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ABSIRICT

This thesis reports on methods for solving traveling

salesman problems with time-window constraints. Two types of

time windows are considered: hard time windows, which are

inviolable, and soft time windows, which are violable at a

cost. For both cases, we develop several heuristic proce-

dures, including some that are based on Stewart's [Ref..6]

effective heuristics for the traveling salesman problem

without time-window constraints. In addition, we develop

exact algorithms for each case, which are based on the

state-space relaxation dynamic programming metzod of

Christorides, Mingozzi, and Toth [Ref.5]. Computational

experience is reported for all the heuristics and algorithms

we develop.
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I. INTRODUCTION

A. OVERVIEW

Consider a traveling salesman having to visit n cities

or customers. He starts from a depot and needs to visit each

of the other n-1 cities only once and then return to the

depot. The ccst of traveling between any pair of cities

(expressed in terms of distance, time or cost, etc), say

from city i tc j, is given as c,-j in a cost matrix C. The

problem is to design a tour through the n cities that would

minimize the total cost of the tour. This is known as the

Traveling Salesman Problem which is a well-known classical

operations research prcblem.

The TSP is called Euclidean when the cities that must be

visited all lie on the same Flane and the cost of traveling

between any pair of cities is the Euclidean distance between

them.

The TSP is an NP-complete problem (Ref. 1, 2]. All known

exact solution methods have a rate of growth of the computa-

tion time which is exponential in n. On the other hand,

heuristic solution methods have a rate of growth of the

- computation time which is a lcw order polynomial in n and

have been experimentally observed to perform well. For this

reason, there has been an extensive amount of research

directed at 'ISP heuristics.

In this thesis we consider adding time window

constraints to the TSP. That is, if ti is the time trrat the

salesman visits city i, then tLmust satisfy 1L :S tZ_< uL,

where l and uL are the specified lower and uppeL bounds of

a time window. This problem is not as well studied as the

unconstrainted TSP, but there have teen a few approaches

used on the problem.

9
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Psaraftis [Ref. 3] has presented a dynamic programming

model and solution procedure for two dial-a-ride problems,

which are similar to time-window constrained TSPs. Baker

[Ref. 4] has presented an exact algorithm using a branch and

bcund procedure which is effective for very small n.

Christofides et al. [Ref. 5] have presented a dynamic

programming state space relaxation procedure to compute

bounding information within a branch and bound algorithm.

The objective ot this study is to develop exact and

heuristic algorithms which will provide an optimal or near

optimal tour that visits each city in its given time

window. We are given a depot location, a set of x,y

co-ordinates for n cities and a set of time windows

A common application of the TSP is in vehicle routing

problems. A set of customer orders must be partitioned

among several vehicles. Given a partition, the probiem then

decomposes into one TSP for each vehicle. Because of this

prospective application and in deference to the difficulty

of large TSPs (with or without time constraints), we contine

our research and computation to small-scaled problems (less

than 30 nodes).

we consider two different kinds of time window

ccnstraints- hard time windows and soft time windows. Hard

windows cannot be violated. Soft windows can be violated,.

but a penalty cost must be paid when they are. The penalties

can be defined individually for each customer, and they can

differ for early and late arrivals. Generally, the penalty
for arriving before the lower time window bound is much less

than the penalty for arriving after the upper bound. In

Chapter III, we present tne hard time window approach and in

Chapter IV, we present the soft time window approach.

We developed several Fortran programs for solving the

TSP and time-constrained TSP. For the TSP, we use Stewart's

[Ref. 61 recent heuristics, CCCO and CCAO. For the time

10
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constrained TSP problems, we develop some new heuristics,

some of which are modification of Stewart's heuristics for

the unconstrained problem. We also developed exact algo-

rithms for both hard and soft windows using Christofides et

al.'s [Ref. 5] method of state-space-relaxation dynamic

programming and branch and bound. This is described in

Chapters III and IV.

Finally, we describe a hybrid of the heuristic and exact

programs. The hybrid uses the overall structure of the

exact program, but the upper bounds are obtained with the

heuristic. This is discussed in Chapters III and IV.

B. THE TRAVElING SALESMAN PROBLEM

A tour is a chain which passes through all the n nodes

and in which the first and the last nodes coincide. A tour

is also known as a Hamiltonian cycle.

Let a tour he denoted by t = (i , i ,..., i , i ) and
1 2 n 1

the cost of this tour be

n-i
Cit) = c 4 c

j=1 j j+1 n 1

Here (i , i ,...,i ) is a permutation of the integers

1 2 n

from 1 to a, giving the order in whicA the cities are

visited.

The Traveling Salesman Problem can be defined as

follows. Given a graph G = f N,A I composed of a set of

nodes N, a set of arcs A connecting these nodes, and a cost

(distance) cyj associated with each arc (i,j) in A. The

TSP is the problem of finding the minimum cost tour of the

nodes in N. The following mathematical formulation of the

TSP is from Stewart jlef. 61.

11



MIIN C j (1.1)

S. T

* = 1 1.., (1.2)
ij

= 11, l....,n (1.3)

~yj Y.. 1i= ,., (1.4)
j==2

y -Ux ! 0 i =2,...,n (1. 5)
j) i

j =1..p

i~j
X. = 0, 1 for all (i, j) (1.6)

y. Z 0 for all (i, j) (1,7)
1]

where
x = 1 if arc (i, j) is on the tour
ij (o otherwise

y are continuous variables that force the final

soluticn to be on the tour
(i.e. include every node in the same route

u is anumber 2:n-1 , and

n is the number of nodes in the set N.

The constraints (1.2) and (1.3) ensure that each node

will be visited exactly once, while constraints (1.4) and

(1.5) far ce the f inal solution to be a single tour that

starts and ends at node 1 (depot), 7 1his formulation is not
directly used in our TSP programs, but is of interest in a

qeneral discussion of the problem.

12



C. TSP WITH UIBE VIVDCI CONSTRAINTS

The time-ccnstrained Traveling Salesman Problem is a

variation of the TSP that includes time window constraints

on the time to visit some of the cities. The hard time-

constrained TSP is to find the minimum cost tour subject to

visiting each city within its time window.

For the time-constrained TSP model, we define a contin-

uous nonnegative variable, tL , to te the time that the
salesman visits city i. Since the salesman must return to

city 1 (depot) at the end of the tour, the formulation
includes an additional variable, t. , the total time

required to ccmplete the tour.
We assume that a complete, symmetric, nonnegative

distance matrix, |CAj |, is known and that time is a scalar

transformation cf distance. Thus time and distance may be

used interchangeably.

The following mathematical formulation of the TSP with

time constraints is from Baker [Hef. 4i].

MIN t - t I 1
n+1 1

S•T t t 2! c i = 2,3,...,n (1.9)

| t - t I - c j = 3,,4,..•,n (1.10)
i j ij

3~ i(2 S_ i < j

t t > c i = 2,3,...,n (1.11)'--n+1 i Ii

t _ 0 i = 1,2,•...,n I (11•121
~i

1 < t <5 u i = 2,3,...,n (1.13)
i i i

where t = the time that the salesman visits city i
i

xl = the absolute value of x
c = the shortest time required to travel from

ii
city i to city j

13
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1 = the lower bound on the time window for thei
salesman to visit city i

by assumption all 1 i_ 0

u = the upper bound on the time window for thei
salesman to visit city i

u > 1 , for all i
i

The constraints (1.9) through (1.12) ensure a nonnega-

tive arrival time at city i, t , be obtained for each city

(node 2 through node v) on the tour. The constraint (1.9)

guarantees that t1 , the time that the salesman leaves the

node 1 (depot) will be the smallest t value. The absolute

value constraint (1.10) ensures that the arrival times of

any two city differ by amount of time sufficient to allow

the salesman to travel between the two cities. The

constraint (1.11) guarantees that thg, the time the salesman

returns to the depot, will be the largest t value. The

inequalities (1.12) and (1.13) are nonnegativity and the

time window ccnstrainis respectively.

Unfortunately, Baker's proposed model for the time-

constrained ISP is very difficult to solve, because

ccnstraint (1.10) is nonconvex. Therefore, we will not use

this formulation directly in cur program.

Figure 1. 1 illustrates the nonconvexity of constraints

(1.10) for cne i,j pair, the example I t - t i _ 5. The.

feasible region for this ccnstraint is the union of two

disjoint sets. Taken all together, constraints (1.10)

define 2 disjoint sets sets where m = (n-1) (n-2)/2,

which are very difficult to work with.

We can see that the time-constrained TSP is very

different from ISP, even in fcrmulation.

14
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Figure 1.1 Exaaple of Nonconvexity of (1.10)
in Two Dimensions.
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II. HEUR_$I_ .1 TSP SOL 2].ON

A. OVEBVIEW

Many heuristic procedures have been developed for

sclving TSP. Our purposes in this Chapter are to examine

some of the well-known heuristics, to review Stewart's [Ref.

6] recent heuristic, and to compare these approximate tech-

niques on the basis of efficiency and accuracy on a small

number of exanples.

In general, heuristic procedures are categorized hy

three broad classes: tour construction procedures, tour

improvement procedures, and composite procedures [Ref. 7].

Tour construction procedures start with a single rnode and

successively add nodes till a tour is t-nilt. Tour improve-

ment procedures attempt to find a atter tour given an

initial tour. Composite procedures ccnstruct a starting tour

from one of the tour construction procedures and then try to

find a tetter tour asing one cr more of the tour improvement

proced ures.

There are many methods available for constructing an

initial tour. Erocedures which have been generally used are

given below.

a. bearest Neighbor ( Rosenkrantz et al. (Ref. 3]

Step 1. Start with any node as the beginning of

a subtour.

Step 2. Find the node closest to the last node

added to the subtour. Add this node to

the current subtour.

16



Step 3. Repeat step 2 until all nodes are contained

in the tour. Then, join the first and last

node.

b. Clarke and Wright Savings { Clarke and Wright

(Bef. 9]

Step 1. Select any node as the central depot

which we denote as node 1.

Step 2. Compute savings s = c + c - c
ij Ii 1:j ij

for ij = 2,3,...,n. i#j

Step 3. Order the savings from largest to smallest.

Step 4. Starting with the largest savings on the

list, subtours are assembled such that the

next node added has the largest remaining

savings - provided that a constraint is not

violated. Once a pair of nodes i and j have

been linked, they remained linke4".

Repeat until all nodes have been assigned.

Here, the quantity s.. is the amount of travel

saved if node j is visited direcly after i, ds opposed to

having separate trips from the depot to nodes i and j.

Figure 2.1 demonstrates the procedure for two nodes i and j.

C. Insertion Procedures ( Rosenkrantz et al. (Ref.

81)

An insertion algorithm ccnstructs a teasible

tcur by successively adding one node to an existing subtour.

This procedure takes a subtour of k nodes at iteration k and

attempts to determine which node not in the subtour should

join the subtour next (the Selection step). Then it deter-

mines where in the subtour it should he inserted (Insertion

17
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I .
I ''' '2)\----------- )I

. . '+, ' , / \/

I / I

Before Linking After Linking

I. I I\II

.. \ I

Figure 2.1 Concept of the Clarke - right
Savings Heuristic.

step). Stewart [Ref. 6] presentad the following general

algoritmic structure.

Step 1. (Initial Suttour)
Obtain a TSP tour for a subset oi the nodes

N'C N in G.
Step 2. (Selection Step)

Find a node k4EN-N' tc be added to the
existing subtour.

