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Abstract

In symmetric specimens the crack advaaces into the relatively undamaged region between two
plastic shear zones. A crack tear a weld or shouider, loaded into the plastic range, may have only a
single shear baad, aloag which the crack grows into prestrained aad damsged material with less
ductility thaa the usual symmetrical configurations. A crack ductility can be defined as the
minimum displacement per unit crack growth. A low crack ductility requires higher stiffness of the
surrounding structure for fracture-stable design. Tests of six alloys showed thas, for the low-
hardening alloys, the crack ductility im the asymmetric case is less than 3 third that of the
symmetric. In the higher hardening alloys the crack ductility in the asymmetric case is smaller by a
factor of 1.2 at most. A noteworthy result is the presence of a Mode | opening component even with
asymmetry, as is shown by the far field displacement vector being more thaa 45% from the transverse
direction. The crack direction is less than 45 indicating the effect of triaxiality os cracking.

A macro-mechaaical model for cngk advaace by combined fracture and sliding off aloag two

by successive removal of the most damaged element, resuited im crack growth rate for the lower .
hardeaing case about twice that of the higher hardening one. Finally, a logarithmic teasile

singularity in the mean normal stress was found for rigid-plastic flow past a growing crack of finite '_f.}.
angle with rigid flanks under combined shear and tension. The tensile singularity predicts yielding of
the crack flanks.

:'.: slip planes gives the indepesdent physical parameters (cracking and two shear directions, relative ",‘
;:: amounts of cracking aad shearing) in terms of the observable quaatities of the macroscopic fracture -
N (Nank sagles, flask lengths, back-angle). This two slip plane model admits a Mode  opening -y
" component and describes, based oa aa idealization of underlying physical mechanisms, the =3
:::' development of deformation ia ductile crack growth for both the symmetric and asymmetric
".E; specimens. A finite element study .ol the asymmetric specimens gave a crack direction within two ';',:.‘
- degrees aad a far field dispiscement vector at initiation within three degrees of that experimentally =
L?Fﬁ found. Stress and straia fields indicate the presence of a Mode I componeat. Early growth, studied -
-

Thesis Supervisor: Frank A. McClintock
.} Title: Professor of Mechaanical Eaginesering
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CHAPTER ONE

INTRODUCTION

In symmetric singly grooved unconstrained tensile specimens the crack
advances into the relatively undamaged region between two symmetric shear zones.
An asymmetry, introduced through a weld fillet or a harder, heat-affected zone or a
shoulder on one side of the crack suppresses one of the two slip lines that would
appear in a symmetrical specimen. This is likely to give asymmetric cracking along
the remaining active slip line, with less ductility because the crack is advancing into
prestrained and pre-damaged material. A reduced ductility requires higher stiffness

of the surroundings for fracture-stable design.

Near the tip of the growing crack, strain hardening will cause the deformation
field to fan out. For power law creep or deformation theory plasticity and a
stationary crack, the asymptotic stress and strain distribution may be found from
the extended by Shih [1] HRR [2,3] solutions for the general mixed mode I and II
case. Notice, however, that such a superposition of stationary singularities does not
take into account the hardening of the mate .l left behind the growing crack.
Indeed, the stress and strain fields near the tips of growing cracks in ductile
materials are known to differ from the stress and strain state around stationary
cracks in the same materials as is shown from asymptotic solutions [4,5,6]

supplemented through finite element calculations (7,8].

McClintock and Slocum [9] develcped a formulation for the accumulation of
damage directly ahead of an asymmetric crack, based on strain increments adapted

from Shih's {1] analysis. The crack was assumed to follow the center of the 45°

shear band. It was found that the crack growth per unit displacement increases




-------------------------

approximately as the logarithm of the total crack advance per inclusion spacing p
and varies inversely as the critical fracture strain v, Little effect of strain

hardening on the growth rate was found.

The objective of the current study is to investigate through experimental,
analytical and numerical work, the ductility of asymmetric, fully plastic,
unconstrained configurations. First, the approximate pure Mode II incremental
solution [9] is extended to admit a crack growing at an angle to the shear band.

This deviation from the shear band is expected from the higher triaxiality. Far field
displacement is assumed again to be parallel to the shear band. Next, tests results
on symmetric and asymmetric specimens of six alloys are presented. A method for
quantifying and represcnting the ductility is suggested. A macromechanical model of
crack growth by combined fracture on one plane and sliding off along two others
describes, for this idealization of the physical mechanisms, the ductile crack growth
for both the aSymmetrié and symmetric specimehs. To account for the effect of the
finite width of the shear band and study. the stress and strain fields at initiation, a
finite element investigation is undertaken. Early growth is also studied by successive
element removal. Finally, a stream function technique is used to investigate whether
rigid-plastic strain hardening flow past a growing crack of finite angle with rigid
flanks can be sustained. The last chapter contains an orerview of the results and

summarizes the conclusions. It also contains recommendations for further research.
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CHAPTER TWO

DIRECTIONAL EFFECTS IN FULLY PLASTIC ~
CRACK GROWTH NEAR A SHEAR BAND. '

TABLE OF SYMBOLS

F, hole growth ratio -
I, MP) dimensionless paremeter ‘
J J-integral
k shear yield

MP mixity parameter (eq. 2)

n strain hardening exponent

'I‘J. traction vector

U far field displacement (along shear band)

W work per unit volume

o mean normal stress -

o, flow stress at unit strain

¢ angle between crack and shear band

n damage

Ac increment of crack advance -

v principal shear strain

T principal shear strain

p mean inclusion spacing

51,- angular stress functions

?ij angular strain functions —

fii angular displacement functions

ABSTRACT

Welds, shoulders, or other asymmetries may eliminate one of the shear bands

of symmetrically cracked parts and thus give crack propagation through pre-

damaged material, instead of through the relatively unstrained region between the

two plastic shear zones of the symmetric case. Previous work is extended to include

sites at several angles ahead of the crack. Far field displacement is assumed to take

place parallel to the sheai band. Strain increments are approximated from the

mixed mode, power-law elastic solution for a stationary crack and used with a b
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fracture criterion for hole growth in shear bands to predict the direction and rate of
crack growth. The crack is assumed to advance to advance in the direction that
requires the minimum far field displacement to reach critical damage. For a shear
band at 45° the crack progresses at 21°-30° from the transverse (depending on strain
hardening), indicating the effect of higher triaxiality. The crack growth rate is about
6-15% higher than if the directional effects are neglected. Lower strain-hardening
results in a 5% higher rate of crack advance per unit displacement, a higher fracture

strain, and the final crack orientation being closer to the 45° shear band.

INTRODUCTION

Most fracture tests use symmetric specimens. The crack advances into
relatively undamaged material between two shear bands. This will not happen if one
of the bands is eliminated due to a weld bead, or a harder heat-affected zone, for
example (Fig. l).. A fatigue crack or other defect near such an asymmetry will tend
to advance along the remaining shear band through highly strained material. Lower
ductility is thus expected. An example of lowered ductility in asymmetric flow is the
formation of a shear lip at the end of an ordinary cup and cone fracture in a tensile

test.

McClintock and Slocum |1} developed an approximate formulation for the
accumulation of damage ahead of the crack in a power-law strain hardening
material, by using the strain and displacement fields derived by Shih [2] for a
stationary mixed-mode crack and the McClintock, Kaplan, and Berg (3] criterion for
fracture by hole growth. It was assumed that the crack advances directly along the
shear band. Preliminary experiments, however, have indicated that the crack

actually advances at an angle from the shear band which reflects the effect of the
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higher triaxiality on one side.

In the following we modify the Pure Mode II [1] solution by considering several
sites around the crack tip. The far field displacement is again assumred to be parallel
to the shear band and the strain increments to follow Shih’s [2] mixed mode
stationary crack fields. The accumulated damage from initiation and prior growth is
calculated and the necessary far-field displacement for critical damage is found for
each site. The crack is assumed to advance in the direction requiring the least far-

field displacement.

ANALYSIS

1. Crack initiation. A nonlinear elastic solution for the small scale yielding of _:jf._

mixed Modes I and II stationary crack problems was developed by Shih [2]. The

-

* [}

material was assumed to be power-law hardening according to the relation between e

R equivalent stress and strain: N

h c=0", (1) 3’

where g is the flow strength at unit strain and n is the strain hardening exponent.

