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INTRODUCTION

The coherent structures in turbulent flows have been under intense

investigation in recent years. These large-scale structures exhibit

unsteadiness in background flows which are nominally steady, and their

existence has been noted in free shear layers [I], turbulent spots [2), and

wall boundary layers 131. For wall bounded shear flows, there is strong

evidence that the commonly observed large-scale features could well be the

result of a colony of fine-scale hairpin vortices which, when

ensemble-averaged, produce the observed mean turbulent flow. These

investigations focused upon the naturally occurring turbulent structures.

On the other hand, motivated by the potential applications of forced, unsteady

vortex generation to the improvement of efficiency and performance of various

aerodynamic devices [41, vortex structures with scales greater than the scales

of the boundary layers were artificially generated near the wall and the

evolution of these structures were experimentally investigated [5]. It is

interesting to note that, although the scales involved are entirely different,

the general geometry and deformation of the forced structures reported in

Ref. [51 are quite similar to those of hairpin vortices naturally occurring in

the near wall region.

Thus, an investigation of the essential features associated with the

induced flow fields of hairpin vortices and the study of their dynamics in

various background flows is important not only in understanding the turbulent

flows per se, but also in exploiting the unsteady flow characteristics that may

improve aerodynamic efficiency and enhance component performance through

modification of the turbulence characteristics.

Under the premise that a mathematically operational model of hairpin

vortex can be constructed, the hairpin vortex can be used in different contexts

to study various aspects associated with turbulent boundary layer flows.

- For example, the turbulent boundary layer might be simulated by an appropriate

ensemble of hairpin vortices, then the dynamics of these vortices could be

tracked either in Lagrangian reference frames by methods described in [6J or in

an Eulerian reference frame by using continuity and momentum equations.

However, at the present stage of the development of the hairpin vortex concept,

it is felt that more fruitful insights could be obtained by pursuing in the

directions of two distinct but related approaches, namely, (i) the

1KU a .,



investigation of the dynamics of one or several separated representative

hairpin vortices submerged in various background boundary layer flows which can

be laminar or turbulent, with or without pressure gradients, and (ii) the

construction of useful statistical models using hairpin vortices to provide a

quantitative link between mean flow properties and turbulence properties.

The latter approach is a synthesis approach and, therefore, is inherently

kinematic in its nature. When pursuing the synthesis approach, the dynamic

information is indirectly included through the specifications of the structural

*parameters of the modelling vortices. Obviously, these two approaches are

complementary with each other, the experiences gained in one approach can be

used to advance the other's development.

A preliminary assessment of a synthesis approach has been made in [71, and

the results indicate that the application of the proposed synthesis technique

to estimate statistical properties of turbulent boundary layer flows via

hairpin vortex model of wall turbulence is quite feasible. The present work

focuses upon the development of capabilities for investigating the dynamic

evolution as well as the effect of hairpin vortices submerged in various

background flows by numerical simulation through the solution of unsteady,

three-dimensional Navier-Stokes equations. As an initial effort, the case of a

representative hairpin vortex submerged in a laminar boundary layer flow

(Blasius flow) is numerically investigated, the initial height of the vortex is

about 1/5 of the local boundary layer thickness. The calculated results not

only exhibit most of the prominent features associated with turbulent spots and

turbulent boundary layer flows, as identified before by other investigators,

but also reveal dynamical processes which have been very difficult to observe

in experimental studies, as limited by the nature of their sampling and

identification techniques.
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ANALYSIS

As previously discussed, numerical simulation of a hairpin vortex immersed

in a wall shear flow can be used both to study the basic mechanisms of

turbulent flow as well as to develop methods for exploiting unsteady flow

features to influence turbulence characteristics. As was shown in Ref. 5, the

structures of forced vortices generated to increase aerodynamic performance are

very similar to those naturally occurring in boundary layer coherent
structures. Therefore, a discussion of previous experimental and analytical

studies focusing upon hairpin vortices as the basic structure of wall

turbulence serves as relevant background material for the present Phase I

effort which could be extended either to investigate the basic structure of

-' turbulent wall layers or to investigate the dynamics of large scale vortices

immersed in a shear flow.

Hairpin Vortex as Structure of Wall Turbulence

The concept of modelling the turbulent boundary layer with a random

array of hairpin vortices was first suggested by Theodorsen [81 in 1955 and

has subsequently been considered by many other workers (see, e.g. (91).

These earlier proposals tended to be rather in the nature of intuitively

appealing hypotheses, supported only indirectly by experimental evidence.

However, very convincing evidence for the existence of these vortices has been

reported over the past five years by a large number of investigators using

different techniques to study various features associated with the underlying

structures of wall turbulence. A comprehensive account of these results will

not be given here, nevertheless, selected works are cited to indicate the

current status of the knowledge of the structure of turbulent boundary layer.

Experiments of Head and Bandyopadhyay (3] have provided very sLtong

support for the hairpin vortice as a deterministic structure in turbulent

boundary layers. Flow visualization studies of the zero pressure gradient

turbulent boundary layer at Reynolds numbers up to Ree - I0 have shown that

a turbulent boundary layer consists of a forest of hairpin vortices which are

undergoing a stretching motion under the influences of the self-induced field

as well as the pre-existing mean shear field. These stretched hairpin vortices

3



are substantially straight over a large portion of their length and inclined in

the downstream direction at a characteristic angle of approximately 450 to the

wall. The lateral dimensions of these vortices are suggested to follow the

Kline scaling, while their length appears to be limited only by the thickness

of the layer. There is considerable evidence that these vortices originate

from the longitudinal vortex motions in, or very close to, the viscous

sublayer.

Combining anemometry and flow visualization, Falco [10] established that

all of the structural features of turbulent boundary layers, e.g., the sweep

and ejection events, identified before by other investigators can be associated

with the evolution of a so-called pocket flow module, in which a hairpin vortex

is formed and then dominates the flow behavior over a time duration extending

over at least half of the flow module's life time. In Ref. [111 Dinkelacker

evaluated results compiled from several measurements of wall pressure

fluctuations and suggested that an important part of the observed wall pressure

patterns might be manifestations of the existence of hairpin vortices in the

- turbulent boundary layer flow.

The above experimental studies provide strong evidence for the existence

of hairpin vortices as one of the dominant structures in wall-bounded turbulent

flows. However, as limited by the nature of their sampling and identification

techniques, the hairpin vortex has only been indirectly observed in a turbulent

boundary layer; i.e., the response of the visual indicators to the velocity

field is observed. In addition, the probe data are limited by the number of

spatial points at which correlations are obtained and by the small number of

different quantities that can and have been measured. These deficiencies have

largely been eliminated by a very recent investigation conducted by Moin and

Kim [12] using a data base generated by the large-eddy simulation

calculations. Two-point correlations of velocity and vorticity fluctuations

strongly support a flow model consisting of vortical structures inclined at 45°

to the wall. The instantaneous vorticity vectors plotted in these inclined

planes show that the flow contains a large number of hairpin vortices, and

vortex lines are used to display the three-dimensional structure of hairpins.

