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1. INTRODUCTION

1.1 Summary

It is known that large space structures will be subjected to
thermomechanical loadings and environmental conditions which are
likely to degrade the constitutive properties of the structural
materials, thus leading to possible failure of these vehicles.
Therefore, it is desirable to develop new analytical models which
are capable of accounting for these degraded properties so that
design procedures can be improved. There are three important
aspects of such an effort: selection and development of
constitutive models for degrading materials which are applicable
to large space structures, construction of analytic models for
predicting the dynamic response of these structures, and
experimentation to determine the precise nature of the material
parameters to be utilized in the analytical model. These three
components of the research must be tied together into a single
concise effort in order to obtain a useful model.

This research project is a three year effort to develop an
analytic model capable of predicting the response of space
structures with degrading material properties under quasi-static
as well as dynamic cyclic thermomechanical loading conditions.
This report details the research completed during the second year
of AFOSR contract no. F49620-83-0067.

S S-. tatement of Work

A model is being developed for predicting the
thermomechanical response of large space structures to cyclic
transient temperature loading conditions. The research is being
conducted in the following stages:

- 1) selection and specialization of thermomechanical
constitutive equati-ons to be utilized in the analysis of large
space structures;

2) construction (where necessary) of coupled energy balance
equations (modified Fourier heat conduction equations) applicable
to the constitutive models selected in item 1);

3) casting (where necessary) the resulting field laws into
* coupled and uncoupled variational principles suita.ble for use

with the finite element method;
4) finite element discretization of the variational

principles for several element types;
5) experimentation to determine material properties to be

utilized in the constitutive models; and
6) parametric studies of the quasi-static and dynamic

response of large space structures undergoing thermomechanically
and environmentally degraded material properties.

The experimental effort (discussed in 5) is bei g supported
by DOD equipment grant no. 841542. The total research effort
outlined above spans a three year period. The following section

. details results obtained during the second year.

.,-..



2. RESEARCH DURING SECOND YEAR

2.1 Summary of Completed Research

The following tasks have been completed during the second
* year of research:

1) development of generalized constitutive equations for
0 metal matrix composites with distributed damage;

2) experimentation to determine material parameters for the
model developed in item 1);

3) completion of algorithmic development for space
.- structures with damage induced and spacially variable stiffness
-loss;

4) completion of parametric studies for graphite/epoxy
• .composite space structures using item 3);

5) completion of algorithmic development for viscoplastic
space structures with thermomechanically induced heating;

6) completion of parametric studies for aluminum space
structures using item 5); and

7) completion of development of bounding techniques for
hysteretically induced temperature rise in thermoviscoplastic

. space structures.

In addition, the following tasks are well underway at the
* completion of the second year of research:

1) development of an analytic method for modeling beam-like
structural components with damage induced stiffness loss;

2) development of a finite element model for beam-like
* space structures with spatially degrading material properties and

subjected to solar flux heating and radiation boundary
conditions; and

* 3) development of a model for predicting the structural
response of space structures with load induced damage which
causes changes in structural damping.

The items briefly outlined above will be detailed further in
the following sections.

2



2.2 Development of Constitutive Equations

As stated in the original three year proposal [I], one
objective of the research was to identify constitutive equations
which account for material property degradation in polymeric
composites, metal matrix composites, and high strength metal
alloys. Constitutive equations for polymeric composites and high
strength metal alloys were found to exist in the research
literature, and candidate models were chosen and reported in the
first annual report £2]. However, no appropriate models for
metal matrix composites were found in the literature. Therefore,
it was decided to develop a constitutive model for metal matrix

- composites which would be applicable to space structures[3]. The
current state of this model development will be detailed in this
section.

2.2.1. Generalized Model Development for Metal Matrix Composites

Because metal matrix composites are expected to be utilized
commonly in space structural applications, it was felt that some
constitutive model development was warranted for this class of
materials. The distinguishing feature of metal matrix composites

- is the substantial inelastic (either elastic-plastic or
viscoplastic) nonlinearity which occurs in the matrix. On the
other hand, chopped fiber metal matrix composites do not exhibit
the degree of layered anisotropy observed in laminated continuous
fiber polymeric composites. Due to these differences, the
internal state in metal matrix composites can be significantly
different from polymeric composites. Accordingly, a generalized

* model was developed for this material. Although the model is an
extension of previous research on polymeric composites C4], the
mechanics of damage development are totally different. The
details of this model are given in Appendix 6.1. A synopsis of
the important results is given in this section.

The model utilizes the thermodynamics with internal state
variables (ISV) [5) to develop the following stress-strain

S'relations:

j CiJkl( lkl - kl - 4 kl " )  , (1)

where Cij - stress tensor,

"kl = strain tensor,
I

Cijkl a constant modulus tensor of the composite,

" lkl - ISV representing plastic strain,

0 4kl U ISV representing damage, and

£kl - thermal strain tensor.

' For the case without second phase material and no damage, the
model reduces to classical plasticity equations £6].
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- Furthermore, for the uniaxial case, the model reduces to

Kachanov's damage model [7] when plastic strain is negligible.
Many of the space structural applications of interest in

this research involve uniaxial stress states, such as in the case
of truss structures, and Euler-Bernoulii beam structures [8].
Therefore, the uniaxial equations have been studied in detail.

• 'These are, for the isothermal case:

= E(x - Ixx - 0(4xx - xx - (2)

where E is Young's modulus. A graphical representation of this
relation is shown in Fig. 1, where it is shown that the history
dependent damage parameter 04xx can be determined by observing
the tangent modulus on unloading.

The following section details the experimental effort
developed under the current contract to verify and characterize
the model, as well to develop the internal state variable growth
laws, for a typical chopped fiber metal matrix composite.

1' 2.2.2. Experimental Research on Metal Matrix Composites

The primary objective of the experimental effort is to
• -develop a technique for determining and evaluating damage in

metal metrix composites. This technique must be capable of
detecting cracks and voids (free surfaces) in the composite.
The3e cracks are generally on the order of microns in
characteristic dimension, so that scanning electron microscopy is
required to measure the damage. Specimens have been loaded to

. different levels and the damage studied at each increment. Once
"" the amount of damage is determined it can be input into the

general constitutive model for metal matrix composites(See
1 Section 2.2.1.).

The material used in this study was obtained from ARCO
Metals Silag Operation in Greer, S.C. The composition of the
material is 6061 Aluminum with a twenty percent volume fraction

• ". of F-9 silicon carbide whiskers. Plate is made from the
materials by a powder metallurgy process and cast into billets.

The billets are then rolled, extruded or machined to the desired
shapes. The SiC whiskers average two microns in diameter and
twenty microns long. The composite has a T-6 temper. Tensile
test coupons have been machined in accordance with ASTM Ew8
(Tension testing of metallic materials) to the dimensions shown
in Fig. 2. For the initial portion of the study all specimens
have been machined with the same orientation with respect to the

plate for the purpose of uniformity (with respect to the SiC
whisker orientation). A second phase of the testing involves the
use of tensile test specimens oriented perpendicular to the
initial specimens.

A mechanical test system was necessary to load specimens to
different levels & measure responses so that the damage at

various load levels could be determined. An Instron model 1125
screw-driven test system with 2" wedge action grips was used.
Longitudinal displacement data were obtained by the use of an MTS
model 632.11B-20 1" gage length extensometer. The displacement

4

...........-................................



r

t t

Fi gure, 7

1 nput- St rai n Prof il1e

tt

EZ

-..

Fi gure 8

Stress-Strain Curve

Fig. 1. Hypothetical Stress-Strain Behavior of
a Chopped-Fiber Metal Matrix Composite
with Damage.

5

._7



.122"

3. 300"

.25" radius

Fig. 2. Description of Metal-Matrix Coupons
Used in the Experimental Program.



information was amplified by an in-house signal conditioner and
load information was amplified by the Instron controller. Both
load and displacement information were plotted by an analog X-Y
recorder and input to a computer data acquisition system. This
data acquisition system consisted of a DEC model PDP 11/23 Plus
computer with an A to D converter manufactured by ADAC

2 Corporation. With this system, load, time, and longitudinal
" displacement data could be stored and a real time plot of load

versus displacement could be monitored during the actual tests.
The mechanical tests were performed by first loading the

specimen in the Instron, calibrating and zeroing the extensometer
using an extensometer displacement calibrator, calibrating the
load cell and plotter, then securing the extensometer to the edge

*of the coupon with rubber bands.
All tests were monotonic with a cross-head speed of .05

in/min. Several specimens were tested to failure to obtain a
data base about the ultimate strength of the material. After the
mechanical response of the material was determined, specimens
were loaded past yield at 500 pound increments so that the damage
at each increment could be determined.

Once the metal matrix composite coupons were loaded, the
next step in the process was to prepare them for examination
with the scanning electron microscope. Tensile coupons must be
sectioned into pieces that are about 1/2in X 1/21n. This was
accomplished by using a Micro-Matic precision slicing and dicing
machine using abrasive, cutting wheels. Since there was a
question about the degree of anisotropy caused by the fiber
orientation in the plane of the plate, two sections were cut from
each coupon so that the two orthogonal views of the coupon could
be viewed under the microscope. The sectioned pieces were then
mounted in a conductive mounting material (Konductomet I)
manufactured by Buehler. Mounting was accomplished by the use of
a Leco PR-22 Pneumatic Mounting Press with a core cycle of nine

* minutes at 4200 psi & 300F. The Konductomet I material is
essentially a carbon filled phenolic that is designed for
electron microscopy specimen use. After mounting, the specimens
must be polished so that the structure can be seen in a plane.
Polishing is very critical because if it is not done properly,
detail can be lost or polishing induced artifacts will be
created. The SiC/Al composite presents other problems. There is
a vast difference between the hardness of SiC and aluminum.
Unless great care is taken and an appropriate grade of. abrasive
compound is used, an uneven terrain is created by the removal of

* the softer aluminum matrix leaving exposed SiC whiskers. The
mounted specimens were wet sanded in one direction on each of the
following grits of sandpaper: 240, 320, 400, 600. After each

. grit, the specimen was washed in water to remove any residue,
then sanded on the next finer grit in a different direction until
all remaining evidence of the previous sanding direction was
removed. The specimen was then cleaned ultrasonically in MEK.

*! Diamond abrasive polishing compound was chosen for the fine
polishing. Both the polishing compounds and cloths were obtained
from Buehler. This was a necessity because of the hardness of
the SiC particles. Rough polishing was accomplished by using a
polishing wheel with Metadi seven micron polish on a nylon cloth.

L7
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Each specimen was polished until all visible scratches from the
600 grit sandpaper were removed. The specimens were then

wultrasonically cleaned in MEK and hand polished with Metadi II
three micron, then Metadi one micron heavy polishing compounds on
TEXMET polishing cloths. After each change in polishing
compound, it was imperative to thoroughly clean all residue of
the previous compound. If this is not done properly, a smooth
polished surface is impossible to obtain because the residual
large pieces of polishing compound remove large pieces of

M material along with smaller pieces removed with the finer grain
compound.

After the polishing technique was performed, the polished
surface of the composite was examined under an SEM to verify a
uniform, smooth surface was present.

Once the surface was polished, chemical etching was
performed so that surface details could be easily seen. A
solution of 10 gr NaOH and 90cc distilled H 2 0 at 150F was used
for approximately 15 seconds to etch the specimen. The specimen
was then rinsed and ultrasonically cleaned in distilled water
followed by ultrasonic cleaning in MEK. The final step in

Fpreparation of the sample was to apply a thin (100A) coating of
gold by vacuum deposition. This is necessary to achieve a good

- image on the SEM. The SEM operates by having a voltage applied
to the specimen. When the voltage is applied to the specimen,
free electrons are released from the specimen. It is these
electrons that are removed from the orbitals that are received by

* a sensor that forms the image. Light compounds have less free
-electrons, thus the image formed is not as sharp as an image of a

heavy compound. Since gold is a heavy compound, a thin coating
of it on the specimens provides an electron source, without
losing surface detail.

After the specimens were sectioned, mounted in the
*conductive mount, polished, etched, and coated, the next step in

the process was to examine them under the scanning 'electron
microscope. A Joel JSM-25 II scanning electron microscope was
used in this study.

Choosing an acceleration voltage for the specimens was a key
consideration. If the voltage was too low not enough electrons
were free to form an image. If too high, charging at interfaces
and edges occurred leaving bright spots on the image and
destroying detail. After experimentation a value of 25kv was
used. Most pictures were taken at 2,OOOX. This magnification
allowed details of the matrix, whiskers, and interfaces to be
seen along with more macroscopic details such as large voids.
The final product was a series of SEM photographs of the surfaces
of orthogonal edges for specimens under both virgin, loaded, and
failed condition (see Fig. 3). Along with SEM photographs of
polished surfaces to reveal internal structure, photographs of
fracture surfaces were taken to observe the effect of the whisker
reinforcement.

LAlthough this research is not complete at this time, the
photographs are currently under study to determine the damage
state at each load level. These data will then be fed into the
damage model developed in Section 2.2.1 in order to evaluate the
material constants and complete the model description for the

8
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end view of composite (2000x) side view of composite (2000x)
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damage resulting from rolling billet fracture surface (3000x)
into sheet (2000x).

Fig. 3. SEM Photographs of Chopped-Fiber
Metal Matrix Composite.
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chopped fiber metal matrix composite.
The above section details the M.S. thesis research of Mr. E.

W. Nottorf.

" 2.3 Space Structural Response Due to Stiffness Loss

Fibrous composites are known to undergo a small but
significant amount of stiffness loss due to load induced
microcracking C31. This stiffness loss usually occurs over
several hundred thousand load cycles. Due to the stress

*- dependent nature of the damage, the stiffness loss is spatially
variable and concentrated in the areas of high stresses. This
spatial change in the material properties of the structure
results in appreciable changes in the dynamic response of the

-structure.

A part of the current research has been to develop
approximate.methods for determining this long term change in
structural response (See Appendix 6.2.). The procedure developed
here is to subject the structure to a dynamic load input which is
in phase with one of the first few fundamental modes of the
structure in the undamaged state. Utilizing the stress field
calculated from this analysis, it is possible to estimate the
spatial dependence in the stiffness loss that a space structure

. would undergo by approximating the constitutive equations which
are designed to model long term material degradation. The
approximation enters through the negligence of the actual long
term history dependent nature of the damage process. This
approximation is made for reasons of numerical economy. It is
theoretically possible to obtain the actual history dependent
response, but this would require many hours of computational
time on a large mainframe computer for realistic space
structures.

Because this procedure is approximate, the results should be
., considered as qualitative in nature. Consider, however, the case

of a cantilevered space boom, as shown in Fig. 4. In Fig. 5 the
displacement of the axial dimension of the boom is shown for the
third mode as a function of damage induced stiffness loss in the
second mode.

It is *clear from Fig. 5 that damage induced by cyclic
loading in fibrous composites will alter considerably the dynamic
response of space structures even for small amounts of damage
induced stiffness loss. Mode shapes are found to change
dramatically, with node points shifting substantial distances in
the structure. These results indicate that active control
devices which are placed based on the initial undamaged mode
shapes may require substantial relocation after the structure has
been in operation for a few months or years.

2.3.1. Analysis of History Dependence of Structural Response of
* Simple Space Structures with Load Induced Stiffness Loss

Although it is not possible to construct a more precise
history dependent structural algorithm for a representative space
structure, a more accurate method is under development at this

r
10
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time for a single beam member with various boundary conditions.
This model will carry out the actual time integration for the
slowly degrading structure as damage accumulates for each cycle.
Using this new model for simplified structures, it will be
possible to determine the actual structural response for a load
input of several hundred thousand cycles. The following is a
brief description of this procedure.

The well known partial differential equation for the free
vibration of a beam is

• where E is Young's modulus, I is the moment of inertia of the
cross-section, A is the cross-sectional area, is the mass
density, y is the transverse displacement, xis the axial
coordinate, and t is time.

A number of solutions to the above differential equation are
available in the literature for both uniform (constant cross-
section) and nonuniform (variable cross-section) with different
boundary conditions. Most of the solutions are for beams with
homogeneous material properties. These solutions have been

. obtained by assuming that the stiffness of a structural element
is constant in time and therefore independent of loading history.
Neither material damage nor environmentally caused degradation

. are considered in these analyses.
Due to the occurrence of load induced and history dependent

damage in composite materials, these previously obtained results
represent unrealistic approximations of the actual structural
behavior (See, for example, Appendix 6.2). In particular, the
resonant frequencies and mode shapes of the structure can be
severely altered by the introduction of spacially variable
damage. These parameters in turn can have a substantial impact
on the active control algorithm to be employed for control of
flexible body modes. By introducing material damage and
environmentally caused degradation, the stiffness of a structure

"* is no longer a constant, since it will change substantially
" according to the stress distribution and the history of external

loading. The stiffness loss may change the natural frequencies
and mode shapes substantially. With the material damage and
environmentally caused degradation involved, the differential
equation becomes difficult if not impossible to solve in closed
form.

The concept of internal state variables (ISV) is introduced
to represent the history dependent change of stiffness. An
internal state variable D is utilized as a local ISV representing

" the damage state. Together with the ISV growth law, the finite
element solution technique can be modified to account for the
history dependent stiffness of the beam element, with resulting

. field equations

13
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where L=

T)J - -7C t / \1O~

The above set of second order ordinary differential equations for~each element is combined to represent the eigenvalue problem for

* the beam structure.
The occurrence of damage will cause the loss of stiffness,

that is, the stiffness is history dependent. Experimental
*results indicate that the time scale for damage and degradation

is very long compared to the first fundamental frequency of the
structure. Therefore, the mathematical algorithm is treated as
linear with slowly varying coefficients. In this research,
particular interest is being placed on the natural vibration
solution of a beam structure with history dependent stiffness and

• -the investigation of the possible effect of material damage and
Fstiffness reduction on the natural frequencies and mode shapes of

planar beam structures with various boundary conditions (free-
. free, clamped-free, clamped-clamped and simply supported).

The research also focuses on the investigation of the
internal state variable representation of the damage phenomenon.
The damage in a composite material includes a sequence of
microstructural and macrostructural events such as microvoid
growth, matrix cracking, fiber matrix debonding, interior laminar
cracking, edge delamination and fiber fracture. The most
significant effect of damage on the material properties is that
the stiffness will be substantially changed during the life of
the component. The constitutive equation for a composite

*material could be represented as

E(-=&T (6)

where E is Young's modulus, which will change according to the
damage D as

E - Eo(1 D) • (7)

. The subscript o represents the initial condition. The damage
D is an internal state variable describing the damage phenomenon
during the life of the composite structure, which is governed by

" the internal state variable growth law

D f(E,T,D) • (8)

Since the damage phenomenon is not fully understood at this
time some approximations to equation (8) will be made in the
research in order to reasonably predict the damage behavior.

The above section details the Ph. D. thesis work of Mr. Y.

14
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2.3.2. Development of a Structural Model with Temperature Field
PInduced Damage

For many space structures the primary source of cyclic
loading will be due to thermal strains induced by solar and earth
radiation. The determination of the temperature field in this
analysis comprises a difficult matter in itself. The following
is a description of a model currently under development which
will account for thermal effects on the damage process.

The anticipated construction of large space structures using
composite materials has stimulated interest in the relationship
between material damage and structural response. Early research
concludes that during the normal life cycle of an LSS, damage, in
the form of a reduction of stiffness up to 25%, should be
expected. In addition, as little as 5% reduction in stiffness
has been shown to significantly alter structural response. The
current research attempts to study in more detail the
relationship between damage and stress-strain distributions in a
simplified space structure. Emphasis is placed on analyzing the
structure under a set of accurate thermomechanically induced
loads. The full impact of thermal loads has previously been

. largely ignored. Many studies have analyzed structures composed
of truss type elements. This results in neglecting bending by
the members themselves. For structures made with materials of
high conductivity, this is not inaccurate. However, composite
materials have low conductivities and therefore undergo large
thermal gradients through their cross section. To incorporate

*. these expected thermal moments, the models to be studied will be
composed of beam type elements.