Shih 2] introdced a Mode I mixity parameter MP, defined in terms of the near field

stresses by =

0 gqlr, 0=0)

T >0 are(r, 6=0) (@)

2 1
MP = — tan™"| lim
The mixity parameter varies from 0 for pure Mode II to 1 for pure Mode
I.  McClintock [4] restated the dominant singularity governing the behavior of the

stresses, strains and displacements (for large plastic strains) in terms of the J

integral as

..........................................
.................................................................
''''''''''''''''''''''''''''''''''''''''''''''''''''''

..............
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n/(n+1) _
L 9 MPn),
[Ul r Il/n(n M )] ( )

J 1/(n+1) _
.o= M ,n), 3
i ["1 r I (0, MP )J M) )
: ] .
S [ e+ G omp )
r

Ul r Il/n(n’Mp)

The J integral is defined (x, axis along crack) as
= / Wx, - T—ds

where Ti is the traction vector, Y is the displacement vector, and W is the work per
unit volume. For a single shear band, J can be evaluated in terms of the shear
strength k, the far field relative displacement U and the angle ¢ between crack and
shear band (Fig. 2) by

kU

J=—". . (4)
cos¢

The dimensionless functions &ij(ﬂ,Mp,n), zi,.(o,MP,n) and [, /n(n,Mp) have been
numerically determined by Shih [2] for n=1/3 and n=1/13. The dimensionless
functions ﬁi(O,Mp,n) are derived in the Appendix from the strain functions and are

shown in Fig. 3 for n=1/13 and MP=0.5.

Assume that currently the shear band forms an angle ¢ with a recent average
crack direction to be defined below. With the crack not advancing along the shear
band, there is no longer pure Mode II. When the relative far-field displacement is
assumed to be parallel to a single narrow shear band, as is valid in the non-hardening

limit, and that direction is assumed to be the same as the local relative displacement

across the flanks, the mixity parameter can be determined from the angular




functions (7) of the displacement field relative to #=-r since, from Fig. 2,
u ti,(x,MP n)
tan¢ ] _0 — _0_

u, - i (m,MP,n) '
Fig. 4 shows the resulting variation of the mixity parameter with the angle ¢ for
n=1/13. Thus, the angle ¢ determines the angular stress and strain functions and
hence the local stress and strain for a given J through (3). The angular functions
turn out to affect the fracture criterion through the triaxiality and the shear strain,
as follows. The mean normal stress for plane incompressible flow is

0"+090

2—— .

(o g—3

The triaxiality /7 used in the fracture criterion is given in terms of the

dimensionless principal shear stress 7, defined by

;e [aﬂ,z + (&".&"")2]”2 :

2
by .
o_+0
ofr=—% (8)
27
The angular variation of this triaxiality, ¢/7, is shown in Fig. 5 for n=1/13. Note

that the triaxiality is highest for negative values of 4 for all cases except pure Mode

I. This is the primary reason for exploring the directional effects.

Similarly, the dimensionless principal shear strain 4 can be expressed for the
plane incompressible case as:

r t'490) ]1/2 9

2ol 2
7_2["’+( 2

(9)

Introducing (4) into the first of (3) and solving for the displacement gives the far-

field displacement U in terms of the principal shear strain 4 at any point in the near
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field:

=2 L. ,.(n,MP) rcos (7/7)"+1. (10)

n

«
‘. ;
)
-~

The critical displacement for crack initiation occurs when the fracture strain is
reached at the point (p,0) where p is a fracture pro .~ = ~ne size (e.g. the mean
inclusion spacing). The fracture strain is found by using the fractur.  ::torion of
McClintock, Kaplan and Berg [3] by which it is postulated that fracture due to

micro-void coalescence occurs when the ‘“‘damage’”, 5, reaches unity. The damage is
expressed in terms of a hole growth ratio F, the principal shear strain 4 and the
triaxiality o/
1 v (1-n)o

n= — [lnv1++4* + o sinh( )] - (11)

s . e’

o

The above damage equation is associated with growth of cylindrical holes.

-
. .
a

; . Alternatively one might use, for example, the eqs for growth of spherical holes in

Ll

g,

nonhardening material (Rice and Tracey, [5]).

c

A Newton-Raphson technique is used to solve (10) and (11) at r=p for the

critical far-field displacements for initiation in a number of directions. The actual
‘» initial direction is that which minimizes the required displacement. Once the

| - initiation displacement U, for the critical strain at the point (p, 8,) is known, the

: . strain at all other points can be found by re-arranging (10):

- kU,

n = l/(n+1)~ . 12
7 ro,I(n,MP)cos¢ 7 (12)

Coe 2. Crack growth. After initial growth by Ac, further growth requires reaching the
critical damage at some new site p from the current crack tip. The damage at each

site is that from crack initiation plus those for any following crack growth
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- increments. The strain to bring the damage to unity is found by differerentiating

(11) to find the damage increments in terms of the strain increment and the strain

1
=S

itself:

o 1 ol 1 (1-n)o
n= [ sinh ] dv. (13)
InF,

+
144 2(1-n) 7
In the absence of an incremental strain-hardening solution for a growing crack, we

follow McClintock and Slocum [1] and approximate the strain increment in terms of
the far-field displacement increment by differentiating and rearranging (10) (this is
strictly valid only for non-linear elasticity):
ky
dy =
» (n+1)o,I(n,MP)rcosé

PR

(3/7)"dU . (14)

- The damage at any point in front of the growing crack is given by the sum of the
damage due to crack initiation, as found from (12) and (11), and all of the damage
ihcrements from prior crack growth, as found from (13) and (14), with r taken to be
the distance from the prior crack tip to :ke roint in question, and ¢ the prior angle

" between crack and shear band.

The necessary increment in damage for fracture is én=1-n. The corresponding

i strain increment can be found from (13):

LollaF. / ~y N 1 _ h(l-n)a 5
. oy = {l-ninf, TP RTTE O 19)

The necessary increment in far-field displacement to cause this strain increment can ;
then be found from (14): -]

o1, (n,MP)pcosg a
L1/ (v/3)"87 (16)

06U = (n+1)
~k
The crack will advance in the direction ¢ which requires the least far field _J

displaccment to reach critical damage, not necessarily toward the most severely
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i.e. the angle between crack and shear band is smaller and the triaxiality is smaller.
(5) For the low strain hardening n=1/13, increasing ¢, gave smaller initiation
displacements and strains and larger initial crack growth rates (dc/du).

(6) Strains and triaxialities during growth are relatively insensitive to the initial
angle between crack and shear band.

(7) For both strain hardening exponents and all the angles ¢, the final average angle
between crack and shear band ¢_, g after growth by ¢/p=100 was between 23° and
320 from the shear band. The Mode I mixity corresponding to the final crack
orientation was also within a correspondingly narrow range for each of the strain
hardening exponents.

(8) These rigid-plastic results do not predict instability (infinite crack advance per
unit far field displacement). Instability could, however, arise from the compliance of

the surrounding structure.

SUMMARY OF CONCLUSIONS

A part containing a crack near a weld or a shoulder, loaded into the plastic
range, can give an asymmetric shear band extending from the crack tip. The
resulting crack propagation into previously damaged material gives less ductility
than the typical symmetric case. A previous incremental solution for crack growth
using Shih’s asymptotic fields for a stationary crack in nonlinear elastic material is
extended to account for the effect of triaxial stress in advancing a crack at an angle
to the shear band. Far field displacement is assumed to take place along the shear
band. Cracking is assumed to occur at the site around the crack tip that needs the
least far field displacement for critical damage. For a 459 shear band, it is found
that the crack does not advance along the shear band but at an angle of about 21°

from the transverse under a higher triaxiality. The crack growth rate is higher by
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about 6-15% (the larger increase with less hardening) than if the directional effects

& are neglected and the crack is assumed to progress along the shear band. A higher =
" strain hardening decreases slightly (about 5%) the crack growth rate and the final !
AN -
¢ angle from the transverse of the growing crack. Strains and triaxiality during :

growth are not sensitive to the initial angle between the crack and the shear band.
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TABLE 1
Comparison of numerical and approximate pure Mode II solutions "'
Numerical ~ Approx. Mode I
¢o 00 450 00 =
e
8 1/13 1/3 1/13 13 1/13 1/3 R
u/p 0.92 0.8l 0.79 0.62 1.07 1.25 »
4c/Au 5.90 8.57 5.95 5.64 5.08 5.28




Appendix - Displacement Functions

The displacement functions u; are detcrmined from the strain functions for the
plane strain considered here. The radial displacement u, may be found from the

radial strain

=1 (17)

sO
u, = [e"dr + u (0,0) . (18)

For zero rigid-body translation at r=0, u (0,0)=0. Eliminating ¢  with (3) and
integrating gives
u J n+1
L [___]l/(n+l)(__)e~

o (19)
r alrll/n(n,Mp) .

Using the displacement equation (3) gives the radial displacement function u, relative

to that at f=-m:
. n+1 .
ur(o,Mp,n) = ;l——(e"(ﬂ,Mp,n) - err(-w,Mp,n)) . (20)

The tangential displacement function u, is determined from

1 1 du,
680=;ur+;‘67 (21)
as
u = f(rcoa-ur)do + f(r) . (22)
.