Step 3. (Insertion Step)
Choose an arc(ij) in the subt ur on N.

Insert node k between i and j and add

k to NO.

Step 4. If N = N', then stop-
(We have a Hamiltonian cycle).

Otherwise, return to step 2.

18
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There are many variations on this algorithmic

structure depending on the procedures chosen for executing

steps 1,2 and 3.

Wiorkowski and McElvain [Ref. 10], Or [Ref. 11],

Stewart [Ref. 12],and Norback and Love [Ref. 13] all present

insertion algorithms that use the convex hull of the set of

nodes N for the initial subset N'. Nemhauser and Hardgrave

[Ref. 14] have shown that there exists an optimal tour for

every Euclidean TSP in which the relative order of the nodes

on the boundary of the convex hull is preserved. This means

that the optimal tour visits nodes on the boundary of the

convex bull in the same order as if the boundary itself were

followed.

Further justification for the use of the convex

hull for the initial subtour is shown empirically by

Stewart's (Ref. 6] computational experiment. He compared

several insertion heuristics both with and without the

convex hull as the starting solution. The results show that

all the insertion algorithms are improved by the use of the

convex hull. Some are improved substantially, others only

moderately.

Many criteria have been suggested for the selec-

tion of the node to be inserted in an insertion procedure.

(1) learest Niihbao ( Rosenkrantz et al.- (ljf.

.8 ). Choose the node k that is nearest a node in the

current tour. I. e. , find k = argmin c s.t. j f N-N',

i E N'. 
3 ij

(2) Cheapest .Insertlion ( loejkrantz et al.

[ef. 81 ) . Choose the node k that may be inserted at

minimal increased cost. I.e., find

k = arguin c + c - c S.t. me N-N', i,jE N'.
m im mj ij

19
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(3) Farthest Insertion ( Rosenkrntz et al.

(Ref. 8]). Choose the node k that is farthest from a node

current subtour. I.e., find k = arqmax c s.t. j E N-N',

i E N' 
3 ij

(4) Arbitray Insertion ( Rosekrantz et al.

(Ref. 8] ). Choose node k randomly from among N-N'.

(5) Ratio Insertion ( Stewart [Ref. 12] ).

Choose the node k such that the proportional increase in

ccst is minimal. I.e., find k = argmin (c. c ) / c
m im mj 1j

s.t. m E N-N', ij f N'.

(6) Perpendicular Dista_4e ( Wiorkowski and

McElvain (Ref. 10] ). Choose the node k that is closest to

an arc in the current subtour.

(7) Ratio Times Distance ( Or [Ref. 1] ).

Choose the node K such that the Froduct of ratio and

distance is minimized. I. e. , find

k = argmin (( c + c .) / c .) x (c + c - c
m im m] ij im mj 1]

s.t. m f N-N' , i,J N'.

(8) Greatest Angle ( jorback and Love [Ref.

13] ). Choose the node k and arc i, j such that the angle

formed by the two arcs (i,k) and (k,j) is a maximum. I.e.,

find k = argmax anglef arc(i,m), arc(m,j) } s.t. mCN-N',
m

i,j 4 N'

The insertion criteria that have been used

fall into two categories. [Ref. 6]

1. Cheapest Insertion

Insert the node ke N-N' between those two

connected ncdes i,j f N' that minimize the quantity

c c - c
ik kj ii

20

*



2. Identical Insertion and Selection

Do selection and insertion in the same

step.

2. log! Improvemeat Procedures

The best known procedures of this type for the TSP

are the branch exchange heuristics [Ref. 7]. These branch

exchange heuristics work as follows.

Step 1. Find an initial tour. This tour may be chosen

randomly from the set of all possible tours,

cr it may be generated by one of the tour

tuilding procedures above.
Step 2. Improve the tour using one of the branch

exchange heuristics.

Step 3. Continue step 2, until no additional

improvement can be made.

For a given k, we define a k-change o a tour as

consisting of the deletion of k branches in a tour and their

replacement by k other branches to form a new tour. A tour

is k-opt if it is not possible to improve the tour via a

k-change. In general the larger the value of k, the more

likely it is that a k-opt solution will be optimal.

Unfortunately, the number of operaticns necessary to test

all k exchange is ploportional to n K , where n is the number

of nodes in the TSP. Due to this complexity, values of k = 2
and k = 3 are most commonly used [ Rel. 7]. The 2-opt and

3-opt heuristics were introduced by Lin [hef. 15) and the

k-opt procedure, for k 3 was presented by Lin and Kernighan

[Ref. 16]

Or [Ref. 11 1 has designed a modified 3-opt that

considers only a small percentage of 3-branch exchanges.

This modified 3-opt called Oropt y Stewart [Ref. 6]

21

L / i i [ ? i I - . . " • i i , ' '



considers only those branch exchanges which are composed of

a string of one, two, or three adjacent nodes being inserted

between two other nodes in the current tour. By limiting the

number of exchanges that are considered in this way, Oropt

requires many fewer calculations than a full 3-opt.

Stewart (Ref. 6 ] made an experiment of the convex

hull, cheapest angle insertion algorithm (CCA) which will be

discussed in the next section as a stand-alone algorithm and

with each of the three post-processors. The algorithms are

designated CCA, CCA2, CCAO, and CCA3 for the convex hull

cheapest insertion stand-alone, with 2-opt, with Oropt and

* with 3-cpt respectively. He drew two conclusions from his

computational results. First, the 3-opt requires substan-

tially more time than either the 2-opt or toe Oropt.

Second, the 2-opt is dominated by the Oropt and the 3-opt in

quality of solution.

In computation time, Oropt only looks at
2approximately 3 n of the n possible 3-opt exchanges on

eaca pass. There are n ways to select tte first branch,

times 3 ways to select the second branch, and n-2 ways to

* select the third branch.

This accounts for the fairly close times for the

2-opt and Oro~t. The quality of CCAO solutions dominate

CCA2 solutions. On the other hand, there is little or no

difference between the Oropt and 3-opt in terms of solution

quality.

Stewart's main conclusion froi, the above experiment

is that the Oropt performs as well as a 3-opt in a small

percentage of the computer time required by a 3-opt, and it

should he preferred tc both the 2-opt and the 3-opt for

Euclidean TSP's.
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3. Composite Procedure

The tasic composite Frocedure is a combination of

the tour construction and branch exchange procedures. It is

obtained by appending a branch exchange procedure to the

tour construction algorithm as a post-;rocessor. The proce-

dure can be stated as follows [Ref. 17].

Step 1. Obtain an initial tour using one of the

tour construction procedures.

Step 2. Apply a branch exchange procedure to the

solution produced by the step 1.

Stop when no further improvement can be made.

The composite procedure is relatively fast computa-

tionally and gives good results [,Ref. 18].

B. CCAC

1. Algoriths

The CCAO algorithm designed by Stewart [fef. 6] uses

the convex hull of the nodes in N for its initial subtour.

. Then it inserts the nodes not currently in the subtour where

" they may be inserted most cheaply (the Cheapest Insertion

criterion). It selects the node k to be inserted at each

iteration according to how large an angle is formed by the

two arcs that must be added to the current subtour

(Selection criterion) in order to insert k. Finally it uses

an Oropt to make local improvement on the tour constructed

* in the first stage. CCAO means Convex Hull, Cheapest

Insertion, Angle Selection, Oropt.

Algorithm CCAO

Input Number of nodes, x and y co-ordinates of all

nodes.

Cutput: irdered iist of tour, total cost.
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q0

*• "Step 1 (Initial Subtour)

Find the convex hull of the set of nodes N.

Call the set of nodes on the boundary N'.

Let the initial subtour be the nodes of N'

in the same order as they appear on the

convex hull.

Step 2 . (Cheapest Ins. rtion)

For each node mE N-N°, find
(i ,j ) = argoqin c + c - C

im m i,j im mj 1]

s.t. i, j e N', i, j : connected.

Step 3 . (Greatest Angle Selection)

For the next insertion, select tle ncde

that maximizes the angle between the arcs

(i ,m) and (m,j ) over all m C N-N'.
m m

I.e, find k = argmax angle[ (i ,m), (a,j)
m m m

s.t. mE N-N'.

Insert k between i and j and add

k to N'.

step 4 : If N' = N, go to step 5.

Otherwise return to step 2.

step 5 : Apply an Oropt to the current tour. Stop

when no further improvements can be found.

End of algorithm CCAO

2. Exa m le

Figures 2.2 - 2.4 illustrate the above algorithm on

the TSP defined as test problem [1] in Appendix A. First

the convex bull is generated for an initial starting

subtour. This subtour consists of nodes 2,13,12,14,5,15,7,4.

A solid line marks the boundary of the convex hull in Figure

2.2.
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Figure 2.3 Intermediate Subtour and Insertions.

with new node pairs. Figure 2.4 shows the final tour for

stage one. This tour is now passed to an Oropt post-

processor. In this case the tour from stage one appears

from inspection to be optimal, and Oropt will find no

improvement.
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Figure 2.4 Final Tour of CCAO.

3. Computational Results

In addition to CCAO, CCCO (Convex, Cheapest,
Cheapest, Oropt) has been coded for the purpose of compar-

ison. The only difference tetween CCAO and CCCO is that

CCCO uses the cheapest selection criterion instead of
greatest angle of CCAO.

We used Sedgewick's [Bef. 19] package wrapping algo-

rithm for finding the convex hull (initial subtour).
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Starting wit' some point (called the anchor) that is guaran-

teed to be on the convex hull (say the one with the smallest

y co-ordinate), take a horizontal ray in the positive direc-

tion and sweep it upward until hitting another point. This

point iE on the hull. Then start at that point and continue

sweeping until hitting another point, etc. The package is

completely wrapped when the first point is included again.

The following algorithm finds the convex hull of an array

.L(1,...,n) of nodes, the node L(n+1) is used as a sentinel,

that is, a copy of the first node which is used to signal

completion of the procedure. The variable NH is maintained

as the number of nodes so far included on the hull.

Algorithm - Package Wrapping

Input : Number of nodes, x and y co-ordinates of all

nodes.

Cutput: Ordered list of convex hull and number of

nodes included on the convex hull.

Step 1 (Initialization)

find and duplicate anchor. i.e., find

NMIN = argmin y. s.t. i E N and set
1

NH = 0, L(n+1) L(N.MIN).

Step 2 (Swap nodes NH and NNIN).

Put last node found into the hull by

exchanging it vith the NHth node.

NH = NH + 1.

TEMP = L(NH).

L(NH) = L(NMIN).

L(NMIN) = TEMP.

Step 3 (Compute angle)

Compute the angle from the horizontal made
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by the line between L(NH) and each of the

nodes not yet included on the hull.
Step 4 - (Find next hull node)

"' Find the node whose angle is smallest amcng
those with angles bigger than the current

value of the Isweep' angle (the angle from

horizontal to the line between L(NH-1)

and L(NH)).

Step 4 Stop when the first point is encountered

again. I.e., L(n-,) = L(NMIN)

Ctherwise, go to step 2.

End of algorithm Package Wrapping

We used Sedgewick's Pseudo Angle for finding the

smallest angle in step 3, which is coded as the 'THETA'

function. This function returns a real number between 0.0 to

4. 0 that is nct the angle made by Li and L2 with the hori-

zontal but which has the same order properties as the true

angle. If dx and dy are the delta x and y distances from

some node to the anchor node, then the angle needed in this

algorithm is arctangent dy/dx. However, the arctangent

function is likely to be slow and it leads to at least two

annoying extra conditions to compute whether dx is zero,

and which quadrant the point is in.

