ALGORITHMS AND HEURISTICS FOR TIME-WINDON-CONSTRAINED 1/2
TRAVELTING SALESMAN PROBLEMS(U) NRVAL POSTGRADUATE
SCHOOL MONTEREY CA B J CHUN ET AL SEP 85 F/6 1274

=
=

I
NN
HENENN.
BN
L
HEENENN
B
L
N
NN
NN
I

A

RS Bancfiut i® bt At Dav SEA A S0~ ANS i ar i JAi =t iata At i St giare ARSI oA AR S r_-ﬂ

0 iz 2
== Rl £
=

L £ =
— s

A

iz

—_——
]
—
_—

|

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3

, . A
}
y
[}
Monterey, California
0
P
F
N
Je
F
Qa DTIC
< , E1LECTE
Bl LA b
. DECQ9 1985
ALGORITHMS AND HEURISTICS FOR
TIME-WINDOW-CONSTRAINED
TRAVELING SALESMAN PROBLEMS
by
Chun, Bock Jin
> o) and
i
% Lee, Sang Heon
< September 1985
. Thesis Advisor: Richard E. Rosenthal
b Approved for public release; distribution is unlimited.
c.2
P‘.
c
-, - i (‘? o 9
I N L O ST P L Ve DT R PV T

. R T T L T P O |
[EETRAL . SR R W WU PO Vo RV I ST L SRS 5 WS R)

W RN N EN T T T T N N N Y R I N U I W o N O W I NI N U WL U AW N d N e B s B e W WL WL e w . Mo e oW o, d w2 e e et e e

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

IN ONS
REPORT DOCUMENTATION PAGE BEF e O S RN
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
1
\ . AD A/L D 1y
4. TITLE (end Subtitle) e i S. TYPE OF REPORT & PERIOD COVERED
Algorithms and Heuristics for Time-Window-Con- Master's Thesis;
strained Traveling Salesman Problems September 1985
N . 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) §. CONTRACT OR GRANT NUMBER(s)
Chun, Bock Jin -
Lee, Sang Heon
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
Naval Postgraduate School
Monterey, California 93943-5100
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School September 1985
Monterey, California 93943-5100 1;18§uaznorpacss
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Otfice) 18. SECURITY CLASS. (of this report)
18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
v

Approved for public release; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, i different from Report):

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identily by block number)

Heuristic, Algorithm, Time Window, Hard Time Window, Soft Time Window,
Slack, Branch and Bound, Nearest Neighbor, Penalty Cost, Traveling
Salesman Problem, 3tate-Space Relaxation

20. ABSTRACT (Continue on reveras side Il neceseary and identity by dlock number) This thesis reports on meth-
nds for solving traveling salesman problems with time-window Sonstraints. "MTwo
types of time windows are considered: hard time windows, which are inviolable,
and soft time windows, which are violable at a cost. For both cases, we devel-
op several heuristic procedures, including some that are based on Stewart's
[eer; 6} effective heuristics for the traveling salesman Eroblem wit hout time-
window constraints. In addition, we develop exact algorithms for each case,
which are based on the state-space relaxation dynamic programming method »f

- Thristnfides, Mingozzi, and Toth tRef.. $l.~ Computational experience is re-
ported for all the heuristics and algorithms we develop. s o

DD ,%u'5: 1473 eoimion oF 1 Nov 6313 oBsOLETE |
> N 0102 LF- 0146601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

oY ilan ¥ o Bk * Y oiball’ o AR alal ¢ * alnl o - o ~ - - - - - o
Lo M M A LS & . L858, 4y IR0 - NaNal DG 5% A A B4 « VaWy P B « - n

3
2 Approved for public release; distribution is unlimited.

s Algorithms and Heuristics for
: Time-Window=-Constrained
Traveling Salesman Problems

by

Chun, Bock Jin
Major, Republic of Korea Air Force
B.S., Korea Air Fogce Academy, 1976
an
: Lee, Sang Heon
‘Q Major, Republic of Korea ArmY
B.S., Korea Military Academy, 1977

-

- Submitted in partial fulfillment of the
0N requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
e from the

o NAVAL POSTGRADUATE SCHOOL
o September 1985

?(: Authors: éz
a)

Chun, Bock Jin

~Lee, Sang Heoh

e Tihad S Neratd L

E. R nthal, Thesig Advisor

ashburn, Second Reader

& 7 Alan R. Washburn, Chairman,
. Department of Operaélons Research

arshall,

Dean of Informatiom-and Policy Sciences

......... -

............. Tl

el el P e el
B i S S A R)

ABSTIRACY

This thesis reports on @methods for solving traveling
salesman problems with time-window constraints. Two types of
time windows are considered: hard time windows, which are
ihviolable, and soft time windows, which are violable at a
cost. For both cases, we develop several heuristic proce-
dures, including some that are based on Stewart's [Ref.6]
effective heuristics for the traveling salesman problen
without time-window constraints. In addition, we develop
exact algorithzs for each case, which are based on the
state-space relaxation dynamic programming metnod of
Christofides, Mingozzi, aand Toth [Ref.5]. Computational
experience is reported for all the heuristics and algorithas

« we develop.

»
o
.
-
Y

ey

MR
'

«

-0 R -
IR & L

. PP .
a_ : et

b ,
SUSTI S WY SO Y

L
St
.t

N

-
N\
Al

JUALITY
INGPLOTED

3

v e

. - -4»;’_ -‘,.-__. LT ey --,,». R I v--\ N .-.‘ W Tt e O e .-.-_..‘ .. ._-.“.-. " _.-‘\4
- . . N Wt . . T b Nt - N . et ~C e - .
LI NP SR T AP AN PPN A U GPE U WS WP DO VAT WA A T WV VA SR WAL P PR, VLR SPE. OV

's,:.
:
5
&N
2
:_ TABLE OF COHTENTS ‘
e
" I. INTROBUCTION o « « « = « « o« oo o = « o = o « o« = 9
| BAe OVERVIEW « o o = « = « = o a o e o o = « o o o 9
Eﬁ B. THE TRAVELING SALESMAN PROBLEN . . . « « . . - 11
\: C. TSP WITH TIME WINDOW CONSTRAINTS =« =« o =« « « « 13
A
II. HEURISTIIC TSP SOLUTION ©. o« o o « o « a »« = « « =« = 16
Ae OVERVIEW v o o« « @ o = = © o s o« » o« =« o« = « « 16
- 1. 1Tour Construction Procedures . . « . . . « 156
1if Z. Tour Improvement Procedures . « « « « - . 21
ol 3. Composite Procedure <« « « « « « o « o« = « 23
I Ee CCAO o o o« o o o @ o o« o o o o o o« o a« s o o « 23
1o AlgOorithm . o o o o o o © o o o o o o o = 23
ﬁ; 2. EXaMpPle . ¢ 2 o o« o o o o o o o o o o o & 24
L 3. Computatiomal Results . o« ¢ « o o o « o« - 27 ’
b III. THE TSE WITH HARD TIME WINDOW CCNSTRAINTS 32
g A. INTRODUCTION « o o o = o = o o « = « « o + o o 32
“': B. HEORISTIC SOLUTION TECHNIQUES FOR HARD
' TIME WINDONWS o« ¢« « o « @« o = « o « « © « o« o« « 33
kf 1. Nearest NeighbCI « « « o o o o o « o =« « « 33
s 2. SCCO v @ v o o o« o o o o o2 « o o o« «35
o 3 5SCAO + v v v o a o e e e e e e e e e a2
'; e SLACK &« o « o o o o = o = o = = o s s s« = 43
'.~ C. EXACT SOLUTION TECHNIQUES FCR HARD TIME
- AINDOWS & o« = o « o o = = o« « « = = o = « « . U6
;g; 1. State-Space Relaxation Frocedure 4o
2 Z. Additional Conditioh « = = = = « « « o « - 50
B 3. Eranch and Bound Procedure « « « « « -« - . 53
o 4

Iv. THE TSP WITH SOFT TIME WINDOW CCNSTRAINTS . . . , 57
A. INTRCDUCTION v« « o = « = o o « =« o« « =« =« « « =« 57
B. HEURISTIC SOLUTION TECHNIQUES FOR SOFT
TIME WINDOHS =« o« « « o o =« o « = «a =« o« =« « « « 58
1. Nearest Neighbor « « ¢ « ¢ ¢ ¢« « « o « « « 58
2e SCCO ¢« « o« o o s o« =« o s o« o« o« o = a o« « « 59
3e SCAO v « o o o o o = = o o« e« o o = o« « o « 61
C. EXACT SOLUTION TECHNIQUES FCR SOFT TIME

HI ND o WS - . e - - e - - ° - - . - - . * = - b 2 .::E:":
1. State-Space Relaxation Procedure 62 £
&-IIJ

2. Additional Condition - . - - . - - - ® e - 66 ""—']
3. Branch and Bound Procedure . . « « « « « - 69 D

v. COMPUTATIONAL EXPERIENCE v « o« o « o o = o« o« o « o 70 L
A. TEST PROBLEMS « « v v = o = = o o« = o o « « = 70 =

E. COMPUTATIONAL RESULTS o « o o o o « o« o « « « 73 s

1. Hard Time WindoWws <« o o « o @ o o « o « « 13

2. S0ft Time WindCOWS =« o ¢ o ¢ =« o « s« =« « « 15

vI. CONCLUSICNS AND RECOMMENDATIONS . . o 77
’ APPENDIX A: TEST PROBLEM [1] ¢ v « = o = « o « o = « = « 19
APPENDIX B: TEST PKOBLEM [2] « « @« « o @ « « o o =« = « = 80
APPENDIX C: TEST PROBLEM [3] o « = « o = « « = o« « « « « 81
APPENDIX D: TEST PhOBLEM [5] = « o = o o« o o = « = « « o 82
APPENDIX E: TEST PROBLEM [6] « « « « o « « « « = « « « « 83

APPENDIX F: TEST PROBLEM FOEK THE SCCO . o ¢ = « « « « - 84

APPENDIX G: 1EST pROBLEH [1-1] o = - e e e o o e = e e . 85
| AFPENDIX H: TEST PROBLEM [1-2] o « « « = o « o « o « « . 86
- e e ° ® e o e o o e - 87

APPENDIX I: TEST PROBLEY [1-3] .

A

-
[2

. ‘l.'- o
LS N

B

r “r 13
PR,

RIS
[|
P A)

kY
"

Jl
[I Sy

g

APPENDIX J:

APPENDIX K:

APPENDIX L:

APPENDIX M:

APPENDIX N:

APPENDIX O:

APPENDIX P:

APPENDIX Q:

APPENDIX R:

AEPENDIX S:

APPENDIX T:

APPENDIX U:

APPENDIX V:

LIST OF REFERENCES

TESI

TIEST

TEST

TIEST

1EST

TEST

TEST

TEST

IEST

TEST

TIEST

TEST

1EST

- .

PROBLEHM

PROBLEHM

PROBLEN

PROBLEHN

PROBLEM

PROBLEN

PROBLEMNM

PROBLEHM

PROBLEHN

PROBLEM

PEOBLEM

PROBLEH

PROBLEM

INITIAL DISTREIBUTION LIST

[(1-43 . . .
[2-1) . « .
[(2-2] « . .
[(2-3) . - .
[2-4] « - .
(3-1) « - «
{(3-21 . . .
[(3-3] . « .
[3-4) « « «
[4-17 . . .
[(4-21 . - .
(4-3] . « «

(4-8] « « .

......

88

89

90

91

92

93

94

95

96

97

93

99

109

101

103

ht v MMV T ™ e LT ALY W e MmN YR
....... R AN Ll s o 00 sl o ot 8 & S Sl o 6e s B AL Sa B et Mulu Ve et s S TR R R T DA ST R Te AL DA R O SRS TR utolly T et Br Lt ”Ej

11

III

T T T e T T e A
oA s taeans daie Lo LAl A dwle e aal Al an Al

LIST OF TABLES

COMPUTATICNAL RESULTS OF CCCO, CCAO « o « « = » » 31
COMPUTATIONAL RESULTS CF THE HAED TIME
HINDORS &« o ¢« o o o o =« o o ®» = s o2 o « « o« =« o o 14
COMPUTATIONAL RESULTS COF THE SOFT TIME
WINDOWS o« o @« @ o o o o« o o« © o o« s 2 o o« =« =« « = 16

AT TR ST WY WA W AP i W » MNP S PPN

" AN AN AN AR AR A A inkh ~ " a i A el Bt dE g e e
S N T T T Y N T T T T T T T e o Y T T W T TN T Yo TV o ey

LIST OF FIGURES ‘

Example of Noncomvexity of (1.10) in Two

DimenSiChS <« ¢« o o « o © o @« o o o o« o a =« o o o « 15
Concept of the Clarke - Wright Savings

HEUFAStiC o o o o o o o o a o« o @ « = = o « o« =« = « 18
Initial Subtour and Insertion . « « « o « « « « « « 25
Intermediate Subtour and Insertions . . « . « « . « 26
Final Tcul Of CCAD . & « ¢ o o o o o o o o o = « « 27
Diagram for Hard Time Window Cas€ .« « o « o « o « « 32
Ccurrent Tour before Modified-Oroft . « « o« o « « « 37

Inmproved Tour after Modified-Oropt . « o« « « « « « 38
Subtour in SCCO ProCedure « « « o « o « « = « = &« « 39
Intermediate Subtour in SCCO Procedure . . . « . - 40
Final Subtour for SCCO . . o o o o o o « ¢ o o = = 41
Optimal Route of Four Ncdes Problem « « o « o « « « 52
Diagram for Soft Time Window Cas€e . . =« o « o« « « « 58
Unconstrained Solution Obtained ky €CAO 71
Unconstrained Solution Obtained ty Nearest

NeighboIL HeULisStiC .+ ¢ o ¢ o o o o « a o« o o o « « 12

! 4
Jal fal T A

D g g+ 13

I. INTRODUCIION

A. OVERVIEW

Consider a traveling salesman having to visit n cities
or customers. He starts from a depot and needs to visit each
of tke other n-1 cities only once and then return to the
depot. The ccst of traveling between any pair of cities
(expressed in terms of distance, time or cost, etc), say
from city i tc j, 4is given as Cy in a cost matrix C. The
problem is to design a tour through the n cities that would
pininize the total cost of the tour. This is known as the
Traveling Salesman Problem which is a well-known classical
operations research prcblen.

The TSP is called Euclidean wher the cities that must be
visited all lie on the same [flane and the cost of travelirng
between any pair of cities is the Euclidean distance between
then.

The TSP is an NP-complete problem [Ref. 1, 2]. All known
exact scluticp methods have a rate of growth of the computa-
tion time which is exponential in . On tae other hagd,
heuristic solution methods have a rate of growth of the
computation time which is a lcw order polynomial in n and
have been experimentally observed to perform well. For this
reason, there has been an extensive amount of research
directed at TSP heuristics.

In this thesis we consider adding time window
constraints to the TSP. That is, 1iIf t; is the time tnat the
salesmanp visits city i, then ¢t;must satisfy 1; < t;< u;,
where 1; and u; are the specified lower and upper bounds of
a time window. This problem is not as well studied as the

unconstrainted 1SP, but there have Leen a few agpproaches

used on the froblen.

Fiir e g

RN

A

-y
et
v

3

Psaraftis [Ref. 3] has presented a dynamic programming
model and solution procedure for two dial-a-ride problens,
which are similar to time-window constrained TSPs. Baker
[Ref. 4] has presented an exact algorithm using a branch and
bcund procedure which is effective for very small n.
Christofides et al. {Ref. 5] have ©presented a dynacic
programeing state space relaxation procedure to compute
bcunding information within a branch apd bound algorithum.

The objective of this study is to develop exact ard
heuristic algorithms which will provide an optimal or near
optimal tour that visits each city 1in its given time
window. We are given a depot location, a set of x,y
co-ordinates for n cities and a set of time windows .

A ccmnmon application of the TSP is in vehicle routing
problems. A set of customer orders must be partitionred
among several vehicles. Given a partition, the probliem tnen
decomposes into one TSP for each vehicle. Because of this
prospective application and in deferemnce to the difficulty
of large TSPs (with or without time constraints), we confine
our research.and computation to small-scaled problems (less
than 30 nodes).

We consider two different kinds of time window
ccnstraints: hard time windows and soft time windows. Hard
windows cannot te violated. Soft windows can be violated,
but a penalty cost must be paid when they are. The penalties
can be defined individually fcr each customer, and they can
differ for early and late arrivals. Generally, the penalty
for arriving kefore the lower time window bound is nmuch less
than tne penalty for arriving after the upper bound. In
Chapter III, we present tne hard time window approach and in
Chapter IV, we present the soft time window approach.

We developed several Fortran programs for solving the
TSP and time-constrained TSp. For the TSP, we use Stewart's
[Ref. 6] receat heuristics, CCCO and CCAOQ. For the time

b A e i B Y B S i S A AL AT S RO TR AR e T W T N T TN s R T T ey T T ONT TR AT

ik
“

-
k]

constrained TSP proﬁlems, we develop some mnew heuristics,
some of which are modificaticn of Stewart's heuristics for
the unconstrained problen. We also developed exact algo-
rithms for both hard and soft windows using Christofides et
al.*'s [Ref. 57 method of state-space-relaxation dynanic
programming apnd branch and bound. This 1is described in
Chapters II1I end IV. .

