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In symmetric specimens the crack advances into the relatively undamaged region between two
plastic sher zones. A crack nar a weld or shoulder, loaded into the plastic range, may have only a
single sher band, along which the crack grows into prestraiad ad damaged material with less
ductility than the usual symmetrical configurations. A crack ductility can be defined as the
minimum displacement per unit crack growth. A low crack ductility requires higher stiffness of the
surrounding structure for fracture-stable design. Tests of six alloys showed that, for the low-
hardening alloys, the crack ductility in the asymmetric cue is less than a third that of the
symmetric. In the higher hardening alloys the crack ductility in the asymmetric cae is smaller by a

*-i factor of 1.2 at most. A noteworthy result is the presence of a Mode I opening component even with
asymmetry, as is shown by the far field displacement vector being more than 46- from the transverse
direction. The crack direction is less than 45t indicating the effect of triaxiality on cracking.

A macro-mechanical model for crack advance by combined fracture and sliding off along two
slip planes gives the independent physical parameters (cracking and two shear directions, relative
amounts of cracking and shearing) in terms of the observable quantities of the macroscopic fracture

(flank angles, flank lengths, back agle). This two slip plane model admits a Mode I opening
component and describes, band on an idealization of underlying physical mechanisms, the
development of deformation in ductile crack growth for both the symmetric and asymmetric
specimens. A finite element study of the asymmetric specimens gave a crack direction within two

degrees and a far field displacement vector at initiation within three degrees of that experimentally
found. Stre and strai fields indicate the presence of a Mode I component. Early growth, studied
by successive removal of the most damage& element, resuited in crack growth rate for the lower
hardening case about twice that of the higher hardening one. Finally, a logarithmic tensile
singularity in the mean normal stress was found for rigid-plastic flow past a growing crack of fmite
sagle with rigid flanks under combined shear and tension. The tensile singularity predicts yielding of
the crack flanks.
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Title: Professor of Mechanical Engineuering
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CHAPTER ONE

INTRODUCTION

In symmetric singly grooved unconstrained tensile specimens the crack

advances into the relatively undamaged region between two symmetric shear zones.

An asymmetry, introduced through a weld fillet or a harder, heat-affected zone or a

shoulder on one side of the crack suppresses one of the two slip lines that would

appear in a symmetrical specimen. This is likely to give asymmetric cracking along

the remaining active slip line, with less ductility because the crack is advancing into

prestrained and pre-damaged material. A reduced ductility requires higher stiffness

of the surroundings for fracture-stable design.

Near the tip of the growing crack, strain hardening will cause the deformation
i i field to fan out. For power law creep or deformation theory plasticity and a

stationary crack, the asymptotic stress and strain distribution may be found from

:. the extended by Shih [11 HRR [2,3] solutions for the general mixed mode I and H

case. Notice, however, that such a superposition of stationary singularities does not

take into account the hardening of the matct d left behind the growing crack.

Indeed, the stress and strain fields near the tips of growing cracks in ductile

materials are known to differ from the stress and strain state around stationary

cracks in the same materials as is shown from asymptotic solutions [4,5,61

".". supplemented through finite element calculations [7,8].

McClintock and Slocum [9] develcped a formulation for the accumulation of

damage directly ahead of an asymmetric crack, based on strain increments adapted

from Shib's [11 analysis. The crack was assumed to follow the center of the 450

shear band. It was found that the crack growth per unit displacement increases

S - . .
. . . . .. . . . . . . . . . . . . . . . . . . .



approximately as the logarithm of the total crack advance per inclusion spacing p

and varies inversely as the critical fracture strain -1c. Little effect of strain

. hardening on the growth rate was found.

The objective of the current study is to investigate through experimental,

. analytical and numerical work, the ductility of asymmetric, fully plastic,

unconstrained configurations. First, the approximate pure Mode II incremental

*solution [9] is extended to admit a crack growing at an angle to the shear band.

This deviation from the shear band is expected from the higher triaxiality. Far field

- displacement is assumed again to be parallel to the shear band. Next, tests results

on symmetric and asymmetric specimens of six alloys are presented. A method for .

*' quantifying and represciting the ductility is suggested. A macromechanical model of

* crack growth by combined fracture on one plane and sliding off along two others

* 'describes, for this idealization of the physical mechanisms, the ductile crack growth

for both the asymmetric and symmetric specimens. To account for the effect of the,

finite width of the shear band and study the stress and strain fields at initiation, a

finite element in,'estigation is undertaken. Early growth is also studied by successive

element removal. Finally, a stream function technique is used to investigate whether

rigid-plastic strain hardening flow past a growing crack of finite angle with rigid

flanks can be sustained. The last chapter contains an o erview of the results and

summarizes the conclusions. It also contains recommendations for further research.
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CHAPTER TWO

DIRECTIONAL EFFECTS IN FULLY PLASTIC
CRACK GROWTH NEAR A SHEAR BAND.

TABLE OF SYMBOLS

Ft hole growth ratio -

I1/n (n, MP)dimensionless paremeter
J J-integral
k shear yield
Mp  mixity parameter (eq. 2)
n strain hardening exponent
T. traction vector
U far field displacement (along shear band)

W work per unit volume
0mean normal stress
al flow stress at unit strain

angle between crack and shear band
17 damage
-c increment of crack advance
17 principal shear strain

• . principal shear strain
p mean inclusion spacing
01.. angular stress functions "
C .. angular strain functions
ui  angular displacement functions

*" ABSTRACT

Welds, shoulders, or other asymmetries may eliminate one of the shear bands

of symmetrically cracked parts and thus give crack propagation through pre-

damaged material, instead of through the relatively unstrained region between the

two plastic shear zones of the symmetric case. Previous work is extended to include

-. sites at several angles ahead of the crack. Far field displacement is assumed to take

" place parallel to the sheai band. Strain increments are approximated from the

mixed mode, power-law elastic solution for a stationary crack and used with a

.........................

- ..



fracture criterion for hole growth in shear bands to predict the direction and rate of

crack growth. The crack is assumed to advance to advance in the direction that

requires the minimum far field displacement to reach critical damage. For a shear

band at 450 the crack progresses at 210-300 from the transverse (depending on strain

*I hardening), indicating the effect of higher triaxiality. The crack growth rate is about

6-15% higher than if the directional effects are neglected. Lower strain-hardening

results in a 5% higher rate of crack advance per unit displacement, a higher fracture
strain, and the final crack orientation being closer to the 450) shear band.

INTRODUCTION

Most fracture tests use symmetric specimens. The crack advances into

relatively undamaged material between two shear bands. This will not happen if one

Iof the bands is eliminated due to a weld bead, or a harder heat-affect'ed zone, for

example (Fig. 1). A fatigue crack or other defect near such an asymmet'ry will tend

to advance along the remaining shear band through highly strained material. Lower

ductility is thus expected. An example of lowered ductility in asymmetric flow is the

formation of a shear lip at the end of an ordinary cup and cone fracture in a tensile

test.

McClintock and Slocum [1] developed an approximate formulation for the

accumulation of damage ahead of the crack in a power-law strain hardening

material, by using the strain and displacement fields derived by Shih [2] for a

stationary mixed-mode crack and the McClintock, Kaplan, and Berg [3] criterion for

fracture by hole growth. It was assumed that the crack advances directly along the

shear band. Preliminary experiments, however, have indicated that the crack

actually advances at an angle from the shear band which reflects the effect of the

-.-
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higher triaxiality on one side.

In the following we modify the Pure Mode H [1] solution by considering several
sites around the crack tip. The far field displacement is again assured to be parallel

to the shear band and the strain increments to follow Shih's [21 mixed mode

stationary crack fields. The accumulated damage from initiation and prior growth is

calculated and the necessary far-field displacement for critical damage is found for

each site. The crack is assumed to advance in the direction requiring the least far-

field displacement.

ANALYSIS

1. Crack initiation. A nonlinear elastic solution for the small scale yielding of

mixed Modes I and II stationary crack problems was developed by Shih [2]. The

material was assumed to be power-law hardening according to the relation between

equivalent stress and strain:

"(1)

where o1 is the flow strength at unit strain and n is the strain hardening exponent.

" Shih [2] int odced a Mode I mixity parameter M P, defined in terms of the near field

stresses by

MP 2 . aoq(r, 0=0),
p tan-1 lm (2)

7r * 0 01, 6 (r, 0=0)

The mixity parameter varies from 0 for pure Mode H1 to 1 for pure Mode

I. McClintock [4] restated the dominant singularity governing the behavior of the
,1.1

stresses, strains and displacements (for large plastic strains) in terms of the J

integral as

-.

. . . .. . . . . . . . . . . . . . . . . . . . . .
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T oh ij r r [ I J , l(nM P)]1 n+ 1) ,ij (O,M P,n )
-i o" 0'I  II~n nM P)

::'-C ij -- ijtuPl ) (3)
Or r II/n(n,MP ).

u ,"--_ur _ [a , -I l[nMl) ai(O,M P,n) .

The J integral is defined (x, axis along crack) as

J = fWdx2 - T-i-ds.
ax1

where Ti is the traction vector, u. is the displacement vector, and W is the work per

unit volume. For a single shear band, J can be evaluated in terms of the shear

strength k, the far field relative displacement U and the angle between crack and

shear band (Fig. 2) by

kU
(4)

°QN ... cos4

*The dimensionless functions &ii(O,MP,n), Zj(,MP,n) and I/.(n,MP) have been

numerically determined by Shih [2] for n=1/3 and n=1/13. The dimensionless

functions 6i(O,MP,n) are derived in the Appendix from the strain functions and are

shown in Fig. 3 for n=1/13 and MP-0.5.

Assume that currently the shear band forms an angle qb with a recent average

crack direction to be defined below. With the crack not advancing along the shear

band, there is no longer pure Mode H. When the relative far-field displacement is

assumed to be parallel to a single narrow shear band, as is valid in the non-hardening

limit, and that direction is assumed to be the same as the local relative displacement

across the flanks, the mixity parameter can be determined from the angular
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functions () of the displacement field relative to 0=-7r since, from Fig. 2,

ue  u- (r'MP,n),w

tano u - ( "(rMPn)ur  u.('MPn

Fig. 4 shows the resulting variation of the mixity parameter with the angle 0 for

n=1/13. Thus, the angle 0 determines the angular stress and strain functions and

hence the local stress and strain for a given J through (3). The angular functions

turn out to affect the fracture criterion through the triaxiality and the shear strain,

as follows. The mean normal stress for plane incompressible flow is

(6)

2 -a-

The triaxiality a/r used in the fracture criterion is given in terms of the

dimensionless principal shear stress i, defined by

= [ + 2 ]/, (7)

by.

aft = (8)

The angular variation of this triaxiality, o/r, is shown in Fig. 5 for n=1/13. Note

that the triaxiality is highest for negative values of 0 for all cases except pure Mode

I. This is the primary reason for exploring the directional effects.

Similarly, the dimensionless principal shear strain can be expressed for the

plane incompressible case as:

= 2[i 2+(rr"802]1/2 2  (T -2 (9).

Introducing (4) into the first of (3) and solving for the displacement gives the far- -j

field displacement U in terms of the principal shear strain -y at any point in the near

...........
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field:

01I, ,.,(n,MP) rcoso (_'Y/)a 1  (10)

AL

The critical displacement for crack initiation occurs when the fracture strain is

reached at the point (p,O) where p is a fracture pr,, :- size (e.g. the mean

inclusion spacing). The fracture strain is found by using the tractut. - ,ion of

McClintock, Kaplan and Berg [3] by which it is postulated that fracture due to

micro-void coalescence occurs when the "damage", j7, reaches unity. The damage is

expressed in terms of a hole growth ratio Ft, the principal shear strain -y and the

triaxiality a/

1 , . . (1-n)o

InFt  2(1-n) r

The above damage equation is associated with growth of cylindrical holes.

Alternatively one might use, for example, the eqs for'growth" of spherical holes in

nonhardening material (Rice and Tracey, [5]).

P A Newton-Raphson technique is used to solve (10) and (11) at r=p for the

critical far-field displacements for initiation in a number of directions. The actual

initial direction is that which minimizes the required displacement. Once the

initiation displacement Ui for the critical strain at the point (p, 0) is known, the

strain at all other points can be found by re-arranging (10):

.-kU i (12)

r " I(n,MP)cos] )

. 2. Crack growth. After initial growth by Ac, further growth requires reaching the

critical damage at some new site p from the current crack tip. The damage at each

site is that from crack initiation plus those for any following crack growth

-, . ,o
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increments. The strain to bring the damage to unity is found by differerentiating

(11) to find the damage increments in terms of the strain increment and the strain

itself:

1 [ _ I (1-n)o.d]= +----ih Jd-y. (13)

lnF t  + -9 2(1-n) r

In the absence of an incremental strain-hardening solution for a growing crack, we

follow McClintock and Slocum [11 and approximate the strain increment in terms of

the far-field displacement increment by differentiating and rearranging (10) (this is

strictly valid only for non-linear elasticity):

d-y = (j/-1)ndU (14)(n+l)a'lI(n,MP)rcosO

The damage at any point in front of the growing crack is given by the sum of the

. damage due to crack initiation, as found from (12) and (11), and all of the damage

increments from prior crack growth, as foxud from (13) and (14), with r taken to be

,-.. the distance from the prior crack tip to .. e r-oint. in question, and 4 the prior angle

between crack and shear band.

The necessary increment in damage for fracture is bq=1-q. The corresponding

strain increment can be found from (13):

6-y = + ------- inh - | (15)+ 2(1-n) rn

- The necessary increment in far-field displacement to cause this strain increment can

* .then be found from (14):

OFI j(n,MP)pocoso• " ~bU -- (n+1) -rl/~'Pp~ '/) 7.(6

* The crack will advance in the direction which requires the least far field

*" displacement to reach critical damage, not necessarily toward the most severely

-. * -. 9*
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i.e. the angle between crack and shear band is smaller and the triaxiality is smaller.

(5) For the low strain hardening n=1/13, increasing 0 gave smaller initiation

displacements and strains and larger initial crack growth rates (dc/du).

(6) Strains and triaxialities during growth are relatively insensitive to the initial

AIR angle between crack and shear band.

(7) For both strain hardening exponents and all the angles 0, the final average angle

between crack and shear band Oavg after growth by c/p=100 was between 230 and

320 from the shear band. The Mode I mixity corresponding to the final crack

orientation was also within a correspondingly narrow range for each of the strain

hardening exponents.

(8) These rigid-plastic results do not predict instability (infinite crack advance per

unit far field displacement). Instability could, however, arise from the compliance of

" the surrounding structure.

SUMMRMY OF CONCLUSIONS

l A part containing a crack near a weld or a shoulder, loaded into the plastic

range, can give an asymmetric shear band extending from the crack tip. The

* . resulting crack propagation into previously damaged material gives less ductility

than the typical symmetric case. A previous incremental solution for crack growth

E- - using Shih's asymptotic fields for a stationary crack in nonlinear elastic material is

extended to account for the effect of triaxial stress in advancing a crack at an angle

to the shear band. Far field displacement is assumed to take place along the shear

band. Cracking is assumed to occur at the site around the crack tip that needs the

least far field displacement for critical damage. For a 450 shear band, it is found

that the crack does not advance along the shear band but at an angle of about 210

" .~ from the transverse under a higher triaxiality. The crack growth rate is higher by

1'
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about 6-15% (the larger increase with less hardening) than if the directional effects

are neglected and the crack is assumed to progress along the shear band. A higher

strain hardening decreases slightly (about 5%) the crack growth rate and the final

angle from the transverse of the growing crack. Strains and triaxiality during

growth are not sensitive to the initial angle between the crack and the shear band.
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TABLE I

Comparison of numerical and approximate pure Mode [1 solutions

Numerical Approx. Mode II
00 450 00

n 1/13 1/3 1/13 1/3 1/13 1/3

ui/p O.92 0.61 0.79 0.62 I.C7 1.25

• .c/Adu 5.90 5.57 5.95 5.64 5.06 5.28

.:4 Z"
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Appendix - Displacement Functions

The displacement functions u1 are detcrmined from the strain functions for the

plane strain considered here. The radial displacement u, may be found from the

radial strain

8 Ur (17)
Err

ar

Iso
ur = {rdr + u,(O,O) . (18)

For zero rigid-body translation at r=0, ur(O,O)=O. Eliminating Err with (3) and

integrating gives

ur  J n+1

Using the displacement equation (3) gives the radial displacement function Uir relative

to that at 0=-7r

'..rO,MP,n ) --- (rr(O,MP,n) - Zrr(-7r,MP,n)) (20)nl

The tangential displacement function u8 is determined from

I 18u0
- + (21)

as

u f re8 o-ur)dO + f(r) . (22)

Noting that (so = " rr for plane strain incompressibility and using (3) with (20) gives

the tangential displacement:
J 2n+

)irrdO + f(r)/r. (23)'-"r fflrll/n~n,M ) n ".

.4

-" ' I • ,. . - " • " " .... ) ,. , . .... ' .g -• - , :' -
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With respect to the displacement at 0=-ir, f(r)=0. By using (3) we can thus find the

dimensionless tangential displacement function relative to the displacement at 0=-ir,

in terms of the dimensionless strain function

2n+1A
ii4(O,MP,n) ut.(w,Mvi,JdO(24

As an example, the displacement functions for n=1/13, MP=O.50, determined

numerically by (2 1), (20) are given in Fig. 3.

--------- -- -- --
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Fig. I. Asymmetric crick from a. defect neir I 191d. tte symmetric :Ise is
shown above
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CHAPTER THREE

EXPERIMENTAL STUDY

TABLE OF SYMBOLS

Dext minimum extension rate (eq. 10)

D crack ductility (eq. 3)
E modulus of elasticity

FL load factor (eq. 12)

J J-integral

k shear yield

.0  initial ligament

n strain hardening exponent

oP nominal load
T.S. tensile strength

T tearing modulus

T *a eq. 8
T asym  eq. 9
ui  initiation displacement

u growth displacement

vi  total displacement vector

, -growth displacement vector

- specimen width

a y yield strength

* g p mean inclusion spacing
a- flow stress at unit strain

displacement vector angle from transverse
o -fracture strain

w crack opening angle

0 C 0crack direction from transverse.

ABSTRACT

Most fracture tests use symmetric specimens, with the crack advancing into

the relatively undamaged region between two plastic shear zones. However, a crack

near a weld or shoulder, loaded into the plastic range, may have only a single shear

band, along which the crack grows into prestrained and damaged material with less

°°"

***** . . . . . .- . . . . . . .
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ductility than the usual symmetrical configurations. An experimental study on six

alloys shows that while the crack initiation displacements are similar, the growth

displacement is much less for the asymmetrical specimens, especially with less

hardening. Indeed, for the low-hardening alloys (n;O.1) the crack growth ductility,

defined as the minimum displacement per unit ligament reduction, is less in the

asymmetric case than the symmetric by a factor of three, In the higher hardening

alloys the crack growth ductility is less in the asymmetric case by a factor of 1.2 at

most. Triaxiality on one side of the asymmetric shear crack diverts it from 450 to

380-410 from the transverse direction, the larger angles with smaller strain

hardening. In addition, the far field displacement vector is more axial than the 450

line, at 510 to 630 from transverse, suggesting a Mode I component even with

asymmetry.

INTRODUCTION .4

-, For fracture-stable structures it is important not only that fully plastic

conditions be attained before fracture, but also that the load does not fall off too

rapidly during crack growth. Flow fields such as Fig. 1, in which the far-field
4.

deformation consists of a single shear band, may arise in practice due to the

constraint of weld material. These specimens may exhibit less ductility than the

symmetric ones, because the crack is advancing into pre-strained and damaged

*' material, rather than into the new material encountered by a crack advancing

-" between two symmetrical shear bands. Being able to predict such increased crack

growth can have useful applications in the design, inspection and maintenance of

pressure vessels and ships.

Near the tip of the growing crack, strain hardening will cause the deformation

4 °
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field to fan out. For power law creep or deformation theory plasticity, the stress and

5 strain in the neighborhood of a stationary crack may be found from Shih's [1] mixed

mode solutions. More realistically, a corresponding, fully-plastic, incremental

- plasticity solution should be obtained for a growing crack, taking into account the

hardening of the material left behind the growing crack. McClintock and Slocum 12]

developed a formulation for the accumulation of damage directly ahead of an

asymmetric crack, based on strain increments adapted from Shih's [11 analysis for

stationary cracks in a power law material. The crack was assumed to follow the

center of the 450 shear band. It was found that the crack growth per unit

displacement increases approximately as the logarithm of the total crack advance per

inclusion spacing p and varies inversely as the critical fracture strain -y" To correct

. .for triaxial effects, several sites around the current crack tip were considered in

chapter 2. The damage at each site due to crack initiation and prior growth was

determined and then the necessary increment in far field displacement was found for

- .- each site. The crack was assumed to advance in the direction requiring the least

displacement. This numerical investigation resulted in growth directions not along

• "the 450 shear band but at a smaller angle from the transverse depending on the

hardening and the initial crack-shear band angle, and lower ductility by 6-15%

* . "(larger decrease with less hardening) than with growth along the shear band.

A test with pure shear (Mode II) loading was carried out by Chant et al. [31 of

high hardening carbon manganese steel (B.S. 1501-151-430A, Y.S.=329 MN/m 2 , T.S.

- 490 MN/m 2). Small specimens were subjected to both Mode H1 and Mode I

testing but the ductility, measured by dJ/da, was practically the same although the

microscopic features for the pure shear specimens are different than those observed

I.. in the Mode I specimens. The objective of the current study is to present

experimental evidence on the ductility of asymmetric crack configurations.

,-d '-.''--...- '"-- - -2- ."-'" -. " •--"-."- - -•:- . - - - --- -'- .- '-. - °• ° -
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EXPERIMENTAL PROCEDURES

Material. Tests were performed on six alloys with the mechanical properties

listed in Table 1. True stress-true plastic strain curves (Figs. 2a,b) for these alloys "A

were obtained using standard 6.35 mm. dia. specimens with 25.4 mm. gage length. It

is convenient to represent a curve of equivalent stress a-vs. equivalent plastic strain

(::" v by:

' (0+--P)n, (1)

where al, f0 and n are three constants that were determined from the flow strengths

at yield point, c=0.125 and c=0.250, and are given in Table 2. The lower hardening

alloys are the 1018 cold finished steel, HY-80 and HY-100 steels (nz0.10) and the

higher hardening alloys are the 1018 normalized and A36 hot rolled steels (n" _0.24).

The 5086-HIll aluminum is between these two groups.

Test Method. From 12.7 mm. dia. round bars of each alloy, seven specimens

were first machined as shown in Fig. 3a, with side grooves to ensure a straight

fatigue pre-crack approximately 1.3 mm deep. For the four asymmetric specimens

(Fig. 3b), further side grooves were machined at 400 from the transverse direction.

This corresponded to the crack direction found in preliminary tests and served to

reduce 3-dimensional effects. For the three symmetric specimens, since the crack

* grows by alternating shear at ±450, orthogonal triangles were machined, as shown in

Fig. 3c.

Stability of the tests turned out to be an important consideration due to the

high crack growth rate expected in the asymmetric case. Thus short specimens, stiff

adapters, and locknuts were used. The tensile tests were performed on an MTS 50

-- - - - -
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metric ton testing machine with resulting compliances of 2.3x10 6 , 4.5xlOA 1.08x10 6

mm/N for the steel specimens, the adapters, and the machine respectively. The

axial and transverse displacements across the notch were plotted continuously.

