

MEMORANDUM REPORT BRL-MR-3476

AD-A162 133

COPY

AERODYNAMIC AND FLIGHT DYNAMIC CHARACTERISTICS OF THE NEW FAMILY OF 5.56MM NATO AMMUNITION

Robert L. McCoy

October 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	. 3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT BRL-MR-3467 AD-A120 20 133	
TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
AERODYNAMIC AND FLIGHT DYNAMIC CHARACTERISTICS	(TTALA)
OF THE NEW FAMILY OF 5.56MM NATO AMMUNITION	FINAL 6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
•	
ROBERT L. McCOY	
PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory	10. PROGRAM ELEMENT, PROJECT, YASK AREA & WORK UNIT NUMBERS
ATTN: SLCBR-LF	
Aberdeen Proving Ground, MD 21005-5066	RDTE 1W263607D640
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T	October 1985
Aberdeen Proving Ground, MD 21005-5066	A2
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	154. DECLASSIFICATION/DOWNGRADING
Approved for Public Release; Distribution Unlimit Opproved for Public Release; Distribution Unlimit	·
Approved for Public Release; Distribution Unlimit	·
Approved for Public Release; Distribution Unlimit DISTRIBUTION STATEMENT (of the abstract externed in Block 20, 11 different for	
Approved for Public Release; Distribution Unlimit DISTRIBUTION STATEMENT (of the abstract externed in Block 20, 11 different for S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if nuccessary and identify by block numbe 5.56mm NATC Ammunition Dy	oom Report)
Approved for Public Release; Distribution Unlimit DISTRIBUTION STATEMENT (of the abstract externed in Block 20, 11 different for sumplementary notes Key words (Continue on reverse eige II necessary and identify by block number 5.56mm NATC Ammunition Dy Aerodynamic Characteristics Ya	oom Report)) namic Stability w Limit-Cycle
Approved for Public Release; Distribution Unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for Supplementary notes Key WORDS (Continue on reverse eide II necessary and identify by block number 5.56mm NATC Ammunition Dy Aerodynamic Characteristics Ya Aerodynamic Drag Ac	oom Report)
Approved for Public Release; Distribution Unlimit DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for Sumplementary notes Key WORDS (Continue on reverse eide II necessary and identify by block number 5.56mm NATC Ammunition Dy Aerodynamic Characteristics Ya Aerodynamic Drag Ac	oom Report) namic Stability w Limit-Cycle
Approved for Public Release; Distribution Unlimit OISTRIBUTION STATEMENT (of the abstract externed in Block 20, if different for S. SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eige If necessary and identify by block number 5.56mm NATC Ammunition Dy Aerodynamic Characteristics Ya	or Report) on mic Stability w Limit-Cycle curacy. (mfd) rel accuracy tests, and long U.S. M855/M856 ammunitions, rances in bullet jacket wall ied as contributing to the amic characterisitics of the c stability was found to be

ŝ,

1

2

Burn

and the second se

380

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) The M855/SS-109 projectiles show limit-cycle yaw levels growing to approximately six degrees at 800 metres range. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

.

		Page
	LIST OF ILLUSTRATIONS	. 5
	LIST OF TABLES	, 7
I.	INTRODUCT ION.	9
II.	TEST MATERIEL AND PROCEDURE	9
III.	ACCURACY FIRING TEST RESULTS	
IV.	AEROBALLISTIC TEST RESULTS	• 11
	A. Drag Coefficient	
	B. Overturning Moment Coefficient	
	C. Gyroscopic Stability Factor	
	D. Lift Force Coefficient	, 13
	E. Magnus Moment Coefficient	. 14
	F. Pitch Damping Moment Coefficient	, 14
	G. Damping Rates	, 14
۷.	LIMIT-CYCLE YAW TEST RESULTS	, 15
VI.	COMMENTS ON AMMUNITION DISPERSION	, 15
VII.	CONCLUSIONS AND RECOMMENDATIONS	, 17
	REFERENCES	56
	LIST OF SYMBOLS	57
	DISTRIBUTION LIST	61

Acces	ion For	1
DITC	touaced	
By Di. t ib	lation /	
در	vailability Codes	1
Dist	Avail and, or Special	1
A-1		

44 Y

ì

1

LIST OF ILLUSTRATIONS

Xô

Figure	. <u> </u>	age
1	PHOTOGRAPH OF THE MANN BARREL AND FRANKFORD REST	19
2	SKETCH OF SS-109 AND M855 BALL PROJECTILES	20
3	SKETCH OF L110 AND M856 TRACER PROJECTILES	21
4	SHADOWGRAPHS OF M855 AND SS-109 PROJECTILES AT MACH 1.9.	22
5	SHADOWGRAPHS OF M855 AND SS-109 PROJECTILES AT MACH 1.2,	23
6	SHADOWGRAPHS OF M855 AND SS-109 PROJECTILES AT MACH 0.9	24
7	SHADOWGRAPHS OF M856 AND L110 PROJECTILES AT MACH 1.9	25
8	SHADOWGRAPH OF L110 PROJECTILE AT MACH 1.4	26
9	ZERO-YAW DRAG FORCE COEFFICIENT VERSUS MACH NUMBER, M855/SS-109	27
10	ZERO-YAW DRAG FORCE COEFFICIENT VERSUS MACH NUMBER, M856/L110	28
11	OVERTURNING MOMENT COEFFICIENT VERSUS MACH NUMBER, M855/SS-109	29
12	OVERTURNING MOMENT COEFFICIENT VERSUS MACH NUMBER, M856/L110	30
13	GYROSCOPIC STABILITY FACTOR VERSUS MACH NUMBER, M855/SS-109	31
14	GYROSCOPIC STABILITY FACTOR VERSUS MACH NUMBER, M856/L110	32
15	LIFT FORCE COEFFICIENT VERSUS MACH NUMBER, M855/SS-109	33
16	LIFT FORCE COEFFICIENT VERSUS MACH NUMBER, M856/L1*0	34
17	MAGNUS MOMENT COEFFICIENT VERSUS MACH NUMBER, M855/SS-109	35
18	MAGNUS MOMENT COEFFICIENT VERSUS MACH NUMBER, M856/L110	36
19	PITCH DAMPING MOMENT COEFFICIENT VERSUS MACH NUMBER, M855/SS-109	37
20 ·	PITCH DAMPING MOMENT COEFFICIENT VERSUS MACH NUMBER, M856/L110	38
21	FAST ARM DAMPING RATE VERSUS MACH NUMBER, M855/SS-109	39
22	SLOW ARM DAMPING RATE VERSUS MACH NUMBER, M855/SS-109	40

5

.*

LIST OF ILLUSTRATIONS (Continued)

Figure	Pa	ige
23	FAST ARM DAMPING RATE VERSUS MACH NUMBER, M856/L110	41
24	SLOW ARM DAMPING RATE VERSUS MACH NUMBER, M856/L110	42
25	PHOTOGRAPH OF LIMIT-CYCLE YAW TEST EQUIPMENT	43
26	STRIKING VELOCITY AND STRIKING YAW VERSUS RANGE, SS-109	44
27	STRIKING VELOCITY AND STRIKING YAW VERSUS RANGE, M855	45
28	STRIKING VELOCITY AND STRIKING YAW VERSUS RANGE, M856/L110	46
29	STRIKING VELOCITY AND STRIKING YAW VERSUS RANGE, SS-109, FROM THE XM249E1 WEAPON	47

LIST OF TABLES

EV CON

.