Noting that €, = -¢__for plane strain incompressibility and using (3) with (20) gives

the tangential displacement:

J 2n+1
Y S |V/C oS W f ¢,d6 + f(r)/r . (23)

r alrll/n(n,Mp) n
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N With respect to the displacement at §=-=, f(r)=0. By using (3) we can thus find the Bk
. |
v dimensionless tangential displacement function relative to the displacement at f=-r, :.1‘

s in terms of the dimensionless strain function € ﬂ
- ) 2n+1 4 o
2 uy(0,MP n) = € (0,MP,n)dg . (24) “y
-~ n ﬂ
- As an example, the displacement functions for n=1/13, MP=0.50, determined -;(

. numerically by (21), (20) are given in Fig. 3. '-}‘
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. Fig. 1 Asymmetric crack from a defect near a #eld, tle syametric casa .s
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CHAPTER THREE

EXPERIMENTAL STUDY

TABLE OF SYMBOLS

o

minimum extension rate (eq. 10)

Den crack ductility (eq. 3)
g -
E modulus of elasticity
F_ load factor (eq. 12)
J J-integral
k shear yield
lo initial ligament
n strain hardening exponent
- I~’muI nominal load
- T.S. tensile strength
T tearing modulus
T:asym eq. 8
T sym eq. 9
. u, initiation displacement
' l_ls growth displacement
v, total displacement vector
Vs growth displacement vector
o L specimen width
o yield strength
t P mean inclusion spacing
o o, flow stress at unit strain
¢ displacement vector angle from transverse
g fracture straix‘x
w crack opening angle
= 0c crack direction from transverse.
ABSTRACT

Most fracture tests use symmetric specimens, with the crack advancing into
the relatively undamaged region between two plastic shear zones. However, a crack
near a weld or shoulder, loaded into the plastic range, may have only a single shear

band, along which the crack grows into prestrained and damaged material with less

...................................
............................................................
..............................

......................



ductility than the usual symmetrical configurations. An experimental study on six
alloys shows that while the crack initiation displacements are similar, the growth
displacement is much less for the asymmetrical specimens, especially with less
hardening. Indeed, for the low-hardening alloys (na0.1) the crack growth ductility,
defined as the minimum displacement per unit ligament reduction, is less in the
asymmetric case than the symmetric by a factor of three, In the higher hardening
alloys the crack growth ductility is less in the asymmetric case by a factor of 1.2 at
most. Triaxiality on one side of the asymmetric shear crack diverts it from 45° to
380-410 from the transverse direction, the larger angles with smaller strain
hardening. In addition, the far field displacement vector is more axial than the 45°
line, at 51° to 63% from transverse, suggesting a Mode I component even with

asymimetry.

INTRODUCTION

For fracture-stable structures it is important not only that fully plastic
conditions be attained before fracture, but also that the load does not fall off too
rapidly during crack growth. Flow fields such as Fig. 1, in which the far-field
deformation consists of a single shear band, may arise in practice due to the
constraint of weld material. These specimens may exhibit less ductility than the
symmetric ones, because the crack is advancing into pre-strained and damaged
material, rather than into the new material encountered by a crack advancing
between two symmetrical shear bands. Being able to predict such increased crack

growth can have useful applications in the design, inspection and maintenance of

pressure vessels and ships.

Near the tip of the growing crack, strain hardening will cause the deformation
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field to fan out. For power law creep or deformation theory plasticity, the stress and
strain in the neighborhood of a stationary crack may be found from Shih’s {1} mixed
mode solutions. More realistically, a corresponding, fully-plastic, incremental
plasticity solution should be obtained for a growing crack, taking into account the
hardening of the material left behind the growing crack. McClintock and Slocum [2]
developed a formulation for the accumulation of damage directly ahead of an
asymmetric crack, based on strain increments adapted from Shih’s (1] analysis for
stationary cracks in a power law material. The crack was assumed to follow the
center of the 450 shear band. It was found that the crack growtli per unit
displacement increases approximately as the logarithm of the total crack advance per
inclusion spacing p and varies inversely as the critical fracture strain 4. To correct
for triaxial effects, several sites around the current crack tip were considered in
chapter 2. The damage at each site due to crack initiation and prior growth was

" determined and then the necessary increment in far field displacement was found for
each site. The crack was assumed to advance in the direction requiring the least
displacement. This numerical investigation resulted in growth directions not along
the 459 shear band but at a smaller angle from the transverse depending on the
hardening and the initial crack-shear band angle, and lower ductility by 6-15%

(larger decrease with less hardening) than with growth along the shear band.

A test with pure shear (Mode II) loading was carried out by Chant et al. [3] of
high hardening carbon manganese steel (B.S. 1501-151-430A, Y.S.=329 MN/mQ, T.S.
= 490 MN/m2). Small specimens were subjected to both Mode II and Mode |
testing but the ductility, measured by dJ/da, was practically the same although the
microscopic features for the pure shear specimens are different than those observed
in the Mode I specimens. The objective of the current study is to present

experimental evidence on the ductility of asymmetric crack configurations.
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EXPERIMENTAL PROCEDURES

b

Material. Tests were performed on six alloys with the mechanical properties

)

r
ey

listed in Table 1. True stress-true plastic strain curves (Figs. 2a,b) for these alloys

were obtained using standard 6.35 mm. dia. specimens with 25.4 mm. gage length. It

il

is convenient to represent a curve of equivalent stress & vs. equivalent plastic strain

éP by: '.;
7= 0oy(+EP)°, ' (1) g

where o, ¢, and n are three constants that were determined from the flow strengths -

at yield point, ¢=0.125 and ¢=0.250, and are given in Table 2. The lower hardening B

alloys are the 1018 cold finished steel, HY-80 and HY-100 steels (n~0.10) and the ?

higher hardening alloys are the 1018 normalized and A36 hot rolled steels (n~0.24).

The 5086-H111 aluminum is between these two groups. —i

e
[N

Test Method. From 12.7 mm. dia. round bars of each alloy, seven specimens

were first machined as shown in Fig. 3a, with side grooves to ensure a straight

fatigue pre-crack approximately 1.3 mm deep. For the four asymmetric specimens

::- (Fig. 3b), further side grooves were machined at 40° from the transverse direction.

!

E' This corresponded to the crack direction found in preliminary tests and served to

: reduce 3-dimensional effects. For the three symmetric specimens, since the crack

f grows by alternating shear at +45°, orthogonal triangles were machined, as shown in E;:

! Fig. 3c. :

L_::

E Stability of the tests turned out to be an important consideration due to the |
high crack growth rate expected in the asymmetric case. Thus short specimens, stiff J

adapters, and locknuts were used. The tensile tests were performed on an MTS 50



2 K

L

0

.‘; 'n._'-

metric ton testing machine with resulting compliances of 2.3x10°%, 4.6x10°6, 1.08x10°¢

mm/N for the steel specimens, the adapters, and the machine respectively. The

axial and transverse displacements across the notch were plotted continuously.

A typical plot of load vs. axial displacement is shown in Fig. 4; the
breakthrough point is when the fracture first breaks through the back surface, with
some shear lips remaining on the sides. The displacement during crack initiation and

growth, u; and u_, are found from the drawings of the crack path. The topographies

g’
of the fracture surfaces were thus subsequently plotted using a metallurgical
microscope with a travelling stage. The horizontal and vertical coordinates of the
travelling stage are recorded with two linear potentiometers; several points are
obtained to give an impression of the surface profile of the broken specimens. A
typical microscope plot, as in Fig. 5, consists of the 60° notch, the fatigue crack
(with some amount of defor.mation, V|-¥5), an initiation zone which shows some
blunting, and a gr‘owth‘zone. The initiation displa.cement is V’l-\"’g.

were also checked against the data from the load-extension curves. In addition,

These quantities

fracture profiles were used to obtain the angular quantities such as the crack opening
angle, w, the lower and upper flank angles, 6, and 6, and the orientation of the total

displacement vector, ¢, in the asymmetric case.

RESULTS

Initiation Displacement. Stable tests were obtained except for the lower

hardening alloys, which were unstable for less than 209 of the falling part of the
load-displacement curve. The results of the tests are summarized in Table 3. An
idealized initiation displacement, uil/lo, can be defined as the extension between the

initial elastic loading and the steepest unloading parts of the load-displacement curve
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at maximum load, normalized with the initial ligament /; (Fig. 4). This quantity,
given in the first row of the table, is a convenient measure of initiation and can be
compared with the the initiation displacement u;, measured from the fracture surface
profiles after complete separation. The normalized crack initiation displacement
u,/l,, does not appreciably differ between the asymmetric and symmetric
configurations. It is, however, dependent on the strain hardening, being for the

higher hardening alloys two to four times that of the lower hardening ones.