In this algorithm we only need to be able tc compare

angles, not measure them. Thus it makes sense to use a func-
tion that is such easier to compute than the true angle but

has the same crdering properties as the true angle. A gocd

candidate for such a function is simply dy / (dy + dx)

Testing for exceptional conditions are still necessary, but

simpler.

Function THETA ( Pseudo Angle )

Input dx,dy (delta x and y distances from some

node to the anchor node).
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Cutput : Pseudo angle made by Li and L2 with the

horizontal line.

begin

dx = x(L2) - x(L1) : ax = abs(ax) :

dy = y(L2) - y(L1) : ay = abs(ay)

if ( dx=0 ) and ( dy=0 ) then t = 0.0

else t = dy ( (ax + ay )
if dx < 0 then t = 2.0 - t

else if dy < 0 then t = 4.0 + t

end

End of function THETA

Figure 2.2 shows how the hull is discovered in this

way. We used Sedgewick's Pseudo Angle for finding the

greatest angle selection point.

The data for our test problems is given in the

Appendix. The computational results are summarized in Table

I. As can be seen in Table I, CCAO is faster than CCCO on

the small-scaled test problems (below 30 nodes ), but CCCO

- - is faster than CCAO on the moderately large sized problems

(over 50 nodes). Generally, the accuracy is almost iden-

tical in both cases.

Stewart [Ref. 6] showed that in a large scaled

problem, the CCAO algorithm outperforms any other insertion

and selection algorithms. Thus, we age highly motivated to

use a modification of the CCAO algorithm for solving the

time-window ccnstrained TSP.
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TABLE I

CCAPUTATIONAL RESULTS OF CCCO, CCAO

CCCO CCAO

- Problem Number Best % CPU % CPU
Number of Known Over Time Over Time

Nodes n Solution Best (sec) Best (sec)
(11 16 66.6039 0.00 0.0133 0.00 0.0066 1

[2] 22 469.0288 0.00 0.0233 0.00 0.0100

[3] 22 278.4371 0.00 0.0166 0.00 0.0066I I
[5] 51 429.7000 2.72 0.1897 3.94 0.2562 I

[6] 76 552.9000 1.64 0.5857 1.54 0.6889 I

' )

* CPU times in seconds on IBM 3033.
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III. _EE ISP WITH HARD TIE RINpOX CONSTRAINTS

A. INTBODUCTION

The first time-constrained TSP we consider is the case

in which late arrivals are not allowed, and early arrivals

must wait for the opening of the time window before they can

begin to service a customer. This is called the hard time

window case and it is illustrated in Figure 3.1.

cannot be

violated

waiting--->I time I<-..... I

I x ---- -- -.. . . . .. . . . .--salesman lower upper

a rri ve- bound bound
time window 1--1 .. .>1 < ..
fcr cityi I

Figare 3.1 Diagram for Hard Time Window Case.

The hard time window case corresponds to military opera-

tions and to some civilian distribution problems. Meeting a

deadline is ccnsidered a critical factor in this case. The

soft time window case will be discussed in the nextChapter.

Consider a graph G = (N,A) composed of a set of nodes N

and a set of arcs A connecting these nodes. We now define

some notation to be used throughout cur discussion of the

time-window-ccnstrained TSP.
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1 = Lower bound on the time window at node ii
(early allowable arrival time at city i).

u = Upper bound on the tine window at node i
i

(latest allowable arrival time at city i).

d = Time required to spend at node i.
i

(service time at city i).

SPEED = Constant speed at which the vehicle

travels.

dist = Distance from i to j.
ij

c = Iravel time frcm i to j.ii

Note : c = dist.. / SPEED.
ij ii

We use c and c(i,j) intercnangeably.

depot = Depot(home) ncde.

L = ( L(1) ,L(2) ,...,L(n) '.

= A tour with n stops visited in the order

L(1),L(2) ,...,L (n)

ARRVT = Arrival time at city i.

WAIT = Waiting time at node i for the hard time
i

window.

We also use I(i), u(i), d(i), ARRVT(i), WAIT(i) and

1., u , d . A .VT , WAIT interchangeably.2.i i i

B. HEURISTIC SOLUTION TECHNIQUES FOR HARD TIME WINDOWS

1. Nearest Nei r.

The following is a Nearest Neighbor heuristic

similar to the one used in the unconstrained TSP. At each

iteration we add a new node tc the end of the subtour. It

is the first node that can be visited from the last node of

33
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the subtour, taking into account any waiting time that might

be necessary due to the lower time window bounds.

1lgorithm : Nearest Neighbor

Input Number of nodes, x and y co-ordinates of all

nodes, time windows for all nodes.

Output : Ordered list of tour, tctal travel time.

Step 1 . (Initialization)

Start at the depot.

Let i=depot, N' = {i}.

Step 2 . Compute ARRVT for all nodes k e N-N' if k can

be visited directly after i

ARRVT = max ( ABRVT , I. + d + c
k i i i ik

Step 3 . If ARRVT > u , then stop (' no ieasible
k k

solution').

Step 4 . If ARRVT < 1 * then cost 1
k k k k

Otherwise, cost k ARRVT

Step 5 . ( Nearest Neighbor Selection)

Choose the node kE N-N' such that cost is
k

a minimum. I.e, find

k = argmin cost s.t. j fN-N'.J

Step 6 . (Insertion)

Insert k after i, add k to subtour N', and

let i = k.

7 Step 7 . If N'=N, go to next step.

Otherwise, return to step 2.

Step 8 . Compute total travel time, then stop.

Total travel time = max { ARRVT , I jjg. k k

.', d + c
k k,dect

End of algorithm Nearest Neighbor
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This solution was constructed by starting at the

depot and moving to the nearest neighboring customer that

has not yet keen visited as long as the upper bound level
was not violated. This heuristic may fail to solve the

problem.

2. SCCO

This algorithm is designed for the case when some of

the nodes do not have time windows. we call these nodes "

time free ".

SCCO is similar to the cheapest selection, cheapest

insertion method for the unccnstrained TSP, except that the

ncdes with time windows are treated differently from the

time free nodes. The nodes with windows are inserted in

order of increasing upper time window bound.

The time free nodes are inserted between these nodes

by cheapest selection and cheapest insertion, for as long as

the upper bound time window will allcw. In the end, a

Modified oropt is used to improve the solution.

There is one possible difficulty with this approach.

It may become impossible to reach some of the time-

constrained ncdes before their upper bound. In this case,

we must delete some node(s) from the subtour. Whenever we

see an upper Dound that cannot be satisfied, we select a

node to delete by the following criteria.

The first criterion is the width of the time window.

Hence, time-free nodes are considered first. Then, if

several nodes in the subtour are tied for the widest time

window, we select for deletion the node that results in the

greatest time saved. The algorithm is summarized as

follows.

Algorithm Successive Cheapest Cheapest Oropt (SCCO)

Input : number of nodes , x and y co-ordinates of all
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nodes, time windows for all nodes.

Output ordered list of tour, total travel time.

Step 1 . (Initialization)

Start at the depot.

let i=depot, N4 = fi}.

Step 2 . Set k = argmin u S.t. j C N-N'.• j
If k is time free node, then set k = depot.

Step 3 . Calculate AERVT.

ARRVT = max [ ARRVT , 1 + d + ck 1 i ik

Step 4 . If ARRVT _< u , then go to step 5.k k

Otherwise, select time free node m e N' which

results in the greatest time saved for dele-

tion. Delete node m from N', go to step 3.

Step 5 . Add node k to the subtour N'.

Step 6 . Insert time free node jE N-N' between nodes i

and k by cheapest insertion and cheapest

selection (same as CCCO) until ARRVT does not
k

exceed u
k

If ARRVT < i , then set ARRVT = 1
k k k k

Step 7 I 1f N'=N, then go to next step.

Otherwise, let i = k and go to step 2.

Step 8 . Apply the modified Oropt procedure to the

current tour. Stop when no further improve-

ments can be found.

End of algorithm SCCO

"Successive" means select the node successively by

the smaliest upper bound. In the SCCO aigorithm, if the
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salesman arrives before the lower bound of the time window,

adding waiting time, we set the arrival time equal to the

lower bound.

The Scdified Oropt prccedure for improving the solu-

• tion is described below. This procedure consider only those

exchanges that would result in a node being inserted between

two other nodes in the current tour.

- i _

CVII

• 1
1 .I I I , , I I I0 I

0 1 2 3 4 5 6 7 8 9 1011 12

I x

* Figure 3.2 Current Tour before Modified-Oropt.

Figures 3.2 and 3.3 are helpful to understand how
the procedure works. In both figures, i,jk,l, and m are the

nodes in the current tour. Nodes 1 and m are considered to
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be adjacent tc node k. A test is then conducted to deter-

mine if node k can be located between two other nodes, such

as i. and j, sc that it results in reduced total travel time.

If it can, we make the appropriate arc exchanges, then

update the total cost and route orders.

C\-

0 4 5 6 7 1'0 1 1i

Fiur 3. mrvdIu fe oiidOot

In thseapeIh he ac ij kl n

Ikm arIece n elcdb i_) j ) ad(~)
Whe nofrhr1cine mrv h ouin h lo

ith temnts
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Figure 3.4 Subtour in SCCO Procedure.

Figures 3.4 - 3.6 illustrate the SCCO algorithm for

the TSP with hard time windows given in Appendix F as in

test problem (1 ]. In this problem 10 of 16 nodes have time

windows. The cther 6 nodes are time free.

First, the subtour starts at the depot (node 16) and

we insert the node with the smallest upper bound (node 12).

We examine all ncdes which could be inserted between 16 and
12 as long as the upper bound on node 12 is observed. In
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Figure 3.5 Intermediate Subtour in SCCO Procedure.

this case there is no such node. Then we select the next
smallest upper bound (node 14), add it to the tour, look for
nodes to insert before it, and continue in this manner. Now

we have formed the partial tour 16, 12, 14, 11, 6, 3 as

shown in Figure 3.4.

As shcwn in Figure 3.5, we can insert 3 time free

nodes between node 6 and node 3. These insertions are made

according to the cheapest insertion and cheapest selection
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Figure 3.6 Final Subtour for SCCO.

criteria. We do not make any further insertions because

they would cause a time window violation at node .3.

Figure 3.6 shows the final tour for the SCCO

heuristic. This tour is passed to a Modified Oropt, but in

this case it mill find no improvement.
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3. SCA 0

This beuristic is identical tc SCCO except for the

use of the greatest angle selection criterion for the time-

free nodes, instead of cheapest selection.

Algorithm : Successive Cheapest Angle Oropt (SCAO)

Input : Number of nodes, x and y co-ordinates of all

nodes, time windows for all nodes.

Output : Ordered list of tour, total travel time.

Step 1 . (Initialization)

Start at the depot.

Let i=depot, N' = fi).

Step 2 . Set k = argmin u s.t. j e N-N'.

If k is time free node, set k = depot.

Step 3 * Calculate ARRVTk

ARRVT = max [ ARRYT , 1 + d + c .k 1 I i ik

Step 4. If Ai-RVT _< u , then go to step 5.
k k

Otherwise, select time free node me N' which

results in the greatest time saved for dele-

tion. Delete node m from N', go to step 3.