Table	•	Page
1	AVERAGE PHYSICAL CHARACTERISTICS OF 5.56MM NATO PROJECTILES	. 48
2	ACCURACY FIRING TEST RESULTS	. 49
3	AERODYNAMIC COEFFICIENTS OF 5.56MM NATO BALL PROJECTILES	. 50
4	AERODYNAMIC COEFFICIENTS OF 5.55MM NATO TRACER PROJECTILES	. 51
5	FLIGHT MOTION PARAMETERS OF 5.56MM NATO BALL PROJECTILES	• 52
6	FLIGHT MOTION PARAMETERS OF 5.56MM NATO TRACER PROJECTILES	. 53
7	LIMIT-CYCLE YAW TEST RESULTS	• 54
8	DISPERSION SENSITIVITY FACTORS FOR 5.56MM AMMUNITION	. 55

I. INTRODUCTION

On 24 March 1983, the author attended a meeting with personnel of the Squad Automatic Weapon (SAW) Project Office at Dover, New Jersey. The subject of the meeting was the unacceptably high lot rejection rates of early production 5.56mm M855 (Ball) and M856 (Tracer) ammunition manufactured at Lake City Army Ammunition Plant (LCAAP). The rejected lots failed to meet the accuracy specification, and LCAAP had indicated to the SAW Project Office that they believed the government-furnished test barrels might be contributing to the problem. The result of the meeting was a joint recommendation, by the Ballistic Research Laboratory (BRL) and the SAW Project Office, to conduct a three-part test at the BRL free-flight range facility. The first part of the test was to be an accuracy check, using the Kart-manufactured barrels supplied to LCAAP. The accuracy test was to include rejected lots of M855/M856, control lots of the Belgian (FNB) counterpart SS-109/L110 ammunitions, and handloaded ammunition using 52 grain Sierra Benchrest bullets, in both Lake City cartridge cases, and commercial match grade cases. All accuracy firing was to be done at 100 yards, in the BRL Aerodynamics Range.¹ The second part of the test consisted of aeroballistic range firings to determine the aerodynamic and flight characteristics of the LCAAP and FNB ammunitions, using down-loaded propellant charges to simulate ranges out to 800 metres. The third test phase was a real-range determination of striking velocity and limit-cycle yaw for the four ammunition types, using the limit-cycle test equipment in the BRL Transonic Range.

Test materiel and funding were provided to BRL by the SAW Project Office, and the first phase of testing began on 31 May 1983. The accuracy tests were completed on 27 June 1983, and the second part of the test schedule was conducted in September-October 1983. The third phase, limit-cycle yaw testing was conducted in March 1984. This report covers the results from all three phases of the SRL tests.

II. TEST MATERIEL AND PROCEDURE

Two of the Kart accuracy barrels, chambered and threaded to fit a Remington M700 action, were supplied to the BRL by the SAW Office. The Kart barrel serial numbers were 014 and 018, and both barrels had previously been in use at LCAAP; these two barrels were among those suspected by LCAAP personnel of contributing to the accuracy problem. One goal of the Phase I testing was to determine which of these two barrels was the more accurate, and select it for the remainder of the tests.

 W. F. Braun, "The Free Flight Aerodynamics Range," Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, BRL Report No. 1048, August 1958. (AD 202249) Figure 1 is a photograph of the accuracy test set-up. The barrelled action is mounted in a Frankford rest, with a Leupold M8, 16X scope to check return-to-battery alignment between shots. By using a systematic procedure for returning the recoil cradle to battery, it was determined that shot-toshot scope alignment within $\pm 1/16^{\circ}$ at 100 yards range could be maintained.

The U.S. lot acceptance accuracy specification for 5.56mm NATO Ball ammunition is as follows: the mean radius of each group of ten shots shall not exceed 2 inches at 200 yards. Tracer ammunition must meet a less stringent requirement; less than 4 inch mean radius at the same range. For the BRL 100 yard indoor firings, the required accuracy criteria translate to 1-inch mean radius (MR) for the M855 and SS-109, and 2-inch MR for the M856 and L110 Tracers.

Initial accuracy testing during Phase I showed Kart barrel number 014 to give slightly smaller round-to-round dispersion than did barrel 018; hence, barrel 014 was used for all subsequent BRL testing. The Phase II tests were conducted at four Mach numbers; 2.75, 1.9, 1.1, and 0.7, which roughly correspond to ranges of zero (muzzle), 300 metres, 700 metres, and 1000 metres, respectively, for the Ball ammunition. Ten data rounds of each type were fired, for a total forty round test program; of these, thirty-six rounds yielded useful aerodynamic and flight performance data. A half-muzzle type yaw inducer was used on some of the Mach 1.1 and Mach 0.7 firings, in an attempt to determine any significant aerodynamic non-linearities at transonic and subsonic speeds. All Phase II aeroballistic tests were fired in the BRL Aerodynamics Range, using the same Phase I weapon mounting shown in Figure 1.

The Phase III testing also used the weapon mounting system of Figure 1, but with the gun moved to one of the three firing positions at the BRL Transonic Range facility. The real-range limit-cycle yaw tests were conducted at ranges of 300, 600, and 800 metres; ten data rounds of each ammunition type were fired at the 300 and 600 metre ranges, and fifteen data rounds of each type were fired at the 800 metre range. Unfortunately, the tracer projectiles fogged the photographic film at 800 metres range, due to the long residence time of the subsonic bullets over the instrumentation; hence, no tracer limitcycle data were obtained at 800 metres.

Figures 2 and 3 show sketches of the U.S. and FNB Ball bullets, and the U.S. and FNB tracers, respectively. The sketches reflect bullet contour measurements, made on the BRL Mann optical comparator. Table 1 lists the average measured physical characteristics of the four projectile types.