Finally, we describe a hybrid of the heuristic and exact
X programs. Tke hybrid uses the overall structure of the
" exact program, but the upper bounds are obtained with the
heuristic. 17Thkis is discussed in Chapters III and IV.

B. THE TRAVELING SALESMAN PROBLEHM

A tour is a chain which rasses through all the n nodes
and in which the first and the last nodes coincide. A tour
is also known as a Hamiltonianm cycle.

let a tour ke denoted by t = (11, 1 gecey in, 11) and

the cost of this tour be

n—-1
c) = c) + Cc .
. i i, i1
j=1 j it n 1
Her e (i1, i2,...,i) is a permutation of the integers
n

from 1 to n, giving the order in whica tke cities are

visited.

The Traveling Salesman Problen can be defined as
follows. Given a dgraph G = { N,A } composed of a set of
ncdes N, a set of arcs & connecting these nodes, and a cost
(distance) cis associated with each arc (i, Jj) in A. The
TSP is the ©[proktleam of finding the minimum cost tour of tae
nodes in N. Tie followirng mathematical formulation of thke
TSP 1is from Stewart (Ref. 61.

1M

4 el

L 1, Gt A Y

=
a e, X3

-
v e
e

NI L LS

O OAI X

MIN ° E c..x, . (1. 1)
/ ij i3

i,]
S.T
E x = 1 3= 1,eee,n {1.2)
. 1]
i
E x. N = 1 i = 1,...,11 ‘1.3)
- 1]
] .
L Sy 1 1 (1.4)
- = 1 = e ogll -
> 743 Z_zyji e
J#i Jei
Y_. hd ! § X._ < 0 i= 2,....!1 ‘1.5)
ij ij
i#j
x = 0,1 for all (i, 3J) {1.6)
ij
.20 tor all (i, J) (1,7)
1]
where L ..
x = (1 if arc(i, j) is on the tour
i
J 0 otherwise
y. are continuous variables that force the final
i
] soluticn to be on the tour
(i.e. include every node in the same route)
is a number 2 n-1 , and
n is the nuaber of nodes in the set N.
The constraints (1.2) and (1.3) ensure that each node

will be visited exactly once, while constraints (1.4) and
(1.5) force the final solution ‘o be a single tour that
starts and ends at node 1 (depot). This formulation is not
directly used in our TSP progranms, but is orf interest in a

general discussion of the probleme.

12

C. ISP WITH TINE WINDCW CONSTRAINTS

The time-ccnstrained Traveling Salesman Problem is a
variation of the TSP that includes time window constraicnts
on the time to visit some of the cities. The hard time-
constrained TSP is to find the minimum cost tour subject to
visiting each city within its time window.

For the time-constrained TSP model, we define a contin-
uous nonnegative variable, t; , to ke the time that the
salesman visits city 1i. Since the salesman must return to
city 1 (depot) at the end of the tour, the formulation
includes an additional variable, t,, ., the total time
required to ccmplete the tour.

We assume that a complete, symmetric, nonnegative
distance matrix, |Cij |, is krown and that time is a scalar
transformatior cf distance. Thus time and distance may be
used interchangeably.

The following mathematical formulation of the TSP with
time coanstraints is from Baker'[aef. 413

MIN t -t (1. 8)
n+l 1
S.T t. - t 2 C . i = 2,3,...,11 (1.9)
i 1 1i
It -t |2c . j = 3,4,.-.,0 (1.10)
1] 1]
2 <1< 3
- t 2 C . 1 = 2,3,-..,“ (1-11)
n+1 i 11
t 20 1= 1,24eeaen+l (1.12)
i
l_ S t. S u‘ i = 2,3,-..,11 (1-13)
i i i
where t, = the time that the salesman visits city i
bR -
|Jx] = the absolute value of x
¢, = the shortest tike required to travel from
1]

city i to city j

13

LR S el S Sl A I e & TW

1 = the lower bound on the time window for the
salesman to visit city i
by assumption all 1 2 0 ‘
u = the upper bound on %he time window for the
salesman to visit city i
a, 21 , for all i
i i

The constraints (1.9) through (1.12) ensure a nonnega-
tive arrival time at city i, t; , be obtained for each city
(node 2 through node n) on the tour. The conétraint (1.9)
guarantees that t; , the time that the salesman leaves the
ncde 1 (depot) will be the smallest t value. The absolute
value constraint (1.10) ensures that the arrival times of
any two city differ by amount of time sufficient to allow
the salesman to travel betuween the two -cities. The
constraint (1.11) guarantees that t,,, the time the salesman
returns to the depot, will be the largest t value. The
inequalities (1.12) and (1.13) are nonnegativity and the
time window ccnstraints respectively.

Unfortunétely, Baker's proposed model for the time—
constrained 1ISP is very difficult to solve, because
ccestraint (1.10) is nonconvex. Therefore, we will not use
this formulation directly in cur prograife

Figure 1.1 illustrates the nonconvexity of constraints

(1.10) for cne i,j pair, the example | t, -t | 2 5. The.
feasible regqgion for this cchostraint is the union of two
disjoint sets. Taken all together, constraints (1.10)
define 2m disjoint sets sets where m = (n—-1) (n-2)/2, |
which are very difficult to work with.
We can see that the time-constrained TSP 1is very

different froam ISP, even in fcrmulation.

14

T3

Figure 1.1 Example of Noncomvexity of (1.10)
in Twvo Dimensionms.

II. HEURISTIC ISP SOLUTIION

A. OVEBVIEW

Many heuristic procedures have been developed for
sclving TSP. our purposes in this Chapter are to examine
some of the well-known heuristics, to review Stewart's [Ref.
6] recent heuristic, and to compare these approximate teckh-
niques cn the basis of efficiency and accuracy on a small
nunker of examples.

In general, heuristic procedures are categorized Ly
three broad classes: tour construction procedures, tour
improvement procedures, and composite procedures [Ref. 7].
Tour construction procedures start with a single wnode and
successively add nodes till a tour is ruilt. Tour improve-
ment procedures attempt to find a :tter tour given ac
initial tour. Composite procedures ccnstruct a startiang tour
from one of the tour construction procedures and then try to
find a Letter tour using one cr more of the tour improvement

pFrocedures.

1. Iour Construction Procedures

There are many methods available for constructing an
initial tour. Frocedures which have been generally used are

given below.

a. Mearest Neighbor (Rosenkrantz et al. (Ref. 81)

Step 1. Start with any node as the beginning of
a subtour. -

Step 2. Find the node closest to the last node
added to the subtour. Add this node to

the current subtour.

16

Ster 3. Repeat step 2 until all nodes are contained
in the tour. Then, join the first and last
node.

b. Clarke and Wright Savings (Clarke and Wright
(kef. 91)

Step 1. Select any node as the central depot
which we dencte as node 1.
Step 2. Comphte savings S _=c¢c + ¢ - c
ij 11 13 ij
for i,j = 2,3 ,e..,n. i#j
Step 3. Order the savings from largest to smallest.
Step 4. Starting with the largest savings on the
list, subtours are assembled such that the
next node added has the largest remaining
savings - provided that a constraint is not
violated. Once a pair of nodes i and j have
been linked, they remained linked .
Repeat until all nodes have been assigned.

Here, the quantity s, is the amouant of travel

i
saved if node j is visited direc%ly after i, as opposed to
having separate trips from the depot to nodes i and j.

" Figure 2.1 demonstrates the procedure for two nodes i and j.

C. Ipsertion procedures (Rosenkrantz et al. [Ref.
81)

Ap insertion algorithm ccenstructs a feasible
tcur by successively adding one node to an existing subtour.
This procedure takes a subtour of k nodes at iteration k and
attenpts to determine which node not in the subtour should
join the subtour next (the Selection step). Then it deter-
mines whkere ip the subtour it should ke inserted (iInsertion

17

A IR
- PRI VLI % 2% S I W P N

R Sl
RV D T P S

¢t et

ST
I AU

P B)

DN ’ g /
LN 4 \ / !
[N /7 /7 \ /
(N ’7 ! \ 4
v ’ \ /
v r 7 \ 4
LN 7 7/ \ /
LAY A \ /
LR r 7/ \ /
LN I'/‘ \ /
(RN \ /
\ 7 4/ \ /
\\J®‘V \g |
Before Linking After Linking

Pigure 2.1 Concept of the Clarke - Eright
Savings BHeuristic.

step). Stewart [Bef. 6] fpresent:d the following gemeral
algorithmic structure.

Step 1. (Initial Sulktour)
Obtain a TSP tour for a subset of the nodes
N'c N in G.
Step 2. (Selection Step)
Find a node k € N-N*' tc be added to the
existing sulbtour.
Step 3. (Insertion Step)
Choose an arc(i,j) in the subtcur om N'.
Insert node k between i and j and add
k to N'. .
Step 4. If N = N*', then stop
(We have a Hamiltonian cycle).
Otherwise, return to step 2.

18

N T T T TN T W e T T F T E TN TR T T e TR TN T TR R LA L LN TR T TR T TS TR RV TR RTINS LT T e T T N, ETNT T e T

LT AN AN TN e T T o T T s D e L T T T T T s
. Ny ~ i R P R A A T T M TG T T A AR AT R

Y e o o
A 200 IaACS S Yl st b Ba® Sacah Ak s Sl St abah Badh Bl Sk Rl et died Aet eoifan cata bollae Sen et fato v s hna denodanoiiat lat e iint olin® et lar ol sia Sl A AR S A M

There are many variations on this algorithmic
structure depending on the procedures chosen for executing
steps 1,2 and 3.

Wiorkowski and McElvain [Ref. 10], Or [Ref. 11],
Stevart [Ref. 12]'and Norback and Love [Ref. 13] all present
insertion algerithms that use the convex hull of the set of
nodes N for the initial subset N'. Nemhauser and Hardgrave
[Ref. 14] have shown that there exists an optimal tour for
every Euclidean TSP in which the relative order of the nodes
on the boundary of the comvex hull is preserved. This gmeans
that the optimal tour visits pnodes on the boundary of the
cenvex hull in the same order as if the boundary itself were
fclloved.

Further justification for the use of the convex
hull for the initial subtour is shown empiricaily by
Stewart's [Ref. 6] computational experiment. He compared
several insertion heuristics both with and without the
convex hull as the starting solution. The results show that
all the inserticn algorithms are improved by the use of the
cocnvex hull.' Some are improved sukstantially, ‘others only
moderately.

Many criteria have been suggested for the selec-
tion of the node to be inserted in an insertion procedure.

(1) DMNearest Neighbor (Rosepxrantz et al- [EHef.
8]). Choose the node k that is nearest a node in the
current tour. I. e. , find Xk = argmin Cc s.t. j € N-N',
i€ne.) HJ

(2) Cheapest Ipnsertion (Rosenkrantz et al.

[Eef. 8)). Choose the node k that may be inserted at
minimal increased cost. I.e., £find

k = argein ¢, +c¢c - c_. s.t. m € N-N", i,jen'.
B im nj ij

19

e e e ey
. P W e e . - N . O [R
Vit N T SRR oA RN SRS BPP.SICRPURE 3 P by A D S Sy j

e T T poy R R W W N e T e e T T Bl ShaReaii e S o A un it radey Pt B SR AvEl At dartiad e it -gind * Iadic i la\ S St 4

(3) Farthest Insertion (Bosenkrantz et al.
{(kef. 8)). Choose the node k that is farthest from a node

current subtour. I.e., find k = argmax c_ S.t. j€N-N',
. J 1]
ienN

(4) Arkbitrary Insertion (BRosepkrantz et al. ©
{Ref. 8]). Choose node k randomly from among N-N°'.
(5) Ratio Insertion (Stewart [Ref. 121).

Choose the node k such that the proportional increase in

ccst is minipal. I.e., find k = argmin (c +c)/ c
m

im n ij
Sot. 11} € N-N" i,jGN'. J J

(6) Perpendicular Distance (WNiorkowski and
McElvain (Ref. 10]). Choose the node k that is closest to
an arc in the current subtour.

(7Y katio Times Distance (Or [Ekef. 111).
Choose the pode k such that the frroduct of ratio and
distance is @minimized. I. e. , find

k = argmin ((c +tc) /c.) x (c, +cC - c.)
o ij

im mj im mj ij

s-t- m 6 N-N' rl l'j € N'.

(8) Greatest Angle (Norback apd Love [Raf.

13]). Choose the node k and arc i,j such that the angle
formed bty the two arcs (i,k) amd (k,j) is a maximum. TI.e.,
find k = argmax angle{ arc(i,m), arc(m,j) } S.t. m€ N-N',

: g “'

: i,j € N' .

; The insertion criteria that have been used
fall into two categories. [Ref. 6)

A 1. Cheapest Insertion

: Insert the node k€& N-N' between those two

; connected ncdes i,j € N' that minimize the quantity

% “ik " %5 T Si

20

mﬂ'v‘

S e Pe I DR LFL R ¥ L

"N

e
L PR a]

tans o o i i AL Tl

'.'- ¢ e e Mu ek

2. Identical Insertion and Selection

Do selection and insertion in the same
step.

2. Tour Improvement Procedures

The best known procedures of this type for the TSP
are the branch exchange heuristics [Ref. 7]. These brauch
exchange heuristics work as follows.

Step 1. Find an ipitial tour. This tour may be chosen
randonly from the set of all possible tours,
cr it may be generated Ly one of the tour
ruilding procedures above.

Step 2. Improve the tour wusing one of the branch
€xchange heuristics.

Step 3. Continue step 2, until no additional
improvement can te made.

For a given k, we define a k-change oi a +tour as

~consisting of the deletion of k branches in a tour and their

replacement by k other branches to form a new tour. A tour
is k-opt if it is not possible to improve the tour via a
k-change. 1In general the larger the value of k, the more
likely it is that a k-opt solution will be optimal.
Unforturately, the number of operaticns necessary to test

‘all k exchange is proportional to o « Where n is the number

of nodes in the TSP. Due to this complexity, values of k = 2
and k = 3 are most commonly used [Ref. 7]« The 2-opt and
3-opt heuristics were introduced by Lin [kef. 15) and tnhe
k-opt procedure, for k23 was presented by Lin and Kernighan
{Ref. 16] . '

Or [Ref. 11] has designed a modified 3-opt that
considers only a small percentage of 3-bramch exchanges.
This wmodified 3-opt called Oropt by Stewart [Ref. 6]

21

r-(el ":a', R " -y ,\’ J'-
M ety e A P .-.'. *, '- 3'
RSN AR B OADAAEN T N e T S R N e

-_,,-,, &
Y

D

el et

et B S - . L N I T [, At ¢ ok

B A T A AU DA i T L TR SO N R A A i o n_.‘~<v‘v.“':_~ AT T LY UwW TV
DR ST S Sl

L T 2 L TR T T I P R T LA N PR) - '~. T R .('_“_‘—"_',Y"v‘.""_". Ml e “ad vnl aad

considers only those branch exchanges which are composed of
a string of one, two, or three adjacent nodes being inserted
between two cther nodes in the current tour. By limiting the
nunber of exchanges that are considered in this way, Oropt
requires many fewer calculations than a full 3-opt.

Stewart (Ref. 6] wmade an experiment of the convex
hull, cheapest angle insertion algorithm (CCA) which will be
discussed in the next section as a stand-alone algorithm and
with each of the three post-processors. The algorithms are
designated CCA, CCA2, CCaO, and <CCA3 for the comvex hull
cheapest insertion stand-alomne, with 2-opt, with Oropt and
with 3-cpt respectively. He drew two conclusions from his
computational results. First, the 3-opt requires substan-
tially more time than either the 2-opt or tae Oropt.
Second, the Z2-opt is dominated by the Oropt and the 3-opt in
quality of solution.

In comgputation time, Oropt only looks at
approxipately 3n2 of the n possible 3-opt exchanges on
each pass. Ihere are n ways to select the first branca,
times 3 ways to select the second branch, and n-2 wWays to
select the third branch.

This accounts for the fairly close times for the

2-opt and Orogt. The dquality of CCAO solutions dominate
CCA2 solutions. Oon the other hand, there is little c¢r no

difference between the Oropt anid 3-opt in terms of solution

quality.

Stewart®s main conclusion froir the above experiment
is that the Orcpt performs as well as a 3-opt ir a small
percertage of the computer time required by a 3-opt, and it
o should ke preferred tc both the 2-opt and the 3-opt for
Euclidean TSP's.

22

S amh B il wa il sl S e b S bt e B Saulie waudie e St S S e com e Sl Ay, il Al Senlh el Bl Al S
o S A i ol el nal i G b i ea el M b St e Sl Vi St MM Al S A i Y A S Y e i T RS S e N e S M i Sl S

N 3. Composite Procedure

{ . The Lasic coamposite frocedure is a combination of
the tour construction and branch exchange procedures. It is
obtained by appending a branch exchange procedure to the

A A

tour copstruction algorithm as a post-frocessor. The proce-
dure cap be stated as follows [Ref. 17 1. ~

)
L

g Step 1. Cbtain an initial tour using one of the
tour construction procedures.

FaS A
ERINDAS

Step 2. Apply a branch exchange procedure to the
solution produced by the step 1.
Stop wahen no further improvement can be made.

The ccmposite procedure is relatively fast computa-
tionally and gives good results [Ref. 18].