A typical plot of load vs. axial displacement is shown in Fig. 4; the

breakthrough point is when the fracture first breaks through the back surface, with

- some shear lips remaining on the sides. The displacement during crack initiation and

growth, uj and ug, are found from the drawings of the crack path. The topographies

*- of the fracture surfaces were thus subsequently plotted using a metallurgical

microscope with a travelling stage. The horizontal and vertical coordinates of the

travelling stage are recorded with two linear potentiometers; several points are

obtained to give an impression of the surface profile of the broken specimens. A

typical microscope plot, as in Fig. 5, consists of the 600 notch, the fatigue crack

* (with some amount of deformation, S- 2), an initiation zone which shows some

blunting, and a growth zone. The initiation displacement is S1-F. These quantities

were also checked against the data from the load-extension curves. In addition,

fracture profiles were used to obtain the angular quantities such as the crack opening

angle, w, the lower and upper flank angles, 01 and 0., and the orientation of the total

displacement vector, ¢, in the asymmetric case.

RESULTS

Initiation Displacement. Stable tests were obtained except for the lower

hardening alloys, which were unstable for less than 20% of the falling part of the

load-displacement curve. The results of the tests are summarized in Table 3. An

idealized initiation displacement, uil/1 0, can be defined as the extension between the

initial elastic loading and the steepest unloading parts of the load-displacement curve

°

-......- . ........... ..- , . - . .. .. .. • . - .. . . - .,- . - . . . . . . .- -.- -. ... -. :. - .-



36

at maximum load, normalized with the initial ligament 10 (Fig. 4). This quantity,

given in the first row of the table, is a convenient measure of initiation and can be
. o compared with the the initiation displacement up measured from the fracture surface

profiles after complete separation. The normalized crack initiation displacement

ui//0, does not appreciably differ between the asymmetric and symmetric

configurations. It is, however, dependent on the strain hardening, being for the

higher hardening alloys two to four times that of the lower hardening ones.

Ductility. For a measure of the crack growth resistance, the crack ductility,

Dg, is defined as the minimum displacement, du,, per unit projected ligament

reduction, d. Thinning of the ligament from the far side in fully plastic flow makes

the reduction in ligament rather than crack advance more appropriate for describing

load drop. The displacement du c is associated with the crack opening stretch and

consists of the gauge displacement du and the elastic unloading duuni (Fig. 4):

du = du + du . (2)

The ligament reduction can be approximated from the relative load drop and thus -

we can define:

(duc/1 0  (du\(3
Dg d-kdP/P mi d d-min(3)"

From Fig. 6, this is also related to the crack opening angle by

Dg 2 (COA)/cos2Oc, (4)

where 0 is the crack orientation. In addition, the above defined quantity is the

normalized compliance requirement for fracture-stable design:

Compliance of surrounding < D /0/Pmax . (5)
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The crack ductility, given in the second row, is smaller for the asymmetric case by a

factor ranging from 3.4 for the lower hardening HY100 to 1.1 for the higher

hardening A36 hot rolled steel. Notice that in the lower hardening alloys 1018 CF,

HY-80, HY-100 steel the factor by which the ductility is reduced is larger than three

L which shows also that these alloys have much larger stiffness requirements for

stability. A comparison of Dg among the alloys reveals that, in the asymmetric case,

the crack growth rate in the lower hardening alloys is about 2 times larger than in

the higher hardening alloys. In the symmetric case, on the contrary, the crack

growth rate is practically insensitive to strain hardening.

The third row is a parameter analogous to the "tearing modulus" T of Paris et

al. 141 defined in terms of the yield or tensile strength co, the modulus E and the J-

integral by:

3 E dJ
T =(6)

0. dc

To approximate the J-integral, consider the simple case of the far-field displacement

Ntaking place along a single shear band [21 and express it in terms of the shear

strength, k, and the displacement along the band u\/,

J = kuV2 ", (7)

and thus define a parameter, T*, analogous to the tearing modulus T, which allows

comparing the ductility of alloys of different strength. In terms of the tensile

strength T.S. kv/', by:

(T.S.)

In the symmetric case the expression for the J-integral, J=2ku [5] leads to an

analogous to (8) expression.
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2E/V3Dg
sym ((T.S.)

T asym is about 3 times larger for the higher hardening alloys, as is shown in Table

3.

The load-displacement curve of Fig. 4 can be described in terms of the initial

elastic compliance, the idealized initiation displacement ui, and the minimum gauge

displacement per unit crack advance (steepest slope of the falling part), Dext, given

by

_(-1 du(
D I1 (10)

D \dP/Pma mi n min7

This definition includes the effect of the compliance in the shoulders and is thus

smaller than Dg. Results for 25 mm gauge length are given in the fourth row of

Table 3. 5
Growth Displacement. The growth displacement until the fracture breaks

through the back of the specimen, u., can be found from the fracture surface

profiles. The normalized displacements during crack growth, ug/1 0 is more than 3

times larger in the symmetric than the asymmetric specimens for the lower

hardening alloys but only about 18% larger for the higher hardening A36 HR steel. '3

It is also larger by about a factor of two in the higher hardening relative to that of

the low hardening alloys.

The far-field displacement vector angle from the transverse in the asymmetric

case, defined from the slope of the transverse-axial displacement curves, is found to

be greater than 450 and larger initially in the lower hardening alloys. As the crack

grows the displacement vector becomes less axial (Fig. 7a). The final orientation 0C)

measured after fracture from the microscope plots (Fig. 5) is between 530 and 630,
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larger for the higher hardening case. The fact that the axial component of the

displacement is larger than the transverse one suggests a Mode I mixity of the local

plastic flow.

Crack direction. In the symmetric specimens the crack runs within ten degrees

of horizontal except for shear lips near the ends of the cracks. In the lower

hardening alloys, even with the symmetric geometry, the fracture turned often into

the asymmetric mode, the fracture advancing close to the 450 slip plane or, in some

cases, half of the cross section following the one and the other half following the

other slip plane. In the asymmetric specimens the crack progresses at an angle of

trabout 38-.410 from the transverse. This smaller than 450 angle was expected from

the higher triaxiality. In the lower strain hardening alloys the crack grows closer to

the 450 band, at 40°-410 from the transverse and in the higher hardening alloys at

I 380-390 (Table 3). Finally more blunting occurred with the higher hardening alloys

and in the symmetric case.

.w Load. To summarize the load performance, a parameter dealing with the

maximum load will be defined. The nominal load-carrying ability is simply the

tensile strength multiplied by the net area at the end of the fatigue crack (and

corrected by the plane strain factor). In terms of the initial ligament 10, the width w,

and the tensile strength T.S.,

Pnom - 0 w(T.S.)(2/v / ) . (11)

A load factor FL can be defined in terms of the actual maximum load Pmax as:

FL - Pmax/Pnom (12)

Table 3 also contains the load factors. They are in general larger in the symmetric

.............!.-..-...
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case, where the overall deformation is bigger, and in the higher hardening alloys. -4

The normalized load-normalized displacement (and transverse-axial

displacement for the asymmetric case) curves, obtained for the lower hardening

HY-100 steel and higher hardening A36 HR steel for both the asymmetric and

symmetric case are shown in Figs. 7a, 7b, 8a and 8b. For the HY-100 steel, notice

the sharp increase in the slope of the falling part of the load-displacement curve of

the asymmetric case relative to that of the symmetric; this is not the case in the A36

HR steel. The microscope plots for these alloys are shown in Figs. Oa, Ob 10a and

10b. In the HY-100 steel, notice the large reduction in the crack opening angle cf

the asymmetric case relative to that of the symmetric, whereas in the A36 steel the

difference in the crack opening angle between the two geometries is not appreciable.

Size effects. To investigate size effects, tests were performed in 38.1 mm. dia.

specimens of 5086-Hill aluminum and the results were compared with those from

the 12.7 mm. specimens. Table 4 summarizes the results Comparing with the data

given in Table 3 for the smaller 5086-Hill specimens, we conclude that the ductility

and the normalized growth displacement is only 4% smaller for the larger specimens

- and the load factor is slightly larger. Notice that the size effects that were predicted

in [21 are associated with a transient behavior (increasing crack advance per unit far

field displacement).

Marking the crack front. In the large 38.1 mm dia. 5086-Hill aluminum

specimens, the crack front was marked by imposing unloading-loading cycles at

selected points during crack advance. The spacing of these fatigue marks was

measured with a stereo microscope at about 50x. The corresponding displacements

were then obtained from the load-displacement curves. In this manner, points on the
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c-u curve can be accurately determined. Figure Ila and lb show the load-

S. displacement curves and in Figure 12 the corresponding crack growth-displacement

data.

1Comparing with theoretical formulations. An approximate formulation for the

accumulation of damage ahead of an asymmetric crack, based on strain increments

following a power law relationship was presented by McClintock and Slocum 12].

The crack was assumed to progress along the 450 shear band (pure Mode H) with the

far field displacement along the shear band. The initiation displacement was

expressed by:

ui ii/n p (_) n+l (13)

k 2c

where ,7c is the fracture strain, k is the shear strength, c - 0.88 for the assumed

pure Mode II and I1/ - 0.72-0.83 for n - 0.1-0.2. The initiation displacement isnd

thus of the order of the inclusion spacing (0.010 mm), much smaller than the one

found experimentally. This discrepancy is due to the blunting that occurs during

crack initiation. For a quasi-steady growth, the crack advance per unit displacement

was practically insensitive to the strain hardening exponent n and was found:

d(u/ui) n+l

d(c/p) ln[(c-ci)/p + exp(n+l)(

The above formula, for a mean inclusion spacing p = .01 mm and growth by the
ligament length of lo = 2.54 mm, gives du/dc , 0.200, which is closer to the test

data for the higher hardening alloys. Equation (14) underestimates the crack growth

rate in the lower hardening alloys by a factor of two. For the size effects, predicted

in 121, use the mean inclusion spacing of about 10 microns and find the ratio of the

crack growth rate for the large 38.1 mm specimens (initial ligamemt l= 7 .62 mm) to

that of the small 12.7 mm (initial ligament 10= 2 .54 mm) ones as
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(dc/dU)iarge Inf(c-ci)/PJlarge !n762 ."-" -- 1.20 ."-

(dc/du)smail ln[(c-ci)/p smal 1n254

Thus the resulting from the integration of stationary crack fields [21 increasing crack

advance per unit displacement (associated with the strain distribution flattening out

in front of the crack at a decreasing rate) leads to larger size effects than those

experimentally observed. Notice, however, that a solution based on a superposition

of stationary singularities does not take into account the hardening of the material

left behind the growing crack. More realistically, a corresponding fully-plastic,

incremental plasticity solution should be obtained for a growing mixed mode crack.

To study the directional effects, an incremental solution was developed in

chapter 2. The far field displacement was again assumed to be along the shear band.

At the initiation and at each growth step several sites around the current crack tip

were considered and the crack was assumed to advance to the direction requiring the

least far-field displacement to reach critical damage. The program predicted that a

smaller strain-hardening coefficient would cause the crack to grow closer to the shear

band and this was confirmed from the experimental results. It also gave 6-15%

higher crack growth rates (the larger increase with less hardening) than the pure

Mode II [2] solution and thus closer to the experimental findings. The effect of strain

hardening was very small, although it was correctly found that a lower strain

hardening increases the crack growth rate. The 450 shear band gave however a

crack angle of 210 from the transverse. The experimentally found angle of

approximately 400 from the transverse can be obtained by assuming a 650 shear

band. Notice however that the displacement vector angles (Table 3) suggest that we

cannot assume the far-field displacement taking place along a 450 shear band as this

model did.

-o1

........... -
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CONCLUS IONS

In asymmetrical configurations with only a single shear band, (which can occur

with cracks near welds for example), the crack progresses into prestrained material

instead of the new material between the two shear bands of the symmetric case.

Experiments on six alloys have shown that the resulting reduction in ductility is

primarily dependent on the strain hardening exponent. In the lower hardening alloys

the crack ductility, defined as the minimum displacement per unit ligament

reduction, in the asymmetric case-is less that a third that of the symmetric one but

in the higher hardening alloys the reduction is no more than 20%. The high crack

growth rate of the asymmetric configuration leads also to correspondingly higher

stiffness requirements for fracture-stable design. The initiation displacement is not

much different and a fair amount of blunting was observed during initiation for both

3 cases. The crack growth direction is 38A41o from the transverse (instead of 450) as

V -. expected from triaxiality, the higher angles with the smaller strain hardening. The

displacement vector is at about 519-63 from the transverse. Angles greater than 450

I. suggest a Mode I component, even with asymmetry.
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TABLE 1

Ambient temperature mechanical properties of the six alloys tested.

Yield strength Tensile Hardness Reduction
Strength HBN in area
(T.S.)

MN/m2  MN/m2  kgf/mm2  Percent
Alloy

1018 steel 586 600 157 49.3
cold finished
0.15-0.20% C,
0.60-0.90% Mn

1018 steel 321 355 101 61.7
normalized
at 1700°F
in argon flow

A36 steel 281 348 105 61.1
hot rolled
0.29% C max,

0.60-0.90% Mn

HY80 steel 587 692 175 69.9
0.18% C, 2-3.25% Ni,
0.10-0.40% Mn,

0.15-0.35% Si

HY100 steel 693 772 195 68.6
0.20% C. 2.25-3.50% Ni,
0.10-0.40% Mn,

0.15-0.35% Si

5086-Hlll 210 264 70 45.8
aluminum
4% Mg, 0.4% Mn.

0.15% Cr

' ,."-.. ..... "... "'- .. .. . .-. .. ".. - ". -''- .. "..."-"".'-"..."... . . .- .-.
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TABLE 2

Stress-strain equation parameters.

a n
'S MN/rn

Alloy

*1018 steel 796 0.05152 0.10
cold finished

1018 steel 818 0.01718 0.23
normalized

A36 steel 697 0.02628 0.24
hot rolled

*HY80 steel 1107 0.00702 0.12

*HY100 steel 1180 0.00488 0.10

5088-Hlll 589 0.00554 0.19
- aluminum
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TABLE 3 - TEST RESULTS (Ligament 10=2.54 mm)

Alloy 1018 CF HY80 HY100 1018 norm. A36 HR 5086-Hlll

INITIATION

Idealized initiation displacement, u i/J (Fig. 4)

* Sym 0.072 0.108 0.083 0.348 0.172 0.179
Asym 0.073 0.110 0.100 0.252 0.206 0.161

.. DUCTILITY MEASURES
Crack Growth Ductility. D 9 eq. (3). (du /d)min

. Sym 0.233 0.320 0.354 0.258 0.192 0.166

Asym 0.072 0.096 0.105 0.215 0.181 0.108

Modified Tearing Modulus, T*. eqs. (8). (9). X(E/T..S.)D
Sym 90.9 107.9 103.8 144.3 108.8 43.6

Asym 14.1 16.2 15.8 57.6 51.3 14.2

Min. extension rate, D ext eq. (10). c__(du/dOmin (25mm gauge length)
Sym 0.199 0.285 0.299 0.237 0.165 0.120

Asym 0.046 0.060 0.061 0.195 0.154 0.083

DISPLACEMENTS from fracture profiles. Fig. 5
Initiation Displ., ui/10
Sym 0.021 0.051 0.051 0.214 0.080 0.079
Asym 0.033 0.072 0.052 0.152 0.110 0.073

Growth Displ., u /I
Sym 0.262 0.362 0.404 0.317 0.254 0.278

Asym 0.084 0.115 0.125 0.230 0.216 0.138

Displacement vector angle,
Sym (; 9 0O)
Asym 51 55 550 630 1 5

CRACK DIRECTION, 6c= ( Ou + ) / 2 (Fig.5)
Sym (, 0° )

Asym 410 400 400 380 380 400

LOAD FACTOR, FL=P .X/ w(T.S (2/-)
Sym 1.02 1.16 1.15 1.29 1.21 1.19
Asym 0.88 1.05 1.06 1.15 1.20 1.12

* ILffi, K -. '\~&4K %....
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TABLE 4 - RESULTS FROM LARGE SPECIMENS (Ligament L1=7.62 mm)

Alloy 5086-Hlll Aluminum

-. INITIATION

Idealized initiation displacement, uiI/[0 ""
Sym 0.081

. Asym 0.072

DUCTILITY MEASURES
Crack Ductility. D .g
Sym 0.165
Asym 0.105

Modified Tearing. Modulus, T*
Sym 43.4

., Asym 13.8

o Min. extension rate. Dext. for 25 mm gauge length
, Sym 0.118

Asym 0.080

DISPLACEMENTS from fracture profiles
. Initiation Displ.. u /io

Sym 0.026
Asym 0.024

- Growth Displ.o u /10.
Sym 0.280
Asym 0.133

Displacement vector angle. 
Sym
Asym 570

CRACK DIRECTION. 00
Sym ( 0)
Asym 400

LOAD FACTOR, FL
"Sym 1.21
Asym 1.18

-; " " -' .' -' .' ' ' " , " ." ' -" " i'_ " , ." , " ' _ ' " . , " ." " .: " " / , " -_ T ' ' -, .: " ; -, • .) -" , ' " " " -" - -, -" -" " " " o '/ -" " -" . : " • i '
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1.5 HY-100 .Steel
o Asymmetric

1.0

0.5

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Normalized Axial Displacement, u0 /2 0

0.10

e 0.I5
C-
.=0.1I0

0S

Z 0.05 0.10 0.15 120 0.25 0.30 0.35
Normalized Axial Displacement, uG/2o

Figure 7a. Test Data for the HY-100 Steel Asymmetric Specimens.
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(.5A36 HR Steel
Asymmetric

V
1l.00

al0. 0.2 a.3 0.4
Normalized Axial Displacement, uQ/ 4 0O

V4.

* -4

Eo

0. 1 0.2 0.3 0.4
Normalized Axial Displacement,, uc/Z 0

Figure 8a. Test Data for the A36 Hot Rolled Steel
Asymmetric Specimens.



61

0

C%J

N4-

0M

0

~co .

W 0%

wIoz

ob



62

xx

00
x~

4ft
-6

*4

-C x
0w 28ot4l 0Cl



63

:1p . Xe
X

K

S K
S 0

(j~bm. K 0
S

K

0 E
I ~

K S

= K S

K 0

S S

0
0

U E. -

0
- l~4

S
U -
C -
0 ow

(\J~
* U, U0~*0

b-Cj~
0

- -

I 0
c'4 -

*3EtII~~'~,OAaemfi Iflav~

t

p...



64 -

IAm

X

Xe
x 0

zE 0

CO x

C Sj

co 0
6.

clio

wtm aU04si 101C



65

00

ro )
x

C 0
XE

0

F C"j

5d 0)

'4-4

ccli

ww lauoplpID-o



p.V.-.,v-- T

66

5086-Hil Asymmetric
S1.50-

o0-

N.

0L

*0

0.5

z

0435 WO1 015 0.20 0.25

Normalized Axial DisPlacement, uai/ Q

0.20

5086-HIll Asymmetric

oi~ 0.15-

O - .9

0.50.10.50.0a.2
No m lie Axa Dslce et _.

Fiur IlNetDtOo h 3. mda 06HI

asmercseiessoin0h nodn-odn

ponsf.0akigte1rc fot



67

0l)

rqfto

FE c
Ul

4-4 c

co = 9Co
cnN 0 0

-0 . +3

a 0

(0 93
Sca

o No

000

0 4) 1

W. 0

bo

W'OUd/d 'pO0-I P9ZI wUON



? .iL U0.p, 76-7 , ,

68 "a'
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Figure 12 Crack advance-displacement data for the specimens of
Figs 11a. 11b The fatigue marks provided the
crack positions
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APPENDIX

FRACTOGRAPHIC OBSERVATIONS IN ASYMMETRIC AND SYMMETRIC
FULLY PLASTIC SPECIMENS.

Observations of ductile fracture suggest that it results from a multi-step

process initiated by the cracking of inclusions or the separation of inclusion-metal

interfaces, followed by void growth and coalescence. The coalescence has been

observed to occur on a plane of high shear stress, giving elongated dimples form, or

on a plane normal to the direction of maximum tensile stress, giving equiaxed

dimples [1]. Furthermore, fracture surfaces have been studied to identify and

classify the characteristic surface markings that are produced by the deformation

mechanisms [2].

STests on symmetric and asymmetric specimens were performed on six alloys for

which X-ray spectrography gave the prredominant inclusions: 1018 cold finished steel

with Si-bearing inclusions, 1018 steel normalized at 17000, A36 hot rolled steel with

MnS inclusions, HY80 steel with Al-bearing inclusions, HY100 steel with MnS

inclusions and 5086-Hlll aluminum with Fe-bearing inclusions. These alloys can be

separated into the lower hardening ones (1018 cold finished, HY80 and HY100 steel)

and the higher hardening ones (A36 hot rolled, 1018 normalized steel). In this work

the microscopic features of the fracture surface for the two geometries are

quantitatively compared.

In general, for a given crack tip opening displacement, the amount of crack

extension can be separated into two components: a sliding off component and a

fracture component. To quantify the ductility, as observed from the fractographs,

an "apparent crack ductility", DAC, observed fractographically, can be defined as
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the ratio of that part of the projected crack area exposed by pure plastic flow to the

total projected area, including that exposed by fracture. For instance, with n

parabolic dimple markings per unit area, each having tip radius r, the apparent

crack ductility may be found by assuming that the area rr2 of each parabola opens

up before arrival of the crack front, and the balance of the surface is formed by

". sliding off. Then DAC - 1 - nirr2 . Due to the difficulty in measuring these

quantities, only rough approximations for DAC can be obtained. Table 1 shows these

approximate findings (estimated from the lower flank fractographs, surface normal to

the beam) for the lower hardening HY100 steel and the higher hardening 1018

normalized steel from the asymmetric and symmetric specimens which are more

ductile. These results are another manifestation of the fact that higher hardening

alloys are more ductile than the lower hardening ones in the asymmetric

configuration but almost equally ductile in the symmetric one.

TABLE I - Apparent Crack Ductility DAC
st Am r0

,'-"Y H-100 steel Asymmetric " 0.51-.

HY-100 steel Symmetric 0.64

1018 normalized steel Asymmetric 0.68
1018 normalized steel Symmetric 0.67

-, Fig. 1 shows micrographs of the upper and lower flanks for 5086-Hlll

aluminum with different degrees of void formation and shearing. Fracture is more

*) "shear type" in the lower flank, indicating a larger sliding off component in the

crack extension. This suggests a macro-mechanical model for crack growth by

-" combined void growth and sliding off, where the lower flank slides off along the

*. upper slip plane and the upper flank slides off along the lower slip plane by a smaller

amount. Thus the lower flank consists of a larger amount of "sheared" material

I" ..I
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than the upper.

A qualitative understanding of the differences in ductility from the

fractographs can be obtained by comparing in Fig. 2, the micrograph for the less

ductile HY100 asymmetric specimen with the corresponding one for the more ductile

higher hardening 1018 normalized steel (larger and less elongated voids).

.* To compare the symmetric and asymmetric cases, consider Fig. 3 which shows

micrographs of the low-hardening 1018 cold finished asymmetric and symmetric

specimens. This alloy shows a substantial reduction in ductility in the asymmetric

configuration. In the asymmetric case the fracture is more the "shear type" with

voids elongated in the direction of crack growth; in the symmetric case the fracture

is more the "normal type" with equiaxed voids. In the high-hardening A36 hot

vrolled steel, with small differences in the ductility between the asymmetric and the

symmetric cases, the corresponding micrographs (Fig. 4) are not much different: the

fracture in the asymmetric case is almost as much the "normal type" as in the

symmetric case.

"Zig-zagging" of the fracture surface is a characteristic of some symmetric

specimens, where two slip planes are active and the crack grows by alternating

shear. Fig. 5 shows this for the 5086-Hlll aluminum. The wavy (zig-zag) region

followed the fatigue precrack. In the end the fracture turned into a shear lip.

Symmetric specimens in the lower hardening alloys often turned into asymmetric

ones, following only one slip plane. In some instances, half of the specimen followed

the +450 slip plane and half the -450 plane.

