature rise at x=L/2 {s 17.5°K(1 Hz),

62.5°K(5 Hz), and 119.7°K (25 Hz) for case I.
Furthermore, it is apparent that while neither
surface treatment can be regarded as resulting in
negligidble heating; at the higher loading rates.
the anodized surface treatment produces
temperature rises which are significantly higher
than those where the surface is painted with
ITTRE-S13GL0 paint. Finally, it is believed by
these researchers that the nonlinear nature of
the average temperature rise per cycle suggests
that the temperature rise asymptotically
approaches some upper bound, although this belief
cannot be corroborated at this time due to the
large computer times required in the current
algorithm. :

Fig. 8 shows that the spatial temperature
variation at 5 Hz is approximately spatially
homogeneous. Apparently, a very thin boundary
layer forms near the end of the component, and
this boundary layer has 1little effect on the
temperature at x=L/2. In fact, subsequent
investigations by the authors have shown that, at
least for the geometry and physical conditions
considered herein, identical results wmay be
obtained more efficiently by neglecting spatial
variations in displacement and temperature.

STRESS (K8))

*0.0126.000 -0.000 -0.00¢ -4.002 0.000 0.002 0.00¢ 0.000 0.008 0.1
STRAIN

Fig. 2. " Cyeclic Stress-Strain Curve at x=L/2 for
Case I Coating Loaded at 1 Hz,
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Fig. 3. Cyclic Stress-Strain Curve at x=L/2 for

STRESS (k81)

Case I Coating Loaded at 5 Hz.

Y ) — . .
8.0 -9.008 0.000 0.008
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Fig. 4. Cyclic Stress-Strain Curve at xeL/2 for

Case [ Coating Loaded at 25 Hz.
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Conclusion

The current research has attempted to
predict the response of a typical space
structural element which 1is viscoplastic and is
subjected to various cyclic loading conditions in
the presence of radiation boundary conditions.
Several general conclusions can be made as a
result of this reasearch:

1) significant temperature rises may occur
due to hysteretic 1loss, although the precise
amount depends on loading rate and surface
treatment;

2) the special paint ITTRE-S13GLO appears to
produce significantly lower temperature rises
than anodized surface treatment;

3) the temperature rise appears to be
approaching an upper bound which is loading rate
and surface treatment dependent; and

4) the thermal boundary layer which forms
near the end of the member appears to have little
effect on the far-field temperature rise.

These conclusions {ndicate that future
research on this subject should perhaps
concentrate on spatial variations in the radial
direction rather than the axial direction. More
importantly, these results indicate that an
inelastic structural component may undergo
temperature rises during structural vibrations
which are so substantial that the material
properties of the component may be further
degraded, thus leading to failure of the
component and perhaps even failure of the entire
structure.
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ABSTRACT

Under the assumption that the stress is a known function of time, the
- equations governing the behavior of a homogeneous, thermoviscoplastic uniaxial
- bar can be reduced to a single linear partial differential equation for the
. temperature in terms of stress. This is solved by means of Laplace transforms.
Expressing the strain in terms of stress leads to an explicit compliance relation-
ship for Bodner's model. The spatial dependence of the temperature can be re-

covered from the spatially homogeneous case by a convolution in time with an

appropriate heat kernel.
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Introduction

A general model for describing the time-dependent inelastic behavior of a
thermo-viscoplastic material has been derived by D.H. Allen in [1].

The differential equations are highly nonlinear, and stiff with respect
to the time variable. Consequently, a great deal of computational effort is
needed to integrate the equations forward in time. Alternate methods for
solving the equations are therefore desirable from a standpoint of numerical
efficiency.

In the special case where the stress, o, is a known function of time,
it can be shown that the equations reduce to a single linear partial
differential equation.

The modified tempe-iture

T(x,t) = exp (2L (T(x,t)-T,)
v

which we introduce in this report, satisfies the heat equation

2 2
.2

X

T* - ¢ T* = Flo(t)]. (1.19)

a_
ot
In the spatially homogeneous case, with insulated boundaries, the modified

temperature satisfies

d 1% =
Tt T Flo(t)].

The solution of the partial differential equation (1.19) is related to
the solution of the ordinary differential equation above by

T* (x,t) = G(x,t)% T (f)
p.d.e. o.d.e.

G(x,t) is an appropriate heat kernel incorporating the boundary conditions

of the problem, and the convolution is with respect to time.




The spatially dependent temperature solution can be recovered from the
spatially uniform case given the kernel G(x,t), which is derived in this report.

The term e in (1.19) is typically on the order of 10-5 in nondimension-
alized units, and causes a boundary layer to form near the ends of the bar.

Away from the ends the temperature is very nearly spatially uniform. [2].
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1. Stress Decoupling in Bodner's Model
l As derived by D.H. Allen in [1], the coupled set of partial differential
’ equations describing a homogeneous, thermoviscoplastic, uniaxial bar can

be written in the form

> LEA [3u - op- a(T-T )1} - -p (1.1)
Ill e { ~ ! R X
A [E(au - o) + aTp) 21+ BT 3T (1.2)
X at ot
- AEaT 2% - Aoc, 3T + A 3_ (k 3T) = -Arp
X3t ot aX oX
r with the addition of internal state variables Gps Gps vees O satisfying
dey - ;(e,Ta;) §=1, ooy m 121, Lo, .
3t J
'. The strain € is defined as €= 3u. We also define the stress g by
ax

o= E(e- ay - a(T-TR)).

n For the Bodner model, we have two internal state variables, ars the axial

inelastic strain, and s the drag stress. By assumption these satisfy

baaie ot on ok og
oy e

da 2 a 2n
~1="f(0y,0) =y&=D, _o_exp f-n+l { 72 (1.3)
ot 3 ToT 2n \©
and
- r
- 2% = f,(0,0) = m(zg-a,) 0 21 - AZ) (%277 ) (1.4)
at t z;

where Do’ n, m, 21, ZI’ A, and r are experimentally determined parameters

L am ann an am e o L
. . -

I (constants ).
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From the definition of stress, we may write the stress strain relation
as

-1

ge=E"0g+ a; * a(T-TR). (1.5)

Another relation which easily follows is

E(du - a+aTR) = g + ,EaT (1.6)
X
This will be used later to simplify the Fourier heat conduction equation (1.2).
If we assume that p = 0, then we can write equation (1.1) as
3 {Ac} =0 (1.7)
X
which, for constant cross sectional area A, implies that

g = a(t). (1.8)

Consequently, no matter how complicated the relationship between o and e,

(1.8) will hold as long as thereis no applied load Py

Instead of solving the forward problem, that is determining 0 50y, U
and T from (1.1) - (1.4), we will regard o = o(t) as being known. As we
will see, this allows simplification of (1.2). Viewing o =0(t) as a
known function, we will derive expressions for Qg 50 and T in terms of o,
which yields an implicit relationship between ¢ and o via (1.5).