The outlined boundary value problem is complicated by
several factors. First, a one way coupling between temperature
and displacements exists. It is one way in that displacements
depend on temperatures. Secondly, the problem is nonlinear due
to the introduction of radiation boundary conditions. Thirdly,
there are constantly changing thermal loading conditions due to
varying earth-structure-sun orientation. Finally, geometrical
factors such as shadowing and interelement radiation and

7 conduction exist. These factors combine to create a highly
• complex problem (See Fig. 6.).

Several simplifying assumptions to the geometry and
environment of the structure can be made without compromising the
usefulness of the result. For a structure composed of long thin
members which are sparsely placed, interelement contributions may
be neglected. Each member can be treated as an isolated,
independent body absorbing thermal radiation and in turn emitting
its own radiation. For a structure in a geosychronous or other
high earth orbit the effects of earth emitted radiation and earth
reflected solar radiation are minimal. Furthermore, LSS such as
solar collectors, antennas, and telescopes will have space-fixed
orientations. This will result in steady-state thermal
conditions due to solar radiation of nearly constant direction
and intensity. This steady-state thermal condition also results
in negligible axial temperature gradients (See Fig. 7.).
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The solution method to be outlined here is a completely
numerical one. The algorithm consists of five parts, as shown
in Fig. 8. Finite eliments are used to construct the temperature
fIeld through the cross-section of a beam member. This
temperature distribution is then converted to thermal forces and

moments using the following equations:

P 7- Ec.ATdA

M7 -IA Ez(TATZd.

N{E Ec,(TAT Y JA
, Here E represents Young's moduluso(T is the coefficient of

. thermal expansion, A is crosssectional area, &T is the change
in temperature, and y and z are the distances to the geometric

. centroid. These loads are first calculated in the local

1
coordinates of the cross-section and then transformed into the
global coordinates of the structure. These global thermal forces
and moments then serve as Input to another finite element
routine. The output from this is the stress and strain

, distribution in a beam member. The final step is to predict the
distribution of damage in each member based on the stress

" history. Once the damage is known, a new stress--strain field may
I be generated for the current damage state.

The beam code is a standard transient one dimensional code
and is the result of application of the standard finite element
formulation to the governing differential equations:

* d~~ZV - (~~{

-v -

dx - Et , (10)

where uo , v o , w o - centroidal displacements in the x, y, and z

coordinate directions,

P, My, Mz - axial force and moments,

-T My T , MzT . thermally induced axial force and momentsYy
E ,Young's modulus,

Iyy*, - modulus weighted moments of inertia, and

1. 18
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GENERATE TEMPERATURESF THROUGH A CROSS-SECTION

CALCULATE THERMAL FORCES
& MOMENTS IN LOCAL COORDS.

mil

TRANSFORM THERMAL FORCES
& MOMENTS TO GLOBAL COORDS.

TIE STEP
FORWARD

I4

GENERATE STRESSES & STRAINS
INDUCED BY THERMOMECHANICAL
LOADS

CALCULATE & DISTRIBUTE
DAMAGE BASED ON STRESSES

ALGORITHM SCHEMATIC

Fig. 8. Flowchart for Thermally Induced
Damage Modeling.
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A = modulus weighted cross-sectional area.

For more details about the above formulation see reference 8.
.. In order to place equations (10) in a variational form, each

must be multiplied by a separate test function and integrated
over the volume of a typical element. The resulting equations

• may then be discretized in the standard way.
The heat transfer code is less general. The code is

developed from the general formulation for heat transfer in a
plane geometry:

with boundary conditions

ky +h X T)-ky L- TXy (12)

with variables defined as follows:

kx k thermal conductivities,
y

Q - internal heat generation,

l, x , 
1y = direction cosines,

qN flux normal to surface,

0<O - absorptivity,

h - film coefficient,

Ta - ambient temperature,

.- & - emissivity,

d- Boltzman's constant,

Tr - reference temperature,

p density, and

. Cv specific heat.

• Because of the steady-state conditions the governing equation
' reduces to the following:

o * (l+3)ky (13)

.. All nonlinearity resides in the boundary conditions (12). To set
up the finite element formulation, equation (11) is cast into its

* variational or weak form by multiplying by the test function ST

20



* and integrating over an element volumeCle:

U ~ ~f5~(kx ID )~k (rFd
'. . (1 4 )

Integration by parts and the substitution of boundary conditions
yields the following equilibrium equation in which B is the
boundary of an element:

k" rx ky ty%1r_ -dJ2 97 ?f
CL

c4 / ~~+(-a-T') *gg/1T -r4 )7 2TdL (

Discretization of equation (15) results in the following set of
equations for a single element:

fe -L (16)

KNLIj contains the unknown temperatures raised to the 3rd power.
Because of this the solution of the equations requires that KNL
be approximated by a set of known temperatures and then updated
through iteration until the correct temperature field is
obtained.

Equation (16) may be recast in the following form:

.4- [KI1 - f ot
* (17)

* Newton Iteration can then be used to solve (17):

where l _e

T 4 aj ,L.

and n-number of degress of freedom per element and AT is the
temperature correction on the Kth iteration. To increase the
accuracy of the solution, load steps are used. Convergence of
the solution is assumed if [ fT] remains non-singular and the
load steps are small. Equation (18) gives the final form of the
equations to be solved:

L 
. (19)

The process of ultimate failure in a composite is preceded
by a series of events such as transverse cracking, delamination,
fiber breakage, and fiber-matrix debonding. This sequence of

21
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microstructural and macrostructural phenomena is termed damage.
Global material properties such as stiffness and ultimate
strength can be substantially altered by an accumulation of
damage.

This research models damage as a load history dependent
reduction in stiffness of the structural members. The
distribution of the damage will be dependent on the resulting
stress field. The members most heavily stressed will incur the
greatest degree of damage. The intensity of the damage will be
determined through the use of a power law degradation of

" stiffness. Therefore the degradation of the modulus is given by

E' E , - ~J,(20)

where E' is the reduced modulus, Eo is the initial modulus, Jfis
the stress in the member, max is the ultimate strength, and n
is some power.

The power law model is simplistic. In reality the models
are expected to be quite complex. Work is currently being done
to construct these models for future work in this area.

This research has two goals. The first is to investigate
the sensitivity of stress-strain distributions in beams to damage
induced by thermomechanically induced loads typical of their
proposed environment. The second is to provide a numerical
algorithm to be used in future research to provide thermal

* loadings for structural members. Expansion of the algorithm to
include interelement contributions and transient thermal loads
is suggested to enlarge the geometries and environments that can
be studied.

The above section details the M.S. thesis research oi Mr. J.
D. Lutz.

2.4 Space Structural Response Due to Damping Change

In a vibrating structure mechanical energy is continuously
converted to other forms of energy via irreversible thermodynamic

- processes, and this energy loss is partially exhibited in
structural damping. The energy dissipation may be caused by
thermal flux, material inelasticity, friction, creation of new
boundaries via fracture, chemical processes, or other sources.

- The emphasis of this research is to develop a model capable of
predicting this damping for composite materials undergoing load
induced damage.

|. A damping measure which is commonly used is the quantity of
energy D dissipated during one cycle of harmonic motion. The
maximum potential energy V stored in the structure is related to

- the energy dissipated by the loss factor 71 given by

27r (21)

When the structure is built up from elements with known
" -" damping characteristics a proper damping matrix can be determined

1.2
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yielding the fundamental structural dynamics problem

p M~ L ~L~+{~) (22)

in which x is the vector of discrete coordinates, f(t) is the
vector of forcing functions, and [M], [C], and [K] are the system
mass, damping, and stiffness matrices, assembled from the
individual matrices of structural finite elements. The damping
and stiffness depend on the damage in the structure.

For the LSS these matrices are very large, and the
coordinates become highly coupled. Thus, the direct solution of
the equations of motion becomes time-consuming and expensive. A
very common way to analyze damped structures is to use a modal
approach, which is permitted when only the response of the
structure within a certain frequency range is of interest. Then
the response can be expressed by means of a limited number of
vibration modes. The reduction of the extent of the calculations
is the advantage of this approach.

The modal matrix of eigenvectors can be calculated from the
undamped free vibration problem

LMA] 0h1* 32Xl z (23)

Modal equations can be obtained from the transformation

i X = 41i I1, (214)

where [4] is the matrix of the eigenvectors and q is the vector
of time dependent generalized coordinates. In general, the

* damping matrix in transformed coordinates is nondiagonal, so that
the modal equations are coupled.

As an alternative to the assumption of modal damping, the
.*. equations of motion can be uncoupled without restrictions on the

damping matrix [C], other than that it be symmetric. By
selecting a different set of generalized coordinates, equation
(22) can be reduced to

4-Y C+) ,(25)

, . where

q(t) - [kT(t):xT(t)]T is a 2N dimensional state vector, and

Y(t) - [fT(t):OT]T is a 2N dimensional generalized force
vector.

S. [.Furthermore,
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i 0

The associated eigenvalue problem becomes

+ C ,(26)

which can be reduced to the form

Ai ,A (27)

. where, assuming that M* is nonsingular

I.7

" The solution consists *of 2N jigenvalues X and 2N eigenvectors.
Because the matrices M and K are real, ii X is an eigenvalue,

i then Ti is also in eigeivalue. The eigenvectors are orthogonal
with respect to M and K.

The damping factor for composites has been observed to
increase with damage. Plunkett [11J found that the damping
factor could be calculated from the crack density as a function

-' of strain level and the strain volume fraction.
If it is assumed that the energy dissipation in a material

i depends on the local strain state and its time history the
damping factor can be of the form

f(D) , (28)

where D is the history dependent damage parameter. An internal
state variable theory, (41 can then be utilized to relate the
damping factor with a given damage state. Thus, response
calculations can be made for large space structures.

The research detailed in the above section is the Ph. D.
thesis work of Mr. S. Kalyanasundarum.

2.5 Temperature Change Due to Hysteretic Heating

It is envisioned that many space structural components will
be fabricated from aluminum alloys. Furthermore, it has been
suggested that utilizing these components in their post-yielded
state can lead to enhanced passive damping of the structure due
to hysteretic strain energy conversion to heat. For viscoplastic
structures this is a complex nonlinear two-way coupled problem in
that the conservation of energy is coupled via the temperature to
the other field equations [9].
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The purpose of this portion of the research has been to
-.: construct a model capable of predicting the structural response

of a viscoplastic space structure to thermomechanical loading.

The primary emphasis is placed on the prediction of the
temperature rise accrued in typical viscoplastic members due to
hysteretic loss during cyclic loading.

The general formulation of this problem was completed during
the first year of research [103. During the second year the
model has been applied to a typical space truss structure made of
aluminum members (See Appendix 6.4). The structure is assumed to

M. be coated with special high emissivity materials, and is
subjected to various levels of solar and earth radiation. The
problem is complicated not only by the thermomechanical coupling,

,. but also by the nonlinear constitutive equations and radiative
boundary conditions.

As shown in Fig. 9, the predicted temperature rise for an
. input cyclic loading at 5 Hz can be very substantial in spite of
'- the fact that the radiation boundary conditions provide a

structural heat loss mechanism.
The algorithm developed in reference 10, although

. comprehensive in nature, is very computationally expensive to
utilize. In fact, it is so costly as to preclude the analysis of
the response of a structural member undergoing several thousand
load cycles. Therefore, alternative procedures were considered

-- for analyzing the temperature profile as a function of time.
This research has resulted in the completion of the three part
paper described in Appendices 6.5 through 6.7.

i The principal result obtained from this research is the
* determination of upper and lower bounds for the hysteretically

induced temperature rise as a function of load history, geometry,
- and material properties. As shown in Fig. 10, these bounds

" . verify the results obtained in Appendix 6.4.
On the basis of these results it is concluded that material

inelasticity in viscoplastic structural members should be used as
a passive damping mechanism only with extreme caution. The
temperature rises associated with this damping process can be so
severe as to compromise the integrity of the structure.

*1'2
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3. PUBLICATIONS LIST

The following research has been published during the second
research year:

1. Kalyanasundaram, S., Lutz, J. D., Haisler, W. E., and Allen,

D. H., "Effect of Degradation of Material Properties on the

Dynamic Response of Large Space Structures," Proceedings 26th
- AIAA/ASME/ASCE/AHS Structures, Dynamics, and Materials

Conference, April, 1985 (Appendix 6.2).

2. Allen, D. H. and Haisler, W. E., "Predicted Temperature
* Gradient in a Thermomechanically Heated Viscoplastic Space Truss

Structure," Proceedings 26th AIAA/ASME/ASCE/AHS Structures,
Dynamics, and Materials Conference, April, 1985 (Appendix 6.4).

In addition, paper no. 1 listed above has been submitted for
publication to the Journal of Spacecraft and Rockets, and paper
no. 2 has been accepted for publication by the Journal of

1 Spacecraft and Rockets.

The following paper has been submitted for publication:

1. Allen, D. H., "Predicted Axial Temperature Gradient in a
Viscoplastic Uniaxial Bar Due to Thermomechanical Coupling,"
submitted to the International Journal for Numerical Methods in
Engineering (Appendix 6.3).

The following papers are to be submitted for publication:

1. Allen, D. H., Nottorf, E. W., and Harris, C. E.,"A
* Fratographic Study of Damage Mechanisms in Short-Fiber Metal

Matrix Composites," to be submitted to Fractography of Modern
Engineering Materials, ASTM Special Technical Publication
(Section 6.1).

2. Pilant, M. S. and Allen, D. H., "Analysis of a
Thermoviscoplastic Uniaxial Bar Under Prescribed Stress," to be
submitted to the SIAM Journal of Applied Mathematics (Appendices

6.5-6.7).

In addition, the following report not listed above has been
completed during the second year of research:

1. Wren, G. and Allen, D. H., "Development of a Theoretical
- Framework for Constitutive Equations for Metal Matrix Composites

with Damage," Texas A&M University Mechanics and Materials
Center, Report No. MM 4875-85-9, June, 1985 (Appendix 6.1).
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S4. PROFESSIONAL PERSONNEL INFORMATION

* 4.1 Faculty Research Assignments

1. Dr. D. H. Allen (Co-principal Investigator) - development of
constitutive equations for polymeric composites, metal matrix
composites, and high strength metal alloys; development of
variational principles and finite element methods for two-way
coupled thermoviscoplastic media; experimental methods for
material model development.

2. Dr. W. E. Haisler (Co-principal Investigator) - development
-- of finite element algorithms for truss and beam structures with

material property degradation; sensitivity studies for large
space structures with material property degradation.

3. Dr. M. S. Pilant (Investigator) - development of solution
algorithms for coupled thermoviscoplastic media.

4.2 Additional Staff

1. Mr. B. Harbert (Lab Technician) - experimental lab support.

2. Mrs. T. Marquez (Secretary) - secretarial support.

- 3. Mr. S. Kalyanasundaram (Ph.D. Research Assistant) - modeling
of large space structures with damage induced stiffness loss and

- damping increase; expected completion.date May 1986.

4. Mr. Y. T. Chang (Ph.D. Research Assistant) - modeling of
history dependent behavior of beam-like structures with spacially
and history dependent damage.

5. Mr. E. W. Nottorf (M.S. Research Assistant) - development of
experimental techniques for determining load induced damage in
metal matrix composites; expected completion date August 1985.

6. Mr. G. Wren (M.S. Research Assistant) - development of
general theoretical model for constitutive equations for metal
matrix composites with damage; expected completion date August
1985.

7. Mr. J. D. Lutz (M.S. Research Assistant) - modeling of damage
dependent space structures in the presence of solar flux and

" radiation boundary conditions; expected completion date December
.. 1985.

*3r
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5. INTERACTIONS

• -5.1 Papers Presented

Presentations have been given during the second year at the
following conferences:

S•1. D. H. Allen - 26th SDM Conference, April, 1985.
*2. W. E. Haisler - 26th SDM Conference, April, 1985.

3. M. S. Pilant - SIAM Annual Spring Conference, June, 1985.

Papers have been accepted for presentation a. the following

conferences:

S1. D. H. Allen - 3rd Forum on Large Space Structures, July,
I 1985.

2. W. E. Haisler - 3rd Forum on Large Space Structures, July,
1985.
3. D. H. Allen - 22nd Society of Engineering Science Meeting,
October, 1985.
4. D. H. Allen - ASTM Symposium on Fractography of Modern

*Engineering Materials, November, 1985.

5.2 Awards and Achievements

, 1. Dr. Allen has been named Assoclatc Editor of the Journal of
Spacecraft and Rockets.

2. Dr. W. E. Haisler has been named Head of the Aerospace
*[ Engineering Department at Texas A&M University.

* 3. The textbook entitled Introduction to Aerospace Structural
.-. Analysis, co-authored by Drs. Allen and Haisler, has been

published by John Wiley.

• - 4. Dr. W. E. Haisler has been named to the Halliburton Chair at
Texas A&M University.

5. Drs. Allen and Haisler have been named Texas Engineering
Experiment Station Research Fellows for 1984-1985.

" 6. Dr. Allen has received the General Dynamics Award for
* Outstanding Teaching and Research in the College of Engineering

at Texas A&M University.

.* 7. Dr. Allen has been tenured and promoted to the rank of
Associate Professor.

.. [• 5.3 Other

1. Drs. Allen and Haisler have made a total of eleven research
.* related trips during the past year.
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DEVELOPMENT OF A THEORETICAL FRAMEWORK FOR

CONSTITUTIVE EQUATIONS FOR METAL MATRIX

W COMPOSITES WITH DAMAGE

by

G. WREN

and
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ABSTRACT

PA continuum mechanics framework is utilized herein

to construct constitutive equations for metal matrix composites

with damage. Matrix plasticity and microcracking are modelled via

the concept of internal state variables. Imposition of

thermodynamic constraints results in a set of stress-strain

relations which are dependent on damage and plastic strain. These

equations are specialized to a one-dimensional case and it is

* then demonstrated how the material parameters may be determined

experimentally.
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INTRODUCTION

The characterization and modelling of matrix

plasticity, cracks and other forms of microscopic damage in metal

matrix composites is developed herein using the principles of

continuum mechanics. The theory developed incorporates globally

averaged, history dependent, thermodynamically constrained

constitutive relations and utilizes tensor valued internal state

variables to model history dependent energy dissipative

(irreversible) phenomena.

i The two primary energy dissipative phenomena

considered are inelastic strain and damage. Depending on the

complexity of the material under consideration, these internal

U state variables can be scalar or tensor valued functions. Since

these phenomena are inherently history dependent, the

specification of the internal state variables representing

inelastic strain and damage and their associated growth laws

introduces history dependence into the boundary value problem.

There exist many phenomena in the microstructure of

a material which can be classified into energy

dissipative/irreversible processes. These include crack

formation, dislocation movement and arrangement, grain boundary

* I.
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sliding, chemical changes and frictional losses due to rubbing of

fractured surfaces. Therefore, some degree of clarification is

required regarding how inelastic strain and damage are to be

defined. In this paper, all damage will refer to cracks in the

material microstructure.

Results obtained from previous research into the

constitution of crystalline solids [1,2] indicate that for the

class of materials into which metal matrix composites is

rclassified, the inelastic strain tensor is treated as a second

order tensor valued internal state variable. The primary

mechanisms of inelastic strain are postulated as those of

dislocation density (drag stress) and dislocation arrangement

(back stress) which are themselves zero order (scalar) and second

order tensor valued internal state variables respectively.

Research into the kinematics of crack initiation and growth

presented in this paper as well as reference [3] postulates

damage to be a second order tensor valued internal state

variable.

The damage is assumed to be statistically

*. homogeneous within a representative volume element, which is

-- assumed to be small in comparison to the body of interest. Under

the condition of small scale statistical homogeneity, all

continuum based conservation laws are assumed to be valid on a

global scale in the sense that all changes in the continuum

e-e



g problem resulting from internal damage are reflected only through

alterations in the constitutive behavior. Therefore,

microstructural phenomena such as cracks qualify as damage and

their effects on the performance of a material can be reflected
p

through the constitutive relations. However, macroscopic and/or

nonhomogeneous damage states such as large scale surface cracks

are treated as boundary effects which must be reflected in

conservation laws via changes in the external boundary conditions

rather than in the constitutive relations.