Ductility. For a measure of the crack growth resistance, the crack ductility,
Ds’ is defined as the minimum displacement, du, per unit projected ligament
reduction, d/. Thinning of the ligament from the far side in fully plastic flow makes
the reduction in ligament rather than crack advance more appropriate for describing
load drop. The displacement du,_ is associated with the crack opening stretch and

consists of the gauge displacement du and the elastic unloading du, , (Fig. 4):
du,=du+du .- (2)
The ligament reduction can be approximated from the relative load drop and thus

-2,

min

we can define:

b =(duc/lo )
g
dP/P_ ..

From Fig. 6, this is also related to the crack opening angle by

D, =~ (COA)/cos®d_ , (4)

where 6 is the crack orientation. In addition, the above defined quantity is the

normalized compliance requirement for fracture-stable design:

Compliance of surrounding < DgIO/Pmax . (5)

e
I

ey

oy
o




.................................................
- . AT A T R AT A A A T e e e et T e e e e e T e e T e .

.......

The crack ductility, given in the second row, is smaller for the asymmetric case by a

factor ranging from 3.4 for the lower hardening HY100 to 1.1 for the higher

hardening A36 hot rolled steel. :Notice that in the lower hardening alloys 1018 CF,

HY-80, HY-100 steel the factor by which the ductility is reduced is larger than three

which shows also that these alloys have much larger stiffness requirements for

stability. A comparison of Dg among the alloys reveals that, in the asymmetric case,

the crack growth rate in the lower hardening alloys is about 2 times larger than in

the higher hardening alloys. In the symmetric case, on the contrary, the crack

growth rate is practically insensitive to strain hardening.

The third row is a parameter analogous to the “‘tearing modulus’ T of Paris et

al. [4] defined in terms of the yield or tensile strength 4, the modulus E and the J-

integral by:
T E dJ )
=——. L 6
' 002 de

To approximate the J-integral, consider the simple case of the far-lield displacement
_. taking place along a single shear band [2] and express it in terms of the shear

strength, k, and the displacement along the band u\/2-,
J=ku/2, (7)

and thus define a parameter, T‘, analogous to the tearing modulus T, which allows
comparing the ductility of alloys of different strength. In terms of the tensile
strength T.S. ~ k\/{?, by:
. E/V3
T poym = ((—T—S—)) D, . (8)

In the symmetric case the expression for the J-integral, J=2ku [5] leads to an

analogous to (8) expression.

....................

...............................................................................
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T asym is about 3 times larger for the higher hardening alloys, as is shown in Table ..
- 3. -
X :
) The load-displacement curve of Fig. 4 can be described in terms of the initial -~
elastic compliance, the idealized initiation displacement uil, and the minimum gauge
displacement per unit crack advance (steepest slope of the falling part), D, given ..‘
by -
du/l du -
D, = (#) ~ (—) : (10)
dP/Pmax min dl min =
This definition includes the effect of the compliance in the shoulders and is thus l
;'.:' smaller than Ds' Results for 25 mm gauge length are given in the fourth row of H
Table 3.
-3
|
Growth Displacement. The growth displacement until the fracture breaks -
:::'. through the back of the specimen, u,, can be found from the fracture surface B

s 4

profiles. The normalized displacements during crack growth, ug/ ly is more than 3

SV

times larger in the symmetric than the asymmetric specimens for the lower

hardening alloys but only about 18% larger for the higher hardening A36 HR steel.

CRE X
e e
l—A_J,‘

It is also larger by about a factor of two in the higher hardening relative to that of

the low hardening alloys.

1

The far-field displacement vector angle from the transverse in the asymmetric

case, defined from the slope of the transverse-axial displacement curves, is found to

< gt

L
L.
ra

be greater than 45° and larger initially in the lower hardening alloys. As the crack
) g y

grows the displacement vector becomes less axial (Fig. 7a). The final orientation 0,

measured after fracture from the microscope plots (Fig. 5) is between 53% and 630,
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larger for the higher hardening case. The fact that the axial component of the
_n displacement is larger than the transverse one suggests a Mode I mixity of the local

plastic flow.

Crack direction. In the symmetric specimens the crack runs within ten degrees

of horizontal except for shear lips near the ends of the cracks. In the lower
hardening alloys, even with the symmetric geometry, the fracture turned often into
the asymmetric mode, the fracture advancing close to the 159 slip plane or, in some
cases, half of the cross section following the one and the other half following the
other slip plane. In the asymmetric specimens the crack progresses at an angle of
about 38-11° from the transverse. This smaller than 457 angle was expected from
the higher triaxiality. In the lower strain hardening alloys the crack grows closer to
the 452 band, at 40%41° from the transverse and in the higher hardening alloys at
i ~ 38%39° (Table 3). Finally more blunting occurred with the higher hardening alloys

and in the symmetric case.

[ Load. To summarize the load performance, a parameter dealing with the

' maximum load will be defined. The nominal load-carrying ability is simply the
tensile strength multiplied by the net area at the end of the fatigue crack (and
corrected by the plane strain factor). In terms of the initial ligament [y, the width w,

4 and the tensile strength T.S,,
P = w(TS.)2/V3). (11)
A load factor FL can be defined in terms of the actual maximum load Pmax as:

o FL = Pmax/Pnom ‘ (12)

Table 3 also contains the load factors. They are in general larger in the symmetric
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case, where the overall deformation is bigger, and in the higher hardening alloys.

The normalized load-normalized displacement (and transverse-axial
displacement for the asymmetric case) curves, obtained for the lower hardening
HY-100 steel and higher hardening A36 HR steel for both the asymmetric and
symmetric case are shown in Figs. 7a, 7b, 8a and 8b. For the HY-100 steel, notice
the sharp increase in the slope of the falling part of the load-displacement curve of
the asymmetric case relative to that of the symmetric; this is not the case in the A36
HR steel. The microscope plots for these alloys are shown in Figs. 9a, 9b 10a and
10b. In the HY-100 steel, notice the large reduction in the crack opening angle ¢f
the asymmetric case relative to that of the symmetric, whereas in the A36 steel the

difference in the crack opening angle between the two geometries is not appreciable.

Size effects. To investigate size effects, tests were performed in 38.1 mm. dia.
specimens of 5086-H111 aluminurﬁ and the resultsI ‘were compared with those from
‘the 12.7 mm. specimens. Table 4 summarizes the results Comparing with the data
given in Table 3 for the smaller 5086-H111 specimens, we conclude that the dt;ctility
and the normalized growth displacement is only 4% smaller for the larger specimens
and the load factor is slightly larger. Notice that the size effects that were predicted
in [2] are associated with a transient behavior (increasing crack advance per unit far

field displacement).

Marking the crack front. In the large 38.1 mm dia. 5086-H111 aluminum

specimens, the crack front was marked by imposing unloading-loading cycles at
selected points during crack advance. The spacing of these fatigue marks was
measured with a stereo microscope at about 50x. The corresponding displacements

were then obtained from the load-displacement curves. In this manner, points on the
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c-u curve can be accurately determined. Figure 11a and 11b show the load-
‘ displacement curves and in Figure 12 the corresponding crack growth-displacement
i data.
- Comparing with theoretical formulations. An approximate formulation for the
- accumulation of damage ahead of an asymmetric crack, based on strain increments
following a power law relationship was presented by McClintock and Slocum [2].
The crack was assumed to progress along the 450 shear band (pure Mode II) with the
far field displacement along the shear band. The initiation displacement was
expressed by:
r
Y = El e (i)“+l : (13)
where 4_ is the fracture strain, k is the shear strength, ¢ = 0.88 for the assumed
. pure Mode II and I, o= 0.72-0.83 for n = 0.1-0.2. The jnitiation displacement is
s thus of the order of the inclusion spacing (0.010 mm), much smaller than the one
ke found experimentally. This discrepancy is due to the blunting that occurs during
! crack initiation. For a quasi-steady growth, the crack advance per unit displacement
- was practically insensitive to the strain hardening exponent n and was found:
- d(u/ui)= n+1 . (14
i - d(c/p) In(c-c;)/p + exp(n+1)]
The above formula, for a mean inclusion spacing p = .01 mm and growth by the
ligament length of [, = 2.54 mm, gives du/de &= 0.200, which is closer to the test
o

data for the higher hardening alloys. Equation (14) underestimates the crack growth
rate in the lower hardening alloys by a factor of two. For the size effects, predicted
in [2], use the mean inclusion spacing of about 10 microns and find the ratio of the
crack growth rate for the large 38.1 mm specimens (initial ligamemt [;=7.62 mm) to

that of the small 12.7 mm (initial ligament [;=2.54 mm) ones as
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(dc/du)larse _ ln[(c-ci)/p]Iarse _ In762
(defdu) .y Inl(c-c)/pl, .y In254