First we derive a relation between oy and &. If we substitute (1.3)

jnto (1.4), a first order differential equation results.

;:_2_ = m(z1 - ) 0 L]%’DO _l_zl_(exp (—%_1)(‘;‘_2_) Zn] (1.9)

-Azl("‘z'zl)“




- ¥ g v v T p—— —a
......... LA A A i R RN N e i AL S oA dape = iabadintt At e et it s s Savean~ o |

Given o = o(t), a is uniquely determined by the initial conditions

az(x,o)=oé9) ).

- If, initially agolx)= constant, then oy is a function only of the variable
- t. Therefore the integral relation
), (*
a,(t) = ay +f F,o(o(s),0p(s))ds (1.10)
0

defines a implicity as a function of 0. We will occasionally write 1

: i< ay = az(t;c(t)) |

to emphasize the dependence of a, on o.

Once ay has been determined, by numerically integrating (1.9) if
necessary, we may solve for Q. Again, assuming that the initial data for

o is constant,

t
al(t)=aio) + f £, (ay(s),0(s))ds. (1.11)
0

Therefore, knowledge of o = o(t) determines the internal state variables
ay and a, as functions of time uniquely. Mathematically, we have effectively
decoupled (1.3), (1.4) from (1.1) and (1.2). Since o is a function only
of t, (1.1) is automatically satisfied. In this formulation, (1.1) becomes
a compatibility condition between the stress o, and the displaéement, u.

Substituting (1.5) and (1.6) into (1.2), we obtain

Do (o+EaT) 90y 4 £olT 3T - EaT 3 g+ + a(T-TR)
L 3T 3t at |E
'i[" - pc. 3T + k 3T = 0 (1.12)
i it 2
oX
6
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This may be simplified, after cancelling terms, to the linear equation

-pc, 3T + k 37T+ o(t) 2% -ao' (£)T = 0
at ;"Z ot
X
whichH we will write as
AT - e? 32T+ [ao'(t) ] T= olt) 9y (t) (1.13)
9 ;;Z ey Pty ot

where €2 = k__ is typically of the order of 107

oc
The presence Xf gz<<1 causes a boundary layer to form, near the ends of the

in nondimensionalized units.

uniaxial rod. Near the center of the rod, for small time, the temperature
field is nearly spatially homogeneous and is in close agreement  with the
solution of (1.13) obtained by setting ¢ = 0. Eventually, however, the
boundary layer reaches the center and influences the temperature field. The
investigation of this boundary layer phenomenon will be the subject of a
future technical report.

The boundary conditions we consider are those appropriate for a symmetric
temperature distribution, with T initially equal to TR’ and with convection
boundary conditions holding at the ends of the rod. We normalize the domain
by setting the length = 2 units.

T(x,0) = Ta

Tx(l,t) = 0 ~ (1.14)
ka(OQt)'B(T(Ost)-Tw) =0

By a simple transformation, we make the boundary conditions homogeneous.

Define the quantity

T = T(x,t) - T.




~ 1
;
.

T satisfies

) -
3 T-e23% wfao)] T =o(t) % L ao'(t) (1.15)
ot aXZ eC,, eC, 9 ec,

TT-(X,O) = TR = Tco
T (L) = 0
kTX(D’t) - BT(Ort) =0

The boundary value problem (1.15) may be further simplified by introducing

the modified temperature

T*(x,t) = ?(xlt) exp(ag(t)) (1.16)

QCV

e A et i

Multiplying (1.15) by the factor exp ( ac(t) )
pC
v

(essentially an integrating factor), we obtain

3 T* - & 3% = [cr(t) 31 T ag'(t) ] exp [ao(t)] (1.17)

ot 3X2 Pc,, ot eC, ec,

Assuming o(0) = 0, we obtain

T*(x,0) = Tp- T,,
T(1,t)=0
kT* (0,t) - BT*(0,t) = 0.

We set

F(t): = I},JI,_)_ 91 - T, _ac_'(t)] exp [g_q(t)] (1.18)
ocy

at pC,, pCy

which is a uniquely determined function of t, given o = o(t)




We have therefore derived the following linear, constant coefficient,

heat equation, satisfied by T*
D e _ o2 N2Tx = (1.19)
= T* . ¢ ‘3;}'_ F(t)

T* (x,0) =Tp - T,
T,* (1,t) = 0

ka*(O,t) - 8T* (0,t) = 0

The temperature, T.may be recovered by computing

T=T(x,t) =T+ ; (x,t)

=T, + T* (x,t) exp (-dogt}) .
3

(1.20)

The solution of (1.19), by Laplace transform methods, is the subject

of the next section.

2. Solving for the Modified Temperature by means of Laplace Transforms.

First we define the quantities

A &) -st
T(x,s) = LIT*(x,t)] = [ e TH(x,t)dt
and

B(s)=L[F(t)].

Applying the Laplace transform L to both sides of (1.19) and to the
boundary conditions, we obtain a second order, linear, ordinary differential

equation for Tix,s).

ST(x,8) = [Tp-T,1 = € 33T (x,5) = #(s) (2.1)
| e |




n KT (0,5)-BT(0,5)=0.

A particular solution of (2.1) is

- T= _i_'(ﬁ' (8)+Tp-Tes)

So the general solution of (2.1) may be written in the form

T(x,s)= 1 [F(s)+Tp-T.1+A(s)exp(=x V5)+B(s)exp(+x ¥5) (2.2)
S € [
for s>o0, where A(s) and B(s) are uniquely determined by the boundary conditions.
r If B#0, the expressions for A(s) and B(s) are rather complicated:
. 4 -1 .
3 B(s) = {k ¥S (1-exp 2 Y5 )-8(1+exp 2 V’s')} B 1 [F(s)+Tp-T,]
£ € € S
. A(s) = B(s) exp (2 ¥3). (2.3)
€

Substituting these expressions into (2.2) we obtain

. T(x,s) = 1 [F(s)4Tp-T] + B(s) exp [(2x) VE~1+B(s) exp(+x ¥8)
. 5 e €
Therefore ’
T(x,5) = 1 [F($)+Tp-To] + 81 [F(s)+Tp-To] [exp(2-x ¥O) + exp (x D)
S S £ €

g_fs_(l-exp(gi@ - 8(1+exp(2_¥5S)
€ € €

-~ ',
LI

1 [F(s) + T Tl {1-8 [exp (1-x ¥5) + exp (x-1 ¥5) ] }
S € € .