DEVELOPMENT OF THE CONSTITUTIVE RELATIONS

a

We now proceed to develop specific constraints on

constitutive behavior. In this analysis the following assumptions

are made:

a. thermomechanical coupling is non-zero,

b. electrical and magnetic effects can be

neglected [4J as these can be either

controlled or or their effect on the body of

interest calculated,

Cd

[2"c. infinitesimal deformations, and
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d. in the absence of damage or at constant damage

state the material behavior is initially

linear thermoelastic and isotropic.

Field Parameters

Consider a body occupying a closed region V with

material points xi - (xlx 2 ,x3 ). In an analagous method to that

proposed by Coleman and Gurtin [51, it is postulated that the

' nfollowing state variables are required to fully characterize the

state of all material points x within a body at all times t:

|j

a. displacement field ui - ui(x jit) (1)

b. stress tensor - t) (2)

c. body force per unit mass f f (xit) (3)

d. heat flux vector q qi(xt t )  (4)

e. internal energy per unit mass u - u(x ,t) (5)

f. heat supply per unit mass r - r(xit) (6)

r.
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g. entropy per unit mass s - s(xj~t) (7)I"
h. absolute temperature T - T(xjt) (8)

and

k ki.k a k(Xmt) k = 1. n (9)a i.j a j ( tk 1...... n9

k

where ajk are a set of n second order tensor valued internal

state variables necessary to model inelastic deformation and

damage.

U
Field Equations

The following pointwise field equations , written

in differential form, are assumed to hold for all media

undergoing infinitesimal strains:

a. conservation of linear momentum

0 iJJ + Pfl " i (10)

b. conservation of angular momentum (assuming

negligible body moments):
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C. kinematics:

C = 1/2 (u jj U uJ') (12)

d. conservation of mass:

7dp/dt -0 (13)

e. conservation of energy:

P~a C pr (14l)

f. second law of thermodynamics

pY api - pr/T + (q /T)~ (15)

where Y is the specific entropy production rate. Equation (15)

together with the Clausius-Duhem inequality:

6*

Y " 0 (16)

is assumed to hold for all processes. It should be noted that

although equation (15) introduces one additional equation, it
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simultaneously introduces a new variable, namely Y. Therefore,

equation (15) alleviates no degrees of freedom. However, although

inequality (16) cannot itself specify any degrees of freedom, it

will impose constraints on the allowable form of the constitutive

equations.

In the foregoing analysis the body force vector,

. " inertial effects and body moments will be assumed to be

negligible and the conservation of mass is trivially satisfied.

Helmholtz Free Energy

We now define the Helmholtz free energy per unit

[] mass:

h u -Ts (17)

where h is the arithmetic sum of the total internal energy (u) of

a body and the internal entropy production (irrecoverable energy

loss) (Ts) dissipated during a process. Thus, the Helmholtz free

energy represents the net available internal energy within a body

following any process.

- It follows that:

k ,
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E. + fs+ Ti8

Equation (18) can be substituted into equation (14) and this

result then combined with equation (15) and inequality (16) to

give:

pTY = -ph - pTs + Okl kl - qjgj/T 1 0 (19)

wherer
g T (20)

The field equations (10), (11), (14), (15) and (16)

are combined with conditions applied on the boundary B of a body

to specify the complete field problem.

U

Constitutive Relations

Suppose that the displacements u and temperature T

are specified. Then the method of Coleman and Noll [6] can be

used to obtain the spatial and time distribution of the body

force vector (f) and the heat supply (r) from the conservation of

linear momentum and energy equations respectively, assuming that

the displacement and temperature fields are specified.

L.
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Constitutive relations can then be constructed [7] from the

remaining state variables and their spatial derivatives. The form

of the constitutive relations used including internal state

variables and their associated growth is postulated as follows:

ij - ij( kl T,g k ,k1 (21)

(U - U(klT,gk,cakl) (22)

s - S(ekl,T,gka klp ) (23)

q i qi(Ekl' TgkQk1lP) (24)

*and

klq - kq( E TgkklP) (25)

The form of equations (21) through (24) implies

that all constitutive equations are evaluated in the specified

- state (xjt). For this reason oi, u, s and qi are termed

observable state variables since they can be determined from

* - equations of state for all times t even though there is implicit

history dependence via the internal state variables ak1P. In

addition, from the definition (17) and the form of equations (22)

". and (23) it follows that:

h - h(kl,T,g kak 1P) (26)



Note that:

1) the constitutive relations (21) through (24) are

equations of state and therefore cannot contain time rates of

change of state variables;

2) the principles of local action and equipresence [8,9]

hold for equations (21) through (24), but need not be satisfied

in the 7rowth laws [equation (25)];

3) the superscripts p and q in equation (25) range from

one to the number of internal state variables required to fully

characterize the inelastic response and the damage state of the

body;

4) the growth laws by their definition embody time

dependence and can therefore contain both spatial and time

derivatives of state variable arguments. If equations (25) are at

all times integrable in time then the following is an equivalent

expression to (25):

a][ kl x 't) ft Ql k xmt' ) tt' (26a)

where t is the time of interest and t' is a dummy variable of

kintegration. Therefore, it is apparent that a are not directly
ij

observable at any time and must be considered as internal or

hidden state variables.



3 Internal State Variables Considered

When a body denoted by B is subjected to some

traction or deformation history as shown in Figure 1, it will

undergo a thermodynamic process which will in general be

irreversible to some degree.

This irreversibility is introduced by such

phenomena as dislocation movement and growth, fracture (both

rmicro- and macroscale), friction (due to rubbing of fractured

surfaces), grain boundary sliding, deformation twinning and

chemical changes. However, due to the relative magnitudes of

* these energy dissipative processes the two primary internal state

variables postulated to be of interest in this analysis are those

of inelastic strain ( lij) representing dislocation phenomena and

0 damage (a 4ij) representing microcracking. Although there may

exist some interrelationship between these variables, they are

considered to be independent as they represent different physical

phenomena.

The two microstructural mechanisms which are

considered to have the greatest prominence [10] at temperatures

less than one half the melting temperature of the material under

consideration are:

a. Drag Stress (a2): representing locally averaged

is.
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dislocation density and producing isotropic

hardening; and

b. Back Stress (ai): representing the locally
3ij

averaged dislocation arrangement and producing

kinematic hardening (Bauschinger effect).

Factors Influencing the Growth of Inelastic Strain.

The primary independent internal state variables

influencing the growth of damage are considered to be the

P historical inelastic strain and damage states, back stress and

drag stress. The growth law for the inelastic strain is

therefore postulated as follows [11]:

6L ,ij =(Ckl'TIakl'L2 oa3klI4kl)0ij' (27)

where:

a2 " a2( kl'T, 1kl'.2, 3kl'4kl) (28)

&3J " &31J (Ckl'T't11j "2'"3iU 'Lkl (29)

= scalar valued function of stater
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and i 'j = deviatoric stress tensor

It should be noted that the back stress and drag

stress represent mechanisms which physically exist. However,

dislocation arrangement and density are microstructural

phenomena. Although they influence the growth of the inelastic

strain, they do not directly enter into the stress-strain

relations because they are not kinematic quantities.

Factors Influencing the Growth of Damage.

Damage is defined in this analysis as intergranular

mechanisms such as grain boundary sliding, microvoid growth and

microstructural cracks.

U

As the arrangement, density and growth of

dislocations will effect the growth parameters (rate, direction)

of any damage existing in the microstructure, the primary

internal state variables influencing the growth of damage are

considered to be inelastic strain, the previous damage state,

back stress and drag stess. Therefore, the growth law for damage

is postulated as:

42
-4j &4iJ(ckl9T'Qlkl' 2Q 3kl' 14kl) (30)

F,
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for isotropic conditions:

&114ij " f(C kl' T,(kl'a2C3kl4kl )6ij (31)

It should be noted that although damage is

obviously a directionally related quantity and therefore

tensorial in nature, it is difficult to distinguish

phenomenologically between damage and drag stress since both can

r interpreted as stiffness reducing mechanisms.

Functional Form of the Helmholtz Free Energy.

I

As the inelastic strain and damage are postulated
n

to be the primary independent internal state variables affecting

the constitution of the materials considered herein and both are

functions of the back stress and drag stress, the Helmholtz free

energy is postulated to have the following form:

h - h (eklT,g kslkl,4kl) (32)

'i-°°
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Thermodynamic Constraints.

Thermodynamic constraints on the form of the

A, constitutive relations [equations (21) through (24)] can be

accomplished using the Coleman-Mizel procedure [12] under the

assumption of the Clausius-Duhem inequality [equation (16)]. In

this procedure, the Helmholtz free energy [equations (32)] is

implicitly differentiated with respect to its arguments as

follows:

h - ~h/ae i + 3h/6TT + ah/Ug Ak1iki m m

(33)
+ 3h/ a ilj6Lij + h/a 41j&41j

Substitution of equation (33) into the inequality (19) results

in:

pTY o [ ( ,T, i) oPh/3kl(m,T,gmamn )]klp -[klmnm,mn k) - mmn k

" [pah/6T( mn,T,gmmni) + ps(mn,T,gm, mn)

[. -- pah/c g i( mn, T, g, 1m)g (34)

a- mpmmn Qj mn m ,imn

- q (mn,T,gm,mn)gj /T i 0

[
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where i assumes the values of 1 and 4 representing the inelastic

=1 strain and damage respectively. On the basis of this technique it

can be shown that the satisfaction of the First and Second Laws

of Thermodynamics will lead to the following conclusions C2]:

p

h - h(e klT,alkl,4kl) (35)

- pch/ ij (36)

s - 6 h/3T (37)

u - h + Ts (38)

and &ij q - ij q(klT,alkl' ,23kl,4kI )  (39)

Note that:

1) thermodynamically constraining the

constitutive relations removes the dependence of the Helmholtz

free energy on the temperature gradient g

2) the above thermodynamically constrained forms

of the constitutive relations [equations (36) through (38)] show

an intrinsic dependence of stress, entropy and internal energy on

the Helmholtz free energy.

Following the Coleman-Mizel procedure, inequality

L
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(34) reduces to:

I pTY-jp -~c qjgj/T 0 (140)

where the first term is called the internal dissipation and the

last term is dissipation due to heat conduction.

Coleman and Gurtin [5] utilize inequality (40) to

prove that:

q kjg j + 0(IgjI) (41)

at an asymptotically stable equilibrium state where k j is the

positive semidefinite thermal conductivity tensor. It will be

assumed herein that these conditions hold and the higher order

terms in equations (41) will be neglected.

Therefore, the specification of the Helmholtz free

energy function [equations (35)] will completely define the

constitutive equations (21) through (23) and equations (41) will

define the constitutive equations (24). Thus, if the internal

state variable growth laws (39) can be determined the field

problem will be completely specified.

I
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The Local Averaging Process

'V

C Constitutive relations (21) through (24) are

theoretically pointwise in nature; that is, they are applicable

to fixed infinitesimal material points. However, there is no

practical method to construct experiments on material points

since at the microscopic level the continuum assumption becomes

invalid. Therefore, to obtain constitutive relations which are

applicable to a continuum, it is considered acceptable to

39 construct constitutive equations by subjecting local specimens to

surface deformations or tractions which lead to spatially

homogeneous stress and strain fields so that some local average

I "of the pointwise observable state variables can be determined

directly from the effects on the boundaries of the specimen.

.P As shown in Figure 2, the scale of the smallest

dimension of a local specimen is generally constructed to be at

least an order of magnitude larger than the scale of the largest

material inhomogeneity. This sizing assists in preserving the

continuum assumption while still averaging out the effects of

point defects such as crystal lattice dislocations. Conversely,

the scale of the largest dimension of a typical specimen should

be small compared to the scale of the boundary value problem of

interest. This constraint is necessary in order to preserve the

notion that the constitutive equations are indeed pointwise in

nature.
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The local rather than pointwise constitutive

equations that result from experimentation are assumed to be of

the same form as pointwise equations (21) through (25). For

example, in the uniaxial test described in Figure 2 it is

customary to define the following:

a 11 I/A a 11dx2dx3 (42)
" 11

fB

1 /Lf e II dxl (43)

and

T T(aI ,a2 ,a3) (44)

I
where L is the local specimen gage length, A is the

cross-sectional area in the x2-x3 plane, and (ala 2,a3) is some

arbitrary point on the surface of the specimen. Utilizing these

- quantities, it is then hypothesized that:

~" 1 1 (€I IT' klP) 5 11 (E il T p ELkl P) (45)

where

"kl - 1/Vf kldxldx2dx3  (46)

V

and all quantities with bars represent the locally measured state

variables.

Although equations (45) represent an often used way
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of relating pointwise to experimental results, the local

averaging process is nevertheless prone to shortcomings since the

definitions (42) through (44) all represent nonunique relations

kbetween pointwise state variables and o 'ij, T, a j and their
mk

locally defined counterparts 3 .,P , . There are in fact

an infinite number of distributions aklP(xl,x 2,x3 ) which will

result in identical values for P. However, assuming that the
k1i

scale of any inhomegeneities is small and that the distribution

Of aP is random, the specimen will be statistically homogeneous

and the relation between P and a will be approximately one

to one. Note that for clarity the overbar will be excluded from

expressions.

Determination of the Constitutive Equation Form.

To evaluate the constitutive form of the stress

tensor and the entropy from the equalities given in equations

(36) and (37), the pointwise Helmholtz free energy per unit mass

is expressed as a second order Taylor Series expansion in the

independent state variable arguments as follows:

,.

h - A + BtijCj + 1/2C ijklCij'kl + DAT + 1/2E,&T2

F FijIi j + / 2 GiJkl 1 iij lkl+ Hija 4 1j

Ii.



" 1/2Jijkla41j'4kl + Kij'ijAT + L 1jIijAT (47)

"M ij4J T + Nijkl'ijclkI + Oijkl ij 4kl

: Pij k.l'1 ij C4kl

If second order effects are neglected then the

stress tensor can be evaluated from equation (36) by

r differentiating equations (47) with respect to the strain tensor

as follows:

Oij p Poh/aCej

ie O uj P(BIj + Cijklckl + KijAT (48)

m

4. N+ijk (k + Oijkl'4kI)

Now define:

PBij = oj R

PKijAT - Cijkl'kl

(48a)

-pN ci -C
- jkl kl iJkl'Ikl

-POljkl'4kI C ijkl 4k1



Substitution of equations (48a) into equations (48) yields:

a iJ R + k e a4kl klT 49)

ij i ijkl kl - k - k9

p

where ij = residual stress tensor, and

-i T - thermal strain tensor.
13

The expression for entropy can be readily obtained

by differentiating equation (47) with respect to temperature.

A coupled heat equation can also be obtained by

substituting equation (18) into (14), imposing the conditions of

equations (35) through (37) and then subtituting the Helmholtz

free energy xpression into the result [3].

Description of the Internal State.

Consider an arbitary region denoted by B as shown

in Figure 3. (The body B is assumed to be small on a scale to a

boundary value problem of interest). Now consider an arbitary

local element denoted as L with external surfaces SI which are

chosen normal to a set of Cartesian coordinate axes (xI x2,x3 ) as

shown in Figure 4. Although the element L is an intrinsic part of

- the body B, it can be thought of as being removed from B and the

o-[-°*. . * . .' ** * . . a r - - . -

.- -. ' ¢ ' . .. '. "., ." .', .. ; . .'. ', . ." : .'. .'. '. .. ,' .'. ," '. .' ." : ,' '. ',- .- : . '°-... "- '. '.-*.'.. ..- . *,**.- -- . *.'- .-. '



IL

p

I

U

x 2

x

x
3

Fig~ure 3

General ounded Continuum of Interest
I x



x xl

x 3 x

Figure 4

Local Volume Element V

1*2N



newly created surfaces subjected to appropriate boundary

conditions so that the response of the element L to an imposed

boundary condition is identical to that of the element when it is

located in B. The scale of L is chosen so that its dimensions are

small compared to the dimensions of B. However, the dimensions of

L are also large enough to guarantee statistical homogeneity of

the material properties and existing defects even though the

total surface area of the defects may be the same order of

magnitude as Si.

Internal surfaces resulting from fracture are

labelled 32. The volume of the element is defined to be V, which

includes the volume of any damage (cracks and/or voids) denoted

as V

c

n In order to describe the internal state, we first

consider the kinematics of a typical point 0 with neighboring

points A and B as shown in Figure 5. Before deformation lines OA

and OB are orthogonal as shown in Figure 5a. After deformation we

imagine that the lines joining 0',A' and B' are as shown in

Figure 5b and just at the instant that deformation is completed,

a crack forms normal to the plane of AOB through point 0' as

shown in Figure 5c. Furthermore, point 0' becomes two material

points 0' and 0'' on opposite crack faces and points A' and B'

U deform further to points A'' and B''. It is assumed that all

displacements, including crack opening are infinitesimal so that

L.-
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b) Point 0 After Deformation and Prior
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[c) Point 0 After Fracture.



the observer at an appropriate observation distance from point 0

I sees only the deformation A'' 0' B''. The strain associated with

this deformation is appropriately called an observable state

variable. However, the strain of interest is associated with

q A''0''B''. Therefore, it is essential to construct an internal

state variable which will relate these two strain descriptions.

We therefore construct the vectors uc connecting 0'

and 0'' and nc describing the normal to the crack face at 0' as

shown in Figure 6. It should be noted that uC can be used to

construct a pseudo-strain representing the difference in rotation

and extension of lines A''O''B''.

i The rate of change of surface energy released per

unit local volume due to cracking in L [3] is given by:

SuLc 1 /PLVL f oijuinj dS (50)

S2

Assuming that any cracks in the body recover elastically, that

is, close upon the removal of the load, then we further assume

that this process is reversible and that tractions T can be

applied at point 0' which will close the crack:

u Lc - UPLvLJ Ticuic dS (51)

S2

Using Cauchy's formula Equation (46) can be placed in the form:

". .. *
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U L - /PLVLf oijCuCrnc dS (52)

S2

where the subscripts denote quantities associated with the actual

crack geometry.

Guided by the fact that uc and n c describe the

kinematics of the cracking process at point 0, we now define the

following second order tensor valued internal state variable to

describe damage:

Qij - ui nC (53)

We now define the locally averaged internal state

variable describing damage to be:

a41j = k/PLVL J ulnj dS (54)

where Sc - surface area of cracks, and

k - a constant resulting from the simplification of

equations (48) to equations (49).

. . . . . . .
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Mathematical Model for Damage

The damage model considered in this paper

classifies damage as a displacement related mechanism; current

models [13] classify damage as a stiffness reducing mechanism.

For the case of infinitesimal strains, the following section

demonstrates that the model proposed herein is consistent with

these existing models.

Kachanov's reduced stiffness model [13] is given

by:

.ij B~ij + Cijkl'(Ckl C1kl C klT  (55)

Equations (55) can be shown to be equivalent to equations (48a)

by first equating as follows:

Cijkl (kl -l kl a 4kl - kl)

(55a)

""ijkl kl 1kl kl

Now let:

.ijkl ijkl ijklmn 4mn (56)

then (55a) becomes:

C Tij "kl (Ek1 1k 4kl klT

1 (Cijkl -Yijklmn"4mn)(ckl - alkl -kl )

Cijkl'4kl - iJklmna4mn ekl - lkl - kl )

F.
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-> Cijkl'4kl "lijmnkl'*4kl (cm a1I mn  T)

> ECijkl " Tijmnkl(Cmn - T mn - 1mn T)]4kl =0

Therefore,

IF ijmnkl(man - lin -
T  ijkl (57)

UNIAXIAL FORM OF THE MODEL

For the purpose of this analysis, the temperature

field is assumed to be significantly less than 1/2Tm. Therefore,

if thermal strain is neglected, the uniaxial isothermal form of

: equation (44) is given by:

o R R + E(e -a 1 " a4) (58)

Consider the input strain profile shown in Figure

7. The stress-strain curve resulting from a uniaxial tension test

of a metal matrix coupon using this strain profile is given in

Figure 8. De.,oe the slope of the elastic portion of the load--up

curve as (E) and the slope of the unloading curve as (E )

The slope (Et) is defined as:

L'
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Et - (59)

Thus, differentiating Equation (58) with respect to the strain
.7,

tensor gives:

E t E( 1 - a 1/ae 6~ )(oEt 1 ( £ I - ci1/€) (60)

If the specimen is unloaded following the

application of a traction or deformation field the inelastic

strain remains constant as the strain energy (oe) has

substantially decreased due to the decrease in the applied stress

(o). This is shown diagramatically in in Figure 9.