In conclusion, fractographic observation of deformation during crack extension



* €,, -,,, ,, 7;' WY . W , ,:L ,,- U TX- 7 7,7 , , -, -

72

in the asymmetric specimens suggests a mechanism by fracture followed by a

different amount of sliding off in the two flanks. The usual symmetric case suggests

alternating shear and fracture and in some cases the macroscopic surface is

characterized by zig-zagging. Noteworthy features in the asymmetric specimens are

the "shear type" fracture, more evident in the lower hardening alloys and a larger

amount of sliding off in the lower flank. The symmetric specimens, with the larger

ductility, show in turn the "normal type" fracture with more equiaxed voids than

the corresponding asymmetric specimens.

REFERENCES
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Figure 1 Fracture surface of 5086-Hlll aluminum asymmetric specimon
showing the difference between the two flanks
(a) Upper flank, (b) Lower flank with more shearing
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Figure 2 Fracture surface of the upper flank of asymmetric specimens in

"'.(a) HY-1O0 steel (lower hardening. less ducti le) -i

""'i ~ (b) 1018 normaizzed steel (higher hardening, more ductile)"1
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b A.otw
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Vb

Figure 3 Fracture surface of 1018 cold finished steel (lower
hardening alloy). Ca) Asymmetric, M Symmetric Distinctly

more ''shear type'' fracture in the asymmetric, less ductile case
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Figure 4 Fracture surface of A36 hot rolled steel (higher hardening

alloy). (a) Asymmetric. b) Symmetric. without appreciable

difference Both cases have almost the same ductility
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APPENDIX

PON FRACTURE CHARACTERIZATION

* "In this section the concepts that are commonly used in characterizing fracture

are discussed.

Growth Resistance. Representing ductile crack propagation has been based on the

introduction of d(COD)/da [1,2,31 and the tearing modulus T or dJ/da concept [4].

In general, past work has implied that the results are all charactrerized by a common

triaxiality (or are independent of it) whereas in fact both d(COD)/da and T should

depend on triaxiality, since both cleavage and hole growth do. Analogous to the

above measures of growth resistance are the previously defined crack ductility

Dg--=ducP/dl or gauge displacement per unit reduction in ligament Dext=du/dl, and

the modified tearing modulus T* to include asymmetric cracks. Table 1 gives some

values of d(COD)/da and T for some common tests. They can be compared with the

much lower values of about 0.010 for D and 0.060 for Dext and of about 15 for T*

found in the asymmetric low hardening tests. Symmetric tests, on the other hand,

show values of D and Dext close to those in Table 1. It may also be that an

asymmetry, introduced in the bending specimens could result in values of d(COD)/da

below those of the symmetric bending specimens.

J-controlled growth. In large-scale yielding the HRR singularity is embedded in a

plastic zone that extends throughout the remaining ligament. J-control depends on

material and crack geometry (McMeeking and Parks [71). The finite element study

of the asymmetric specimens showed that stress and strain fields are consistent with

the HRR singularity at initiation. The COA (crack opening angle) concept has also

been alternatively used to characterize growth. Shih [1] in his experimental study

found that the COA appears to be constant over a larger range of growth than the

C.
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tearing modulus. Instead of dJ/da, Shih [1] suggested characterizing growth by COA.

A condition in terms of a tearing modulus T6 based on the COA (=d6/da):

d6 ET6 ---- >> I

V da o0

In other words the COA, d6/da, must be large compared to the yield strain, O'0/E.

In similar fashion, the tearing modulus T should be much larger than unity. How

large T or T must be for a J-controlled or COA controlled growth is yet to be

explored. COA's of more than 10°-200, were reported in the COA-controlled tests in

1.

Stability. Stability depends again on triaxiality and geometry. Paris et al. [5]

developed instability relations for fully-plastic (nonhardening) conditions including

some common test piece configurations. For example, in the double edge cracked

strip in tension the imposed constraint leads to a critical value of T for instability six

times that in the center cracked strip in tension. In the expression for the 3-point

- bending case the remaining ligament size, I, comes into the instability criterion, so

" that if I is small enough in the first place the situation remains stable throughout.

In conclusion, single-test characterization of crack propagation can apply only if 1

crack extension occurs in a certain mode and configuration. Instead of a single

* parameter representation like d(COD)/da, a set of d(COD)/da, each referring to a

certain mode and triaxiality, could conceivably describe adequately the material

. resistance in crack propagation. For instance, asymmetric (mixed mode I and II)

fully plastic configurations in low hardening alloys have been found less ductile than

the corresponding symmetric singly grooved unconstrained tensile specimens.

Extended work could invlolve studying the effect of triaxiality by performing

constrained asymmetric tests. For example, tensile testing on doubly-grooved

specimens with the asymmetry introduced through varying notch angles and

S- - .- . .. - ..-
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positions; or wedge-splitting of a doubly grooved specimen; or ductile fracture under

asymmetric bending with the asymmetry introduced not only by specimen geometry

but also through shear loading.

REFERENCES

1. Shih C.F., deLorenzi H.G., Andrews W.R. "Studies on Crack Initiation
and Stable Crack Growth", Elastic-Plastic Fracture, ASTM STP 668,
pp. 65-120 (1979).

2. Dawes M.G. "Elastic-Plastic Fracture Toughness Based on COD and J-
Contour Integral Concepts", Elastic-Plastic Fracture, ASTM STP 668,
pp. 307-333 (1979).

3. Chipperfield C.G., Knott J.F. and Smith R.F. "Critical Crack Opening
Displacement in Low Strength Steels", Third Intern. Congress on
Fracture, Munich, April 1973, paper 1-233 (1973).

4. Paris P.C., Tada H., Ernst H. and Zahoor A. "Initial Experimental
Investigation of Tearing Instability Theory", Elastic-Plastic Fracture,
ASTM STP 668, pp. 251-265 (1979).

5. Paris P.C., Tada H., Ernst H. and Zahoor A. "The Theory of Instability
of the Tearing Mode of Elastic-Plastic Crack Growth" Elastic-Plastic

PFracture, ASTM STP 668, pp. 5-36 (1979)

6. Green A.P. and Hundy B.B, J.Mech.Phys.Sol., 4, pp. 128-144 (1956).

7. McMeeking R.M. and Parks D.M. "On Criteria for J-Dominance of
r- Crack-Tip Fields in Large-Scale Yielding", Elastic-Plastic Fracture,

*:. ASTM STP 668, pp. 175-194 (1979).

8. Hutchinson J.W. and Paris P.C. "Stability Analysis of J-Controlled
Crack Growth" Elastic-Plastic Fracture, ASTM STP 668, pp. 37-64
(1979).

r'

V

xx*



31

TABLE 1
d(COD)/da and T for some common tests

Material Test d(COD)/da T Ref.

A533B steel compact 0.205 [I]
Y.S. = 443 MPa tension 4T
T.S. = 574 MPa

ASTM A471 rotor steel 3-point bend 36 1 [4]
Y.S = 931 MN/m 2  8 x I x 0.5 in
T.S. = 1022 MN/m2  Notched and Fatigue ..

precracked, a/w =0 502

Free-cutting 3-point bend 0 300 [3]
Mild steel fatigue precracked

BS 4360 Grade 50
steel
Y S = 359 MN/m2  3-point single 0.250 [2]
T.S. = 526 MN/rm2  edge notch bend

Asymmetric and Symmetric tensile tests.
1018 CF steel Asymmetric 0.072 (0,046)*

Y.S. = 586 MN/m
2

T.S = 612 N/m2  Symmetric 0.233 (0.199)

HY80 steel Asymmetric 0 096 (0 060)
Y.S. = 587 MN/m2

T S. = 708 MN/M2  Symmetric 0.320 (0 285)

* values in parentheses are based on gauge extension

',%
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CHAPTER FOUR

SHEAR-BAND CHARACTERIZATION OF MIXED
MODE I AND II FULLY PLASTIC CRACK GROWTH

TABLE OF SYMBOLS

f amount of fracture

st  amount of slip along lower slip plane
su  amount of slip along upper slip plane
Of fracture plane.sf lower slip plane

0 upper slip plane
-. " SU

X fracture parameter (=f/su)
shearing parameter (=s//sprojected lower flank length

I projected upper flank length
1 U

1 0 initial ligament0 upper flank angle from transverse

01 lower flank angle from transverse
.crack opening angle

u yaxial displacement
- displacement vector angle from transverse

" u upper back angle
lower back angle

-u strain for upper shearing

strain for lower shearing

ABSTRACT

Asymmetic fully plastic specimens give higher crack growth rates and thus

smaller deformation to fracture than the corresponding symmetric specimens. A

macro-mechanical model of crack growth by combined fracture on one plane and

sliding off along two others describes, for this idealization of the phy-ical

mechanisms, the ductile crack growth for the general mixed mode 1, H case. The

analysis allows determining the independent physical parameters (shear and cracking

.

..

-. . . .. . . . . . .
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directions, relative amounts of cracking and shearing) in terms of the observable

quantities of the macroscopic fracture (flank angles, flank lengths, back angle).

INTRODUCTION

In studying fracture there is a need for understanding and characterizing the I

deformation and crack growth in the fully plastic range for both the usual symmetric

. case and for the asymmetric case shown in Fig. 1. The asymmetric configuration

may occur near welds due to the constraint of a heat-affected zone or due to some

* geometric asymmetry, such as near-by shoulders. These cracks exhibit less ductility

• .than symmetric ones, because the crack is advancing into prestrained and damaged

material rather than into the new material encountered by a crack advancing

* between two symmetric shear bands.

The nonhardening rigid plastic flow field of Fig. lb consists of a single slip line

.-*- at 450 . Strain hardening, however, causes the deformation field to fan out. It also

leads to adding a Mode I component, as suggested by the direction of the far field

displacement being more axial than 450 . To account for the presence of the Mode I

component and the spreading out of the deformation in the more general asymmetric

case we assume two slip planes at arbitrary angles.

Crack growth is a mixture of sliding off and fracture. In the general case it

may be idealized by assuming cycles of first sliding off on the upper slip plane, then

on the lower, and finally fracture on possibly a third (Fig. 2). The combination of

cracking and sliding off gives the two new surfaces of the macro fracture. These

define the crack opening angle and the crack direction. In the symmetric case the

two slip planes and the fracture are symmetric. These ideas will now be developed

-. . . . . . . . . . .- . . . .
-. *.
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quantitatively, giving a description of the mixed mode ductile crack growth based on

an idealization of the underlying physical mechanisms. The single-band pure Mode II

asymmetric and the pure Mode I symmetric behavior can be obtained as limiting

cases.

ANALYSIS

Consider lower and upper slip planes at angles O. and Os (Fig. 2). The upper

crack flank is formed by sliding off along the lower slip plane through a distance s¢ at

0SI, combined with fracture over a distance f at an angle 0,. The lower flank is

formed by sliding off along the upper slip plane at OSU and the fracture f at Of. A

cracking parameter X=f/sU and a shearing parameter C=sl/su can be defined. As

independent physical variables consider the cracking and shearing parameters X and

!, the fracture angle 0t and the sliP angles Osj, u" The limiting case of Mode I, with

two symmetric slip lines corresponds to 0f=O, OsU=-O, sp=s u and the limiting Mode
", H case of slip on a single plane corresponds to s1=O.

Observable quantities that allow solving for the above physical variables turn

out to be the angles between the faces of the crack and the transverse direction 0

Op the transverse components of the crack flank lengths after complete separation,

normalized with the initial ligament, lu/ 10, 11/1o, and the angle that the deformed

upper back surface makes to the load axis, I. (Fig. 3). Other dependent variables of

interest are the crack opening angle (COA), the total axial displacement per initial

ligament uy/1 0, the orientation of the displacement vector 0, and the angle that the

deformed lower back surface makes to the load axis 0, (Fig. 3). These can be

deduced from the analysis and observed from the tests, except for the lower back

angle which is suppressed by the shoulder.

= •*. •. .. .-- .. .,.. -. . . . . . . . . . . ... . ..-- , " "" -%
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The orientations of the crack flanks 0u and 08 from the transverse direction can

be found from Fig. 1:

f sinOf + su sinOs X sinOf + sinOsu81 tan "1  f"-- tan 1  (1

f cosOf + su cosOsu X cosOf + cosOsu

The crack opening angle is

COA =w =0 1 ~ (3)

Fig. 4 shows the crack opening angle as a function of X and with the slip angle

difference Osu-0s, as a parameter. An increasing cracking ratio X=f/su or shearing

ratio C=s1Isu leads to a decreasing COA (notice that the COA is more sensitive to X
* than C). A larger slip angle difference, 0su-O, , leads to a larger COA. Large slip

angle differences represent spreading out of the deformation and can simulate the

- effect of a high strain hardening exponent which has been found experimentally to

result in a bigger crack opening angle. s

The original ligament thickness, It,, projected onto the transverse direction, i-

reduced to zero by the cracking f and by the sliding off s( and su (Fig. 2):

f0 f scosO f + s c cos0f + c cosOSs. (4).

The corresponding axial extension is

CO = sinO - t sinO (5)

From (4) and (5) the deformation ratio, defined as the total axial displacement per

initial ligament, which is a measure of the ductility, is fousd to be

T " o

................................................................................................. slip
~...................et predin ot o .th .deoratin.ad .... imu .teth
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U_ sinesu - sins(-- - (6)
10  X cosO. + cosOsU + cosOs5

The deformation ratio behaves as the COA, being higher for a lower X or and

smaller for a larger slip angle difference osu-051. Fig. 5 shows an example of variation

of u y/10 .

An expression for the flank lengths is desirable because the final projected

,- flank lengths per initial ligament can be measured. The projected upper and lower

flank lengths, I and 11, are given by

=f coser + st cos 8 l . (7)

11= f cosef + s. coso 0 .• (8)

Using (4) and substituting the expression, for the cracking and shearing ratios X and

Sgives

. u_ X cosof + cosOs5

1" X cos t + cOSsOS (9)

01 X cosof + cOosu

(10)10: to cosof + coso", + coso ,

_The lower flank ratio 11/10 decreases with an increasing shearing parameter in

contrast to the upper flank ratio 0/10 which increases (Fig. 6). The amount by

which the upper back surface is drawn in, projected along the transverse, is (Fig. 2)

t u = s u cos 0su • (11)

A "thinning" ratio for the upper surface, t./10 , can be defined in terms of the

independent parameters by noting that
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:1t = 'U0- (12)

For the lower surface similarly,

t 1/ 10 = I- it/l 0  (13)

Of interest is also the orientation of the displacement vector from the

transve:se, 4. In terms oi the flank lengths and angles, it can be found from

S= tan 1 (l/1 ° ) tan01 - (I/) tan0 (4tan o (14)..

The back angle, defined as the angle that the deformed back surface makes to

the load axis, can be observed macroscopically. For the upper slip line from Fig. 2

ds cosOsu3 u = t a n "I 5 ):
U [df sin(Ou-Or) + ds, sin(Osu-OS)]/cosOsl + ds u sin0s

Substituting. the expressions for the cracking and shearing ratios we can write
coOssu

)3= tan- X oO s - + - + (16)
[,;: /u = ta'l X(CS~f ta~su -sin~f) +t (cosOstns sinOs/) +I sinOsu ({):'.

Similarly for the lower surface

"a"d ds cosOsi"" '31 -- tan'l 17

df sin(O8 dOr) + ds. sin(Os-su)J/cosOs1 + ds, sinOt (7

or

=taig noO 1  (18)
X(cosOf tanOs1 - sin~r) + (cosOsu tan0s, - sinOsu) + sin0s.

There are five independent macroscopically observable parameters: the flank

angles OU, O, the projected flank lengths per initial ligament, u/o , /lo, and the back

angle f3u" Equations (1) for OW (2) for O, (9) for lu/lo, (10) for I/lo, and (16) for Ou

give the corresponding physical variables X, C, O st, Osu, as described in the

Appendix.
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Finally, an expression for the shear strain can also be found. It can be

expressed in terms of the slip and the normal separation between corresponding slip

planes. For the upper shear band, su,

"= S / [f sin(OSU-0) + st sin( 5 -08t)] -

= 1/ [x sin(Osu-0 f) + sin(0s-0sl)] (19)

Similarly, for the lower shearing, s,

"Y= s /[f sin(OsrOf) + su sin(sr'su)] "-

= / [X sin(0 -A) + sin(OsrosI]. (20)

APPLICATION TO TESTS

Tests were performed on 12.7 mm dia. round bars of six alloys: 1018 cold

finished, 1018 normalized, A36 hot rolled, HY-80 and HY-100 steel and 5086-HIll

aluminum in both the asymmetric and symmetric configurations. The alloys tested

can be grouped into the lower hardening ones (1018 cold finished, HY-80 and

HY-100) and the higher hardening ones (A36 hot rolled, 1018 normalized). The lower

hardening alloys exhibited a significantly lower ductility in the asymmetric

o. configuration than the symmetric; the higher hardening alloys showed only a small

reduction. The profiles of the fracture surface and the deformed back surface were

plotted with a travelling stage microscope to obtain the flank lengths, the flank

angles, the back angle, the displacement to separation and the orientation of the

displacement vector.

To apply the above model to the tests, the projected crack length ratios Vu/10,

11/1 for the upper and lower flanks and the flank angles 0, O1 were measured from

L
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the profiles of the fracture surface. In addition the back angle for the upper surface

13U was measured from the microscope plots of the back surface. The projected

length ratios depend on the strain hardening exponent, being smaller for a higher

strain hardening. These quantities were used in equations (1), (2), (9), (10), (16) to

yield the cracking parameter x=f/su, the shearing parameter =s/su, the slip

angles 0., and %, and the fracture angle Of. The axial displacement uY/10 and the

orientation of the displacement vector 0 can also be obtained and compared with the

test data. Results are shown in the tables at the end of this chapter. For the

asymmetric specimens the shearing ratio C is found to be about 0.5 indicating

*" shearing in lower flank about twice that in upper flank. SEM fractographs have

confirmed that the lower flank shows indeed more "shear type" fracture than the

upper one (chapter three). The slip angle difference Osr~su is a measure of the

spreading out of deformation and is found to be 40-60 in the high hardening alloys as

opposed to 1°-20 in the low hardening ones. The cracking ratio X is a measure of the

relative amount of fracture and sliding off and allows defining an comparing with the

'apparent crack ductility", DAC, as the sliding off to total area. Thus,

In upper flank DAC,u = sil(f+s) - I/(X/ +I)

In lower flank DAC,- = s,/(f+su) - I/(x+I)

A smaller cracking ratio means higher ductility. In the low hardening alloys the

cracking ratio X is smaller in the symmetric case, whereas in the higher hardening

alloys it is about the same in both the symmetric and asymmetric configurations.

The cracking ratio X in the higher hardening asy"nmetric specimens is also smalb.kr

that of the low hardening asymmetric ones.

The Mode I symmetric case corresponds to the limit of 0 s--Osu , Of-=O, and

A --- - .. - i
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=sl/su=l. Results are also shown in the tables at the end of the chapter. The

projected flank ratio l./1o--1/1o and the flank orientation 0,=-0, were measured to

give the cracking ratio X and the slip angle 0.. As dependent variables, the

4. displacement to separation uy/10, and the back angle 'Pu=-fl can be found. The

displacement is more than twice that of the asymmetric case in the lower hardening

HY-100 steel. Fig. 7 shows the variation of the deformation ratio uy/1. and the

crack opening angle w vs. the cracking parameter X with Os=Osu=-Osl as a

parameter.

CONCLUSIONS

In asymmetrical, singly grooved, fully plastic tensile specimens the crack

progresses into pre-strained material. This results in less ductility than in

symmetrical specimens where the crack grows into new material between two shear

bands. A macro-mechanical model for crack advance by sliding off along two slip

planes and fracture in the asymmetric specimens gives the independent parameters

(shear and cracking directions, relative amounts of cracking and shearing) in terms of

the observable quantities of the macroscopic fracture (flank angles, flank lengths,

back angle). This two slip plane model accounts for the presence of a Mode I

component (far field displacement more axial than 450) that was experimentally

confirmed in the asymmetric case. Higher hardening alloys are found to exhibit more

thinning of the ligament (hence smaller projected length ratios), a larger slip angle

difference, indicating more fanning out of the deformation and a bigger sliding off

%: component. The analysis, based on an idealization of underlying physical

mechanisms, describes the deformation that leads to a larger crack opening angle

and displacement to separation in the higher hardening asymmetric specimens

relative to the lower hardening ones as well as the symmetric specimens relative to

.. . . . . .



the asymmetric ones.
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APPENDIX

The problem is to determine X, , Of, Os1, Osu from the observable quantities 0,

Ou' 11/10, u/o'/ " The relevant equations are summarized:

B= tan-1 X sinf + sinOsu (21)
X cosO + cosou2

tan' 1 X sinwr + sin 0s•-0 = " " (22)

1u x C~X cosof + 
(cos2s311 X cosOf + COsOsu.-- , = ,(23)

• .. io ) cosOi + cos0 +  c SOsu

0 8L
X cos~f + cos , (24)

1 X Cosf + COO + cOS0su

#= tan'1  (25)
X(cosOf tanOsu - sin0f) + O(cosOs tan0Os - sins) + sin(su

For convenience define the upper thinning ratio from (24)

cosO.0Stu/1o = I -*1 = cos - (26)
X cosof + cosOs + cO(2su

o' . Dividing Eqs (21)-(25) by cos0s, leaves them in terms of four parameters, (A, B, C, D

*N defined in the following) plus tan0u that can be solved from the observed variables.

The first is found by dividing (23) by (26):

, %" - c o s O f

'"A = 1 1/tu  -1 . (27 )

Dividing (23) by (24) and introducing A from (27) gives

,6 - cO S0s1
-"B = -(S 1 /11) (A+1)- A (28)

cos stu

Introducing (27) into (21) and rearranging,

y sinOf
C =- = (tanO)(A+) - tan0su . (29)

coS~su

Now introduce (27), (28), and (29) into (22)

* * -. .S o. o.- • *. . ° . . .S * . ,.
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tsinO~1 _

D (tanOu)(A+B) - C . 30)
cos 0

SU

From (25) and the above definitions of A,B,C,D,

tan$,~ 1 / (A+B+1) tan05 u - (C+D)] (31)

From (30) C+D of (31) is given in terms of observed variables. Solve for0

I + (A+B)tanflu tanOu
tan0 = (32) -

tanOf. C/A , (33)

and OS from (28) and (30):

tanO~s, D/B. (34)

Then X is determined from (27) by using the already determined values or in (32)

and of 0~ in (:13)

X= A cos05U/cosot, (35)1

and similarly is found from (28) by using the values of 0 from (.32) and 0~ from

(3-4)

=B cos0su/cos051 . (36)



94

TABLE I
Deformation of singly-grooved
asymmetrical specimens

Alloy HY-100 steel 1018 normalized
(low hardening, n=0.10) (high hardening, n=0 24)

Observations

Projected upper flank 0.820 0.750
ratio, Iu/ 0

Projected lower flank 0 900 0.870
ratio, 1/1

Upper flank angle, 390 360

0 41 000

Lower flank angle, 410 420
0 01

Upper back angle, 0u 140 130

Corresponding slip and fracture parameters

Slip angle 0sl 530 520

P Slip angle 0 540 580

Cracking angle 0f 370 310

Cracking parameter X 2.912 1.518

Shearing parameter 0 536 0 445

Dependent variables deduced gauge deduced gauge

Growth Displ. ratio, 0.118 0.115 0 238 0.230
u Y/ 1 0

Growth displ. vector 560 540 600 600

angle from transverse

.......................................