Step 5 . Add node k to the subtour N'.

Step 6 . Insert time free node j E N-N' between nodes i

and k by cheapest insertion and greatest

angle selection (same as CCAO) until ARRVT

does not exceed u
k

If ARHVT < 1 , then set ARRVT = 1 .
k k k k

Step 7 . Let i = k.

If N'=N, then go to next step.

Otherwise, go to step 2.
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Step 8 . Apply the Modified Oropt procedure to the

current tour. Stop when no further improve-

ment can be fcund.

End of algorithm SCAO

This algorithm is same as SCCO except greatest angle

selection is used instead of cheapest selection, as in SCCO.

4. SLACK

This heuristic was suggested by Professor Rosenthal.

It is designed for the case when the widths between the

upper and lower bounds of the time windows are relatively

large.

In this heuristic, the SLACK is the most important

concept. The SLACK(i) can be defined as the maximum amount

of time by which arrival at node i can be delayed

without causing an upper bound to De violated for a node

currently on the tour.

The SIACK function can be defined as a recursive
function as fcllcws.

SLACK(L(i)) = min u(L~i)) - AERVT(L(i))

SLACK(L(i+1)) + WAIT(L(i) 

where
WAIT(L(i)) = max 0 0, l(L(i)) - AREVT(L(i)) }

The first element of this recursive function is the
difference between the upper bound and arrival time at node
L(i). The seccnd one is the sum of next node's SLACK and

waiting time ci node L(i). The minimum of these tho

elements is a possible delay time of the arrival time at
ncde L(i) without violating the upper bound of all nodes

after L (i) in the current tour.
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The advantage of this recursive function is that it

is easy to calculate a possible delay time without calcu-

lating new arrival times for all nodes after L(i). The algo-

rithm is summarized as follows.

Algorithm : SLACK

Input : Number of nodes, x and y co-ordinates of all

nodes, time windows for all nodes.

Output : Ordered list of tour, total travel time.

Step 1 . (Initialization)

Start at the depot. Let N' = fdepot).

Step 2 . Sort the upper time windows.

U = ( U ,U ,...,u
12 n

s.t. u 1_5u 2-<. ..<_u n1 2 n

Step 3 . Set k = argmin u s.t. iE N-N'.
i

Step 4 . Find a node L(ISTAR) after which node k

can be inserted in the current sequence,

if such a node exists. Go to step 7.

(The criteria by which we determine if an

insertion can be made are given below.)

Step 5 i f there is no such place to insert node k,

then try to find a node L(ISWAP) in the

current sequence such that k can replace

L(ISWAP) and l(ISWAP) has a good chance of

being reinserted somewaere else.

Select ISWAP which has the largest time

window width among candidates for ISWAP.

If there is no candidate, then stop.

( ' no feasible solution * )
Step 6 . Do swap ( add k to N', and delete L(ISiAP)

from N', and set k = L(ISWAP ),

then update slack and arrival times.

Go to step 3.
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Step 7 . Select the node which results in the minimum

additional travel, i .e, the node k which

minimizes the following quantity.

c (L(1),k) + c(k,L(1+1)) - c(L(),L(L1)).

Step 8 . Insert k after L(ISTAR), and add k to N',

and update slack and arrival times.

Step 9 . If N,=N, then stop.

Otherwise, go to step 3.

End of algorithm SLACK

This Frocedure starts with sorting an array

u , u ,...u into ascending order using a heapsozt
1 2 n

(Ref. 201. This u array is used to select a node k in

ascending order for insertion. Since the upper bound cannot

be violated, this step is performed. Then find a node 1(I)

after which ncde k can be inserted in the current sequence,

if a such a ncde exists.

There are two tests which must be administered to

determine if k can be inserted after L(I). First, the

arrival time at node k if k succeeds L(I), which is called

TEST1 must not he greater than the upper bound u . Second,

if k precedes L (I+1), taen the resulting delay in arrival at

L(I+1), which is called TEST2 , must not greater than

SLACK(L(I+1)}. We can calculate TESIl, TLST2 as follows.

TESTi = Arrival time at node k if k succeed L(i).

= max (AERVE(Li)), 1(1(i)) I + d(L(i)) + c(L(i) ,k).

TEST2 = Delay in arrival at L(i41) if k precedes L(i+1).

= max ( 'EST1, l(k) + d(k) + c(k,L(i+1)).
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If there exists more than one node L(I) after which

node k can be inserted, we select L(I) according to the

criterion of least additional travel time. This additional

travel time, called TEST3, is given by

TEST3 = c(LI),k) + c(kL(I+1)) + C(l(I),L(I+1)).

When we insert node k after L(I), we update the

arrival times and SLACKs. In the updating process, we

compute updated values of SLACK only for the nodes whose

SLACK actually changes as a result of the insertion.

If there is no place to insert node k, we call a

subroutine called OTSWAP'. ISWAP tries to find a node

L(ISWAP) in the current sequence such that k can replace

L(ISWAP) and L(ISWAP) has a good chance of being reinserted

somewhere else. TSWAP uses 2ESTI ans IEST2 to fiud a candi-

date for ISWAI and then uses a largest time window width to

select ISWAP. If there exists such a ISWAP, then we do the

swap and update SLACKs and arrival times and try to insert

again.

C. EXACT SOIUTICN TECHNIQUES FOR HARD TIME WINDOWS

1. Stat -S_*ace _Relaxation Procedure

A dynamic programming model of the time-constrained

TSP has been developed by Christofides et al. [Ref. 5]. we

applied their approach to compute bounding intormation

within a branch and bound algorithm.

Consider the TSP defined on the graph G = [N,} with

the time windcw constraints, where N is a set of all nodes

of G, and A is a set of arcs. Let R(j) be the set of nodes

from which it is possible to go directly to node j. We can

initially set R(j) = N - ( i I li + dL + c . > uj because

it is impossikle to go directly from ncde i to node j if the

earlist possitle arrival time at node j exceeds the upper

time window cf node j.
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Let fIS,j) be the duration of the least time path

starting at node I passing through every node of Sr S'=N-{1)

and finishing at node j. For a given S and j, we cin caicu-

late a minimus arrival time in node j as

T (S, j) =i ( [in (S- j,i) + d+ c* J (3.1)

Then,

f (S,j) = T(S,j), if 1 5 T(S,j) -< u
= 1 if TIS,j) !S I

0 ,if T(S,j) > u
J

with the initialization:

f (,j) j) c c . ,D if 1 S c < u.
-1 ,if c <

j lj j
- 0 if c > u

Ij j

In equation 43. 1) the minimum arrival time in node j passing

through the nodes in the set S can be described as the sum

of three terms : the first is the duration of the least time

path passing through the nodes in the set S-{j] and ending

in node i, the second is the time required to spend in node

i, and the third is the travel time from node i to node j.

. The f(S,j) can be calculated for all subsets S of S'

and for all nodes j by using equation (3.1) recursively.

Finally, the optimum solution can be calculated as

min [ f(S',i) + d + c ].
iS' i

Since the computer storage requirements increase

exponentially with the size of the problem, this methcd is
limited to small problems he total number of f (S,j), when

S contains k nodes, is k since f(S,j) must be calcu-
lated for all subsets S o S and since each node in S must
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be considered as a possible end-node j. Therefore the

storage requirement for f(S,j) in a n node problem, is given

by [Ref. 21].

=n-i /n-i\ n-2
jk = (n-i) 2 . (3.2)k k

The storage requirements to solve a 22 node problem

exceed 22,020,096. For relaxing this limitation,

Christofides et al. [Ref. 5] proposed a state space relax-

ation procedure which is analogous to Lagrangean relaxation

[Ref. 22] in integer programming. The state space associ-

ated with a given dynamic programming recursion is relaxed

in such a way that the solution to the relaxed recursion

provides a bound which could be embedded in a general branch

and bound method [Ref. 23]. We describe Christofides et al's

method for doing this below.

Consider the dynamic programming formulation (3.1)

The state variable in that formulation is (S,j), and the

stage is the cardinality of S. Let g(S) be a mapping from

the domain of (S,j) to some other vector space (g(S),j).

Let:

H (g(S),j) = ( (g(S-j) ,i) I i e (S-jO R(j)) } (3.3)

Since we are interested in lower bounds to the TSP

with time constraints, H(g(S),j) in (3.3) may be replaced by

any larger set that is easier to compute. Thus, H(g (S),j)

can be defined by the following equaticn:

H (g(S) ,j) = I (g(5-j) ,i) I i C E(g(S),j) } (3.4)

-where (S-j nR( j))£ E(g (S) ,j).

Fcr calculating the lower bound of-the problem, equation

(3.1) can be changed to the following equation:

T 1r(S),j) min [f(q (S-j) ,i) 4 d c ] (3.5)
S((S-j) ,i) E H((S[,j) i i
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S rin [f(g(S-j) ,i) + d + c . (3.6)

i E(g(S),j) i 1J

This gives us:

flg(S) j) T(g(S),j), if 1 < T(g(S),j) < u

= 1 , if Tg (S),j) _5 1J J
.if T (g(S),j) > u.

With the initialization:

f ig(j),j) = I* if 1 < c -< u
;- 1 , if c~ _<

) lj j

o , if C > U
lj j

Finally, tae cptimum solution can be calculated as

min [ f(g(S'),i) + d + c ].
i £E(g(N) ,1) i ii

The mapping can be selected frcm any separable func-

tion. Christofides et al. used the following mappirg

function.

g(S) = I. (3.7)

Then equation (3.6) becomes

T(k,j) = min [ f( k-l,i ) d . c ] (3.8)
i c E (k, j) i ij

where k= ISI > 1.

This gives us:

f (kj) = I(k,j), if 1 -5 T(k,j) S u
= 1 if Tik,j) 5 1-. j J
= if T(k,j) > u

With the initialization:

f (1,j) c(1,j) , if 1. I c < u

, 1 , if C <
j lj i
00 = i f c > u
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Finally, the optimum solution can be calculated as

min [ f(IS' ,i) + d + c ].
ieE(|N1, 1) i ii

2. Additional Condition

In the previous secticn, we discussed Christofides

et al.'s state space relaxation procedure which provides a

lcwer bound on the TSP by reducing a state space in dynamic

programming. This lower bound is effective in branch and

bcund only if it is a tight bound. This is similar to the

case in integer programming where the effectiveness of

Lagrangean relaxation in producing bounds is relative to the

integer programming formulation. A redundant state-space

ccndition can be helpful to get a better bound. For this

purpose, an additional condition was used by Christofides et

al. to avoid loops formed by three consecutive nodes [Ref.

5]. This can be done in the following way.

Let k = 1S1. Let f(k,j,l) be the duration of the

least time path from tne initiai state to state (k, j)

without loops formed by three consecutive nodes. Let

f(k,j,2) be the duration of the second least time path from

the initial state to state (k,j) without loops formed by

three consecutive nodes. Let p(k,j,m) be the predecessor of

j on the path corresponding to f(k,j,m). With the above

definition, recursion (3.8) becomes:

T(k,j,l) in f(k-1,i,m) + d. + c ], (3.9)

where m = 1. if p(k-l,i,1)#j

= 2, ctherwise.

This gives us:

f(k,j, 1) = I(k,j,1), if 1. S T(k,j,1) S u (3.10)

if Tjk,j,1) 5 1
J j
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= , if T(k,j,1) > u..