In another investigation Landahl [131 modelled the dominant coherent structure

near the wall with a flat eddy, which can be regarded as a first approximation

to the hairpin vortex, and then examined the fundamental assumptions behind

Prandtl's mixing length theory. According to Landahl the validity of two of

4



the main hypotheses underlying the mixing length theory has been positively

confirmed with this model. Thus, this work provides an encouraging indication

of the consistency of over all fluid dynamics according to the conventional

mixing length model (long known to provide a remarkably accurate description of

the near wall turbulent mean flow velocity) and that due to the hairpin vortex.

As mentioned before, early turbulence models based on the concept of

hairpin vortex t-nded to be in the nature of intuitively appealing hypotheses

and were mainly aimed at providing a kinematic description of the wall

turbulence, as well as an explanation of some of the underlying dynamics. In

the light of recent findings from experimental research on turbulent structures

in the near wall region and also by using Townsend's attached-eddy

hypothesis [14], Perry and his coworkers ([151, [16]) proposed a more refined

hairpin vortex model for wall turbulence. The turbulent boundary layers are

viewed as an ensemble of groups (or hierarchies) of hairpin vortices which

originate from and are attached to the wall. These vortices are geometrically

similar and have the same characteristic velocity scale being the wall shear

velocity. The length scales of the hierarchies range from the smallest eddies

having the Kline scaling to the largest eddies being of the order of the

boundary layer thickness. The probability distribution for hierarchies is

inversely proportional to the length scales of the hierarchies, and all the

vortices lean 450 in the downstream direction. It is found that such a model

gives the correct mean flow vorticity distribution. Further, by using the

velocity signatures generated by hairpin vortex with the aid of the Biot-Savart

law, turbulence spectral distributions are derived and, when compared with

experimental results, the predicted turbulence spectra appear to have correct

properties. Thus, in spite of the fact that there still exists uncertainties

about the details of the formation, shape and subsequent evolution of the

hierarchies of vortices, the works of Perry and his coworkers demonstrated that

the use of hairpin vortices in obtaining a quantitative link between the mean

flow, Reynolds shear stress, turbulence intensities and spectra as well as

other statistical properties of wall turbulence looks promising.

The Governing Equations

Although the background flows can be considered as nominally steady and

two-dimensional, the flow field associated with the evolving hairpin vortex is

5



unsteady and three-dimensional, i.e., they are accompanied by negative cross

flows and possible streamwise reverse flows. Thus, governing equations derived

from conventional boundary layer theory are not suitable for the purpose of

studying the dynamics of hairpin vortex. An approximate form of the unsteady

three-dimensional Navier-Stokes equations has Leen used to solve the

three-dimensional time-dependent viscous flows over airfoil sections [17].

These equations are more general than the conventional boundary layer

equations, notably in the inclusion of spanwise and streamwise diffusion terms,

and the major assumption is that there is no pressure gradient in the direction

normal to the wall. The solution of this set of governing equations is less

demanding in computer resources than the solution of the full Navier-Stokes

equations. Unfortunately, the assumption of zero normal pressure gradient

which is inherent in this exterded boundary layer approach makes it

inapplicable to the present investigation. In this regard it should be noted

that, associated with the presence of a hairpin vortex, there exists a

corresponding three-dimensional pressure field. Further, in ihe proximity of

the vortex, the pressure variations in all directions must be significant,

unless the strength of the vortex is infinitesimal. In this sense, the

existence of a hairpin vortex can be thought of as being sustained by a

pressure field containing localized regions of significant gradients in all

* directions. The assumption that the normal pressure gradient is negligibly

small throughout the entire flow field is thus contradictory to the presence of

the hairpin vortex. In the following, the governing equations for the leading

behavior of a vortex point in a background rotational flow field is derived

by using the procedure described by Ting in [181. This serves the dual purpose

of demonstrating the role of pressure gradients as well as some dominant

factors to be expected in the investigation of vortex dynamics.

Considering an initial vorticity distribution C(x,y,o) which consists of
two parts:

(x, y,0) f (x, y) + f2 (, 7) (1)

fl is the initial vorticity of the background rotational flow. It is

distributed with the characteristic length scale L and its magnitude is of the

order of U/L, where U is the characteristic velocity of the background flow.

The portion f2 represents a concentrated distribution near a point C(X(O),Y(O))

6
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and it is of compact support or decays exponentially in r where r is the

distance from C on a small length scale eL. Note that f2 is a function of the

stretched variables x and y with

X -X(t [Y-Y(t)]/E (2)

where (X(t), Y(t)) is the location of the vortex center and C is a small

parameter to be chosen. The total strength of f2 is assumed to be of the order

of UL, i.e.
OC

ff f2 dx dy = O(UL)
-cc (3)

Therefore

=f -2T 2 with T2  0()2f(4

i.e.

(x, y, 0) fl (x,y) + -f2 (X,'7) (5)

It should be noted that f2 decays rapidly with distance from the vortex center

and, therefore, f 2 = 0(0) represents the maximum value of f 2.

To take into account the viscous effects inside the core, C is chosen as

%/R- r(6)

where Re is the Reynolds number, v the kinematic viscosity and r the

circulation. The assumption that r=o(UL) is consistent with the hairpin vortex

being a nonlinear, large scale structure in the wall region of the boundary

layer flow. L is considered here as the boundary layer thickness and U being

the wall frictional velocity.

Solutions of the unsteady Navier-Stokes equations with large Reynolds

number subjected to the initial condition of Eq. (5) and appropriate boundary

conditions are to be sought. The form of the initial data suggests that the

solution is a composite of multiple length scales solutions:

(x, y,t) t C(x, y,t;() + ' 2 ',y,tE) (7)

7



such that at t=O

f(x,y) and 2 f

Accordingly, the velocity and pressure are expressed as

u(x, y 1 t;E) = u,(xy,t;C) + E'-( ",'-, t; E) (8)

v(xyt;E) v(xy, t; ) + C-1-V 2 (xl, yt;C) (9)

p(x,y,t;E) = p 1(x,y,t;e) + 12 (', ,t;E) + 'p2 1(,",t; -) + E 2 " 2 (",Vt;E) (O)

Substituting Eqs. (8)-(10) into the continuity and Navier-Stokes equations, it

can be shown that the vorticity of the background flow is redistributed by the

presence of the vortical structure while the dynamics of the vortical spot is

controlled by several mechanisms. The most dominant mechanism is the

self-induction, followed by the relative yet coupled motion between the vortex

center and the local background flow; the effects of the temporal change of the

structure and viscous diffusion are the least dominant ones. More

specifically, with respect to an observer moving with the vortex center, the

leading behavior of the evolution of the vortical spot is governed by the

following equations:

-2 + a 0

VP 2(0) - (0) (12)

u2 2" + v2 y 2'13

_(O) °2 ,.(0) ) 2( "2°
U2  2 + v  7 "7 (13)

8



I9,

where u2(0), V2 ( 0 ) and P2'0 ) are the leading term of u2 , v2 and P2 when

expanded into a power series of E.