. . . . . . . . . . . . . .
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TABLE 2
Deformation of singly-grooved
symmetrical specimens

Assumed 0s=0 su=-0 -Sl/Su=l. Of=0 "

Alloy HY-100 steel 1018 normalized

Observations

Projected flank 0.780 0 740
ratio, lu/10=11/10

Flank angle. 140 120

S01=- 0 u

Corresponding parameters

Slip angle 0s  410 310

Cracking parameter. 1 907 1.579
x

Dependent variables deduced observed deduced observed

Growth Displ. ratio, 0.390 0 404 0 315 0 317
*uV/I 0

0 0 0l 0
Back angle. 120 13 19" 150

u

2-.
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Deformation of singly-grooved
asymmetrical specimens

Alloy: 1018 CF steel HY-80 Steel

Observations

Projected upper flank 0.890 0.850
ratio. /10

Projected lower flank 0.960 0.930
ratio, V1/1o

Upper flank angle. 400 390
. Ou

Lower flank angle. 410 410

0

Upper back angle. PU 130 120

Corresponding slip and fracture parameters

Slip angle 0i 500 520
Slip angle 0. 510 540,!I

Cracking angle O 390 380

* .. Cracking parameter X 6.335 3.822

Shearing parameter 0.354 0 440

Dependent variables deduced gauge deduced gauge

,_. Growth Displ. ratio. 0.088 0.084 0.120 0.115
U /10

0 0 
y/

I . Growth displ vector 510 520 560 540
angle from transverse

.o

. . . . .. . . . . . . . . . . . . . * .-
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Deformation of singly-grooved
symmetrical specimens

Assumed 0 =0 su=-O = -s/s1. = Or=O

Alloy 1018 CF steel HY-80 steel

Observations
-9

Projected flank 0.820 0 800*r a ti o ,. 1 / o : o ..
ratio I / 0=11/10

Flank angle, 90 130"

01=- 0u

Corresponding parameters
0 0

Slip angle 0 360 430
S

Cracking parameter. 2.883 2.204

* x

Dependent variables deduced observed deduced observed

Growth Displ. ratio. 0.260 0.262 0.369 0.362
• Uy/10

Back angle. 120 120 100 120

-. •  .-. -

%b ' ~ ~-V
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Deformation of singly-groovedpasymmetrical specimens
Alloy: A36 hot rolled steel 5086-Hill aluminum

Observations

Projected upper flank 0.770 0.810
ratio, I /10

Projected lower flank 0.890 0.900
ratio,
Upper flank angle. 360 410

0uou
09Lower flank angle. 410

-0 0

Upper back angle. u 130 160

Corresponding slip and fracture parameters

Slip angle 0sl 530 510

Slip angle 0S 570 530

" Cracking angle O 320 370

Cracking parameter X 1.834 2.821

Shearing parameter 0.425 0.507

Dependent variables deduced gauge deduced gauge

Growth Displ ratio. 0.214 0.216 0.126 0.138

0 0 50 50- Growth displ vector 61 60 55 56
angle from transverse

* . . .,C, . S, . , - , . " . - . ' .. " . " . . " . " -" . '- . '. - . . "- . ""° "
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Deformation of singly-grooved
symmetrical specimens

Assumed 0 =u-0 = s /S =1. 0-0 0

s su s[ I U f

Alloy: A36 hot rolled steel 5085-I111 aluminum
".4

Observations

Projected flank 0.780 0.760
" ratio, lu/lO=ll/o

" Flank angle. 100 1Q,
.- ~ 0=-0u

.U

Correconding _parameters

Slip angle 0 32

* Cracking parameter. 2.158 1.892

Dependent variables deduced observed deduced observed

Growth Displ. ratio. 0 275 0 254 0.263 0.278

Back angle. 160 150 190 160 -

" U

.. . .. .*. .. . *-. ..f . 4* . -. 9
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Figure 3. Micro- and Macroscopic geometry
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CHAPTER FIVE

FINITE ELEMENT INVESTIGATION OF PLANE

STRAIN ASYMMETRIC FULLY PLASTIC SPECIMENS

TABLE OF SYMBOLS

n strain hardening exponent
a flow stress at unit strain

damage (eq. 3)
a mean normal stress

.  principal shear strain

r principal shear stress

Seq equivalent stress

equivalent straineq
0 critical orientation

C
p mean inclusion spacing

-. displacement vector angle from transverse
U axial component of far field displacement vector
U transverse component of far field displacement vector

* Mf mixity parameter (eq. 4)
uy axial component of relative

crack tip displacenment (=u +-u[

u• transverse component of relative
crack tip displacenment (=u X-u X )

ABSTRACT

Crack initiation and early growth in asymmetric, fully plastic, plane strain

configurations in power-law hardening materials is investigated numerically via the

finite element method. In such asymmetric configurations a single shear band is

present instead of the two shear bands of the symmetric case. Results for two strain

.. hardening exponents, n=O.12 and n=0.24, indicate that cracking occurs at an angle

"* of 390-430 from the transverse, smaller than 4.50 due to the higher triaxiality. The

direction of cracking is closer to 450 for lower strain hardening exponents and is
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within 20 of those experimentally found. The stress and strain field is consistent

5with the power law singularity of the HRR fields. The far field displacement vector

is not along the shear band but at about 68o70o0 from the transverse at initiation,

*- indicating the presence of a Mode I component. Early growth, studied by successive

W removal of elements reaching unit damage, results in crack growth per unit

displacement for the lower hardening case about twice that of the higher hardening

one.

INTRODUCTION

Asymmetric plane strain specimens have been used to study crack growth

along a single shear band. Such cases may occur when a weld fillet or a harder heat-

affected zone on one side of the crack suppresses the other shear zone that wouid

appear-in a symmetric specimen. Based on Shih's extension to mixed mode [1] of the

HRR [2,31 fields, McClintock and Slocum [41 developed an approximate formulation
for the accumulation of damage directly ahead of an asymmetric crack. The crack

was assumed to follow the center of a 450 shear band and the far-field displacement

was assumed to be parallel to the shear band. It was found that the initiation

displacement was of the order of the fracture process zone size p. To study the

directional effects, several sites around the current crack tip were considered in

* .chapter two and the crack was assumed to advance to the direction requiring the

least far field displacement for critical damage. The far field displacement vector

was again assumed to be at 450 from the transverse. Both these solutions found only

" 2little effect of strain hardening on the crack growth rate. However, tests have shown

that the far field displacement vector is not at 450 but more axial, at an angle of

- about 600 from the transverse. In addition, a lower strain hardening exponent n was

* .found to increase the crack growth rate dramatically. Strain hardening causes the

f-
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deformation field to fan out. The effect of the finite width of the shear band can be

captured with a finite element investigation. In the following the finite element .

method is used to study crack initiation and early growth in fully plastic plane strain

asymmetric specimens.

TECHNIQUE

The finite element grid used is indicated in Fig. 1, with the details of the

refined mesh for the first circle around the crack tip shown in Fig. 2. An increased

element concentration near the 450 line is used to account for the high strain

gradients there. Angular spacings of 3.750 for four sectors, 7.50 for two sectors, 150

for four sectors and 300 for nine sectors are used. Minimum radial size for the 3.750

elements is p-0.01 mm, the approximate value for the mean inclusion spacing. The

radial size ratio was s=1.155 for the 3.750 sectors becoming s2 for the 7.50 sectors, S4

for the 150 and s8 for the 300 sectors. The net ligament of the *specimen is 10=2.55

- mm. 8-node plane strain isoparametric elements are used. The mesh consisted of a

total of 207 elements with 722 nodes and 1444 degrees of freedom. The nodes at the

*. bottom were on rollers with the center node pinned. An axial displacement with

zero shear traction was applied at the nodes of the upper end. The analysis was

carried on a Data General computer available at M.I.T. and the general purpose

!" finite element code ABAQUS [5] was used.

The mesh was checked by comparing the theoretical strain distribution for the

elastic and the low hardening n=1/13 HRR [2,31 fields with the linear variation of

strains within the 8-node elements. The radial variation in strain showed a

* maximum deviation of 15% from the elastic solution for the first element around the

tip. For the HRR n=1/13 solution the deviation was 33%, dropping to 5.6% for the

4 I
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second element. The angular distribution in cr0 showed a maximum deviation of 8%

I from the HRR for the 300 sectors. In addition, a circular portion of the finite

element mesh with 16 radially elements at the finest sectors was tested by imposing

--. Mode I HRR displacement boundary conditions. The ttRR singularity in f was

R reproduced with no more than 5% deviation in all elements except the first one,

where the maximum deviation was 14% at the first integration point.

The material is modeled as isotropic power-law hardening: the stress u is given

in terms of the plastic strain 0p, the flow stress at unit strain al1 a strain hardening

exponent n, and a pre-strain c by

Two cases were considered, n=0.24, or =826 MN/m 2 , yield strength Y=333 MN/rn2

Uand n=0.12, a1=909 MN/rn2 , Y=435 MN/rn2.

The fracture criterion of McClintock, Kaplan and Berg [6] is used, by which it

*is postulated that fracture due to micro-void coalescence occurs when a quantity q,

-" named "damage", reaches a critical value of unity. The damage is expressed in

terms of a hole growth ratio Ft, the principal shear strain y, and the triaxiality

(defined as the ratio of the mean normal stress o to principal shear strain r). In

terms of the equivalent stress and strain,

So eq/V/3",  -EeqV/3 . (2)

The damage is:
2o. (1-no[: r--l- t[In\,/l-q + -- "-(n)sinh((l')r "  (3)

lnFt 2(1-n) T

The critical displacement for growth initiation occurs when the damaige becomes

!: .-- , ... ,...: .;....., .. ..-. .....-. ,., .. ,. -,.,..............-.--. -....-...... ,.......
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unity at a point (p, 0 ) where p is the fracture process zone size and 0c is the critical

orientation. To study the first steps of crack growth, successive elements were

removed as they reached a damage of unity.

RESULTS AND DISCUSSION

The axial displacement, at the upper end, U, was gradually increased and the

damage from (3) was calculated at each site around the tip. Cracking occurs when

the fracture criterion of Yj=1 is first satisfied.

The initiation conditions (critical orientation from the transverse, O, critical

strain -, critical triaxiality o/r, far-field displacement uj/p) are shown in Table 1.

The crack tip initiation displacement is of the order of the mean inclusion spacing as

was also found by McClintock and Slocum [41 and in chapter 2. The critical

orientation of 39-430 from the transverse and the far field displacement vector

orientation of about 68-700 at initiation can be compared with the values of 38-410

for the crack direction and 580-690 for the displacement vector at initiation from

tests. The lower hardening n=0.12 case results in fracture closer to the shear band, .

as found experimentally.

For a crack at 0=00, a Mode I mixity parameter M P was introduced by Shih

[1], defined in terms of the near field stresses by

2 1 °o0(r' 0=0)
M p  - tan'1 irn (4)

7- 11-0 or6 (r, 0=0)1

The mixity parameter varies from 0 for pure Mode H to 1 for pure Mode I. This

parameter can be referred to either the initial crack direction 0=00 or the final

(critical) one 0=0c, giving values as shown in Table 1. Notice that the above

definition of the Mode I mixity is with respect to both shearing and crack advance at

77°

.. '. . 'C ~ * .* .. *..*..--
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0=0, for both the limiting cases MP=O or 1. In the problem at hand, pure Mode I is

crack advance along the line 0=0 (corresponding to the symmetric case) and pure

Mode H would be relative deformation and crack advance along the 450 shear band.

Alternatively, for experiments and finite element studies, a definitition of a Mode I

n mixity in terms of the displacement field is helpful:

. 2 Jim u(r,r) - ue(r,-ir)MI --- tan~l lr (5)

r r fto Ur(r,ir) - u,(r,-7r)

Values for this parameter are also shown in Table 1. Notice that for the non-

hardening rigid plastic pure Mode H limit with a single slip line at 0=450 ,M =0.5

for the crack at 0=00 but M*=0 for the crack at 0=450.

Fig. 3a shows the angular variation of the or stress component. The curve is

consistent with the Shih's [1] curves and has a maximum near 0=650. This

compares with the'case MP=I, n=1/13 which has a maximum at an angle near 970

and the MP=I, n=1/3 case with a maximum near 880 whereas the case of MP=0

has a maximum 0orO at 0-00. Furthermore, the maximum for n=1/13, MP=0.82 is

5 near 550 and for n=1/3, MP-0.79 is near 400 [1]. The 6-variation of crO is shown in

Figs. 3b, 3c. Of the two peaks in cr0' the one for positive 0 is the dominant the other

peak tending to vanish during growth when the Mode I mixity is reduced (Fig. 3d).

.* iThe radial variation of the equivalent strain for n=0.12 (along the critical

orientation) is shown in Fig. 4. The asymptotic solution for power-law hardening

materials yield singularities in the stress and strain of the form r-n/(n+ l ) and

r1l /( n +1), respectively. The agreement between the theoretical curve and the finite

element results is within 5%.

Fig. 5 shows the axial displacement of the upper flank relative to the lower

... :' %....-.... .....- - ... ...... '. v.;- -.... :'.-; .';-. . .%................-i-'i.,. .. .' - .'- . .'-...-.,..--... ..
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flank at the initiation point. The components of the relative displacement of the

crack tip u,(x=0, y=O) and u y(x=O, y-0=CTOD are included in Table 1. A

higher CTOD occurs in the higher hardening case. Figs. 6a and 6b show the angular

variation of the near tip displacement field for the two hardening exponents n=0.24

and n=O.12, along with the nonhardening limit. The far-field displacement

(displacement at the upper boundary) components UX and U at the initiation point

are also included in Table I together with the far field displacement vector

orientation from the transverse, 6. The value of 0--680 to 700, instead of 450,

" indicates that we cannot consider the far field displacement taking place parallel to

the shear band, as assumed by McClintock and Slocum [.1* We can observe that the

displacement vector at initiation is more axial for the lower hardening case with

larger M P. The higher triaxiality for angles smaller than 450 is the main reason for

the cracking direction deviating towards the transverse. The triaxiality is smaller

for n-0.24 because of the smaller Mode I mixity M P.

Tests have shown that, in the asymmetric case, the lower hardening alloys

exhibit a maximum crack growth rate more than twice that of the higher hardening

alloys. The finite element mesh of Figure I was used to study the early growth.

Crack was grown by successive removal of the most heavily damaged element. After

initiation and removal of the most damaged element, the far field displacement is

further increased until critical damage rI=I occurs in the next row of elements. At

. this point the next step of crack growth takes place by removing the critical

element. After growth by four steps (1.9%' of the ligament) it was found that the

average displacement per unit projected crack adva ce..u/Ai is about 88% smaller

for the lower hardening n=0.12 case than that of the higher hardening n=0.2I case

(Table I1). Another noteworthy result is that the far field (isplacement vector U -'

becomes less axial as the crack grows. For the case n=0.12, at the end of the fourth

: • •..- ." .-,..--: - ..-. • -" .' .....'." ... "..'-...................................--.....,.......,....-..-.,..... .-, : ... ',-7-....



114

step, the angle of the displacement vector from the transverse is =67.60 instead of

the initiation value of 0=69.50. Decreasing 0i angles with crack growth have been

experimentally observed (chapter three). During these steps the critical elements

were at the same angular sector and no appreciable accelation of the crack was

* observed.

CONCLUSIONS

A finite element investigation of fully plastic asymmetric specimens with a

single slip band, as might be encountered near a weld, has provided the stress, strain

*l and displacement fields around the tip. Results indicate the presence of a large

Mode I component with the far field displacement vector at initiation not along the

450 shear band but at an angle about 670 from the transverse. The initiation

* conditions were found by using the fracture criterion for hole growth by McClintock

Kaplan and Berg [6]. The critical direction was at 39-430, less than 450 from the

transverse, increasing for a lower strain hardening exponent. Displacement to crack

p initiation is about twice the fracture process zone size. Stress and strain fields are

consistent with the solutions for the mixed mode extended IIRR fields. Early

growth, studied by successive removal of the most damaged element, resulted in

crack growth rate for the lower hardening case about twice that of the higher

hardening one. The angle of the far-field displacement vector from the transverse

was found to be decreasing with crack growth.
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TABLE 1

Results of the finite element study

n 0.12 n 0.24
Initiation
Conditions

Critical angle 9¢ 43.1 39 40
from transverse.

Far field displ. Uy/p 2.1 1.8
components Ux/p 0.782 0.737

Displacement 69.50 67.70
vector-angle

from transverse

Displacements Ux(x=O. y=O)/p 0 134 0.192

at crack tip u (x=O, y=O)/p 0.518 0 564

Principal Shear -1 0,246 0.327
Strain

Triaxiality U/T 2.18 1995

Mixity parameterp
Mode I Mixity MP(Shih)

defined by Shih (rel to 0=0) 0.936 0.927
(based on stresses) (rel. to #4 0.717 0.710

Displ. based M 0.752 0 815
Mode I Mixity

Early Growth

Far field displ. Au/l 0.075 0 143

per projected crack
advance (4 steps)

A-i.
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CHAPTER SIX

ON THE FULLY PLASTIC FLOW PAST A GROWING ASYMMETRIC
CRACK AND ITS RELATION TO MACHINING MECHANICS

TABLE OF SYMBOLS

H hardening coefficient (eq. 9)

k eq. 22

, 'stream function
a mean normal stress
uru displacement rates
fr. ' 8r, strain rates
,r so* Sr. stress deviatorsequivalent strain
aequivalent stress
V rigid body velocity at lover flank

" V1 rigid body velocity at upper flank
i0 lower boundary of deforming region (Fig. 2a)

0 upper boundary of deforming region (Fig. 2a)

crack opening angle
"u strain.at upper boundar
* ."''slip angle'" (eq. 49)

* .* ABSTRACT

A tensile logarithmic singularity in the mean normal stress is found for steady

flow of rigid-plastic, linearly strain-hardening material, with rigid material flowing

past straight flanks. For cracks, this indicates that the flanks of the crack tend to

- deform. For the machining case it explains the tendency for precracking ahead of

the tool which contributes to a built-up edge, or the formation of a discontinuous

chip. Finally, an approximate analysis of the quasi-steady integral of the stationary
crack solution shows a tendency of the crack flanks to form a cusp. The strains for

a cusp field would be dominated by the elastic-plastic field which shows instead a

,'.

. . -. ......-.- ,... ,- .. % %.-%. ..--..... v.-..... ..--. .--.-..-. ... '.."'...."- '

.. . *. , .' '. . . .", ?. j ,.'. . '." . . % . .. -. - .o ,r.r i .,..' .'. .' . .
,

.- ' '...-' a... - ...- - - .. "



128

vertical tangent at the crack tip.

INTRODUCTION

Fully plastic flow before fracture is desirable even in structures containing

cracks Such ductility is reduced if plastic flow is limited to one shear band, for

example, by a weld (Fig. 1). In such asymmetric mixed mode I and H configurations,

the crack accelerates as it advances into pre-strained and damaged material.

Further evidence for a lowered ductility in asymmetric cracking is the tendency to

• "form a shear lip at the end of a cup and cone fracture in a tensile test. Non-

*i hardening plasticity gives a shear band of infinitesimal thickness. Strain hardening,

however, causes the deformation field to fan out, leaving a finite strain except

possibly at the crack tip.

In orthogonal machining the geometry is similar, with the cutting tool

progressing steadily below the plastic zone. Here, again due to strain hardening,

Christopherson et al. 12) found that the plastic zone fans out over 10°-300, as

opposed to the single plane required by the perfectly plastic solid.

STRESS SINGULARITY WITH RIGID FLANKS

Postulate a steady flow past a crack in rigid-plastic, linearly strain hardening

material. The mechanics of the problem should determine whether or not the crack

tip has a finite angle. Start by assuming a crack of finite angle W and rigid body

* velocity of the material flowing along the flanks. To satisfy incompressibility assume

a stream function v in polar coordinates r and 9. Seek the form of the stream

function in the immediate vicinity of the crack tip where the velocities should be
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nonzero and finite. In a separable expansion of in the dominant term as r--+0,

rSF(O), the exponent s must be unity since the velocities at the tip are nonzero and

finite. Thus,

br F(O) . (1)

The corresponding velocities are

ur =- F'(0) , (2)

u-F(O) .(3)

The strain rates are

(r. = 0= to (4)

No9  I auU8 u F"(0) + F(O)

ar r O r r

Thus the only component of strain is shear. The equivalent strain rate is

2 2 Ire2 Ff(e) + F(O)
r= + to +2 () (6)

The stress deviators si, are found from the stress-strain relations and the

*equivalent stress F:

3 5..
.i - (7)

*Since ,e e 0 0from (4),

s s 0 and F19 = /3 .(8

*Assume the material is rigid-plastic, linearly strain hardening:

F= Y +HI.()
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The accumulated equivalent strain ?is calculated by integration along a streamline,

where the time increment is expressed in terms of that required for an element to

traverse an increment of angle:
--.

dt rdO=- dO. (10)

Thus the equivalent strain is independent of radius. The same holds for the

• - equivalent stress a, by (9), and also for the shear stress, by (8),

sre = sr(o) (11)

Now turn to the equilibrium equations. In terms of the mean normal stress a,

a-f asr IasrO Sr-S '
+ 0 . (12)

-r or r M r
asr0 1 0o 1 0 a+ 2sr 0
- + -- +- + - o. (13)
r r490 r ag r

Introducing (8) to eliminate sr, sa, (11) to eliminate asr/ar, and cross-differentiation

to eliminate a leads to:

d2Sr/do2 = 0, from which dsr9 /dO - const. = sre O (14)

* "Now, (12) simplifies with (8), and can be integrated

i ioa I dsr-"'r +  - 0 , 0 - ln(r/R) + C(O) . (15)

a~r r dO

* To find C(P), differentiate (13) with respect to 0, and again note asrlar=O from (11)

and s=O from (8). Equating the result to the second partial of (15) gives

a20•  dsr0  d2C(9)
s-,=-2-= (16)a92  dO do-; c(o) = - st0,0 2 + CIO + C2

Define ajR,0) as the mean normal stress at 0=0 and a convenient radius

R. Equation (15) then becomes:
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a(r,9) - a(R,O) - rs,(ln(r/R) + 92) + C1 . (17)

0 Thus, the assumption of rigid flanks subtending a finite angle would require that the

mean normal stress at the crack tip (r-0) have a logarithmic singularity. Let us

now complete the study of the field specified by the stream function (1) by applying

the boundary conditions and deriving the streamlines.

Two possible flow fields are consistent with the constant rate of shear stress

from (14) and the hardening of the material (increase in equivalent stress or from (8)

as it flows along the streamline). The first field, shown in Fig. 2a, is for sra>O.

From (17) this model gives a tensile logarithmic singularity in the mean normal

stress as r-0, and thus the field will be called "tensile". The second field, shown in

Fig. 2b, is for Sre,0<0. Here the singularity in the mean normal stress is compressive

and, accordingly, this field will be called "compressive". A compressive singularity,

however, would require strains of order unity or more for fracture. Since such large

strains are not actually observed 1], the "compressive". field is not plausible for the

growing crack.

Two other conceivable fields can be excluded. A single band being split by the

crack (Fig. 2c) would have shear stresses of the same sign, but increasing in

magnitude both above and below the line of advance due to increasing strains along

a streamline. This change in sign of Sr0, would give tensile and compressive

singularities adjacent to each other, and a discontinuity in normal stress. If the

shear in a band being split by the crack were to change sign, on the other hand,

there would be an intermediate region below yield, and the band would separate into

two, corresponding to those of Figs. 2a,b. In the limit, the Mode I field would be

approached.



132

Thus only the "tensile" field of Fig. 2a remains. From (8) and (9) for positive

shearing,

dsrO 1 d" 1 dZ"
(18)

dO V4 dO vg dO

(18) and (14) give, with SrO,0 = const.,

-- = - I 19)

dO H v/ dO

Differentiating (10) gives:

d? F" + F
(20)

dO V3 F

Introducing (19) into (20) gives finally --

FN + k2F -0 (21)

where

3 + . + d'1re
k "  (22)

H dO
The solution of (21) is

F(O) - A coskO + B sinkO. (23)

Referring to Fig. 2a we denote by V, V. the (rigid body) velocities at the lower and

upper boundaries of the deforming region, which are at angles 0, and OU respectively.