Thus the resulting from the integration of stationary crack fields [2] increasing crack

advance per unit displacement (associated with the strain distribution flattening out
in front of the crack at a decreasing rate) leads to larger size effects than those

experimentally observed. Notice, however, that a solution based on a superposition

of stationary singularities does not take into account the hardening of the material
left behind the growing crack. More realistically, a corresponding fully-plastic, j
incremental plasticity solution should be obtained for a growing mixed mode crack. b
To study the directional effects, an incremental solution was developed in &
chapter 2. The far field displacement was again assumed to be along the shear band. —:r
At the initiation and at each growth step several sites around the current crack tip "j
were considered and the crack was assumed to advance to the direction requiring the )
least far-field displacement to reach critical damage. The program predicted that a j‘
smaller strain-hardening coefficient would cause the crack to grow ‘cloéer to the shear X
band and this was confirmed from the experimental results. It also gave 6-15% ‘
higher crack growth rates (the larger increase with less hardening) than the pure :
Mode II [2] solution and thus closer to the experimental findings. The effect of strain :_‘
hardening was very small, although it was correctly found that a lower strain "::E
hardening increases the crack growth rate. The 450 shear band gave however a ‘J
crack angle of 21° from the transverse. The experimentally found angle of :
approximately 40° from the transverse can be obtained by assuming a 65° shear a
band. Notice however that the displacement vector angles (Table 3) suggest that we y
cannot assume the far-field displacement taking place along a 45° shear band as this ::::‘

model did.
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CONCLUSIONS

In asymmetrical configurations with only a single shear band, (which can occur
with cracks near welds for example), the crack progresses into prestrained material
instead of the new material between the two shear bands of the symmetric case.
Experiments on six alloys have shown that the resulting reduction in ductility is
primarily dependent on the strain hardening exponent. In the lower hardening alloys
the crack ductility, defined as the minimum displacement per unit ligament
reduction, in the asymmetric case is less that a third that of the symmetric one but
in the higher hardening alloys the reduction is no more than 206. The high crack
growth rate of the asymmetric configuration leads also to correspondingly higher
stiffness requirements for fracture-stable design. The initiation displacement is not
much different and a fair amount of blunting was observed during initiation for both
cases. The crack growth direction is 38%-41° from the transverse (instead of 45%) as
expected from triaxiality, the higher angles with the smaller strain hardening. The

displacement vector is at about 51%-63° from the transverse. Angles greater than 45°

suggest a Mode I component, even with asymmetry.
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TABLE 1

rek

Ambient temperature mechanical properties

Yield strength

MN/m?

Alloy

1018 steel

cold finished
0.15-0.20% C,
0.60-0.90% Mn

1018 steel
normalized
at 1700°F

in argon flow

A38 steel

hot rolled
0.29% C max,
0.680-0.90% Mn

HY80 steel

586

321

281

587

0.18% C., 2-3.25% Ni,

0.10-0.40% Mn,
0.15-0.35% Si

HY100 steel

693

0.20% C, 2.25-3.50% Ni,

0.10-0.40% Mn,
0.15-0.35% Si

5086-H111
aluminum
4% Mg, 0.4% Mn,
0.15% Cr

210

Tensile
Strength
(T.s.)
MN/m?

600

355

348

692

772

264

LA AR AL M A

of the six alloys tested.

Hardness
HBN

kgf/lmnA2
187
101
105
175

195

70

P

T

.

L ol afk-ath o

Reduction

in area

Percent

61.7

61.1

69.9

68.6

45.8




Stress-strain equation parameters.

Alloy

1018 steel
cold finished

1018 steel
normalized

L e ”
-

A36 steel
hot rolled

) -

HY80 steel

y.v

D §

D

HY100 steel

. 50868-H111
- aluminum

TABLE 2

%y
MN/m?

796
818
697

1107
1180

589

0.05152

0.01718

0.02628

0.00702

0.00488

0.00554

.10

.23

.24

.12

.10

.19

-t
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TABLE 3 - TEST RESULTS (Ligament %=2.54 mm)

Alloy 1018 CF HY80 HY100 1018 norm. A36 HR 5086-H111
INITIATION

Idealized initiation displacement, uiI/% (Fig. 4)

Sym 0.072 0.108 0.083 0.348 0.172 0.179
Asym 0.073 0.110 0.100 0.252 0.206 0.181

DUCTILITY MEASURES

Crack Growth Ductility, DS' eq. (3), ~(du_/dDmin

Sym 0.233 0.320 0.354 0.258 0.192
Asym 0.072 0.096 0.105 0.215 0.181

Modified Tearing Modulus, T*, eqs. (8), (9), o (E/T.S.)D
Sym 90.9 107.9 103.8 144 .3 108.8
Asym 14.1 16.2 15.8 §7.6 51.3

Min. extension rate, Dext,
Sym 0.199 0.285 0.299 0.237 0.165
Asym 0.046 0.060 0.081 0.185 0.154

DISPLACEMENTS from fracture pfofiles. Fig. &
Initiation Displ., wu /Il

i/’
Sym 0.021 0.051 0.051 0.214 0.080
Asym 0.033 0.072 0.052 0.152 0.110
Growth Displ., u_/l,
Sym 0.262 0.362 0.404 0.317 0.254
Asym 0.084 0.115 0.125 0.230 0.2186
Displacement vector angle, ¢
Sym (~90°)
Asym 51° 55° 55° 63° 61°
CRACK DIRECTION, 0c=(9u+ﬂ)/2 (Fig.5)
Sym (0%
Asym 41° 40° 40° 3g° 3g°

LOAD FACTOR, Fszmax/%w(T.s.)(z/v@b
Sym 1.02 1.16 1.15 1.29 1.21
Asym 0.88 1.08 1.06 1.15 1.20

0.
0.

166
108

43.6
14.2

o

o

eq. (10), ~(du/dDmin (25mm gauge length)
0.
0.

120
083

.079
.073

.278
.138

56°

40°

.19
.12




TABLE 4 - RESULTS FROM LARGE SPECIMENS (Ligament %=7.62 mm)

Alloy 5086-H111 Aluminum
INITIATION

Idealized initiation displacement, uil/%

Sym 0.081

Asym 0.072

DUCTILITY MEASURES
Crack Ductility, DS
Sym 0.165
Asym 0.105

x*

Modified Tearing, Modulus, T

Sym 43.4
Asym 13.8
Min. extension rate, D,.- for 25 mm gauge length
Sym 0.118
Asym ' 0.080

DISPLACEMENTS from fracture profiles
Initiation Displ., u,/l

Sym 0.026
Asym 0.024

Growth Displ., us/%,

Sym 0.280
Asym 0.133
Displacement vector angle, ¢

Sym (=~90°)
Asym 57°
CRACK DIRECTION, 0_

Sym ~0%)
Asym 40°

LOAD FACTOR, F
Sym 1.21

i
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Figure 1. 1
g Asymmetric and Symmetric shear from cracks
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-] (.5 HY-100 .Steel
Q .
o -Asymmetric
- g
v 2 |
g 'O
-
g™ »
5 O3
z .
I B ) 1 | .
0.05 0.0 0.15 020 0.25 030 Q35 -
Normalized Axial Displacement, ug/£q —~
o
Par 4
: \.O.l 5 e _,]
=P
o E -
® @ =
2goosr- .-
E @ .
=) 1 ] | 1 1 ] | -
2 005 0.10 0.5 Q20 Q25 0.30 Q35 -
Normalized Axial Displacement, ugq/£q |
Figure 7a. Test Data for the HY-100 Steel Asymmetric Specimens. 2




"susmtoedg otIjemudg (ee1g 001-AH eYy3 103 ®3eq 188] ~q. aindty

04 ,%n Juawadn|ds|Q |DIXY pazijowsopN
GG0 0SS0 Gv0O 0Ob0 S£0 0¢0 G20 020 GI'0 0Ot0 <00
- 1 T T T T T T

'
T
|3
.—n.
-—
“.
8
»
|
[ 4
.
3
W

2z
O
(o)) ' 3
o G0 3
U o .
~N =
O N 4
o.— nUv M“t .H.u.‘
3
J19wwAg o %
19915 00!~ AH o 5
4g1 o 5

-
N

PR CALIR YO,

N
VNS

LRI YT )
AL TS,

-
o
} NN

.
i T
-
B
Pel e e e

. aa
e "

.l.w‘lﬂ.. K. ...«-..-...\ -.\. .n-.-\...-»_ \\m—..\.. ............ ' \..“.. e B ', ...-.. ) K sl, _-‘.l\.-.‘-tn ‘...\.. ..'.......... ".. . . ..\.\...A e R ..-C N .....-.. ..” AT..