R4

[ k ¥S[exp(- ¥5) - exp(_¥5)]-Blexp(- ¥5)+exp(+ ¥5)]
L € € € € €




= 1(F - - -
L(F(s) + T 7,] {1 8 . cosh [(ls_x)m}

k¥s sinh( ¥S)+ cosh ¥s_ (2.4)
€ € €

We will find it convenient to define the kernel function G(x,t) by

a(x,s)= 1-8 . cosh [(1-x) VE] [k ¥Ssinh v& + 8 cosh v& 1% (2.5
£ € £ 4

The expression (2.4) reduces to

T(x,s) -1 [F(s) + Tp- Tl G(x,s) (2.6)
which implies
T*(x,t)=L"1[T(x,5)] = L'l{sl [.‘:(st-r,.]} * G(x,t) (2.7)
= G(x,t)¥ f F)dt + Tp- T, ]
o

Therefore, from (1.20), (2.7), and (1.18)

T =T, + T*x,t) exp (-ao(t))
pC

t
T. + exp(-ao(t) G(x,t)*[ fF(r)dr + TR- T1]
ey )

T. + exp(-ag (t)) G(x,t)* '{TR -7+
oC
v

t
[a(t) d0q | T ag'(t)] exp (ao(r)) d-r}
0 QCV ot DCV QCV

T+ exp (-oo(t) G(x,t)* {TR -1
OCV

+

fg_(ﬂa% exp | g)) gt - [T, explog g))-T ]}

éubstituting (1.3) for _afl and cancelling T , we finally obtain the resuit




TETE T R TS T Ty

T(x,t) = T_ + exp(- ag(t)) G(x,t)* {TR .
pcC

| 2n
S logr}l 2 0, exp(-n+1<2(t)> exp (_(_'rl) dt
- (st
- .
- T, exp (aogt))} (2.8)
DCV
=T [az,c ]
;; where a, is given by solving (1.4), G{x,t) is given by (2.5), and o(t) is a

prescribed function of time.

We note, that in the case, 8= 0, the expression for é simplifies to
a(x,s)=1
consequently, for g= 0.
- Tlos)= 1 [F(s)+ Tg-T.]

. t
h and T*(x,t)= [F(t)dr + To- T, . This implies that
0

T=T. +exp(-ac(t)) [TR- Te
oC
v

[og*! a"‘1 exp( g 1)) dt-T_ exp (ac §t2+T ]

| = exp(-ao(t)) Tt

Al ec,

P

o + exp (-ao(t) cr(r) %1 exp (ac g )) d=
v : pcv pcv at V
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1

2 t
- = exp(-ao(t)) {TR+f lo(x)| 2 D, exp (- n+1( )2") exp(acgr ))dt exp}
pC C VT 2n \ o

li v o v 3

-
: ' This reduces finally to
[ t 20 o ,2n
T= exp(-ao(t) {TR+ la()] ""o exp -(n+1X z(r)) + ao(t) d'r} (2.9)
i “ ec, o Sy V3~ 2nA\o (T) eC,
- We note that this is a function only of time, and also that the integrand
' I"' _ is strictly positive. This implies that the bracketed quantity is monotonically

increasing function of time. This implies that even in the periodic stress

case, after one cycfe a relative temperature difference of

T J/' ]c(t)l 2°o exp [-(pt1) (ﬁz(f))F" g ) 1 dr (2.10)

2n O\T

P

i B has developed; where t_denotes the period of c(t).
- A numerical investigation of (2.9) and (2.10) with o= o(t)= A sin wt,

will be done in a subsequent report.

3. Nonlinear Compliance in terms of Convolutions:
In order to express the strain as a function of stress, we utilize (1.5),

(1.11), and (2.8) to obtain:

e = E7lo(t) + a; [o(t)] + o[ Tlay,01-Tp]

t
el +ff1(a2,o(t)dt + ago) (3.1)
0

{ T, - Tq + exp (- aogt}) G(x,t)*

o () 2n
t)| 2 Dy 1 (72 aglt T~ a
[ /J.g_((:;LL exp(n+(“ +c(2)dTexp(o£:2)]}
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We will write this in the form:
1 t
e=E c(t)+C+[ Hl[c]dr +a exp (-owcgt}) G*Hz[c] (3.2)
: where C = al(O) +ofT, - TR]’
' r _ 2n
HLol = f1(ans0(t)] = 2 D o exp (-n+1f®2(9)) )
1 1'72 — 0 —_—
- v ol 2m\"S
- and

H,o[o]=T, + t|c§r)] 2 D_exp -n+1ra2(t’°(t)) 2n+ao§t!
2 R o PCy vi- ° ﬁ'. a(t) pcv}

- T_exp Loo(t) ]
pC,

,-\ az[t,c(t)] is given by the solution of
= da Ja 2 [Oa= Z.\T
2 = f.(a,,0) =m (z,-a,) O 1-N1(2 1) (1.4)
: —_— 2'\72 172 1 )
. w
v and
| 6=G(x,t)=L™" { 1. cosh (1x) %5, }
{ kv¥s sinh ( ¥§) + 8 cosh Vs
€ € €

from (2.5).
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.......................



Eep e~
Ce v E

TR

e el ——T

e
.
-

v ¥
VT
A

_'.v,
s s 2
[ I

AN N W A NG Y Al S RS A Sl

- e .'.-.'.-.';'.' -.'-.P.'-.-:'.'.'. '.} N '\.» ‘.\."-.'--"" .‘. " . T e e e .' o ‘; ) “-“.:""

Equation (3.2) givesa closed form expression for the compliance of
the Bodner model with two internal state variables. We note that the

contribution of ay is the integral

t t
a§°) +fH1[c]dt - a§°) +f Hy[o(1), ay(r,0(x)] dr
0 0

while the effect of the temperature and spatial variation is to introduce a
convolution in time, multiplied by the factor exp(-ao(t)).