Recursion for f(k,j,2) can be written in the

fcllowing way.

Let:

T(k,j,2) = minC, f (Jc-l~i,m) + I +c ] (3.11)
j EE (Kj 1 j

i *p(J,j,1)

where m =1, if p (k-1,1)#j

= 2, ctherwise.

This gives us:

f(k,j, 2) = T(k,j,2), if 1 :S T(k,j,2) -S u (3.12)IJ
= 1 , if Tik,j,2) < 1

j J= 0, if T(k,j,2) > u.
J

The initialization is

f(1,i,1) = c(1,i) , if 1 _< c < u (3.13)i li i
= ,if C S Ii Ii i

= ,if c > uIi i

and

f(1,i,2) = (3.14)

Finally, the optimum solution can be calculated as

zin [ f(ISIi,1) + d + c ]. (3.15)
i E(U-,1) i ii

Since the additional condition can avoid considera-

tion of a useful lower bound, we considered f(k-l,i,2) in

recursion (3.9) and (3.11) only when the predecessor of i on

the path corresponding to f(k-1,',1) is j. If we do not

consider the second least time path in case of p(k-1,i, 1)=j,

then f(q(S), j) does not guarantee the lower bound of f(S,j).

For this example, let's consider a 4 node TSP with

time constraints. Node A is the starting node. D is the

time free node. The lower bound of node B is 9, the upper

bound of node B is 11, tae lower bound of node C is 19, and
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the upper bound of node C is 21. Suppose service time at

each node is zero. Figure 3.7 shows an optimal route for

this prcbiem.

Q B A

iO

I - 9
I -

1-c

2 6 8 1'0 12 14 16 18i
I x

Figure 3.7 Optimal Route of Four Nodes Probleu.

From equation (3.13) we can get"

f (1,5B, 1) = 10,

f (1,C,1) =19,

f (1,D, 1) = 7.07

Now applying equation (3.9) recursively wita i=1, for k=2 we

can get:
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'.- f (2,B,1) =

f (2,C, 1) = 19,

f (2,D,I) = 17.07

Similarly, for k=3

f (3, B, 1)

f|3,C,1)

f (3,D, 1) =

We can see easily that f(3,D,1) is not a lower bound of

f ((B.C,L},D).

3. Branch and Bound Procedure

In this section we introduce branch and bound

enumeration which is used to eliminate subtours in the solu-

tion of the state space relaxation procedure. Since the

state space relaxation procedure is a relaxation of the TSP

with time ccnstraints, the solution to the state space

relaxation prccedure provides a lower bound on the optimal

value of the aSE with time constraints. Any heuristic solu-

tion can provide aa upper bound. We denote some notation to

explain this algcrithm as follows.

FLBD = The lower bound, which is the optimal solut-

icn to the state space relaxation procedure,

on the optimal solution to the TSP with

time constraints given restrictions at the

current node.

Z = Current upper bound.

STACK = Array which represent decision tree. It con-

tains arc lists which have the same aead in

optimal tour to the state space relaxation
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procedure given restrictions at the current

n ode.

[c' .] = Travel time matrix given restrictions at

the current node.

There are two types cf tree search. One is depth-

first search, the other is breadth-first search [Ref. 24].

We used depth-first search since breadth-first search

required substantially more storage. Depth-first search

simply means that when a separation is defined, one of the

nodes created by the separation is immediately selected to

be the next subproblem, and when a ncde is fathomed, the

enumeration always backtracks to the most recently created

live node.

One of the most important requirements of any branch

and bound algorithm is tight bounds. The closer the bounds

are to the optimal solution, the fewer nodes must be enumer-

ated. We used the SCCO heuristic, which was described in

section B.2, as an initial upper bound. The lower bound is

obtained from equation (3.15).

To save computing time we need a criterion to decide

whether or not the branching should be continued. If FLBD

is greater than Z, then the node is fathomed since explicit

enumeration need not be extended belcw the current node.

For branching we consider the arcs which have the same head

node in the directed graph since each arc must have a

different head in the TSP solution. If there is no such

arc, then that solution is a feasible solution. After all

nodes of the tree are fathomed, a feasible solution which

has the same value as the upper bound is an exact solution

to the ISP with time window ccnstraints.

The fcllowing branch and bourid algorithm is used in

the programs written for exact solution.
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Algorithm : Eranch and Bound Procedure

Input : Total travel time of heuristic, travel time.

Cutput: Ordered list of tour, total travel time.

- Step 1. (Initialization)

Let Z = the optimal solution of SCCO.

STACK = empty.
~~[ c'J]=jc

Ves Step 2 . Compute FLBD given restrictions defined by

[ c' J. If FLED > Z, go to step 5.
ii

Step 3 . (Construct the tree)

Put all arc(i,j) which have the same head j

in directed graph on STACK.

If there is no such arc, save feasible route

and update Z = FLBD then go to step 5.

Step 4 . Let travel time of arc(i,j) which is in the

top of STACK be infinite, then go to step 2.
!.'. ' (i.e., C' = .

Step 5. (BacktraCu)

If STACK = empty, go tc step 7.

Step 6 . If travel time of arc(i,j) which is in the

top of STACK is finite, let travel time of

that arc(i, j) be infinite, then go to

step 2. (i.e., c' = .

Otherwise, let travel time of that arc(i,j)

be original traiel time of that arc(i,j) and

remove tnat arc(i,j) from top of the STACK.

Go to step 5. (i.e., c' = c )

Step 7 . (termination)

If there is a feasible route, then the

optimal travel time = Z.

Otherwise, there is no feasible solution.

End of algorithm Branch and Bound Procedure
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we present the results of our computational experi-

ence with the algorithms of this Chapter in Chapter V.
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IV. THE ISP WITH SOFT TIME INDCW CONSTRAINTS

A. INTBODUCTIOU

The second time-constrainted TSP we consider is the case
in which both late and early arrivals are allowed by paying
a penalty cost. The penalties are allowed to be different

for early and late arrivals. Tne penalty cost is calculated

as follcws.

Upper penalty cost = max [ 0, upper penalty constant

x ( arrival time - upper bound ) ].

Lower penalty cost = max C 0, lower penalty constant

x I lower bound - arrival time ) ].

O '' In fact, the upper penalty constant is greater than the
lower penalty constant in most cases. Figure 4.1 may be

helpful to understand this case.

This apprcach makes every problem feasible, no matter

what the time windows are, i.e, even if it is infeasible in
the hard time window case. This reflects a practical point

of view, especially when it is possible to save a great deal

of mileage by allowing a small amount of time window

violati c.

In this Chapter, we considered one unit of cost to be

the same as one unit of time. In real world problems, it is

possible to get a cost by multiplying traveling time by some

constant.

We use the notation ip and up for the lower and
k k

upper penalty cost at node k.

=- .
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I.I

II
lower •u rper-->penalty penalty

S <---- ~ost cost a

early lower upper ate
arrival bound boun arrival

--------------------~time *window 1<--- --
for city i|

Figure 4. 1 Diagram for Soft Time Window Case.

B. HEURISTIC SOLUTION TECHNIQOES FOR SOFT TIME VINDOWS

1. Nearest Neicjhbor

This heuristic is similar to the hard time windows

except it takes into account any penalty cost that might be

necessary.

Algorithm : Neazest Neighbor

Input : Number of nodes, x and y co-ordinates of all

nodes, time windows for all nodes.

Output : Ordered list cf tour, tctal cost.

Step I . (Initialization)

Start at the depot.

Let i=depot, N' = i, cost = 0.i

Step 2 . Compute ARRVT for all-nodes kE N-N'

ARELVT = LBVT * d + c
k i i ik

cost = cost * d + c
k i i ik
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Step 3 . If ARRVT < I , then cost = cost + ip
kL k kL kL k

If AREVTk > Uk , then cost = costk + uPk

Step 4 . ( Nearest Neighbor Selection )

Select the node k E N-N1 such that cost
k

is a minimum. I.e. , find

k = argmin cost s.t. jN-N'.J

Step 5 . ( Insertion )

Isert k after i, add k to subtour N, and

let i = k .

Step 6 . If N' = N , then go to next step.

Otherwise, go to step 2.

Step 7 . Compute total cost, then stop.

Total cost = ccst + d + c
k k k,depot

End of algorithm Nearest Neighbor

This solution was constructed by starting at the

depot and moving to the nearest neighboring customer that

has not yet been visited. The term "nearest" is modified in

the sense that we add a penalty cost to the travel time if

the time windcw for city i is violated.

2. SCCO

This algorithm is also designed for the case when

there is a combination of tight time window nodes and time

free nodes. The strict observance of the upper bound in the

hard time windows is replaced by a penalty cost.

Algorithm : SCCO

Input : Number of nodes, x and y co-ordinates of akL

nodes, time windows for all nodes.

Output : Crdered list of tour, total cost.

Step 1 . (Initialization)
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Start at the depot.

Let i=depot, N' = (i), cost = 0.i

Step 2. Set k = argmin u s.t. j N-N'.

If k is time free node, then set k = depot.

Step 3 . Insert node k in the subtour N'.

Compute ARRVT

ARRVT = ARRYT + d + c
k i i ik

Step 4 Insert time free node j E N-N' between nodes

i and k by cheapest insertion and cheapest

selection ( same as CCCC) until AERVT does
K

_- not exceed u.

Step 5 . Update cost
k

cost = cost. d + c
k i i ik

If ARRVT < 1 , then cost = cost + Ip k

If ARRVT > Uk, then cost = cost + uP

Step 6 Let i = k.

If N' = N, then go to next step.

Otherwise, go to step 2.

Step 7 . Apply the Modified Oropt procedure to the

current tour. Stop when no further improve-
ments can be fcund.

*End of algorithm SCCO

This procedure is also similar to the cheapest

selection, cheapest insertion method for the unconstrained

TSP, except that the nodes with time windows are treated

differently froa the time free nodes. The nodes with time

60



I W . . . . . . . .. V - ' 7--- Y- - *.-

windows are inserted in order of increasing upper time

window bounds. The time free nodes are inserted between

those nodes ty cheapest selection and cheapest insertion,

for as long as the upper bound of the time windows will

allow.

In the end, a Modified Oropt is used to improve the

solution. This procedure consider only those exchanges that

would result in a node being inserted netween two other

nodes in the current tour.

3. SCA_

This algorithm is also designed for the time window

set which is composed of some tight time windows and some

time free nodes.

Algorithm : SCAO

Input : Number of nodes, x and y co-ordinates of all

nodes, time windows for all nodes.

Output : Crdered list of tour, total cost.

Step 1 . (Initialization)
Start at the depot.

Let i=depot, NO = (i), cost = 0.i

Step 2. Set k = argmin u s.t. j f N-N'.J

If k is time free node, set k = depot.

Step 3 . Insert node k in the subtour N'.

Ccmpute ARRVTkk

AERVT = ABRVT + d + c
k i i ik

Step 4 Insert time free node j E N-N' between nodes

i and k by cheapest insertion and greatest

angle (same as CCAO) until ARRVT does not
k

exceed u
k



Step 5 U pdate cost

cost = cost + d + c
k i i ik

If ARRVT < 1 , then cost = cost Ip .
k kC k k kC

If ARRVT > u , then cost = cost + up
k kC kC k k

Step 6 . Let i = k.

If N' = N, then go to next stop.

Otherwise, go to step 2.