B. CCAC
1. Algorithu

ol The CCAO algorithm designed by Stewart [Ref. 6] uses
) the convex hull of the nodes in N for its initial subtour.
i: Then it inserts the nodes not currently in the subtour where
% they may be inserted most cheaply (the Cheapest Insertion
critericn). It selects the ncde k tc be inserted at each
iteraticn acccrding to how large an angle is formed DYy the
two arcs that aust be added to the <current suttour
(Selection criterion) in order to insert k., Finally it uses
an Oropt to make local imprcvement oa the tour counstructed
in the tfirst stage. CCA0 means Comnvex Hull, Cheapest
%ﬁ Inserticn, Angle Selection, Oropt.

Algorithm : CCAOC

<. Input : Number c¢f nodes, x and y co-ordinates of ail
nodes.

= Cutput: JOrdered iist of tour, tctal cost.

Rt e Shelh Ao Aot dien Aok Sl A gt A A Recdbul et Ml A bl M te W b A d M |

Step 1 . (Imitial Subtcur)
Find the convex hull of the set of nodes N.
Call the set of nodes on the boundary N°'.
Let the initial subtour te the nodes of N'

in the same order as they appear on the
convex hull.

Step 2 . (Cheapest Ins:rtion)
For each node m ¢ N-N', find

(i ,j) =argmin ¢, +c - c__
D m i,3 im nj ij

s.t. i, j € N, i, j : connected.

Step 3 . (Greatest Angle Selection)
For the next 1inserticn, select tre ncde
that maximizes the angle between the arcs
(im,m) and (m,jm) over all m € N-XN'. j

I.e, find k = argmax angle{ (i ,m),(a,j) }
m o n

S.t. MEN-N'.
Insert k Letween ik and jk and add
k to N°'.

step 4 : If N* = N, go to step 5.
Otherwise return to step 2.
step 5 : Apply an OQOropt to the current tour. Stop

when no further improvements can be found.
End of algorithm CCAO

2. Example

Figures 2.2 - 2.4 illustrate +the above algorithm on
the TSP defined as test problem [1] in Appendix A. First
the convex hull 1is generated for an initial starting
subtour. This subtour consists of nodes 2,13,12,14,5,15,7,4.

A solid line marks the bounaary of the convex hull in Figure
2.2.

P’ S Al A Sl A ran il Sra A Sl i SRS RINELIA A A AN

18

Pigure 2.2 Initial Subtour and Insertion.

In step 2, each of the interior nodes (1,3,6,8,9,10,11,16)
is associated with a pair of connected nodes on the initial
subtour (the dashed 1lines in Figqure 2.2). In step 3, the
dashed lines that form the greatest angle (closest to 18009)

identify the pnode to be inserted (node 10 in this example).

Figure 2.3 shows the protlemw after the first three
insertions(ncde 10, node 1 and .node 8§ in that order).

Notice that some rnodes not in the suktour are associated

25

4 € o e Bty 0ot B Ben i Oy Ty kY) o #, ., ¢ Y
W
\..'
‘.
i
%i
.'.: ©
——
7
L
" .
. ©
3 < _
by vy
- o]
= vy
o]
—
S
Q
w_.
- -
e
|
i I T T T T T 1 T
k 0 2 4 6 8 10 12 14 16 18
X
i Figure 2.3 Intermediate Subtour and Insertions.
j::
Qﬁ with new node rairs. Figure 2.4 shows the final tour for
stage onpe. This tour is now passed to an Oropt post-
: Frocesscr. In this case the tour from stage one aprpears
- from inspection to be optimal, and Oropt will find no
i; improverent.
< 26
3

. - - - - o Ty - . N
Vvt e e e e N e e e e, . . X . LS S S N T Y - e ;
I, R P N ol R, PP T i I Y T o e T U O A T L L

B S AP A A T R I e T R

N
e
i
-
tl?-‘: !
b o
—f
- o |
o =
]
a]
iy
o]
3 -y
5 o
N- Q]
@ p=
- < -]
o]
:n o
fc
Y < T 1 T 1 T T 1 T
:{ 0 2 4 6 8 10 12 14 16 18
< X
)
1& Figure 2.4 Pinal Tour of CCAO.

3. Computational Results

In addition to CcCAaoO, CCCO (Convex, Chea pest,
Cheapest, Oropt) inas been coded for the purpose of compar-
ison. The only difference Ltetween CCAQO and CCCO 1is that
CCCO uses the cheapest selection «criterion instead of

- greatest angle of CCAOQ.

)
4

o 3
v

il
.
e Y By 5 Yy

We used Sedgewick's [Eef. 19] package wrapping algo-
rithm for finding the convex hull (injitial subtour).

Rl

r
rx
.

o
y
v
-
“
b

27

R TR TS T U TN P St A B S S T N NN} SN L B IR
_-.-...1{

“ : = L"-. - - ~ - St « 7 ‘_-.._".~‘
'\'\,\ . ;4.. e \: _~\!.-~ (TS ST -

y Y Y

R S)
- '

Starting witt scome point (called the anchor) that is guaran-
teed to be on the convex hull (say the one with the smallest
Yy co-ordinate), take a horizontal ray in the positive direc-
tion and sweep it upward wuntil hitting another point. This
pcint is on the hull. Then start at that point and continue
sweeping until hitting another point, etc. The package is
completely wrapred when thé\first point is included again.
The following algorithm finds the convex hull of an array
L(l,...4n) of nodes, the node L(n+1) is used as a sentinel,
that is, a copy of the first node which is used to signal
completion of the procedure. The variable NH is maintaired
as the number of nodes so far included on the hull.

Algorithn : Fackage Wrappimg

Input : Number of nodes, x and y co-ordinates of all
nodes.

Cutput: Ordered list of convex hull and number of
nodes included on the convex hull.

Step 1 . (Inpitialization)
Find and duplicate anchor. I.e., find
NMIN = argmin y £ s.t. 1 € N and set
i

Nl = 0, L(+1) = L(NMIN).

Step 2 : (Swap nodes NH and NMIN).
Put last node fourd into tae hull by
exchanging it with the NHth node.
NH = NH + 1.
TEMP = L (NH).
L(NH) = L(NMIN).
L{NMIN) = TEME.
Step 3 : (Compute angle)

Compute the angle from tae horizontal made

28

by the line between L(NH) and each of the
nodes not yet included on the hull.

(Find next hull node)

Find the node whose angle is smallest amcng

Step 4

those with amngles bigger than the current
value of the ‘'sveep' angle (the angle from
horizontal to the 1line between L(NH-1)
and L(NH)).

Step 4 : Stop when the first rpoint is encountered
again. I.e., L{(n+1) = L(NMIN) .
Ctherwise, go to step Z.

End of algorithm Package Wrapping

We used Sedgewick's Pseudo Angle for finding the
spmallest angle in step 3, which is coded as the 'THETA'
function. This function returns a real number between 0.0 to
4.0 that is nct the angle made by L1 and L2 with the hori-
zontal but which has the same order properties as the true
angle. If dx and dy are the delta x and y distances froa
some node to the anchor node, then the angle needed in this
algorithm is arctangent dysdx. However, the arctangent
function is 1likely to be slow and it leads to at least two
annoying extra conditions to compute =: whether dx 1is zero,
and which quadrant the point is in.

In this algorithnm we only need to be able tc compare
angles, not measure them. Thus it makes sense to use a func-
tion that is puch easier to compute than the true angle but
has the same crdering properties as the true angle. A gooud
candidate for such a function is simnply dy /7 {(ay + dx).
Testing for exceptional conditions are still necessary, but
simpler.

Function THETA (Pseudo Angle)
Input : dx,dy (delta x and y distances from some

node to the anchor node).

29

........ . - . e
. - O At €« v - W

A P I PR U o I JRTa L
- A Lt e e o
r-‘{!!-'n-\-'\&‘.-ﬂl‘:":;ki_nh' LRV T DN I o VLR DS S SO P

TR L
FRSSTWS TN,

........

Cutput : Pseudo angle made by L1 and L2 with the
horizontal line.

begin
dx x(L2) - x(L1) ax = abs(ax)
dy = y(L2) - y(L1) ay = abs(ay)
if (dx=0) and (4dy=0) then t
else t
if dx < 0 themn t = 2.0 - t
else if dy < 0 then t

[{}
se
[X}

0.0
dy 7/ (ax ¢+ ay)

4.0 + t

€nd
End of function THETA

Figure 2.2 shows how the hull is discovered in this
way. We used Sedgewick's Pseudo Angle for f£finding the
greatest angle selection point.

The data for our test problems is given in the
Appendix. The computational results are summarized in Tabie
I. As can be seen in Table I, CCAO is faster than CCCO on
the small-scaled test problems (below 30 nodes), but CCCO
is faster than CCAO on the moderately large sized problems
(over 50 nodes). Generally, the accuracy is almost iden-
tical in both cases.

Stewart [Ref. 6] showed that 1in a larce scaled
problem, the CCAO algorithm outperforms any other insertion
and selection algorithms. Thus, we are highly motivated to
use a modification of the CCAO algorithm for solving the
time-vindow ccnstrained TSP.

2 TABLE I

CCABUTATIONAL RESULTS OF CCCO, CCAO

L

)

A

} CCCO CCAO

¢ - Problem Number Best % CPU % CPU

. Number of Known Oover Time Over Time
X Nodes n Solution Best (sec) Best (sec)
& (11 16 66.6039 0.00 0.0133 0.00 0.0066
:1: [2] 22 469.0288 0.00 0.0233 0.00 0.0100
' [3] 22 278.4371 0.00 0.0166 0.00 0.0066
o {5] 51 429.7000 2.72 0.1897 3.94 0.2562
:j‘«_ﬁ [6] 16 552.9000 1.64 0.5857 1.54 0.6889
* CPU times in seconds on IBM 3033.

-1

o

¢

-

?5)

RYREAYE @ Tl e Sl A Ul S At W G A A B S E AU A AP i B4 B T I E————_—
s

Lok alian an 4
‘l e te te

PP A

YN TTW

III. TBE ISP NITH HARD TIME WINDOS CONSTRAINTS

A. INTEODUCTIOR

The first time-constrained TSP we consider is the case
in which late arrivals are not allowed, and early arrivals
must wait for the opening of the time window before they can
begin toc service a customer. This is called the hard time
window case and it is illustrated in Figqgure 3.1.

cannot be

violated
waiting ,
———>] time |{—————mm
- — x- ————————— - — — ——— —— v — --)- - — e — -
salesman lower upper
arrives bound bound J
——— time window '<——--- I

fer city 1

Figure 3.1 Diagram for Hard Time Window Case.

The hard time window case corresponds to military opera-
tions and to some civilian distribution probleas. Meeting a
deadline is ccnsidered a critical factor in this case. The
soft time window case will be discussed in the nextChapter.

Consider a grapk G = {N,A} composed o0f a set of nodes XN
and a set of arcs A connecting these rodes. we now define
some notation to be used throughout cur discussion of the

time-window-ccnstrained TSP.

32

1 = Lower bound on the time window at node i
* (early allowable arrival time at city i).
u, = Upper bound on the time window at node i
t (latest allowakle arrival time at city i).
d = Time required to spend at node 1i.
* (service time at city 1i).
SPEED = Constant speed at which the vehicle
travels.
distij = Distance from i to j.
cij = Iravel time frcm i to j.
. Note : ¢, = dist, / SPEED.
[ij ij
We use cij and c¢ (i, j) interchangeably.

depot = Depot (home) ncde.
L= (LY ,L(2)4eeersln) ‘.
= A tour with n stops visited in the order
L(1),L(2) yeee,Ll (D).
ARRVT = Arrival time at city i.
WAIT_1= Waiting time at node i for the hard time

1 .
windowe.

" Te——— -
AaasaTs ACOrasnat - | CASReEe

We also use 1(i), u(i), d(i), ARRVT(i), WAIT(i) and

l,uu ,4 , ARRVT , WAIT interchangeably.
i i i i i

B. HEURISTIC SOLUTION TECHNIQUES FOR HARD TIME WINDONS

1. Nearest Neighbor.

— e

The following is a Nearest Neighbtor heuristic
similar to the one used in the uncomstrained TSP. At each
iteration we add a new node tc the end of the subtour. It
is the first node that can be visited from the last node of

33

R S ey
[P ‘. “ »r
s’ 3 oa

A

R

the sub tour,
ke necessary

Algorithm :
Input

Output

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

taking into account any waiting time that might
due to the lower time window bounds.

Bearest Neighbor

: Number of nodes, x and y co-ordinates of all
nodes, time windows for all nodes.

Ordered list of tour, tctal travel time.

.« (Initialization)
Start at the depot.
Let i=depot, N' = (i}.

. Compute ARRVT for all modes k € N-N* if k can
ke visited directly after i :

ARRVT = max (ARRVT , 1} + d ¢+ ¢ .
k i i i ik

. If ARRVTk > uk, then stop (' no feasible

solution?').

« If ARRVT < 1 , then cost = 1 .
k k k k

Otherwise, costk= ARRV‘Ik .

- (Nearest Neighbor Selection)
Choose the rode k€ N-N' such that costk is
a mipimum. I.e, find

k = argmin cost s.t. j EN-N'.
5 ,

- (Insertion)
Insert k after i, add k to subtour N', and
let i = k.
- If N'=N, go to next step.
Otherwise, return to step 2.
~ Compute total travel time, then stop.
Total travel time = max { AREVTk, 1k }

+d + ¢
k k,degct

End of algorithm Nearest Neighbor

34

ke e

TP N . on - R
PR h-',."v.\.\.\.-'h‘\ D S T e . LI

R CRA « Wi w7, B L R R T A T
S ¥ ~ ot & &) 0 M il L) hed .

Tais solution was constructed by starting at the
depot and moving to the nearest neighboring customer that
has not yet lkeen visited as 1long as the upper bound level
was not violated. This heuristic may fail to solve the
problenm.

2. SCCQ

This algorithm is designed for the case when some of
the nodes do not have time windows. ©We call these nodes "
time free ".

SCCO is similar to the cheapest selection, cheapest
insertion metkod for the unccanstrained TSP, except that the
ncdes with time windows are treated differently from the
time free nodes. The nodes with windows are inserted in
order of increasing upper time window Ltound.

The time free nodes are inserted between these nodes
by cheapest selection and cheapest insertion, for as long as
the upper bcund time window will allcw. In the end, a
Mcdified Oropt is used to improve the solution.

There is one possible difficulty with this apprcach.
It may Lecome 1impossible to reach some of the tine-
ccnstrained ncdes before their upper Lound. In this case,
we must delete some node(s) from the subtour. Whenever we
see an upper oound that cannot be satisfied, we select a
node to delete ty the following criteria.

The first criterion is the width of the time window.
Hence, time-free nodes are consicered first. Then, if
several nodes 1in the subtour are tied for the widest tinme
wirdow, we select for deletion the node that results in the
greatest time saved. The algorithm is sumaarized as

fcllovws.
Algorithm : Successive Cheapest Cheapest Oropt (SCCQ)
Inpput : number of nodes, x and y co-ordinates of all

35

W PRI N S L S IP T ST S U AT G WL DA ST T SV I SETU S S

e aa
W
[e T

PAAAAAA

Output

Step 1

Step 2

Step 3

Step 4

Step 5
Step 6

Step 7

Step 8

nodes, time windows for all nodes.
ordered list of tour, total travel time.

(Initialization)
Start at the depot.
Let i=depot, N' = ({i}.

Set k = argmin u, s.t. j € N=-NT,
]

If k is time free node, then set k = depot.
Calculate AERVTk.
ARRVT = max { ARRVT , 1 } + d + ¢ .
k i i i ik
if ARRVTk < uk ¢ then go to step 5.

Othervise, select time free node m € N' which
results in the greatest time saved for dele-
tion. Delete node m from N', go to step 3.
Add node k to the subtour N°'.

Insert time free node jé€ N-N' between nodes i
and k by cheapest insertion and cheapest
selection (same as CCCO) until ARRVdeoes not

€xceed uk -

If ARRVT < i , then set ARRVT = 1 .
k k Tk k

If N'=N, then go to next step.

Othervise, let i = k and go to step 2.
Apply the Modified Oropt procedure to the
current tour. Stop when no further i1mprove-

ments can be 1focund.

End of algorithm SCCO

"Successive" means select the node successively by

the smaliest upper bound. In the SCCO aigorithm, if the

36

salesman arrives before the lover bound of the time window,
adding waiting tinme, we set the arrival time egqual to the
lower bound.

The Mcdified Qropt prccedure for improving the solu-
tion is described below. This procedure consider only those
exchanges that would result in a node teing inserted between
two other nodes in the current tour.

!