OCV
If 6'(t) = constant, then we have a pure convolution with H2' A non constant

stress rate introduces the operator

exp(-ao(t)).G(x,t)*
OCV

rather than
G(x,t)*
A detailed examination of the asymptotic behavior of (2.8) and (3.2),
as t+=, for the cyclic case
c(t)=co sin ot

will appear in a future report.

The function G contains the diffusion phenomena and thermomechanical
coupling within it. A detailed analysis of G=G(x,t) and asymptotic re-

presentations of the solution to (1.1)-(1.4) will appear in a future report.
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4. Conclusions.

In the spatially uniform case, that is when insulated boundary con-

ditions hold at the ends of the rods, instead of (1.19) we have

i T = Flo(t)] (4.1)

* = T--
T*(0) TR T

which has the solution

T*(t) =f Flo(t)]dt + TR-TG, (4.2)
0

which we denote by T* ét). We therefore arrive at the important
o.d.e
conclusion that

T * (x,t) = G(x,t)* T* (t). (4.3)
p.d.e. o.d.e

Therefore, given the solution of the problem in the case of
insulated boundary conditions and known stress history o(t), the
solution of the problem for general boundary conditions is recovered by

a convolution in time with an appropriate heat kernel G(x,t).

The effect of the term €2 in (1.13) is to force a boundary layer to

form at the ends of the rod. Away from the ends, and for small time, the

solution is very nearly spatially independent. [2].
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ABSTRACT
! Under the assumption that the stress is a known function of time, the equations govern-

ing the behavior of a homogeneous, thermoviscoplastic uniaxial bar (Bodner Model) can be

L reduced to a single linear partial differential equation for the temperature in terms of the
stress. This can be solved by transform methods.
F In this report, an explicit series representation of the temperature in terms of the stress is
- obtained by seperation of variables techniques. With the assumption of periodic stress, bounds
‘ﬁ_ on the time averaged maximum temperature increase are obtained.
b In order to describe the thermal boundary layers near the ends of the rod, an asymptotic

model is developed which uses a spatially homogeneous solution as a starting point. Finally,

; various mathematical details regarding the Green’s function and series solution are investi-
E gated.
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Introduction.
In [ 1], we showed that the equations describing the behavior of a thermovisco-

plastic uniaxial bar (as derived in[2])

3 u =
L AEA[E —a;~AT =T ) j=—p: (0.1)
3= l [ ax 1 R P
AlE(F o taT) 2 4 E aZTi’Z] 02)
ax 4 ol
—AEaT 5% —ape, L a2 13 )=—prp,
- . 3 o ax oax
3‘ 2n
! g _ 2 o n+l a2
- —_— — —_— 0.
i
l and
daz g ar=z; i
—=m(z~a)o—=A,z (0.4)
¥ 17 ¥ 121

with prescribed stress , =01z ), could be reduced to a single linear, constant coefficient,

Lo
LA

partial differential equation

)

39280 Pl )):=F () 0.5)
a  ax?

x,0)=Tr T

A‘-

0,(1,¢)=0
k0.(0,¢ —-BX0,t)=0

for the modified temperature

0=0(x , 2 )=(T T Jexp “;‘f‘)) 0.6)

where

ao(t)

v

Flote))=| T 8 _ ©.7)

aT o) l
ex

Sr——

pc, & pe,

e e e s B ST NN SR TR PR
L 2 - ALY ERT A .._....-.‘\.’.‘r‘.'. G

-----
--------
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and
F =k (0.8)
pcy
2 In this report, we solve (0.5) by means of separation of variables and write down
)F an explicit power series solution of (0.5). This will enable us to examine the relative

importance of each term in the series expansion, evaluate various asymptotic expressions
- involving the solution, follow the formation of boundary layers in the bar, and to exam-
ine the effect of modifying the choice of o{¢). Finally, in the appendices, we examine

the integral representation of &(x,z) by means of the Green’s function which was intro-
duced in[ 1].

i. - Section 1. Series expansion of the modified temperature.

We write the solution of the problem (0.5) in series form
Nx,2)=3 0,0 N, (x)
n =1

Substituting this into (0.5), we have :

nf:,l 0, (t W, (x )28, (¢ W, (x ) [=F () (11)

ni:;lo,. (OW, (x)=T2~T « (12)
. ni:',o" (¢ W, (1)=0 3
' nf:_lo,, () ke ¥, (0)—By, (0) |=0. (1.4)

We solve (1.1) by assuming that




f:'—'-",“—'.'~i‘-'.'»‘."-'L"-'.‘l‘ LA A AR A A ISR v

AL AR M i e A A t-u ™~ rdtars ."-:'_"W'-"Tv—;‘r“vj

-5-
0, )+€w20,(t)=d, F(¢) 1.5)
¥, (x Iy, (x)=0 (1.6)

Therefore,

3 0. W, (x )€, (e W, (x)=
n =1
T 0, W, (x )+€%020, (¢ W, (x)
n =1
= £ 9. )] +e0, 0]
n=1

=5 4. (x)d, F(e)
n=l

$d, 0.0

n =1

F(t)

B¢

This will satisfy (1.1) if and only if

L
TR

$ d, v, (x)=1 1.7)
n=1

on the interval 0<x <1. Equations (1.3) , (1.4) , and (1.6) determine w, uniquely.

Writing

. ¥, (x )=a, sin(1—x Jw, +b, cos(1—x Jw,
'.:" we have
" 0=y;,(1)=—a, w,.
' e This implies that a, =0. The second condition implies

e
_ 0=k ¥, (0)—By, (0)==b, |k w, sinw, +Bcosw,
1 L which implies that
-

%w,, =~cot W, (1.8)




-

Asymptotically ,

' o
- W, =N . ‘

4
3
N We note that w, is nonzero, so that y{x)=1 is not an eigenfunction. Therefore, iy
~
il

r (1.7) determines the coefficients d, by
f;d,, cos(1—x Jw, =1 (1.9)
n=1

N
) The eigenfunctions ¥, (x )=cos(1~x Jw, can be shown to be a complete orthogonal basis, J

- consequently o

1 .
f cos(1—x Jw, dx . ")
=20 dsina, (1.10) w

d =2w,, —sin2w,

L |
fcosz(l—x dw, dx
0

Asymptotically ,

(2
2sinw 2 4‘
- SN B e

d,
W, kn 2112

It remains to satisfy (1.2). o

Tp—T o= gen (O (x )= 3 0, (O)cos(1~x ),

o
PO Tt ¥

n=1 :
Comparing this expression to (1.9) we see that it suffices to choose L
0, (0)=d, (Tx~T ). (1.11) N
The remaining differential equation x
o :
0,(z)+€w’=d, F(¢) Ex
v 6,(0)=d, (T, ~T.) N

has the solution :