Selected prints of snark shadowgraphs of the four bullet types, from the limit-cycle yaw tests, are shown in Figures 4 through 8. Figure 4 shows the flowfield around the M855 and SS-109 projectiles at 300 metres range ($M_{\infty} \simeq 1.9$), figure 5 shows similar shadowgraphs for the same projectiles at 600 metres ($M_{\infty} \simeq 1.2$) and figure 6 shows 800 metre results ($M_{\infty} \simeq 0.9$). Figure 7 is a comparison of flowfields at 300 metres range ($M_{\infty} \simeq 1.9$) for the M856 and L110 tracers, and figure 8 shows a 600 metre shadowgraph ($M_{\infty} \simeq 1.4$) for the L110 tracer projectile. No 600 metre data were obtained for the M856 tracer, due to the extremely large ammunition dispersion at that range.

III. ACCURACY FIRING TEST RESULTS

The ammunition provided to the BRL for testing consisted of Ball, SS-109, Lot FNB-83A-001-001, and Tracer, L110, Lot FNB-83A-001-001, for the Belgianproduced rounds; and Ball, XM855E1, Lot LC-83E300-5230, plus Tracer, XM856E1, Lot LC-83E300-5231, for the U.S. production ammunition. In addition to the ammunition provided by the SAW Office, the BRL procured, through open commercial sources, a sufficient quantity of Federal .223 Remington unprimed cases (LOT 8A-2132), CCI #450 small rifle primers, Sierra, .224", 52 grain Benchrest bullets, and IMR 3031 propellant (LOT 232AA09A), for use in checking the accuracy of the Kart test barrels.

The accuracy firing test results are summarized in Table 2. All groups fired were ten-shot groups, with one exception, as noted. The accuracy firings showed that Kart barrel No. 014 was slightly superior to No. 018, based on the performance with 52 grain Sierra Hollow Point Boattail (HPBT) bullets, although both barrels showed very small dispersion with the Sierra HPBT bullets. The FNB manufactured SS-109 Ball and L110 Tracer ammunition also easily met accuracy requirements, from either Kart barrel tested.

The first test fired with LCAAP produced M855 Ball ammunition, from Kart barrel No. 014, failed to meet specifications. The only group fired with LCAAP manufactured M856 Tracer ammunition did meet the accuracy requirement. Additional testing was performed, in which the M855 bullets were pulled, then loaded in commercial Federal cases, first with IMR 3031 propellant, then with the standard charge of LCAAP propellant. Both groups met the accuracy requirement. Finally, the Sierra HPBT bullets were loaded in LCAAP primed cases, with IMR 3031 propellant, and the results duplicated the commercial case results, which suggested that the LCAAP cartridge case was not a significant contributor to the accuracy problem.

Although the BRL accuracy firing test results are based on small sample sizes, the indications are that the act of pulling the M855 bullet and reseating it into the cartridge case, using straight-line seating dies, improved its performance markedly. Neither the cartridge case nor the propellant used appeared to have any significant effect on dispersion.

The conclusions reached from the accuracy test firings were (1) The Kartmanufactured Mann test barrels were not a significant contributor to the observed M855/M856 dispersion problem, (2) The lot of M855 Ball ammunition tested failed to meet accuracy specifications, (3) The bullet seating operation in LCAAP ammunition assembly was at least part of the cause of the observed M855 dispersion.

IV. AEROBALLISTIC TEST RESULTS

The free-flight spark photography range data were fitted to solutions of the linearized equations of motion and these results used to infer linearized

aerodynamic coefficients, using the methods of Reference 2. The actual projectile aerodynamic force-moment system often is not strictly linear. Given sufficient data the actual non-linear behavior can be determined from the range results.³ For the four 5.56mm NATO projectiles, sufficient data were obtained to permit determination of the effect of yaw level on the drag coefficient; no statistically significant values of the non-linear terms could be found for any of the transverse aerodynamic force or moment coefficients.

The round-by-round aerodynamic data obtained are list $\neg d$ in Tables 3 and 4, and the measured flight motion parameters are given in tables 5 and 6. Three rounds of SS-109 ammunition previously fired in an Opermeyer Mann barrel are also included in Tables 3 and 5.

A. Drag Coefficient

The drag coefficient, C_D , is determined by fiting the time-distance measurements from the range flight. C_D is distinctly non-linear with yaw level, and the value determined from an individual flight reflects both the zero-yaw drag coefficient, C_D , and the induced drag due to the average yaw level of the flight. The drag coefficient variation is expressed as an even power series in yaw amplitude:

$$C_{D} = C_{D_{0}} + C_{D_{\delta^2}} \delta^2 + \cdots$$

where C_{D_0} is the zero-yaw drag coefficient, $C_{D_{\delta^2}}$ is the quadratic yaw-drag coefficient, and δ^2 is the total angle of attack squared.

Analysis of the SS-109 and M855 drag coefficient data showed the two rounds to have essentially equal yaw-drag characteristics, but significantly different zero-yaw drag levels. Values of $C_{\rm D}$ = 7.0 at supersonic speeds,

and $C_{D_{\chi^2}} = 9.8$ at subsonic speeds were used to correct the range data to

zero-yaw conditions, for both the SS-109 and the M855. Figure 9 shows the variation of the zero-yaw drag coefficient, C_{D_n} , with Mach number for the two

projectiles. The M855 design has about 8% more drag than the SS-109 at supersonic speeds, and this difference increases to approximately 20% at subsonic speeds. Since the M855 and SS-109 projectiles do not reach subsonic speeds except at ranges beyond 800 metres, the effect of the subsonic drag difference between the two designs would be observed only at extremely long ranges.

^{2.} C. H. Murphy, "Data Reduction for the Free Flight Spark Ranges," Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, BRL Report No. 900, February 1954. (AD 35833)

^{3.} C. H. Murphy, "The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests," Ballistic Research Laboratories, Aberdeen Proving Ground, Marylana, BRL Report No. 974, February 1956. (AD 93521)

Figure 10 is a similar plot of the zero-yaw drag coefficients for the M856 and L110 tracer projectiles. A least squares fit of the range data yielded the values $C_{D_{x2}} = 5.7$ at supersonic speeds, and $C_{D_{x2}} = 6.4$ at

subsonic speeds, for both tracer projectiles. Note that all tracers were essentially non-burning over the 50 metre flight observed in the BRL Aerodynamics Range, thus Figure 10 represents the drag coefficient behavior of non-burning tracers. Figure 10 also shows that the M856 and the L110 tracers have essentially identical zero-yaw drag, although the larger observed roundto-round variation in tracer drag coefficient could mask a slight difference in average drag level. The larger round-to-round scatter in Figure 10 is primarily due to the ogival boattail shape of the tracer bullets; minor roundto-round variations in surface finish along an ogival boattail lead to a variable boundary layer separation point, which in turn leads to larger than usual round-to-round variations in base drag.