In view of equations (1l)-(13), it is obvious that any flow simulation

technique based on the assumption of zero normal pressure gradient throughout

the entire flow field will immediately force a disintegration of the vortical

structure, consequently, the general behavior of this structure cannot be

properly studied. Based on this asymptotic analysis as well as the previously

discussed physical manifestation of the existence of a concentrated vortical

structure in terms of its associated pressure field, it is concluded here that

Navier-Stokes equations should be used in the investigation of the dynamics of

hairpin vortices. Numerical techniques for the solution of unsteady,

three-dimensional Navier-Stokes equations are currently available (see e.g.

[19], [20]).

The above analysis indicates that the dominant behavior of the evolution

of a vortical spot is governed by steady, Euler equations written in a

coordinate system attached to the vortex center. Obviously, information about

the motion of the vortex center, the interactions between the vortical spot and

the surrounding background flow as well as the inner strucure of the vortical

spot cannot be determined by these set of leading order equations. Such

information must be obtained by investigating higher order equations derived in

the asymptotic analysis. Generally speaking, the motion of the center of a

two-dimensional vortical spot depends on its inner structure and the local

background flow situation. For the three-dimensional case, the motion of the

centerline of a vortex filament further depends on the geometrical properties

-of the centerline.

Another interesting consequence of the above asymptotic analysis is that

the frequently employed Taylor's hypothesis of frozen eddies is a valid

approximation to the leading order. Hence, if the position and the associated

induced velocity field of a vortical structure is known at some instant, then

the dominant part of the associated pressure field can be obtained by

considering the steady, Navier-Stokes equations. This frozen-eddy

approximation is used here for specifying the initial pressure field associated

with a representative hairpin vortex, and it is noted that the subsequent

pressure fields are obtained from solving the unsteady Navier-Stokes equations.

9



,* A Model of the Hairpin Vortex

Although the present study determines the dynamic behavior of a hairpin

vortex immersed in a shear flow via a solution of the time-dependent,

three-dimensional Navier-Stokes equations, it is necessary to specify an

initial flow field; i.e., a flow field at t = 0, which includes an initial

vortex structure. This field is based upon a hairpin vortex model. As shown

in Ref. [12], a hairpin vortex is an agglomeration of vortex lines in a compact

region that have a hairpin or horseshoe shape. Equivalently, a hairpin vortex

is considered here as a slender tube-like region in which the bulk of vorticity

is concentrated. Over each cross-section of this tube-like region, a mean

direction, es, as well as the strength, r, of the concentrated vorticity can

be determined. Further, inside of this compact region, a spatial curve can be

% found such that its tangent is parallel to es at each cross-section, this

spatial curve is considered as the effective centerline of the slender yet

highly vortical region, the position vector of this effective centerline is

denoted by rc and a segment of this line is denoted by ds - dses .

When viewed from a region sufficiently away from the effective centerline,

the slender hairpin vortex is reduced to a curved line vortex of strength r and+

with position vector rc. The signature of the hairpin vortex in this outer

region is then the induced velocity field given by the Biot-Savart law:

VI r) x d!rl
xdr f(14)

+ +

where r is the position vector of a point P in the space and rc is the

position vector of a point along the line vortex C.

However, when a point P is located in the proximity of the hairpin vortex,

. the effects of the inner structure of the vortex on the induced field must be

taken into account. Although this can be accomplished by using a so-called

optimum similarity solution [181 to prescribe the diffusive core structure, the

present work employs a simpler model to account for the influence of the

diffusive vortex core by multiplying the induced velocity obtained in Eq. (14)

with a factor

d2

f(d, r) =d 2 +r (15)

00
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where d = r-rc and ro is the effective core radius. Note that if the

solid-body-rotation model were used for simulating the core structure, the
2 2multiplying factor would be the minimum between 1 and d /ro

There is considerable evidence that the hairpin vortices originate from

the region very close to the wall, in addition, it has been proposed that the

configuration of the hairpin vortices in the wpll region consists of trailing

vortex pairs running along the wall and originating from initially

spanwise-oriented vorticity (151. These trailing vortex pairs often have

been referred as counter-rotating vortex pairs of elongated streamwise extent

in the wall region of the flow (see, e.g. [211). These trailing vortices form

dipoles of vorticity and their farfield effect is negligible. Aside from the

appearance of these trailing vortex pairs in the immediate neighborhood of the

wall, the hairpin vortex as a whole must induce an internal shear layer within

the pre-existing boundary layer such that the induced velocity field also

satisfies the non-slip condition along the wall, very little is known about the

structure of this induced, unsteady internal shear layer. The present model of

hairpin vortex neglects the details of the trailing vortex pairs and the

induced internal shear layer in the region very close to the wall, it is

assumed that the effects of their presence are to maintain the attachment of

the hairpin vortex to the wall, and to provide a rapid change of the induced

velocity field in the region very close to the wall such that the no-slip

condition is satisfied. These effects are accounted for by including the wall

images of the hairpin vortices when their associated induced velocity fields

are evaluated and, in addition, by multiplying the induced velocity fields with

a factor

g(y) C I(Y)/ 1
0  (16)

where y is the distance from the wall and

()tanh (/I 0 ) (17)
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with

l:- exp(-y/l)_y/ (18)

and K is the von Karman constant; to and 11 are some characteristic length

scales.

Such a model of induced internal shear layer is based upon Prandtl's

mixing length theory which assumes that the velocity fluctuations in the near

wall region are proportional to some length scale t(y). The present work

further assumes that the distribution of 1(y) is given by Eqs. (17) and (18),

which are similar in their forms to the mixing length model proposed in

Ref. (22], except that to is considered here as a vertical length scale

representing the conjectured thickness of the induced internal shear layer and

tj is considered here as a vertical length scale on which the near wall damping

becomes important. Typically, to can be chosen as a small fraction of the

height of the hairpin vortex and X1 is approximately equal to to. It is

stressed here that this model of induced internal shear layer is used only for

constructing the initial induced flow field associated with the introduced

hairpin vortex, and it is not used in the subsequent calculations.

As mentioned before, the hairpin vortex has a general shape resembling a

rounded-top horseshoe. The Biot-Savart integral, i.e. Eq. (14), for a curved

vortex filament formally contains singular terms. Although these singular

terms can be removed by analytical cancellation (18] in addition to the

prescription of models of diffusive core structure such as the one given by

Eq. (15), considerable mathematical and computational complexities are involved

with the evaluation of the induced velocity field of a curved vortex filament.