0, (t)=d, (T —T exp(—w?e’ )+ f d, exp(—€%w2(t —s ))F (s )ds
0

.
o e A et e e tatatacamae sars et at et s,
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Therefore the solution of (0.5) can be written down concisely as

ox,2)= E d, (T2 =T Jexp(—w2e’ )+d, f exp(—€%w2(t —s )F (s )ds ]todl—x do, (1.12)
n =1 0

=(Tr =T o) z d, exp(—w?2€’t eos(1—x Jw, + E d, exp(—€?w?t ) * F (¢ ) cos(1—x Jw,

n =] n=1
(" * " signifying convolution in time ), w, satisfies

E‘”n =-—col W, , (1.8)

B

and d, satisfies (1.10).

Section 2. Contribution of Series Terms.

We will examine two cases , F (¢ )=t and F (¢)=1, in order to examine the decay

of the terms 6, (¢ ).

Case 1, F(t)=t. We have, after some computations which we omit,

d,

This implies that each mode contributes a term asymptotically of order

_!Tt
€“w

n

and therefore each term is of the same order in t.
In the second case, F (¢ )=1, we have (again after some easy computations)
d
0,@ )=?"—[ 1—exp(—€%w?t) |+d, (T 5 =T Jexp(—€%w?t) 2

W,

and therefore, as ¢t —oo, each term contributes

€“w;

.As t —co we have the following result

P, SRR 4 - Y afa
PP, "I S, SO, AR N L e e




1) § ycos(1=x 2.3)

n=l Wy

"

At the right endpoint then, the temperature is given asymptotically by

M Rrait]
P

o.=5 &

n=1 €,

2.4)

which is bounded.

Section 3. Upper bounds on the temperature increase.

~—r—
' N

Equation (0.5) can be considered as an ordinary heat equation describing the evolu-

tion of a symmetrical temperature distribution in a rod, with convection boundary con-

—ry

ditions at x =0 and x =2, starting from a constant temperature, with a source strength
F(z) which is spatially homogeneous. From this analogy, or using maximum principles
of parabolic equations, one can see that the maximum temperature is acuieved at the
center of the rod (for F(z)20) and that if F(¢)SF g, then the temperature distribu-

tion B,,,(x , ¢ ) satisfying (0.5) with F (¢ ) replaced by F pax
iO—ez-‘f-ez:F max=constant .1)
. 4 ax

ox N 0)=TR ~T

0,(1,2)=0

k9,(0,2)-B&0,z)=0

i r—
.
S0

satisfies the relation

T

0(x,2) €00 (x,2). - 32

v -
P

The steady state solution of (3.1) is very easy to compute. It is

-

k

3 )F max (33)

0 max(x )=e'2(—%x2+x +

k At the center point, where the maximum temperature occurs, we have

x

_ 1
Omax(1)=€ ’(-2—+ﬁ

)F max (34)

P BEE )

This then bounds the solution of (0.5) at the point x =1, and therefore everywhere.

e~
e
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Section 4. Computing F ., given o(r ).

' If |o(¢)]<C, and |0z )] <C, then we can estimate F,, as follows. In the appen-
dix it is shown that if z; <ax{0)<z, then z; <ay(t )<z, for all t. This then yields the

} inequality

g0y 2 n+l |2,
e —_— — —_ = 4.1
E‘: and therefore
. C ol C aC 3
E F)SF px= pc‘l, Ci+ o 2 lexp pcvl (4.2) :

This leads to a tremendous overestimate in general. Since the series solution (1.12) is
analytically correct (ie. not an approximation ) one can obtain the temperature at the

midpoint by substituting x =1 into (1.12) to obtain

agr—g—

AR m M

LI P PO P
MO WS TR

6(1,¢)= f d, exp(~w?€’ ) (4.3)
n =l

t
Tr —Tm+fexp(ezw,,2s )F (s )ds
0

- E d, f exp(—€®w Xt —s )F (s Mds (4.4)

n=1 0

If F(s) does not decay as s =oo then many terms will have to be included in (4.4).

T S B SN Y 7

Examples of various choices of c=0{¢ ) will be investigated in a subsequent report.

r..' .

b Section 5. Computing the time-averaged mean (modified) temperature. ‘3

. Since the right hand side of (0.5) depends only on t, through oz ), we can derive a 1

f‘_ § better asymptotic bound on the behavior of &(x,t) with respect to time in the following ]

L. way. First, integrate (0.5) with respect to time, and then divide by ¢. If we define <

= , :
#x £)=¢ ™ f &x,7)d 7 (5.1)

e 0

n

and

<F(e)>=t"' [F(o(r)d T
0

we have the following equation

f-:-i ."."_..'...'.‘.‘.-.'. '_..'_‘-‘ ...'_q.".-.' ---'..;'».'_--'_-.:_‘--.'.u“-- ‘.. ‘.. -~
a2 e Ko o RIS 200 3 A B DS 2T SRR
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Y x,t )~8(x,0))—€*p(x,t )=<F(¢)>

"I

6. (1,¢)=0

f- k(0,2 -0, 2)=0

(]

Since &(x,z) is bounded, ¢ ~X6&(x,¢ )}~ (x,0))—0 regardless of initial conditions.

Therefore the quantity

vy
R

®(x )=1lim¢ "fO(x , 7T (5.2)
I Band - -] 0

-

—

satisfies the ordinary differential equation

E —€2®' (x)=<F > (5.3
F ®(1)=0
i k ©(0)-B(0)=0
‘ where <F >=Tli_131 <F(t)>, This can be solved to yield
o(x )=€'2(—%x2+x+%) (5.4)

®(x ) is the asymptotic state of the (time averaged) mean (modified) temperature. In par-

ticular at the center pomnt, x =1,

g
IO 21 k
= _ <F> 5
<15(1)62(2+F) F (5.5)
r .
o If the exponential term in (0.6) is approximately unity, then @(x) is the asymp- .
totic mean temperature change. Therefore, j
<T(x)>~T o+ x) ?
- In order to compute < F >, we note that if F (¢) is periodic then ’
.
b 17 1]
<F >=lim . [F (e )dr -T{F(t Mt
-

) P
where P is the period of F. If, in addition, [F(t)dt =0, then <F >=0 and
0

-".-‘ T cet '4‘ A f e J. e e e e -~ A e e T S (T T NS S '-':-‘."' o ‘. ‘:. !"..-’:.‘-.
i‘\ S I A o O S N R R s ROV IS VRS R D (O S s
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consequently, there is no net mean contribution to the temperature. Consider the second

term of (0.7). It is a total derivative of the quantity

ac(e)

v

T £Xp

Therefore ,

P
[0 e 2Ty

1 v v

aof(e)

v

t=P
=0.