-,
)
v




: g f 60
) (-
& 15f A36 HR Steel
Q Asy mmetric -
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Figure 8a. Test Data for the A36 Hot Rolled Steel
Asymmetric Specimens.
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!. 5086 -HIll Asymmetric
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Figure 11a Test Data for the 38.1 mm dia. 5086-H111

asymmetric specimens showing the unloading-loading
points for marking the crack fromt.
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APPENDIX

FRACTOGRAPHIC OBSERVATIONS IN ASYMMETRIC AND SYMMETRIC
FULLY PLASTIC SPECIMENS.

Observations of ductile fracture suggest that it results from a multi-step
process initiated by the cracking of inclusions or the separation of inclusion-metal
interfaces, followed by void growth and coalescence. The coalescence has been
observed to occur on a plane of high shear stress, giving elongated dimples form, or
on a plane normal to the direction of maximum tensile stress, giving equiaxed
dimples [1]. Furthermore, fracture surfaces have been studied to identify and
classify the characteristic surface markings that are produced by the deformation

mechanisms [2].

Tests on symmetric and asymmetric specimens were performed on six alloys for

which X-ray spectrography gave the predominant inclusions: 1018 cold finished steel

with Si-bearing inclusions, 1018 steel normalized at 1700, A36 hot rolled steel with

MnS inclusions, HY80 steel with Al-bearing inclusions, HY'100 steel with MnS
inclusions and 5086-H111 aluminum with Fe-bearing inclusions. These alloys can be
separated into the lower hardening ones (1018 cold finished, HY80 and HY100 steel)
and the higher hardening ones (A36 hot rolled, 1018 normalized steel). In this work
the microscopic features of the fracture surface for the two geometries are

quantitatively compared.

In general, for a given crack tip opening displacement, the amount of crack
extension can be separated into two components: a sliding off component and a

fracture component. To quantify the ductility, as observed from the fractographs,

an “apparent crack ductility”, D, ., observed fractographically, can be defined as
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the ratio of that part of the projected crack area exposed by pure plastic flow to the
total projected area, including that exposed by fracture. For instance, with n
parabolic dimple markings per unit area, each having tip radius r, the apparent
crack ductility may be found by assuming that the area at? of each parabola opens

up before arrival of the crack front, and the balance of the surface is formed by

sliding off. Then D, =1- nxr2. Due to the difficulty in measuring these

quantities, only rough approximations for D ac ¢an be obtained. Table 1 shows these
b approximate findings (estimated from the lower flank fractographs, surface normal to N

the beam) for the lower hardening HY100 steel and the higher hardening 1018

g
A iaraah
LR PR

normalized steel from the asymmetric and symmetric specimens which are more
# ductile. These results are another manifestation of the fact that higher hardening -
alloys are more ductile than the lower hardening ones in the asymmetric

configuration but almost equally ductile in the symmetric one.

F_ TABLE 1 - Appareant Crack Ductility D,. -’
:.':; HY-100 steel Asymmetric "0.51
o HY-100 steel Symmetric 0.64

1018 normalized steel Asymmetric 0.68
1018 normalized steel Symmetric 0.67

Fig. 1 shows micrographs of the upper and lower flanks for 5086-H111

-
aluminum with different degrees of void formation and shearing. Fracture is more - *
“‘shear type’ in the lower flank, indicating a larger sliding off component in the
crack extension. This suggests a macro-mechanical model for crack growth by =
combined void growth and sliding off, where the lower flank slides off along the

upper slip plane and the upper flank slides off along the lower slip plane by a smaller

amount. Thus the lower flank consists of a larger amount of ‘‘sheared’’ material ..’.

3 3
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than the upper.

- A qualitative understanding of the differences in ductility from the
fractographs can be obtained by comparing in Fig. 2, the micrograph for the less
ductile HY100 asymmetric specimen with the corresponding one for the more ductile

higher hardening 1018 normalized steel (larger and less elongated voids).

To compare the symmetric and asymmetric cases, consider Fig. 3 which shows
micrographs of the low-hardening 1018 cold finished asymmetric and symmetric

specimens. This alloy shows a substantial reduction in ductility in the asymmetric

t‘ configuration. In the asymmetric case the fracture is more the ‘“‘shear type’ with

voids elongated in the direction of crack growth; in the symmetric case the fracture
is more the ‘“‘normal type”” with equiaxed voids. In the high-hardening A36 hot

' rolled steel, with small differences in the ductility between the asymmefric and the

| symmetric cases, the corresponding micrographs (Fig. 4) are not much different: the
fracture in the asymmetric case is almost as much the ‘“normal type’ as in the |

- symmetric case.

‘“Zig-zagging”’ of the fracture surface is a characteristic of some symmetric

specimens, where two slip planes are active and the crack grows by alternating

- shear. Fig. 5 shows this for the 5086-H111 aluminum. The wavy (zig-zag) region
followed the fatigue precrack. In the end the fracture turned into a shear lip.

-~ Symmetric specimens in the lower hardening alloys often turned into asymmetric
ones, following only one slip plane. In some instances, half of the specimen followed
the +459 slip plane and half the -45° plane.

.

In conclusion, fractographic observation of deformation during crack extension
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in the asymmetric specimens suggests a mechanism by fracture followed by a

different amount of sliding off in the two flanks. The usual symmetric case suggests

RN CDMAOSA B SN

alternating shear and fracture and in some cases the macroscopic surface is
= characterized by zig-zagging. Noteworthy features in the asymmetric specimens are J:Z}
'_ the ‘“‘shear type’ fracture, more evident in the lower hardening alloys and a larger *
71
. amount of sliding off in the lower flank. The symmetric specimens, with the larger y
b
;:-_} ductility, show in turn the ‘‘normal type’ fracture with more equiaxed voids than
5 the corresponding asymmetric specimens.
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Figure 1 Fracture surface of 5086-H111 aluminum asymaelric specimen
; showing the difference between the two flanks
L3
- (a) Upper flank, (b) Lower flank with more shearing
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(a) HY-100 steel (lower hardening. less ductile)
(b) 1018 normalized steel (higher hardening, more ductile) <
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Figure 3 Fracture surface of 1018 cold finished steel (lower
hardening alloy). (a) Asymmetric, (b) Symmetric. Distinctly
more ‘‘shear type'’ fracture in the asymmetric, less ductile case
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Figure 4 Fracture surface of A36 hot rolled steel (higher hardening
alloy). (a) Asymmetric, (b) Symmetric, without appreciable
difference Both cases have almost the same ductility
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Figure 5 Fracture surface of 5086-H11! aluminum symmetric specimen )
ncwing the macroscopic roughness of the specimen  After the ‘
atigue crack a ‘‘wavy’’ region ([shown better 1n (b)] and firail'y

)
a shear lip at the end
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APPENDIX

ON FRACTURE CHARACTERIZATION

In this section the concepts that are commonly used in characterizing fracture
are discussed.

Growth Resistance. Representing ductile crack propagation has been based on the

introduction of d(COD)/da [1,2,3] and the tearing modulus T or dJ/da concept [4].
In general, past work has implied that the results are all charactrerized by a common
triaxiality (or are independent of it) whereas in fact both d{COD)/da and T should
depend on triaxiality, since both cleavage and hole growth do. Analogous to the
above measures of growth resistance are the previously defined crack ductility

D s=du 7 /dl or gauge displacement per unit reduction in ligament D, ,=du/d/, and
the modified tearing modulus T® to include asymmetric cracks. Table 1 gives some
values of d(COD)/da and T for some common tests. They can be compared with the
much lower values of about 0.010 for Ds and 0.080 for D_,, and of about 15 for T
found in the asymmetric low hardening tests. Symmetric tests, on the other hand,
show values of Ds and D_,, close to those in Table 1. It may also be that an
asymmetry, introduced in the bending specimens could result in values of d{(COD)/da
below those of the symmetric bending specimens.