B. Overturning Moment Coefficient

The range measured overturning moment coefficient, ${\rm C}_{\rm M}$, is plotted

against Mach number in Figure 11, for the Ball projectiles, and Figure 12 for the Tracer ammunition. Figure 11 shows that the SS-109 projectile has an overturning moment coefficient approximately 5% higher than does the M855, at supersonic speeds. Figure 12 shows no significant difference in overturning moment coefficient between the M856 and the L110 tracers.

C. Gyroscopic Stability Factor

The launch gyroscopic stability factors (S_g) for the Ball and Tracer projectiles, fired from the 7-inch twist Kart barrel, are shown in Figures 13 and 14. Figure 13 indicates equivalent launch S_g for the M855 and the SS-109 projectiles, which shows that differences in the physical characteristics of the two designs essentially offset the overturning moment coefficient difference observed in Figure 11. Figure 14 shows that launch gyroscopic stability factors for the M856 and the L110 tracer designs are equivalent.

Note that the decreased launch S_g at lower launch velocities, shown in both Figures 13 and 14, will never be observed in field firings, since the 5.56mm NATO projectiles are never fired at reduced muzzle velocities. The gyroscopic stability factors shown at the highest velocities tested are representative of actual ammunition performance at ambient field conditions.

All four projectiles tested have sufficient gyroscopic stability to permit firing at extreme cold weather (high air density) conditions, with no significant degradation in performance.

D. Lift Force Coefficient

The range values of lift force coefficient, $C_{L_{\alpha}}$, are shown for the Ball and Tracer projectiles respectively, in Figures 15 and 16. Figure 15 shows

and Tracer projectiles respectively, in Figures 15 and 16. Figure 15 shows equivalent values of C_{L} for the SS-109 and the M855 projectiles, and Figure α

16 shows no significant difference in lift force coefficient between the M856 and the L110 tracer designs.

E. Magnus Moment Coefficient

The Magnus moment coefficient, C_{M} , is plotted against Mach number in p_{α}

Figures 17 and 18, for the Ball and Tracer projectiles, respectively, and for small angles of attack. The Magnus moment coefficient for the M855 and SS-109 projectiles is a small positive quantity at supersonic speeds, and a subscintial negative quantity at transonic speeds. The Magnus moment coefficient for the tracer projectiles is positive at supersonic speeds. Unfortunately, the epicyclic damping rates were poorly determined for the tracer designs at transonic and subsonic speeds; hence, no Magnus moment or pitch damping moment data were obtained for the tracers at lower velocities.

F. Pitch Damping Moment Coefficient

The pitch damping moment coefficient sum, $(C_{M_q} + C_{M_{\alpha}})$ is plotted against Mach number in Figures 19 and 20, for the Ball and Tracer projectiles, respectively, and for small angles of attack. The pitch damping moment coefficient sum for the M855 and SS-109 projectiles is substantially negative at supersonic speeds, and tends toward zero at transonic speed. The pitch damping moment for the tracer projectiles is a relatively large negative quantity at supersonic speeds. Since a negative value of $(C_{M_s} + C_{M_s})$ causes

damping of the yawing motion, Figures 19 and 20 show generally favorable pitch damping properties of all the 5.56mm NATO projectiles at supersonic speeds.

G. Damping Rates

The damping rates, λ_F and λ_S , of the fast and slow yaw modes indicate the dynamic stability of a projectile. Negative λ 's indicate damping; a positive λ means that its associated modal arm will grow with increasing time.

Figures 21 and 22 show the fast and slow arm damping rates for the M855 and SS-109 Ball projectiles, at small angles of attack. Figure 21 shows that the fast arm is damped at all velocities tested. Figure 22 shows the slow arm to be damped at high supersonic speeds, but tending toward a weak undamping at low supersonic and transonic speeds. Thus, Figure 22 suggests the possibility of a slow-mode limit cycle yaw at low supersonic and transonic speeds, for both the M855 and SS-109 projectiles.

Figures 23 and 24 show the fast and slow arm damping rates for the M856 and L110 Tracer projectiles, at small angles of attack. Both yaw modes appear to be strongly damped at supersonic speeds. Unfortunately, the damping rates of the tracer projectiles fired at transonic and subsonic speeds were poorly determined, thus no data were obtained for the lower velocity regions.

V. LIMIT-CYCLE YAW TEST RESULTS

The final phase of the BRL tests of 5.56mm NATO ammunition was the realrange, limit-cycle yaw and striking velocity determination. The limit-cycle yaw testing was conducted during March 1984, at the BRL Transonic Range facility, using three of the Aerodynamics Range spark photography stations. Figure 25 is a photograph of the experimental facility used for limit-cycle yaw testing. The direction of bullet travel in Figure 25 is from upper left, through the barricades and spark photography stations, and into the bullet trap at lower right.

If a projectile successfully negotiates the instrumentation shown in Figure 25, and all stations are triggered, three measurements of striking yaw and two determinations of striking velocity are obtained. Occasionally, two of the three spark stations will trigger, and two determinations of yaw and one velocity are obtained. No data were obtained for the L110 tracer at 800 metres range, since the long residence time of the bright tracer over the photographic plates caused excessive fogging of the film. No data were obtained for the M856 tracer at either 600 metres or 800 metres range, due to the large round-to-round dispersion of the M856 ammunition. A tabulated summary of all the data obtained from the limit-cycle yaw testing is given in. Table 7.

The striking velocity and limit-cycle yaw behavior of the 5.56mm NATO ammunition is shown in Figures 26 through 29. Figures 26 and 27 show striking velocity and striking yaw for the SS-109 and M855 projectiles, respectively, from the Kart Mann barrel, No. 014. The vertical bars shown on the striking yaw plots represent limits of plus and minus one standard deviation. Figure 28 is a similar plot of striking velocity and striking yaw for the two tracer projectiles, also from the Kart Mann barrel. The 856 tracer projectile shows approximately 6 metres/second higher striking velocity than does the L110, out to 300 metres range. Note that the striking yaw histories of the L110 and M856 projectiles appear to be essentially identical, out to 300 metres. Figure 29 is a plot of striking velocity and striking yaw versus range, for the SS-109 projectile, fired from the XM249E1 Squad Automatic Weapon (SAW), in June 1981. The ammunition used was Lot 01 FNB 81, and the SS-109/XM249E1 test was conducted with funding provided by the U.S. Army Materiel Systems Analysis Activity (AMSAA). Note the excellent agreement in striking velocity hintory between the two weapons, as indicated in Figures 26 and 29. The limit-cycle yaw, at ranges beyond 300 metres, appears to be slightly greater from the Kart Mann barrel than that observed three years earlier from the XM249F1. It is not possible to infer from the present data if the difference in observed limit-cycle yaw behavior is due to weapon/rifling differences, or the lot-to-lot differences in the SS-109 ammunition.