Then the boundary conditions are:

at the lower boundary,

, -VCosO, and by (2), F(0 1) -Vos6, (24)

u- VsinO#, and by (3), F(01) - -VsinO,; (25)

.......-.-..... ;. .. . . . . .

.. . .. . . . . . . . . . . . . . . . .
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similarly, at the upper boundary,

m;= NS + w), (26)

F(OU) =-Vusin(OU + w) (27)

Solving (23)- (27) for w in terms of Ol, eu gives

-1-a"P -[ tanko (28), = ta" k( + Ptank O)

where

k tanO1 + tankOue (29)

I - k tan 1 tankOU

Substituting back into the boundary conditions gives

V u  k sin O coskG. + cos 1 sink(-- = (30)
V I  k sin(OU+w) coskO + cos(OU+w) sinkl

A (Vu/VI) sin(Ou+w) sink 1 - sinkOu sin l
• ,(31)

VI sink(OU-O1)

B sine1 cosk u - (Vu/V) sin(#u+w) coskO(-- = (32)
VI sink(U-01)

Assume now a critical strain -yu at the upper boundary. Then

d-tra/dO = -u/(Ou-01) (33)

and

k' 1 - . (34)

The streamlines for a particular example, and the equation for the rotation of

elements are given in the Appendix.

L Z- .* * * . -
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" According to Hill [71, the infinite mean normal stress by (17) cannot be

sustained at the rigid flank and this will lead to plastic yielding. For further insight,

" turn to the approximate superposition of singularities for stationary cracks.
a.

SUPERPOSITION OF STATIONARY SINGULARITIES

Shih [31 solved the mixed Mode I and I singular fields for the stationary crack

field, extending the Mode I field of Hutchinson [41, Rice and Rosengren [51 (HRR). In

terms of a stress-strain law of the form or = a E1
n , for a far field defined by the path

independent integral J with Mode I mixity parameter M P and the scalar function

* [,/,(MP), the displacement and strain components at rO for the fully plastic

". parameters of interest here are (see e.g. McClintock [5]):

. ui(r,O) = ri ui( f1/, M p)  (35)!~~ ~[ 01 [/i(U p ) rJ '.

(: ilr')= I1 /tlMP) r1 Ei1(8, 1/n, MP) . (36) :

Superposition does not strictly apply to (35) for two reasons: it does not take the

convection of hardened material into account and it is a non-linear relation between

displacement and J. Qualitative insights may be obtained, however, by assuming,

following (35), that the displacement increments vary with radius according to

i.u i c rit(tx (37)

and that, correspondingly, the strain rates vary as

'." ii¢  r' r n  l " (38)

For the non-hardening material, n=O, (37) correctly indicates displacement rates

,,. .- k " . ' "" " ..-.......... .... " " i ',
"

i ", " " " -" . .
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" independent of radius, which for a growing crack, integrates to displacements

increasing linearly away from the tip. For a power law material the displacement

rate increases as a fractional root of the distance away from the tip, and its integral

gives displacements of the order

119 f u0 dr ct r (39)

which indicates a cusp.

.. Correspondingly, integration of the strain rates from (38) with respect to the

distance as the material sweeps by the tip of the crack gives strains varying as

E X rn/(n+ l) (40)

Thus, due to convection, the strains increase continuously behind the crack tip,

a whereas the stationary Shih solution gave strains that decrease. That is, at any

instant during the integration, the material behind the crack is actually harder than

assumed for the displacement and strain rates of (37) and (38). Therefore, the above

superposition exaggerates any cusp. Furthermore, the nonhardening solution with

flank yielding, for bending and tensile doubly grooved specimens gives linear

displacement increments which, when integrated, would show an increasing crack

opening angle near the crack tip [6]. For example, the normal component of the

displacement field at the flank for the doubly grooved specimens and the resulting

from integration flank shape is shown in Fig. 3.

For further insight, the relative dominance of the field for a cusp will be

considered. Rigid-plastic flow past a cusp-like crack would not exhibit singularities

in the strain but, instead, in higher order terms like strain rates, as follows. For no

crack tip opening angle, the displacement rates are of the form:

....- .- .-..- ..-..- " .':- .." -. .,,..... ..'..'.'.'_.'_','.:......................................................"......"..-.".."..-....,..."..'..'....-.".""- "
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U O(rm) + rigid body motion. (41)

The stream function can thus be regarded as being a superposition of steady state

rigid body translation of the material past the crack tip and a strain rate singularity:

, rm+'F(O) - crsinO. (42)

* Then the velocities are:

I a-- - r m F(O)- ccos0, 
(43)

r Or

u8 - =-(m+1)rm F(8) + c sinO. (44)
Or

Differentiating the displacement rates would give strain rates, and hence the

equivalent strain rate, of the order 0(rm'l). The accumulated equivalent strain is

found by integrating along a streamline, with the time interval to traverse a given

angular increment along a streamline expressed in terms of the tangential velocity:

C= -rd0. (45)

For small r, u0 is of order r0 from (44) while c is of order rm-l and so the integrand in

*: (45) is of order rm . Thus

- ,=O(r m ), (46)

and vanishes for small r (unless m=O, which turns out to be the nonhardening case)

and the strains are nonsingular. Notice that no stress-strain relationship has been

. used yet, which means that for any rigid-plastic law the strains are nonsingular for a

" zero crack opening angle. This field would thus be dominated by any field that

exhibits any nonzero crack opening angle. For example the elastic-perfectly plastic

field shows logarithmic singularities in the strains but d6/dr is unbounded as r---O,

...........................................
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giving a vertical tangent at the crack tip [10. The strains for that field are of the

order:

7P = 0[ln(R/r)] + 0(r0).

which goes to infinity for r-0, thus dominates the local strain. The large-scale view

of a fracture, however, may look like a cusp and since the strains for the cusp field

are 0(rm), increasing with r, they may become larger at a sufficiently distant point.

The tendency shown above for flank yielding with any finite opening angle

leads to the need for an exact solution of the growing crack, where its shape is

6unknown and the flank, a part of the deforming boundary, is traction-free. Finally,

connecting the steady-state continuum mechanics solution to the micromechanics of

hole growth would require a transition to non-steady analysis.

DISCUSSION

In machining, a shear band with an undetermined rigid-plastic boundary breaks

through to a free surface. The problem is similar to mixed mode crack growth,

except that the deformation is larger. Christopherson et al [2] tried to assess the

effect of work hardening in the mechanics of orthogonal machining. By modifying

the slip line equations and estimating roughly the magnitude of the added term, they

pointed out that, due to hardening, the hydrostatic stress changes from compressive

at the free surface to tensile near the tool point. What they found was essentially

the qualitative effect of the logarithmic singularity derived above for fully plastic

flow. In fact, we can also deduce that, for a certain change in the flow strength

between the chip and the parent material, if the deforming region is narrower, the

angular change of the shear stress (i.e. sre,e in (14)) is bigger and, consequently, the
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singularity stronger, in accordance with their observation that the work-hardening

effect becomes more pronounced as the plastic zone gets narrower. .

It is worth considering now the region of dominance of the logarithmic

singularity in mean normal stress that would characterize the flow past rigid flanks.

Using typical data do/d - H ;, Y for 1020 steel and dE/dg ,: 0.8, gives from (8)

Sr9,l V/3--- V/3H- 1.38 Y. (47)

di-dO dO

From the fully plastic flow field of Prandtl for tension of grooved plane strain

specimens (see e.g. McClintock [8]) a ; 2.8Y and assuming that R is the radius at

which o(r,0) changes sign, gives from (17), r/R ; 0.1. The distance R is within the

macroscopic scale as is evident from the approximate study for machining field done

by Christopherson et al. [9). According to their slip line theory modified to include

hardening the change in the mean normal stress Aa from the free surface to a point

in the band is roughly estimated in terms of the flow strengths in work-piece and

chip, YW and Y,, the distance s from the free surface, and the local width t of the

slipband:

Ao r (Y,-Yw) s/tV. (48)

In machining mild steel, YC may be 40% more than YW, so Yc-Yw ,t 0.4k. Since at

the free surface o ; -YlVr, the mean normal stress becomes positive at about

s/t=3, which for 100 angular width happens at a radius R approximately 1/3 the

total shear band length. Thus the singularity in the mean normal stress dominates

in a significant region. A

Now that tension has been shown to exist near the tool point, it is possible

that brittle (or ductile) fracture may occur at a particular history of stress and this

.1
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could give rise to the characteristic fracture running ahead of the tool point and the

formation of a built-up edge or a discontinuous chip (9]. In particular, according to

the "tensile" field, the maximum strain occurs at the boundary with the chip (upper

boundary of the shear band), where cracking could occur. It should be noted,

* however, that nonsteady effects have not been considered.

CONCLUSIONS

A logarithmic tensile singularity in the mean normal stress has been found for

rigid-plastic flow past a growing crack of finite angle with rigid flanks under

combined shear and tension. Applied to the machining problem, this result helps to

explain the formation of a discontinuous chip or the precracking ahead of the tool.

i The tensile singularity predicts yielding of the crack flanks. Approximate

solutions for flank yielding give contradictory indications. A tendency to form a

.- cusp has been found from an order-of-magnitude analysis on the quasi-steady

integral of the extended near tip HRR singular field. That result indicates

decreasing strain behind the crack tip and hence overestimates any cusp. From non-

hardening solutions with flank yielding for bending and tension of doubly grooved

specimens there is an increasing crack opening angle near the tip. Furthermore, the
I_-

strains for any cusp would be dominated by the elastic-plastic singularity which

gives a blunt tip. Thus there is a need for an exact solution of a crack growing with

deforming flanks into strain-hardening material.
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APPENDIX

Taking an example from machining (Fig. 4) for fu- 1.3, 01 400, 0U - 500

we find by using equations (28) - (34):

Sw = 590, Vu/VI = 0.73, d'yro/dO = 7.44

and, for 0 in radians,
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F(0)/V- 0.59 cos(2.90) - 0.459 sin(2.90).

0- A streamline, resulting from (1) for this particular example, has been sketched in Fig.

4. The velocity triangle shown in Fig. 2a defines a "slip" angle Us:

* - ~ [r(V VV)sinw 1
Os -= sin

"I  (. ...in (49)

[(Vu/VI)2 + 1 - 2(Vu/VI)cosw]1/ 2 j
For this particular example 0s = 45.060.

A second example of a growing crack with - -- 0.25, 01 - 300, OU - 400, gives

w-5 0 , OS -35.2 ° , Vu/VI = 0.88, d-yre/d0 = 1.43

and

F(O)/V,= 0.0623 cos(1.550) - 0.744 sin(1.550).

S-.Finally, the rotation of the material element relative to that of the stress field is

important in hole growth and thus is worth considering. The rotation of the element

is

OM+r (50)2 49 r r 8

and from (2) and (3)

1
Om  - -(F + F"). (51)

2r

while that of the stress field is

u, F
SCr =y-="- (52)

: r r

giving a relative rotation

I:... OreIl - (F - Fff). (53)
2r

For F(O) given by (23) and since k>I by (22), it is found that rotation and shear

- -. . . * * .'-,* * . . . . .
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* strain (given by (5)) are of different sign. The effect is to open up the holes and thus

"* to increase the damage.

.
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Fig. 1. Symmetric and asymmetric shear from cracks in a plate.
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b.

Fig. 3. Flank normal displacement increments and integrated

* flank shape for the doubly grooved specimen.
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CHAPTER SEVEN

THE ASYMMETRIC (MIXED MODE I AND H)
FULLY PLASTIC FRACTURE - OVERVIEW

TABLE OF SYMBOLS

COA crack opening angle
D crack ductility (eq. 1)
g
DACu apparent crack ductility (upper flank)

.. DAC, apparent crack ductility (lower flank)

E modulus of elasticity
f amount of fracture in shear band model
J J-integral
k shear yield
10 initial ligament
11 projected lower flank length
I projected upper flank length
M5 mixity parameter (eq. 4)
n strain hardening exponent

. P load

st  amount of slip along lower plane in shear band model
su  amount of slip along upper plane in shear band model
T.S. tensile strength
T tearing modulus

1T* eq. 2
T ISY  eq. 2
u ISY idealized initiation displacement
ui  initiation displacement
u growth displacement
vi total displacement vector
v g growth displacement vector

p mean inclusion spacing
0angle of total displacement vector from transverse

Ic fracture strain
crack direction from transverse.

C"Of fracture plane
osu, 061 upper and lower slip plane

x fracture parameter (=f/su)
shearing parameter (=s/s u)

Ou. 01 upper and lower flank angle from transverse

"'
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3 upper back angle

SUMMARY

In symmetric singly grooved tensile specimens the crack advances into the

relatively undamaged region between two plastic shear zones. A crack near a weld -

or shoulder, loaded into the plastic range, may have only a single shear band, along

which the crack grows into prestrained and damaged material with less ductility

than the symmetrical unconstrained configurations. In this chapter, work that deals

with the effect of asymmetry in crack propagation of unconstrained fully plastic

.. singly grooved tensile specimens is summarized. A crack growth ductility is defined

as the minimum displacement per unit crack growth. Tests of six alloys showed

that, for the low-hardening alloys, the crack ductility in the asymmetric case is less

than a third that of the symmetric. In the higher hardening alloys the crack

ductility in the asymmetric case is smaller by a factor of 1.2 at most. A noteworthy

result is the presence of a Mode I opening component even with asymmetry, as is

shown by the far field displacement vector being more than 450 from the transverse

direction. The crack direction is less than 450, indicating the effect of triaxiality on

. cracking. A macro-mechanical model for crack advance by combined fracture and

sliding off along two slip planes gives the independent physical parameters (cracking

and two shear directions, relative amounts of cracking and shearing) in terms of the

observable quantities of the macroscopic fracture (flank angles, flank lengths, back

angle) for both the symmetric and asymmetric specimens. A finite element study of

the asymmetric specimens gave a crack direction within two degrees and a far field

displacement vector at initiation within three degrees of that experimentally found.

Stress and strain fields indicate the presence of a Mode I component. Early growth.

studied by successive removal of the most damaged element, res-lted in crack

r- 1
....•...,..° -..., , ..............-.. ...... ,,,,.......:.....•,..... .-............ ,,.•,.,
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growth rate for the lower hardening case about twice that of the higher hardening

one.

f INTRODUCTION

In symmetric singly grooved tensile specimens the crack advances into the

relatively undamaged region between two symmetric shear zones. In the fully plastic

case these zones narrow into bands that traverse the section. An asymmetry,

introduced through a weld fillet or a harder, heat-affected zone or a shoulder on one

side of the crack (Fig. 1) suppresses one of the two shear bands that would appear in

a symmetrical specimen. In that case the crack advances asymmetrically, along the

remaining active slip band into previously damaged material. Thus one might expect

that the ductility would be less than that of pure Mode I unconstrained symmetric

case.

Near the tip of the growing crack, stra:in hardening will cause the deformation

field to fan out. For power law creep or deformation theory plasticity and a

stationary crack, the asymptotic stress and strain distribution may be found from

the extended by Shih's [1] HRR [2,3] fields for the general mixed mode case. Notice,

however, that such a superposition of stationary singularities does not take into

account the hardening of the material left behind the growing crack. Indeed, the

stress and strain fields near the tips of growing cracks in ductile materials are known

to differ from the stress and strain state around stationary cracks in the same

materials as is shown from asymptotic solutions [4,5,6,7], supplemented through

finite element calculations [8,9]. Thus, more accurately, a solution for the

distribution of strain increments of a growing mixed mode crack should be used;

however such a solution is not yet available.
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A test with pure shear (Mode II) loading was carried out by Chant et al. [10] of

high hardening carbon manganese steel (B.S. 1501-151-430A, Y.S.=329 MN/m 2, T.S.

" 490 MN/rn2 ). Small specimens were subjected to both Mode H1 and Mode I

testing but the ductility, measured by dJ/da, was practically the same although the

microscopic features for the pure shoar specimens are different than those observed

in the Mode I specimens.

Representing ductile crack propagation has been in general based on the

introduction of d(COD)/da [11,12,131 and the tearing modulus T or dJ/da [14,151

concepts. Such single-parameter measures are incomplete since the triaxiality and

the local distribution of strain are affected by the geometry and mode of loading.

The triaxiality and strain distribution in turn strongly affect the cleavage and hole

growth mechanisms of crack growth.

-Theobjective of the current chapter is to summarize the important findings of

- the experimental, analyticail, and numerical work that deals with the effect of an

asymmetry in crack propagation of unconstrained fully plastic singly grooved tensile ,

* configurations. First, approximate solutions based on the superposition of stationary

singularities are presented. Next, test results on symmetric and asymmetric

specimens of six alloys are summarized, along with a method for quantifying and

representing the ductility. In addition, a macro-mechanical model of crack growth

by combined fracture on one plane and sliding off along two others, describes, for

this idealization of the physical mechanisms, the ductile crack growth for both the

. asymmetric and symmetric specimens. To account for the effect of the finite width

of the shear band and study the stress and strain fields at initiation, a finite element

investigation of the asymmetric specimens is performed. Early growth is also studied

by successive removal of the critical elements.

• . . .. . . . . . . . . . . . N . . -- - . - . . . .
*.*...*,
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INTEGRATED STATIONARY SOLUTIONS

1. Pure Mode II approximation.

A formulation for the accumulation of damage directly ahead of an asymmetric

crack, based on strain increments adapted from Shih's [11 analysis was developed

[161. Strain increments, following a power law relation were integrated both

numerically and quasi-steadily. The crack was assumed to follow the center of a 450

shear band of infinitesimal width with the far field displacement, u, being parallel to

the shear band (Fig. 2a). The critical fracture strain is determined from the fracture

criterion by McClintock, Kaplan and Berg 1171.

The predicted displacement to crack initiation is found ui = 0(p), of the order

of mean incusion spacing p. The crack growth per unit displacement was predicted

dc/du = 01 ln(c/p) 1, i.e. to increase approximately as the logarithm of the total

crack advance per inclusion spacing p. The growth rate was found to be practically

unaffected by strain hardening. The increasing crack growth rate, associated with

the strain distribution flattening out in front of the crack at a decreasing rate that

does not reach a steady state, leads to size effects in crack growth.

2. Directional effects.

Due to the higher triaxiality on one side, there is a tendency for fracture in

that direction. Thus the previous pure Mode II work was extended to include sites

at several angles ahead of the crack. Far field displacement is again assumed to take

place parallel to the shear band (Fig. 2b). Strain incrpments are approximnated from

the mixed mode, power-law elastic solution for a stationary crack [l] and used with

the fracture criterioti for hole growth in shear bands 1171 to predict the critical

r

-%-
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direction. The crack is assumed to advance to advance in the direction that requires

the minimum far field displacement to reach critical damage.

At initiation, several sites around the tip are considered. The strain and hence

the required displacement for damage of unity is found. The critical direction is that

which minimizes the required displacement. In growth, the accumulated damage due

to initiation and prior growth is found and then the required increment in damage

- and hence far field displacement is determined.

"" For a shear band at 450 the crack progresses at an angle of 210-300 from the

-. transverse, depending on the strain hardening, indicating the effect of higher

triaxiality. The crack growth rate is about 6-15% higher than with growth along the

shear band. Lower strain-hardening results in the final crack orientation being closer

to the 450 shear band and the higher crack growth rate.
.J

EXPERIMENTAL STUDY

Tests were performed on fatigue precracked asymmetric (Fig. 3) and symmetric

(Fig. 4) specimens of six alloys: 1018 cold finished, 1018 normalized, A36 hot rolled,

HY80, HY100 steel, 5086-HIll aluminum. The low-hardening alloys are the 1018

CF, HY80, HYI00 steel (n-0.10) and the high-hardening alloys are the A36 HR and

* 1018 normalized steel (n-0.23). In addition to the load-displacement data, the

topographies of the fracture surfaces were plotted using a metallurgical microscope

with a travelling stage. A schematic of the fracture surface profile is shown in Fig. 6.

. These profiles allow determining the growth displacement vector V, the total

displacement V', and hence the initiation displacement v =Vv as well as the
I i I-

geometry of the fracture (flank angles, flank lengths, crack orientation).

. o.° ' -°
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1. Quantifying crack initiation and growth.

Initiation. As a convenient measure of crack initiation displacement from the

'.- load-displacement curves, define the "idealized initiation displacement", u '/1 as the

normalized extension between initial elastic loading and steepest unloading lines at

maximum load (Fig. 5). The normalized form is used in the plots for convenience in

correlating crack growth; multiplied by to it becomes analogous to the more familiar

COD. The tests gave:

• ": (uil/lo)ASy (uil/lo)sY, 1

and

(Ui'/o)hig an (2-4)(uil/10 )1ow n (2)

The axial component of the initiation displacement, as Measured from the profiles of

the fracture surfaces, uj/. 0, has the same behavior as the previously defined

"idealized initiation displacement", uiI/10 , i.e., ui// 0 is not different between

*I asymmetric and symmetric cases. In addition, for the high hardening alloys it is

about two to four times that of the low hardening ones for both geometries. A

noteworthy observation is the fair amount of blunting occuring in both geometries

(more blunting with higher n). An approximate relation can also be observed:

(u11) .-. )(uj/to) (3)

In short, initiation displacement is almost the same same in both asymmetric and

symmetric cases; strain hardening affects initiation in both symmetric and

asymmetric specimens.

Growth

• ' " ' .. . ... ... -
'

1n= l . . I ... . I * %' " " " " " 
' '

€ "- * : % "
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(i) For a measure of crack growth resistance, define the crack ductility, Dg, as

the minimum displacement, du,, per unit ligament reduction dl. The displacement

duc is associated with the crack opening stretch and consists of the gauge

displacement, du, and the elastic unloading duuni (Fig. 5). The ligament reduction,

dl, is approximated from the relative load drop, dl __(dP/Pmax)!O. Notice that

thinning of the ligament from the far side in fully plastic flow makes the reduction in

ligament rather than crack advance the appropriate measure of load drop. Thus

g dP/Pmax min m )dmia

The crack ductility Dg is analogous to d(COD)/da and is related to the crack

opening angle (COA):

Dg_ COA/cos 1.(-

where 0, is the crack orientation. It is also the normalized maximum axial ,

compliance allowed for stability:

compliance allowed < D. 6)

Tests showed that the crack ductility of the asymmetric specimens vs. that of the

symmetric ones is primarily affected by strain hardening. For example,

(Dg)sy/(Dg)ASY - 3.37 HY-100 steel (n=0.10)

1.06 A36 HIR steel (n=0.24)

In short, substantial reduction in crack growth ductility with a.ymmetry occurs in

low hardening alloys. High hardening alloys are almost as ductile in th- ."vmmetric

configuration as in the symmetric one.

(ii) Othe'r possible measures of growth are related to D5 . A paraneter. T

analogou to tearing modulus, T=(E/o 0 {)(d.l/da), can be d,,fined thyapproxima.g

a)." .. , " . - . - , , n .- .- -- M*~A
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J by the non-hardening limit [18],

",JASY=(T.S./V3)u v/, JSy 2(T.S./Vf3)u , (7)

we can define T* in terms of Dg, the tensile strength, T.S., and the modulus of

elasticity, E:

T*ASY=D (E/v/3)/T.S., TSy--D (2E/\/f)/T.S. (8)

Tests gave:

(T*ASY)high n/(T*ASY)Iow n > 3

(T SAOg n SYlow n

In conclusion, strain hardening does not affect the ductility of symmetric specimens;

it does affect the ductility of asymmetric specimens.

(iii) The growth displacement as measured from the profiles of the fracture

surfaces, ug/1O, has the same behavior as the crack ductility Dg: for the low

hardening alloys it is smaller in the asymmetric configuration than the symmetric by

a factor of more than three whereas in the high hardening alloys it is reduced by a

factor of 1.2 at most.