Therefore, for unloading:

1I/i& - 0 (61)I1

and Equation (60) becomes:

Et - E( 1 - z/ c) (62)

Now, if the aluminium matrix is linear elastic on

unloading then Et is constant on unloading and the implication is

that:

4 c/ae - constant (on unloading) (63)

o-1 _. , . , , . . . . .. . . -- , , . . .• . . , . , .% . .-. . .- ., ? ,
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The curve corresponding to this result is given at Figure 10.

ke

EXPERIMENTAL VERIFICATION OF MODEL

In order to qualitatively verify the supposition

that the inelastic strain tensor ( lij) can be regarded to be an

internal state variable, consider the example of a uniaxial bar

subjected to applied displacements such that the end tractions

will be evenly distributed. It is customary to deduce the

inelastic strain in an experiment of this tjpe by utilizing the

output from a loadcell to determine the stress and then make use

of equations (58) to determine the elastic strain. However,

equations (58) entail the damage tensor (a44ij). Therefore an

experimental procedure is required to distinguish between

deformation due to inelastic strain (back stress and drag stress)

and that due to damage. The procedure proposed is demonstrated by

equations (61) and (63) and illustrated in Figures 9 and 10.

Therefore, it is proposed that the inelastic strain

and damage resulting from an applied stress or deformation field

can be distinguished experimentally; the inelastic strain is

obtained from the unrecovered strain and the damage is related to
t
the change in slope between the loadup and unloading portions of

* i . -



the stress-strain curve.

CONCLUSIONS

The foregoing analysis has developed a constitutive

model for the inelastic deformation of a continuum with damage.

Following the application of thermodynamic constraints on the

form of the constitutive relations and a kinematically

justifiable definition of the Helmholtz free energy, a

constitutive equation relating the stress tensor to the total

strain tensor, the inelastic strain tensor and the damage tensor

was developed. Experimental results from uniaxial tests carried

-' out on aluminium matrix material with silicon carbide fibres has

determined that a global measure of microstructural damage could

be directly related to the slope differential between the load-up

and unloading curves on the uniaxial stress-strain plot [14].
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EFFECT OF DEGRADATION OF MATERIAL PROPERTIES
ON THE DYNAMIC RESPONSE OF LARGE SPACE STRUCTURES

S. Kalyanasundaram*, J. D. Lutz*. W. E. Haislerf , and D. H. Allen *#*
Texas A&M University

College Station, Texas 77843

Abstract Although large size by itself does not arouse
concern, structural flexibility resulting from

In this paper the effect of degradation of minimizing the structural weight in non-
material properties on structural frequencies and gravitational fields may present problems.
mode shapes of Large Space Structures (LSS) is Extremely large structural flexibility may result
investigated. The difficulty and cost of in large amplitudes and low frequencies (.01 to 10
maintenance of LSS make It a necessity to design Hz) which may create new complications for control
these structures to operate with a certain amount designers.
of load-induced damage. This damage is commonly 1
observed in fibrous composite media. As an example of the precision required , a

typical radiometry application may utilize a 200
Sensitivity studies conducted on meter antenna with an effective beam width of 0.01

* representative space truss structures indicate that degrees and have requirements limiting the
degradation of material properties may have a vibratory beam shift to less than 0.005 degrees and
significant effect on the structural mode shapes dynamic surface distortions to less than Imm.
and frequencies. For even small amounts of Maneuvering or maintaining the altitude of such a

* reduction in stiffness (10%), frequencies and nodal satellite leads to flexible body motion which must
locations may change significantly. It is clear be well predicted and controlled.
that these effects must be taken into consideration
when designing control systems for Large Space The importance of interaction between control

" Structures. systems and vibratory response has cageg
considerable research in LSS control systems.
The current practice of guaranteeing a large

Introduction separation between modal frequencies and the
bandwidth of control will not be adequate in future

Due to economic constraints, it is projected applications. The combination of large size and
that advanced high strength-to-weight ratio payload-weight restrictions will drive structural
aerospace materials will be utilized in future frequencies down and the need for more accurate
generation space structures. Such materials pointing will drive the control system bandwidth
include polymer and metal matrix fibrous up. When sufficient frequency separation becomes
composites, which are known tp Ajndergo a certain impossible, there exists a need for adaptive
amount of load induced damage."' These materials control systems. This leads to further research in
are also expected to undergo a certain amount of the design of structural control systems actuator/
environmentally induced damage or degradation, thus sensor placement, and distributed sensing and
resulting in significant stiffness losses, actuation as opposed to co-located sensors and

actuators.
Experimental research on advanced composite

materials indicates that the material may undergo Techniques for achieving modal control of LSS
up to 15 percent loss In stiffness due to will require a more accurate knowledge of modal
thermomechanical fatigue, which causes a variety of characteristics. Optimum sensor and actuator
damage modes in the structure. Additional loss of placement will be greatly influenced by modal
stiffness may be attributed to elevated temperature effects which must be known to a greater degree of
and chemical changes due to solar radiation and precision.

- other environmental effects. This reduction in
stiffness affects the dynamic response which in
turn is critical in the development of control Problem Summary
systems for LSS. In this paper, sensitivity
studies will be presented which investigate the In order to investigate the possible effects
effect of stiffness loss on structural frequencies of material degradation on the dynamic response of
and mode shapes. LSS, a representative space truss structure has

been selected in the shape of a long boom as shown
The advent of the space shuttle has made in Fig. 1. Using several loading histories, stress

possible the development of LSS. Control systems distributions have been obtained for each truss
- for stabilizing and maneuvering these very large member. The resulting stress distributions can be

space structures, especially those for precise used in a material damage model to define material
pointing, will require extension of current degradation and resultant stiffness reductions.
technology. Using the reduced stiffness properties, modal
_ _-"_analyses have been conducted on the structure to
4 Research Assistant, Aerospace Engineering show the effect of material degradation on natural
' Professor and Head, Aerospace Engineering frequencies, mode shapes and nodes. Details of the

S- Associate Fellow AIAA finite element model, material degradation model,
* * Assistant Professor, Aerospace Engineering and numerical results are presented below.

Member AIAA
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where aPmn are a set of r internal state

12
variables which are given by the following set of
ISV growth laws.

- - &Pmn .Pmn(Ckl T.l q )  
(3)

At low homologous temperatures these

materials are assumed to be rate insensitive so
that the above model will result in quasi-elastic
(rate independent) equations in which inelasticity
Is reflected only through the slowly deva gi
modulus tensor. Experimental evidence
indicates that the time scale for degradation of
Cek is very long compared to the frequencies and
moa "khaps of representative structures. It is
therefore sufficient for many space structural
applications to treat equations (1) in the degraded
state only.

The stress-strain relationship for the truss
1 elements is a one-dimensional approximation of

equations (2) given by

0xx " E'(c - E (4)

where axx and cxx are the uniaxial stress and

strain, T is the thermal strain, and E' is the

axial stifMess of the truss element given 
by

E' - E (1 - a) (5)

Fig. I Space Truss Structure
where E is the undegraded axial stiffness and a is
a scalar valued parameter representing the
integrated effect of all damage modes such as

Model Description matrix cracking, interlaminar fracture, fiber
breakage, and fiber-matrix debonding.gMaterial Degradation Model

Experimental research on composite materials
The process of ultimate failure of composite ind.cates a power law degradation of f1t

materials is preceded by a sequence of stiffness as a function of stress history..
microstructural and macrostruciral events which Hence the damage ISV growth law is assumed to be of
are termed as damage. These events may be due to the form
transverse cracking, delami .t.ln, fiber breaking
and fiber-matrix debonding. The mechanical - k1 (a/0ma)n (6)
response of the structure is affected by this
damage. Global material properties like stiffness where k1 and n are material parameters, o is the
and residual strength may be substantially altese maximum stress in the structure, and o isMte axial
during the life of the structural components. stress in each truss element. For constant stress
Some of the analytical studies " modeling damage amplitude, equation (6) may be Integrated in time
include ?, shear lag concept, fracture based to give the following approximation
concepts, 12 1 4 and internal state variable
theories. Although important progress has a(t1) k'1  Wt(tI)/Omax)' (7)
been made, current understanding of damage is not
complete. where k' and n' are material parameters which may

be time Aependent.
Damage in polymeric composites is modelled in

this paper as a load history-dependent reduction in A power law form of damage is used herein for
stiffness In each structural element. The internal simplicity and for an initial attempt at modeling
state variable theory (ISV) is used for modeling the structural response with damage. In reality
mechanical behavior and 12_ stress strain the damage laws will be more complex 1 nd are

Srelationship is of the form, currently being developed for future work.

0
ij - CTiJkl (Ckl - £kl ) (1) Finite Element Model

secondIn this case, the ISV are assumed to be Figure 1 illustrates the geometry of the
second order tensor valued and to enter only representative space truss used to simulate an
through the modulus tensor. C'ijkl is the antenna boom. This structure Is sixty feet long

effective modulus tensor given by with 10 bays, six feet long by three feet wide.
The finite element model has 124 space truss

C'Jkl -C jkl -a a p-1,...,r (2) elements and 44 nodes. In the initial undegraded
im mconfiguration, the material properties are the same

for all members with the following values:

2
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* Material type: Graphite epgxy (Hexel) modes about the z and y axes, respectively, and the
Young's modulus E - 21.5x10 2si fourth mode is a pure torsion mode.
Cross sectional area 1 1.0 in
Density = 0.065 lb/In The first case considers the boom structure

" Coefficient of thermal expansion - 2x10 in/°i F shown in Fig. I (which is assumed to be fixed on
Reference temperature - 89.6 0 F one end) with a thermal gradient over the cross-

section. It is likely that one surface of the
Each truss member is idealized with a space structure will become significantly hotter

standard six degree of freedom truss element of than the other surface due to solar heating,
constant cross section. Because the structure is attitude of the structural elements and shadowing

idealized as linear with slowly varying material effects. To investigate the effect of this thermal
properties, conventional linear finite element gradient through the depth of the truss, the
methodology may be used t.?6 -te global equations stresses in each element wege calculated by
of equilibrium of the form specifying a temperature 0 of 122 F for the members

on the top surface, 80.6 F for the members on the
EM]{] + EK](q) - (Q) (8) bottom surface and 100°F for the diagonal members

connecting the top and bottom surface. With this
. where [M] is the mass matrix, [K] is the stiffness thermally-induced stress distribution, the axial
" matrix, (qj is the nodal displacement vector, and stiffness of each element was degraded by using

(Q) is the nodal force vector. The stiffness equation (7). The maximum level of degradation
matrix [K] is dependent on the spatially variable (loss of stiffness) was set to a prescribed

- damage state a which varies from element to percentage for the element with the highest stress
element. Standard eigenvalue extraction may be and remaining elements were degraded according to
performed; ir this case, subspae iteration was their stress level by using equation (7). The
used to obtain the first five frequencies and mode value of n' in equation (7) was assumed to be 0.75.
shapes.

In Fig. 2 the first three natural frequencies
Spatial Distribution of Degradation are plotted for different levels of damage. The

effect of damage on the natural frequencies is
The spatial distribution of degradation and clear. Increasing the level of damage reduces the

stiffness reduction of LSS will be complex and stiffness of the space truss and this in turn
dependent on loading and environmental history. drives the natural frequencies down significantly
For the present investigation, wherein material even for modest damage states. For a maximum loss
degradation is assumed to be a function of stress of 25% in axial stiffness (for the highest stressed
history, it was necessary to make some assumptions members), the first three natural frequencies are
about the corresponding stress history and spatial reduced by about 8%. Since mode shapes are
distribution of stresses within the LSS.

Two approaches were used to obtain candidate
stress histories/distributions for predicting theIsti ffness degradation. In one case, the stress
distribution was obtained for an assumed thermal
load history/distribution. Secondly, a modal
approach was used wherein it was assumed that
primary degradation occurred in the first two
bending modes of the structure. After computing W

the mode shapes for the first two undegraded
bending modes, the nodal displacements were used to
compute a corresponding stress distribution.

In each case, the degradation model given by b
equation (7) was then used to obtain degraded Xe

properties for each truss member assuming that the Z
element stressed the most was degraded a specified

• percentage. The resultant structure with degraded
properties has spatially variable stiffness that Z.
varies from element to element. Mode shapes and
frequencies were then computed with varying maximum
percentages of degraded properties.."-- " O= PqINOAIMUIIAL IRQqIUINOT

0- 419OONO NATrURAL IqAR|URNOT
A - THIRD NATURAL. PaIQUSNCY

Discussion of Results

Natural frequency and mode shape responses
have been obtained for several stress-induced
degradation test cases as described above for the

*representative space Lr!s structure shown in Fig.
. 1. This particular truss structure geometry,

* . representing a segment of a boom, is similar to

ones being used for other PACOSS related work.
Assuming the boom is fixed on one end (at x-0), the MA Is W IS)

five lowest frequencies (for the virgin structure) MAXIMUM DEGRADATION

are equal to 3.4 Hz, 4.5 Hz, 4.6 Hz, 19.2 Hz, and
20.3 Hz. The first mode is a combined torsion-
inplane shear mode, the next two modes are bending Fig. 2 Effect of Damage on Natural Frequencies

3
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important for designing the control systems of the
large space structures, it is desirable that they

* be constant with time. Although It was found that
there was no appreciable change in the first mode
shape between the undegraded and degraded cases.
higher modes were altered due to material
degradation. Figure 3 is a plot of the z
displacement for the second mode shape along the
length of the space truss (z-0, y-0). Significant
changes in the mode shape and node locations as a

function of percent degradation are observed. The
sign of the modal displacement is reversed near the
free edge for the degraded and undegraded cases and

Ithe location of the node (zero displacement)
Schanges appreciably. Figure 4 is a similar plot of

the y displacement along the length of the space
q1 kutruss for the third mode.

72 RIZO1 TA6.O6 mON\G The value of n' in equation (7) was varied
O HORIZONTAL POSION from 0.25 to 1.0 to study its effect on the mode

shapes. It was found that the trend in mode shape
* changes was similar for different n'. Figure 5

illustrates this point. Here the z displacement
for the second mode is plotted along the length of

uEGIND the space truss for different values of n' (maximum
o-NOoAMAG reduction in axial stiffness was 20%). The plot0 -$' Dll AMAeS

1A0 eoAMAGU indicates that increasing n' (i.e., decreasing the
* + 15 6DAMAO

X '- 0aeGOAMAG nonlinearity of the degradation model) tends to
6h%-DAMAU increase the changes in the modal displacements.

Such nonlinearity becomes increasingly important
when stresses vary spatially over the structure,

* __ i.e., some members are highly stressed compared toothers.

Fig. 3 Effect of Degradation on Second Mode
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Fig. 5 Effect of Material Degradation Exponent

Fig. 4 Effect of Degradation on Third Mode on Second Mode Shape
,.'4

[..



:.7 The next two sample cases consider the -
situation where we assume that primary degradation
occurs in the first two bending modes. For
simplicity, it is assumed that damage occurring in
one mode does not affect the damage in any others, t

- i.e., no damage induced coupling of modes. In
reality, this may not be the case and will be
considered in future research,

In the first case, we consider the case where
degradation has occurred in the first bending mode, .
i.e.. degradation is based on stresses calculated "
from the modal displacements corresponding to the
second mode shape. Figure 6 shows the resulting
first three natural frequencies for different f.
levels of damage. For a maximum reduction in
stiffness of 255 the first three natural
frequencies decrease by 8.6%, 9.2% and 7.6%~,
respectively. There is little change in the first
mode shape for the degraded and uLndegraded cases. N
Figure 7 is a plot of the z displacement for the
second mode shape along the length of the space "
truss and shows that the modal displacements change
quite drastically for the degraded structure. The 0 LEND
displacement at the free edge is nearly 30 times 0-NO sDAMAE

the magnitude of the undegraded case for a maximum A-0%DAMAOI+ -11% DAMAE

damage of 25% (the sign of the displacement is also x: 0!DAMAE
reversed) and the location of nodes also change m.

considerably. Figure 8 indicates similar changes
in the y displacement for the third mode shape.
The fourth mode (torsional) is relatively _.

unaffected by the degradation of material stiffness 0 72 1U4 tIM ago no 411 a g4 "a Em
properties. This is as expected because the HORIZONTAL POSITION
present analysis assumed that primary degradation
occurred in the first two bending modes. Different
results would be expected If significant stiffness Fig. 7 Effect of Degradation on Second Mode
reduction occurred in the primary torsion mode. Assuming Second Mode Damage State

N0

Si

4-

0.

0-PUNOAMENTAL MIOeNON

.,1 -0 DAMAG

0- % DAAG
0 ~~ - 10% DAMAGEI;

* 016% DAMAE

MAXIMUM DEGRADATION (%) 1 7 44 316 2s6 6Oo 451 w04 576 e44 72o
HORIZONTAL PO81TION

Fig. 6 Effect of Damage on Natural Frequencies Fig. 8 Effect of Degradation on Third Mode
Assuming Second Mode Damage State
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Results have also ben obtained for the case
where damage is assumed to occur in the third mode _.

(second bending mode). As in the previous examples
there is no appreciable change in the first mode
shape between the undegraded and degraded cases.
The z displacement corresponding to the second mode
shape is plotted in Fig. 9 for different levels of
damage. The displacement at the free edge is very5 large in the damaged states as compared to the
undegraded state. Figure 10 illustrates similar

- results for the third mode shape. These results
show that the mode shapes and node points may
change significantly for even small damage amounts.

Conclusions

This study has attempted to investigate the
possible effects of material damage and stiffness
reduction on the modal response of L.3S. Large --
space structures constructed of fibrous composites
will experience some stiffness reductions produced
by load-induced and environmentally-induced damage
of the material. To what extent this will occur is
uncerta n at this point but even small damage a-me a0AAm
amounts appear to be significant. - o- "o eA - 10% OANA08

x - 'a AMA'S
The present work has shown that load-induced -.- %DAASS

degradation of material properties may have a
significant effect on the structural frequencies
and mode shapes. For the representative boom
structure considered here, even small amounts of
material stiffness degradation (10%) produce H IN ITION
frequency and node shifts which appear to be
significant. It is not inconceivable that mode
shapes, node locations, and frequency distributions Fig. 9 Effect of Degradation on Second Mode
will change over the plant design life in such a Assuming Third Mode Damage State
way that the structure response is very much
different from the virgin structure. Such changes
in plant response would require "robust" control of
a nature which may not be possible with present
technology. Consequently, it is important that
these effects be taken into consideration when
designing the control systems for large space
structures.

Although preliminary, this study suggests the
need for a more accurate knowledge of the physical
nature of material degradation in fibrous

UI composites, its influence on structure stiffness,
and how material degradation will affect the long-
term modal characteristics for large space
structures.
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ABSTRACT

PThe thermomechanical response of a uniaxial bar with thermoviscoplastic

constitution is predicted herein using the finite element method. After a

brief review of the governing field equations, variational principles are con-

structed for the one dimensional conservation of momentum and energy equations.

These equations are coupled in that the temperature field affects the displace-

' ments and vice versa.

Due to the differing physical nature of the temperature and displacements,

-' first order and second order elements are utilized for these variables, respec-

"" tively. The resulting semi-discretized equations are then discretized in time

using finite differencing. This is accomplished by Euler's method, which is

-- utilized due to the stiff nature of the constitutive equations.

The model is utilized in conjunction with stress-strain relations devel-

* oped by Bodner and Partom to predict the axial temperature field in a bar sub-

. jected to cyclic mechanical end displacements and temperature boundary condi-

tions. It is found that spacial and time variation of the temperature field
U

is significantly affected by the boundary conditions.