10 11 12

Fiqgure 3.2 Current Tour before Modified-Oropt.
Pigures 3.2 and 3.3 are helpful to understand how

the procedure works. In both figqures, i,j,k,l, and m are the
nodes in the current tour. Nodes 1 and m are considered to

37

..... o . - . . B - .
AT N AT AR R - ‘. L. . ot . - e ot L "_-" e
i SPIEJT I D I TP JOF SRR WAL W R TN P u OB S, AU, 9 UG COUS. Sy P U R I U U UL . DT SO ‘4‘

."""*.' « e SN aing caniC RSl BiLA B et b atiia B A Pl AR NN P By M S aC e SuAh MC AL ta e ML At Nl Mt et el Sart B . § S Rt it S . v-‘r;~‘rv"1
be: |
e
h!':"i‘: |
S be adjacent tc¢ node k. A test is then conducted to deter- |
poo . ‘o
AN mine if node k can be located between two other nodes, such |
S { as 1 and j, sc that it results in reduced total travel time.
1}ﬁ If it «can, we make the arfprropriate arc exchaanges, then
ﬁfr update tae total cost and route orders.
¥
AL a
. — J
y —
A A
;"" L-.‘ = —
- —
O -
@ —4
|
L ™ ‘
e
‘C © —
".:: >"
T~
!)
P
L, l
..",_. - —
J
- -
\.: ‘
k< o
o 1
L -
.’. =] i i I 0 1 i 1 i |
A 0 1 2 3 4 5 6 7 8 9 10 11 12
iq’ Figure 3.3 Iaproved Tour after Modified-Oropt.
. Ir this example, the three arcs (i,j). (k.,1l), and
; {k,n) are remcved and replaced by (i,k)., (jek), and (1,m).
N When no further excnanges imgrove the solution, the algo-
f ritha terminates.
38

Ty

P
s

Yol

.
A

ey
T
.

Ok

fffrfv—-:.- v

-

18

——

16
]

11

15

Figure 3.4 Subtour in SCCO Procedure.

Figures 3.4 - 3.6 illustrate the SCCO algorithm for
the ISP with hard time windows given in Appendix F as in
test problem [1]. In this problem 10 of 16 nodes have time
windows. The cther 6 nodes are time free.

First, the subtour starts at the depot (node 16) and
we insert the node with the smallest upper bound (node 1%).
We examine all ncdes which cculd be inserted between 16 and

12 as long as the upper bound on node 12 is observed. 1Ia

39

~-_.A-1:..31

[v 4y e 4 S G R A A A Bt A N S Y AR A A O A 4 A Al U Al i Re® i i Jhat el Anbiint olie SRl st dia . |

A

i
S
(-
N
‘-wh
§ _':}
{ 2
-a -
::: g..
Ny
o = |
b o
N ~ |
[
-

< |
. o
D
S ©
. ©- [
: <

A2
‘xj;'.'~ © T T ! T 1 T T T
T 0 2 4 6 8 10 12 14 16 18
X
J
Figure 3.5 1Intermediate Subtour in SCCO Procedure.
this case there is no such node. Then we select the next
spallest upper bound (node 14), add it to the tour, look for
i nodes to insert before it, and continue in this manner. Now
oo we have foraed the partial tour 16, 12, 14, 11, 6, 3 as
shown in Figure 3.4.
R As shcwn in Figure 3.5, we can insert 3 time free
e nodes between node 6 and node 3. These insertions are made
el according to the cheapest insertion and cheapest selection
L
o 40

Mt Ad 406 dod Sok ok b Bt el iedSd Sed Skt S Sad-Sall S ScuAtnd LBIA A I L\ i A aianar o -0 WD SR ard aie it Lt BN e BNal B (- e A i e i Solh s B Bni Ank stall Salls Latall el Al Sk Pall b,

18

Figure 3.6 Final Subtour for SCCO.

criteriae. We do not make any further insertions because
they would cause a time window violatiorn at node 3.

Figure 3.6 shows the final tour for the SCCO
heuristic. This tour is passed to a Modified Oropt, but in
this case it will find no improvement.

41

s y) St B i, 2o

. ‘ . -~ - N E S - - - [
NP NP AP U, U PRR A WP WL AR (U W UL WP WU, (. WU WS-V

3. SCAQ

This heuristic is identical tc SCCO except for the

free nodes,

Algorithm :

Input

Output

Step 1

use of the greatest angle selection criterion for the time-
instead of cheapest selection.

Successive Cheapest Angle Oropt (SCAO)

Number of nodes, x and y co-ordinates of all
nodes, time windows for all nodes.

ordered list of tour, total travel time.

(Initialization)
Start at the depot.
Let i=depot, N*' = {i}.

Set k = argmin u_ s.t. j € N=N'.
J

if kK is time free node, set k = depot.

Calculate ARRVTK.

ARKYT = max { ARRVT , 1.} + 4 + ¢ .
k i i i ik

If ARRVTk < uk « then go to step 5.

Otherwise, seliect time free node =z € N' which
results in the greatest time saved for dele-
tion. Delete node m from N', go to step 3.
Add node k to the subtour N°'.
Insert time free node j € N-N* between nodes i
and k by cheapest insertion and greatest
angle selection (same as CCAQ) antil ARRVTK
does not exceed uk .
If ARRVT < 1 , then set ARRVT = 1 .

k k k K

Let 1 = k.
If N'=N, themn go to next step.

Otherwvwise, go tc step 2.

42

P T

- Step 8 . Apply the Modified Oropt procedure to the

current tour. Stop when no further improve-
ment can be fcund.

End of algoritham SCAO

This algorithm is same as SCCO except dgreatest angle
selection is used instead of cheapest selection, as in SCCO.

4. SLACK

This heuristic was suggested by Professor Rosenthal.
It is designed for the case vwhen the widths between the
upper and lower bounds of the time windows are relatively
large.

In this heuristic, the SLACK is the most important
concept. The SLACK(i) can be defined as the maximum amount
of time by which arrival at node i can be delayed
without causing an upper bound to bpe violated for a node
currently on the tour.

The SIACK function can be defined as a recursive
function as fcllcws.

SLACK(L(i)) = min { u(L{i)) - ARRVT(L(i)) .
SLACK(L(i+1)) + WAIT(L(i)) }

D where

-

et WAIT(L(i)) = max { O, 1(L(i)) - AKREVT(L (i)) }

“.d

Eﬁﬁ The first element of this recursive runction is the
rw" difference between the upper tound and arrival time at node

L{i). The seccnd one is the sum of next node's SLACK aud
. waiting time c¢i node L(i). The wminimum of these two
elements is a fpossible delay time of the arrival time at

' ncde L (1) withcut violating the wupper bound of alil nodes
;ﬁ after L (i) in the current tour.

43

The advantage of this recursive function is that it

is easy to calculate a possible delay time without calcu-
lating new arrival times for all nodes after L(i). lhe algo-
rithm is summarized as follows.

Algorithm : SLACK

Input : Number of nodes, x and y co-ordinates of all
nodes, time windows for all nodes.
Qutput : Ordered list of tour, tctal travel tine.

Step 1 . (Initialization)
Start at the depot. Let N' = {depot}.
Step 2 . Sort the upper time windows.

{{f U= (u1,u2,...,un)

" ' S.te. 1 fu f...50 .

: 1 2 n
o Step 3 . Set k = argmin u_ s.t. i€ N-N'.
N i

Step 4 . Find a node L (ISTAR) after wonich node k
h " can bLe inserted in the current seguence,

o ' if such a node exists. Go to step 7.
= (The criteria by which we determine if ax
E insertion can be made are given below.)
i!l Step 5 . If there is no suck place to insert node k,
- then try to find a node L(ISWAP) in the
Eﬂ' . current sequence such that k can replace
- L(ISWAP) and 1 (ISWAP) has a good chance of
- teing reinserted somewnere else.

Select ISWAP which has the largest time
window width among candidates for ISWAP.

. If there is no candidate, then stop.
- (' no feasible solution ')
Step 6 . Do swap {(add k to N'; and delete L (ISWAP)
@ﬁ from N*, and set k = L(ISWAP)),
- then update slack and arrival times.

Go to step 3.

;f Step 7 . Select the node which results in the mirnimur

;f additional travel, i .e, the node k which
pY) minimizes the following quantity.
= c(L(1),k) + c(k,L(I+1)) = c(L(I),L(L+Y)).

[-. Step 8 . Insert k after L(ISTAR), acd add k to N°¢,
and update slack and arrival times.

Step 9 . If N'=N, then stop.
Otherwise, go to step 3.

< End of algorithm SLACK
ﬁ; This grocedure starts with sorting an array
N u1 v uz,...,u into ascending order using a heapsoit
h n

[Ref. 20]. This u array is used to select a node k in
(- ascending order for insertion. Since the upper bound cannot

be violated, this step is performed. Then £find a node L(I)
after which ncde k can be inserted in the current sequence,
if a such a ncde exists.

There are two tests which must be administered to
determipne if Kk can be inserted after L(I). Fircst, the
arrival time at node k if k succeeds L(I), which is called
TEST1 must not ke greater than the upper‘bound u . Second,
; if k precedes L (I+1), taen the resulting delay in arrival at
ﬁ L@I+y, whick is called TEST2 , must not greater than
SIACK(L (I+1)). HWe can calculate TEST1, TEST2 as foliows.

i TESTA1

= Arrival time at node k if k succeed L (i).
= max {ARRVI(L (1)), 1(L(i))} + dA(L(i)) *+ c(L(i) (k).
TEST2 = Delay in arrival at L{i+¢1) if k precedes L (i+1).

max { TEST1, l(k) } + d(k) + c(k,L(i+1)).

45

: g
e ry

If there exists more than one pnode L(I) after which
node k can be inserted, we select L(I) according to tke
criterion of least additional travel time. This additional
travel time, called TEST3, is given by

TEST3 = c(L(I),k) + c(k,L(I+1)) + C(L(I),L(I+1)).
When we inpsert node k after L(I), we update the
arrival times and SLACKs. In the updating process, we

compute updated values of SLACK only for the nodes whose
SIACK actually changes as a result of the insertion.

If there is no place to insert node k, we call a
subroutine caliled 'TSWHAP'. ISWAP tries to find a node
L(ISWAP) 1in the current sequence such that k «c¢an replace
L(ISwWAP) and L(ISWAP) has a good chance of being reinserted
somewhere else. TSWAP uses TEST1 ans IEST2 to fiud a candi-
date for ISWAEF and then uses a largest time window width to
select ISWAP. If there exists such a ISWAP, then we d¢ the
swap and update SLACKs aand arrival times and try to insert

again.

C. EXACT SOLUTION TECHNIQUES FOR HARD TIME WINDOSS

1. State-Space Relaxation Procedure

e e e wn I e R e i o

A dynamic programming model of the time-constrained
TSP has been developed by Christofides et al. [Ref. 5]. We
applied their approach to compute bounding intformatioan
within a branch and bound algorithm.

Consider the TSP defined on the graph G = {N,A} with
the time windcw constraints, where N 1is a set of all nodes
of G, and A is a set of arcs. Let R(j) be the set of nodes
from which it is possible to go directly to node j. We can
initially set R(J) = N - (i | 1; + éi + cg > q]}, because
it is impossitle to go directly from ncde i to node j if the
earlist possiltle arrival time at node j exceeds the upper

time window cf rode j.

.....
.................................

Let £(S,j) be the duration of the
starting at node 1 passing through every node of SE S'=N-(1)}

least time path

and finishing at node j. PFor a given S and j, we can calcu-

late a minimus arrival time in node j as

T(S,j) = min f£(s-j,i) ¢+ 4 + ¢]. (3.1
(5,3) ie(S*jnR&i){ J.1) i 13])
Then,
£(S,3) = T(S,J), if 1 < T(S,]) < uj
= 1. e 1f T%S,j) <1,
= o ,if T(S,§) > u
]
with the initialization:
£({3t.3) = c(1,3) o if 1 < c_ < ou,
.] 13 J
= 1 e if c1_ < 1,
= «? . 1f c ? > u?
13 J

In equation
" through the nodes in

(3.1) tke minimum arrival time in node j passing
the set S can be described as the sun
of three terms : the first is the duration of the least time
the pnodes in the set

path passing through S-{j} and ending

in node i, the second is the time required to spend in node

i, and the third is the travel time from node i to node j.
The f£(S,j) can be calculated for ail subsets S of S°

(3.1)

Finally, the optimum solution can be calculated as

and for all nodes j by using equation recursively.

g min f(s'yi) +d + c .
A sl £5%0 i i1]

Since the computer storage regquirements 1iucrease

o exponentially with the size of

the problem, this methcd is

‘limited to small problems. | he total pumber of f (S,j), when
n-

S contains k nodes, 1is k K) since £(S,j) mnust be calcu-

lated for all subsets S of S', and since each node in S nmust

T WAW LW Q“‘:v’

be considered as a possible end-node j. Therefore the
storage requirement for £(S, j) in a n node problem, is given
by [Ref. 21].

n-1 n-1 n-2
k (K) = (n-1) 2 . {(3.2)

The storage requirements to solve a 22 node problen
exceed 22,020,096. For relaxing this limitation,
Christofides et al. [Ref. 5] proposed a state space relax-
ation procedure which is analogous to Lagrangean relaxation
[Ref. 22] in integer prograamming. The state space associ-
ated with a given dynamic programming recursion is relaxed
in such a way that the solution to the relaxed recursion
provides a bound which could be embedded in a general branch
apd bound method [Kef. 23). We describe Christofides et alt's
method for doing this below.

Consider the dynamic programming forumulation (3.1)
The state wvariable in that formulatiomn is (S, J)., and the
stage is the cardinality of S. Llet g(S) be a mapping fron
the domain of (S,3J) to some other vector space (¢g{(S}),3j)-.
Let:

H(I(S)ed) = € (9(5-J),1) | 1 e (s-jJAR(I)) } (3. 3)

Since we are interested in lower bounds to the TSP
with time constraints, H(g(S),j) in (3.3) may be replaced by
any larger set that is easier to compute. Thus, H{3(S),3)
can be defined ky the following equaticn:

H(g(S).,3) = [(g(5-3),1) | 1 €E(g(S),.] } (3.4)
where (S-jN R(3)) < E(9(S),]).

Fcr calculating the lower bound of-the problem, egquation
(3.1) can be changed to the following equation:

TG (S).3J) ?(5 3) .1) ¢ ii tc 1 (3.9

((5- J) 1)€ H(g(é 1]

48

| St tah Nal A Nndl Bnd Sal SadtBad Sl BN I BMAC Sl S SN I AN AL EL RS AP A0 I AL SRR AN S O AR A A S M R MR S P i e R './"T
Y

= min [£(g(S-Jj),i) ¢+ d + c (3. 6)
i1 eE(9(S),])] i lJ]
This gives us:
£(g(S),N = T(g(S),3), if 1 £ T(9g(S),3J) < uj
= 1 . if Tlg(S),4) <1,
= o ., 1E T(3(S),d) > u -
J

With the initialization:

< < u

14 .
]1 J
u

£(g(3) .3

-
PR

Hh
A QO

J

173 J
13 J

Finally, the cptimum solution can be calculated as

_min [£(g(s"),i) +d +c 1.
LEE(g(N),) i i1

]

-

I

Hh
Qa a +

i
8
-
-
rh
v

The mapping can be selected frcm any separable func-
tion. Christofides et al. used the following mappirg
function.

g) = 1s4. (3.7

Then equation (3.6) becomes :

T(k,j) =, wmin [E£(k=1,i) + d + c__] (3.8)
i€ E(k,3) i ij
where k = (S} > 1.
This gives us:
f£(k,3) = T(k,3), if 1 < T(k,J) < v
=1, if Tik,9) <1,
J
With the initialization:
f(1,3) = ¢c(1,3) , if 1 < c <
. J 11 J
= 1, , 1if ¢ <
j . 13 j
= [~ +] ' 1f C .
13 J

49

..... .o

Y I, . o . \ - . .
" LA » o am L .. . A Y - - - - .- - B R) 3 R .) R PN
R, TR S A U e I N T .,) I P T I . ST A Y " o (LN

P i It CabC I R et it Sttt 0 S e i e G0 00" dutadint Jiet ad e Sdlianiia L Sa dot e et g v Bau han gen 4 Y R e wmr——w— oy reaper—y
L

Finally, the optimum solution can be calculated as

[£US'1,1) *di +c]

b . ain
{ ieE(INI,) i1

2. dditional Condition
In the previous secticn, we discussed Christofides

- et al.'s state space relaxation procedure which provides a
; lcwer bound on the TSP by reducing a stéte space in dynamic
;Z programminge. This lower bound is effective in branch and
bcund only if it is a tight bound. This is similar to the
case 1in integer programming where the effectiveness of
Lagrangean relaxation in producing bounds is relative to tae
integer programmsing formulation. A redundant state-space
ccndition can be helpful to get a better bound. For this
purpose, an additional condition was used by Christofides et
& al.e to avoid loops rformed by three ccnsecutive nodes [Ref.
{l 5)e This canr be done in the following way.

' Let k = |Sy. Let f(k,j,1) Le the duration of the
least time fpath from tne 1initiai state to state (k, J)
without loops formed by three consecutive nodes. Let
& f(k,j,2) be the duration of the second least time path from
‘ " the initial state to state (k,j) without loops formed by
k three consecutive nodes. Let p(k,j,m) be the predecessor of
;5 j on the path corresponding to f(k,j,m). With the aktove
definition, recursion (3.8) becomes:

" T(k,3,1) =, min [fx-tim v dec] (3.9)
ieE(k,] 1 1]

'y

- where m = 1, if p(k-1,1i,1)#j

2, cthervise.

f
xa
1]

X This gives us:

- £(k,3,1) = I(ksjsV, 1£1 < T(k,j,1) < u,_ (3.10)
[- =1 , if Tik,§.1) < 1

- b j

‘

) 50

19

A\~

[)

-
O

.‘

(R ate ani i pnet SN -l aras of & "t ac o b e gl Sl e I Sl A AR S linl Soliag Sl Mal Pl Bl b ok snikc sad i aab s ol gl eall cadons b il el el te b Sl Sall Ael el sl S el Al i)

= ® e if T(kej,1) > u. .
J
Recursion zfor £ (k,3J,2) can be written in the
fcllowing vay.
Let:
T(kejs2) = min S f(k-1,i,m) + 4 + c 1], (3.11)
i€eE(k,] i ij

i #p(k,3J,1)
where m = 1, if p(k-1,i,1)#j

2, ctherwvise.