(iv) The displacement vector in the asymmetric specimens is more axial than

450 , suggesting a Mode I component. The angle from transverse, €, is between 510

for the 1018 CF steel and 630 for the 1018 normalized steel.

(v) The crack direction in the asymmetric specimens is less than 450, indicating

the effect of triaxiality. The angle 0C is 380-410 from transverse, larger values for the

lower hardening alloys.

& M
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In conclusion, the experiments showed that while the crack initiation

displacements are similar, the growth displacement for the low hardening alloys in

the asymmetric case is much less than that of the symmetric. Triaxiality on one side

of the asymmetric crack diverts it from 450 to 380-410 while the far field

displacement vector is more axial than 450, at 510-630, suggesting a Mode I

. component, even with asymmetry.

Table I compares the experimental findings with the predictions of the

integrated stationary crack field solutions. The initiation displacement is an order of

* magnitude larger than the theoretical one, apparently due to blunting. The

*. incremental models cannot account for the big effect of strain hardening in crack

* growth; notice that these models are based on a superposition of stationary

, singularities and thus do not take the convection of hardened material into account.

The size effects in fully plastic crack growth that are predicted from the incremental ';

pure Mode H1 analysis are associated with the transient behavior (increasing crack

growth per unit displacement).

Finally, fractographic observations show as noteworthy features in the

- asymmetric specimens the "shear type" fracture, more evident in the lower

* hardening alloys and a larger amount of sliding off in the lower flank. The

symmetric specimens, with the larger ductility, show in turn the "normal type"

fracture with more equiaxed voids than the corresponding asymmetric specimens.

- SHEAR BAND CHARACTERIZATION OF CRACK GROWTH

To provide a physical basis for interpreting the test data, a macro-mechanical

model for crack advance by sliding off and fracture was developed. The model

ft

* t -.- f..:--t-...--ft. .f
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assumes in the general mixed mode case sliding off along two slip planes and fracture

on a third and gives the independent parameters (shear and cracking directions,

relative amounts of cracking and shearing) in terms of the observable quantities of

the macroscopic fracture (flank angles, flank lengths, back angle).

To describe the development of deformation, assume cycles of sliding off on an

upper slip plane at 0 through a distance su, then on a lower at 0s through s, and

finally fracture at 0 over a distance f (Fig. 7). The limiting Mode I case with two

symmetric slip planes corresponds to Osu----Sj, 0 .--00, Su--Si, and the limiting Mode

II single slip plane case corresponds to st=0. Thus there are 5 independent physical

0 variables: the slip and fracture angles, 0 Os, 0O, the cracking ratio X=f/s u and the

shearing ratio =s,/s.. Observable quantities that allow solving for the physical

variables are the flank angles, 01 0u, the flank lengths normalized with the initial

ligament, u/o, 11/1n, and the back angle, /%, defined as the angle the deformed upper

back surface makes to the load axis. Closed-form expr.essions are given in chapter

four.
S

Examples (HY-100 and 1018 normalized steel) are shown in Table 2.

For the asymmetric specimens the shearing ratio C is found to be about 0.5

indicating shearing in lower flank twice that in upper flank. SEM fractographs have

confirmed that the lower flank shows indeed more "shear type" fracture than the

upper one. The slip angle difference 0s- 0su is a measure of the spreading out of

deformation and is found to be in the high hardening alloys 40-60 as opposed to 10-20

for the low hardening ones. The cracking ratio X is a measure of the relative amount

of fracture and sliding off on the upper surface and allows comparing with the

"apparent crack ductility", DAC, as observed fractographically and defined as the

sliding off to total area including fracture. Thus,

. .. -. .". . . . .
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In upper flank DAC,u = s/(f+sl) = l/(X/ +1). (9)

In lower flank DAC, su/(f+su) = 1/(X+I) (10)

A comparison with values observed from SEM fractographs (Table 3), shows that the

values from the fractographs are bigger by about a factor of two. Considering the

idealization of the complex hole-crack tip interaction and the difficulty in measuring

DAC (from the extent of void growth) in the fractographs, the agreement is

encouraging, giving the right trend (low hardening alloys less ductile in the

asymmetric configuration than the symmetric but high hardening alloys almost

equally ductile in both geometries).

FINITE ELEMENT STUDY OF THE ASYMMETRIC SPECIMENS

For further insight, a finite element study of the asymmetric specimens is

performed. This work is needed to relax the assumption of the far field displacement

being parallel to shear band (as was presumed in the superposition of stationary

* singularities), to account for the finite width of the shear band and to allow

", describing the Mode I component at initiation. In this finite element work (mesh is

shown in Fig. 8) blunting was neglected. Besides initiation, early growth was studied

"* by successive removal of elements reaching unit damage. To describe the Mode I

* component, use the Mode I mixity parameter M P based on stresses [1].

2 I o06,(r, 0-0,
MP - tan- lm - rack)(1

Sro"(r,0=crack)1

Results, compared with the superposition of stationary singularities and test

data are shown in Table 4. Notice the presence of a large Mode I component with

the far field displacement vector not along the 450 shear band but at an angle about

. 680 from the transverse. In addition stress and strain fields are found consistent

: ~~~~~~~~~~~~~~~~~~.. .......-....... --..-.... ,o. . ,-° °- %. ,- .°•-°.

4", -'-'- °'- ''"', '.t' ,. " t .**w*"J. " o ." . ." o -" ..-. " -. .- -.-. ' .' - -' 7 -,- ' '. - " " " - - . -° ' "
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with the solutions for the mixed mode extended HRR fields. Displacement to crack

initiation is of the order of the fracture process zone size. The critical direction is

predicted at an angle of 390-430 from the transverse, increasing for a lower strain

hardening exponent. Finite element study of early growth resulted in extension rate

for the lower hardening case about half that of the higher hardening one.

CONCLUSIONS

* 1) Low hardening asymmetric specimens are substantially less ductile than the

symmetric ones. For the crack ductility, Dg, defined as the minimum displacement

per ligament reduction,

(Dg)sy/(D)ASY > 3 for lower hardening alloys

< 1.2 for higher hardening alloys

* Thus, there is a significant effect of strain hardening in mixed Mode I and II fully

*. plastic crack growth.

2) The initiation displacement is insensitive to geometry; however it depends

on strain hardening. Blunting of the order of 10p or 0.1mm occurs in both

geometries.

3) The displacement vector is more axial than 450, at 510-630 from transverse,

suggesting a Mode I component even with asymmetry (where nonhardening solutions

give pure shear).

4) The crack direction is less axial than 450, at 380-410 from transverse (closer

to 450 with less hardening): this indicates the effect of triaxiality.

5) A superposition of stationary singularities gives practically no effect of

strain hardening; it overestimates the ductility of low hardening asymmetric

specimens.

tV
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6) Finite element study of the asymmetric specimens, neglecting blunting,

predicts at initiation a critical direction at about 400, a far field displacement at

about 680, gives HRR consistent stress and strain fields and describes the Mode I

component.

7) Early growth, studied by successive removal of critical elements shows an

effect of strain hardening; the crack growth rate for n=0.12 was twice that of

n=0.24.

8) A shear band model by fracture and sliding off on two planes describes

mixed mode crack growth; provides a physical basis of interpreting results.

SIGNIFICANCE AND RECOMMENDATIONS

Although much work has been done in the elastic and elastic-plastic fracture

mechanics, less is known for fracture under fully plastic conditions. In structures, -4

fully plastic flow before fracture is desirable since large deformations help detect

impending fracture as well as help stabilize it by load shifting. Most fracture tests

use symmetric specimens (e.g. bend, compact tensile specimens). An asymmetric

configuration, however, may arise due to a weld fillet or a harder, heat-affected zone

or a shoulder on one side of the crack. The effect of asymmetry on unconstrained

tensile specimens has been quantified and analyzed for several alloys. Results

reported here show that asymmetric (mixed mode I and H) fully plastic

configurations in low hardening alloys may be less ductile than the corresponding

* symmetric singly grooved tensile specimens by more than a factor of 3, increasing

the stiffness requirements for fracture-stable design. In addition a standard way of

representing tests and comparing the two geometries is suggested. In the fully

plastic state, since geometry and mode of loading can affect the triaxiality and the

local strain fields, the crack growth ductility will not be a single parameter but a set.
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each referring to a certain configuration and triaxiality.

Further work should include studying the effect of triaxiality by performing

constrained asymmetric tests. For example, tensile testing on doubly-grooved

specimens with the asymmetry introduced through varying notch angles and

*- positions; or laterally constrained singly-grooved tensile tests. Fully plastic fracture

under high triaxiality could be studied by wedge-splitting of a doubly grooved

specimen. Another extension could involve testing part-through cracks in plates

with asymmetric shoulders.

On the analytical side, there is a need for an asymptotic solution of mixed

mode growing cracks, coupled with finite element solutions that connect far-field and

near-field parameters; and possibly finding a rigid-plastic singularity for a growing

crack with deforming'flanks.
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TABLE 1
Asymmetric fully plastic cracks

Approximate Superposition Tests

Mode 11 soin. of Shih soin.

Initiation displacement:

u,=(O.8-0.6)p ui=(O.6-0.4)p u=83)

due to blunting

Crack direction:

0 =45O0 0 =21O 0300 0 =38 0-41 0

(assumed) 0 c1  with n ~~ 0 c Iwith n

Growth Ductility (D g=duc /d!):

0.190-0.200 0.180-0.170 . 0.215-0.072

no effect of n little effect of n strong effect of n1

Size effects in fully plastic growth:

1.5in. dia. specimens vs. 0.Sin. dia. specimens:

(Dg9)0.in/(Dg9)isin=* 2 O (Dgx)os5in/(Dg9)is5in=1.04
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TABLE 2
Deformation of singly-grooved,

asymmetric and symmetric specimens

" JAlloy: HY-100 1018 normalized

n0.10 n. 0.24

Observations Asy Sy Asy Sy

Length ratio, lUl 10 0.820 0.780 0.750 0.740

Length ratio, 11/10 0.900 0.780 0.870 0.740

Flank angle, 0u  390 -140 360 -120

Flank angle, 0 410 140 420 120

Back angle, 3u 140 (130) 130 (160)

Corresponding slip and fracture parameters

Slip angle, 0sl 530 -410 520 -310

Slip angle, s 540 410 580 310 A,

Cracking angle, 0f 370 00 310 00

Shearing ratio, 0.536 1.00 0.415 1 00

Cracking ratio, X 2.912 1.907 1.518 1.579

'..1

4
° ...............................-.. 

. . . . . .
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TABLE 3
Apparent crack ductility

Shear band fractographs

model

HYIOO steel

*Asy DAdJ 0.26 0.51

DAC 0.16 0.37

Sy DAJ0.34 0.64

DAC~u 0.34 0.64

1018 normalized steel

Asy Dd 0.40 0.68

D AC~u 0.23 0.52

SyD AC 0.39 0.67

D 0.39 0.67AC,u
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.4.Comnparing with thBe iit element results.

Finite Element Superposition Tests

(blunting of Shih soin.

neglected)

Initiation displacement:

*ui=(O.5-0. 6 )p ui=(O.6-O.4)p u=83)

due to blunting

Mode I component at initiation, MP:

relative to initial crack direction

S0.093 :~0.50

relative to final crack direction

S0.71 0.25 '

Displacement vector at initiation:

* c-68 0  0~=45O 0 0690-580

(assumed)

Crack direction:

9 =390430 Oc=210~0 Oc=380410

Otwith *O with al, Oct with n

Gauge extension rate

0.158-0.075 (0. lSO-O1 7 0)min (0.153-0.60) min

(Early growth)

strong effect Of D little effect of n strong effect of n
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APPENDIX A - Experimental Techniques

In this section the experimental techniques used (tensile testing and

extensometer connections, microscopic surface topography mapping, fatigue-

*precracking) are described.

1. TENSILE TESTS WITH MTS. 50 METRIC TON MACHINE

Preliminary

Set Console Power switch On (Master Control Panel 413).

Set Hydraulic Pump switch in Room 1-014 ON.

- Check that Feedback Selector (Model 440-32 behind the 442 Controller Panel) is in

LOCAL.

Set switch in PDP-11 behind the panel under the disk drives to OUTPUT.

"' 410 - Digital Function Generator

Set to LOCAL (to start by pressing START - if set to REMOTE then you must

"- start from RUN in 413).

Select rates of loading and unloading, e.g.

For 20 mm stroke range,

Rate 1 2.4E3 see. means 2400 secs for 20 mm loading

Rate 2 = 2.4E2 sec. means 240 sees for 20 mm unloading

*For 50 mm stroke range, same rates of loading and unloading require

Rate 1 = 6E3 see.,

Rate 2 = 6E2 see.

PRESS RAMP, DUAL SLOPE for monotonic loading and unloading.

Set BREAKPOINT to NORMAL and BRKPNT PERCENT to 100.

r

t. - .-.7, - , / . - . ,-, - - . ,. ,- ,. ,-. -,. -. - . . . . . .,. , ," ••.. . - - . - . - . . , ,, - . . - .
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442 - Controller

Press STROKE (for stroke control).

Set STROKE range as desired (e.g. ±20 mm) by turning the RANGE knob behind

the panel.

Set LOAD Range e.g. to 10K by turning the RANGE knob on stroke module behind

the panel; 10K means 10V output correspond to 10,000 kgf=22,000 lb

Set SPAN 1 to 100%

Zero load indication (see digital indicator channel 1 in 430 panel) before inserting

specimen by turning the ZERO knob on Load module (Model 440.21) behind the 442

panel.

Press RETURN TO ZERO (in 410) to zero out any pre-existing function generator

. signal.

Set METER at DC ERROR. Zero out error by turning SET POINT right if pointer

is right; left if pointer is left. If whole range is not enough, use ZERO knob on

stroke module behind 442 panel.

"" Press INTERLOCK RESET.

413 - Master Control Panel

Press RESET.

Press HYDRAULIC PRESSURE LOW, then HIGH.

Put SET POINT in 442 to 5.0 - Ram will move. (Digital indicator channel 3 should

read 0.0). To further move the ram use ZERO knob on stroke module (Model

440.21) behind 442 (Controller) panel.

. Notes: 1. Ram moves DOWN when turning SET POINT right,

2. to increase stiffness move ram up.

As you tighten the locknuts use SET POINT to relieve any compression: watch

digital indicator channel I for load (channel 3 is stroke).

[ .- I
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Press START in 410.

End of Test

TO STOP: Press HYDRAT TLIC PRESSURE LOW then HYD OFF on 413.

4BTo LEAVE: Set Hydraulic Pumv switch in Room 1-014 OFF.

* "- Set Console Power OFF on 413.

-" Intermediate Manual Unloading and Rf-!lading

To UNLOAD: Press HOLD in 410 (holds the test), then turn SET POINT in 442 left

to unload.

TO RELOAD: Turn SET POINT right.

To CONTINUE with preset rate: Press HOLD once more.

* .Moving Crosshead

" Press HYDRAULIC LOW, then HIGH on 413.

Set switch behind the MTS to UNLOCK.

Move crosshead by turning the UP or DOWN handle as you wish.

Set switch behind the MTS to LOCK.

Press RESET on 413.

MTS Plotter

3 channels, X,Y1 and Y2. YI not working

e.g. Using X channel for stroke, selecting 5% of range/in with 20 mm stroke range

corresponds to 1 mm/in on the plot.

* Using Y2 chamiel for load, selecting 20% of range/in with 10K load range

• .' corresponds to 2000 kgf/in on the plot.

Stiffness Data of the MTS.

I-

,. -,.- . * - ... -. - --- .-- . . . . . . . . . . .....- .-. . . ..-. . ..-. .'... ..-.. .-.-... -.....- .- --.-........-..-. .... ....' -.. :.-. :..
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Load Cell 33.0E6 lb/in

Load Frame 6.0E6 lb/in
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2. EXTENSOMETER CONNECTIONS WITH THE VISHAY AMPLIFIER/CONDITIONER

Wiring Correspondence

AXIAL Extensometer - Full Bridge

Extens. Vishay
A RED D out +
B GREEN C exc -

C YELLOW A out -
D BLUE B exc +
E BLACK F ground

CA. A corresponds to 0.0275 in. (0.8985 mm)

TRANSVERSE extensometer - Half Bridge

Extens. Vishay
A A out +
B C exc - , out-
D B exc +
E F ground

CAL A corresponds to 0.055 in. (1.397 mm)
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3. SURFACE TOPOGRAPHY MAPPING WITH THE BAUSCH AND LOMB TRAVELLING

* MICROSCOPE.

The apparatus consists of the microscope, linear potentiometers, stage

extension bar and assorted rubber bands and C-clamps for fixing the potentiometers

-.* on the microscope. One potentiometer is clamped to the side of the microscope and I

one to the travelling stage.

Rubber bands are used to secure the stage extension bar to the microscope

knee. Note that some of the rubber bands go around the back of the microscope.

They serve two purposes; they keep the stage extension bar firmly against the

microscope and they act to offset its weight.

Adjust the potentiometer and the stage extension bar so that the points of the

potentiometer are reasonably centered on the bottom of the cap screws in the stage

extension bar. Use rubber bands to secure the potentiometer ends on the stage

extension bar screws.

The electric circuit employs a V0 =3V battery and a balancing 10-turn

potentiometer for each linear pot. The two green wires from the linear pot go to the

battery terminals hooked with the balancing pot as in Fig. 1. The blue wire from

the linear pot and the remaining wire from the balancing pot go to the plotter.

Solving the circuit gives

V -V R2  R 41V 2 - )V.
R +R 2  R3 +R 4

Zero the output V1 -V2 at the starting point by using the balancing 10-turn
potentiometer (i.e. adjust R4 so that V1-V 2 =0).

..
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To plot the topography use the 10x power on the microscope. The higher

* magnifications require the objective tt be quite close to the surface of the specimen

and one could easily hit the objective on a peak of the viewed surface when trying to

focus into a valley. Move slowly your specimen along the horizontal axis and get the

corresponding vertical coordinate by having the centerline of the specimen always in

focus. Notice that the vertical fine scale on the microscope is 10 rev=1 mm.

A.
S.

Im

V
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4. FATIGUE PRE-CRACKING

Specimen precracking was done on the SF-i Fatigue Machine, which is a fixed

frequency (3800 rpm) rotating mass machine. It was used with the bending fixtures.

The specimens were subjected to four-point bending. A uniform bending moment M

is applied across the span of the specimen, given in terms of the load moment arm R 1

*i (distance between rocker bearings, R - 3 or 6 inches) and the total applied force P

*from

M PR/2 (1)

~-.- The nominal alternating stress oa can be found by using the moment of inertia .

" I-bh3/12 (b, h are specimen width, and thickness) from

M(h/2) 3PR M
)= -".I bh 2  bh 2/6 .(

* Notice that oa does not depend on the specimen length. In terms of the specimen

length between grips,-L, (L = 3, 5, 6 or 8 inches) and the modulus of elasticity of the

- specimen, E, the amplitude of the vibrating platen Y is

ML 3PR 2L
. R - (3)

2EI Ebh3

The following restrictions apply

Maximum applied force, P=1,000 lb

Maximum amplitude of reciprocating platen Y=0.4 inches

As a rough approximation assume oa,T.S. Then from (2) find the necessary

M=(T.S.)bh 2 /6. For a chosen R find the required P from (1), P=2M/R. Next, for

the chosen specimen length L check that the resulting Y from (3) is less than 0.4

inches. Notice that P should be less than 1,000 lb.

.......... . . . . . . . . . . . . . . . . . .. . V

. .. . . . . . . . . . . . . . . . . . . . . -V
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Indicative data for fatigue pre-cracking on the SF-I with R=3 inches are:

1018 CF steel (HBN=157) 0.50" dia. needs about 10,000 cycles with P=90 lb to

grow 0.050" fatigue crack.

A36 steel (HBN=105) 0.50" dia. needs about 7,000 cycles, P=80 lb to grow 0.050"

Smfatigue crack

5086-Hlll aluminum (HBN=70) 1.50" dia. needs about 12,000 cycles, P=1,000 lb to

grow 0.150" fatigue crack.

To operate the machine (for details see instruction manual):

Turn the CONTROLLER POWER switch to STANDBY.

Turn on main power switch on wall behind machine. Wait for at least half hour to

allow warmup.

Attach tuning weights to the studs on either side of the orange cage.

* .Set the oscillating load P.

Check that knob of variable transformer is at zero.

Press START button. Gradually turn knob of variable transformer, increasing the

*motor speed to the extreme 100 position. This should take from 20 to 80 sec.

Turn CONTROLLER POWER switch ON.

. .To STOP press the STOP button and turn the variable transformer back to zero.

°.

ti.;
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Figure 1. Surface topography mapping circuit.
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APPENDIX B - MESH GENERATOR

The following FORTRAN program generates the rinite element mesh for the

asymmetric specimens for any desirable radial size ratio and angular spacings. Bar

denotes user input.

Crc

IV 1
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C This program creates the node nos., element no. ., and
C the coresponding MPC constraints for the fan.
C We have maxim Nr segments radially and N6 radial lines
C around; here Nr=32 and NG=19.
C RG=10 microns (one inclusion spacing) - 0.01 m
C s is the size ratio in the log circular mesh=l.155

" C Angular spacings are (larger to smaller) thet, thetl. thet2,
C thet3- here thet-30, thetl=15. thet2=7.5, theat3=3.75 deg.

* C L is the node no. with coords x(L)o y(L); M is the element no.
C with nodes Nodl(M), Nod2(M).....Nod8(M).
C File no. 15 contains the nodes, no. 16 contains the element data
c and no. 17 contains the MPC constraints.

DIMENSI0N x(15000). y(15C00). Nd(15000). phi(lO0).
- Nod2(15000). Nd3(lSO). Nod4(15000). Rc(.O)..
,- NodSo(15000). Nod((15C0O)) Nod7(15000), Nod8(15CCO)
Nr a32 OC

c Note: Nr should be a multiple of 8 (so that the minimum no. +
c of segments radially, corresp. to the largest angle, Is Nr/8)
c Rmax = RO(s**Nr-l)/(s-l)

RD =0.01
s 1.155
pi 3.14159
thet = 30.*pi/18O..
thet 15.*pi/180.
thet2 = 7.5'pi/180.
thet3 3.75"pi/18O.
R30 = RO(I+s*2+s**3+s**4s**5+s**6+se*7)
930 = s**S
N30 = Nr/a
RIS = R0" (l+s+s**Z+s"*3)

,,. S15 = &ee4 "

NIS = Nr/4
R75 = R- * (1+s)
s75.= s**2
N75 - Nr/2

1001 FCRMAT(I5,F10 .7,FIG.7)
c Dtheta for radial lines 1-Ni is 15 deg.: N1-N2: 7.5 deg.:
c N2-N3: 3.75 deg.: N3-N4: 7.5 deg.;
c N4-NS: 15 deg.; NS-NG: 30 deg.; N7: crack flank.