Step 7 . Apply the Modified-Oropt procedure to the

current tour. Stop when no further improve-

ments can be fcund.

End of algorithm SCAO

This algorithm is same as SCCO except a greatest

angle selection in stead of a cheapest selection in SCCC.

C. EXACT SOLUTION TECHNIQUES FOR SOFT 1IME NINDONS

1. State-Siace Relaxaticn Procedure

In this section we describe a state space relaxation

procedure, which is adapted from Christofides et al. (Ref.

51, for soft time windows. They only ccnsidered the TSP with

hard time windows and without time windows. The difterences

are as follows. Tne waiting cost is replaced by a penalty

cost to be paid in the early arrival case. Late arrival is

allowed, but a penalty cost has to be paid. So we have to

calculate the duration and the penalty cost on each possible

path to decide the least cost path in each stage. We denote

the penaity ccst on each possible path as PC in this

section.
Consider the TSP defined on the graph G = (N,A] with

scft time window constraints. Let S' be a set of all nodes

except starting node. Let S be a subset of S'. Let f(Sj)
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be the cost of the least cost path starting at node 1

passing through every node of S and finishing at node j.

Let T(S,j) be the total duration of a path corresponding to

f(Sj). Let p(S j) be the predecessor of j on the path

ccrresponding tc f(S,J). Let lp(t) be the early arrival

penalty cost function and up(t) be the late arrival penalty

cost function. For a given S and J, total duration of a

path can be calculated as

T IS,j) = [ T(S-j,i) + d. c ]. (4.1)

where p S,j) = i.

In equation (4.1) total duration of the least cost path

passing through the nodes in the set S and ending in node j

can be described as the sum of three terms: the first is

total duration of the least cost path passing through the

nodes in the set S-jj} and ending in node i, the second is
the time required to spend in node i, and the third is the

travel time frc node i to node j. The dynamic programming

recursion to determine the least cost path may then be

stated as

f(S,j) = min C f(S-j,i) + d * c * PC ] (4.2)
ieS-j i ij

where T1 = [ I(S-ji) + d + c.

PC = 0 if 1 S T1 <u

= lp(l .- Ti) , f Ti 1
= up T4-u ) , if T1 > uj

with the initialization:

= c , if 1 - c _ u
ij ) , I

= C + up(c -u , if C > u
Ij 1j I lj j

Finally, the optimum solution can be calculated as

m (in f(S',i) 4 d * c ].
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Since the computer storage requirements are

' increased expcnentially with the size of the problem, this

method is limited to small problems. For relaxing this

limitation, a state space relaxation procedure can be used

same as Chapter Ill.

Consider the dynamic programming formulation (4.2)

The state variable in that formulaticn is (S, j), and the

stage is the cardinality of S. Let g(S) be a mapping from

the domain of (S,j) to some other vector space (g(S),j).

L et:

H(g(S) ,j) = f (g(S-j),i) I i S-j ) (4.3)

Since we are interested in lower bounds to the TSP

with time constraints, H(g(S),j) in 14.3) may be replaced by

any larger set that is easier to compute. Thus, H(g(S),j)

can be defined by the following equation:

H(g(S),j) = f (g(S-j),i) I i 6 E(g(S),j) 1 (4.4)

where 5-j S E (q(S) ,j).

For calculating the lower bound of the problem, recursion

(4.1) can be changed to the following equation:

T (g(S),j) = [ T(g(S-j) ,i) + d + c. ] (4.5)i 1)

where pjg(S),J) i.

Recursion (4.2) may be stated as

f (g(j) in f g~j j) ,i) + d, + c +. PC] (4.6)
f ig(S),j) ) mmH (g ''-) ij

mn [f(g(S-j) ,i)+ d + c + PC] (4.7)
i E E (g(S),j) i

where Ti = 7 (g(S-j) ,i) + d + c
i x

C= 0 ,if 1 < Ti _< u

= ip 4 -Ti) , if Ti S I
= up (T -u ) , if Ti > u

I J
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with the initialization:

f (g j),j) = c ,if 1 <- c _< u
= c + lp1.-c ,if c < 1-'il j lj lj j
= C 4 up(c -a) ,if c > u

-. lj j lj j

Finally, the cptimum solution can be calculated as

min f(g(S'),i) * d + c ].

-- The mapping can be selected frcm any separable func-

tion. We used a mapping function (3.7) , which is proposed by

Christofides et al., same as Chapter III. Then equation

" (4.5) bccomes:

T(ISI,j) = [ T(ISI-l,i) + d . c ]. (4.8)O. i iJ

where p(ISI,j) = i

" Recursicn (4.7) may be stated as:

f (I SI j) mi Js5JSI-1hi)4 d +c + PC] (14.9)

where TI = [ !I(SI-l,i) + d + c.

PC = 0 if 1 _< T1 < u

= ip(I -Ti) , f Ti < i
= up (T?-u ) , if T1 > U

with the initialization:

f (1,j) = c ,if 1 -< c _< u
1j j 1)

= c + lp( -c , if c 1
lj jl1 lj j

= C + up(c -U) ,if c > u
•j 1 j lj j

Finally, the optimum solution can be calculated as

•Mi n f[ f(IS' I i) + d + -c ]
""i 6 E(|NI,I) i ii
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2. Additional Condition

In the previous secticn, we discussed a state space

relaxation prccedure which is adapted from Christofides et

al.Ref. 5 1. That procedure provides a lower bound on the

TSP with soft tile window constraints. The additional

condition to avoid loops formed by three consecutive nodes

was used to get a better bound (Ref. 51. This can be done

* in the following way.

Let k = IS|. Let f(k,j,1) be the cost of the least

ccst path frcm the initial state to state (k, j) without

loops formed ty three consecutive nodes. Let f(k,j,2) be

the cost of the second least cost path from the initial

state tc state lk,j) without loops formed by three consecu-

tive nodes. Let p(kj,m) be the predecessor of j on the

path corresponding to f(k,j,m). With the above definition,

equation (4.8) becomes:

r(k,j,m') = [ T(k-li,m) + d + c. ], m'=1,2 (4.10)Si ii

where p(kj,K') = i

= , if p(k-1,i,1) #j

= 2 , otherwise.

With the initialization:

T (1,j, 1) = c
lj

and

T(1,j,2)

IPecursicn far f(k,j,1) can Le calculated in the folicwing

way. Let:

T' (k.j,m) = £T(x-1,i,m) + d + c ], m=1,2

i ij

1his gives us:
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f (k, j, 1) =min ~f(k- 1,i, m) + d + c +- PC] (4.11)
S E (k,j i ij

where PC = 0 , if 1 -< T' (kj,m) -< u

= F4l1 -T'(k,jm)), if T' (k,j,m -< 1
= up(T (k,j,M)-u.), if T' (kj,m) > u

m = 1 , if p(k-l,i,1) #j

= 2 otherwise.

With the initialization:

f(1,i, 1) = c ,if 1 < c S u (4.12)-- Ii i ii i
= c + Ip(1 -Cli) , if c <_ 1-. ii i iiii i
= C + up(c -u) , if c > uIi Ii 1 Ii i

Recursion for f(k,j,2) can be written in the following way:

f(kj,2) = min f (k-1,im) + d + c + PC] (4.13)i E (k,j " " i ij
i*p(k ,j, 1)

where PC = 0 , if 1 -< T' (kj,m) -S u

= 1p(1 -T'(k, jm)), if T' (k,j,m _S I

= up(T (k,j,m)-u ), if T' (kj, m) > u

= 1 if p(k-l,i,1}) j

= 2 , otherwise.

With the initialization:

f(1, i, 2) = cc (4.14)

Finally, the optimum solution can be calculated as

-in [f (ISIi,l) + d + c (4.15)

Since the additional condition can avoid considera-

tion of a useful lower bound, we considered t(k-l,i,2) in

recursion (4. 11) and (4. 13) only when the predecessor of i

on the path ccrrespondinq to f(k-1,i,1) is j. If we do not

consider the second least cost path in case of p(k-1,i,1)=j,

then f(g(S) ,j) does not guarantee the lower bound of f(S,j)
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For this example, let's consider 4 node TSP with

time constraints. Node A is the starting node D is the

time free node. The lower bound of node B is 9, the upper

hound of node B is 11, the lower bound of node C is 19, and

the upper boumd of node C is 21. Suppose service time at

each node is zero, lp(t)=t, and up(t)=5t. Figure 3.7 shows

an optimal route for this prcblem. Frcm equation (4.10) and

(4. 12) ue can get:

f(1,B,1) = 10, T(1,B,1) = 10, p(1, B, 1) = A;

f(1,C,1) = 19, T(1,C, 1) = 14. 14, p(1,C, 1) = A;

f (1,D,1) = 7.07, T(1,D,1) = 7.07, p(1,D,1) = A.

Ncw applying equation (4.10) and (4. 11) recursively with

i=1, for k=2 we can get:

i(2,B1) = min [ 94.7, 29.84 ] = 29.84,i s CD

T (2, B, 1) 14. 14, p (2, B,1) = D.

Similarly,

f (2, C,1) = 19, T(2,C,1) = 14.14, p(2,C,1) = D;

f(2,D, 1) = 17.07, I(2, D,1) = 17.07, p(2,D,1) B.

Fcr k = 3,

f(3,B,1) = min 94.7 ] = 94.7,i E {C]

T(3,B,1) = 24.14, p(3,B,1) = C.

Similarly,

f(3,C,1) = 39.84, T(3,C,1) = 24. 14, p(3,C,1) =D;

f (3, D, 1) = .

We can see easily that f(3,D,1) is not a lower bound of

f B(,CD},D).
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3. Branch and Bound Procedure

We used the same branch and bound procedure used to

eliminate subtours in the solution of the state space relax-
ation procedure in Chapter III.C.3. The SCCO heuristic,

which was described in section B.2, was used as an initial

upper bcund, and the lower bound was obtained from eguation

(4. 15).

We present the results of our computational experi-

ence with the algorithms of this Chapter in the next

Chapter.
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V. COMPUTATIONAL EXPERIENCE

A. TEST PROBLEMS

Four sets of test data are used in this thesis. Test

problem number [1] is taken from Sedgewick [Ref.19: p.309].

The other problems, numbered (2], [3] and [4], are from

Appendix 9.1 cf Eilon et al. 's text [Ref. 21). These test

problems are shown in Appendices A,B,C respectively. These

published prctlems contain node and depot locations, but

they do not include time windows.

We constructed time windows for test problems

[1],f2],[3] by first using the CCAO heuristic on the uncon-

strained TSP. Time windows were then placed about each node

such that the CCAO route was feasible. The idea for gener-

ating time windows in this way comes from Baker [Ref. 25],

who used the unconstrained Nearest Neighbor heuristic as his

starting point instead of CCAO.

The time window widths were set to varying sizes ranging

from 3 to 14. Some of the time windcws were rairly tight

while others overlapped. This is in contrast to Baker's

work, where all the time windows have width equal 2 units.

The last problem number [4] is the same as test problem

[3], except that the time windows were constructed from a

Nearest Neighbor solution tc the unconstrained traveling

salesman problem, as in Baker [Ref. 25]. Figure 5.1

displays the CCAO solution for test problem [3] and Figure

5.2 illustrates the unconstrained Nearest Neighbor solution

for the test problem [4]. We found a small error in Baker's

TSP solution for the Nearest Neighbor (Ret. 25], in that the

nearest node from node 16 is node 17, not nodE 13. The

resulting cost is actualiy higher, it is 312.09, not 310.22.
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Figure 5.1 unconstrained solution Obtained by CCAO.