The present work assumes that the precise shape of the hairpin vortex is not of

major importance; therefore, for simplicity in setting the initial flow field

for the Navier-Stokes simulation the legs of the hairpin vortex will be assumed

to be straight and merge at a sharp point. As for the orientation of the

initial flow field hairpin vortex, the inclination angle between the vortex and

the wall is mainly determined by the balance between the self-induced strain

field and the strain field provided by the background flow [3]. For a hairpin

vortex extending from the wall to the outer edge of the boudary layer, the

inclination angle is not uniformly 45%. In the close vicinity of the wall, the

inclination of the trailing vortex pairs is much smaller than the 45* angle,

while near the outer edge of the boundary layer, it is much larger than the 45*

angle, nevertheless, over a substantial portion of the hairpin vortex, the legs

12



remain essentially straight with a characteristic inclination angle of 450.

After setting this initial flow, the hairpin vortex development is governed by

the solution of the three-dimensional, time-dependent Navier-Stokes equations.

In addition, it is assumed that the hairpin vortices appear mostly in the form

of an array in the spanwise direction, and members of the same array of

vortices have identical properties. Such an assumption implies that the

hairpin vortices are produced by the evolution of an initially

spanwise-oriented two-dimensional vortex line into a three-dimensional wavy

structure which is periodic in the spanwise direction.

Based on the above discussions, the fundamental hairpin vortex model used

in the present work consists of a spanwise array of identical vortices.

The effective centerline of these vortices forms an array of interconnecting

isosceles triangles which are periodic in the spanwise direction. In setting

the initial flow field, the strength of these vortices does not vary along the

effective centerline which inclines to the wall at an angle of 45. In order

to maintain the attachment of these vortices to the rigid wall, their wall

images are also included. The effects of the inner core structure of these

vortices are accounted for by introducing a diffusive factor into the

evaluation of the associated induced velocity field. In addition, the

existence of an induced internal shear layer in the immediate neighborhood of

the wall is accounted for by employing a distributive factor into the

evaluation of the induced velocity field.

A schematic of the present model is shown in Fig. 1, where hi is the

height of the i-th array of hairpin vortices, Xi the spanwise distance

between the feet of the vortices, *j 
f  f 450 the characteristic angle and

roi the radius of the effective core. The signature or the induced velocity

field of the i-th array of hairpin vortices at a point P with position vector r

is then given by

7(7) =f(diri) . J x d g 1(y) (19)
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with

f r(d. = + (20)

and

g ,(Y) tanh (KY /i [ - exp(y/1,)](

where Ci is the effective centerline of the vortices together with their wall

images, and di rci - r. The corresponding vorticity distribution is

obtained from

£?.i 
= VK ; (22)

*. Obviously, when the array contains a sufficiently large number of vortices, the

induced velocity field vi and hence 51 are periodic functions with spatial

period Ai. Therefore, the induced field due to such an array of vortices is

completely defined by the flow field within the spanwise domain of any one

member of the vortices. Henceforth, the term 'representative' hairpin vortex

will be used to indicatee some particular member of the vortex array such that

the point P happens to locate within the spanwise domain of this particular

vortex (see Fig. 1). It should be noted that the induced flow field within a

representative hairpin vortex contains not only the contribution of this vortex

but also contains the contributions of all the other vortices in the same

.1 array.

Experiences indicate that, by placing approximately 30 or more vortices on

each side of the representative vortex, an excellent approximation to the

spanwise periodicity required by an infinite number of spanwise vortices can be

achieved. In addition, the induced streamwise velocity component ui, the

induced normal velocity component vi and the induced pressure pi are

symmetric about the center plane z - 0 (see Fig. 1) while the induced spanwise

velocity component wi is antisymmetric about z = 0, where (x,y,z) is a

coordinate system attached to some nominal center of the representative vortex

at t = 0. It also can be shown that the induced field falls off rapidly in

regions relatively away from the representative vortex. The vertical extent of

the domain of significant influence of the representative vortex is
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approximately equal to hi, its streamwise extent is of the order of

Xt  hi cot *i, while its spanwise extent remains to be of the order of

Xi.

Initial and Boundary Conditions

At any instant, the composite flow is considered as consisting of the

background flow and the variation from the background flow. Obviously, such a

variation contains not only the evolution of the initially introduced hairpin

vortices, but also the subsequent distortion of the background flow due to

these vortices. Let (u,v,wp) denote the Cartesian velocity components and the

pressure of the composite flow observed in a ground-fixed system (x,y,z), where

x is in the streamwise direction, y is the distance normal to the wall and z is

in the spanwise direction, then

u(x,y,z,t) - u'(x,y,z,t) + U(x,y,z) (23)

v(x,y,z,t) - v'(x,y,z,t) + V(x,y,z) (24)

w(x,y,z,t) - w'(x,y,z,t) + W(x,y,z) (25)

p(x,y,z,t) - p'(x,y,z,t) + P(x,y,z) (26)

where U, V, W and P are the velocity components and the pressure of the

background flow which is considered as nominally steady. The variations from

the background flow are denoted by (u',vw ,p').

Solutions of the governing equations with large Reynolds number and low

freestream Mach number subjected to prescribed initial condition, and

appropriate boundary conditions are sought by numerical solution procedure.

Generally speaking, the initial conditions as well as the boundary conditions

depend on the initial arrangement of the introduced hairpin vortices. The

current effort focuses upon the dynamical effects of one 'representative'
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hairpin vortex submerged in a two-dimensional background flow of boundary iayer

type. In the following, the initial condition and the boundary conditions for

this case are discussed.

The background flow is supplied by performing the usual Navier-Stokes

calculation for obtaining boundary layer type of flow which can be laminar or

turbulent, with or without significant pressure gradient. The initial, induced

velocity field associated with the introduced representative hairpin vortex is

constructed with the aid of Biot-Savart law, supplemented by modifications

accounting for the effects of diffusive vortical core and the effects of

induced internal shear layer, as described by Eq. (16). Since the induced

velocity is obtained with Biot-Savart integral, this field is evaluated with

respect to a coordinate system (x,y,z) which is attached to some nominal center

of the hairpin vortex. Note that this center can be in motion. It is assumed

here that, at t - 0, a fixed hairpin vortex is suddenly introduced into some

region of the background flow such that

u'(x,y,z,t-0) - u(x,y,z) (27)

v'(x,y,z,t-0) - v(x,y,z) (28)

w'(x,y,z,t-0) - w(x,y,z) (29)

with

X= x + X0 (30)

y y (31)

z- z (32)

i.e. this initially fixed nominal vortex center is located at the midpoint

between the two feet of the hairpin vortex, and it has a streamwise position

x - xo . As mentioned before, u, v and w are obtained from Eq. (19).

Thus, the incipient conditions for u, v and w are completely prescribed.