This gives us:

f(KeGs 2) = T(kseJje2), if 1 < T(ks3,2) = u, (3-12)
= 1, ‘ if T%k,j,Z) <1,
= oo] ’ if T(k,j,Z) > UJ..
]
The initialization is
£(1,1,1) = c(1,1) e if 1 £ ¢ < u, (3.13)
. i 11 i
= 1, e 1f © . <1,
i 11 i
= e if ¢ > u,
11 i
and
£(1,i,2) = = (3.14)
Finally, the optimum sclution can be calculated as
gin £f{(1S*'1,i,1) + d + c - 3.15
i eE(lNl£1)(‘ e1e1) i i1] ()

Since the additional condition can avoid considera-
tion of a useful lower bound, we considered t(k-1,i,2) irc
recursion (3.9) and (3.11) only when the predecessor of i on
the path corresponding to f(k-1,i,1) 1is j. If we do not
consider the second least time path in case of p(k-1,1i, 1)=73,
then £ (g(S), j) dces not guarantee the lower bound of f£(S,j)-.

For this example, let's consider a 4 node TSP with
time constraints. Node A is the siarting node. D is the
time free node. The lower bound of ncde B is 9, the upper

bcund of node B is 11, the lovwer bourd of rode C is 19, ard

51

.',\.

- - N T et . . LT - t.at - ~ - . -t - -~ . Cw LT W .) W . - . ..\ S .
PRt AP APF. T WO ST WP S S WG WY VA WP G, W GNP U TRUL AP | PR PP W U R . W RN e “_AL-LA-_AAAAL‘_L“LJ

IR R M R e sl R B R Ml Nl B e AP A N AR LR G § S S Al SR G CAf Sl el Rall S A S s Sal Al Bnd: Sadl Bl Sndh/ Sk S dfid S it g |

the upper bound of node C is 21. Suppose service time at
each node is zero. Figure 3.7 shovws an optimal route for
this prcbien.

19
]

15

11

(@]

2 4 6 8 10 12 14 16 18

Figure 3.7 Optimal Route of Pour Nodes Problean.

From equation (3.13) we can get:
f(‘,B,‘) 10'

£(1.Cc,1)

[}
-t
(el

-

[}
~
[
o
~J

£f(1,D,1)

Now applying equation (3.9) recursively wvith i=1, for k=2 we

can get:

52

LA R AR | e e 5
L o - . ‘4 . 0 |i i .7 l. "
R Y e L LT .

-

Al |

S ta

VL)
5

Pl e Y S R N i MRS S " S P s A A Sl A S A A Aah Vel Sl Ml Al B A A i A e P S P SR e

£f(2,B,1) = .,

£(2,C, 1)

f,0,1) 17.07

Similarly, for k=3
f‘BIBl“)»:c'al
f(3,C,1) = e 4

£(3,0,1) == .

We can see e€asily that £f(3,D,1) 1is not a lower bound of
£({s8,C,L},D).

3. Brcanch and Bound Procedure

In this section we introduce branch and bound
enumeration which is used to eliminate subtours in the solu-
tion of the state space relaxation procedure. Since the
state space relaxation procedure is a relaxation of the TSP

with time ccomnstrairnts, the solution to the state space
relaxation prccedure grovides a lower bound on the optimal
value of the ISP with time constraints. Any heuristic sclu-
tion can provide an upper bound. WHe denote some notation to
explain this algcrithm as follows.

FLBD = The lower bound, which is the optimal solut-
icn to the state space relaxation procedure,
on the optimal solution to the TSP with
time constraints given restrictions at the
current node.

Z = Current upper bound. ’

STACK = Array which represent decision tree. It con-

tains arc lists which have the same head in
ortimal tour to the state space relaxatiou

53

L U St N - R . L

RS P S R AL L WY S N S S - AP R R I W L VO O U ST ST SN Y T Ty, SR S P ST UV T .. Y

procedure given restrictions at the current

node.
[c'] = Travel time matrix given restrictions at
lJ the current node.
There are two types <cf tree search. One 1is depth-
first search, the other is breadth-first search [Ref. 24].
We used depth-first search since breadth-first search
required substantially more storage. Depth-first search

simply means that when a separation is defined, one of the
selected to
the

recently created

nodes created by the separation is immediately

be the next sutproblem, and when a ncde is fathomed,

enumera tion always backtracks to the most

live node.
One of the most important requirements of any branch
The closer the bouands

and bound algorithm is tight bounds.

are to the optimal solution, the fewer nodes must be enumer-
ated. We used the SCCO

section B.2, as an initial upper bound.

beuristic, which was described in
The lower bound is
obtained from equation (3.15).

To save computing time we need a criterion to decide
If FLBD

then the node is fathomed since explicit

whether or not the branching should be coantinued.

is greater than Z,

enumeration n€eed not be extended belcw the current node.

For branching we consider the arcs which have the same head

node in the directed graph since each arc must have a
different head in the TSP scolution. If there is no such
arc, then that solution is a feasible solution. After all

nodes of the tree are fathomed, a feasible solution whica

has the same value as the upper bound is an exact solution
to the ISP with time window ccnstraints.
The fcllowing branch and bourd algorithm is used in

the programs written for exact solution.

S4

o v . R . - - '.- - R '. K “~ . C e IR -« " " - Ca <. . -~ » .
IR AT A . P L .. B B PR Y. SN O U Y T N T Y O A . SR P . YT . T, . U T

Fo¥ e VoW, WRd N W T TN

Algorithm : Branch and Bound Procedure

Input : Total travel time of heuristic, travel tine.
Cutput: Ordered list of tour, total travel tinme.

Step 1 . (Initialization)
let Z = the optimal solution of SCCO.
STACK = empty.
[c'.]=0¢c, 1 :

Step 2 . Compt%e FLBDlgiven restrictions defined by
[c* J. If FLBD > 2, go to step 5.

Step 3 . (Coﬁgtruct the tree)
Put all arc(i,j) which have the same head j
in directed graph om STACK.
If there is no such arc, save feasible route
and update Z = FLBD then go to step 5.

Step 4 . Let travel time of arc(i,j) which is in the

top of STACK ke infinite, then go to step 2.
(i.eo' C?. =w.) |
1g ‘

Step 5 . (Backtrack) :
If STACK = empty, go tc step 7.

Step 6 . If travel time of arc(i,j) which is in the
top of STACK is finite, let travel time of
that arc(i, j) be infimite, then go to
step 2. (i.e., c' =e= .)

i
Otherwise, let trgvel time of that arc (i, j)
be original travel time of that arc(i,j) and
remove thnat arc(i,j) from top of the STACK.
Go to step 5. (i.e., ¢c' =c)
. . ij ij

Step 7 . (termimpation) .

If there 1is a feasible route, then the

optimal travel time = Z. .

Otherwise, there is no feasible solution.

End of alqgoritham Branch and Bound Procedure

55

*Bialas, W TN TS O T S TN S AN T T A A T T T TR AR TN T RTRTR TR P07 o e Ta T T T e T e T W e e T e

j‘ We present the results of our computational experi-
ot ence with the algorithms of this Chapter in Chapter V.

{
-
.
|
g
W
Ve .
!
O
« .-
.
o,
~.
. -
-,
e
.-
pl

LMt iAnt i ai Aas e fas tadenden A -4 o
1 Tt -V . . L . b ket g ' o
R -‘,-L-‘.."\'...\JQx"-‘ PSS P A B it i s ane

IV. THE ISP WITH SOFT TIME WINDOE CONSTRAINTS

A. INTEODUCTION

The second time-constrainted TSP vwe consider is the case
in which both late and early arrivals are allowed by paying
a penalty cost. The penalties are allowed to be different
for early and late arrivals. The penalty cost is calculated
as follcws.

Opper pebnalty cost max [0, ugper penalty constant

x (arrival time - upper bound)].

1]

Lower penalty cost max { 0, 1lower penalty constant

x { lover bound -~ arrival time)].

In fact, the upper penalty constant is greater than the
lower penalty constant in most cases. Figure 4.1 may be
helpful to understand this case.

This apprcach makes every problem feasible, no matter
what the time windows are, i.e, even if it is infeasible in

the hard time window case. This reflects a practical fpoint
of view, especially when it is possible to save a Jgreat deal
of mileage by allowing a small amount of time window
violaticn.

In this Chafgter, we considered one unit of cost to be
the same as obe unit of time. In real world probleams, it is
possible to g€t a cost by multiplying traveling time by some
constant.

We use the notation 1lp and up for the lower ana
urper penalty cost at node k. -k

i P S

TR T B e A

loue{t
pena
{=--= cost Y

A",

|

—— - —-x————-.--— -

early lower upper '
arrival bound bound arrival
== ->i time window }(--- —_—
for city i {

Pigure 4.1 Diagram for Soft Time Window Case.

B. HEURISTIC SOLUTION TECHNIQOES FOR SOFT TIME WINDOSES

1. Nearest Neighbor

This heuristic is similar to the hard time windows
except it takes into account any penalty cost that might be

necessary.

Algoritham : Nearest Neighbor

Ipput : Number of nodes, x and y co-ordinates of all
nodes, time windows for all nodes.

Output Ordered list cf tour, tctal cost.

Step 1 . (Initialization)
Start at the depot.
Let i=depot, N*' = (i}, cost = 0.
i

Step 2 . Compute ARRVT for all-pnodes k € N-N!

ARRVT = ARRVT + 4 + c_ .
k i i ik

cost =cost, ¢+d + c .
k i 1 1k

58

k.\‘_‘:."_'{ :~‘_.’_-:."-'. u

T T o o e i iece Sanen i ase sait dhateostiant dark anot ghat dhait e ol liad heft el Mt ARl Sl A i St halk Bl YAk YA " A NP A S AR B P A S R R |

Step 3 . If ARRVIT < 1 , then cost = cost + 1lp .
k X k k k

If ABRVT > u , then cost = cost ¢+ up .
k k k k k

Step 4 . (Nearest Neighbor Selection)
Select the node k € N-N' such that cost
is a minimum. I.e. , find k
k = argmin costj s.t. j € N-N'.

Step 5 . (Insertion)
Iusert k after i, add k to subtour N', and
let i k .

Step 6 . If N! N , then go to next step.
Otherwise, go to step 2.

Step 7 . Compute total cost, then stop.

Total cost = ccst + 4 + ¢ .
k k k,depot

¢

End of algoritha Rearest Neighbor
This solution was constructed by starting at the
depot and moving to the nearest neighboring customer that
has not yet been visited. The term “nearest" is modified in 1
the sense tnat we add a penalty cost to the +travel time if
the time windcw for city 1 is violated.

2. SCCO

This algorithm is also designed for the case when
there is a comtination of tight time window nodes and time

free nodes. The strict observance of the upper bound in the
hard time windows is replaced by a penalty cost.

Algoritha : SCcCoO

Input : Number of nodes, x and y co-ordinates of a.il

—p—y PP
L. s]

nodes, time windows for all nodes.
Output : Crdered list of tour, total cost.

Step 1 . (Initialization)

59

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Start at the depot.

Let i=depot, N* = (i}, cost = 0.
i

. Set k = argmin u s.t. jEN-N'.
If k is time free gode, then set k = depot.

- Insert node kK in the subtour Nt'.
Compute ARRVT
ARRVT = ABRRVT ¢+ 4+ c .
k i i ik
- Insert time free node j € N-N' between nodes

i and k by cheapest insertion and cheapest

selection (same as CCCC) until ARRVT does
K

not exceed u .
k
- Ordate cost "
cost = cost + d + c .
k i i ik
If ARRVT < 1 , then cost = cost + lp .
k x k k k

If ARRVT > u , ther cost = cost + up .
k k k k k

. let 1 k.
If N* = N, then go to next step.
Otherwise, go to step 2.

- Apply the Modified Oropt procedure to the
current tour, Stop when no further iamprove-
ments can be fcund.

End of algorithm SCCO

This

selection,

TSP,

except

procedure 1is also similar to the cheapest
cheapest inserticn method fcr the unconstrained
that the nodes with time windows are treated

differently from the time free nodes. The nodes with time

60

r'“"l'\"'("iﬂ‘r-"X v

-
2 4
5

-

AR BAE o/ i av G ad 4 v - - A MU R ML A e i e i o e Mt i Al

are inserted in
The time

Ly cheapest

windows
window bounds. free nodes
those nodes
for as 1long as the upper bound of the time
allow.

In the end,
sclution.
a node

would result in

nodes in the current tour.

order of increasing

being inserted bpetween two

" ol dla e gial el Ahe® aat aiiRat it S IRt S el S

upper time

are inserted Dbetveen
selection and cheapest insertion,

windows will

a Modified Oropt is used to improve the
This procedure consider only those exchanges that

other

3. SCAQ
This algorithm is also designed for the time window
set which 1is composed of some tight time windows

tine free nodes.

and some

Algorithm : SCAO
Input : Number of nodes, x and y co-ordinates of all
nodes, time windows for all nodes.
Output : Crdered list of tour, total cost.
Step 1 . (Initialization)
Start at the depot.
Let i=depot, N' = {i}, cost = 0.
i
Step 2. Set k = argmin u S.t. jE€N-N',
J
If k is time free node, set k = defpot.
Step 3 . Insert node k in the subtour N°'.
Ccmpute ARRVTk
AKRVT = ARRVT +d + c .
k i i ik
Step 4 . Insert time free node j € N—-N' between nodes

i and k by

angle (same as CCAO)

cxceed

u Ll
k

cheapest insertion and

greatest

until ARRVdeoes not

AN

PRl bR R

Step 5 . Update cost K C

P 7

cost = cost ¢+ 4 + c .
k i i ik

-2 If ARRVT <1 , then cost = cost + 1lp .
k k k k k

If ARRVT > u , then cost = cost + up .
k k k k k

k.

Step 6 . let i .
N, then go to next stop.

- If N
-l Otherwise, go to step 2.

- Step 7 . Apply the Modified-Oropt procedure to the
current tour. Stop when no further improve-
ments can be fcund.

End of algorithas SCAO

This algorithm is same as SCCO except a dgreatest
angle selection in stead of a cheapest selection in SCCGC.

C. EXACT SOLUTION TECHNIQUES FOR SOFY TIME BINDOSS

1. tate-Space Relaxaticp Procedure

In this section we describe a state space relaxation
procedure, which is adapted from Christofides et al. [Rei.
5), ftor soft time windows. They only ccnsidered the TSP with
hard time windows and without time windows. The difrerences
- are as follows. Tne waiting cost is replaced by a penalty
,3' cost to be paid in the early arrival case. Late arrival is
allowed, but a penalty cost has to be paid. So we have to
- calculate the duration and the penalty cost on each possible
:f path to decide the least cost path in each stage. F%e denote
the penaity ccst on each possible path as PC inm this
1 section.

. Consider the TSP defined on the graph G = (N,A} witn
scft tige window constraints. Let S* be a set of all nodes
except starting node. Let S ke a subset of S°'. Let £ (S.3)

62

RO

o g WX
PAPLA

be the cost of the least cost path starting at node 1
passing through every node of S and finishing at node j.
Let T(S,j) be the total duration of a path corresponding to
£(,3). Let p(S,j) be the fredecessor of j on the path
ccrresponding tc £ (S, Jj). Let 1lp(t) be the <early arrival
penalty cost function and up(t) be the late arrival penalty
cost function. For a given S and j, total duration of a
path can be calculated as

T(5,3) = [T(s-3,i) ¢ 4 +c I ' (4.1

ij

where p (S, J) i.

In equation (4.1 total duration of the least cost fpath
passing through the nodes in the set S and ending in node j
can be described as the sum of three terms: the first is
total Quration of the least cost path passing through the
nodes in the set S-{j} and ending in node i, the second is
the time required to spend in node i, and the third is tre
travel time frcm node i to node j. The dynamic prograaming
recursion to aetermine the least cost path may them be
stated as)

¢ PC] (4= 2)

£(s,3) = min [£(S-j,1i) ¢+ d + c
. 1€8-3 1 13

where T1 [I(S-J,i) +d_ + c I
i ij
PC = 0 s if 1 <T1 <
lp@ad -T1) , gf T1
up(T?-u.) s fE T1 > u

with the initializgtion:

[}
1.

£({i}sd) = ¢, , if 1 < c_ < u
1j J 13 J

=c¢c_ +¢1p{(l -c_) , 1f ¢ <1

1 i 13 . 1) b

=c¢c_ t+tup(c_, -u) , if c ~ > u’

13 13 3 - 13 J

Finally, the optimum solution can be calculated as

ain f(s*',i) +d + c _ I
1es 0 1D i i1)

63

. -“.\ W

B ~ S . . e e, R . e . .. PR N T N Y Ve
A W I U W W N Wy VE ey PRI R L WOIE SRS (PR AR AP W WP YR Sy RO | PN W WL TPEL WAL PG TP WD WV U WP U, WU Sy

P ‘.llj

Since the computer storage requirenments are
increased exrcnentially with the size of the problem, this

~method is limited to small rroblenms. For relaxing this
limitation, a state space relaxation procedure can be used
same as Chapter II1I.