Each of the four sets of test data was used to create

four test problems. The separate instances differed in the

percentages of time window ccnstraints that were chosen to

be in effect. The fou~r cases were 100%, 90%, 75%, and 50%.

We refer to this percentage as the "time-window percentage".

A random number generator was asesi to decide which nodes

would have tize windows. Test problems for the time window

ccnstrained TSP are shown in Appendices G through V. The

A 71
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Figure !.2 Unconstgained Solution Obtained by
Nearest Neighb-or Heuristic.

penalty cost factors can be varied depending on real world

problems. We used 2 and 5 as the lower and upper penalty

cost factor. Also we set the service time at each node to 0

to make it easy to construct the time windows.

The computational results are presented in T.ables II and

III. The figures reported represeit results of our test

runs for each test case.
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B. COMPUTATIONAL RESULTS

1. Hard lime Windows

- As noted in section 3, the Nearest Neighbor

heuristic often cannot solve the problem, because the

arrival time of the nearest node frequently violates the

upper bound. However in test problem (4], the results of

the Nearest Neighbor are the same as in the unconstrained

problem, because this problem itself was constructed by a

Nearest Neighbor heuristic.

Generally, the SCCO and SCAO heuristic can be easily
applied to the hard time window TSP. According to our

experiments, if the time window width becomes large relative

to the travel time between nodes on the optimal uncon-

strained TSP route, then the lower percentage time window

problems become more difficult to satisfy. This phenomenor.

can be seen in test problem [1]. That is because the other

nodes in the cptimal route for the unconstrained TSP problem

could be inserted without causing viclation of the upper

bound.

The SlACK heuristic takes slightly more time than

the other heuristics. It achieved lcwer accuracy in test

problems [1] and (3] in the 50 percent time window case.

The exact algorithm can find the exact answer in most prob-

lems, but when there are fewer windows in effect, it takes

more computation time. It cannot solve the 50 percent time

window problems [2] and (4] within 180 seconds.
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2. Soft iMie Windows

All of the methods tested for soft time windows were

able to find some answer to every problem within reasonable

computing time, except for two instances with the exact

algorithm. With the Nearest Neighbor heuristic, the quality
of solution is not desirable. In general, the lower time

window percentage problems have lower solution quality. As

in the hard windcw case, on test-problem (4], the results of

the Nearest Neighbor heuristic coincide with the uncon-

strained TSP heuristic, because this problem itself was
ccnstructed by a Nearest Neighbor.

As in the hard time window prcblem, SCCO and SCAO
generally find an optimal solution except for one problem
with 50 percent time windows. In test problem [1] with 50
percent time windows, the SCCO and SCAC values were 215.686,

165.544 respectively. The exact algorithm could not solve

the two test problems with 50 percent time windows within
180 seconds. The reason is that the solutions of the state

space relaxations have many subtours and it takes a long

time to eliminate these subtours.
With both hard and soft time windows, the results

are sensitive tc the percentage, width and position of the
time windows. In most problems, the fewer time windows

there are, the lower the accuracy of the heuristics.
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VI. CONCLOSIONS AND RECOMMENDATIONS

This thesis has presented some heuristics and exact

algorithms for the solution cf traveling salesman problem

with tile windcw constraints. We considered two different

kinds of time window constraints hard time windows and

soft time windows. Hard time windows are inviolable,

whereas soft windows may be violated at a cost.

For both hard time windows and soft time windows, we

developed some new heuristics, SCCC and SCAO, which are

modifications of Stewart's unconstrained TSP heuristics

[Ref. 6] CCCO and CCAO. Also for the hard time window only,

we developed the SLACK heuristic. We also developed an

* exact algorithm for both hard and soft window using state

space relaxation dynamic programming and branch and bound as

proposed by Christofides et al. [Ref. 5].

The procedures were shown to be effective on some moder-

ately small sized problems. A Nearest Neighbor heuristic

was also developed, but it was often unable to solve the

problem with hard time windows, and it found very low

quaiity solutions with soft time windows. This experience

is consistent with tte findings of cthers [Ref. 7] who

determined that the Nearest Neighbor heuristic does not

perform well cn the unconstrained TSP.

The SCCO and SCAO are generally effective cn most of the

small sized problems we tested, except for the problems in

which less than half the nodes have time windows. Furtaer

research is needed in order to satisfactorily solve these

problems. Ancther problem difficulty that may require more

research is dealing with wider time windows.

The SLACK heuristic which is used only with hard time

windows is slightly slower than the otLer heuristics.
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Particularly, in the lower time window percentage problems,

the accuracy becomes lower.

The exact algorithm succeeded in solving 14 of the 16

test problems to optimality, but it was too slow to use in

most of the lower time window percentage problems. This

algorithm's performance also depends upon the quality of the
upper bound which is obtained from the heuristic.

Additional research is needed to reduce computation time,

but a working program for at least some problems has

resulted from this effort.

7
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APPgIDI. A
TEST PROBLEM (1]

node x y | node x y

I 1 3 9 11 10 13

2 11 1 12 16 14

3 6 8 13 15 2

4 4 3 14 13 16

6 8 11 16 12 10

7 6 4

8 7 4

9 9 7

I10 14 5

Depot cc-ordinates : (12,10)

probles source : Sedgevick [Ref. 19]
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APPENDIX B

TEST PROBLER [2]

Inode x y I node x I

I 1 295 272 I12 267 242

2 301 258 I13 259 265

I 3 309 260 14i~ 315 233

4 217 274 I15 329 252

5 218 267 116 318 252

6 282 267 117 3219 22 4

1 7 242 249 I18 267 213

8 230 262 I19 275 192

I 9 249 268 I20 303 201

I 10 256 267 I21 208 217

I 11 265 257 I22 326 181

Depot co-ordinates (326,181)

problem source :Eilon et al. [Ref. 21]

80



,--,--. ,- - - - - - - - ---

APP EUDIX C

TEST PROBLEM [31

node x y I node x y

1 151 264 12 156 217

- 2 159 261 13 129 214

3 130 254 14 146 .208

4 128 252 15 164 208

5 163 247 16 141 206

6 146 246 17 147 193

7 161 242 18 164 193

8 142 239 is$ 129 189

9 163 236 20 155 185

10 148 232 21 139 182

I 11 128 231 22 145 215

Depot co-ordinates (145,215)

problem source : Eilon et al. [Ref. 21].
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APPENDIX D

TEST PROBLEM [5]

Inode x y node x y node x y I node x y I

1 37 52 14 12 42 27 30 48 40 5 6

I.2 49 49 15 36 16 28 43 67 I41 10 17

3 52 64 16 52 41 29 58 .48 42 21 10

4 20 26 17 27 23 30 58 27 43 5 64

I.5 40 30 18 17 33 31 37 69 44 30 15

-- 6 21 47 19 13 13 32 36 46 45 30 10

-- 7 17 63 20 57 58 33 46 10 46 32 39

8 31 62 21 62 42 34 61 33 47 25 32

19 52 33 122 42 57 135 62 63 148 25 55

410 51 21 I23 16 57 I36 63 69 I49 48 28

-.11 42 41 24 8 52 37 32 22 50 56 37

I12 .31 .32 125 7 38 138 45 35 I

-I13 5 25 26 27 68 39 59 15

Depot co-ordinates (30,40)

problem source Eilon et al. [Ref .21].
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TEST PHOBLER [6]

Inode x y I node x y I node x y I node x y

I 22 22 20 66 14 39 30 60 58 40 60
2 36 26 21 44 13 40 30 50 59 70 64

" 3 21 45 22 26 13 41 12 17 60 64 4

" 4 45 35 23 11 28 42 15 14 61 36 6

5 55 20 24 7 43 43 16 19 62 30 20

6 33 34 25 17 64 44 21 48 63 20 30

",7 50 50 26 41 46 45 5C 30 64 15 5

8 55 45 27 55 34 46 51 42 65 50 70

- 9 26 59 26 35 16 47 5C 15 66 57 72

10 40 66 29 52 26 I48 48 21 67 45 42

11 55 65 .30 43 26 49 12 38 68 38 33

12 35 51 31 31 76 50 15 56 69 50 4

13 62 35 32 22 53 51 29 39 70 66 8

I14 62 57 33 26 29 52 54 38 71 59 5
15 62 34 34 50 40 53 55 57 72 35 60

16 21 36 35 55 50 54 67 41 13 27 24

17 33 44 3b 54 10 55 10 70 74 40 20
18 9 56 37 60 15 56 6 25 75 40 37

19 62 48 38 47 66 57 65 27 I

Depot co-ordinates : (40,40)

problem source : Eilon et al.-[Bef .21].
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APPIEDIU F

TEST PROBLEM FOR THE SCCO

I node x I time window | node x y time window I
|l(i) Uli) [lli) uli)

,.1 3 9 - - 11 10 13 10 17

I 2 11 1 - - 12 16 14 2 9 1

3 6 8 27 36 13 15 2 - - I

. 4 4 3 37 45 14 13 16 5 13 1

I,5 5 15 - - 15 2 12 - - i

'-6 8 11 12 23 16 12 10 - - I

7 6 4 35 43 t

8 7 4 42 49 I

9 9 7 58 68

10 14 5 53 64 I

Depot co-ordinates ( 112,10)

problem source

node locations : Sedgewick (Ref. 19]

time windows see Chapter V.

84

[ .. *% .

4... I.A .AfK. 1 -- : -



APPJI .--

TEST PROBLEN 1-1)

Inode x y time window I node x y time window

-" - - - - - ---- -

I 1 3 9 25 32 111 10 13 10 17

I 2 11 .1 46 53 I12 16 14 2 9

3 6 8 27 36 I13 15 2 51 59

I 4 14 3 37 45 51413 16 5 13

I 5 5 15 18 28 15 2 12 22 30

1 6 8 11 14 23 516 12 10 - -

I 7 6 4 35 43 I

1 8 7 4 42 49 1

I 9 9 7 58 68 I

10 14 5 53 64 I

Depot co-ordinates (12,10)

CL = 2. 0, CU = 5. 0

problem source

aode locations Sedgewick [Ref. 19]

time windows see Chapter V.
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TEST PROIER (1-2 ]

node x y time window I node x y time window I
I (i) u (i) 1 (i) U~i W

"°1 3 9 25 32 11 10 13 10 17

I .2 11 1 46 53 12 16 14 2 9

3 6 8 27 36 13 15 2 51 59

4, 4 3 - - 14 13 16 5 13

5 5 15 18 28 15 2 12 22 30

6 8 11 14 23 16 12 10 - -

7 6 4 35 43

8 7 4 42 49

9 9 7 58 68

10 14 5 53 64

Depot co-ordinates (12,10)

CL = 2.0, CU = 5.0

problem source

node locations : Sedgewick (Ref. 19]

time windows : see Chapter V.
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APPENDIX I

TEST PROBLEN (1-3)

node x y time window I node x y time window I
I ~~~~ l(i| u~i () i

",1 3 9 - - 11 10 1.3 10 17

I 2 11 1 46 53 12 16 14 2 9 4

'"3 6 8 27 36 13 15 2 51 59

4 4 3 37 45 14 13 16 5 13
5 5 15 18 28 15 2 12 22 30

• ,6 8 11 14 23 16 12 10 - -

- 7 6 4 35 43

8 7 4 42 49

9 9 7 - - I
10 14 5 - - I

Depot co-ordinates (12,10)