VI. COMMENTS ON AMMUNITION DISPERSION

One of the principal problems encountered in U.S. production of the 5.56mm NATO ammunition has been excessively high rejection rates of LCAAP manufactured ammunitions lots. In 1982-83, several lots of M855 Bali ammunition failed to meet the accuracy specification. The M855 accuracy problem has since been corrected; however, current lots of LCAAP produced M856 Tracer ammunition are showing excessive rejection rates, again due to failure on the accuracy specification. In nearly all cases, the FNB manufactured SS-109 Ball and L110 Tracer ammunition, fired simultaneously as control rounds, meet or exceed the U.S. accuracy specifications.

The largest contributing factors to dispersion in modern small arms ammunition are the lateral throwoff and the aerodynamic jump, produced by projectile static and dynamic unbalance, respectively. Of these two, the aerodynamic jump due to dynamic unbalance is generally the predominant effect, and we will examine some of the causes and consequences of dynamic unbalance in modern small arm projectiles. 计算机器 化化学学学 化化学学学学学学 化化学学学学 化化学学学学学 化化学学学学学学 化化学学学学学 化化学学学 化化学学

If a bullet jacket varies in wall thickness around its circumference, and the jacket and core are of different density materials, an unbalance is introduced in proportion to the jacket wall eccentricity. If the lateral meridian plane containing the eccentricity is not held constant, both a static and a dynamic unbalance are introduced. In addition, if the bullet has a two-piece core, and the front and rear core sections are of widely different density materials, even a relatively small jacket wall eccentricity can introduce a large dynamic unbalance in the bullet.

In their classical text, <u>Exterior Ballistics</u>, ⁴ McShane, Kelley, and Reno derive the aerodynamic jump effect, due to either an in-bore yaw, or an analagous dynamic unbalance in the projectile. The aerodynamic jump is the amount by which the direction of motion of the projectile is changed, and is given as an angle in radians. The result, from Chapter XII of <u>Exterior Ballistics</u>, is converted to the modern aeroballistic nomenclature:

$$Jump = \left(\frac{2\pi}{n}\right) \left(k_{t}^{2} - k_{a}^{2}\right) \left(\frac{C_{L_{\alpha}}}{C_{M_{\alpha}}}\right) \epsilon$$

kt² = I_y/m d²
k ² = I_x/m d²
J_y = projectile transverse moment of inertia
I_x = projectile axial moment of inertia
m = projectile mass
d = projectile reference diameter
C_L = lift force coefficient
C_M^α = overturning moment coefficient
g = dynamic unbalance angle, or in-bore yaw due to bullet tilt
in cartridge case (radians)

^{4.} E. J. McShune, J. L. Kelley, and F. V. Reno, <u>Externor Ballistics</u>, University of Denver Prass, 1953.

For a given dynamic unbalance angle, the quantity $\left[\left(\frac{2\pi}{n}\right) \left(k_{t}^{2}-k_{a}^{2}\right) \left(\frac{L_{\alpha}}{L_{M}}\right) \right]$

can be considered as a dispersion "sensitivity factor," and we will now evaluate this factor for several 5.56mm projectiles. The M193 Ball and M196 Tracer rounds, fired from the M16A1 rifle with 12-inch twist of rifling, will be compared with the M855 Ball and M856 Tracer projectiles fired from the 7inch twist rate of the M16A2 or the M249. The results are given in Table 8.

Comparison of the dispersion sensitivity factors in the last column of Table 8 shows that the dynamic unbalance of the M855 bullet must be held to approximately 60% of that present in M193 projectiles, in order to equal the M193 dispersion. The same comparison of old and new tracer ammunition shows that the M856 dynamic unbalance cannot exceed 50% of that present in M196 tracers, if comparable dispersions are to be obtained. Since the dynamic unbalance in all the above bullets is approximately proportional to jacket wall eccentricity, it is apparent that tolerances in jacket wall thickness for the new 5.56mm NATO projectiles need to be held at half the levels permitted for the older M193/M196 family of 5.56mm ammunition. The aerodynamic jump due to bullet tilt in the cartridge case is analagous to that of dynamic unbalance; thus, bullet tilt in the seating operation of N855/M856 ammunition should be held to half that allowed for the M193/M196 family.

VII. CONCLUSIONS AND RECOMMENDATIONS

The Kart manufactured Mann test barrels supplied to LCAAP are not a significant contributor to the observed M855/M856 dispersion problem.

The bullet seating operation in LCAAP ammunition assembly is part of the cause of observed M855/M856 dispersion, and some effort needs to be made in the direction of reduced bullet tilt in assembled ammunition.

Tolerances in bullet jacket wall thickness for the M855/M856 need to be held to approximately half those permitted for the older M193/M196 projectiles, to insure satisfactory accuracy with the new 5.56mm NATO ammunition.

The zero-yaw drag coefficient of the M855 Ball projectile is approximately eight percent higher than that of the SS-109 design, at supersonic speeds. The drag coefficients of the M856 and L110 tracer projectiles appear to be essentially identical at supersonic speeds.

All four 5.56mm NATO projectiles tested have sufficient gyroscopic stability, when fired from the 7-inch twist of rifling, to permit firing at extreme cold weather (high air density) conditions, with no significant degradation in performance.

The M855/SS-109 Ball projectiles show good yaw damping properties for both the fast and slow yaw modes, at supersonic speeds. The slow yaw mode shows weak undamping at small yaw levels for both Ball projectile designs at transonic speeds. The M855/SS-109 Ball projectiles show limit-cycle yaw levels growing from approximately 0.5 degree at 300 metres range, to approximately 6 degrees at 800 metres range. The tracer projectiles show yaw levels damping to approximately 0.5 degree at 300 metres range, and remaining at this level out to 600 metres range.

.

. - . .

ALL DIMENSIONS IN CALIBERS (1 CALIBER = 5.69 mm)

ALL DIMENSIONS IN CALIBERS (1 CALIBER = 5.69 mm)

Figure 3. Sketch of L110 and M856 Tracer Projectiles

ł

3.0 © M856 TRACER Pitch Damping Moment Coefficient versus Mach Number, M856/L110 ₽°° 2.0 0 MACH NUMBER **4** 1° < 5 < 1.0 Figure 20. 0 -20-0 -10 $c_{M_q} + c_{M_{\dot{\alpha}}}$

 $1^{\circ} < \overline{\delta} < 4^{\circ}$

Figure 21. Fast Arm Damping Rate versus Mach Number, M855/SS-109

1998 B

. .