Consider the dynamic programming formulation {4.2)
The state variable in that formulaticn is (S,J)., and the
stage is the cardinality of S. Let g(S) be a mapping from
the domain of (S,j) to some other vector space (g(S),J).
Let:

d(g(S),3) = { (g(5-W,1i) | 1€5-7} (4.3)

Since we are interested in lower bounds to the TSP
with time constraints, H(g(S),Jj) in (4.3) may be replaced by
any larger set that is easier to compute. Thus, H(g9(S).3J)
can be defined Lty the following equation:

H(g(S) »«J) = { (9(S-J)si) | i € E(9(S),]) } (4-4)

where S-j€ E(9(S),])-

For calculating the 1lower bound of the problem, recursion
(4. 1) can be changed to the following equation:
T(I(S),3) =[T(g(S-J),i) +d, + c] (4.5)
_ i ij
where ©E(9(S).,3) = i.

Recursion (4.2) may be stated as

£(3(s),Jj) = (S-3) (i) + d + c ¢ PC (4. 6)
'((S-J).l)e G475 ij]
{(£(a(s-7), 1)+d+c + PC (4.7
T e g5 ij])
where T1 = [T(g(S-j).,i) +d +c],
i ij
EC =0 , if 1 <T1 <u .
J J

1}

lpd -71) , 1if T1 <1
up(T?-u_) s if T1 >
]

64

" with the initialization:

£((3),3) = c__ o if 1 < ¢ S u
13 ? .13 J

=c¢c + 1lp(l -c_ . e 1f ¢ "< 1.

13 13 . 13 j

=¢ +up{(c, =-u)) , if c_ ~ > u

13 1 J 13 J

Finally, the cptimum solution can be calculated as

£(g(s'),i) + di +c]

min
iEE(g(N)J; i1

The mapring can be selected frcm any separable func-
tion. W€ used a mapping function (3.7), which is proposed by
Christofides et al., same as Chapter I1I. Then equation
(4. 5) becomes:

TOSt,3) =[THSI-1,1) ¢ di tc.] {4.8)

1j
where FE(IS|.,J) =1

Kecursicn (4.7) may be stated as:

£f(1St1,3) =, min f@sl-1,1)+ 4+ ¢+ PC 4.9
i,3) i.eE(tS&,%f 1) N i3] ()
where T1 = [T(|S|-1,i) +d +c],
1 ij
PC =0 e if 1 <£T1 < u,
=l -T1) , gf T1 < l?
= up(T?-u_) e if T1 > J
with the initializgtion:
£f(1,3) = c_. e if 1 < c . 2 u.
13 J 13 J
=c¢c . +1lp(l-c_) , 1f ¢ <1
1 T
=c¢c_ +aup(c. -u) , if c > u’
13 13 3 13 J

Finally, the optimum solution can be calculated as

oirn £{1s'y|,i + d +-C -
i.EE(lN|,1)[(1s%1.1) i i1]

65

.................

iaAdiat et At et tied Aok Gl fhde St deie daii g dnd S 4wl v v ai s |

2. Additional Condition

In the previous secticn, we discussed a state sgace
relaxation prccedure +which is adapted from <Christofides et
al.[Ref. 51]. That procedure provides a lower bound on tae
TSP with soft time window constraints. The additional
conditicn to avoid 1loops formed by three consecutive nodes

‘was used to get a better bound [Ref. 5]. This can be done

in the following way.

Let k = {S|. Let £(k,j,1) be the cost of tne least
ccst path frcm the initial state to state (k,3j) without
loops formed ky three consecutive nodes. Let f(k,j,2) be
the cost of the second least cost path from the initial
state tc state (k,j) without loops formed by three consecu-
tive nodes. Let p(k,j,m be the predecessor of j on the
path corresponding to f£{k,j,m). With the above definition,

equation (4.8) Lecomes:

Tkejoen®) = [T(k-1,i,m) + d.* Cc. .], a*'=1,2 (4.10)
i ij

where ©[p(k,j.n') = 1

1, 1f p(k-1,1,1) #7

2 , otherwvise.

With the initialization:
T(1,3,1) = ¢

17
and
T(1,5,2) = = .
Recursicn for f(k,j.1) can ke calculated in the follcwing
way. Let: -

T*(kej,m) = [T(k=-1,i,m) + 4 ¢+ c], m=1,2
i ij

This gives us:

AR S M e i W B S A AN RS AR (".J‘.-r-“t AR AN N
SRS N, e T S taT

..
...................................

£ (k,j,1) = min _Ef(k-%,i,m) +d +c + PBC] (4.11)
i€ E¢k,] 1 1]
0 ¢ if 1 =<T'(k,j,m) < u,
led -T%(k,jom)), if T'(k,j.mf <1,
u

ap (¥ (k,j,m)~u), if T° (k. jom >
J

where PC

=1, 1if p(k-1,1,1) #]
2 , othervise.

With the initialization:

f(lgi,1) = c . if 1 < ¢ . £ 4. (4.12)
1i 1 1i i
=c_ . +1lp(d . -c_.) . c,. =1
11 i 1i . 11 i
=c tup(c_-u) , 1f c__ > u,
11 11 i 11 i

Recursion for f (k,j,2) can be written in the following way:

f(keyj,2) = min _gf(k—1,i,m) +d +c + 2C] (4.13)
1 EE(k,] 1 13
1#p(k, 3. 1)
where PC = 0 e if 1 < T"(kejrm) < u

lp(l ~T*(k,3om)), if T*(k,j,m) < 1
uptTJ(k.j.m)-u,). if T*(k,j,m) > u
J

1 , if p(k=1,1,1) #3j

2 , otherwise.

With the initialization:
£(1,1i,2) = oo (4.14)
Finally, the optimum solution can be calculated as

ieg%?'ulgg¢|5'l.i,1) + di + 1 J. (4.15)
Since the additional condition «can avoid considera-
tion of a useful lower bound, we considered f(k-1,i,2) in
recursion (4.11) and (4.13) only when the predecessor of i
on the path ccrresponding to f(k-1,1;1) is j. If we do not
consider the second least cost path in case of p(k-1,i,1)=7,
then £(g(S),3j) does not guarantee the lower bound of f(S,j)

67

T S N T T . L. T TN T O Y T T T O T T T T T e N T e e e at o P U R UL U |

For this example, let's consider 4 node TSP with
time constraints. Node A is the starting node. D is the
time free node. The lower bound of node B is 9, the upper
tound of node B is 11, the lower bound of node C is 19, and
the upper bourd of node C is 21. Suppose service time at
each node is zero, 1lp(t)=t, and up(t)=5t. Figure 3.7 shows
an optimal route for this prcblem. Frcm equation (4.10) and
(4. 12) we can get:

£1,8,1) = 10, T(1,8,1) = 10, p(1,B,1) = A;
£(,c,1) =19, T(1,Cc,1) = 14.14, p(1,C, 1) = A;
£(1,0,1) = 7.07, T(1,D,1) = 7.07, p(1,D,1) = A.

Ncw applying egquation (4.10) and (4. 11) recursively with
i=1, for k=2 we can get:

£(2,8,1) =imé?CED?4°7' 29.84] = 29.84,
T(2,B,1) = 14,14, p(2,B,1) = D.
Similarly,
£(2,C, 1) 19, T(2,C,1) = 14.14, p(2,C,1) = D;
£(2,D,1) 17.07, T(<,D,1) = 17.07, p(2,D,1) = B.

Fer k = 3,

£{3,B,1) = min E 94.7] = 9%4.7,
ieg({C

T(3,B,1) = 24.14, p(3,B,1) C.

Similarly,
£3,C,1) 39.84, T(3,C,1) = 24.1%, p(3,C,1) = D;
£(3,D,1) =00,

We can see easily that £(3,D,1) 1is not a lower bound of
£({B,CyL},D)e

hod D hl T T T g LA Al * A0l il /U SR el Rt AR S L T S
o A S AR BV & -l i el g g AR ahd et LR i * S~ v S S atet Ll - - . A, ~ a ¥ a
0

3. Branch and Bound Procedure

We used the same bramch and bound procedure used to
eliminate subtours in the solution of the state space relax-
ation procedure in Chapter III.C. 3. The SCCO heuristic,
which was descrited in section B.2, was used as amn initial
upper bcund, and the lower bound was obtained from equation
(4-15).

We present the results of our computatiopal experi-
ence with the algorithms of this Chapter in the npext
Chapter.

69

1 T.l".

V. COMPUTATIORAL EXPERIENCE

A. TESI PROBLEAS

Four sets of test data are used in this thesis. Test
problem number { 1] is taken from Sedgewick [Ref.19: p.309].
The other proklems, numbered [2], 3] and [4], are fronm
Appendix 9.1 cf Eilon et al. 's text [Ref. 21]. These test
problems are shown in Appendices A,B,C respectively. These
published prctlems contain node and depot locations, but
they do not include time windcws.

We constructed time windows for test problems
(1),[2).,{3] by first using the CCAO heuristic on the uncon-
strained TSP. 1Time windows were then placed about each node
such that the CCAO route was feasible. The idea for gener-
ating time windows in this way comes from Baker [Ref. 25],
who used the unconstrained Nearest Neighbor heuristic as his
starting point instead of CCAC.

The time window widths were set to varying sizes ranging
from 3 to 14. Scme of the time windcws were rairly tight
while others overlapped. This 1is in contrast to Baker's
work, where all the time windcws have width equal 2 units.

The last fproblem number [4] is the same as test protlea
[3], except that the time windows were constructed fronm a
Nearest Neighbor solution tc¢ the unconstrained traveling
salesman problem, as in Baker [Eef. 25]. Figure 5.1
displays the CCAO solution for test problem (3] and Figure
5.2 illustrates the unconstrained Nearest Neighbor solution
tor the test groblem [4]. We found a small error in Baker's
TSP solution for the Nearest Neighboi {Ret. 25], in that the
nearest node froa node 16 is node 17, not node 13. Tkhke

resulting cost is actualiy higher, it is 312.09, not 310.22.

70

r‘wjﬁw'-~-v-"vﬂ-'rw‘v‘g'v‘—vw.—""'_"v‘v.—'v_"-"“:'“':rw"_""V‘r"-_ A M N AT S T W I RN TN ANE T AT S RS R T T T e T e e

(=]
5 J
4V
o
@..
N
o n
) -
N
(=]}
v.—
N 9
g- llc
a
~ o
N_
a2
13
(=)
a 15
(=}
O -
N
18
S 19 |
S 21 20
- { S | I 1 : T | 1
100 110 120 130 140 150 160 170 180 190
X

Pigure 5.1 Unconstrained Solution Obtained by CCA0.

Each of the four sets of test data was used to create
four test protlems. The separate instances differed in the
percentages of time window constraints that were chosen to
be in effect. The four cases were 100%, 90%, 75%, and 50%.
We refer to this percentage as the "time-window percentage".

A random pumber generator was used to decide which nodes

would have time windows. Test problems for the time window
ccostrained TSP are shown in Appendices G through V. The
M

------ Tyt
SR S A

...........

VT T e e TS
D A Y ar

R . . . oo R
ot et P S B D R I AR R T e . R
B . L} ATV - - - - - - - - . Ll - - - - - . . . - L) 3 - - - N -
T L e RCTEN . R RS PRI T
PR YA VA VAR, I 3% SRV IR TN SAWIRY.PS W SO SV EE RIS WS S SR B

o 2 o

:‘_'\.‘\"i'\"- T W T T e T et et R bl DAV Y N s i 2 i S G ~aeai- et Ale WMALE AL S G I Al Ml St Ba ol il B0 Bt B R A e

o
~
a
o
© |
N I
Q
D —
o
o
*—.
M)
11
S a
a
>~ o
N—
N
=)
-t —]
N
=]
S {
aN
=)
2—1
= 20
- | T T T T w T T
100 110 120 130 140 150 160 170 180 190
X

FPigure £.2 Unconstrainped Solution Obtained by
Nearest Neighlror Heuristic.

fenalty cost factors can be varied depending on real world
problems. we used 2 and 5 as the lower and upper penalty
cost factor. Also we set the service time at each node to 0

to make it easy to construct the time windows.

The computational results are presented in Tables II and
II1I. The figures reported represent results of our test

lf"‘l‘,

LR RN

TR
.

runs for each test case.

72

P S e e e P =

S . .\

R I S T TP I N - PRI R . v [N WA W
. I D LA L AR R ERTT KRS e T e e et P . T et - P R A LU IR LI R N Y
Sp LS e sy S e P IS PRSI A S TR (& ORI RTOPUR SRR Ty kI T OIS U, W VPR AT Y. JPU U W UPRL YW, ¥

S S St e e s A

(AT

el

. 'y
o af
2

N B A28 00 S Thattua A g A kg il ‘Rt iy Sk el Sad Mhab - flaf S

B. COMPUTATIONAL BRESULTS
1. Hard Iinme Windows
As opcted in section 3, the Nearest Neighbor
heuristic often cannot solve the problen, because the
arrival time of the npearest node frequently violates the

upper bound. However in test problem [4], the results of

the Nearest Neighbor are the same as in the uncoastrained

fFroblem, because this problem itself was constructed Ly a
Nearest Neighlor heuristic.
the SCCO and SCAO heuristic can be easily

window TSP.

Generally,

applied to the hard time According to our
experiments, if the time window width becomes large reiative
to the travel

strained TSP route,

time between nodes on the optimal uncon-

then the lower percentage time window
problems become more difficult to satisfy. This paenomenor
can be seen in test problem [1]. That is because the other
nodes in the cptimal route for the unconstrained TSP problea
cculd be

tound.

inserted without causing viclation of the upper

The SIACK heuristic takes
the other heuristics. It achieved lcwer accuracy
and [3] in the 50

The exact algorithm can find the

slightly more time than

in test

Frooliems {1] percent time window case.

exact answer in most frob-

lems, Lut when there are fewer windows in effect, it takes

mcre computation time. It cannot solve the 50 percent time

window probless [2] and (4] within 180 seconds.

73

I SRR N
S, e, -« et
.

. AP ., FIARIA
APy ST T ST N PR WE. DU W

. e T
PR TP

Py
BRI

1 P

YT
TN T

P .‘_J_J_f P

a

1“1».4. A, A

+ L

¥ N
PR R R

i

[P v

TABLE IIX
COMPUTATIONAL RESULTIS OF THE HARD TIME NIMNDOWNS

Exact

SLACK

SCCG SCAD

Nearest
Neighbor

Numker Time
of Windows
in
Etffect cost CPU

ncdes

Prok lem

CPU

CPU cost

cost CPU cost

cost CPU

TN
Ll

WOO\O
T —

{1

~oumn

Qe=m
s "m

mmnm
oo

.0

NN
NN N

{2}

278.44 .017

21
19
15
11

NI
ONENC

22
22

{31

INININIA
NN

{41

74

* CPU times in seconds on IBM 3033.

|

T T T T A N e e e T T e N T T M T N T N T W T T T R T RV EN T AT T T LR RR LT LT LRI LOMLW LN L e L e e N T e e e e N T e T e e T

2. Soft Time HWindovs

—

All of the methods tested for soft time windows were
able to find some answer to every proklem within reasonable
computing tinme, except for two instances with the exact
algorithm. Witn the Nearest Neighbor heuristic, the guality
of solution is not desirable. In general, the lower time
window percentage problems have 1lower solution quality. Aas
in the hard windcw case, on test problem [4#], the results of
the Nearest Neighbor heuristic coincide with the uncon-
strained TSP heuristic, tecause this problem itself was
ccnstructed by a Nearest Neighbor.

As in the hard time window fprcblem, SCCO and SCAQ
generally find an optimal solution except for one problen
with 50 percent time windows. In test problem {1] with 50
percent time windows, the SCCO and SCAQ values were 215.686,
165.544 respectively. The exact algorithm could not solve
the twvo test problems with 50 percent time windows within
180 seconds. The reason is that the solutions of the state
space relaxations have many subtours and it takes a long
time to eliminate these subtours.

With koth hard and soft time windouws, the results
are sensitive tc tke percentage, width and position of the
time windows. In most problens, the fevwer time windows

there are, the lower the accuracy of the heuristics.