The incipient condition for the composite pressure field p must be specified in

16



such a way that it is consistent with the prescribed composite velocity field.

By noting that Mi) the induced field falls off rapidly in regions away from the

hairpin vortex, and (ii) over a very short time span At + 0; it is quite valid

to consider the induced field as frozen, then, the starting pressure field of

the composite flow is obtained by using the prescribed velocity field and by

integrating the normal momentum equation in its steady form subjected to the

following boundary condition

p(x,y + -,z,t = 0) = P(x,y -+,z) (33)

i.e. p'+o as y-1-

A consistent, incipient density field of the composite flow also must be

supplied. In general,, this can be accomplished by several iterations between

the results of the integration of the normal momentum equation and the

solutions of the equation of state. For nearly incompressible flow cases, such

an iteration procedure usually can be by-passed.

As for the boundary conditions, non-slip condition is applied on the wall

plane and the density on this plane is calculated from the normal momentum

equation. On a plane which is parallel to the rigid wall, and is located

sufficiently away from the outer edge of the boundary layer, the pressure

distribution is specified and the second derivative of the normal velocity

component is considered as zero. In addition, the first derivatives of the

streamwise as well as the spanwise velocity components are set to be zero.
'p

The streamwise boundary conditions used in the present simulation specify
upstream total pressure and downstream static pressure distributions.

The upstream total pressure together with specified boundary layer thicknesses

and dimensionless boundary layer profiles determine the actual values of the

streamwise velocity component at the inflow section. Further, the first

derivatives of all the other velocity components and the static pressure are

set to be zero. At the downstream boundary, the pressure distribution is

specified and the second derivative of streamwise velocity component is set to

be zero, while zero first derivatives of all the other velocity components are

imposed on the outflow plane. These boundary conditions are expected to be

appropriate so long as the inflow, outflow and the outer freestream planes are

sufficiently far away from the evolving hairpin vortex throughout the course of

the simulation. Due to the initial arrangement of the introduced hairpin
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vortex and the use of a two-dimensional background flow, symmetrical

conditions can be applied on the planes z = -0.5X amd z - 0 (see Fig. 1), this

completes the specification of boundary conditions in the spanwise direction.

The Solution Procedure

The unsteady, three-dimensional, compressible Navier-Stokes equations,

supplemented by an equation of state and together with the constant total

temperature assumption, form the system governing the flows in the present

effort. The total temperature assumption was made solely to conserve computer

run time and can be easily removed through inclusion of an energy equation.

The specific scalar momentum equations to be solved are the x, y and z

Cartesian momentum equations. The dependent variables chosen are the physical

Cartesian velocities u, v, w and the density p. The equations are then

transformed to a computational coordinate system in which the computational

coordinates ( , i, c) are related to the Cartesian coordinates (x, y, z) by

E (x,y,z,t) (34)

n - r(x,y,z,t) (35)

C - C(x,y,z,t) (36)

T - t (37)

Since in general the computational coordinates may be a function of time with a

time-dependent Jacobian, the equations are cast into the so-called

'strong conservation form'. The present effort uses a coordinate

transformation in which:

- E(x) (38)

n - n(y) (39)

C - 4(z) (40)
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i.e, a stretched, orthogonal grid system is used. The grid transformation used

is the one originally s iggested by Oh [23], which allows high resolution in

user specified regions. The grid points are densely packed in regions

containing the initial hairpin vortex and in regions which are expected to be

occupied by the evolving and convecting hairpin vortex throughout the course of

the simulation. Although future efforts would include an adaptive grid

capability to follow the vortex motion such as that used in [19] and [20], use

of such a grid is deemed premature in the present Phase I effort. In addition,

the inflow, outflow and outer freestream boundaries are placed in the far

fields of the evolving vortex.

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally developed

by Briley and McDonald [24]. The method can be briefly outlined as follows:

the governing equations are replaced by an implicit time difference

approximation, optionally a backward difference or Crank-Nicolson scheme.

Terms involving nonlinearities at the implicit time level are linearized by

Taylor expansion in time about the solution at the known time level, and

spatial difference approximations are introduced. The result is a system of

multi-dimensional coupled (but linear) difference equations for the dependent

variables at the unknown or implicit time level. To solve these difference

equations, the Douglas-Gunn procedure for generating alternating-direction

implicit (ADI) schemes as perturbations of fundamental implicit difference

schemes is introduced in its natural extension to systems of partial

differential equations. This technique leads to systems of coupled linear

difference equations having narrow block-banded matrix structures which can be

solved efficiently by standard block-elimination methods.

One major problem in calculating high Reynolds number flows using the

Navier-Stokes equations is the appearance of spatial oscillations associated

with the so-called central difference problem. When spatial derivatives are

represented by central differences, high Reynolds number flows can exhibit a

saw tooth type oscillation in regions of intense flow gradients unless some

mechanism is added to the equations to suppress their apperance.

This dissipation mechanism can be added implicitly to the equations via the

spatial difference molecule (e.g. one-sided differencing) or explicitly through

addition of a specific term. The present authors favor this latter approach

for two reasons. First, if a specific artificial dissipation term is added
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to the equations, it is clear precisely what approximation is being made.

Secondly, if a specific term is added to suppress oscillations, the amount of

artificial dissipation added to the equations can be easily controlled in

magnitude and direction so as to add the minimum amount necessary to suppress

spatial oscillations. Studies can also be easily performed to evaluate the

effect of the explicitly added dissipation on the solution. Obviously, the

most desirable technique would add only enough dissipative mechanism to

suppress oscillations without deteriorating solution accuracy. In Refs. [191

and[20] it has been demonstrated that a second-order anisotropic artificial

dissipation formulation suppressed spatial oscillations without impacting

adversely on accuracy and could be used to capture the nearly normal shocks

successfully. The same technique is used in the present work. In particular,

no artificial dissipation is added when the local cell Reynolds number is

below 20.

Another aspect of the present problem is the tracking and identification

of evolving and convecting vortex structures in a general flow field. This is

accomplished by first subtracting the background flow field from the calculated

instantaneous composite flow data, the flow variations thus obtained then are

analyzed with the orthogonal decomposition techniques proposed by Bethke and

Viets [251.
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CURRENT EFFORTS

Objective

The goal of the present work is to develop the capabilities for numerical

simulation of the dynamical effects of the underlying structures occurring in

turbulent boundary layers so that not only the turbulent flows per se can be

better understood, but also that the unsteady flow characteristics, which may

improve aerodynamic efficiency and enhance component performance through

modification of the turbulence characteristics, can be exploited. Under the

current effort in particular, the objectives are (1) to make an assessment of

the important factors involved in the investigation of vortex dynamics so that

the appropriate set of governing equations are chosen for the simulation,

(2) to develop a mathematically operational model of hairpin vortex, which

closely resembles the experimentally observed underlying structure of wall

turbulence, and (3) to carry out a calculation to demonstrate the feasibility

of the proposed numerical simulation. As shall be demonstrated, these

objectives have been met.