=T ex

t=0

If a, approaches a constant then,

T
<F>=1im L [S) 9%, (58)
T—=oT (1] pc, o

n+l1

2, D l
=% _[ %%}a(t)lexp [—- o ]%]2" dr

Given o<(t) periodic, one can compute (5.8) and then substitute into (5.5) to compute the
asymptotic mean (modified) temperature change at x =1. If aX{¢) does not approach a
constant, then one cannot use equation (5.8). In many applications however, the value of
ay approaches a constant. This is an effect of the phenomenon of "saturation”. The
parameter n is seen to be crucial in predicting the temperature rise in the purely one-

dimensional model.

In general, the temperature rise predicted by substituting (5.8) into (3.4) is much
larger than physically realized. This is a result of the simplification of the proﬁlem into
one-dimension. In reality, we cannot ignore radial effects, and the radiation boundary
conditions along the longitudinal surface of the bar. ( Neglecting these is equivalent to
assuming that the rod is insulated along its length , which accounts for the much larger

predicted temperature increase. )

The one-dimensional analysis is still important for a study of the various models

for thermoviscoplastic materials, and the effects of various parameters on the maximum

.temperature changes. For short times an alternate representation of the solution can be

obtained by singular perturbation techniques. This is analyzed in the next section.
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Section 6. Boundary Layer Model.

In order to examine the behavior of the boundary layer, we expand the function

6(x,¢) in terms of the small parameter & We define the stretched coordinate £=¢ x.

This implies that 3, =€'3,, and that therefore
0, —Bg=F (¢)
et 0)=Tr~T
€7'0{e,t)=0

k €718,0, £ )—B0(0, £ )=0

In the usual way, we write
K )=3 €6, (61)
n =0

For n=0 this reduces to
Bo,¢ =00, ¢c=F (¢)
0,(.,00=Tr~T »,
8, (o0, 2 )=0
8, £0, £ )=0

which implies that 8,=6(¢ ), and that

86=00(¢ )= [F (1)d 74T ~T o
0

Equation (6.3) describes the evolution of the modified temperature &(x,¢) under insu- ?

lated boundary conditions. For n>1, we obtain a coupled set of linear differential equa-

tions

(6.3

...............
________

.....
e

6.1)

(6.2)
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0., —0,, =0 (6.4)
6,(,0=0
0, oo,z )=0
8,.£0,2)—pB0, (0,2 )=0
This can be solved using Laplace transforms , which yields

0, (é,t)=- exp(— )*9 -{0,2) (6.5)

Note that if 64(¢ )>0 then each term alternates in sign.

The first order approximation is therefore

9(x ol )"'OO(t )+€91(§J ) (6.6)
t ] 2
=0(z )—% { mexp(—“—:z?)eo(t —~1)d T

2
The integrand is negligible except when Ex; is of order one. This leads to a boundary

layer which is described by
x ~evt.

We also obtain the following important result, when x=0, that
60, )~6,(t e 5 j L_gy(e ~r)d 7 X))

which to leading order computes the temperature as a function of time of the left end-
point of the bar. The first order correction is in fact monotonic in x (if 8,(t )>0 ), as
expected. Equation (6.7) shows that the first order term overcorrects and that the next

term (of opposite sign) attempts to compensate for this.

..................................
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Appendix I. Estimating a,.
F By examining (0.3) and (0.4) with Dy, m ,z,,z; , A, and r positive constants,
o
and noting that the product of o and _aat_l is intrinsically positive, we have the

following conclusions : If initially

“F F44 <a2(0) <z,
g
then as one approaches z, from below, i approaches
z—z |
—-A 121 ! ! <0
| . 902
¥ and if one aproaches z; from above, then ? approaches

e

m(z,~z; )0%>0

Consequently, ay(r ) can never cross these two limit lines.

-
LA

Appendix I1 . Integral representation of &(x,?) by means of a Green’s function.

F In [ 1 ] we derived the following expression for the Laplace transform of 0
0(x, s )=% [ﬁ' (s)+4T% —T‘,,l ll—Bé (x,s5) ]

where

We can derive a series expression for the inverse transform by means of a contour

K integral

14

I | ehe e cosh (l—x)g

"'. ) G(x’t)= T ds.
s v e 1
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The poles of the integrand are the roots of the expression

£ 2% sinh ¥ —goosn Y5
€ € €

Setting ies_-=iw, we have
=ki wsinh(i w)—Bcosh(i w)
=~2k wsinw—2Lcosw

Therefore

k cosw
—W=——
B sinw

=~cot w, (A2.1)

which is the same equation as (1.8). Therefore s =—€’w? where w satisfies (A2.1).

Because the integrand is even, there is no contribution of the branch line to the
contour integral. Similarly, there is no contribution of the branch point at s =0. The

contour at infinity goes to zero as s —oco if Res <0. Consequently, by the residue

theorem,
: - V.
G(x)=) residues=3 d,e " cosh(1=x) <
n=0
=¥ exp(—e2w2t Xeos(1-x o,
n=1
and
t 4
8x 2 )= [F(1)d 14T g ~T oo |-BG (x 2 P 4T ~T ot [F (1) 1
0 0

=00t }—BG (x £ )* 0,(¢)

=0,~B }':cos(l-x Yo, exp(—€2w 2t ) * Ou(e ).

This identity motivates the series expression for the function 8(x ) given in sec-

tion 1.
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ABSTRACT

Under the assumption that the stress is a known function of time, the equations
governing the response of a homogeneous, thermoviscoplastic uniaxial bar can be reduced
to a single linear partial differential equation for the temperature in terms of the stress.
In this, the last of a three part study of this problem, upper and lower bounds are deter-
mined for the case of a bar subjected to radiation boundary conditions on its longitudinal
surface and in the presence of a cyclic stress history. The temperature rise, which is
caused by inelastic conversion of strain energy to heat, is found to be significant for some

example applications to realistic materials.
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INTRODUCTION

Large space structures will require significant passive damping in order to sustain

Il

structural vibrations in a microgravity field. One passive damping mechanism which has

been proposed is material inelasticity. However, during this process, a substantial propor-

—y—=
" ll l‘

tion of the strain energy in the structure is converted into heat via hysteretic loss. The
purpose of the current three part research effort is to determine if this energy conversion

process can produce temperature rises which are large enough to adversely affect the

structural integrity of the system.