75

e o A Y ~
i ~

et o T T S o [
o 8

o o e AN L e T s A e e PR DR
. . . QIR Y - - - R RN I . PR .
P S S —— TII F N N R A TR A TP . S Sl VA A SRV VIR G UL T TURE WY 1Y R 0

TABLE II11
COBPUTATIORAL RESULYS OF THE SOQFT TIME WIMNDOWS

Exact

SCAQ

SCCo

cost

Nearest
Neighbor

Numker 1ime

of Windows

ncdes in
Effect

Problem

cost cpuU

CPU

cost

CPU

- — e . ——— ——— T ————— — —— -

cost CPU

MOWVO
VPO
QOO0

()

FFry
OOO0O
0 O0\Q
0 00
OO\0Q
909

[pd S L]
—QwN
[l-lole]

T ® p @

I
OO »
el elV-1Tg)

(1

NONANN
ONUNONUN

{2}

QOOMN
NONMO
=N .
LI B L

)
Mmmem
Ty
* 0 9 0
WODD
T
NN

O~
QeeQ
QOO
L I T

i e
mmmm
e rEEs
* 9 08
O PO
Il
NN

SO~
O NO
DOOO
9 0 ¢

ST o
mmMmen
T
| N B I]
ROD®
SIS PSP
NN

e
~QON
QOO

Oy
alTn 3 dad
FONMP
ey
[eols £ 4]
[ttt}
NOO =

e

Lt YVel 4
(Ne= = e

NNy
ONONENEN

31

oMee
W
Laahande e
LN 1Vs]

[=al>a ki
DN |
oom
[
NON®©
Ll d =
mmm

QM-
NN ™
[=lelele]
" g0

Y™
VON®
QOMO
” 9 ¢ 0
ANONO N
Ll d =1 o

MM

O~
QN =
QOO
¢ g 0

PO
O ON®
QOMO
)
NONDO N
O
Mmoo,

MO0
-\
[wielo]e]
[B

[eadalealea)
[salseleelo]
QOO0
e 0 0 0
NN
-
mmmm

-—QynHe
2 had ek

ININININ
ONONONEN

{41

76

* CPU times in seconds on IBM 3033.

LS AR I B ER R AL A S %A AL S 00 I AL AEA SAuE RIS S0 AR ACRACMLE st abiut i aliCalCNC b C ol %l o AP LA SR A= i o T A

V1. COBCLUSIONS AND RECOMMENDATIONS

This thesis has presented some heuristics and exact
algorithms for the solution <c¢f traveling salesman problen

with time windcw constraints. We considered two different
kinds of time window constraints : hard time windows and
soft time windows. Hard time windows are inviolable,

whereas soft windows may be violated at a cost.

For both hard time windows and soft time windovws, ve
developed some new heuristics, SCCC and SCAO, which are
modifications of Stewvart's unconstrained TSP heuristics
[Ref. 6] CCCO and CCAO. Also for the hard time window only,
we developed the SLACK heuristic. We also developed an
exact algoritbm for both hard and soft window using state
space relaxation dynamic programming and branch and bound as
proposed by Christofides et al. [Ref. S5].

The procedures vere shown to be effective on some moder-
ately small <sized problens. A Nearest Neighbor heuristic
was also developed, but it was often unable to solve the
problem with hard time windows, and it found very 1low
quaiity solutions with soft time windowvs. Tnis exper ience
is consistent with tne findings of cthers [Ref. 7] vwho
determined that the Nearest Neighbor heuristic does not
perform well cn the unconstrained TSP.

The SCCO and SCAQ are generally effective cn most of the
spmall sized probleas vwe tested, except for the problems in
which less than half the nodes have time windows. Further
research is npeeded in order to satisfactorily solve these
problems. Ancther probleam difficulty that may reguire more
research is dealing with wider time wipdows.

The SLACK heuristic which is wused only with hard time
windows 1is slightly slower than the otuer heuristics.

77

DAY JARPLER® ahg Uit s~ Al Y o A® AR U e Sl " A A T i ™ o AR e LR p il i i i e il s o i e e S M e da v e atae

Particularly, in the lower time window percentage problems,
the accuracy Lecomes lower.

The exact algoritham succeeded in solving 14 of the 16
test problems to optimality, but it was too slow to use in
most of the lower time window percentage problems. This
algorithm's perfcrmance also depends upon the gquality of the
ugper bound which is obtained from the heuristic.
Additional research is needed to reduce computation tinme,
but a working program for at least some problems has
resulted from this effort.

PR

=T

-1

78

e, e v v

I 2t |
.] A

- -
d
o
a

APPERDIX A

TEST PROBLEN [1]

problea source

node X y | node X
1 3 9 { 11 10
p3 " 1 | 12 16
3 6 8 | 13 15
4 4 3 [14 13
6 8 11 | 16 12
7 6 4 [

8 7 4 |
9 9 7 M
10 1% 5]

Depot cc-ordinates : (12,10)

Sedgewick [Ref.

79

19]

y

13
14

16
10

APPENDIX B
TEST PROBLEM [2]

| node b4 Y { node b'e Y

| 1 295 272 { 12 267 242
l 2 301 258 | 13 259 265
| 3 309 260 { 14 315 233
i 4 z17 274 | 15 329 252
| 5 218 2617 | 16 318 252
| 6 282 267 | 17 329 224
| 7 242 249 | 18 2617 213
| 8 230 262 { 19 275 192
| 9 249 268 | 20 303 201
i 10 256 2617 i 21 208 217
i 11 265 257 | 22 326 181

Depot co-ordinates : (326,181)
problem source : Eilon et al. [Ref. 21]

80

APPENDIX C
TEST PROBLEN [3]

P - - ——— e - - -

{ node X y i node X y

{ 1 151 264 { 12 156 217
{ 2 159 261 | 13 129 214
1 3 130 254 (14 146 .208
| 4 128 252] 15 164 208
{ 5 163 247 | 16 141 206
] 6 146 246 | 17 147 193
| 7 161 242 | 18 164 193
| 8 142 239 | 16 129 189
{ 9 163 236 i 20 155 185
| 10 148 232 { 2 139 182
i1 128 231 { 22 145 215

Depot co-ordinates : (145,215)
problem source : Eilon et al. [Ref. 21].

81

" e e) e e . S T, e . PR o
WU W S WY W LR S W U S LIRS PP PUES UL YO GO W S VPO W e

PR R
.......

APPENDIX D
TEST PROBLEN [5]

{ node x ¥y

37 52
49 49
52 o4
20 26
40 30
21 47
17 63
31 6z
52 33
51 21
42 41
31 32
5 25

D N O N E W -

Depot co-ordinates : (30,40)

problem source : Eilon et al. [Ref .21].

A dha et .

........

APPEEDIX E
TEST PROBLEN [6]

| node x vy | node x vy | node x y | node x Yy |

- - - o — —— - ——— i — — —— — ——

1 22 22	20 66 14	39 3060	58 40 60
2 36 26 4 21 44 13	40 3050	59 70 64	
3 21 45	22 26 13	41 1217	60 64 4
4 45 35	23 11 28	42 151	61 36 6
] 5 S5 20	24 7 43	43 16 19	62 30 20
] 6 33 38	25 17 64	44 2148	63 20 30
7 S0 S0	26 41 46	45 5C 30	64 15 5
! 8 55 45	27 55 34	46 5142	65 S0 70
! 9 26 59	26 35 16	47 S5C 15	66 57 72
§ 10 40 66	25 52 26	48 48 21	67 45 42
11 55 65	30 43 26	49 1238	68 38 33
{12 35 51	31 31 76	50 1556	63 50 4
13 €2 35	32 22 53	51 2939	70 66 8
[14 62 57 | 33 26 29 | 52 5438 ¢ 71 59 5 |
- | 15 €2 34 | 34 50 40 | 53 5557 | 72 35 60 |
- {16 21 36 { 35 55 50 { 54 67 41 | 73 27 24 |
- | 17 33 44 f 36 54 10 § 55 1070 | 74 40 20 |
ig 118 9 56 | 37 60 15 | 56 625 | 75 406 37 |
i; | 19 €2 48 | 38 47 66 | 57 65 27 | |
t:: ——— e e ———
%
3 Depot co-ordimnates : (40,40)

probles source : Eilom et al.-[BRef .21].

», o v M SMUNW TN LT el L Tw T e e W -
X
e
(-
~ APPENDIX F
g TEST PROBLENM FOR THE SCCO
| node X y time window | node x y time window |
I 1(i) u(i) | 1(i) u(i) |
K- - ——————————— -_— ———————————
-
o 1 3 9 - - I 11 10 13 10 17 |
= { 2 11 1 - - | 12 16 14 2 9 |
'e” I 3 6 8 27 36 i 13 15 2 - -
m | 4 4 3 37 45 I 14 13 16 5 13
. | 5 5 15 - - I 15 2 12 - - |
L I 6 8 11 12 23 | 16 12 10 - -
- P 7 6 4 35 43 | (
- I 7 4 42 49 i |
ol I 9 9 7 58 68 I {
o | 10 1 S 53 64 i ,
-
J
o
._:‘.$
r:::: Depot co-ordinates : (12, 10)
)
"-J:Q problea source
AW node locations : Sedgewick [Ref. 15]
ol time windows : see Chapter V.
.
i
" 84
A.‘;-“‘

NAIRR S Bl a6 B e o e sp @ el S s b Vit aind i~ athk Sdba oA Al it Bt iat S A St A i A M N A A M R AR A R A i e S \1(1‘1

= .

APPEBDIX €
: TEST PROBLENM [1-1)
Gf | node X Yy time window | node x y time window |
- | 1(i) u@i) (i) u(i) |
;E } 1 3 9 25 32 i 11 10 13 10 17 [
I 2 11 .1 46 53 | 12 16 14 2 9 |
| 3 6 8 27 36 { 13 15 2 51 59 |
g | 4 4 3 37 45 i 14 13 16 5 13
: - 5 15 18 28 | 15 2 12 22 30 |
| 6 8 11 14 23 { 16 12 10 - - {
| 7 6 4 35 43 | }
\ { 8 7 4 42 48 } |
‘:l I 9 9 7 58 68 i i
2 | 10 1% 5 53 64 i |
: Depot co-ordinates : (12,10)
‘ CL = 2.0, CU0 = 5.0
'.1 problem source
f aode locations : Sedgewick [Ref. 19]
jﬁ tige windows : see Chapter V.
85
RO P AP T ‘‘‘‘‘‘ N :. SRR TR

[¥ - W LUW L9 RS R i ety Rty 2 G 'R M MM Na RSl N Sl sint Vel B Sl th A6 A Sl S hldo R AL A M & B A A" Sl E i S B Sl S Ani LA A i At N Sren S vk e Jnsed aotds - afbiraud = i

<
L
E-3 i
b " i
‘
{
" APPENDIX H
TEST PROBLEN { 1-2]
=] node X y time window | node x y time window |
| 1(i) u(i) [1(i) a(i) |
) i 1 3 9 25 32 t 11 10 13 10 17 {
I 2 11 1 46 53 | 12 16 14 2 9
Y | 3 6 8 27 36 I 13 15 2 51 59 |
3 i 4 4 3 - - { 1 13 16 5 13 {
- I 5 5 15 18 28 | 15 2 12 22 30 |
;. | 6 8 11 14 23 | 16 12 10 - - i
|7 6 4 35 43 I i -
" | 8 7 42 49 | {
- 19 9 58 68 | (
s | 10 14 5 53 64 { !
;: Depot co-ordinates : (12,10)
;_-'.‘ CL = 2.0, CU = 5.0
"1 problem source
-. node locations : Sedgewick [Ref. 19]
- time windows : see Chapter V.
-
» 86
-
3

2% :

.-f:

{ PENDIX I

8 TEST PROBLEM {1-3)

| node X Y time window | node x y time window |

| 1(i) u(i) { 1(i) wa(i) |
P 1 3 9 - - | 11 10 13 10 17
i 2 11 1 46 53 1 12 16 14 2 9 |
= | 3 6 8 27 3 | 13 15 2 51 59 |
L& | 4 4 3 37 45 1 14 13 16 5 13
L I 5 5 15 18 28 | 15 2 12 22 30 |
I 6 8 11 14 23 I 16 12 10 - -
I 7 6 4 35 43 [!
- { 8 7 4 42 49 i i
T_A"‘ | 9 9 7 - - [|
?i;_..'i { 10 1 5 - - | 1
)
el
b Depot co-ordinates : (i2,10)

CL = 2.0, €U = 5.0
problem source

node locations : Sedgewick [Ref. 19]

Plle A
[PR AEAR R
Pl il et

tige windows : see Chapter V.

vy

RRRAR

'--
In
- e7
4
o,

-y

3

3

2

L
‘, : APPENDIX J
SN
g TEST PROBLEN [1-4]
'-‘:
B

i { node X Yy time window | node x y time window |
) ! 1(i) u(i) 1 1(i) a(i) |
3 I 1 3 9 25 32 | 11 10 13 10 17 |
e | 2 11 1 46 53 {12 16 14 - -
S I 3 , 8 - - { 13 15 2 51 59 |
- i 4 4 3 37 45 I 14 13 16 5 13 |
- i 5 5 15 - - | 15 2 12 - -
ii | 6 8 11 14 23 i 16 12 10 - -
':.; [7 6 4 - - }]
i 8 7 4 - - i I

o I 9 9 7 58 68 i I
S i 10 14 5 - - i |
s SE— S —
J

e Depot Co-ordinates : (12,10)

o CL = 2.0, CU = 5.0

- Problen Source

;f node locations : Sedgewick [Ref. 19]
; time windows : see Chapter V.

88

..........

e e AT NP AN N T o 0D S T S e S S I
= VTN, "'Liz.{'nﬁ'z&\i'u n 41, e, *}" AW B T T R

APPENDIX K
TEST PROBLEM [2-1]

{ node X Y time window | node x Yy time window |
i 1(i) u (i) | 1@E) uw(i) |
| 1 295 272 125 135 | 12 267 242 170 179 |
| 2 301 258 110 118 { 13 259 265 193 202 |
| 3 309 260 102 110 i 14 315 233 517 67 {
| 4 217 274 242 250 | 15 329 252 81 89 |
l 5 218 278 239 246 | 16 318 252 90 98 |
| 6 282 267 141 149 | 17 329 224 40 49 i
| 7 242 249 279 286 I 18 267 213 382 393 {
I 8 230 262 261 271 | 19 275 192 404 413 §
{ 9 249 268 206 215 { 20 303 201 432 442 |
i 19 256 267 200 208 | 21 208 217 323 332 {
| 11 265 257 183 193 | 22 326 181 - - |

Depot co-ordinates : (326,181)

CL = 2.0, CU =5.0

problem source

node locations : Eilon et al. [Ref. 21].
time window: : see Chapter V.
89
3
T L T L T LN T D e e T e e 1

i3
a
o,

YN YA g
Ly Ay A8, 8 ‘.,.. .

(I e S

:A
<
a3
LS APPENDIX L
o TEST PROBLEN [2-2]
AR
| node b4 y time window | node x Y time window |
| 1(i) u(i) | 1() a(i) |
:: | 1 295 <72 125 135 I 12 267 242 170 178 |
iy | 2 301 258 110 118 | 13 259 265 - - {
:; | 3 309 z60Q 102 110] 14 315 233 57 67 i
i< | 4 217 274 242 250 i 15 329 252 81 89 |
; { 5 218 278 239 246 I 16 318 252 90 98 |
| 6 282 267 141 149 V17 329 224 40 49 {
- i 7 242 249 279 286 i 18 267 213 38z 393 i
| | 8 230 262 261 271 | 19 275 192 404 413 |
?:: i 9 249 268 206 215 | 20 303 201 432 442 |
:;‘ I 10 256 267 200 208 | 21 208 217 - - |
I 11 265 257 183 193 | 22 326 181 - - l
) . - ——- - —
Depot cc-ordinates : (326,181)
o CL = 2.0, CU = 5.0
- problem source
'_-'?Qj_; node locations : Eilon et al. [Ref. 21]
time windows : see Chapter V .

" 90

B Mot et Bad R iy pav Gas S e gas s av me bt ek g don degh fasgiae ke o a-todlade g ol alle-ali alactiln cul it e N R A

APPEEDIX M

TEST PROBLEM [2-3)

| node X Yy time window | node x Yy time window |
{ 1(i) u(i) l L(i) ua(@x) |

1 295 272 125 135 | !
2 301 258 - - | {
3 309 260 - - | |
4 217 274 Z242 250 | |
5 218 478 239 246 [|
6 282 2617 141 149 1 17 329 224 40 49 {
7 { 18 267 213 382 393 |
8 i {
9 [|

{ {

| {

249 268 206 215
10 256 267 200 208
11 265 257 183 193

20 303 201 432 442
21 208 217 323 332

Depot co-~ordinates : (326,181)
CL = 2.0, CU = 5.0
proble€m source
node locations : Eilon et al. [Ref. 21].

tige windows : see Chapter V.

91

]

B AR AN AR A A T T R TR T T Lo NS L T R WTR R T T E T W T TN -l'_l-‘4'¢'_~_-f'_f".~-"

APPENDIX N
TEST PROBLEM [2-4]

| node X Yy time window | node x y time window |

{ 1(i) u(y) I 1(i) u(i) i
i 1 295 272 - - | 12 267 242 170 179 i
| 2 301 258 110 118 1 13 259 265 - - |
| 3 309 260 - - { 1w 315 233 57 67]
| 4 217 274 242 250 | 15 329 252 - - |
{ 5 218 278 239 246 | 16 318 252 90 98 I
i 6 282 267 141 149 I 17 329 224 - - |
{ 7 242 249 279 286 { 18 267 213 - - | .
| 8 230 262 - - | 19 275 192 404 413 i
{ 9 249 268 206 215 I 20 303 201 432 4u2 {
{ 10 256 267 - - I 21 2068 217 - - |
| 11 265 257 - - 1 22 326 131 - - {

Depot cc-oradinates : (326,181)

CL = 2.0, CU =5.0

problem source

node locations : Eilon et al. [Ref. 21].
tise

windows : see Chapter V.

g2

.....