Outlines of the Simulation

The unsteady, three-dimensional, compressible Navier-Stokes equations,

supplemented by an equation of state and together with the constant total

temperature assumption, form the system governing the flows in the pesent

effort. The construction of the initially introduced hairpin vortex as well as

the appropriate starting and boundary conditions for the current simulation

have been discussed in detail in the previous sections, and will not be

repeated here. Prior to the simulation involving the hairpin vortex, several

typical laminar as well as turbulent boundary layer flows have been calculated

by using the Navier-Stokes code; good numerical results have been obtained;

when compared with experimental measurements.

As an initial effort, the present calculation simulates the dynamical

evolution of a 'representative' hairpin vortex after it is introduced into a

laminar boundary layer. Also simulated are the associated dynamical distortion

of the background flow. As limited by the scope of the current effort, the

simulation is carried out for the early stages of the evolution of the hairpin

vortex and the distortion of the background flow.
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The background flow is a zero-pressure-gradient laminar boundary layer

flow with a freestream Mach number of 0.4, i.e., it is essentially a Blasius

flow. For the present calculation, the reference length is 0.128m, the

reference velocity is 139 m/sec, and the reference time is 0.9209 x 10- 3 sec,

henceforth, the discussion will be in terms of dimensionless units.

The inflow section of the computational domain is located at a place where

Rex = 1.0364 x 105 and the outflow section is placed at Rex = 1.7673 x 106

where Rex is the Reynolds number based on freestream velocity and the

distance to the leading edge. Thus, the streamwise extent of the computational

domain has a length of 40 So, where 60 is the boundary layer thickness at

the inflow plane. In addition, the height of the computational domain is

660.

Then, a slanted 'representative' hairpin vortex is introduced into the

inner wall region. The inclination angle is 450 toward the downstream

direction, the feet of the vortex are attached to the wall at a place where

Rex = 1.3510 x 10 , the corresponding Reynolds number based on the local

displacement thickness is about 635 and the local frictional velocity

UT = 0.03. The height of the incipient hairpin vortex is h+ = 12.5, the

spanwise spacing between the vortex feet is X+ = 2h+, its streamwise extent

is X+ = h+ cot 450 - 12.5, and the strength of the vortex is 1+ = 25,

where the superscript '+' indicates that the quantities are evaluated in wall

units. It is noted here that the height of the vortex is about 1/5 of the

local boundary layer thickness and the distance between the tip of the vortex

and the outer freestream bounary is about 25 h+. Further, the spanwise

vorticity of the background flow in the region containing the incipient hairpin

vortex is about 24 and is rotating in the clockwise direction. The maximum

spanwise vorticity of the incipient hairpin vortex, depending on the spanwise

location, ranges from 16 to 73 and is rotating in the same direction as the

background vorticity. Thus, highly vortical yet compact regions are introduced

into the background flow. Due to the symmetric properties of the incipient

flow condition, only the solutions on one side of the center plane need to be

calculated, therefore, the spanwise extent of the computational domain has a

length of 0. + .

The streamwise extent of the computational domain is covered by 49 grid

points with 31 uniformly spaced grid points packed in a region of length 3h+ ,

the distance between the inflow section and the upstream end of the highly

22

I: :.. o.. ,. . . . . • ... --



resolved region is about 97h+, and is covered by 9 grid points which are

highly stretched. The distance between the outflow section and the downstream

end of the highly resolved region is about 100h+, and is covered by 9 grid

points which, again, are highy stretched. The vertical extent of the

computational domain is covered by 41 grid points. Similar to the arrangement

for the streamwise grid distribution, high resolution is provided for the

region y+<4h+. As for the grid distribution in the spanwise direction,

13 grid points are used with clustering at both ends while uniform spacing

applied in between. It is noted here that, in those high resolution regions,

the grid spacing is d+ = 1.25, and throughout the duration of the present

simulation, the stretched and convected hairpin vortex remains in these highly

* resolved regions. The early stages of the dynamical variations of the

composite flow are simulated over a time span of t+ - 4.5. A total number of

40 time steps are carried out, the first 20 steps have a constant time

increment of At+ - 0.375 x 10- 1, and the last 20 steps have a constant time

increment of At+ - 0.1875. Thus, the time accuracy and the spatial

resolution of the present simulation are expected to be quite satisfactory.

Results

The present numerical simulation has generated a database containir,

information of the flow variations, i.e., the evolution of incipient

'representative' hairpin vortex and the change of the background boundary layer

flow caused by the introduction of this vortex. This database needs to be

examined in detail and the flow characteristics should be carefully analyzed.

It is not only of great interest to investigate the dynamics of the hairpin

vortex, but also of practical usefulness to study the changed flow

characteristics of the background boundary layer flow, such as the wall

pressure coefficient and friction coefficient, which are closely related to the

performance of aerodynamic components. Such a detailed analysis should be

carried out in the near future. Nevertheless, the following preliminary

analysis indicates that these results exhibit most of the prominent features

associated with the dominant structures occurring in turbulent spots and

turbulent wall flows, they also reveal dynamic processes which have been very

difficult to observe in experimental investigations using visualization and/or

probe methods.
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The results are presented in three types of planes, namely, the side view,

the top view and the front view. The orientations of these planes are

indicated in Fig. I as well as the first plot of each figure. The regions

selected for presentation are those in the neighborhood of the incipient

vortex. The flow variations in the outer region of the boundary layer and the

upstream as well as downstream regions sufficiently far away from the incipient

vortex will not be shown here. It is noted here that the streamwise location

of the foot of the incipient hairpin vortex is denoted by x+, this vortex has
an initial height h+ = 12.5 and an initial streamwise extent 1 = 12.5. The

initial spanwise distance between one foot of the vortex and its center plane

(z+=0) is A+ = 12.5. The vorticity of the background boundary layer flow in
0

the region containing the incipient hairpin vortex is Sb = -24, where the

negative sign indicates that the orientation of the vorticity is in the

clockwise direction. In addition, the results are presented in terms of the

flow variations as defined by Eqs. (23)-(26). There are two sets of contours

of vorticity variations. The first set consists of three levels of clockwise

vorticity, namely 0.9, 0.6 and 0.3 of S'min < 0. The second set consists of

three levels of counterclockwise vorticity, i.e., 0.3, 0.6 and 0.9 of

a'max > 0. Both &'min and S1'max are the instantaneous extremes in the

depicted region. The strength of the velocity variation in that region is

indicated by q'max which is the maximum of the magnitudes of projected

velocity vectors. For the case of the variation of the pressure coefficient,

two sets of contours are used, the first one consists of 6 levels of low

pressure, i.e., 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4 of CP'min < 0, the second one

consists of 6 levels of high pressure, i.e., 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of

Cp'max > 0.