In Part I it was shown that assuming the stress to be a known function of time

decoupled the equations governing the internal state variables from the heat conduction

- —y

equation. This reduces the nonlinear system of partial differential equations governing

the motion of the rod to a single parabolic equation for the temperature with coefficients

.

given in terms of the stress o(z). We then obtained an expression for the strain € in
terms of a convolution of the stress o and a suitable kernel which was derived from the

heat conduction equation. This yielded the compliance relation for this material.

In Part IT it was noted that the system could also be solved by series methods, and
that a boundary layer formed near the ends of the rod. Series and integral expressions
for the temperature were derived from a simple, spatially homogeneous solution. The

boundary conditions examined did not allow for the radiation of thermal energy away

. T T

from the longitudinal surface of the rod , so the temperature bounds derived in part II

were not optimal.

v o=

In Part Il we develop much sharper upper and lower bounds for the asymptotic

.

temperature rise as a function of applied loading, material properties, and geometry for a

-—
- typical space structural member. Graphical results are given for several exampie cases.
Section 1. Derivation of the equations of Equilibrium. Constitutive Laws.
Ve

The equations we use to describe the quasi-static response of a thermoviscoplastic
r.
i uniaxial bar have been formulated and discussed in [ 1 ] . For brevity, we summarize

the main points in this section. The principal equations are conservation of momentum

-
-’ e
T

Uﬁ') =0 (1.1)

and the conservation of energy , as expressed in the modified Fourier heat conduction

Lo 289
ORI
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[ tj? law

| F D; o1 (&g —atyyy +8y T Yoty ; 4D, 13y (@ @y TT )—D, 4y (& T €y >—pe, T —g;,;=0.  (1.2)
| {" (Dots indicating differentiation with respect to time.)

In addition, we have the stress-strain relationship

r Tij =D,'ju (Eu —e,{, —ez) (1.3)

The internal state variables o, and €’ obey the following evolution equations :

- &=glen .T af) (1.4)
| &%= fieq T al) (1.5)

In the case of a homogeneous, thermoviscoplastic, uniaxial rod we further postulate that
0 =0=0 (1.6)
€;; =€),=€
Dy =Dy =E

I~ -
€;=ay; =

@ ; =ay=a

. el =ef =€’ =T —Tp)
- and finally
L
L_ E is a constant ( Young’s modulus ), and T is a reference temperature for which
there is no thermal strain under zero applied load. We also assume for simplicity that a,
o
ke k, p are constant.
. Substituting the relations (1.6) and (1.7) into (1.2) we have the following system of
F equations

! [ . 3 o=0 (1.8)

éx
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E (e~ay+aT g )a,+E o?TT —E oT é—pec, T +k AT =0 (1.9)

,
| I O

F &=f,(a, T € (1.10) y
. i
{:-; o=E[e—a;—odT ~Ty )] (1.11) >
and 'j‘
r
'- ;
€= iu (1.12) "
. éx 2
:
¥
‘ For simplicity we have assumed infinitesimal deformations, (1.12). Since v and o -
E are now functions of the aXial coordinate, x, alone, we drop the tensor subscript notation _‘
and use subscripts to label the different internal state variables (1.10). Y |

{ Given initial conditions for «, , T , and u, as well as boundary conditions for 7

and u, this is a well-posed mathematical problem. It has been shown in [ 2 ] to be ther-

modynamically consistent as well.

We make the following observations at this time. First, (1.8) implies that o is a

depend on T or € but only on { o, , 0 }, then given oft), (1.10) is a closed system of

r:: function of time alope. Secondly, in the special case where the f, do not explicitly
r equations , and we have «, =a,(¢;0(¢)). Equation (1.8) is automatically satisfied for

o=0(z) so (1.9) essentially becomes a single, non-linear parabolic differential equation

PTG W AP

for the temperature 7 in terms of o. This analysis has been carried out in[ 3, 4].

Generalizing this approach, we will obtain the asymptotic behavior of T directly from T

r— the system (1.8)-(1.12). . ]
K

% :
, Section 2. Radiative and convective boundary conditions.
;,“: In order to include the thermal radiation boundary conditions along the lateral
. surface of the rod, we integrate (1.9) over the (constant) cross-sectional area of the rod.
k’ Let (x , r , 8) denote cylindrical coordinates with x measuring the distance along the
axis of the rod. In this model, all variables (except for T) are independent of » and 6.
ﬁ.. ‘We have
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.................

AE (e—a,+al g Yo +AE o®TT —AE oT é~Ape, T +kAT,, = .1

_ 19,8 Ty, 1 87T

- T, . ~3T _
=—k f(r?)dr kca_n +Cq,

r".

b where g, is the integrated effect of the normal component of the thermal flux along the
- lateral surface of the rod, and C is the circumference of the rod. T is now interpreted
L as an integral average of the temperature over the cross-section of the rod.

It is clear that the term +Cg, acts as a "sink" for thermal energy. In deep space,

——e
. .

we model the thermal flux due to radiation as

9 =0 T *~T5)}-Q =0, 8T*—Q (22)

where T, =0°K is the deep space ambient temperature, and o, =5.775x1071! is

B ]
oo -
ot

Boltzmann’s constant. § is an order one constant, called the emissivity, which measures
‘ the effect of the surface coating on black body radiation, and Q measures the solar, earth,

and deep space thermal flux incident on the rod.

We approximate (2.2) by the first two terms of its Taylor series expansion in order

iraated
‘.'.l.

to obtain the linearized convective boundary condition
. g, =0, 8T #+B8(T =Tz )Q (2.3)
with

B~40', STRS.

S0

In order to estimate the actual temperature rise (with non-linear boundary conditions)

we choose 8 so that
o, STR+B(T ~TR)>0, 8T *> 0, 8T +4c, 8T XT —Tx) (2.4)

over the region of interest. This implies that any temperature change associated with
k (2.3) will bound from below the actual temperature change associated with (2.2). Choos-

ing B=40, 8T 2 will bound the temperature increase from above, via inequality (2.4).