P Al i et Ll S At a0 e S B Su b SRR AR L VR TR tapt S A Sl AL ta A

APPEEDIX O
) TEST PROBLEM [3-1)

| node X y time window | node x y time window |

1(@1) u(d) | 1{i) wuw(i) |

—— e — -—— . — —— — —— ——— — —— — — T " o —— -

1 151 264 196 204 1 12 156 217 105 118 i
2 159 261 185 193 | 13 129 214 259 271 I
3 130 254 217 225 | 14 146 208 2 10 i
4 128 252 ° 222 234 { 15 164 208 92 105 {
5 163 247 178 185 | 16 141 206 10 19 |
6 146 246 142 154 i 17 147 193 54 68 i
7 161 242 166 1173 | 18 164 133 79 89 I
8 142 239 131 142 1 19 129 189 30 38 |
9 163 236 159 165 { 20 155 185 67 175 |

10 148 232 123 131 (21 139 182 40 53 i

11 128 231 242 253 I 22 145 215 - - i

Depot co-ordinates : (1&5,215)

CL = 2.0, CU0 =5.0

problem source
ncde locations : Eilon et al. {Ref. 21].
time windows : see Chapter V.

93

MR G TR TR TR TS TR T AT TSN T T e AT "’.T

B 2. R

)
P2 ks

r
K
L

5
Y
b

| node

-— e e e e e e G e e

- - —— ———— —— — - - - - — . ———————— —— —— ————— . - —— — —

TEST PROBLEM [3-2]

- b

- O W O NNV W -

X y time window | node x Yy time window |
1(i) u(d) | 1() uw@) |

151 264 196 204
159 261 185 193
130 254 217 225

| 12 15 217 105 118 {
I 13 129 214 - - |
I 14 146 208 2 10 |
128 252 222 234 | 15 164 208 92 105 i
163 247 174 185 | 16 141 206 10 19 i
146 240 142 154 I 17 147 193 54 68 {
161 242 166 173] 18 164 193 79 89 {
142 239 131 142 }19 129 189 30 38 |
163 236 159 165 i 20 155 185 67 75 |
148 232 123 131 I 21 139 182 - - {
128 231 242 253 I 22 145 215 - - |

Depot co—ordinétes s (145,215)
CL = 2.0, CU = 5.0
problem source

node locations : Eilon et al [ERef. 21].
tige windows : see Chapter V.
94

- O W 0N E WD -

-t b

Ty Ty ol bt sl

APPENDIX Q
TEST PROBLEM [3~3])

Nt - aad_ s e ettt et Sl iic And i an il il

tiwe window

u(i)

105

B A

———— — T —— —— " - ——

X y time window | node x Y
1(i) u(i) | 1(1)

151 264 196 204] 12 156 217 105
159 261 - - P13 129 214 -
130 254 - - { 14 146 208 2
128 252 222 234 i 15 164 208 92
163 247 174 185 j 16 141 206 19
146 246 142 154 i 17 147 193 54
161 242 - -] 18 164 193 79
142 239 - - t 19 129 189 -
163 236 159 165 I 20 155 185 67
148 232 123 131 i 21 139 182 49
128 231 242 253 I 22 145 215 -
Depot co-ordinates : (145,215)
CL = 2.0, CU = 5.0
problem source

node locations : Eilon et al. [Pef. 21].

time windows : see Chapter V.

95

.............
...............

- Tow

, RD-A162 118 RLGDDITHHS AND HEURISTICS FOR TIHE-HINDOH-CONSTRRINED
TRAVELING SRALESMAN PROBLEMS(U) NAVAL POSTGRROU
SCHOOL MONTEREY CA B J CHUN ET AL
UNCLASSIFIED F/6 12/1

2/2

NL

FARSEA LA AL OLEAEGEAELRE ¢

[PEAFAPAREPY - L n K

y

NI

v

:

| .

- »
45

! e £

- =Kz
ik =
)

rr

r
cr

1L25 s poe

| G

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS:1963-A

.

4

P ey
.'!..‘/.' PP

.
S ~

I AR SR AL |

ESTTTOT L T L I Y .

PR 3
o S -
L PNV B SN

P
>
A aa

e At e
tml atalslnlrad o ke a et

= o
""\-\\;
1
-
N
R,
-3
A
R APRENDIX B
o~ TEST PROBLEN [3-4)
o
.\:“
: : . B)
~. | node «x Yy taime window | node x y time window |
N
! | 1(i) u(d) { 1() u(i) |
- j 1 151 264 - = | 12 156 217 105 118 |
ﬁb | 2 159 261 185 193 | 13 129 214 - - i
. I 3 130 254 - - I 14 146 208 2 10
v | 4 128 252 222 234 | 15 164 208 - - i
: I 5 163 247 174 185 | 16 141 206 10 19 |
| 6 146 246 142 154 | 17 147 193 - - |
1 7 161 42 166 173 | 18 164 193 - - i .
. | 8 142 239 - - { 19 129 189 30 38 |
- I 9 163 236 159 165 | 20 '155 185 67 715 |
(- | 10 148 232 - - f 21 139 182 - - i
- I 11 128 231 - - | 22 145 215 - - I
) _— e —_—— _
Depot co-ordinates : (145,215)
. CL = 2.0, CU = 5.0
_Z: problem source
* node locations : Eilon et al. [Ref. 21].
» time windows : see Chapter V.
.
o5)
=
2
v 96
;\
).\

:\ v - v, pikeai g - W TS W WL - .'7.‘-'.'-'.'".—1

S

-

o

..

" APPEBDIX S

- TEST PROBLEM [4-1]

= | node x y time vindow | node x y time window |
W | 1d) wid) | 1(d) u(d) |

3 |1 151 zes 171 179 | 12 156 217 72 19 |

I 2 159 261 162 170 | 13 129 21 237 245
5 1 3 130 254 196 203 | 14 146 208 S5 9 |
; { 4 128 252 198 206 | 15 164 208 61 67 |

3 I 5 163 z47 128 136 | 16 141 206 10 14 |

! | 6 16 246 106 113 | 17 147 193 22 28 |

% |7 161 24z 122 130 | 18 164 193 48 53 |

| 8 12 233 97 105 § 19 129 189 261 269 |

3 I 9 163 236 138 146 | 20 155 185 35 40 |
1 10 w8 232 89 96 { 21 139 182 273 280 |
- | 11 128 231 220 227 | 22 145 215 - - |
) ——- - S

Depot co-ordinates : (145,215).

"% CL = 2.0, CUO = 5.0

problem source

o node locations : Eilon et al [Ref. 21].
time windows : se€e Chapter V.

/.
2 97
’
¢

“h‘:i‘ 43

‘
o
AS
\~
RS
b APPENDIX T .
- TEST PROBLEN [4-2]
& T _ T
- | node b 4 Yy time window | node X y time window |
: | 1) u(d) 1 1) u(i) |
\3 1 1 151 Z2¢€4 171 179 I 12 1% 217 72 79 {
S { 2 159 261 162 170 i 13 129 2% - - |
B | 3 130 254 196 203 | 14 146 208 5 9
{ 4 128 252 198 206 § 15 164 208 61 67 i
i 5 163 47 128 136 { 16 141 206 10 14 i
| 6 146 246 106 113 1 17 147 193 22 28 {
| 7 161 242 122 130 } 18 164 193 48 53 |
| 8 142 239 97 105] 19 129 189 261 269 | ’
- | 9 163 Z36 138 146] 20 155 185 35 40 i
5 1 10 148 232 89 96 | 21 139 182 -~ - I
' | 1Y 128 231 220 227 | 22 145 215 - - |
l
i)
k.
- Depot co-ordinates : - (145,215)
5 €L = 2.0, CU = 5.0
. problem source
- node locations : Eilon et al. [Ref. 21].
B
b tise windows : see Chapter V.
{
x5
;} 98
o
"
.

ESE A

Y=,
{
L " .
i
.
»

PPENDIX U
TEST PROBLEN [4-3]

—— — - —— — —— - —

| node X Yy time window | node x Y time window |
[1(i) u(i) i 1(i) u(i) |
| 1 151 Zzé6u4 171 179 | 12 156 217 72 79 |
| 2 159 261 - - | 13 129 214 - - |
i 3 130 254 - - | 14 146 208 5 9 |
| 4 128 252 198 206 I 15 164 208 61 67 |
| 5 163 247 128 136 | 16 141 206 10 14 1
i 6 146 246 106 113 i 17 147 193 22 28 {
I 7 161 242 - - | 18 164 193 48 53 |
i 8 142 239 - - { 19 129 189 - - {
| 9 163 236 138 146 | 20 155 185 35 40 |
| 10 18 232 89 96 f 21 139 182 273 280 |
| 11 128 231 220 227 | 22 145 215 - - |

- - - -

Depot coc-ordinates : (145,215)

CL = 2.0, CU = 5.0

problem source
node locations : Eilon et al. [Ref., 21])
time windows ¢ see Chapter V.

99

...............

a.c: ” - = LWL T T AT AR TN T T R e Caliic el it udir o fiaty -

R

ok

v

5

aa : .

S APRENDIX ¥

,55' TEST PROBLEN [4-4]

5%

& R - - ~ -

25 { node x y time window | node x y time window |
| 1(i) u(i) I 1(i) u(i) |

i i1 151 zés - -) 12 156 217 72 19 |

o | 2 159 261 162 170 | 13 129 214 - - |

= | 3 130 254 - - | 1 146 208 5 9 |

P | 4 128 252 198 206 | 15 164 208 - - |

- | 5 163 247 128 136 | 16 141 206 10 14 |

i | 6 146 246 106 113 | 17 147 193 - = |

(7 161 242 122 130 | 18 1€4 193 - - |

s | 8 12 239 - - | 19 129 189 261 269 |

- i 9 163 236 .138 146 | 20 155 185 35 40 |

g | 10 148 232 - - | 21 139 182 - - |

- I 11 128 231 - - | 22 145 215 - - i

'-j'.:i_l Depot co-ordinates : (145,215)

I CL = z.0, CO = 5.0

N problem source

E -\ node locations : Eilon et al. [Ref. 21].

0 . . :

N time windows : see Chapter V.

N 100

“U,S'

RN

LIST OF BEPERENCES

¢ ke Grahan, R. L., and Johason, P. S., "Some
nplete Geometric Problems," Proce. 8th Acﬁ Syap.
o

Theory cf Computing, 1976

ra,_J. K. and Rlnnoog f‘ A. H. " Comglexlty
hicle Routlng and Scheduling Problems,“ Networks,
11, pp. 221-227, 1981,

saraftis, H. N, wA Dynamic grogrammlng Soluticn to
h fe “vehitle Hany-to-u ny Iamediate Reguest

g
l-A-Eide Problen, " rtation Sci e, Vol. 14
2, fp 130-154, iss%‘gg'ag 2C1EDCL. f

?S

B aker E. “"Ap Exact igorlthm o the
Tlme-éonsttalned Travelin esman Problem?®,

0 eratlcne Research Vol. ? No. S5¢ « 938-945
ep enber-october, Y953 PP !

Christofides, N., . Mingozzi - and Toth, P.,
"State—Space Belaxatlon roceéures or the Computatlon
of Bounds to Routlnq Problems," Networks, Vol. 11, YNo.
2' pp. 1“5-16“'

Stewart, W. eterministic angd
Stochastic LCcI et gl!%¥g§ %ﬁs Scterial

issertaticn ge u51ness an: Management,
University of uarylan

Goléen, B., Bodin, L., Dogle, T., and Stewart, W. R.,
" Approximate Iravellng alesman Problem,™ Qperat ;ons
Researg¢h, Vol. 28, pp. 694-711, 1980.

Rosenkrantz, D. _Jd., Stearns. R. E., and Lewis, P. M.,
"aAp rox1mate Algorlthms for the Travellng Salesman
Problem," SIAM Jourmal om Computing, V.6, pp. 563-581,

1677,

Clarke G. and Wright, S. W., " Scheduling of Vehicles
frou ‘Ccentral Depot £0°°a Nlimter of Dellverg Points,"
Egra;;cnc Research, Vvol. 12, pp. 568-581,

Wwiorkowski, Jd. and HcElvaln, K., " A Rapid Heuristic
dlgorithm for the proximate Solution of the
Traveling Salesman Prob em," Tr gns REesearch,
VO].. 9' pp. 81-185 v 197 -
I., eli pan- Comblnat roblems
zhgl Eé -{3355 i e £§2’§ ‘EI&Q% %a BaRKINng,
FH.D, hesxs, .0f Indus r1aI nglneerlng an
Management Sc1ences, Northuestern Uriversity, 1976.

101

.......

A.;.s;»xum_s.l_\;gxlk At e a 1 SRR, U Y

> w v & v
Lol iR it M
b WY S N W S

l".l‘

o

~JIN

.

Pl

T

fA

?;_;
o
s

12.

13.

14.

15.

16.

17.

18.

19.

20.

21t.

22.

23.

24,

25

........................

Steuart. §. R.,_"A Com utatlonally Efficient Heurlstlc

or the Travelin alesman Protlem," roceeg;
g_% Appual g ; o Sou gggstggg TIHS, Hyr
eacK s PP- 85
Norback, J. P. and Love, R. F.,_ . "Heuristic for the
Ha 1lton1an Path Problem in _Euclidean _Two Space,"
Qreraticns Research V. 30, pp. 363-368, 1979.

Hardgrave « W. and Nemhauser,G. L., "On_The Relatin
etwéen Iﬁe Travellng Salesman’'Problém and The uonges
gggg prcblen,” Qperations Research, V.10, pp. 647-

(-]

- " Computer Solutlons of the Traveling
g Pﬁg%%em," Bell Syst.1dech, J. 4y, PP-
[

Lin, _S. aand Kernighan "an Effective Heuristic
A lgor 1thm for the frave ing Salesman Problem,"
era ‘

OF ions Research, vol. 21, pp. 498-516, 1973.

Golden, B., "A Statistical Approach to ISP," Networks,
Vel. 7, pp. 209-225, 1977.

Norback, J. P. and Love, R._ F., "Geometric Approaches
tc. Solving The Traveling Salesman Problem " Management

Sedgewick, k. A%gor't s, Addiscn-Wesle Menlo Park
Calgfonia: pé. =§35%_ﬁ983. ¥e ‘

ik
n

Ho

Aho, A. % Hopcroft, J. E. and Ullaman, J.

DI'
Design an S Gomputer Algorithms Addis
Nes _H%n %Q%gr%- Cgl Ionlag Pp%g 792, Jun,1974.

Exl n, S. watson~Gandy, C. and Christofides, N.,
q %%9 ution uanagement, Griffin Press, London, pp.

F isher, 4. L., " The lLagrangean Relaxatlon Method for
Solv1ng Integer Proqrammlnq Erob ems§8 Management

cience, Vol. 27, No PP 17, Jan, -
Garrfinkel, R. S. and Nemhauser, G. L., _Integer
Programm11%7 John wiley, New York, pp. 108-152,77pp
Christofide Graph Academlc Press New
York, EE. 36 5. Tp- 3£ 2%11 !
Baker, E. “Vehicle Routing with Time Window

Ccnstraints," Iﬁe Logist cs ad ansportation Review
vVol. 18, nlmber “'_g % %98 !

102

INITIAL DISTRIBUTION LIST

- No. Copies

[1. Defense Techpical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

: 2. Lihrarz. Code 0142 2
. Naval ostgraduate School
- . Monterey, CA 93943-5100

o 3. Department Chairman, Code 55 1
Department of Operaﬁlons Research
Naval Pcstgraduate School

2l Monterey, CA 93943-5100

-~ 4. Professor Richard E. Rosenthal 2
. Code 55R1

. Naval Postgraduate School

R Department of Qperations Research

. Sy Monterey, CA 93943-5100

S 5. Prcfesser James K. Hartman 1
B Code SSH1 .

CARN Department of Operations_Research

o Naval Postgraduate School

T Monterey, CA 93943-5100

. . 6. Litrary, P.0O.Box 77 1
Gong_Neung Don%, Dobong-ku
Secul 130~-09, Aorea

0 .) :
by 7. Litrary 1
v Air Force Academy
Dae Bang Dong, Dongjak-ku

) Seoul 15101, Korea

) 8. Air Force Llibrary 1
W, P-C.BOX 6 .

e Sin Dae PBang Dong, Dongjak-ku

- Seoul 151-01, Korea

Ma jor., Chun, Bock Jin 7
a0 382-01 Sun fiva 1 bDong, Chung-Ku
- s Dae Jeon, Choong Nam

: 300-00, Korea

e 10. Major. Le€e, Sang Heon 7
- 24&-16, 19 Tong 2 Ban .
-~ Kaneung71 Don Eul jeongLu-si
"N Kycungki 130-30, sSedoul Rorea

o 11. Chow Kay Cheong 1
Apt Block 291A

Jurong East Street 21
[- # 12-583, Singapore (0140)

- 12. Major. Min, Byung Ho 1
. 108 fon Ave

6 Hamilton Ave. #B
Seaside, CA 93955

103

..... -

N . W

. R P .. it 4t e - e et Ay .
R hEhR ‘.}-f"’:'ﬂ"'\. A 4;;(._-“.'(._,-. \ e '\.'-(_ A ..:,. RN .) . _. :o AT i3 ‘. -{'."'r oo ',-_', .

R TR R T R TN R X N

re
4 &

L A&

SRR ETATR T A, 'W}T'\T\Wuﬁ*““‘-\ .
-‘_ R VIR YRS W Y I YA, o