The temporal development of the flow variations occurring in two side-view

planes are shown in Figs. 2 and 3. The lower boundary of the plane is located

at y+/h = 0.05, the upper boundary is at y +/h+ - 1.95. The left boundary is
+ 0+ 0 + + +-

at (x+ - x+ )/Xo = - 0.198 and right boundary is at (x - x )£t - 1.75. Note

that the background flow is from left to right. Fig. 2 illustrates the

variations in a plane with spanwise location 2z +/ + = - 0.7, which is near one
0

foot of the incipient hairpin vortex. The temporal as well as the spatial

developments of the vorticity contours indicate that vorticity concentration

region associated with the incipient hairpin vortex (W'min < 0) are

undergoing the process of diffusion, stretching while moving toward
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downstream. The maximum value of the clockwise vorticity is decreasing in the

course of the time. Initially, there is a region of counterclockwise

vorticity, which is underneath the incipient vortex and is weak relative to the

main, concentrated vorticity. The maximum value of this counterclockwise

vorticity remains more or less the same during the course of the time, and at

t+ = 4.50, it is about the same as the magnitude of the clockwise vorticity.

However, the region of counterclockwise vorticity is now on top of the region

of clockwise vorticity, and it is also inclined toward the downstream

direction. The evolution of the flow variation is further illustrated with the
'a

projected velocity vector field. At t+ = 0, it gives the appearance of a

single and fairly coherent clockwise-rotating vortex, the center of this

apparent vortex then travels toward downstream without lifting up from the

wall. At t+ = 4.5, it appears that this vortex loses its clear identity, but

a much smaller and weaker counterclockwise-rotating vortex is now visible at

the left bottom corner. Fig. 3 illustrates the variations in the center

plane. Again, the diffusion, stretching and convection of the clockwise

vorticity concentration region are obvious, and the maximum value of the

clockwise vorticity is decreasing. At t+ - 4.50, it appears that the

clockwise vorticity region is either in the process of merging or in the

process of breaking away, this can only be determined by carrying out a

detailed analysis of the database. As for the region of concentrated

counterclockwise vorticity, it is initially very close to the wall and has the

shape of the cat's eye. In the course of the time, this vortical region is

being lifted up from the wall while new regions of concentrated clockwise

vorticity start to appear immediately upstream of the initially introduced

hairpin vortex. This newly formed counterclockwise vortical region then

intensifies and, at t+ - 4.5, it becomes stronger than the initially

introduced clockwise vortical region. In fact, when combined with results

obtained in other side-view planes, it is quite obvious that a new hairpin

vortex of opposite sign has been formed in the immediate upstream of the

initially imposed hairpin vortex. The formation of such a counter-rotating

hairpin vortex immediately upstream of the old hairpin vortex has been noted by

Falco [10] through some weak visual evidence. The projected vector field of

the velocity variation indicates the convection and lifting up of a

clockwise-rotating vortex, at t+ = 4.5, it becomes much less coherent,

nevertheless, it is still identifiable. The existence of a counter-rotating
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vortex immediately upstream of the old vortex is barely visible in this

projected vector field, although it is quite clear in the vorticity field.

The subsequent developments of these two counter-rotating hairpin vortices

warrant future investigations, it is expected that their mutual evolutions are

closely related to the breakdown of large scale structures, as they might merge

with each other (pairing) through interactions and/or viscous diffusion.

The temporal evolution of the flow variations in several top-view planes

are shown in Figs. 4, 5 and 6. The lower boundary of the plane is at

2 z+ /X - 0.017, which is very close to the centerline. The upper boundary

is at 2z + A f - 0.98, which is quite near to one foot of the incipient hairpin
0 + + +

vortex. The left boundary is (x - x )/1 = -0.198 and the right boundary is

at (x+ - x +)/1+ - 1.75. The background flow is from left to right. Fig. 4
0 0

presents the variation of wall pressure coefficient at 5 time stations.

Generally speaking, the patterns have a shape of an arrow head with a low

pressure region followed by a high pressure region, and the patterns are

convecting toward downstream. At t+ - 4.50, the pressure variation in the

plane at y+ - 6.25 is also presented, when compared with the pressure

variation at y+ - 0, it can be shown that the gradient in the direction

normal to the wall is of 0(1) and, therefore, it cannot be neglected. An

ensembly averaged wall pressure field associated with turbulent spots in a

laminar boundary layer flow has been reported in Ref. [26], in which the

ensembly averaged wall pressure patterns are given in some 'similarity'

coordinates. Although it is interesting to note that the patterns described in

[261 are quite similar to those depicted in Fig. 4, further comparison is

needed to establish the connection between the present results and the one

described in [261. In Refs. [271 and [281, the wall pressure fluctuations

associated with turbulent boundary layer flows have been experimentally

investigated and attempts have been made to relate the observed pressure

pattern to both wall events and the large-scale structure of the boundary

layer, the results obtained in the present work should be compared in detail

with the results reported in [27] and [28], so that the relationship between

the wall events and the near wall pressure pattern can be better understood.

Nevertheless, it is interesting to note that, in Ref. [281, a characteristic

wall-pressure fluctuation pattern which is associated with the burst-sweep

cycle of events in the wall region has been experimentally identified. This

pattern has the form of an overpressure with a region of underpressure to
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either side of it. Such an experimentally observed pressure pattern seems to

be quite similar to the one indicated with t+ - 4.50 and y+ = 6.25 in

Fig. 4.

The flow variations in 4 top view planes are presented for two time

stations (Fig. 5 and 6). The vertical locations of these planes are indicated

by y/h ° which ranges from very close to the wall to about 1.3, note that h
0 0

is the height of the incipient hairpin vortex. Fig. 5 shows that, in the

course of the time, the incipient vortex is diffused, the formation and

intensification of new counter-rotating vorticity concentration region are also

obvious, as already pointed out in Figs. 2 and 3. The evolution of the

projected velocity vector field is illustrated in Fig. 6. At y+/h+ 0 0.1,0

i.e., in a region very close to the wall, it appears that the foot of the

incipient hairpin vortex (a clockwise-rotating vortex) is moving toward

downstream while shifting toward the center plane. At y /ho , 0.5, the vortex

is mainly translating in the streamwise direction, no apparent lateral motion

is observed. At y+/h+ = 0.9, i.e., close to the tip of the incipient hairpin

vortex, the vector field indicates that the incipient tip vortex is moving

toward downstream while shifting outwardly. Thus, the incipient hairpin vortex

which has an initial shape of a triangle is deforming while it is convecting in

the downstream direction. The feet of the hairpin vortex are moving laterally

toward each other, while the tip region is flattening out, i.e., the incipient

hairpin vortex is changing its shape from a triangle (as imposed at t+ = 0)

to a a-shaped structure. The plot at t+ = 4.50 and y+/h+ - 0.9 also

indicates clearly that there is a counterclockwise-rotating vortex immediately

upstream of the old clockwise-rotating vortex. The flow characteristics at
+ /h 1.3 change dramatically from t+ = 0.375 to t+ = 4.50. It appears

0

that, at t+ - 4.50, a relatively strong lateral flow is emanating from the

center plane.