“_-.f Section 3. Further reduction of the equations.
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We can further simplify (1.9) by noting that the left hand side of (2.1) can be

written as
A [(a+£az' Y +E o?TT —aT (G+E ay+E o Jpe, T +kT,, (31)
=A|-pe, T +kT,, —a0T +0dy
Consequently, '
—pe, T +kT,, —a0T +a&,=+%q,, (32)

=4 [a STR+8(T —T‘)_Ql

We write this as

pe, T ~kT +a6‘I'+CB(T—TR)=a'a1 —IU ST;—Q] (3.3)
._ Letting 6(x ¢ )=exp( ﬂt)XT—TR) , We have
F ¥_k 0, Cp B o=F () (34)
¥ pc, ax? PG A

r where

F(t)-'[z p("“’("“"(‘)“'(‘) f;’c' 8T +Acp?:‘, :':T,

AR
i L -

The modified temperature 0 has been introduced previously in [ 4 1 If we integrate
both sides of (3.4) with respect to t, and divide by t, we obtain

‘. R I

£ 740z 4 -0Cx o))-——:"[ f 6(x,7)d 7)., *pc, ¢! f 8(x ,7Md r=¢~ fF(f)df

o

As 7—00, with 0 bounded, this reduces to

a3

k

Ape,
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1 =vo0

<9>(x)=limt"f9(x T 3.9
0

and

<F >=l.imt"fexp(a::r))
t =-co 0

R

o(1)a,(r) +.C0 _ Co, 5T 4— ad TeldT (3.6)

ool BN Lol Bl ol . i

[ . A
o ao(r),|o(da(r) cg Co, .
=limz ! [ex ) + — Tl X
L F=oo [ K= pe,  Apc, Ape, * .
are the asymptotic mean values of 0 and F respectively. i
[ In the materials under consideration, o°a; >0 . Since the integrands are bounded, ‘
_ the above limits exist. For simplicity, consider the following boundary conditions for the ‘
E temperature T : T(0¢)=T; and T,(L,)=0. The second boundary condition results
from symmetry, for a bar of length 2L units. Therefore 9 satisfies the boundary condi-
[ tions :
. <0>(0)=0. 3.7
and
[‘-‘ <0>1L)=0 (38)

The solution of (3.4), subject to the boundary conditions (3.7,3.8) is

_pc A _ coshA(L—x)
<0>(x)-ﬁ—<F> - (3.9
CB
A== P2

Note that if we ignore the spatial variation of the temperature, we have

<0>(x k%‘iﬁ‘i <F>

. which is a good approximation to (3.9) if A is large. This accounts for the close approxi-
l}' . imation observed between the spatially homogeneous solution and the spatially varying

F
g
1 hee
:
§




solution with boundary layerin[ 51

Since p,¢c, .B,C,A,L, and k are all known , the spatial dependence of <0>(x)
is determined. Only the magnitude is a function of the loading history , through <F >.
The crucial term to estimate therefore is <F >. If oft) is periodic, and if a; is a
periodic, then (3.6) reduces to -

g& _ C « CO
A e cr,8T3+ApcV ]41' (3.10)

?
<F>=P! [axp(2L)
[ S

where P is the period of & and a;.

A case of particular interest is the Bodner model [ 7 ], for which

n+l
-

DoFrexp

At saturation, the drag stress a,=a; is constant, and <F > becomes a function only of

.
»?
—p- ao(r) 2 _n4l, 3
<F >=p-} _[ exp| 22 T,WD‘,kr(f)lexp sy (311)
a',ST +'A_Q]d
Since
-1 -1 00'(1’)
<0>(x)=ll£2t f x,7)d r=1.unt f exp( XT=TpMT
We can recover a mean temperature T by
T=<0>(x) I}imt "fexpia(i)d r| +T, (312)
--00 0 pcv

For stress amplitudes of interest, the factor exp

°:;(t) is very close to unity.

v

Fixing the material perameters { a,p,¢, ,Do,n , B,k ,&; }, one can compute the depen-
dence of <0> and T on o(z ). With o periodic, (3.12) simplifies as before to an integral

el e e o

- a
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over the period. We compare the analytical results with experimental and numerical

data in the next section.
Section 4. Numerical Results.

In order to verify the accuracy of the asymptotic results (3.9) and (.12), we com-
puted the average temperature for the parameters given in [ 5 ] with th: results shown
below in fig.1 . The values for the emissivity (with thermal equiliorium at 295 deg.
Kelvin) are 0.24, 0.5, and 0.85 respectively. The cyclically saturated stress-strain curve
used to compute <F > for the case Oy =336.5 is given in fig. 2. The values for O e

and @, were taken from numerical data supplied from reference [ 5].

The parameters in [ § ] describe a hollow cylindrical bar, of uniform cross-section,
orbiting at an altitude of 4,080 km., painted with a high-emissivity coating (IITRE-
S13GLO) white paint, with full exposure to the sun. Under zero applied stress, equili-
brium of thermal flux occurs at 72 degrees fahrenheit (295 deg. Kelvin) for which the
thermodynamic parameters of the metal 6061-T6 aluminum were experimentally com-
puted[ 6]

We also can compute the behavior of the thermal boundary layers near the ends of

the rod. From equation (3.3) or (34) we compute that the diffusion constant is equal to

1/2
(p: ) . This is typically of the order 10~ to 1073 in dimensionless units. This leads

to very sharp boundary layers, and exponential decay to the asymptotic temperature
state.

We also mention that other constitutive laws than (3.11) have been derived which
describe the behavior of metal-matrix materials. Since the parameters are described by a
parameter fitting procedure, essentially the same results are obtained for the asymptotic
temperature rise.

Section 5. Conclusions.

The results given in reference [ 5 ] indicate that the cyclic stress amplitudes for
load sequences of 1 Hz , S Hz , and 25 Hz are 336.5 MPa (48.8 KSI) , 346.8 MPa (50.3
KSI), and 358.9 MPa (52.05 KSI) respectively.

From Fig. 1 it is found , for example, that a stress amplitude of 346.8 MPa leads to
& minimum asymptotic temperature rise of 61.9° XK. This temperature represents an
extremely hostile environment for AL 6061-T6 which could lead to such serious losses
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in material properties as to compromise the structural integrity of the system. It is
therefore concluded that the use of material inelasticiy to enforce passive structural
damping should be utilized with caution due to the possibility of catastrophic structural
heating in space in the presence of solar flux.
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