TABLE OF SYMBOLS

- t -time

P - axial internal resultant force

-p - axial externally applied force per unit length€x

x - axial coordinate dimension

" a - axial stress component

A - cross-sectional area

T - end traction in units of force per unit area

- s - surface area

1-.



Table of Symbols (cont.)

Sc - area of the longitudinal surface of the bar

- axial strain component

u - axial displacement component

CL - internal state variable representing axial inelastic strain

- E - Young's modulus in the axial coordinate direction

a - coefficient of thermal expansion in the axial coordinate direction

T - temperature

T - reference temperature at which no deformation is observed at zero load
R

' - internal state variable representing drag stress

q - axial component of heat flux

k - coefficient of axial thermal conductivity

C - specific heat at constant elastic strain
v

p - mass density

r - internal heat source per unit mass

* L -length of the bar

*INTRODUCTION

It is well known that mechanical and thermodynamic coupling are signif-

icant in metallic solids (1-11]. The author has recently developed a model

capable of predicting this coupling effect in thermoviscoplastic metals [12].

In the previous paper a cyclic strain control loading on a sample of INI00 at

1005*K (1350*F) was used to predict a temperature rise of approximately 3.7*K

per cycle when the strain amplitude was 2% and the specimen was adiabatically

insulated.

The focus of the current research is to consider the effect of thermal

boundary conditions on this same process. The introduction of these

2
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conditions causes the strain and temperature fields to be inhomogeneous even

Ithough the stress field is homogeneous if the bar is prismatic. This spacial

variation in the field variables causes the process to be difficult to model

because the thermomechanical constitutive equations are highly nonlinear stiff

differential equations. In this paper the finite element method is utilized

to spatially discretize the dependent variables displacement and temperature,

and the finite difference method is employed for timewise discretization.

This process results in a set of highly nonlinear algebraic equations.

Since the thrust of this research is to obtain accurate results without

regard to numerical efficiency, the results are obtained via the relatively

Iinefficient but accurate method of simply utilizing successively smaller time

steps along with refined spatial mesh to obtain a convergent and therefore

accurate solution for the temperature and displacement fields both spatially

and as a function of time for a cyclically imposed end displacement.

The physical interest in the problem is to determine the effect of

[1. temperature boundary conditions on the predicted temperature rise in a bar sub-

jected to cyclic mechanical loading. It is found from the analysis that the

[. introduction of these nonadiabatic boundary conditions causes significant axial

- temperature gradients. Since nonadiabatic conditions cannct be avoided in

experimental research, it is concluded that experimental tests of this type

should be viewed with caution when their purpose is to construct constitutive

relations.

PROBLEM SOLUTION

Field Problem Description

S[' The following field equations are given:

a) equilibrium [13],

ap -- p (xW 1
rx

3
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where the axial resultant P is defined by

P = fA , and (2)

TxdS ; (3)

%•P S

c

b) strain-displacement relation

au (4)

r c) thermomechanical constitution,

a - E[e - a 1 - a(T T TR)I (5)

- i(, T, a) , i - 1,z , and (6)

.- ; (7)ax

where z is the total number of internal state variables; and

d) conservation of energy

I( T] IC _ C T ax

E E + ET + Ea T - Ea T - v  + pr -0 (8)

The conservation of mass is satisfied trivially and the second law of thermo-

dynamics has been previously shown to be satisfied by the above equations [14-

16]. It should be noted that equilibrium equation (1) satisfies equilibrium

in the axial coordinate direction only in an average sense over the cross-section.

V. * .** .. ' .*



The above 6+Z equations (excluding definition (3)) define a nonlinear

initial-boundary value problem (together with appropriate thermal and mech-

anical initial and boundary conditions) in which the following dependent vari-

ables are sought as functions of x and t: a, E, u, q, T, P, and ai"

For convenience the domain is defined to be of length L, so that boundary

and initial conditions are of the form:

u(x,0) - u' = known

kinitial conditions ; (9)
iT (x, O) -Tx f known

rand

0 0u(0t) 4 u known or P(O,t) - Pt known
t

essential u(L,t) E uL . known or P(L,t) E PL = known naturalt tI boundary boundary

conditions T(O,t) - T t . known or q(0,t) = q0 = known conditions. (10)

T(L,t) E TL - known or q(Lt) H qL = known

It is now assumed that a a o(x) so that equation (2) reduces to

P G aA . (11)

Therefore, substituting (4) into (5) and this result into (11) gives

P EA au a - (T-T (12)ax R]

The above result is now substituted into (1) to obtain

a {ax.[ju_ at (T TR)}mPx) W (13)

v',



which represents the differential equation relating displacements and temper-

p ature to the applied load px(x).

Equations (4) and (7) are next substituted into energy balance law (8)

and this result is integrated over the cross-sectional area A to obtain

A F -a I +  EUT -- + Ea2  T A~ aT AC v I
x[EEL +F /t BOX~Tt3

+ AL k T -A..0r r(14)

where it has been assumed that all field variables depend on x and t only.

Now define

Q Eq dA k 2f k dcA - -k LT A (15)
"f ax ax

A A

Careful inspection of equations (13) and (14) will indicate that these

equations, together with internal state variable growth laws (6) and initial

and boundary conditions (9) and (10), represent a well-posed boundary value prob-U
" lem in terms of the 2+z dependent variables u, T, and cti .

Solution Procedure

; The field problem is to be solved analytically using the semi-discretizedfinite element technique with timewise finite differencing. In order to ac-

complish this, differential equations (13) and (14) must first be vritten in

[- a suitable variational form.fom

L Variational Equations

Consider first equation (13). This governing equation is integrated against

r a suitably smooth test function v - v(x) over the domain of some element Qe:

x <x<xe. e+1

6



xe+1

f v[ {[au_ -)]}+p dxO . (16)fi ax -1 R] +x Pi - T T

Xe

Integrating by parts results in

M v x +1

! -E A - L a (T -T R  dx I,- v E A a u - I (T -T R

- f 7x1:-1Ra 1R
Xe  e

xa2 e+1

v pxdx (17)

e

Substituting equation (12) into the boundary term thus results in

a v au ,1
- f A - [- act -a(T-TR) dx=

e
-- Xe+1

-v(xe+1) P(xe+) + v(x ) P(xe)  f v pxdX (18)

x
e

Now consider equation (14). Once again the governing equation is inte-

grated against a suitably smooth test function w - w(x) over the domain of the

element 2
e

xf+1 w t{A [(E2 - Ecl + ETR ) + Ec2 T

a 2u a I aT\
-AEcar - APC -+ A L ) + A P dx 0 0 (19)

I.7
°.7



ri

Integrating the heat flux term by parts results in

3 awT a aT

-C k - - + wA x -El +EaTR)Ti + Ec a2T

r'2 WA -XEc

e

-EaT dx w(xe+1 ) Q(Xe+I) - W(xe) Q(xe)

Vatu

+..X1  wA(0%C - Pr dx , (20)
e

where equation (15) has been substituted into the boundary terms.

Finite Element Spacial Discretization

Quadratic displacement and linear temperature fields are now chosen within

each element:

U
3

u(x,t) = Z u Xe < x < X 1  and (21)

-iI

2 ee
T(x,t) - Z T , Xe < x < xe+ (22)

e e e+e

where ui ue(t) and T e Ti(t) are the nodal displacements and temperatures,

respectively, and -
=  (x) and 0, - *!(x) are quadratic and linear shape

functions, respectively [17].

r Appropriately, v and w are endowed with the properties of u and T, respec-

tively, so that

8



v = i i = 1,2,3

w =- i i - 1 ,2 (23 )

Substitution of equations (12) and (21) through (23) into variational principle

(18) results in

e

-L T e - TR dx -- P(Xe x) P(xe 1 , + 4e(X) P(Xe)-- 1 j Rt i + eI i

xe+1

- Ji PxX , i 1,2,3 (24)

eI
The above may be written in the following compact form

3 2
Ke ue + E Se T F , 11,2,3, (25)

!1 ij = ji j

where

Ke -- EA d-" dx i = 1,2,3; j = 1,2,3 ; (26)ij dx dx

e

dtp: f Ea e dx 1 1,2,3; j- 1,2 ; (27)

e

it- e- e.



xe+l e

F f EA d-- (-cI + LTR)dx

x ~

x
e+

-P (x) e { dx , i1, 2,3. (28)

Similarly, substitution of equations (21) through (23) into equation (20) re-

- sults in

Tdx

e+i fcAde e) e ee e

¢i(Xe ~Z T(.l i(e (e + A [(E A Ev cTinm -o x

e

i= 1,2. (29)

t Equations (29) may be written in the following form:

3 2 2e+ 22~
-e , ee +) ~ 4 e Aem

(j.1in (mviM~
ei1 ej i e' e fJ da

10
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- 7

S e+1

1(f e A(-Ea 1 + EcTR) T- - , i= 1,2, (30)
x

e

where

Xe+1 d#e3 a
-e f A-e dx i-- 1,2; j 1,2,3; and (31)K.. - Ei dx

r Xe

xe+1 doe, d4
S.. - J- kA - dx dx i = 1,2; j = 1,2. (32)

13 E -dxdx (2

.* Finite Difference Timewise Discretization

Time dependence in equations (6) and (30) is handled via finite differ-

* encing. Although higher order approximations may be used, Euler forward dif-

[[ .'- ference approximations are now entered for the time rate of change of c' Te

eand u

ee
t (x,t) e (x,t + At) - (x,t)]/At, k = 1, .,z (33)

[

dTe
. - (t) a [Tme (t + At) -T e (t)]/At, m f 1,2 , and (34)

due
(t) a ue (t + At) -u e (t)]/At, m 1,2,1. (35)

dtm

V7
[1-

[..............................................
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Substitution of (33) through (35) into finite element equations (30) gives

e 2e

x e+1 [2 2 T e(t + At) T e(W

+ J tt Ot
x e

r2 1 3/ e (t + At) u Ue() W D l

- e +A[-Ec(t) + EcT - (t)

Xf i 1 Rat
e

-Q(X i = 1,2 . (36)

The above may be written as follows:

3 2
-e e e T

ZK uK + T
ji j ii j

2 2 2
+ Z E C Te Te + E D T

kmIj=I ijk j k j ii

2 3 2
+ Z E E Te + E G T

k-i J-1 ikj k ja ii j

:r 2
+ E H Te= , i- 1,2, (37)

j- 1 i j T i F

[ 12. . * -



where

-"c j -  Ao 0j i dx 1 f 1,2; j =1,2; k =1,2 , (38)

X°e+l
C"j-f- * + = 1 2 ; 1x , 2 i ff 1,2 , ( 9

X

D fe [Te(t)(,) 2 +T'(t) e x i 1,2 , (39)

x
e

~Xe+ D - e ET (t)P, + T e(t)(4)2 x dX, i 1,2 , (40)

xe

X e+l 
e

ij A e , 1 e Jd i 1,2,; k 1,2; j 1,2,3, (41)
Ek it k ax

xf
e

x Xe+l e ef e e (0ap+u(t) ea2+u(t) e dx, 1 1,2 , (42)

x-

e

" e+e

ei - A E (t)L e E +R  u (t) 2 3 1,2 (43)G 1 t4 Ao u-t4 + +

e

x e+1 P

- -dx i 1,2; j 1,2; and (44)ij fXeA

Xe

x 'e+1

e

e'Cf [ -Eat1(t) + EotTaI.-- t dx

-Q(xi) 1 1,2 .(45)

13



Equations (37) may be written equivalently as follows:

3 2

j=1 i-I ij

e ye
Owhere K. and Fi are as defined previously, and

2
Ki -Ke + E Te , and (47)

ij ~~ k=1 ij

"''- 2

ie ij i Cijk Tk + Dij + Gij + Hij (48)
k=1

The above equations may be adjoined with equations (25) to obtain the following

set of nonlinear equationsfor each element.

KI-K e I Se  ue  F e

-- (49)

23 2x2 5x1 5xl

5x5

where all nonlinearity is contained in [7], {Fe}, and (F}.

Global Assembly and Boundary Conditions

*. Global assembly is accomplished in the standard way using the Boolean

matrix [17]. Interelement continuity is guaranteed by setting

e e+
P2 + 0and (50)

-O e. e+ (51)

Boundary conditions are implemented in the standard way: 1) essential

boundary conditions are handled by placing one on the diagonal of the

14
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appropriate row and zeros off diagonal in the stiffness matrix, and the speci-

fied value of the essential variable on the right hand side; and 2) natural

boundary conditions are implemented directly to the right hand side.

Solution of the Nonlinear Algebraic System

Initial conditions are used for the first time step. The time step At

is supplied for each load increment and boundary conditions are incremented

directly from supplied input functions.

The internal state variable aI is handled in equations (23) and (45) by

using equations (35). aI is initialized according to reference 18. The non-

linear stiffness matrix [S] is initialized using nodal temperatures and displace-r
ments from the previous time step. The displacements and temperatures at time

. t+At are then estimated directly and without iteration by utilizing equations (49)

for very small time steps.

ii 15
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EXAMPLE PROBLEMS

In order to completely define an example problem it is necessary

to specify internal state variable growth laws (6). Numerous models

have been proposed for crystalline metals [18,19]. Since it is not the

purpose of this research to compare these models, a relatively

established model proposed by Bodner and Partom [20] has been chosen.

This model contains two internal state variables: the inelastic strain

(a) and the drag stress (a2). The growth laws for these variables are

given by* ]
)2n]D exp (52)

and * ( -Z \
2 M(Zl ca ail- A1 Z-I (53)

where Do, n, m, Z i , Zi , and r are experimentally determined material

constants.

For the purpose of modeling the temperature gradient in a specific

component, a hypothetical problem has been chosen using material

properties representative of Inconel 100 at 10050k (1350*F). The

material and geometric properties are given in Table I. The geometry is

representative of a cylindrical uniaxial bar which is 2.50 inches long

and 0.25 inches in diameter. It has previously been shown that Bodner

and Partom's model accurately predicts the stress-strain behavior of

IN100 under uniaxial loading conditions for both monotonic and cyclic

strain controlled loadings [12,181.

16
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PPC = 5.032 MPa/*K

-6"t - 13.14 x 10 in/in/*K

k - 21.0 x 10 - 6 MPa m2

m secK'
-" 103

E - 146.86 x 10 MPa

A - 7.12557 x 10 m2
B-

TR  - 10050K

L - .06350 m

D - 10 x 103 in/in0

n - 0.70

m - 2.57

i Z - 1015.0

Z - 600.0

r - 2.66p
A, - 0.0019

Table I. Material Properties for IN 100 at 1005°K (13500F)

17



%. Utilizing the material properties described above, the following

effects have been studied using the model developed herein:

1) the effect of variation of strain rate on the time dependence

of temperature at the midpoint of a monotonically extended uniaxial bar

which is insulated on the longitudinal boundaries [Figs. 1-4 ];

2) the spacial variation of temperature for the case above [Fig.

and

3) the effect of end temperature boundary conditions on the

temperature at the center of a uniaxial bar which is held at fixed

temperature at the end points and subjected to cyclically imposed end

displacements [Figs. 6 and 7].

Examples 1 and 2 are constructed primarily to determine the effects

of thermomechanical heating on the stress-strain behavior of uniaxial

constitutive specimens. It is found in examples I and 2 that if a

specimen is mounted in an experimental apparatus which has massive grips

simulating a fixed temperature boundary condition there can be

substantial axial temperature gradients induced in a time dependent

boundary layer near the ends of the specimen. On the other hand, these

boundary conditions do not appear to substantially affect the predicted

stress-strain behavior, especially when the strain measurement is taken

between the thermal boundary layers near the grips. Therefore, it would

appear that the standard procedure for obtaining stresses and strains in

uniaxial bars is not substantially affected by mechanically induced,

axial temperature gradients when the grips are at fixed temperature

equivalent to the initial specimen temperature and the bar is loaded

monotonicalaly. However, it should be noted that massive grips which

are mounted outside a furnace could, by their much lower temperature

18
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than the initial speciman temperature, may induce significant error in predicted

strains if the strain is measured by dividing relative displacement by some

gage length.

The final example demonstrates that under cyclic loading conditions the

above conclusions may not necessarily be true, especially when the specimen is

subjected to high-cycle fatigue and at high strain rates. There is definitely

a trend towards an increasing mean temperature in the bar, and this mean tempera-

ture is strongly affected by the thermal boundary conditions as well as the

loading rate. Although it would be interesting to determine the mean temperature

rise in a cyclic fatigue test, the current algorithm precludes this analysis due to

rthe extremely large computer times necessary to predict only a few cycles of

response (approximately 43.8 CPU minutes on an Amdahl 470/V6 for the example

demonstrated in Figs. 6 and 7).

Example 3 also demonstrates another interesting phenomenon which may be

significant in large space structures. If the bar is perfectly insulated the

mean temperature rise per cycle for the relatively slow loading rate shown in

* Fig. 6 is 3.7*K, whereas if the ends of the bar are held at a fixed temperature of

1005°K, the mean rise is 1.OK per cycle. Faster loading rates show less difference

between the adiabatic result and the fixed end temperature result. Since many

of these structures are expected to be extremely flexible truss-like configurations,

a typical metallic member which undergoes some yielding (which might be desirable

in order to induce natural damping) might in fact undergo substantial enough

heating during vibrational response such that the material properties could be

adversely affected, thus resulting in a material related failure of the structure.

However, further investigation is needed on this last issue since it is expected

rthat the primary form of heat flux off of space structures will be via radiation
on the longitudinal surfaces of the truss member. Since the current analysis

23



has treated these surfaces as insulated, no general statements can 
be made at

this time regarding thermomechanical heating in space structures.
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CONCLUSION

The current research has attemped to demonstrate the effects of

1mechanical loading on one-dimensional temperature gradients in a class

of viscoplastic media. Due to the nonlinearity and stiffness of the

field equations, it was necessary to utilize a numerical algorithm.

This algorithm has been shown to be very inefficient for solving even

one-dimensional examples. Therefore, it is apparent that significant

refinement of the procedure will be necessary before multi-dimensional

analyses can be performed by this method. Specifically, it would be

significant to determine the effect of transverse temperature gradients

on the stress-strain behavior of constitutive specimens. Furthermore,

the effects of thermal boundary conditions on the longitudinal surface

needs attention. The author is currently studying a perturbation

technique for more efficient solution of these issues.

P The above points notwithstanding, the current research demonstrates

some important results. These are:

1) The axial temperature gradient in a viscoplastic uniaxial bar

is strongly affected by the thermal boundary conditions on the ends.