CL = 2.0, CU = 5.0

* problea soarce

node locations : Sedgewick [Ref. 19]

time windows :see Chapter V.
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APP EMDIX J

TEST PROB.EM (1-4)

. node x y time window I node x y time window I
:i" -  i~i}u (i) |1(i u (i) J

1 3 9 25 32 11 10 13 10 17

2 11 1 46 53 12 16 14 - -

3 8 - - 13 15 2 51 59

I 4 ' 3 37 45 1 14 13 16 5 13

5 5 15 - - 15 2 12 - -

"-6 8 11 14 23 16 12 10 - -

1-'7 6 4 - -

i 8 7 4 -4-

l.9 9 7 58 68

10 14 5 - -

Depot Co-ordirates (12,10)
CL = 2.0, CU = 5.0

Problem Source

node locations Sedgewick (Ref. 19]

time windows see Chapter V.
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[!JJDIX K

TEST PROBLM (2-1]

j node x y time window I node x y time window |
I~ ~ Ii (i) I li (i)

I1 295 272 125 135 12 267 242 170 179

2 301 258 110 118 13 259 265 193 202

3 309 260 102 110 14 315 233 57 67

4 217 274 242 250 15 329 252 81 89

5 218 278 239 246 16 318 252 90 98

6 282 267 141 149 17 329 224 40 49

7 242 249 279 286 18 267 213 382 393

8 230 262 261 271 19 275 192 404 413

9 249 268 206 215 20 303 201 432 442

. 10 256 267 200 208 21 208 217 323 332

I"11 265 257 183 193 22 326 181 - - I

Depot co-ordinates (326,181)

CL = 2.0, CU = 5.0

problem source

node locations Eilon et al. [Ref. 211.

time window : see Chapter V.
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APP EADII L

"."- TEST PROBLE [2-21

node x y time window | node x y time window
.. 2[ | lli} ~u~i (i) ui

",1 295 272 125 135 12 267 242 170 179

I 2 301 258 110 118 13 259 265 - -

- 3 309 260 102 110 I14 315 233 57 67

-- 4 217 274 242 250 15 329 252 81 89

-. 5 218 278 239 246 16 318 252 90 98

.- 6 282 267 141 149 17 329 224 40 49

1-7 242 249 279 286 18 267 213 382 393

8 230 262 261 271 19 275 192 404 413

-- 9 249 268 206 215 20 303 201 432 442

-'10 256 267 200 208 21 208 217 - -

.Z 11 265 257 183 193 22 326 181 - -

_1

Depot co-ordinates ( (326,181)

CL = 2.0, CU = 5.0

problem source

node locations Eilon et al. [Ref. 21]

time wiLdows • see Chapter V
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APPEADIX H

TEST PROBIEN [2-3]

I node x y time window I node x y time window
I1 ji) U, (i) I I Wi Li (i)

I1 295 272 125 135 12 267 242 170 179

2 301 258 - - 13 259 265 - - I

3 309 260 - - 14 315 233 57 67

I 4 217 274 242 250 15 329 252 81 89

5 218 278 239 246 16 318 252 90 96

6 282 267 141 149 17 329 224 40 49

7 242 249 - 18 267 213 382 393

8 230 262 - - 19 275 192 - -

9 249 268 206 215 20 303 201 432 442

10 256 267 200 208 21 208 217 32.3 332

11 265 257 183 193 22 326 181 - -

Depot co-ordinates ( (326,181)

CL = 2.0, CU = 5.0

problem source

node locations Bilon et al. [Ref. 21].

tim5e windows see Chapter V.
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MjPJNDIXIN
TEST PROBLEM [2-4]

I node x y time window | node x y time windowI l(i) u (i) 1 l(i) UMi

1 1 295 272 - - 12 267 242 170 179

, 2 301 258 110 118 1 13 259 265 - -

-- 3 309 260 - - 14 315 233 57 67

4 217 274 242 250 15 329 252 - -

5 218 278 239 246 1 16 318 252 90 98

6 282 267 141 149 1 17 329 224 - -

7 242 249 279 286 18 267 213 - -

8 230 262 - - 19 275 192 404 413

9 249 268 206 215 20 303 201 432 '442

10 256 267 - - 21 208 217 - -

11 265 257 - - 22 326 181 - -

Depot cc-orainates (326,181)

CL = i.0, CU = 5.0

problem source

node locations : Lilon et al. [Ref. 21].

time windows : see Chapter V.
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APP EUDIX 0

TEST PROBLEN [3-1]

4 node x y time window I node x y time window I
:.._| ll ) ul l I lil (il

1 151 264 196 204 12 156 217 105 118

I,2 159 261 185 193 13 129 214 259 271

" 3 130 254 217 225 14 146 208 2 10

4 128 252 222 234 15 164 208 92 105

'-5 163 247 174 185 16 141 206 10 19

6 146 246 142 154 17 147 193 54 68

- 7 161 242 166 173 18 164 193 79 89

8 142 239 131 142 19 129 189 30 38

- 9 163 236 159 165 20 155 185 67 75

. 10 148 232 123 131 21 139 182 4i0 53

-- 11 128 231 242 253 22 145 215 - -

Depot co-ordinates (145,215)

CL = 2.0 , CU = 5.0

problem source

node locations : Lilon et al. [Ref. 21].

time windows : see Chapter V.
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TEST PROBLEM (3-2]

I node x y time window I node x y time window I

I1 151 264 196 204 12 156 217 105 118

2 159 261 185 193 13 129 214 - - I

3 130 254 217 225 14 146 208 2 10 I

4 128 252 222 234 15 164 208 92 105

5 163 247 174 185 16 141 206 10 19

6 146 246 142 154 17 147 193 54 68

7 161 242 166 173 18 164 193 79 89

8 142 239 131 142 19 129 189 30 38

9 163 236 159 165 20 155 185 67 75

10 148 232 123 131 21 139 182 - -

11 128 231 242 253 22 145 215 - -

Depot co-ordinates : (145,2 15)

CL = 2.0 , CU = 5.0

problem source
node locations : Eilon et al [Ref. 21 ].

time windows : see Chapter V.
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APPBEDIX 2

L TEST PROBLEM [3-3]

node x y time window I node x y time window I

-'' I 1(i) u (i) I 1 (i) u(i) I

1 151 264 196 204 I 12 156 217 105 118 I

2 159 261 - - t 13 129 214 - -

1 3 130 254 - - 4 14 146 208 2 10

I 4 128 252 222 234 15 164 208 92 105

5 163 247 174 185 16 141 206 10 19

,,6 146 246 142 154 17 147 193 54 68

'.7 1b1 242 - - 18 164 193 79 89

8 142 239 - - 19 129 189 - -

9 163 236 159 165 20 155 185 67 75

10 148 232 123 131 21 139 182 40 53

11 128 231 242 253 22 145 215 - -

Depot co-ordinates (145,215)

CL = 2.0 , CU = 5.0

problem source

node locations -ilon et al. (lei. 211.

tim.e windows sce Chapter V.
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TEST PROBLEM [3-4]

node x y time window I node x y time window I
1 1(i) u (i) 1 1 (i) U (i) I

1 151 264 - - 12 156 217 105 118

2 159 261 185. 193 1 13 129 214 - -

3 130 254 - - J 14 146 208 2 10

4 128 252 222 234 1 15 164 208 - -

5 163 247 174 185 16 141 206 10 19

6 146 246 142 154 17 147 193 - -

7 161 242 166 173 1 18 164 193 - -

,-8 142 239 - - 19 129 189 30 38

.- 9 163 236 159 165 1 20 155 185 67 75

I 10 148 232 - - 21 139 182 - -

I11 128 231 - - I22 145 215 - -

Depot co-ordinates - (145,215)

CL = 2.0 , CU = 5.0

problem source

node locations Eilon et al. (Ref. 21].

time windows see Chapter V.
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APMDnX' S
TEST PROBLEM [4-1]

| node x y time window | node x y time window |
|li (i) l(i) 1 u(i) U |

1 151 264 171 179 12 156 217 72 79

2 159 261 162 170 13 129 214 237 245

3 130 254 196 203 14 146 208 5 9

4 128 252 198 206 15 164 208 61 67

5 163 247 128 136 16 141 206 10 14

6 146 246 106 113 17 147 193 22 28

7 161 242 122 130 18 164 193 48 53

I 8 142 239 97 105 19 129 189 261 269

*.."9 163 236 138 146 20 155 185 35 40

' 10 148 232 89 96 21 139 182 273 280

11 128 231 220 227 22 145 215 - -

Depot co-ordinates : (145,215).

CL = 2.0, CU = 5.0

problem source

node locations : Eilon et al (ef. 21].

time windows : see Chapter V.
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jP-jJDTX X
TEST FBOUR (4-2]

node x y time window Inode x y time window

j 1 151 264 171 179 I12 156 217 72 79

I 2 159 261 162 170 I13 129 214 - -

I 3 130 254 196 203 I 14 146 208 5 9 I

I 4 128 252 198 206 I15 1614 208 61 67

*I 5 163 247 128 136 I16 141 206 10 14

I 6 146 246 106 113 I 17 147 193 22 28
1 7 161 2142 122 130 518 164 193 48 53

I 8 142 239 97 105 I 19 129 189 261 269

1 9 163 236 138 146 20 155 185 35 40

*110 1148 232 89 96 521 139 182 - - I

I11 128 231 220 227 I22 145 215 - -

Depot co-ordinates : (145,215)
CL = 2.0, CU = 5.0

problem source

node locations : Eilon et al. CRef. 21].
time windows : see Chaptex V.
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APPENDIX U

TEST PRoURIn [4-3]

| node x y time window node x y time window I
I l(i) u (i) 1 M(i u (i)

1 151 264 171 179 12 156 217 72 79

2 159 261 - - 13 129 214 - -

3 130 254 - - 14 146 208 5 9

4 128 252 198 206 15 164 208 61 67

5 163 247 128 136 16 141 206 10 14

6 146 246 106 113 17 147 193 22 28

7 161 242 - - 18 164 193 48 53

8 142 239 - - 19 129 189 - -

9 163 236 138 146 20 155 185 35 40

10 148 232 89 96 21 139 182 273 2-80

. 11 128 231 220 227 22 145 215 - -

Depot co-ordinates : (145,215)

CL = 2.0, CU = 5.0

problem source

node locations : Bilon et al. [Ref. 21)

time windows : see Chapter V.
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TEST PROBLEM [4-4]

I node x y time window I node x y time window I

---------------------------------------------

S 1 151 264 - - 12 156 217 72 79

I 2 159 261 162 170 13 129 214 - -

3 130 254 - - 14 146 208 5 9

I 4 128 252 198 206 I15 164 208 - -

I 5 163 247 128 136 16 141 206 10 14

I 6 146 246 106 113 17 147 193 - -

I 7 161 242 122 130 18 164 193 - -

I 8 142 239 - - 19 129 189 261 269

9 163 2.36 .138 146 I20 155 185 35 40

I 10 148 232 - - 21 139 182 - -

11 128 231 - - 22 145 215 - -

Depot co-ordinates : (145,215)

CL = 2.0, CU = 5.0

probe m source

node locations : Eilon et al. [Ref. 211.

time windows : see Chapter V.
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