N2 a4
N3a8
N4 =9
N5= 11
N6 a 19
N7 =14

c Input Nodes for the 15 deg. sectors
DO 90 I=lo NI-i
phia in(I-l)*thetl
phil(I) = phia
DO 100 J=l, N75
Rl R75( s7S5-J - . )/(s7S-l)
L = 500* 4+J
x(L) = Rlecos(phia)
y(L) = Rl*sin(phia)

".: WRITE(15,1001) L. x(L). y(L)"
100 CONTINUE
90 CONINUE

DO 911 I-1. NI-I
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phla =(I-1)*theti + thetl/2.
DO 922 J=1. N15
Rl = R15*( siS**J I )/(s15-i)
L = 500*1 +200 + 8*J
x(L) = Ri*cos(phla)
y(L) = Ri*sin(phia)
WRITE(15, 1001) L, x(L), y(L)

922 CONTINUE
911 CONTINUE
c Input Nodes for the 7.5 deg. sector

DO 82 I=Nl, N2-1
phia =(Nl-l)*theti + (I-N)*thet2
phl(I) =phia
DO 101 J=1. Nr
RI = RO*( s**J - 1 )/(s-1)
L = 500*1 + 2*J
x(L) = Rl*cos(phia)
y(L) = R1'sin(phia)
WRITE(1541001) L, x(L), y(L)

101 CONTINUE
82 CONTINUE

DO 912 I1N1. N2-1
phia = (Ni-l)*theti + (I-N1)*thet2 + thet2/2.
DO 923 J1., N75
Ri = R75*( s7S**J - 1 )/(s75-1)
L = 500*1 + 200 +4*J
x(L) = Rl*cos(phia)
y(L) = R1*sin(phia)
WRITE(15. 1001) L, x(L), y(L)

923 CONTINUE
912 CONTINUE
c Input nodes for the 3.75 deg. sectors

DO 83 I=N2, N3
* phia =(Nl-1)*thetl + (N2-Ni)*thet2 + (I-N2)*thet3

phl(I) = phia
Rip = 0.
DO 132 J=1. Nr
Ri = RO*( s**J - 1 )/(s-1)
L = 500*1 + 2*J
x(L) = Rlt cos(phia)
y(L) = R1*sln(phla)
WRITE(1S,1001) L, x(L). y(L)
L = 50*1 +(2*J-1)
R2 =(Ri+Rip)/2.
x(L) = R2*cos(phia)
y(L) = R2*sin(phia)
WRITE(l5, 1001) L, x(L), y(L)
Rip = Ri

132 CONTINUE
483 CONTINUE

DO 913 I=N2, N3-1
phia = (Nl-l)*thetl + (N2-Ni)*thet2

t - + (I-N2)*thet3 + thet3/2.
DO 924 J=1. Nr

Ri = RO'( s**J - 1 )/(s-1)
L = 500*1 + 200 +2*J
x x(L) = Ri*cos(phia)
y y(L) = R1*sin(phia)
WRITE (15, 1001) L, x (L) , y (L)

074 CONTINUE



913 CONTINUE
c Input nodes for the 7.5 deg sector

DO 84 1=N3+1. N4
* pkxla =(N1-i)*theti (N2-Nl)*thet2

+ (N3-N2) *thet3 + (I-N3) *thet2
phi(I) = phia

N DO 133 J1., Nr
Ri -U~'s* )/(s-1)
L =500*1 + Z*J-
x(L) = Ri*cos(phia)
y (L) = Ri*sin (phia)
WRITE(iSiO0i) L, x(L), y(L)

133 CONTINUE
84 CONTINUE

DO 914 I-N3, N4-1
phia = (Ni-i) 'theti + (N2-N1) *thet2

+ (N3-N2)*thet3 + (I-N3)*thet2 *thet2/2.
DO 925 J=i. N75

Ri = R75*( s75**J - 1 )/(s75-i)
L = 500*1 + 200 + 4*J
x(L) = Ricos(phia)-
y(L) = Ri*sin(phla)
WRITE(15, 1001) L, x (L) , y (L)

*925 CONTINUE
*914 CONTINUE
*c Input nodes for the 15 deg. sectors

DO 85 1=N4e1, NS
phia =(Nl-l)*theti + (N2-Nl)*thet2

+ (N3-N2) *thet3 + (N4-N3) *thet2 * (I-N4) *theti
phi(I) = phia
DO 134 J=l, N75
Ri R75a( s7S**J - 1 )/(s75-1)
L = 50*1 + 4*J
x(L) = Ri*cos(phia)
y(L) = Rl*sin(phia)
WRITE(15,iO0l) L, x(L), y(L)

134 CONTI MUE
85 CONTINUE

DO 915 I=N4, N5-1
phia = (Nl-1)*thetl + (N2-Nl)*thet2

-+ (N3-N2)*thet3 + (N4-N3)*thet2 + (I-N4)*theti theti/2.
DO 926 J=1. N15
RI = Ri5*( s15**J - 1 )/(s15-i)
L = 500*1 + 200 + 8*J
x (L) =R1*cos (phia)
y(L) Rl*sin(phia)
WRITE (1S, 1001) L, x (L) , y (L)

926 CONTINUE
915 CONTINUE

* c Input nodes for the 30 deg. sectors
DO 86 I=N5+1. N6
phia =(Ni-i)*theti + (N2-N1)*thet2 + (N3-N2)*thet3

+ (N4-N3)*thet2 + (NS-N4)*theti + (I-NS)*thet
phl(I) = phia
DO 135 J=1. NiS
Ri RiSAC s15**J - 1 )/(si5-l)
L = 00*1 + 8*J
x(L) = R1'cos(phia)
y(L) = Ri*sin(phia)
WRITE(15,1001) L, x(L), y(L)
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135 CONTINUE
-86 CONTINUE

DO 916 I=N5, N6
phia = (NI-I) *theti + (N2-NI) *thet2

-- + (N3-N2) *thet3 + (N4-N3) *thet2
- (NS-N4)*thetl + (I-NS)*thet thet/2.
DO 927 J=l. N30

R1 = R30( s30**J - I )/(s30-1)
L = 500"I + 200 + 1*J
x(L) = RI*cos (phia)
y(L) = Rl'sin (phia)
WRITE(15. 1001) L, x(L), y(L)

927 CONTINUE
916 CONTINUE
c Nodes for crack flank

I=N7
phia = pi
phi(I) = phia

DO 11 J=l, N15
RI = R15*( slS*J - I )/(sl5-1)
L =500I + 00 + 8*J
x(L) = Rl*cos(phia)
y(L) = Rl*sn (phia)
WRITE(15.1001) L. x(L). y(L)

11 CONTINUE
c Nodes for crack tip

DO 87 I=l. N6
L =500"I
x(L) = 0.
y(L) - 0.
WRITE (15,1001) L, x(L), y(L)
L = 500*I + 200
x(L) = 0.

I y(L) 0.
WRITE (15,1001) L. x(L), y(L)

87 CONTINUE
L = 500"N7 + 100

, x(L) 0.
y (L) 0.

WRITE (15,1001) L., x(L), y(L)
C

C Elements - M is the element no.
1002 FORMAT(15, 815)
c

NS = 12
N9 = 16
N99 = 17
NI0 = 18
xc = 3.81
phia = (N7-N8) *thet
Rcy= 3.81/cos(phia)
yc = Rcy*sin(phia)

c Notice: Fpr the shoulder, the following constraint
c should be fullfilled:
c (xcl + rad - x )*2 + dy**2 = rad**2
c with dy-xcl*tan(thet)

tad = 1.49
alpha - 1. + tan(thet)"tan(thet)
beta = xc - tad
gamma - (xc-rad) * (xc-rad) - rad*rad

.........................- --"A *-

I iA.,..- IA*I
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delta h eta*beta -alpha'gamma

xci l beta + SQRT(delta) )/alpha.
dy =xcl'tan(thet)
Nadd = 2*(Nr~1)
Nadi = 2*Nr+1

c In each sector, first determine boundary nodes .

c and then Input elements
DO 151 I=Nl. N2-1

Rc (I) xcl/cos (phi (I))
arg =(Rc (I)*(s75-1) /R75 )+ 1

Nri =NINT ( LOG (arg) /LOC (s7S)
Li = 500*1 + Nadd
x(Ll) = xci
y (L1) =Rc (I) *sin (phi (I))

L2 = 500*(I~i) + Nadd
Rc(I+l) = xci/cos(phi(I.1))
x(L2) =xci
y(L2) =Rc(I+1)*sin(phi(I+1))
WRITE(5,i00i) L2, x(L2), y(L2)

L3 =Li + 200
x(L3) = ( x(LI) + x(L2) )/2.
y(L3) =( y(Li) + y(L2) )/2.
WRITE(15,.iooi) L3, x(L3) - y(L3)

DO 141 J1, MNr-i
M = i00*J + I
Nodi (M) = 500*1 + 4*(J-..)
Nod2(M) = 500*1 + 4*J
Nod.3(M) = 500*(1+i) + 4*J
Nod4(M) = 500*(1+1) + 4*(J..1)
Nod5(M) = 500*1 + 2* (2*J-i)
Nod6(M) = 500*1 + 200 + 4*J
Nod.7(M) = 500*(I+i) + 2*(2*J-1)
NodS(M) = 500*1 + 200 + 4*(J-1)
WRITE(i6,1002) M, Nodl(M), Nod2(M), Nod3(M),

- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
141 CONTINUE

J = Mn
Li SO50*1 + 4*(J...)
L2 = 50*1 + Nadd
L3 =500*(I+1) + Nadd
L4.= SOO*(I+l) + 4*(J-i)
Li2 = 500*1 +9 Nadi
x(L12) = ( x(L1) + x(L2) )/2.
y(L12) = ( y(L1) +9 y(L2) )/2.
WRITE(151001) Li2, x(1,12), y(L12)

L34 = 500*(I+l) + Nadi
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.

WRITE(15,iO0i) L34, x(L34),. y(L34)
M = 100*J + I
Nodl(M) =L.i
Nod2(M) = L2
Nod3(M) = L3
Nod4(M) = L4
NodS(M) = L12
Nod6(M) = 500*1 + 200 + Nadd
Nod7 (M) = L34
Nod8 (M) = 500*1 + 200 + 4* (J-1)
WRITE(16,1002) M, Nodl(M). Nod2(M), Nod3(M).
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-Nod4 (M). NodS (M). Nod6 (M). Nod7 (M). Nod8 (M)
151 CONTINUE

DO 152 I=N2. N3-1
Rc(I) =xci/cos(phl(I))
arg=( Rc (I) *(s-) /RO) + I

Nrl NINT( LOG(arg)/LOC(s)
Li = 500*1 +Nadd
x(Ll) = xci
y(Ll) = Rc(I)*sin(phi(I))
WRITE(15.i00i) Li. x(L1), y(L1)
L2 = 500* (1+1) + Nadd
Rc(14-1) =xcl/cos(phi(I.1))
x(L2) = xci
y (L2) = Rc (I+l) *sin (phi (I+1))
WRITE(15,i001) L2, x(L2), y(L2)

L3 = Li + 200
x (L3) = x x(L1) + x(1,2) ) /2.
y(L3) = (y(Li) + y(L2) )/2.

* WRITE(15,i001) L3, x(L3). y(L3)
DO 142 J=l. Nrl-i
M4 = 100*J + I
Nodi (M) = 500*1 + 2*(J-1)
Nod2(M) = 500*1 + 2*J
Nod3(M) = 500(1+i) + 2*J
Nod4(M) = 500(I~i) + Z'(J-i)
NodS(M) = 500'I + (2*J-i)
Nod6(M) = 500*1 + 200 + 2*J
Nod7(M) = 500*(I+i) + (2*J-1)
NodB(M) = 500*1 + 200 + 2*(J-1)
WRITE(16,1002) M, Nodl(M), Nod2(M), Nod3(M),

- Nod4(M), NodS(M). Nod6(M), Nod7(M), Nod8(M)
142 CONTINUE

J = Nrl.N Li = 500*1 + 2*(J-1)
L2 = 500*1 + Nadd
L3 = 500*(1+1) + Nadd
L4 = 500*(I~i) + 2*(J-1)
Li2 = 500'I + Nadi
x(L12) = ( x(Li) + x(L2) ) / 2.

m~ y (L12) = ( y (LI.) + y(L2) ) / 2.
WRITE(15,1O0l) Li2, x(L12), y(L,12)
L34 = 500*(1+i) + Nadi
x (L34) = x x(L3) + x (L4) ) / 2.

-:y(L34) = (y(L3) + y(L4) ) / 2.
WRITE(i5,100i) L34, x(L34), y(L34)

M = 100*J + I
Nodl(M) = Li
Nod2(M) = L2
Nod3 (1) =L3
Nod4 (M) = L4

*-Nod5 (M) = L12
Nod6 (M) = 500*1 + 200 + Nadd

L.Nod7(M) = L34
NodS (M) = 500*1 + 200 + 2* (J-1)

* WRITE(i6,i002) M, Nodi(M), Nod2(M). Nod3(M),
- Nod4 (1). NodS (M) , Nod6 (M)., Nod7 (M)., Nod8 (M)

152 CONTINUE
DO 153 1-N3. N4-1
Rc(I) =xci/cos(phi(I))

* *arg =(Rc(I)*(s7S-1)/R?5 + 1
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cNi-i - N~IT( LO~rg/OJsS

Li - 500*1 + Nadd
x(Ll) -xci
y(Li) - Rc(I)*sin(phL(I))
'WRITE(i5.1001) Li. x(Li). y(Li)
L2 = 500*(I.1) + Nad~d
Rc(1.1) = xcl/coo(phi(I+1))
x(L2) = xci
y(L2) = Rc(I.1)*sJin(phi(I.1))
WRITE(1S,1001) L2, x(LZ), y(L2)
L3 =Li+ 200

x(L3) = ( x(Li) + x(L2) )/2.
y(L3) = ( y(Li) + y(L2) )/2.
WRITE(15.i0Oi) L3, x(L3) - y(L3)

DO 143 J1.l Nri--
M = 100*J + I -

Nodi(M) = 500*1 + 4*(J-i)
Nod2(M) = 500*1 + 4*J
Nod3(M) = SOO*(I.1) + 4*J
Nod4(M) = 500*(I~l) + 4*(J-1) -

Nod5(M) =500*1 + 2*(2*J-i)
Nod6(M) = 500*1 + 200 +4*J
Nod7 (M) = 500* (I+l) + 2* (2*J-i)
Noda (M) = 500*1 + 200 + 4*(J-1)
WRITE(i6.i002) M. Nodl(M), Nod2(M), Nod3(?4),

- Nod4(M). Nod5(M), Nod6(M). Nod7(M). NodS(M)
*143 CONTINUE

Li = 500*1 + *J1
L2 =0' SO* Nadd
L3 = 500*(I+1) + Nadd
L4 = 500* (I.1) + * J1
L12 = 00*1 + Nadi
x(L12) = x(Li) + x(L2) ) / 2.
y (L12) - y y(Li) + y (L2) ) / 2.
WRITE(i5,1001) L12, x(L12), y(L12)
L34 = SO0*(I.1) + Nadi
x(L34) =( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE(iS,1001) L34, x(L34). y(L34)
M 100*J + I
Nodi (M) - Li
Nod2 (M) = L2

*Nod3(M) = L3
Nod4(M) aL4
Kod5 (M) = Li2
Nod6 (K) =500*1 + 200 + Naddki
Nod7 (M) =L34
NodBjM) = 500*1 + 200 + 4*(J-1)
WITE(16,1002) M, Nodi(?4). Nod2(M), Nod3(1),

4 153 -Nod4(M). Nod5(M). Nod6(M), Nod7(M), Nod8(M)
13 CONTINUE

CO 154 I-Ns. m8-1
Rc(I) =yc/sin(phi(I))
arg (Rc (I) *(s3O-1) /R30 + 1

MNrl NINT( LOG(arg)/LOG(s30)
Li = 500*1 + Nadd
x (Ll) a c (1) cos (phi (1)
y(L1) = -
WRITE(15,1001) Ll. x(Ll), y (Ll)
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L2 = SO'(I.1) + Nadd
RC(I~i) = yc/s!in(pii(I'.1))
X(L2) = Rc(I+i)*cos(phi(I~i))
Y(L2) L= y(2c (2
WRITE(15.1001) LxL) (2
L3 = Li + 200

x(L3) = ( x(Li) + x(L2) )/2.
y(L3) = ( y(Li) + y(L2) )/2.
WR.ITE(15.i001) L3, x(1,3), y(L3)

DO 144 J-1, Nri-1-
M 10O*J + I

*Nodl(M) =500*1 + 16*(J-1)
Nod2(M) = 500*1 + 16*J
Nod3(M) = 500*(I+1) + 16*J
?Jod4(M) = SO0*(I.1) + 16*(J-1)
NodS(M) =500*1 + 8*(2*j-l)
Nod6 (H) =500*1 + 200 + 16*j
Nod7(M) =500*(1+1) + 8*(2*J-1)
NodB (M) =5SO*1 I 200 + 16* (J-1)
W~RITE(16.i002) M, Nodl(M). Nod2(M) - Nod3(M),

Nod4 (M) , NodS (M) , Nod6 (M) , Nod7 (M), Nod8 (M)
144 CONTINUE

J = Ni-i
Li = SOO* I + 16* (J-1)
L2 = 500'I + Nadd
L3 = SO0*(I+i) + Nadd
L,4 = SOO* (1+1) + i6*(J-1)I L12*= 500*1 + Nadi
x(L12) = ( x(Li) + x(L2) ) / 2.
y (L12) = ( y (Li) + y (L2) ) / 2.
WRITE(15.iO0l) Li2, x(1,12), y(L12)

L,34 -OO 50(1+ 1) + Nadi
x(L34) = ( x(L3) + x(L4) ) /2.
y(L34) = ( y(L3) + y(L4) ) /2.
WRITE(lSiO0i) L34, x(L34), y(L34)
M 100*J + I
Nodi(M) = Li
Nod2(M) = L2
Nod3(M) = L,3
Nod4(M) = L,4
NodS(M) - Li2
Nod6(M) = 500*1 + 200 + Nadd
Nod7(M) =L34

*NodS (M) = SOO* I + 200 + 16* (J-1)
* WRITE(16,1002) M. Nodi(M), Nod2(M), Nod3(M),

Nod4 (M). NodS (H). Nod6 (M), Nod7 (M), Nod8 (M)
1S4 CONTINUE

DO 155 I=NS, N7-1
Rc(I+l) = -xc/cos(phi(I+1))

*arg (Rc(I+1)'(s30-l)/R30 + 1
Ni-i NINT ( LOG (arg) /LOC (s30))

Li = 500'(I.1) + Nadd
x(LI) -- xc
y(Li) - RC(I+i)*sin(phi(!I))

* WRITE(i5,i001) Ll. x(L1), y(Li)
* L2 - 500*1 + Nadd
* Rc(I) - -xc/cos(phi(l))

x(LZ) a-xc
y (L2) - Rc (1)*sin (phi (I))
WRITE(S,100i) L2. x(L2), y(L2)
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L3 L2 + 200
x (L3) =( x (Li) + x (L2) )/2.
y (L3) -( y (L1) + y (L2) )/2.

DO 14S J~i. Nri--

Nodl (M) = 500 1 + 1i6'(J-1)
Nod2 (M) = 500*1 + 16*j
Nod3 (M) - 500*(I~l) + i6*J
Nod4 (M) = 500* (I+i) + 1i6 (J-1)
Nod5(M) = 500*1 + 8*(2*J-1)
Nod6(M) =500*1 + 200 + 16*J
Nod7(M) = 500*(I~l) + 8*(2*J-1)
NodB(M) = 500*I + 200 + i6*(J-i)
WRITE(16,1002) M, Nodl(M). Nod2(M), Nod3(M),

- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (1)
145 CONTINUE

J =Nri
Li = 500*1 + i6*(J-i)
L2 = 500*1 + Nadd
L3 = 500*(I~i) + Nadd
L4 = 500*(I~l) + i6*(J-I)
L12 =500*1 + Nadi
x(1,12) = x(L1) + x(L2) ) / 2.
y(1,12) = y (L1) + y(L2) ) / 2.
WRITE(152.001) Li2, x(L12), y(1,12)
L34 = 500*(1+i) + Nadi
x(L3) (x(L3) + x(L4) ) / 2.1

y(L34) (y(L3) + y(L4) ) / 2.
WRITE(15,1O0i) L34, x(L34), y(L34)

M = i00*J + I
Nodi (M) = Li
Nod2(M) = L2
Nod3(M) = L3
Nod4 (M) = L4
NodS(M) = L12

*Nod6(M) = 500*1 + 200 + Nadd
Nod7(M) = L34
NodB (M) = 500*1 + 200 + 16*(J-i)
WRITE(i6,1002) M, Nodl(M) - Nod2(M), Nod3(M).

- Nod4 (M)., NodS (M) , NocL6 (M) , Nod7 (M). N od8 (M)
*15S CONTINUE

DO i56 I=N7.i. N9-1
Rc (I) =-xc/cos (phi (I))

arg =(Rc (I)* (s30-i) /R30 + 1
Nil-i NINT( LCC(arg)/LOG(s30))

Li 500*1 + Nadd
x(LI) -- xc
y (Li) -Rc (1)*sin (phi.(I))
WRITE(15,iO0i) Li, x(Ll), y (Li)
L2 =500*(I+i) + Nadd

* Rc(I+i) - -xc/cos(phi(I+i))
x(L2) =-xc
y(L2) =Rc(I+1)'sin(phl(I+1))

* WRITE(iSiO0i) L2, x(L2), y(L2)
L3=-Li + 200

x(L3) =( x(LI) 4 x(L2) )/2.
y(L3) =( y(Li) + y(L2) )/2.
WRITE(iS5ioo2.) L3, x(L3), y(L3)

DO 146 Jai. Nri-i



M =100*J + I
Nodl (M) =500*1 + 16* (J-1)
Nod3(14) = 500*(16'J+ 6

Nod4(4) = SOO*(I+1) + 16*(J-1)
NodS (M) = 500*1 + 8* (2*J-1)
Nod6(M) = 500*I + 200 + 16*J

pNod7(M) - SOO* (I+1) + 8' (2*J-1)
N odB(4) =500*r + 200 + 16*(J-1)
WRITE(16,1002) M4, Nodl(14), Nod2(M). Nod3(M),

- Nod4(M), NodS(M), Nod6(M), Nod7(14). Nod8(M)
*146 CONTINUE

J =Nri
Li = 50*I + 16*(J-1)
L2 500*1 + Nadd
L3 S00*(I+I) + Madd
L4 500*(I.1) + 16*(J-1)
L12 SO50*1 + Nadi
x(L12) = ( x(L1) + x(L2) )/2.
y(L12) = ( y(L1) + y(L2) )/2.
WRITE(l5.1001) L12, x(L12), y(L12)

* L34 = 500* (1+1) + Nadi
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.

WRITE(lS,1001) L34, x(L34), y(L34)
M4 = 100*J + I
Nodl(M) = Ll
Nod2 (M): = LZ
Nod3(4) =L3
Nod4 (M) = L4
NodS (M) = L12
Nod6(4) = 500*1 + 200 + Nadd
Nod7 (1) = L34
NodS(M) = 500*1 + 200 + 16*(J-i)

* .WITE(16,1002) M,. Nodl(14), Nod2(M), Nod3(M),
- Nod4 (1) NodS (1) Nod6 (1), Nol7 (1), Nod8 (1)

- -156 CONTINUE
DO 157 I=N9, N99-1
Rc(I.1) = -yc/sin(phi(I.1))

arg = ( Rc(I+1)*(s30-i)/R30 + I
- Nrl = NINT( LOG(arg)/LOG(s30))

* * Li = 500*(I.1) + Nadd
x (LI) = Rc (1+1) *cos (phi (I+1))

* ., y(Ll) = -yc
* -. WRITE(iSAO00i) Li. x(Li). y(Li)

L2 =500*1 + INadd
Rc(I) - -yc/sin(phi(I))
x (L2) = Rc(1) *cos (phi (I))
y(L2) - -yc

4, - WRITE(l5.lO0i) L2, x(L2), y(L2)
L3 - L2 + 200

x(L3) =( x(Li) + x(L2) )/2.
y(L3) = ( y(Li) + y(L2) )/2.
WRITE(1S.1001) L3, x(L3), y(L3)

DO 147 J1., MNr-I
M =100*J +I
Nodl(M) - 500*1 + 16*(J-1)
Nod2(14) - 500*1 + 16*J
Nod3(14) - 500*(I+l) + i6*J
Nod4(M) - SO* (I+1) + 16*(J-1)
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NodS(M) = 500*1 + 8*(2*J-i)
Nod6(M) 500O*I + 200 + i6*J
Nod7(M) = S0(I+l) + 8'(2*J-1)
Nod8(M) -00 SO* 200 + 16*(J-1)

'I WRITE(16.i002) M, Nodl(M), Nod2(M). Nod3(M),
- Nod4 (M), NodS (M). Nod6 (M). Nod7 (M). NodS (M)

147 CONTINUE
J Nri
Li = 500* 1 + 16*(P-1)
L2 = 500*1 + Nadd
L3 = 500*(I+l) + Nadd
L4 =500*(I+l) + 16*(J-1)
L12 SO0*I + Nadi

*x(1,12) = (x(LI) + x(L2) ) /2.
y(1,12) = y y(L1) + y(L2) ) /2.