2) The end temperature boundary conditions can cause temperature

gradients which are substantial enough to induce spacial variations in

stress and strains which invalidate the standard procedure of using

*. average quantities, although when grips are mounted within a furnace at

spacially constant temperature, it appears that the standard procedure

is accurate.
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3) There is a trend toward increasing average temperature in

p cyclically loaded bars; whether or not this effect is significant is

strongly dependent on the thermal boundary conditions and the loading

rate.
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PREDICTED TEMPERATURE FIELD IN A THERMOMECHANICALLY
HEATED VISCOPLASTIC SPACE TRUSS STRUCTURE

D.H. llen'
W.E. Haisler**

Texas A&M University
College Station, Texas

Abstract s - surface area

This paper focuses on the effect of So - area of the longitudinal surface of the bar
tfhermomechanically induced heating on the
response of a single member of a space truss c - axial strain component
structure which behaves viscoplastically. The
governing equations are given for a typical truss u - axial displacement component
member. wherein material inelasticity is
reflected in constitutive equations via a set of - internal state variable representing axial
internal state variables, each characterized by a
history dependent growth law. The governing inelastic strain
equations are coupled in the sense that
temperature and displacement are dependent on E - Young's modulus in the axial coordinate
each other. This difficulty, together with the
fact that the inelastic constitutive equations direction
are nonlinear and numerically stiff, requires

r that a computationally complex semdiscraetized a - coefficient of thermal expansion In the
finite element spatial technique be utilized to
obtain a solution. This procedure, detailed axial coordinate direction
herein, is utilized to predict the response of a
typical metallic space truss member under T - temperature
vibrational or cyclic loading. Particular
Interest is placed on the temperature rise in TR - reference temperature at which no
such a member due to hysteretic loss during
structural vibrations and in the presence of deformation is observed at zero
complex thermal boundary conditions
representative of space conditions. Example load
cases are constructed for a typical cylindrical
bar of 6061-T6 aluminum both with and without %2 - internal state variable representing drag
special coatings. Results indicate that
significant, possibly even catastrophic, heating stress
can occur due to thermosechanical coupling.

q - heat flux vector

Nomenclature q - axial component of heat flux

k coefficient of axial thermal conductivity

t - time Cv - specific heat at constant elastic strain

- P - axial internal resultant force p - mass density

p x - axial externally applied force per unit r - internal heat source per unit mass

length L. - length of the structural element

* x - axial coordinate dimension Do, n, m, Z1 , zi, Z., r - material constant used

a - axial stress component in Bodner and Partom's modelI

A - cross-sectional area q0 - flux on longitudinal boundary

T - end traction in units of force per unit area a - absorbing portion of perimeter of an element
x normal to longitudinal axis

* Assistant Professor, Aerospace
Engineering, Member AIAA q3 - solar radiation flux

* ."so at"Professor, Aerospace Engineering, qE - earth radiation flux
*Associate Fellow AIAA E erhrdainfu

% -2
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ms - absorptivity conditions on the longitudinal surface of the

truss component are significant enough to carry
FE - earth radiation view factor off all heat generated due to hysteretic loss.

The paper first reviews the governing field
X - Incident angle of solar radiation on equations, then briefly discusses the procedure

whereby a numerical algorithm is constructed for
structural component modeling the problem. This is followed by a

detailed discussion of the implementation of
A - incident angle of earth radiation on therma- boundary conditions. Finally, example

results are obtained for representative space
structural component structural components.

0 - Stefan-Boltzmann constant - 5.75 x 10
- 11

Governing Field Equations
MPa m/sec/( K)lI

The governing field equations were presented
TD - deep space temperature in reference 5 for quasi-static conditions. For

problems involving inertial effects, the

governing equations are as follows:

Introduction a) equilibrium
6'

It is well known that in viscoplastic metals 3P- p (x) (I)
a certain amount of mechanically induced ax
hysteretic mechanic energy loss is converted to
heat, thus resulting in a te ature rise in the where the axial resultant P is defined by
medium. In recent research -  a model has been
developed for predicting this effect by utilizing P fodA (2)
thermodymanic constraints together with
constitutive equations of internal state variable C Tx da (3)
type . Furthermore, it has been shown that in a J
perfectly insulated uniaxial bar3 , as well as inJSc
a uniaxial bar with insulated longitudinal b) strain-displacement relation
surface and fixed end temperature 5 , significant
tepperature rise can occur in the component C au (4)
during cyclic loading. ax

The purpose of the current research is to 3x
simulate the response of a typical metallic space c) thermomechanical constitution,
truss structural element (see Fig. 1) in the
postyfelded state and to determine if significant a-E[¢F-- I -(T-TR)] (5)

heating occurs when this component is subjected r. '2n

to cyclic mechanical loading. This problem is of -L= 2_ D a exp IA n
'." interest because a certain amount of material - L2n / (6)

inelasticity is desirable in order to produce 1 a V(

passive structural damping. The factors of r
interest in this simulation are the effects of 2-m(Z1-Q2) C-A 1Z,. (7)

* thermal boundary conditions and loading rate on Z
the thermal response. In particular, it is of

interest to determine if radiative boundary

q--k 3T (8)

4"4E S ,'where aIand mare the internal state variables
- S (ISV) representing inelastic strain and drag

stress, respectively, in the onstitutive model

developed by Bodner and Partom . Several other
constitutive models have been developed forY  

j viscoplastic metals, and these are reviewed in

"-T./'/ I references 1 and 8. Finally,

- 1 , ,I ~- d) conservation of energy

/ (Ec-_m +EcLam + Ea 2T3TI-EcLTIt -pr 3-k&+pr=O

I > ,. at t t t ax
"I - (9)

Conservation of mass is satisfied trivially
/ (under the assumption of small motions in a

L / " • closed system), and the second law of
thermodynamics has been previously shown to be

satisfied by the above equations
The governing equations are adjoinei with

appropriate initial and boundary conditions such

that a well-posed boundary value problem is
Fig. I. Typical Space Truss Structural Element. constructed in terms of the following dependent

. 2



variables which are sought as functions of x and t-E (15)
t: a.c,u,qT,P, 1. and a. Due to ISV growth u(x.t)- .. ui-- e e e+
laws (6) and (7) (as welI as radiative boundary T-
conditions), the problem is nonlinear,(x,t)- T (04Wx x6  x 1  

(16)

Solution Procedure
where ue and Te are nodal displacements and

As described in detail in reference 5 for i i e e
the quasistatic problem, the solution is obtained temperatures, respectively, and * and *C are

using the semi-discretized finite element quadratic 9and linear shape functions,
technique, wherein finite elements are respectively . Furthermore, v and w are endowed
constructed spatially, and finite differencing is with the properties of u and T. Note that a
4sed in time. The result is a time marching higher order element must be used for
algorithm which is reviewed here briefly, displacement than temperature due to the fact

First, equations (4) and (5) are substituted that temperature produces strain rather than
into (2) and this result is substituted into (1) lisplacement.
to give the following equilbrium equation: Timewise discretization is implemented via

the following backward finite difference
a EA[ - .u-s (T-TH p.(x) (10) equations:

M_ m M
Next, equation (4) is substituted into equation dt

(9) to obtain the coupled energy balance law: due (t)a[e(t)-n(t-t)]/At m-1,2,3 (18)

r/E8-EU + am 2 2 M
r/z.-E+t 1aT -it 1 +Ea 787 I -EnTu dt

L& T - - - (1) The above equations require small time steps in
-PCv 3T - 7. q +pr - 0 order to guarantee numerical accuracy. However,
The result is a set of two coupled partial they are unconditonally stable which is necessary
differential equations in terms of axial because ISV gnrth laws (6) and (7) are
displacement u-u(x,t) and temperature T-T(x,t). numerically stiff

Substitution of equations (15) through (18)
Variational Principles and Finite Element into the governing field equations in variational

" Discretization form will result in the following algebraic
equations:

Selecting a suitably smooth test function 3x3 3x21
v-v(x) over the domain of some element : • a ! fe ea
xe<X<X one may construct the ollowing I e] (19)U variatiloal principle from equation (12) [ e T e F

E + EAav 2u--a(T-T ) dx 5x 2 5x 5x

Jx 8X ax e e e ee.- ^ex~lwhre K
e  

[e], [e], e], ad{e r
-Vx )P(x) )P )- Vpxdx (12) where EK Ee and (F) are as

) P (e described in reference 5, and
where the boundary terms result from the standard
integration by parts. --Fq dx -2

The variational principle for heat equation Y z I i
(11) is constructed by first integrating this xe
equation against a test function w=w(x) on ae to where Ti is as defined in reference 5. The last
obtain term in the above equation accounts for thermal

(Ee-E rEL 8Lia 2 T371Ea a 82u flux bouddary conditions on the longitudinal
L R t at a a surface of an element.

After global assembly and imposition of
-P + 7 .q + pr dV - 0 (13) boundary conditions equations (19) can be solved

at I in a time marching scheme in order to obtain the

Integrating the flux term by parts, assuming that nodal displacements and temperatures as functions
nonaxial components of flux are negligible, and of time.
substituting equation (8) will thus result in Global assembly of the element equations is

X+ Laccomplished 4n the standard way using the

w A lE u-E tR Im + Ea2  Boolean matrix .

f L ax _t J - Imposition of Boundary Conditions

-AEaT a2u - AoC 8T - kA 8w 8T dx For a typical space truss structural
tax "'a 8 x ax) element, the boundary conditions are assumed to

x e+1 be of the following type:
-WX +1) q x +1)+ w(X 8)Aq(x fc w q cdx

x0
+ P u(o.t) - u - known1 (14)
x L

e tu(L.t) - U~ - known (1
Variational equations (12) and (14) are now T(O,t) - T0 = known

discretized by assuming the following t
displacement and temperature fields in a typical T(L,t) - TL  k nown
element (superscripted e): t

3
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and

qC = 900 J/kg/OK (0.215 Btu/lbPF)
q q c- 6 +F6(1-E)q cosX +FEqEC°s~e

+c assc(T
4-TD ) (22) a - 23.8x10 -6in./in./lK (13.2xi0

6 in./in./lF)

k - 1.27 x 10- MPa m2/sec/OK

where the first term in the above equation is the

solar radiation flux absorbed by the body, the (73.4 Btu/t/h/F)

second term is the solar radiation flux reflected 6
by the earth and absorbed by the body, the third E - 71.0 C 103 MPa (10.3 x 10 psi)

term is the earth radiation flux absorbed by the A - 6.45 x 10 m (1.00 in
2

body, and the last term is the flux radiated by

the member to space. T - 295 ' (720F)
The above boundary conditona may be R

Implemented to the tscretized global equations L - 3.66 m (12.0 FT)
in the standard way . Although equation (22)

technically includes the unknown temperature D - 10 x 103 m/m
field, the component temperature is treated as a o

known quantity in this term for each time step. AI - 1.685 x 10 "- sec -1

This approximation is acceptaW due to the fact

that the numerical stiffness of constitutive n - 2.355
equations (6) and (7) requires extremely small

time steps in order to obtain an accurate m - 0.1770 MPa (1.2205 Ksi

solution.
EXAMPLE PROBLEMS Z 620.1 MPa (89.93 Ksi)

A typical structural element has been Z = 0.
modeled with properties shown in TABLE 1. The

material properties were obtained experimentally r - 0.
in the Mechanj~s and Materials Center at Texas

. A&M University for Al 5086 at room temperature, p = 2.66 Mg/a3 (0.096 lb/in.3)
which is similar to Al 

6061-T6.

Sample Cases were constructed for various c -0.0508 m (0.8333 Ft.)
cyclic loading rates for two different sets of

thermal boundary conditions, as described in Z = 387.8 MPa (56.25 Ksi)
TABLE 2. Both cases are considered to be "worst
cases" in that the component is in a maximum TABLE 1. Material and Geometric Properties for a
radiation flux condition at the maximum Typical Truss Structural Element (from reference
equilibrium temperature during one orbital cycle. 11).

* The two cases differ in the emmissivity and
absorptivity values for the component due to CASE I CASE II
differences in surface treatment of the
component. For case I, the component is 0.20 (degraded) 0.3218 (degraded)

anodized, and for Case II, the component is 0.

. paintl with high emLssivity ITTRE-S13GLO white c 0.85 0.24
paint .

We now consider two elements in a large 00 00

- space structure (see Fig. 1). Both elements are

constructed of the same material and are qs 1.39 MP& M/sec 0
geometrically identical. However, element one is
painted with the high eMmissivity paint described qE 0.20 MPa M/sec 0.2OMPa M/sec

above and is in full view of both earth and sun,
* whereas element two is anodized and is in view of (4,080 km altitude)

" earth only. For this case, as described in Table
2. the components have identical equilibrium % 06 00

temperatures T. - 295OK(obtained by setting qy -

in equation (221). T
In both cases the structural members have D OK

been subjected to 50 cycles of loading at three 0.30 0.30
different frequencies: 1 Hz. 5 Hz, and 25 Hz.

These frequencies have been selected as FE 0.4 0.
representative of resonant frequencies in a

representative space structure. For example, a T 296.20K (73.66F) 296.26K

typical structure analyzed in reference 14 has EQ

resonant frequencies of 4.1 Hz and 3.4 Hz in the
first two modes. Because the resonant frequency CASE I - Surface painted with S13GLO white
of the first mode in the structural element
itself is 240 Hz, inertial effects may be CASE II - Chronic anodized surface

neglected in these examples.
Results for the cases described above are

shown id Figs. 2 through 8. In Figs. 2 through 4 TABLE 2. Thermal Properties for Example Cases I
the cyclic stress-strain curve is shown at the and 11 (from references 12 and 13).

'4
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location x-L/2 for CASE- I and at all three
loading rates. It is found that in all cases the e
specimen reaches cyclic saturation after
approximately five cycles. Thereafter, the
hysteretic energy loss per cycle becomes a
constant value.
ptn Figf . 5 through the temperature rise iSplotted for both cases at all three loading

rates. As expected, the amount of temperatureU.
rise increases dramatically with loading rate.
For example, after 50 cycles the total
temperature rise at x-L/2 is 17.50K(1 Hz).

62.5°K(5 Hz), and 119.7-K (25 Hz) for case 1.
Furthermore, it is apparent that while neither
surface treatment can be regarded as resulting in

negligible heating; at the higher loading rates.the anodized surface treatment produces

temperature rises which are significantly higher i
than those where the surface is painted with
ITTRE-S13GLO paint. Finally, it is believed by
these researchers that the nonlinear nature of
the average temperature rise per cycle suggests
that the temperature rise asymptotically i
approaches some upper bound, although this belief
cannot be corroborated at this time due to the
large computer times required in the current
algorithm.

Fig. 8 shows that the spatial temperature
variation at 5 Hz is approximately spatially
homogeneous. Apparently, a very thin boundary

Fig 8 how tat heapataltemeraur

layer forms near the end of the component, and 4-.- CON0
this boundary layer has little effect on the MAIN
temperature at x-L12. In fact, subsequent
Investigations by the authors have shown that, at Fig. 3. Cyclic Stress-Strain Curve at x-L/2 for
least for the geometry and physical conditions Case I Coating Loaded at 5 Hz.
considered herein, identical results may be
obtained more efficiently by neglecting spatial

.r variations in displacement and temperature. ,

30e.g
I .".0 "A /

10.//

*oN.e

i14.0 -.0.I

I ." . .gg-o e. . . l *.soa g lg.Oi .Og O.Oe**l STqAI
-Co 0 Cr6AIN

Fig. 4. Cyclic Stress-Strain Curve at x-L/2 for
i .. ig- 2. Cyclic Stress-Strain Curve at x-LI2 for Case I Coating Loaded at 25 Hz.

Case I Coating Loaded at 1 Hz.

.... , ..... ... . . .. . . .-.. . .L.. " "



CASE I I

OoO...

CAS I .. CASE I

CAS II

-IA 1A LO • l

Fig. 5.

10.0

i-1.20 sec

CASE I_._ I__ _1._e.0

Lao w 2.6/.t-0.80 seM

CAE10t0.00e

'."0.0 . ,.e, O.,0.20 se

o.o L~O 4.0 o.o 8.o "Ax ME S

Tm (SC)

Fig. 7.Spatial Temperature Variation for Case IFig. 6. Temperature vs. Time Curves at x-L/2 for Coating Loaded at 5 Hz.

Loadlng at 5 Hz.
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Conclusion

6. D.H. Allen and W.E. Haisler, Introduction to
r. The current research has attempted to' - pr di t t e esp ns of a ypi al space Arospace Structural Analysis, John Wiley, New

predict the response of a typical Ypoerk (1985).
structural element which is v1scoplastic and is
subjected to various cyclic loading conditions in 7. T.M. Milly and D.H. Allen, "A Comparativethe presence of radiation boundary conditions. 7 .. MlyadD.AleACoprte

thepreene O raiaionbonday cndtios. Study of Nonlinear Rate-Dependent Mechanical
Several general conclusions can be made as a
result of this reasearch: Constitutive Theories for Crystalline Solids at

1) significant temperature rises may occur Elevated Temperatures," Virginia Polytechnic
' due to hysteretic loss, although the precise Institute and State University, March, 1982.

. amount depends on loading rate and surface 8. D.H. Allen and J.M. Beek, "On the Use of
treatment; Internal State Variables in ThermovLscoplastLc

2) the special paint ITTRE-S13GLO appears to
produce significantly lower temperature rises Constitutive Equations," Proceedtn 2nd

than anodized surface treatment; Symposium on Nonlinear Constitutive Relations for

3) the temperature rise appears to be High Temperature Applications, June, 1984.
approaching an upper bound which is loading rate
and surface treatment dependent; and 9. J.N. Reddy, An Introduction to the Finite

4) the thermal boundary layer which forms Element Method, McGraw-Hill, New York (1984).

near the end of the member appears to have littleeffect on the far-field temperature rise. 10. Gear, C.W., "The Automatic Integration of
Stiff Ordinary Differential Equations,"

These conclusions indicate that future Information Processing 68, North Holland, Vol. 1,
research on this subject should perhaps p. 187 (1968).
concentrate on spatial variations in the radialdirection rather than the axial direction. More 11. E.V. Bragren, D.L. Barclay, and J.W.
irtnyathese results indicate M ar Straayer, "Simplified Thermal Estimation
importantly, s etrel int at an Techniques for Large Space Structures," NASA-CR-
inelastic structural component may undergo 1523(c.97)r temperature rises during structural vibrations 145253 (Oct. 197T).
which are so substantial that the material
properties of the component may be further 12. J.M. Beek, "A Comparison of Current Models
degaded, thus leading to failure ot the for Nonlinear Rate-dependent Material Behavior ofcomponent and perhaps even failure of the entire Crystalline Solids," Texas A&M University Thesissc t (May 1985).structure.
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ABSTRACT

Under the assumption that the stress is a known function of time, the

. equations governing the behavior of a homogeneous, thermoviscoplastic uniaxial

bar can be reduced to a single linear partial differential equation for the

temperature in terms of stress. This is solved by means of Laplace transforms.

*Expressing the strain in terms of stress leads to an explicit compliance relation-

ship for Bodner's model. The spatial dependence of the temperature can be re-

" covered from the spatially homogeneous case by a convolution in time with an

appropriate heat kernel.

1.
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Introduction

m* A general model for describing the time-dependent inelastic behavior of a

thermo-viscoplastic material has been derived by D.H. Allen in [l].

The differential equations are highly nonlinear, and stiff with respect

to the time variable. Consequently, a great deal of computational effort is

needed to integrate the equations forward in time. Alternate methods for

solving the equations are therefore desirable from a standpoint of numerical

efficiency.

In the special case where the stress, a, is a known function of time,

it can be shown that the equations reduce to a single linear partial

differential equation.

The modified tempe-3ture

T*(x,t) = exp (aavt-)(T(x,t)-T)I Pcv

which we introduce in this report, satisfies the heat equation

. temperature satisfies

- d T* = F[a(t)].

The solution of the partial differential equation (1.19) is related to

the solution of the ordinary differential equation above by

T * (x,t) = G(x,t), T* (f)
p.d.e. o.d.e.

G(x,t) is an appropriate heat kernel incorporating the boundary conditions

t of the problem, and the convolution is with respect to time.

2



The spatially dependent temperature solution can be recovered from the

spatially uniform case given the kernel G(x,t), which is derived in this report.

The term E
2 in (1.19) is typically on the order of 10 5 in nondimension-

alized units, and causes a boundary layer to form near the ends of the bar.

Away from the ends the temperature is very nearly spatially uniform. [2].

1-71
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1. Stress Decoupling in Bodner's Model

* As derived by D.H. Allen in El], the coupled set of partial differential

equations describing a homogeneous, thermoviscoplastic, uniaxial bar can

be written in the form

IPa {EA [au - a I- c(T-T Rf} = (.1

A f~auctlcLT) l + EcT 3T (1.2)

-AEtT a u -Apc 3T +A a (k aT) =-Arp
axat at ax a x

with the addition of internal state variables al. a, 2' a satisfying

a ~2(C,T ci j=l, ... , n i=l, ... , n.

The strain e is defined as e= 3u. We also define the stress a by

a = E(e- al~ - ca(T-T))

For the Bodner model, we have two internal state variables, al~, the axial

inelastic strain, and a 2' the drag stress. By assumption these satisfy

a1 f I(a 2 1a) 2D0 aexp n+1 l (1.3)

and

aa2 f 2(a~2 a) m(z 1-a 2)aa 1 A Z1  (1.4)

where D 0  n, m, Z19 Z, A, and r are experimentally determined parameters

(constants )

4
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From the definition of stress, we may write the stress strain relation

as

SE
-1 a + a l (T-TR). (1.5)

Another relation which easily follows is

E(au - a +aTR) = a +,ET (1.6)

This will be used later to simplify the Fourier heat conduction equation (1.2).