*" The features of the flow variation at 6 front-view planes are presented

for two time stations in Fig. 7a, and Fig. 7b. The left boundary of the plane

is at 2z+ /X+  - 0.017, the right boundary is at 2z i - 0.98. The lower
0 0

boundary is at y /h+ = 0.05 and the upper boundary is at y+/h+  1 1.95. The
0 0

background flow is from behind these front-view planes. The streamwise
-4 + -

location of the plane is indicated by (x - x )/X° which ranges from -0.29 to
0 0

1.80, i.e., from upstream region of the incipient hairpin vortex to the
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downstream region of the incipient hairpin vortex which is inclined toward the

downstream direction. The contours of vorticity variation at t+ = 4.5

indicate again the existence of two counter-rotating hairpin vortices which are

fairly close to each other. Furthermore, streamwise vortices have been

developed in the downstream region of the incipient vortex. The plot at

S(x
+ - x +)/X+ , 1.40 indicates the lifting up of a vorticity concentration

0 0 + + +
region from the wall while at (x - x )/X 0 1.80, the vortical material still

attaches to the wall. The projected velocity vector fields at t+ = 0 and

=t
+  4.50 clearly indicate the ejection and sweep features occurring in these

front-view planes. These features are closely associated with the bursting

*phenomena which is a prominent wall event [29]. By comparing the vector plots

at t+ = 0 and t+ - 4.5 in a staggered manner, as indicated by the dotted

arrow lines in Fig. 7a and Fig. 7b, it appears that the incipient hairpin

vortex has been convected toward downstream direction. However, it should be

noted that the choice of the staggered planes is solely for the purpose of

illustration, the definite relationship between these planes is yet to be

studied. Further, if the convection velocity of the incipient hairpin vortex

can be considered as more or less constant, then, the streamwise vortex formed

at (x+ - x+)/I + - 1.8 is most likely due to the effects induced by the
0 0

incipient hairpin vortex, rather than as a direct result of the incipient

vortex being convected to this location.

These results show that the current numerical simulation produces almost

all of the prominent features associated with deterministic structures observed

in turbulent spots and turbulent boundary layer flows. In addition, it also

reveals dynamical processes which are difficult to observe in experiments,

notably, the formation and intensification of a new counter-rotating hairpin

vortex immediately upstream of the originally introduced vortex. It is

conjectured here that these two counter-rotating hairpin vortices are closely

related to the breakdown of large scale structures through their mutual

interactions and viscous diffusion. There is no doubt that the diffusion,

stretching and convection of the incipient hairpin vortex are primarily

responsible for the observed flow variations. Nevertheless, there also exists

evidence that the effects of the incipient hairpin vortex are propagating
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toward regions sufficiently far away from the incipient hairpin vortex by a

domino-like mechanism and these effects can be intensified in the course of the

time.

The present results also clearly demonstrate that the numerical simulation

through the solution of unsteady, three-dimensional Navier-Stokes equations can

put together various experimentally observed features occurring in wall

turbulent flows. Indeed, it appears that they can fit into a single picture

which includes only one incipient hairpin vortex and does not include either

the long streaky structure, or motions which scale on the overall boundary

layer thickness. In particular, the experimentally observed patterns of

various quantities such as velocity fluctuations and pressure fluctuations can

be better related to each other by using the results generated from the present

numerical simulation. Thus, the simulation capabilities developed under

the current effort will also be of great use in interpreting and correlating

the experimental results.

,2

29



ESTIMATES OF TECHNICAL FEASIBILITY

Under the present effort, the capabilities for numerical simulation of the

dynamical effects of the underlying structures occurring in turbulent boundary

layers have been developed, and a calculation has been successfully carried out

to demonstrate the feasibility of the proposed numerical simulation. These

results are obtained by solving unsteady, three-dimensional Navier-Stokes

equations which is embodied in a Navier-Stokes code developed at SRA. This

code is partially vectorized and required 0.135 x 102 sec of CRAY CPU time

per grid per time step. It is estimated that further vectorization of the code

can reduce the run time by a factor of 4, thus allowing the numerical

simulation to be a practical tool of studying the unsteady, three-dimensional

characteristics of wall turbulence.

The numerical simulation capabilities developed under the current Phase I

effort can be used in several different ways. It can be used to study the

unsteady characteristics of the turbulent wall flows per se, and, when

collaborating with experiments, it can be used to interprete and correlate

various features obtained from the measurements. Furthermore, the numerical

simulation developed under the current effort can be used to exploit the

unsteady flow characteristics that may improve aerodynamic efficiency and

enhance component performance through modification of turbulence

characteristics. For example, the common vortex generators as experimentally

identified in Ref. [5) produce vortical structures which closely resemble the

hairpin vortices investigated here. These structures which energize the

boundary layer and thereby avoid separation have found their applications to

controlling flows on aircraft wings, enhancing reattachment on rearward facing

ramps, improving mixing in dump combustors, and controlling the flow in

diffusers (see Ref. [41).
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CONCLUDING REMARKS

The unsteady, three-dimensional, compressible Navier-Stokes equations

together with the constant total temperature assumption have been applied to

numerically simulate the dynamical evolution of an incipient 'representative'

hairpin vortex immersed in a background laminar boundary layer flow as well as

the associated changes of the characteristics of the background boundary layer

flow due to their interaction. The present simulation has been carried out

over a region of somewhat limited streamwise extent for a significant time

duration, which is approximately 1/4 of the conjectured life span of the

hairpin vortex. A preliminary analysis of these results shows the numerical

simulation to reproduce many experimentally observed, prominent features

occurring in wall turbulence. The present approach rests on the existence of

incipient hairpin vortices and, therefore, is less demanding in computer

resources than the large-eddy calculations. In addition, the present approach

renders the identification and tracking of the fundamental, dynamical processes

associated with hairpin vortices less difficult than would be a tracking in a

large-eddy simulation. The results thus obtained would enhance the current

understanding of the basic mechanisms of the wall turbulence and, when

collaborating with experiments, would be of great help in interpreting and

* correlating the observed phenomena. Furthermore, the present approach would

lead to the exploiting of methods for controlling turbulence characteristics

. pertaining to the improved performance of various aerodynamic devices. Another

- . potential use of the presently proposed hairpin vortex model of wall turbulence

is the development of a synthesis approach which uses the hairpin vortices to

provide a quantitative link between mean flow properties and various near wall

turbulence quantities including the Reynolds stresses and spectral information.

•..
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Figure 1. A schematic of an array of hairpin vortices and the representative vortex.
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