L34 = SO0'(I.1) + Nadi
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) +y(L4) ) / 2.
WRITE(15.100i) L34, x(L34), y(L34)

M = 100*J + I
Nodi(M) = Ll
Nod2(M) = L2
Nod3(M) =L3
Nod4 (M) =L4
Nod5(M) =L12
Nod6(M) = 500*1 + 200 + Nadd
Nod7 (M) =L34 .
NodS (M) = 500*1 I 0 + 16'(J-i)
WRITE(16.1002) M, Nodi(M), Nod2(M), Nod3(M).

Nod4(M), NodS(M), Nod6(M), Nod7(M). NodS (M)
157 CONTINUE

DO 158 I-N99, N10-1
Rc(I) -- yc/sin(phi(I))
arg =(Rc (I) *(s3-1) /R30 )+ 1

Nrl NINT( LOC(arg)/LOC(s30)
Li = 500*I + Nadd
x (L 1) = Rc (1) *cos (phi (I))
j(Li) =--yc

L2 = SOO* (I+1) + Nadd
Rc(I.1) = -yc/sin(phi(I+i))
x(L2) = Rc(I.1)*cos(phi(I+1))
y(L2) = -yc

L3 = Li + 200
x(L3) -( x(Li) + x(L2) )/2.
y (L3) = ( y (LI) + y (L2) ) /2.
WRITE (1S, 1001) L3. x(L3). y(L3)

DO 148 J1l, Nrl-1
M =100J +I
Nodi (1) -500*I + 16*(J-i)
Nod2(M) - SOO*I + 16*J
Nod3(M) = S00* (I.1) + 16*J
Nod4(M) = 5O0'(I.1) + i6*(J-1)
NodS (M) a 500*1 + 8' (2*J-1)
Nod6 (M) - 500*I + 200 + 16*J
Nod7(4) =500'(I.1) + 8*(2*J-1)
NodS(M) - 500*1 + 200 + 16* (J-1)
WRITE(16.1002) M, Nodl(M), Nod2(M), Nod3(M),
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-Nod4 (M), Nod5 (M). Nod6 (M), Nod7 (M). Nod8 (M)
148 CONTINUE

J = Nri.
Li = 500* 1 + 16* (J-1)
L2 = 500*1 + Nadd

1 -L3 = 500 *(1+1) + Nadd
L4 = 500*(1+1) + 16*(J-1)
L12 = 500*I + Nadi
x(L12) = (x(L1) + x(L2) ) Z 2
y (L12) = y y(L1) + y (1.2 )/2.
WRITE(lS,1001) L12, X(L12), y(L12)
L34 = 500*(I.1) + Nadi
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) +y(L4) ) / 2.
WRITE(15.1001) L34, x(L34) - y(L34)

M = 100*J + I
Nodl(M) = Li
Nod2(M) = L2
Nod3(M) = L3
Nod4(M) = L4
NodS(M) =L12
Nod6(M) = 500*1 + 200 +Nadd
Nod7 (M) = L34
Nod8(M) = 500*1 + 200 + 16* (J-1)
WRITE(16.ioOZ) M. Nodl(M). Nod2(M) - Nod3(M),

15 -ONIU Nod4 (M), NodS (M). Nod6 (M). Nod7 (M) - Nod8 (M)

18 DO 159 1=NlO, N6-1
Rc(I.1) = xc/cos(phi(I+1)).

arg =(Rc(I+1)*(s30-l)/R30 + 1
Nri NINT( LOC(arg)/LOG(s30))

Li = 500*(I*1) + Nadd
x(Ll) =xc
y (L1) - Rc (1+1l)*sin (phi (I+I))
WRITE(15..1001) Ll. x(L1), y(Li)
L2 = 500*1 + Nadd
Rc(I) = xc/cos(phi(I))
x(L2) = xc
y (L2) = Rc (I) * sin(phi (1)
WRITE(l5.1001) L2, x(L2), y(L2)

Li L3 = L2 + 200
x(L3) = ( x(L1) *. x(L2) )/2.
y(L3) = ( y(L1) + y(L2) )/2.
WRT015101 L3, x(L3), y(L3)
D149 J1, MNr-i

M -100*J+ I
Nodl(M) = 500*1 + 16*(J-i)
Nod2(M) = 500*1 + 16*J
Nod3 (M) = 500*(I~i) + i6*J
Nod4 (M) = 500*(I+i) + 16*(J-1)

*Nod5(M) - 500*1 + 8*(Z*J-1)
Nod6(M) = 500*I + 200 + 16*j
Nod7(M) - S00*(I+1) + 8*(2*J-i)
Nod8(M) = 500*1 + 200 + 16*(J-1)
WRITE(16,1002) M. Nodl(M), Nod2(M), Nod3(M),

Nod4 (M). NodS (N). Nod6 (M). Nod7 (M). NlodS (N)
149 CONTINUE

J Nr Ni.
Li SOO* I +i6* (J-1)

L2 500*1 + Nadd
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L3 -5S0O(I+1) + Nadd
L4 - SOO*(I+1) + 16 (JT-l)
L12 = Soo'i + Nadi
x (L12) a ( x (L1) + x(L2) )/2.
y (L12) - ( y (Ll) + y(L2) )/2.

*WRITE(15,1001) L12, x(L12), y(1,12)
* L34 = SOO* (I.1) + Nadi

x(L34) = ( x(L3) +x(L4) )/2.
y(L34) = ( y(L3) + y(L4) )/2.

WRITE(15,1001) L34, x(L34). y(L34)
M = 10*J + I
Nodl(M) = Ll
Nod2 (M) = L2
Nod3(M) = L3
Nod4(M) = L4
NodS (M) = L12
Nod6(M) = 500*I + 200 + Nadd
Nod7 (M) = L34
Nod8(M) = SOO*1I + 200 + 16* (J-1)
WRITE(16.1002) M, Nodl(M), Nod2(M), Nod3(M),

- Nod4 (M), NodS (M). Nod6 (M). Nod7 (M) - Nod8 (M)
159 CONTINUE

I-N7
Rc (I) =-xc/cos (phi (I))
arg (Rc (I) *(s30-l) /R30 + 1

Nri NINT( LOG(arg)/LOG(s30)
Li 50*1,+100 + Nadd
x(Li) = -xc
y (Ll) = Rc (I) *sin (phi (I))

* WRITE(15,1001) Li. x(L1),.y(L1)
L2 500* (1+1) + Nadd
Rc(I.1) = -xc/cos(phi(I.1))
x(L2) = -xc
y (L2) = Rc (I1) *sin (phi (I+1)) -
WRITE(15.1001) L2, x(L2), y(L2)

L3 = 500*1 + 200 + Nadd
x (L3) = ( x (L1) + x (L2) ) /2.
y(L3) = ( y(L1) + y(L2) )/2.
WRITE(15.1001) L3, x(L3), y(L3)

DO 161 J1., NrI-1
M = 100*J + I

.T Nodl (M) = 500*I + 100 + 16*(J-1)
Nod2(M) = 500*1 + 100 + 16*J
Nod3(M) = S00*(I+1) + 16*J
Nod4 (M) = SOO*(I+1) + 16*(J-1)
Nod.S(M) = 500*I + 100 + 8*(2*J-.1)
Nod6(M) = 500*1 + 200 + 16*J
Nod7 (M) = 500*(I.1) + 8*(2*J-1)
NodS(M) = 500'1 + 200 + 16*(J-1)
WRITE(16.1002) M, Nodi(M), Nod2(M), Nod3(M).

- Nod4 (M), NodS (N), Nod6 (N). Nod7 (N), Nod8 (M)
161 CONTINUE

J =Nri.
Li SOO*1 I 100 + 16* (J-1) -

L2 = 50*1 + 100 + Nadd
L3 = 500(I+1) + Nadd
L4 SO 0* (I +1) + 16 *(J- 1)
L12 500*1 + 100 + Nadi
x(L12) - ( x(L1) + x(L2) ) / 2.
y (L12) = ( y (L1) + y(L2) ) / 2.

......................................--7
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WRITE(15.i00i) Li2, x(L,12), y(L12)
L34 = 500*(1+1) + Nadi
x(L34) = x(L3) + x(L4) )/2.
y(L34) = (y(L3) + y(L4) )/2.

R I WRITE(15,1001) L34, x(L34). yiL34)
M =100*J +I
Nodi (H) =Li
Nod2(M) =L2
Nod3(M) =L3
Nod4(M) - L4
NodS (M) =L12
Nod6(M) = 500*I + 200 + Nadd
Nod7 (M) =L34
NodS(M) = 500*1 + 200 + i6*(J-1)
WRITE(16,1002) M, Nodl(M). Nod2(M), Nod3(M),

- Nod4 (N) NodS (M). Nod6 (H), Nod7 (M), Nod8 (M)
I1N6

Rc (1) =xc/cos (phi (1))
arg Rc (1) *(s30-1) /R30 + 1

Ni-i NINT( LOG(arg)/LOG(s30))
Li = 500*1 + Nadd
x(Li) =xc
y(Ll) = Rc(1) t sln(phi (1))
WRITE(1SlO0i) Li. x(Li). y(Li)
L2 = 500*1 + Nadd
Rc(I) = xc/cos(phi(I))i~ x(L2) = xc
y (L2) = Rc (I)* srI(phi (I))
WRITE(15.1001) L2, x(L2), y(L2)

L3 = L2 + 200
x(L3) =(x(LI) + x(L2) )/2.
y(L3) =(y(LI) + y(L2) )/2.
WITE(15,lO1) L3, x(L3), y(L3)

DO 162 J=I, Nri--

Nodl(M) =500*1 + 16*(J-1)
Nod2(M) =500*1 + 16*J
Nod3(M) =500*1 + 16*J
NodI(M) =500*1 + i6*(J-1)
NodS(M) = 500*1 + 8*(2*J-i)
Nod6(M) = 500*1 + 200 + 16*J
Nod7(M) = 500*1 + 8*(2*J-1)
NodS(M) = 500*1 + 200 + 16*(J-1)
WRITE(16,1002) M, Nodl(M), Nod2(M). Nod3(M),

Nod4 (M), NodS (H). Nod6 (H), Nod7 (M), Nod8 (M)
162 CONTINUE

J =Ni-i

Li 500*1 + 16*(J-1)
L2 500*1 +Nadd
L3 500*1 + Nadd
L4 500*1 + 16*(J-i)
L12 =500*1 + Nadi
x (L12) = ( x (Ll) + x (L2) ) / 2.
y(1,12) = ( y(Li) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12). y(L12)
L34 - 500*1 + Nadi
x(L34) = (x(L3) + x(L4) ) / 2.
y(L34) - y(L3) +y(L4) ) / 2.

6WRITE(1S,100i) L34, x(L34). y(L34)
M -100J +I
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-V

Nol M =L

Nod2(M) = L2
Nod3(M) = L3
Nod3 (M) = L4

NodS (M) = L12
Nod6(M) =500'I + 200 + Nadd
Nod7 (M) = L34
Nodd (M) =500*I + 200 + i6* (JT-1)
WRITE(16,1002) M. Nodi(M), Nod2(M), Nod3(M),

-=5- Nod4 (M) * NodS (M), Nod6 (M), Nod7 (M). Nod8 (M)

Rc (I) =yc/s in (phi (I))
arg (Rc (I) *(sl5-1) /R15 + 1
Nrl NINT( LOC(arg)/LOC(s15))

Li = 500*1 + Nadd
x (Li) = Rc (1) *cos (phi (I))
y(L1) = yc

Rc(I+1) = yc/sin (phi (I+1))
L2 = 500*(I+i) + Nadd
x(L2) = Rc(I+1)*cos(phi(I+1))
y(L2) = yc
WRITE(i5,1001) L2, x(L2), y(L.2)
L3 = Li + 200

x(L3) = ( x(Li) + x(L2) )/2.
y(L3) = ( y(Li) + y(L2) )/2.
WRITE(I5AO00i) L3, x(L3); y(L3)

DO 163 J=i, Nri-i
M =*100*J + I
Nodi(M) = 500*1 + 8*(J-i)
Nod2(M) = 500*I * J
Nod3(M) = 500*(I+1) + 8*J
Nod4(M) = S00*(I+i) +4 8*(J-1)
NodS(M) =500*I + 4*(2*J-..)
Nod6(M) = 500*1 + 200 + 8*J
Nod7(M) = S00'(I.1) +.. (*J1
Nod8(M) = 500*1 + 200 + 8*(J-1)
WRITE(16,1002) M. Nodi(M), Nod2(M). Nod3(M),

- Nod4 (M) - NodS (M), Nod6 (M). Nod7 (M). Nod8 (M)
163 CONTINUE

J =Nri.

Li = 500*1 + 8*(J-1)
L2 = 500*1 + Nadd
L3 SO50*(I+i) + Nadd
L4 =500*(1+1) + 8*(J-i)
L12 500*1 + Nadi
x(1,12) = ( x(Li) + x(L2) ) / 2.
y(L12) = ( y(Li) + y(L2) ) / 2.
WRITE(1541001) L12, x(1,12), y(1.i2)
L34 = 500*(I.1) + Nadi
x(L34) = (x(L3) + x(L4) ) / 2.
y(L34) = (y(L3) + y(L4) ) / 2.
WARITE(lS1SAO1) L34, x(L34), y(L34)

M =100*J + I
Nodl (M) -Li
Nod2(M) -L2
Nod3(M) -L3
Nod4(M) = L4
Nod5 (M) - L12 .
Nod6(M) - 500'I *200 + Nadd
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Nod7(M) = L34
Nod8 (M) = 500'I *200 + 8* (J-1)
WRITE (16,1002) M. Nodl (M) - Nod2 (M). Nod3 (M),

- Nod4 (M) , NodS (M) ,Nod6 (M) , Nod7 (M)., Nod8 (M)
I=N4

** ~.Rc (I) =xci/cos (phi (I))
arg =(Rc (I) *(siS-1) /Rli5 + 1

IL Nri NINT( LO(arg)/LOG(sl5)
Li = 500*1 + Nadd
x(Li) = xci
y(L1) = Rc(I)*sin(phi(I))
WRITE(15..1001) Li. x(Li). y(Li)
L2 = 500*(I4-i) + 8'INri
x (L2) = Rc (I) *cos (phi (I+1))
y(L2) = Rc(I)*sin(phi(I+1))
WRITE(15,.i00I) L2, x(L2), y(L2)

L3 = Li + 200
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Li) + y(L2) )/2.
WRITE(lS5A001) L3, x(L3) - y(L3)

L4 = 500'I + 2*(Nr+3)
x(L4) =xcl
y(L4) = yc
WRITE(15..1001) L4, x(L4), y(L4)

LS = S00'(I+1) + Nadd
L6 = L4 + 1

x(L6) = ( x(L4) + x(L1) )/2.
y(L6) = ( y(L4) + y(L1) )/2.
WRITE(15A1001) L6, x(L6), y(L6)

L7 = L4 + 2
* x(L7) = ( x(L4) + x(LS) )/2.

y(L7) = ( y(L4) + y(L5) )/2.
WRITE(15,1001) L7, x(L7). y(L7)

L8 = L2 + 8K x(L8) = ( x(L2) + x(L5) )/2.
y(LB) = ( y(L2) + y(LS) )/2.
WRITE(15,100i) La, x(L8), y(L8)
D166 J1, MNr-i
M =100J +I
Nodl(M) = 500*1 + 8*(J-.1)
Nod2(M) = 500*1 + 8*J
Nod3(M) = 500*(I.1) + 8*J

*Nod4 (M) = SOO* (1+1) + 8* (J-1)
Nod5 (M) = 500*I + 4*(2*J-.1)

* Nod6(M) = 500*I + 200 + 8*J
Nod7(M) = 500'(I+1) + 4*(2*J-1)
Nod8(M) = 500*I + 200 + 8*(J-1)
WRITE(16,1C02) M. Nodi(M), Nod2(M), Nod3(M),

* - - Nod4 (M) - NodS (M), Nod6 (M), Nod7 (M), Nod8 (M~)
166 CONTLINUE

J = Nri
M =100*J +ILNodi (M) = 500*1 + 8* (J-1)
Nod2(M) = 500*1 + Nadd

*Nod3(M) = S00*(I+1) + 8*J
Nod4(M) = SO0'(r+l) + 8*(J-1
NodS(M) = 500'I + 4*(2*J-1)
Nod6(M) = 500*1 + 200 + Nadd
Nod7 (M) = 500' (1+1) 4*V (2*J-1)
Nod8(M) = 500*1 + 200 + 8*(J-l)
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WRITE(16,.1002) M, Nodl(M), Nod2(M), Nod3(M)~,1
= Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)

J =Nr + .1
M = i00*J + I
Nodi(M) = L2
Nod2(M) =Li .
Nod3(M) = L4
Nod4(M) = LS -

Nod5(M) = L3
Nod6(M) = L6
Nod7 (M) = L7
Nod8 (M) = La
WRITE(16,1002) M, Nodi(M), Nod2(M). Nod3(M),

- Nod4 (M). Nod5 (M), Nod6 (M). Nod7 (M). Nod8 (M)
DO 164 11., Ni-i

beta S(xcl+rad)*cos(phi(I+i)) + dy*sin(phl(I+l))
gamma =(xcl+rad) *(xci+rad) + dy*dy - rad'rad
Rc(I+i) = beta -SQRT(beta*beta-gamma)

arg (Rc (I+I) (s15-l) /R15 )+ 1
Nri =NINT( LOG(arg)/LOG(siS)

Li = 500*(I+i) + Nadd
x(LI) =Rc(14-1)*cos(phi(1+i))
y(Li) = Rc(I+i)*sin(phi(I+i))
WRITE(15,1001) Ll. x(Li), y(L1)
L2 = 500*1 + Nadd
ph13 = ( phl(I) + phi(I+1) )/2.
beta = (xcl+rad)*cos(ph13) + dy*sin(phi3)
gamma = (xcl+rad)*(xcl~rad) + dy*dy -rad*rad

Rc3 =beta - SQRT(beta'beta-gamma)
L3 L2 +200
x(L3) = Rc3*cos(phi3)
y(L3) = Rc3*sin(phi3)
WRITE(i5.i00l) L3, x(L3), y(L3)

DO 165 J1, MNr-i
M = 100*J + I
Nodi(M) = 500*1 + 8*(J-1)
Nod2(M) = 500*1 + 8*J
Nod3(M) = 500*(I.1) + 8*J
Nod4(M) = SO0*(I~l) + 8*(J-1)
NodS(M) = 500*1 + 4*(2*J-1)
Nod6(M) = 500*1 + 200 + 8*J-
Nod7 (M) = 500* (I~l) + 4* (2'J-1)
Nod8(M) = 500*1 + 200 + 8'(J-i)
WRMI-E(16,.1002) M. Nodi(M), Nod2(M), Nod3(M),

Nod4 (M). NodS (N). Nod6 (M) Nod7 (M), Nod8 (M)

J a Nrl
Li = 500*1 + 8*(J-1)
L2 = 500*1 + Nadd
r3 = 500*(I.1) + 14add
L4 =500*(I*1) + 8*(J-1)
L12 =500*1 + Nadi
x(L12) a ( x(Li) + x(L2) )/2.
y(L12) - ( y(Li) + y(L2) )/2.
WRITE(1SAOO01) L12, x(L12). y(L12)
L34 - 500*(I.1) + Nadi
x(L34) = ( x(L3) + x(L4) )/2.
y(L34) = ( y(L3) + y(L4) )/2.
WRITE(15.1001) L34, x(L34), y(L34)
M =100*J + I
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Nodl (M) = Li
Nod2 (M) = L2
Nod3 (M) = L3
Nod4(M) = L4
Nods (M) = L12

, Nod6 (M) = 500*I + 200 + Nadd
Nod7(M) = L34
Nod8(M) = 500*I + 200 + 8*(J-l)
WR 1 1RITE(16.1002) M, Nodl(M). Nod2(M). Nod3(M).

Nod4(M). Nod5(M). Nod6(M). Nod7(M), Nods(M)
164 CONTINUE

c This portion of the program creates the MPC constraints
2001 FORMAT (515)

L=2

c 15-30 Interface
c Nri referes to the 30 i.e. 4 elements

I =1
Nr = 4
DO 111 J=l, NrI-i

LI = 500*I + 4*(4*J-3)
L11 = 500"I + 4* (4*J-1)
L2 = 500*1 + 16*(J-1)
L3 = 500*1 + 16*J
L4 = 500*1 + 8*(2*J-l)
WRITE(17,2001) L, LI, L2, L3, L4
WRITE(17,2001) L, LII, L2, L3, L4

111 CONTINUE
I - 1
Nri = 4
DO 12 J=l, Nri-1

Li = 500*1 * 4*(4*J-3)
Lii = 500 I + 4*(4J-1)
L2 = 500*1 1 .6*(J-1)
L3 = 500*1 16*J

' L4 = 500*I + 8*(2*J-1)
WRITE(17,2001) L, Li, L2, L3, L4
WRITE(17,2001) L, LII, L2, L3. L4

12 CONTINUE
C

-: x-. c 7.5-15 interface
c Nri referes to the 15 i.e. 7 elements

Nr = 7
DO 13 J=l, Nri-i

Li = 500*1 + 2* (4*J-3)
L11 = 500*1 + 2*(4*J-1)
L2 = 500*I +8*(J-)
L3 = 500*I + 8*J
L4 = 500*1 + 4*(2*J-l)
WRITE(i7.200i) L, Li, L2, L3, L4
WRITE(17,2001) L. Li1, L2, L3, L4

13 CONTINUE
I = 9
Nri = 8
DO 14 J=l, Nr-I

Li = 500*1 + 2*(4*J-3)
L11 = sooI + 2*(4*J-i)
L2 = 500*1 + 8'(J-i)

Y!,
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L3 = 500*1 * 8"J
L4 = 500*1 + 4*(2*J-1)
WRITE(17.2001) L, LI, L2, L3, L4
WRITE(17,2001) L, I, L2, L3, L4

14 CONTINUE
c
c 3.75-7.5 Interface
c Nrl referes to the 7.5 i.e. 13 elements

I =4
Nril = 13
DO 15 J-l, Nri-1

Li = 500*1 + (4*J-3)
L11 = 500*I + (4*J-1)
L2 = 500*1 + 4*(J-1)
L3 = 500*1 + 4*J
L4 = 500+1 + 2*(2*J-1)
WRITE(17,2001) L, Li, L2, L3, L4
WRITE(17,2001) L. Lll, L2, L3, L4

15 CONTINUE
I=8
Nri = 15 ""
DO 16 J=l, Nri-1

Ll = 500*I + (4*J-3)
LII = 500*1 + (4*J-l)
L2 = 500"I + 4 (J-1)
L3 = 500*1 * 4*J
L4 = 500*I 2 (2*J-l)
WRITE(17,2001) L, LI, L2, L3, L4
WRITE(17.2001) L, LII, L2, L3, L4

* 16 CONTINUE
STOP
END.

.i.

*
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