If we assume that Px = 0, then we can write equation (1.1) as

r {A} = 0 (1.7)

" which, for constant cross sectional area A, implies that

a at). (1.8)

Consequently, no matter how complicated the relationship between a and E,

- (1.8) will hold as long as thereis no applied load p x

OP Instead of solving the forward problem, that is determining ct1,c2 ,u

and T from (1.1) - (1.4), we will regard a a a(t) as being known. As we

will see, this allows simplification of (1.2). Viewing a =a(t) as a

known function, we will derive expressions for c1, 2 and T in terms of a,

which yields an implicit relationship between e and a via (1.5).

First we derive a relation between a2 and d. If we substitute (1.3)

* rinto (1.4), a first order differential equation results.
3 2  z 2n

.a2 = a ) a 2 D -. exp (-n++l) '2) ](1.9)

ZI e

=F 2 a 2 ] 5

...... .. . . . ....- • .. .. . .. ...]



Given a = a(t), a2 is uniquely determined by the initial conditions

If, initially a2 2x)= constant, then a2 is a function only of the variable

- .t. Therefore the integral relation

a2(t) = C2(0) + f F2(a(s)'a2(s))ds (1.10)

defines a2 implicity as a function of a. We will occasionally write

a2 = a2(t;a(t))

r to emphasize the dependence of a2 on a.

Once a2 has been determined, by numerically integrating (1.9) if

necessary, we may solve for a1. Again, assuming that the initial data for

a1 is constant,

,1 (t) = 1 + ff(a2(s)'a(s))ds" (1.11)

0

Therefore, knowledge of a = a(t) determines the internal state variables

S"a 1 and a2 as functions of time uniquely. Mathematically, we have effectively

decoupled (1.3), (1.4) from (1.1) and (1.2). Since a is a function only

of t, (1.1) is automatically satisfied. In this formulation, (1.1) becomes

a compatibility condition between the stress a, and the displacement, u.

Substituting (1.5) and (1.6) into (1.2), we obtain

(a+EaT) aa1 + Ea 2T aT - EaT a + a1 + a(T-TR1 R

- pcv  T + k 2 T = 0 (1.12)

6



This may be simplified, after cancelling terms, to the linear equation

-Pcv T + k a2T + o(t) 0a1-caI(t)T:0

which we will write as

DT - 2 a 2 T + Fc,'t) T at) t(1.13)

where 2 k is typically of the order of 10-5 in nondimensionalized units.

pcv
The presence of e2<<1 causes a boundary layer to form, near the ends of the

uniaxial rod. Near the center of the rod, for small time, the temperaturer
field is nearly spatially homogeneous and is in close aareement with the

solution of (1.13) obtained by setting e = 0. Eventually, however, the

boundary layer reaches the center and influences the temperature field. The

investigation of this boundary layer phenomenon will be the subject of a

future technical report.

The boundary conditions we consider are those appropriate for a symmetric

U
temperature distribution, with T initially equal to TR, and with convection

boundary conditions holding at the ends of the rod. We normalize the domain

by setting the length = 2 units.

T(x,O) = TR

Tx (1,t) = 0 (1.14)

kTx(Ot)-s(T(O,t)-T.) = 0

By a simple transformation, we make the boundary conditions homogeneous.

Define the quantity

T = T(x,t) -T.

7V.
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T satisfies

. T . 2  3 + T -- {t} ) -T. c '(t) (1.15)

ata2 1cVJIt- PCv t pc

T(x,O) = TR - T

T (1,t) 0 0
kTx (3,t) - T(O,t) = 0

The boundary value problem (1.15) may be further simplified by introducing

the modified temperature

T*(x1t) = T(xlt) exp(ca(t)) (1.16)

PCy

Multiplying (1.15) by the factor exp (t) )
PCv

(essentially an integrating factor), we obtain

a T* - 2 T = [ (Ia T t (t)] exp [ca(t)1 (1.17)
at T L Pcv PCI.:ax Lv J v

Assuming a(0) = 0, we obtain

T*(x,O) =TR TR  ,

T*(1,t)=Ox
kT* (O,t) - $T*(O,t) -0.

We set

a 1 -T. ag' (t1 exp L2(t] (1.18). LCv at pcv

. which is a uniquely determined function of t, given a = a(t)

4 8
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We have therefore derived the following linear, constant coefficient,

heat equation, satisfied by T*

STT* e * = F(t) (1.19)i',at IITz1

T* (x,O) = TR -

Tx* (1,t) = 0

kT x*(0,t) - aT* (O,t) = 0

The temperature, T,may be recovered by computing (1.20)

r T = T(x,t) = + T (x,t)

- T. + T* (x,t) exp (- f(t)).
Pcv

The solution of (1.19), by Laplace transform methods, is the subject

of the next section.

S-" 2. Solving for the Modified Temperature by means of Laplace Transforms.

First we define the quantities
0 1 -st

T(x,s) = L[T*(x,t) =e T*(x,t)dt

and

P(s)=L[F(t)].

Applying the Laplace transform L to both sides of (1.19) and to the

boundary conditions, we obtain a second order, linear, ordinary differential

equation for T(x,s).

... sT(x,s) - [TRT ] - 2 32 j (x,s) = (s) (2.1)

* .* ax

* L 9



T. (1,s) 0 0
xAA

kTx (0,s)-aT(O,s)=0.

A particular solution of (2.1) is

T = -1L(F(.s)+TR-TW)
S

So the general solution of (2.1) may be written in the form

T(x,s)= I [F,(s)+TR-T.]+A(s)exp(-x +B(s)exp(+x v) (2.2)

S

for s>o, where A(s) and B(s) are uniquely determined by the boundary conditions.

If a€0, the expressions for A(s) and B(s) are rather complicated:

-1
B(s) = k (1-exp 2 Vs )-a(l+exp _2 1 [0F(s)+T -T ]

IEE $

A(s) = B(s) exp (2 V'). (2.3)

Substituting these expressions into (2.2) we obtain

T(xs) = [F(s)+TR-Ta] + B(s) exp [(2-x) Ys-]+B(s) exp(+x Ys
S

Therefore

T~xs) 1 F(s)+T RT-o) + a' [F(s)+T R-To exp(2-x v)+ exp(x )
S C

k '-rs(-exp(2 Ys - B(I+exp(23D

[F(s) + T-T] 1- [exp (1-x Ys') + exp (x-1 Y ]s

k_1'7exp(- ? - exp(__'jv]-a[exp(- s )+exp(+ sr ]

E C £

1K 10
.- h-- .
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=I(F(s) + TR T] 11-. cash [(1-x) V7S

k-V's sinh(_Ys-)+ cash V's (2.4)

We will find it convenient to define the kernel function G(x,t) by

G(x,s)= 1-8 . cosh [(1-x) sT [k Yssinh v +8cah ry (2.5)

The expression (2.4) reduces to

A A A

T(x,s) [ F(s) + T R~ G(x~s) (2.6)
S

which implies

T*(x,t)=IJ1ET(x,s)] L L't [F(s)+T RT.jo]* G(x,t) (2.7)

-G(x,t)*[ F(-r)dT + TR - T,

0

Therefore, from (1.20), (2.7), and (1.18)

T = Tm + T*(x,t) exp (-cat)

=T.1 + exp(aaQ) G(x,t)* {FTd - T T

pc v 0fpvp

T.exp (-cio(t)) G(x,t)* T - +

PV

tact) Dal exp(c(t)d-T exp ( T)) TJPC -5r PC P cC
0o v

Substit T , (13 for (-andt cancellin Tm wefnlyotantersl
rP

11
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T(x,t) = T + exp(- _a(t)) G(x,t)* {TR +
PCv

_____Io¢ >I 0  exp(-n+1/a 2 (T) 2 xp d
Lot) D '+ ____ )x a(,) -

- T. exp (ca(t)) (2.8)
PCv

= T [a 2 , ]

where a2 is given by solving (1.4), G(x,t) is given by (2.5), and a(t) is a

prescribed function of time.

We note, that in the case, S= 0, the expression for G simplifies to.

G2(x,s)=1

consequently, for a= 0.

T(x,s)=.1 [F(s)+ TR-T
S

and T*(x,t)= fF(T)dt + TR- T. This implies that

0

- T=T. +exp(-aa(t)) [TR- T.,
PCv

+ t _}j exp (ca(T)) dt-T exp (co(t) + T. )
oPCv at Pcv  Pcv

exp(- __t__ ) TR +

r Pcv
t

+ exp (-ac(t) ( ) 1 exp (wLT) dT
PCcv  PCv  at pcv

f- t12
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_exp(- _) T I(t)I 2 D exp (-n+1 a22n).exp(aG(T))d- exp
R V 0R f n"e'IT 0Cv

p ..

This reduces finally to

T= exp(-aa(t)O I TR  Ia(t)v 2D° exp -R(n+lV2a)( 2 nnI- + ao(T)" dT (2.9)
PC ~ I J0  PC~ [ aPC~

We note that this is a function only of time, and also that the integrand

is strictly positive. This implies that the bracketed quanti.y is monotonically

increasing function of time. This implies that even in the periodic stress

case, after one cycle, a relative temperature difference of
tp 2D°  [-T_. ) 2()2n

o < JG(T)J o exp [-(n+1)+ 1 + ] dT (2.10)
o PC v 143 2n- ((Y TyT PC v

has developed; where t pdenotes the period of c(t).

A numerical investigation of (2.9) and (2.10) with a= a(t)- a0 sin wt,

will be done in a subsequent report.

3. Nonlinear Compliance in terms of Convolutions:

- In order to express the strain as a function of stress, we utilize (1.5),

(1.11), and (2.8) to obtain:

e = E'1a(t) + O1 [a(t)] + a[T[a 2,o]-TR]

E a + fl(a 2 a(t)dt + ct(0) (3.1)

+ af T - TR + exp (- ac(t)) G(x,t)*ao PCv
Pv

J+R +f (tl 2 0 exp (-n+l (a2(T))2n + ma()) dT-T exp (aa(__)Cv P T -C v Pcv °%v

13
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We will write this in the form:
nt

t)+C+ H + exp (-_o(t)) G*H2[a ]  (3.2)

PC

where C = (0) + [ TR],

Hl[a] = fl(;a(t)] = 2 Do  a exp (-n+l[ 2n)

and

ft 2nr
H2 [a]=TR + f  a(T'c  2 D exp .- n+1fja 2 (t'a(t))j + o t,-

. P~v

0FL L avT)P

-T. exp .[aq1])

-2 [t,a(t)] is given by the solution of

.d 2  f 1(2 )(14dt f2 (t2,a) = m (zl- 2) a - (Ct2 " zl~r (1.4)

a: and

G=G(x,t)=L 1 { 1-a cosh (1-x) _. }
k sinh (i':) + a cosh Vs

from (2.5).

14
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Equation (3.2) gives a closed form expression for the compliance of

the Bodner model with two internal state variables. We note that the

contribution of a is the integral

O) + f H1[c]dt = 1 + H1[a(T), a2 (T,C(T))] dT

0 0

while the effect of the temperature and spatial variation is to introduce a

convolution in time, multiplied by the factor exp(-_a(t)).

If a'(t) = constant, then we have a pure convolution with H2. A non constant

stress rate introduces the operator
F~li exp(--a.. t) .G(x,t)*

Pcv

rather than

G(x,t)*

A detailed examination of the asymptotic behavior of (2.8) and (3.2),

!! as t-*=, for the cyclic case

(t)=ao 0sin wt

" will appear in a future report.

The function G contains the diffusion phenomena and thermomechanical

coupling within it. A detailed analysis of G=G(x,t) and asymptotic re-

presentations of the solution to (1.1)-(1.4) will appear in a future report.

15



4. Conclusions.

In the spatially uniform case, that is when insulated boundary con-

ditions hold at the ends of the rods, instead of (1.19) we have

at T* = F[o(t)] (4.1)

T*(o) = T--T.
R

which has the solution
t

T*(t) F[a(T)]dT + T (4.2)
0

which we denote by T* t). We therefore arrive at the important

conclusion that

T * (x,t) = G(x,t)* T* (t). (4.3)
p.d.e. o.d.e

Therefore, given the solution of the problem in the case of

insulated boundary conditions and known stress history a(t), the

solution of the problem for general boundary conditions is recovered by

a convolution in time with an appropriate heat kernel G(x,t).

The effect of the term e2 in (1.13) is to force a boundary layer to

form at the ends of the rod. Away from the ends, and for small time, the

solution is very nearly spatially independent. [2].
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ABSTRACT

Under the assumption that the stress is a known function of time, the equations govern-

ing the behavior of a homogeneous, thermoviscoplastic uniaxial bar (Bodner Model) can be

reduced to a single linear partial differential equation for the temperature in terms of the

stress. This can be solved by transform methods.

In this report, an explicit series representation of the temperature in terms of the stress is

obtained by seperation of variables techniques. With the assumption of periodic stress, bounds

on the time averaged maximum temperature increase are obtained.

In order to describe the thermal boundary layers near the ends of the rod, an asymptotic

model is developed which uses a spatially homogeneous solution as a starting point. Finally,

various mathematical details regarding the Green's function and series solution are investi-

gated.

p.
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Introduc-tion.

In [ , we showed that the equations describing the behavior of a thermovisco-

plastic uniaxial bar (as derived in [ 2]

SjEA [ -j-dT -TA)] P (o.1)

AlEC G' -al+OiTR) *1+E a2TA- (0.2)
( ax at ait

-AEca - _A pc, Zi +A±-(k 8T )=-Ar p,
axat- atC alx ax

~i _ 2 o exp I lI.JfI(0.3)

1- and
aa M( -Q)-00 - zI02-ZI Ir(0.4)

aT I IZ
with prescribed stress , a-=a(t ), could be reduced to a single linear, constant coefficient,

partial differential equation

a 6-EG2 a28 =F [ot )]:=F(t) (0-5)
ait ax;

O(x , O)=TR -T..

'g for the modified temperature

0=8(x , t )=(T -T.)exp( rzo(t) (0.6)

where

oa"' T~,(t) 1-a 1 cwt) 0.7
F [a~tJeip (0.7)

*c at PC PCVS
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and

E2= _k. (0.8)

In this report, we solve (0.5) by means of separation of variables and write down

an explicit power series solution of (0.5). This will enable us to examine the relative

importance of each term in the series expansion, evaluate various asymptotic expressions

involving the solution, follow the formation of boundary layers in the bar, and to exam-

ine the effect of modifying the choice of CT(t). Finally, in the appendices, we examine

the integral representation of O(x, t ) by means of the Green's function which was intro-

duced in [I.

Section 1. Series expansion of the modified temperature.

We write the solution of the problem (05) in series form

O(x, t ) O (t ) (x).

F- Substituting this into (0.5), we have:

10 (t )*. (U )-e29,, (t )*.t'(x) JF (t) (1.

0ef, (0), (x )=TR -T. (1.2)
n13

0. (t 0 M=O(1.3)
,A=1

8,, n () , (0)1=0. (1)
0r (t) I ()k() o (IA)

We solve (1.1) by assuming that

L

F~
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", (t )+e20a 29 (t )=d. F (t) (1.5)

+' '~(X )+ 2*. (X 1=0 1O

Therefore,

-. - F o (t )*, (x )-eqo, (t )*"(x )
[" " n =1

[- ",' (t), (X)+62W,29" (t)€ (X)
. n ---1

S _., 1(x )[ (t )+e2W 29o (t )J

= ,,(x )d,, F (t)
l' n =1

=1 d.*4,,(x ) F(t)

This will satisfy (1.1) if and only if

' ' d , * (x )= (1.7)
n =1

on the interval O<x <1. Equations (1.3) , (1.4) , and (1.6) determine (a, uniquely.

Writing

, (x)=a. sin(I-x )w, +b,, co(l-x )w,

we have

: :. =*,',(1=-a. (o..

This implies that a, =0. The second condition implies

k(o), (0)=-b. o - , " si,, n,,, co 1

which implies that

Wk (1.8)

F
...•............. .-. :... .............. . .. ,...,.+. .. . .,. .: . ,..... .. .,,
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Asymptotically,

"~~o n vtY.

We note that o). is nonzero, so that O(x)=l is not an eigenfunction. Therefore,

(1.7) determines the coefficients dn by

dn coS(1-x )Wn =1 (1.9)
n =1

The eigenfunctions aj, (x)=cos(1-x )wo, can be shown to be a complete orthogonal basis,

consequently
rI

fcos I-x )(n dx

o = 4sino. (1.10)f fI 2(On --sin2o o

fCos2(1-x )(0, dx

Asymptotically,

2sinwo 20
(on kn r iti

~°27

It remains to satisfy (1.2).

TA -T l 0. (O)*,, n 0(O)co-x )'i
n=1 n=1

Comparing this expression to (1.9) we see that it suffices to choose

On (0)=d,, (TA -TI). (1.11)

The remaining differential equation

o, t )+e2c2 =d, F (t)

On (0)=dn (TA -T ".

has the solution:

t %

O,, (t )=d, (TA -T )exp(-- 2 62t )+fd, exp(--'2 ( -s ))F s)ds
0
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Therefore the solution of (0.5) can be written down concisely asMt

nI n =

* "signifying convolution in time ), satisfies

V kr =-at a,, (1.8)

and d, satisfies (1.10).

Section 2. Contribution of Series Terms.

We will examine two cases, F (t )=t and F (t )=I, in order to examine the decay

of the terms 0,, (t).

Case 1 , F (t )=t. We have, after some computations which we omit,

d It 19. (t)=4d. 1 R -T..+4 IeXp(-( e2t) (2.1)

eai En. =I. I

This implies that each mode contributes a term asymptotically of order

d.
j2 t

and therefore each term is of the same order in t.

In the second case, F (t )i1, we have (again after some easy computations)

0,, (t )--n- dlexp(-e2oa )+dn (TA T..),IlE--iyt) (2.2)

and therefore, as t -o, each term contributes

dn

As t -- o we have the following result

*** V 't'. *A* *'.' A ~ . .
S..-....
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0(x,t )"*=L 2 .cOs(-x )WOn (2.3)

n -1 (0.1-6

At the right endpoint then, the temperature is given asymptotically by

0,=) E" - (2.4)

n =1 eGri,,

which is bounded.

Section 3. Upper bounds on the temperature increase.

Equation (0.5) can be considered as an ordinary heat equation describing the evolu-

tion of a symmetrical temperature distribution in a rod, with convection boundary con-

ditions at x =0 and x =2, starting from a constant temperature, with a source strength

F (t) which is spatially homogeneous. From this analogy, or using maximum principles

of parabolic equations, one can see that the maximum temperature is acuieved at the

center of the rod (for F(t )>O) and that if F(t )F, then the temperature distribu-

tion Omax(x, t) satisfying (0.5) with F (t) replaced by F ma,

O-28O-FmX-constant (3.1)

O(x, 0)=TR -T.,,

O (1, t )=O

k 9. (0, t )-09(0, t )=O

satisfies the relation

O(x ,t ) < O=.u(x ,t ).(3.2)

The steady state solution of (3.1) is very easy to compute. It is

O (x )=e( x2+x +k)F (3)

At the center point, where the maximum temperature occurs, we have

0m(1 2G T )Fm (1.4) "

This then bounds the solution of (0.5) at the point x =1, and therefore everywhere.

"'"
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Section 4. Computing F = given o(t).

If lcr(e)I<C, and jcoft)<C 2 then we can estimate F. as follows. In the appen-

dix it is shown that if z, <a 2(O)<zI then z, <ac4t )<zl for all t. This then yields the

- inequality

I-I< 2 :=C 3  (4.1)
~Doexp 1-1 .J:=

and therefore

- . -I _3 .o 2 jeo I I- C (4.2)

This leads to a tremendous overestimate in general Since the series solution (1.12) is

analytically correct (i.e. not an approximation ) one can obtain the temperature at the

midpoint by substituting x =1 into (1.12) to obtain

0(1, )= d exp(-oi, ) 2T.4exp(e2o0S )F(s )ds (4.3)
n:=1 0T j

" d, fexp(-'22(t -s ))F (s )ds (4.4)
n =1 0

If F (s) does not decay as s -co then many terms will have to be included in (4.4).