J-controlled growth. In large-scale yielding the HRR singularity is embedded in a

plastic zone that extends throughout the remaining ligament. J-control depends on
material and crack geometry (McMeeking and Parks [7]). The finite element study
of the asymmetric specimens st;owed that stress and strain fields are consistent with
the HRR singularity at initiation. The COA (crack opening angle) concept has also

been alternatively used to characterize growth. Shih [1] in his experimental study

found that the COA appears to be constant over a larger range of growth than the

P
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N -.1
tearing modulus. Instead of dJ/da, Shih [1] suggested characterizing growth by COA. i
A condition in terms of a tearing modulus T based on the COA (=dé/da): _ﬁ
dé6 E

dao, ;:'i

In other words the COA, dé/da, must be large compared to the yield strain, 0o/E.
In similar fashion, the tearing modulus T should be much larger than unity. How ‘T
large T or T; must be for a J-controlled or COA controlled growth is yet to be -

explored. COA’s of more than 109-20°, were reported in the COA-controlled tests in

[1]-
Stability. Stability depends again on triaxiality and geometry. Paris et al. [5]

developed instability relations for fully-plastic (nonhardening) conditions including -~
some common test piece configurations. For example, in the double edge cracked Ty
strip in tension the imposed constraint leads to a critical value of T for instability six &
times that in the center cracked strip in tension. In the expression for the 3-point "j
l;ending case the remaining ligament size, /, comes into the instability criterion, so ]
that if [ is small enough in the first place the situation remains stable throughout. ‘
In conclusion, single-test characterization of crack propagation can apply only if ’]

crack extension occurs in a certain mode and configuration. Instead of a single
parameter representation like d(COD)/da, a set of d(COD)/da, each referring to a

certain mode and triaxiality, could conceivably describe adequately the material

>

resistance in crack propagation. For instance, asymmetric (mixed mode I and TI)

fully plastic configurations in low hardening alloys have been found less ductile than -7

t the corresponding symmetric singly grooved unconstrained tensile specimens.

» N
ey vy

Extended work could invlolve studying the effect of triaxiality by performing

constrained asymmetric tests. For example, tensile testing on doubly-grooved

1“'_.{.-‘

specimens with the asymmetry introduced through varying notch angles and
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positions; or wedge-splitting of a doubly grooved specimen; or ductile fracture under

asymmetric bending with the asymmetry introduced not only by specimen geometry

but also through shear loading.
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TABLE 1
d(COD)/da and T for some common tests

Material Test d(COD) /da T Ref

A533B steel compact 0.205 (1]

Y.S. = 443 MPa tension 4T

T.S. = 574 MPa

ASTM A471 rotor steel 3-point bend . 36 .1 [4] 5?

Y.S = 931 MN/m? 8x1x05 in

T S = 1022 MN/m? Notched and Fatigue ¥
precracked, a/w =0.502 r

Free-cutting 3-point bend 0.300 (3] :3

Mi1ld steel fatigue precracked ‘

BS 4360 Grade 50 Ei

steel R

Y.S. = 359 MN/m? - 3-point single 0.250 [2] .o

T.S. = 526 MN/m? edge notch bend "]

Asyﬁmetric and Symmetric tensile tests.

1018 CF steel Asymmetric 0.072 (0.046)"
Y S = 586 MN/m?
TS = 612 MN/n? Symmetric 0.233 (0.199) I
!
HY80 steel Asymmetric 0.096 (0.060)
- Y S. = 587 MN/m? X
- T S. = 708 MN/m? Symmetric 0.320 (0.285) B

* values 1n parentheses are based on gauge extension ‘
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CHAPTER FOUR

i

| ‘ SHEAR-BAND CHARACTERIZATION OF MIXED
MODE I AND II FULLY PLASTIC CRACK GROWTH

TABLE OF SYMBOLS

-
e f amount of fracture
| 8, amount of slip along lower slip plane
5, amount of slip along upper slip plane
' 0, fracture plane
. 0, lower slip plane
0y upper slip plane
X fracture parameter (=f/s )
b 3 shearing parameter (=sl/su)
[ ¢] l, projected lower flank length
Iu projected upper flank length
" ly initial ligament
h 0u upper flank angle from transverse
- 0‘ lower flank angle from transverse
. « crack opening angle
u, axial displacement
} ¢ displacement vector angle from transverse
B, upper back angle
» ﬂl lower back angle
e gA strain for upper shearing
' ol strain for lower shearing
ABSTRACT
)
Asymmetiic fully plastic specimens give higher crack growth rates and thus
o smaller deformation tc fracture tiian the corresponding symmetric specimens. A
% macro-mechanical model of crack growth by combined fracture on one plane and
- sliding off along two others describes, for this idealization of the phyrical
ta mechanisms, the ductile crack growth for the general mixed mode I, I case. The
) analysis allows determining the independent physical parameters (shear and cracking
-
b=
t;-'.ix";';f-i"-;"-;"—;: I T R J
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directions, relative amounts of cracking and shearing) in terms of the observable

quantities of the macroscopic fracture (flank angles, flank lengths, back angle). a

.
B INTRODUCTION :
- In studying fracture there is a need for understanding and characterizing the &’
E deformation and crack growth in the fully plastic range for both the usual symmetric ‘

case and for the asymmetric case shown in Fig. 1. The asymmetric configuration
may occur near welds due to the constraint of a heat-affected zone or due to some
geometric asymmetry, such as near-by shoulders. These cracks exhibit less ductility
than symmetric ones, because the crack is advancing into prestrained and damaged
material rather than into the new material encountered by a crack advancing

between two symmetric shear bands.

-

. The nonhardening rigid plastic {flow {ield of Fig. 1b consists of a single slip line ""
, at 459, Strain hardening, however, causes the deformation field to fan out. It also -
f leads to adding a Mode I component, as suggested by the direction of the far field A
- displacement being more axial than 459 To account for the presence of the Mode I -31

component and the spreading out of the deformation in the more general asymmetric
case we assume two slip planes at arbitrary angles. T
Crack growth is a mixture of sliding off and fracture. In the general case it ‘2
may be idealized by assuming cycles of first sliding off on the upper slip plane, then A
on the lower, and finally fracture on possibly a third (Fig. 2). The combination of :
cracking and sliding off gives the two new surfaces of the macro fracture. These z
define the crack opening angle and the crack direction. In the symmetric case the
two slip planes and the fracture are symmetric. These ideas will now be developed 'j

e
A al_r

:




AN A AN AL AR L ad el Sl Sad Sad il Al Al ik it A Al el Wl Al Gk g Soll Snd M ad st eae et o g

b
- 84
quantitatively, giving a description of the mixed mode ductile crack growth based on
. an idealization of the underlying physical mechanisms. The single-band pure Mode Il
asymmetric and the pure Mode I symmetric behavior can be obtained as limiting
N cases.
ANALYSIS

Consider lower and upper slip planes at angles 6 and 8 (Fig. 2). The upper

crack flank is formed by sliding off along the lower slip plane through a distance s, at

f,, combined with fracture over a distance f at an angle 0;. The lower flank is
formed by sliding off along the upper slip plane at 6, and the fracture f at 6. A
cracking parameter x=f/s_ and a shearing parameter §=s,/s_ can be defined. As
independent physical variables consider the cracking and shearing parameters x and

§, the fracture angle 6, and the slip angles §

o» O The limiting case of Mode I, with

two symmetric slip lines corresponds to 0=0, 05u#- sp S;=S, and the limiting Mode

II case of slip on a single plane corresponds to s =0.

Observable quantities that allow solving for the above physical variables turn
out to be the angles between the faces of the crack and the transverse direction 0,
0, the transverse components of the crack flank lengths after complete separation,
normalized with the initial ligament, [ /1, [ /1), and the angle that the deformed
upper back surface makes to the load axis, 3, (Fig. 3). Other dependent variables of
interest are the crack opening angle (COA), the total axial displacement per initial
lizament uy/lo, the orientation of the displacement vector ¢, and the angle that the
deformed lower back surface makes to the load axis 8, (Fig. 3). These can be
deduced from the analysis and observed from the tests, except for the lower back

angle which is suppressed by the shoulder.

............................
........................
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The orientations of the crack flanks ou and 01 from the transverse direction can
be found from Fig. 1:

fsinf, + s sinf 1 X sinf, + sinf,

= tan! = tan , (1)
fcosby + s, cosf X c050r + c030Su
f sinf, + s, sind X sinf, + &sinf
6 = tan” 1 sl tan?! J St (2)
b f cosf, + s, cosd x cosf. + Ecosd
f l sl f sl
The crack opening angle is
COA=w=9,-0_, (3)

Fig. 4 shows the crack opening angle as a function of x and £ with the slip angle
difference 6 -0, as a parameter. An increasing cracking ratio x=f/s, or shearing
ratio {=s,/s, leads to a decreasing COA (notice that the COA is more sensitive to x
than €). A large;r slip angle diffgrence, 0,0y leads to a larger COA. Large slip
angle differer.lces represent spreading out of the deformation and can simulate the
effect of a high strain hardening exponent which has been found experimentally to

result in a bigger crack opening angle.

The original ligament thickness, Iy, projected onto the transverse direction, i

reduced to zero by the cracking f and by the sliding off s;and s (Fig. 2):

lo =1 cosf + s cosb +s, cosGsl. (4)
The corresponding axial extension is

u, =s, sind,, - s, sind, . (5)

From (4) and (5) the deformation ratio, defined as the total axial displacement per

initial ligament, which is a measure of the ductility, is found to be




e

‘¥
-4

sinf - £ sinfd,

(6)

Yy
b X cosf, + cosf,, + £ cosd, .