1. 1. 2. 0. 4. V

لكك

Figure 26. Striking Velocity and Striking Yaw versus Range, SS-109

Figure 29. Striking Velocity and Striking Yaw versus Range, SS-109, from the XM249E1 Weapon

Table 1. Average Physical Characteristics of 5.56mm NATO Projectiles

Projectile	Referenca Diameter (mm)	Weight (grams)	Center of Gravity (calibers, base)	Axial Moment of Inertia (gm-cm²)	Transverse Moment of Inertia (gm-cm²)
Ball, SS-109	5.69	4.03	1.52	.1425	1.112
Ball, M855	5.69	4.05	1.54	.1426	1.150
Tracer, L110	5.69	4.09	2.52	.1573	1.874
Tracer, M856	5.69	4.19	2.57	.1634	1.987

48

Mean Radius @ 100 yds.)	0.26 0.31 0.61 1.40	0.19 C.29 0.37 0.23	1.32 0.61 0.99 0.21 0.51 0.20 0.20
Bullet (in. (52 SIERRA, HPBT 52 SIERRA, HPBT SS109 (BALL) L110 (TRACER)	52 SIERRA, HPBT 52 SIERRA, HPBT SS109 (BALL) L110 (TRACER) 52 SIERRA, HPBT	M855 (BALL) SS109 (BALL) M855 (BALL) M856 (TRACER) 52 SIERRA, HPBT M855 (BALL) M855 (BALL) M855 (BALL) M855 (BALL) 52 SIERRA, HPBT
Charge (Grains)	25 25 STD STD	25 25 8TD 8TD 25	STD STD STD 25 23 25 25 25 25
Propellant	IMR 3031 IMR 3031 FNB FNB	IMR 3031 IMR 3031 FNB FNB IMR 3031	LC FNB LC LC LC LC IMR 3031 IMR 3031 IMR 3031 IMR 3031 IMR 3031
Priser	CCI 450 CCI 450 FNB FNB	CCI 450 CCI 450 FNB FNB CCI 450	LC FNB LC LC LC LC CCI 450 CCI 450 CCI 450 CCI 450 LC
Cartridge Case	Federal Federal FNB FNB	Federal Federal FNB FNB Federal	LC FNB LC LC LC Federal Federal LC LC
Kart Barrel No.	018 018 018 018	014 014 014 014 014 (OBERMEYER)	014 014 014 014 014 014 013
Group No.	11 11 11 11	XI 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Date (5/31/83 5/31/83 5/31/83 5/31/83	6/1/83 6/1/83 6/1/83 6/1/83 6/1/83	6/27/83 6/27/83 6/27/83 6/27/83 6/27/83 6/27/83

*9 SHOT GROUP --- ONE ROUND WAS INADVERTENTLY NOT FIRED

Table 2. Accuracy Firing Test Results

のためになっていたので、「ないないない」

H

<u>ar</u>te

Aerodynamic Coefficients of 5.56mm NATO Ball Projectiles Table 3.

CP _N (cal-base)	2.34 2.34 2.65 3.19 3.19	2.36 2.42 2.60 2.52 2.79
(^c M + c ^M)	-3.77 -6.42 -5.02 -3.15 -3.15 -7.05 -7.05 -7.38	-5.52 -6.51 -4.99 -1.27 0.0
$c_{M_{P_{\alpha}}}$	04 03 04 16 16 16 .116	.10 03 .06 59 47
¤ د د	2.82 2.67 2.15 2.15 1.81	2.61 2.59 2.16 2.14 1.35
× ع ک	2.52 2.55 2.76 2.77 2.97 3.05 2.54 2.55	2.40 2.66 2.66 2.85 2.85 2.85 2.85 2.85
0 D	.2898 .2857 .3346 .3346 .3730 .4488 .4488 .1753 .1753 .1753 .1753 .2834 .2834 .2834 .2919 .2956	.3039 .3007 .3741 .3851 .4874 .4874 .4876
$^{lpha}_{{f t}}$ (deg)	$\begin{array}{c} 1.30\\ 1.28\\ 3.78\\ 3.78\\ 2.57\\ 4.06\\ 1.47\\ 1.70\\ 1.84\\ 1.84\end{array}$	1.90 1.62 3.65 2.27 2.87 6.04
Mach Number	2.638 2.622 1.964 1.138 1.138 .757 .757 .757 .757 .757 .757 .757 .75	2.730 2.714 1.875 1.869 1.137 1.072 .674
Projectile Type	SS-109	M855
Rd. No.	16221 16220 16231 16230 16238 16238 16238 16245(b) 16245(b) 16245(b) 16245(b) 16245(b) 16245(b) 16245(b) 16245(b) 16245(b)	16222 16223 16228 16229 16237 16233 16243

(a), (b) after a round number denotes a split reduction.

* Round previously fired from Obermeyer 7" twist barrel.

۰. ۱

	CP _N (cal-base)	8 8 1 1	3.21	3.27	6 9 8 8	L I I I	1 9 1 1	2 2 8 3	3.32	3.30	3.43	1 1 5 3	3.67	3.65	3.70	3.87	8 0 8
ectiles .	(^{c_M + c_M[°])}	-10.4	-10,1	-18.6	8 8 9 1	2 8 8 8	8 8 8 8	8 1 1 1	-14.6	-12.5	-14.9	-19.8	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	-5.15	9 1 1 2 3	5 5 1 1
Aerodynamic Coefficients of 5.56mm NATO Tracer Projectiles	C _M Pa	.39	.44	•89	1 1 1	1 1 1	1 1 1	8 1 8	.45	.56	.59	.95	1 1 1	: 1 1	30	 	E 8 9
imm NATO Tr	۳ ا ک	6 8 8 8	2.96	2.89	8 8 8	5	8 6 8 8	1 8 8 8	2.73	2.81	2.87	8	2.10	2.11	2.05	1.92	 .
ts of 5.56	х Ш С	2.44	2.26	2.50	I I I	8 8 8 8	# # # #	6 6 7 1	2.28	2.29	2.76	2.70	2.88	2.86	2.87	2.93	1 1 1 1
oefficien	°,	.2983	.3083	.4267	.3737	.5398	.2470	.2074	.3044	.3140	.3308	.4025	.5031	.5334	.4850	.3174	-2847
dynamic C	α_{t} (deg)	. 78	2.76	6.14	.52	5.21	4.31	5.29	1.64	1.70	2.77	4.01	4.03	5.95	4.67	7.59	10.04
4.	Mach Number	2.543	2.533	1.890	1.822	1.121	.854	.841	2.575	2.566	1.995	1.870	1.184	1.140	1.117	.758	.738
Table	Projectile Type	L110							M856							•	
	Rd. No.	16224	16225	16234	16235	16242	16249(a)	16249(b)	16226	16227	16232	16233	16240(a)	16240(b)	16241	16247	16248

(a), (b) after a round number denotes a split reduction.