Examples of various choices of o=(t ) will be investigated in a subsequent report.

Section 5. Computing the time-averaged mean (modified) temperature.

Since the right hand side of (0.5) depends only on t, through o(t), we can derive a

better asymptotic bound on the behavior of O(x ,t) with respect to time in the following

way. First, integrate (0.5) with respect to time, and then divide by t. If we define

#x ,t )=t -fG(x ,T)dr (5.1)
*1.w 0

and

<F (t )> =t-'fF (or('))dr

we have the following equation

,-.-.,.-...'...-.-...-...-. -...-.....'.. -.-.-:.-. -,-.-......--.-....-...'....-...-........-". .................. ... -... -... .. " .... ...... .. -.... -... .. . .. '.
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t -'O(x, t )--O(x, O))-e2O(x, = < FW()>,

M € 0 (U, 0 =0

"- k 0,, (0, t )-00)(0, t )=o

Since O(xat) is bounded, t -1(0(x , t )--O(x, 0))-0 regardless of initial conditions.F Therefore the quantity

?(x )=lim t -'fO(x, r)d r (5.2)
t 0 0

satisfies the ordinary differential equation

..G2W, (x)=<F > (5.3)

k V )-00=

where <F >= lir <F(t )>, This can be solved to yield7" Coo

(D(x )=e-2(_ Ix2+x +K (k4[!T (5.4)
2

0(x ) is the asymptotic state of the (time averaged) mean (modified) temperature. In par-

ticular at the center point, x =1,

()=2(T + T )<F> (5.5)

If the exponential term in (0.6) is approximately unity, then (x) is the asymp-

totic mean temperature change. Therefore,

<TWx >-T."+-OWx

In order to compute < F >, we note that if F (t) is periodic then

<F >=lim. fF (t )dt 4fF (t )dt
I..L

where P is the period of F. If, in addition, fF (t )dt =0, then <F > =0 and
0



- 11 -

consequently, there is no net mean contribution to the temperature. Consider the second

term of (0.7). It is a total derivative of the quantity

TepIao-(t

Therefore,

L o"'(t )exp( -a(t )dt" ' pcV pc,.

2Twexp =('- =

If a2 approaches a constant then,

,. 1 -o~(t) 13,,
<F > = lir. --jdt (5.8)

T--FT 0 Pc4 di

Ifo.. 9 ijot )2exPD ! tlj 2n J dt

Given o(t) periodic, one can compute (5.8) and then substitute into (5.5) to compute the

asymptotic mean (modified) temperature change at x =1. If ao(t ) does not approach a

constant, then one cannot use equation (5.8). In many applications however, the value of

a2 approaches a constant. This is an effect of the phenomenon of "saturation". The

parameter n is seen to be crucial in predicting the temperature rise in the purely one-

dimensional model.

In general, the temperature rise predicted by substituting (5.8) into (3.4) is much

larger than physically realized. This is a result of the simplification of the problem into

one-dimension. In reality, we cannot ignore radial effects, and the radiation boundary

conditions along the longitudinal surface of the bar. ( Neglecting these is equivalent to

assuming that the rod is insulated along its length , which accounts for the much larger

predicted temperature increase.)

The one-dimensional analysis is still important for a study of the various models

for thermoviscoplastic materials, and the effects of various parameters on the maximum

-.temperature changes. For short times an alternate representation of the solution can be

obtained by singular perturbation techniques. This is analyzed in the next section,

" ""-"" - % - - - """"""""""""""" - "--, "** """" - -""*-""""- - """"- - , - """" - .""""""""" . ""-
"

- -"" -"" '
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Section 6. Boundary Layer Model.

In order to examine the behavior of the boundary layer, we expand the function

O(x ,t) in terms of the small parameter E. We define the stretched coordinate e=e-lx.

This implies that 8, =e-la8, and that therefore

6, -O =F (t) (6.1)

O(et, O)=TR -T.

I. e-1  e-', t )=o

k -100, t )-0'0(o, t )=-

In the usual way, we write

For n-0 this reduces to

0o, t --80, ff=F (t) (6.2)

0C, O)=TR -T,,

o 6(*, t )=O

0o. 0, )=0

which implies that Oo=Oo(t), and that

00=0 (t )=fF (i)d T+T -T, (6.3)
0

Equation (6.3) describes the evolution of the modified temperature O(x, t) under insu-

lated boundary conditions. For n > 1 , we obtain a coupled set of linear differential equa-

tions

. . . ..-
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SO,, -0., g=0 (6.4)

0~(,)=O

I . O°.d, t )-0-0,,_I(o, t )=o
L

This can be solved using Laplace transforms , which yields

t 1 exp-)* On _.(0, t) (6.5)
k"'F Tf 4t

Note that if 0o(t )>O then each term alternates in sign.

The first order approximation is therefore

r O(x ,t )- 0 o(t )+601(4e) (6.6)

. =°(t ---- fo eXp(- x- )0°(t -- r)d 1-

x2

- The integrand is negligible except when x is of order one. This leads to a boundary

layer which is described by

We also obtain the following important result, when x-0, that

0(o, )--8o(t )-- -_ot --)d 7 (6.7)
k. o 7rt.4 r t

which to leading order computes the temperature as a function of time of the left end-

point of the bar. The first order correction is in fact monotonic in x (if Oo(t )>0 ), as

expected. Equation (6.7) shows that the first order term overcorrects and that the next

term (of opposite sign) attempts to compensate for this.

I"
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Appendix I. Estimating a 2.

By examining (0.3) and (0.4) with Do, m , I , z, A 1 and r positive constants,

and noting that the product of a- and ai is intrinsically positive, we have the

following conclusions: If initially

z, < a,(O) < z

z2

then as one approaches z from below, - approaches

IF and if one aproaches Z from above, then 8al approaches

ait

m z -zI Ior

at

Consequently, a()can never cross teetwo lmtlns

LII

Cneunla2tca evrcrs these tolimit lines.

Appendix II. Integral representation of O(x, t ) by means of a Green's function.

In [ I , we derived the following expression for the Laplace transform of 0

where

cash (1-XiI

G, ; VFS
Ic-sinb -- cosh Vs,.E E 6

We can derive a series expression for the inverse transform by means of a contour

~ integral

+cc es 'cosh IX
G(x,t)= I f I ds.

2 i c, k ±s-sinh- Vs -cosh -s
- - -- - - 6 .
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The poles of the integrand are the roots of the expression

k2!sinh -- /3 -cosh-

Setting -=i we have

O-ki cosinh(i a)-3cosh(i (a)

=-2k masin&-23costo

Therefore

k COWa

(a=-----"Cot 0) (A2.1)
/3sinto

which is the same equation as (1.8). Therefore s =--e 2 W2 where Wa satisfies (A2.1).

Because the integrand is even, there is no contribution of the branch line to the

contour integral Similarly, there is no contribution of the branch point at s =0. The

contour at infinity goes to zero as s -oo if Res <0. Consequently, by the residue

theorem,

G (xt )-Eresidues = E d, e -s"' osh(l-x )47

00 n02 2t)6~l_ WE exp(-Ec~ )c&1x c
n==1

and

(x )= F(r)d r+TR -Too -G (xt +TR -T**+ F (r)d T

=00ot )-PG U t 0o(t

* "=o- co(1-x ) exp(- 2 , ) * 00(t).

This identity motivates the series expression for the function (x ,t) given in sec-

tion 1.

". . -. • .% % ., - - ° ...- , - • ....-....................... ,........•...-.........-...............................-...-..........
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ABSTRACT

Under the assumption that the stress is a known function of time, the equations

governing the response of a homogeneous, thermoviscoplastic uniaxial bar can be reduced

to a single linear partial differential equation for the temperature in terms of the stress.

In this, the last of a three part study of this problem, upper and lower bounds are deter-

mined for the case of a bar subjected to radiation boundary conditions on its longitudinal

surface and in the presence of a cyclic stress history. The temperature rise, which is

caused by inelastic conversion of strain energy to heat, is found to be significant for some

example applications to realistic materials.
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LVMNRODUCTION

Large space structures will require significant passive damping in order to sustain

structural vibrations in a microgravity field. One passive damping mechanism which has

been proposed is material inelasticity. However, during this process, a substantial propor-

tion of the strain energy in the structure is converted into heat via hysteretic loss. The

F purpose of the current three part research effort is to determine if this energy conversion

process can produce temperature rises which are large enough to adversely affect the

structural integrity of the system.

In Part I it was shown that assuming the stress to be a known function of time

f decoupled the equations governing the internal state variables from the heat conduction

equation. This reduces the nonlinear system of partial differential equations governing

the motion of the rod to a single parabolic equation for the temperature with coefficients

given in terms of the stress o(t). We then obtained an expression for the strain e in

V terms of a convolution of the stress or and a suitable kernel which was derived from the

heat conduction equation. This yielded the compliance relation for this material.

In Part II it was noted that the system could also be solved by series methods, and

that a boundary layer formed near the ends of the rod. Series and integral expressions

I! for the temperature were derived from a simple, spatially homogeneous solution. The

boundary conditions examined did not allow for the radiation of thermal energy away

from the longitudinal surface of the rod , so the temperature bounds derived in part U

were not optimal.

In Part 1II we develop much sharper upper and lower bounds for the asymptotic

-. temperature rise as a function of applied loading, material properties, and geometry for a

typical space structural member. Graphical results are given for several example.cases.

Section 1. Derivation of the equations of Equilibrium. Constitutive Laws.

The equations we use to describe the quasi-static response of a thermoviscoplastic

uniaxial bar have been formulated and discussed in [ 1]. For brevity, we summarize

the main points in this section. The principal equations are conservation of momentum

oII, =0 (1.1)

and the conservation of energy , as expressed in the modified Fourier heat conduction -p.



law

DijkI (ek -a,*, +a* TR )&l +DjkL (&, ii7 )-D 1jkl(&7' &iu )-pc~ 7'-q, =0. (1.2)

(Dots indicating differentiation with respect to time.)

In addition, we have the stress-strain relationship

oij =Dijk (ek--e -i) (1.3)

The internal state variables ag and el obey the following evolution equations:

i , g (eti ,7',all) (1.4)

&j~ =f I. ( , T,a&) (1.5)

r In the case of a homogeneous, thermoviscoplastic, uniaxial rod we further postulate that

Ii. Q., ij = (1.6)

eiJ -6 1 1el2e

D1jk, =.D 1111-=E

E=e!E =o. =(T -TR)

and finally

E is a constant CYoung's modulus ), and T R is a reference temperature for which

there is no thermal strain under zero applied load. We also asume for simplicity that a,

k, p are constant.

Substituting the relations (1.6) and (1.7) into (1.2) we have the following system of

equations

-(1.8)

Iax



E (e--a+cTR )6+E WTT -E ciT i-pc, +k AT =0 (1.9)

.|q =fq(a IT ,e) (1.10)

a-E[e-a1 -a(T -TA)] (1.10)

and

e=-U (1.12)
ax

For simplicity we have assumed infinitesimal deformations, (1.12). Since u and o-

are now functions of the axial coordinate, x, alone, we drop the tensor subscript notation

and use subscripts to label the different internal state variables (1.10).

Given initial conditions for otq , T , and u, as well as boundary conditions for T

and u, this is a well-posed mathematical problem. It has been shown in [ 2 ] to be ther-

modynamically consistent as well.

We make the following observations at this time. First, (1.8) implies that o- is a

[ function of time alone. Secondly, in the special case where the fq do not explicitly

depend on T or e but only on { a- , " } , then given or(t), (1.10) is a closed system of

equations , and we have %q =a,(t;o-(t )). Equation (1.8) is automatically satisfied for

o--a(t ) so (1.9) essentially becomes a single, non-linear parabolic differential equation

for the temperature T in terms of o'. This analysis has been carried out in [ 3 ,4 ]

Generalizing this approach, we will obtain the asymptotic behavior of T directly from

the system (1.8)-(1.12).

Section 2. Radiative and convective boundary conditions.

In order to include the thermal radiation boundary conditions along the lateral

surface of the rod, we integrate (1.9) over the (constant) cros-sectional area of the rod.

hi. Let (x , r , e )denote cylindrical coordinates with x measuring the distance along the

axis of the rod. In this model, all variables (except for T) are independent of r and e.
-We have
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AE (e-a, +aTR )&1+AE a2TT -AE aT i-A pc, t +kAT,, = (2.1)

I~~~ a. JE ) I8Trdrd 0

L =-k f (r )dr =-kC2E=+cq,
ar an

where qn is the integrated effect of the normal component of the thermal flux along the

lateral surface of the rod, and C is the circumference of the rod. T is now interpreted

L as an integral average of the temperature over the cross-section of the rod.

It is clear that the term +Cq, acts as a "sink" for thermal energy. In deep space,

we model the thermal flux due to radiation as

q,, =or, 8(T' -TDI)-Q =o, 8T'-Q (2.2)

where T
D ---O K is the deep space ambient temperature, and o,=5.775x 10-  is

ij Boltzmann's constant. 8 is an order one constant, called the emissivity, which measures

the effect of the surface coating on black body radiation, and Q measures the solar, earth,

and deep space thermal flux incident on the rod.

We approximate (2.2) by the first two terms of its Taylor series expansion in order

to obtain the linearized convective boundary condition

q, =o- 8T +P(T -TR )-Q (2.3)

with

-4a, 8TI.

In order to estimate the actual temperature rise (with non-linear boundary conditions)

we choose so that
S

o-, 8T4+P(T -TR )> o, 8T > o , 8T 4+4C. 8TR(T -TR) (2.4)
I.

over the region of interest. This implies that any temperature change associated with

(2.3) will bound from below the actual temperature change associated with (2.2). Choos-

ing 03=4a, 8TR3 will bound the temperature increase from above, via inequality (2.4).

Section 3. Further reduction of the equations.

-'''""''-''''' '--.--- '. 't '-"- - '".-..-."-'-'-' -...... '''- '"-..-.. .
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We can further simplify (1.9) by noting that the left hand side of (2.1) can be

written as

A ca+aT )6t+E a~Tt-cuT(&+B cu1+E tu~)p,7 +kT, ) (3.1)

=A I-pc.!t +kT11 -afrT +(T&i

Consequently,

-p, 7 +kT., -aT -+ - (2)

We write this as

I.pc,Tf-kT.,, + Ad +r PT-,)wj- 8TR4-QJ (3.3)

Letting O(xt)-exp( rt) XT-Tj) ,we have

e+ C _ k (3.4)"a Pc. 4W7 P. A

where

~I~II (t )&(t ) Cc s CO -of 1F (t : xP( 8 pc, +t pc ,RP, c

F. The modified temperatwe 0 has been introduced previously in [ 4 1 If we integrate

both sides of (3.4) with respect to t, and divide by t, we obtain

-1(0(xt T~d 7]=+ £A0 t -f(x ,rvd rut 'fF ()d r
PcV 0 0A

As r-.oo, with 0 bounded, this reduces to

CA <0> -- <0>xx<F>

wrhere



<0>(x)=limt -'fG(x,)d 7 (3.5)

and

<: F > it-lep aa())j C0Q C (Tf 8UTR4- 1. (3.6)

0 c PC A pc. A pc, pe

_ _ jx¢() ' 7 ()(') + Ap e , Ape I- d

are the asymptotic mean values of G and F respectively.

L In the materials under consideration, oa'&>O. Since the integrands are bounded,

the above limits exist. For simplicity, consider the following boundary conditions for the

temperature T : T(O )-T, and T, (Lt )=O. The second boundary condition results

from symmetry, for a bar of length 2L units. Therefore 0 satisfies the boundary condi-

[ tions:

<9>(o)=o. (.7)

and

The solution of (3.4), subject to the boundary conditions (3.7,3.8) is

F where

.V Note that if we ignore the spatial variation of the temperature, we have

<0>(x)=-pA <F>

which is a good approximation to (19) if X is large. This accounts for the close approxi-

mation observed between the spatially homogeneous solution and the spatially varying

I;I
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solution with boundary layer in [ 5 1

Since p, c , ,C, A, L, and k are all known, the spatial dependence of <0>(x)

is determined. Only the magnitude is a function of the loading history, through <F >.

The crucial term to estimate therefore is <F >. If or(t ) is periodic, and if es is a

periodic, then (3.6) reduces to

fep8CTrR CO41 (3.10)0 p.. p-!, A PC ApcI

where P is the period of a and 61.

A case of particular interest is the Bodner model [ 7 ], for which

At saturation, the drag strew a 2=&2 is constant, and <F > becomes a function only of

a.

t ir~) [2 n +1 F12 12m]

<F > .P-Ifexp . -. Dola(.)Ixp 1  (3.11)

Since

t t

<9>(x)iimt-,f9(x ,v)d Tu-limt-4fexp(!~! XT -TR )dr

we can recover a mean temperature f by

ff<O>(x) I a.(-)exp 7 'r +TR (3.12)
-P4

For strew amplitudes of interest, the factor exp P. is very clon to unity.

Fixing the material parameters I a,p,c, ,D o ,n ,0,k,5 2 ),one can compute the depen-

dence of <9> and F on 0(t With a' periodic, (3.12) simplifies as before to an integral

F
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over the period. We compare the analytical results with experimental and numerical

data in the next section.

Section 4. Numerical Results.

In order to verify the accuracy of the asymptotic results (3.9) and R?1), we com-

puted the average temperature for the parameters given in [ 5 ] with tb e results shown

below in fig.1 . The values for the emissivity (with thermal equiliviumm at 295 deg.

Kelvin) are 0.24, 0.5, and 0.85 respectively. The cyclically saturated stress-strain curve

used to compute <F > for the cae a.=336.5 is given in fig. 2. The values for o',.

and 52 were taken from numerical data supplied from reference [ 5].

L The parameters in C 5 ] describe a hollow cylindrical bar, of uniform crom-section,

orbiting at an altitude of 4,080 km., painted with a high-emiuivity cating (TRE-

S13GLO) white paint, with full exposure to the sun. Under zero applied stress equili-

brium of thermal flux occurs at 72 degrees fahrenheit (295 deg. Kelvin) for which the

F.! thermodynamic parameters of the metal 6061-T6 aluminum were experimentally com-

puted [ 6].

We also can compute the behavior of the thermal boundary layers near the ends of

the rod. From equation (3.3) or (3.4) we compute that the difusion constant is equal to

k 2. This is typically of the order 10- 3 to 10- 5 in dimensionless units. This leads
pC4r to very sharp boundary layers, and exponential decay to the asymptotic temperature

state.

We also mention that other constitutive laws than (3.11) have been derived which

describe the behavior of metal-matrix materials. Since the parameters are described by a

parameter fitting procedure, ementially the same results are obtained for the asymptotic

temperature rise.

Section S. Conclusions.

The results given in reference [ 5 ] indicate that the cyclic stres amplitudes for

load sequences of 1 Hz., 5 Hz. , and 25 H. are 336.5 MP& (48.8 KS), 3468 MPa (50.3

KSI), and 35&9 MPa (52.05 KS!) respectively.

From Fig. 1 it is found , for example, that a stmu amplitude of 346.8 MPN leads to

a minimum asymptotic temperature rise of 61.9 K. This temperature represents an

extremely hostile environment for AL 6061-T6 which could lead to such serious lOeMM

isee s % o • "e •. .% % q s" sI elo • •, - • I• , •%-• ee•- o. •- . - b e, ,1-'., ' ,,. ..'.... . ' .' ,. .,.: : -.:" J.: : ',"-" • . . . .. .%.. , . . , , , ,, C , . . ' . ~' =%*,-C- ' -%* C=.-
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in material properties as to compromise the structural integrity of the system it is

therefore concluded that the use of material inelasticiy to enforce passive structural

damping should be utilized with caution due to the possibility of catastrophic structural

heating in space in the presence of solar flux.

ii
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