.

Flight Motion Parameters of 5.56mm NATO Ball Projectiles Table 5.

¢'S (rad/ca1)	.0028 .0028 .0031 .0031 .0033 .0033 .0035 .0035 .0028	.0027 .0027 .0031 .0030 .0032 .0032
φ' _F (rad/cal)	.0224 .0227 .0225 .0225 .0225 .0225 .0229 .0229	.0213 .0211 .0213 .0213 .0213 .0215 .0215
× S	.0163 .0174 .0174 .0497 .0468 .0463 .0203 .0695 .0695 .0204	.0232 .0173 .0252 .0492 .0467 .0467
κ κ	0147 0115 0048 0376 0160 0017 0017 0036 0034 0134 0126	.0207 .0107 .0115 .0353 .0353 .0118 .0118
λ _S × 10 ³ (1/cal)	063 044 060 060 071 077 073	072 027 027 062 062 096
λ _F × 10 ³ (1/cal)	106 179 125 167 167 125 125 125 125	118 155 115 115 115 113
°s	.79 .51 .73 .73 .73 .19 .74	.81 .44 .77 .77 .77 .77 .77 .77 .77
S	2.53 2.56 2.39 2.39 2.24 2.24 2.59 2.59	2.49 2.50 2.27 2.29 2.19 2.18
Ma ch Number	2.638 2.638 1.964 1.179 1.138 .757 .736 2.645 2.629 2.629	2.730 2.714 1.875 1.875 1.869 1.137 1.072 .574
Projectile Type	SS-109	M855
Rd. No.	16221 16220 16230 16230 16238 16238 16245(a) 16246 *14414 *14414 *14416 *14415	16222 16223 16223 16229 16239 16236 16236

(a), (b) after a round number denotes a split reduction.

*Round previously fired from Obermeyer 7" twist barrel.

H

.

.,

.

Flight Motion Parameters of 5.56mm NATO Tracer Projectiles Table 6.

φ'S (rad/cal)	.0026	.0024	.0027	8 8 8 8			8 8 8 8	.0024	.0024	.0029	.0029	.0032	.0030	.0031	.0033	5 8 8 8
φ' _F (rad/cal)	.0140	.0143	.0139	5 7 8 8	0 1 1 1 1	8 8 8 8 1	1 1 1 2	.0135	.0133	.0133	.0130	.0128	.0132	.0131	.0123	6 8 8 8 8
× S	.0068	.0219	.0506	.0061	.0849	.0722	.0920	.0170	.0137	.0205	.0225	.0654	.1018	.0704	.1008	.1622
ж Н	.0108	.0399	.0881	.0049	.000	.0104	.0041	.0191	.0239	.0395	.0597	.0107	.0089	.0347	.0847	.0029
λ _S × 10 ⁻ (1/cal)	127	158	- ,240		1 1 1 1	 	8 8 8 8	136	173	177	257	R 8 8 8		.041	8	2 8 8 8
λ _F x 10 ³ (1/cal)	074	055	082	8	6 8 8 8	- 	0 6 7 8	128	064	091	081	8	8 8 8 8	164	8 6 7 8	0 0 0 0
sd Sd	1.19	1.34	1.31	1 1 1 1	 	ł L L	5 1 1 1	1.02	1.32	1.20	1.33		4	15	1 8 9 8	8 8 8 8
Sg	1.88	2.06	1.83	1 2 1 1	1 1 1	8 8 8	l 2 1	1.95	1.91	1.69	1.66	1.57	1.64	1.62	1.49	
Mach Number	2.543	2.533	1.890	1.822	1.121	.854	.841	2.575	2.565	1.995	1.370	1.184	1.140	1.117	.758	.738
Projectile Type	L110							M856								
Rd. No.	16224	16225	16234	16235	16242	16249(a)	16249(b)	16226	16227	16232	16233	16240(a)	16240(b)	16241	16247	16248

(a), (b) after a round number denotes a split reduction.

Table 7. Limit-Cycle Yaw Test Results

Projectile Type	Range (M)	Total No. of stations Measured	Average Striking Yaw (Deg)	Standard Deviation in Yaw (Deg)	Average Striking Velocity (M/S)	Standard Deviation in Velocity (M/S)
SS-109	300	30	.50	.29	648.5	2.6
	600	30	2.41	.35	415.5	5.1
	800	57	5.54	1.43	315.1	3.1
M855	300	33	.55	.37	656.2	13.5
	600	41	3.29	1.39	406.2	8.4
	800	51	6.32	3.70	312.7	2.1
L110	300	39	.40	.33	638.0	5.3
	600	11	.35	.21	463.0	9.6
M856	300	28	.43	.22	644.2	15.8

Table	8. Dispersio	on Sensitivity		for 5.56mm Ammunition
Projectile	n (cal/turn)	$(k_t^2 - k_a^2)$	ЧM	$\begin{bmatrix} (2\pi) (k_t^2 - k_a^2) (C_{L_\alpha}) \end{bmatrix}$
M193 Ball	_53.6	.56	α 1.57	.10
M855 Ball	31.3	.77	1.13	.17
M196 Tracer	53.6	•75	1.83	.16
M856 Tracer	31.3	1.35	1.22	33

REFERENCES

- 1. W. F. Braun, "The Free Flight Aerodynamics Range," Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, BRL Report No. 1048, August 1958. (AD 202249)
- 2. C. H. Murphy, "Data Reduction for the Free Flight Spark Ranges," Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, BKL Report No. 900, February 1954. (AD 35833)
- 3. C. H. Murphy, "The Measurement of Non-Linear Forces and Moments by Means of Free Flight Tests," Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, BRL Report No. 974, February 1956. (AD 93521)
- 4. E. J. McShane, J. L. Kelley, and F. V. Reno, <u>Exterior Ballistics</u>, University of Denver Press, 1953.

LIST OF SYMBOLS

с _D	=	Drag Force (1/2) ρ V ² S	
с _D	=	zero yaw drag coefficier	it -
c _{D_c2}	= .	quadratic yaw drag coeft	ficient
c _{Lα}	=	<u>Lift Force</u> (1/2) ρ V ² S δ	Positive coefficient: Force in plane of total angle of attack, α_t , \perp to trajectory in direction of α_t . (α_t directed from trajectory to missile axis.) $\delta = \sin \alpha_t$.
c _{Να}	=	Normal Force (1/2) ρV ² Sδ	Positive coefficient: Force in plane of total angle of attack, α_t , \perp to missile axis in direction of α_t . $C_{N_{\alpha}} = C_{L_{\alpha}} + C_{D}$
с _{Ма}	=	Static Moment (1/2) $\rho V^2 S d \delta$	Positive coefficient: Moment increases angle of attack α _t .
С _{Мра}	=	$\frac{\text{Magnus Moment}}{(1/2) \circ V^2 \text{ S d } (\frac{\text{pd}}{V}) \delta}$	Positive coefficient: Moment rotates noseto plane of α_t in direction of spin.
С _N ра	-	$\frac{Magnus Force}{(1/2) p V^2 S (\frac{pd}{V}) \hat{c}}$	Negative coefficient: Force acts in direction of 90° rotation of the positive lift force against spin.

For most exterior ballistic uses, where $\dot{\alpha} = q$, $\dot{\beta} = -r$, the definition of the damping moment sum is equivalent to:

ことがたいたいない。 ひろう かんたい たいていい ひょうきんたい マントン・キャッチャッチ アイド・ド

C _{Mq} + C _M	=	Damping Moment $(1/2) ho V^2 S d \left(\frac{q_t d}{V}\right)$ Positive coefficient: Moment increases angular velocity.
c _گ p	=	$\frac{\text{Roll Damping Moment}}{(1/2) \rho V^2 \text{ S d } (\frac{pd}{V})}$ Negative coefficient: Moment decreases rotational velocity.
CP _N	8	center of pressure of the normal force, positive from base to nose
α, β	3	angle of attack, side slip
at	2	$(\alpha^2 + \beta^2)^{1/2} = \sin^{-1} \delta$, total angle of attack
^λ F	=	fast mode damping rate
λ _S	2	fast mode damping rate negative λ indicates damping slow mode damping rate
ρ	=	air density
¢۴	8	fast mode frequency
φŞ	3	slow mode frequency
CG	2	center of gravity
d	2	body diameter of projectile, reference length
I x	3	axial moment of irertia
I _y	9	transverse moment of inertia

LIST OF SYMBOLS (continued)

Ţ

k _a ²		$I_{\rm x}/m d^2$
k _t ²	-	I _y /m d ²
κ _F		magnitude of the fast yaw mode
к _s	11	magnitude of the slow yaw mode
٤	3	length of projectile
m	2	mass of projectile
м	2	Mach number
p	1	roll rate
q, r	2	transverse angular velocities
۹ _t	2	$(r^2 + r^2)^{1/2}$
R	=	subscript denotes range value
S	=	dimensionless arc length along the trajectory
S	=	$\frac{\pi d^2}{4}$, reference area
s _d	3	dynamic stability factor
sg	3	gyroscopic stability factor
V	5	velocity of projectile
Effective	Squ	ared Yaw Parameter
~2		2 2

 $\tilde{\delta}^2 = \kappa_F^2 + \kappa_S^2$

£1

DISTRIBUTION LIST

No. of <u>Copies</u>	Organization	No. of Copies	Organization
12	Administrator Defense Technical Information Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Director US Army Air Mobility Researcn and Development Laboratory Ames Research Center Moffett Field, CA 94035
	HQDA DAMA-ART-M Washington, DC 20310		Commander_ US Army Communications - Electronics Command ATTN: AMSEL-ED Fort Monmouth, NJ 07703-5301
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Commander ERADCOM Technical Library ATTN: DELSD-L (Reports Section) Fort Monmouth, NJ 07703-5301
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-TSS Dover, WJ 07801-5001	1	Commander US Army Missile Command Research, Development, and Engineering Center ATTN: AMSMI-RD Redstone Arsenal, AL 35898
1	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-TDC Dover, NJ 07801-5001	1	Commander US Army Missile and Space Intelligence Center ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500
1	Director Benet Weapons Laboratory Armament R&D Center US Army AMCCOM ATTN: SMCAR-LCB-TL	1	Commander US Army Tank Automotive Command ATTN: AMSTA-TSL Warren, MI 48090
1	Watervliet, NY 12189 Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-7060	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range, NM 88002
1	Commander US Army Aviation Research and Development Command ATTN: AMSAV-E	1	Commandant US Army Infantry School ATIN: ATSH-CD-CSO-OR Fort Benning, GA 31905
	4300 Goodfellow Blvd St. Louis, MO 63120	1 61	AFWL/SUL Kirtland AFB, NM 87117
		01	

DISTRIBUTION LIST

Organization

AMXSY-MP, H. Cohen

No. cf <u>Copies</u>	Organization	No. of Copies	<u>Organizatio</u>
_1	Commander US Army Development and Employment Agena ATTN: MODE-TED-SAB Fort Lewis, WA 98433	Aberdeen Prov Dir, USAN ATIN:	
1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000		AMSTE-TO-F
16	Commander Armament R&D Center US Army AMCCOM ATTN: SMCAR-SA D. Mancinelli F. Fortino J. Lucianetti C. Yetter N. Hall L. Smeriglio ATTN: SMCAR-SCA-AD W. Schupp R. Mazeski F. Puzyski D. Conway ATTN: SMCAR-SCA-AP W. Bunting P. Errante ATTN: SMCAR-SMC A. Maradello R. VanPraeet ATTN: SMCAR-SCJ J. Ackley A. Mancini Dover, NJ 07801-5001		C, AMCCOM SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL
10 "	Central Intelligence Agency		

Office of Central Reference Dissemination Branch Room GE-47 HQS Washington, DC 20502

	استكر
	12mg
	ستدر ا
	Ì
	ويني اليو ا
	فسنبر
	1.1.

	Hera
	10 co.
	•
	N
	k
	У
	1
	j vi
	Here is a
•	
	+
	γ
	•.•.
	•
	•
	• •

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number_____ Date of Report_____

Date Report Received_____ 2.

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.)_____

4. How specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc.)_____

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRENT ADDRESS Organization

Address

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLD. ADDRESS Organization

Address

City, State, Zip

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)

Director U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE. \$300

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

- FOLD HERE -

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director

U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-9989

	_		
· · ' .	<u> </u>		`*
			*
<i>.</i>	· · · ·		
		\$ 	•
an Sol		e	
	1.12		a '- 14
····	1.1		

FOLD HERE