The deformation ratio behaves as the COA, being higher for a lower x or £ and
smaller for a larger slip angle difference 4 -0 . Fig. 5 shows an example of variation

of uy/lo.

An expression for the flank lengths is desirable because the final projected
flank lengths per initial ligament can be measured. The projected upper and lower

flank lengths, I and [, are given by
l, = [ cosf, + s cosd, . (7)
l,="1cosb +s cos, . (8)

Using (4) and substituting the expression: for the cracking and shearing ratios x and

£ gives

l x cosf; + § cosd;

(9)

u
ly  x cosfp + £ cosf,, + cosf, ’

l X cosﬂr + cosl9sll
= (10)

{
ly x cosb + & cosf,; + cosl, .

The lower flank ratio [/}, decreases with an increasing shearing parameter £ in
contrast to the upper flank ratio lu/lo which increases (Fig. 6). The amount by

which the upper back surface is drawn in, projected along the transverse, is (Fig. 2)
t, =s, cosd_ . (11)

A “thinning’’ ratio for the upper surface, t,/!y can be defined in terms of the

independent parameters by noting that

.....
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t/ho=1-1/4. (12)

- For the lower surface similarly, t
:E: t/ly=1- Wi - (13)

v

Of interest is also the orientation of the displacement vector from the
transve:se, ¢. In terms ol the flank lengths and angles, it can be found from
. (/) tand; - (1, /1) tand, (14) ;
(/) - (1,/4)

The back angle, defined as the angle that the deformed back surface makes to

, the load axis, can be observed macroscopically. For the upper slip line from Fig. 2
ds_ cosd
B, = tan’! - . A - - . (15)
(df sin(f,,-0;) + ds;sin(6 -0 )]/cosd, + ds, sind_
Substituting the expressions for the cracking and shearing ratios we can write
: cosf
) B, = tan’! = ' — (16) .
N X(cosf tanf, - sinfy) + £(cosd,, tand, - sind ) + sinf,, K
Similarly for the lower surface
ds, cosf.
3, = tan’! . L . —, (17)
(df sin(6,-0;) + ds sin(6 .0 )]/cosf,, + ds, sind,
or
§ cosd
B, = tan’! sl (18)

x(cosb; tand_; - sinf) + (cos()su tanf,; - sinf ) + £ sind; .

There are five independent macroscopically observable parameters: the flank
angles 6, 0, the projected flank lengths per initial ligament, { /{), {,/{,, and the back
angle 8. Equations (1) for 4, (2) for 8, (9) for I /1, (10) for {,/l,, and (16) for B, .

give the corresponding physical variables y, £, B, 0, 0., as described in the

Appendix.
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Finally, an expression for the shear strain can also be found. It can be

expressed in terms of the slip and the normal separation between corresponding slip

planes. For the upper shear band, s,
Yo =5,/ (f sin(f,,-0p) + s, sin(ﬁsu-ﬁs[)] =
=1/ [x sin(f,-0;) + & sin(0su-ﬂsl)] . (19)

Similarly, for the lower shearing, s,
nw=s;/ [f sin(f,-0,) + s, sin(ﬂsrosu)] =

= £/ [x sin(0,6,) + sin(d,,0_ )] - (20)
APPLICATION TO TESTS

Tests were performed on 12.7 mm dia. round bars of six alloyé: 1018 cold
finished, 1018 normalized, A38 hot rolled, HY-80 and HY-100 steel and 5086-H111
aluminum in both the asymmetric and symmetric configurations. The alloys tested
can be grouped into the lower hardening ones {1018 cold finished, HY-80 and
HY-100) and the higher hardening ones (A36 hot rolled, 1018 normalized). The lower
hardening alloys exhibited a significantly lower ductility in the asymmetric
configuration than the symmetric; the higher hardening alloys showed only a small
reduction. The profiles of the fracture surface and the deformed back surface were
plotted with a travelling stage microscope to obtain the flank lengths, the flank
angles, the back angle, the displacement to separation and the orientation of the

displacement vector.

To apply the above model to the tests, the projected crack length ratios { /4,

I,/1, for the upper and lower flanks and the flank angles 0, 6, were measured from
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the profiles of the fracture surface. In addition the back angle for the upper surface

B, was measured from the microscope plots of the back surface. The projected —
length ratios depend on the strain hardening exponent, being smaller for a higher
strain hardening. These quantities were used in equations (1), (2), (9), (10), (16) to
yield the cracking parameter x=f/su, the shearing parameter §=s,/s,, the slip
angles 6 and 6, and the fracture angle 6;. The axial displacement uy/ l, and the
orientation of the displacement vector ¢ can also be obtained and compared with the
test data. Results are shown in the tables at the end of this chapter. For the
asymmetric specimens the shearing ratio £ is found to be about 0.5 indicating
shearing in lower flank about twice that in upper flank. SEM fractographs have
confirmed that the lower flank shows indeed more ‘‘shear type’ fracture than the -~
upper one (chapter three). The slip angle difference 6,0 is a measure of the

spreading out of deformation and is found to be 4%-6°

in the high hardening alloys as
opposed to 12-2% in the low hardening ones. The cracking ratio x is a measure of the
relative amount of fracture and sliding off and allows defining an comparing with the

‘ ‘apparent crack ductility”, D, ., as the sliding off to total area. Thus,

g

In upper flank D, = s//(f+s) = 1/(x/§+1)
In lower flank D, , = s, /([+s,) = 1/(x+1)

A smaller cracking ratio means higher ductility. In the low hardening alloys the ~4
cracking ratio x is smaller in the symmetric case, whereas in the higher hardening |
alloys it is about the same in both the symmetric and asymmetric configurations.

The cracking ratio x in the higher hardening asy nmetric specimens is also smaller

that of the low hardening asymmetric ones.

The Mode I symmetric case corresponds to the limit of 0 =0, 6;=0, and
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§=s,/s,=1. Results are also shown in the tables at the end of the chapter. The

projected flank ratio I, /l;=1{/l; and the flank orientation f=-0, were measured to
give the cracking ratio x and the slip angle §.. As dependent variables, the
displacement to separation uy/lo, and the back angle ﬂu=-,31 can be found. The
displacement is more than twice that of the asymmetric case in the lower hardening
HY-100 steel. Fig. 7 shows the variation of the deformation ratio uy/l0 and the
crack opening angle w vs. the cracking parameter x with 0, =0 =-0_ as a

parameter.
CONCLUSIONS

In asymmetrical, singly grooved, fully plastic tensile specimens the crack
progresses into pre-strained material. This results in less ductility than in
symmetrical specimens where the crack grows into new material between two shear
bands. A macro-mechanical model for crack advance by sliding off along two slip
planes and fracture in the asymmetric specimens gives‘the independent parameters
(shear and cracking directions, relative amounts of cracking and shearing) in terms of
the observable quantities of the macroscopic fracture (flank angles, flank lengths,
back angle). This two slip plane model accounts for the presence of a Mode |
component (far field displacement more axial than 450) that was experimentally
confirmed in the asymmetric case. Higher hardening alloys are found to exhibit more
thinning of the ligament (hence smaller projected length ratios), a larger slip angle
difference, indicating more fanning out of the deformation and a bigger sliding off
component. The analysis, based on an idealization of underlying physical
mechanisms, describes the deformation that leads to a larger crack opening angle

and displacement to separation in the higher hardening asymmetric specimens

relative Lo the lower hardening ones as well as the symmetric specimens relative to




the asymmetric ones.
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APPENDIX

The problem is to determine x, &, Op, 0, 0, from the observable quantities 0,
0, U/ly 1,/ B, The relevant equations are summarized:

X sinf; + sinf_,
b, = tan! (21)
x cosf, + cosf
1 X smé + Esm()
n’

x cosf, + Ecosd,

0 = ta

I, x cosb + cosﬂ
<= (23)
lh x cosﬁé + & c030  + cosb
Iu x cost, + € cosfl [
u (24)
10 x cosb; + & cosd; + cosf

cosl9
B, = tan’ (25)

X(cosf; tanf, - sindy) + £(cosf, tanb, - sind ) + sinf,
For convenience define the upper thinning ratio from (24)
cosd :

t/lp=1- 1/1 ® - . (26)

X cosby + § cost_, + cosf
Dividing Eqs (21)-(25) by cosf,, leaves them in terms of four parameters, (A, B, C, D
defined in the following) plus tanf  that can be solved from the observed variables.

The first is found by dividing (23) by (26):

F= 1/t - 1. (27)

Dividing (23) by (24) and introducing A from (27) gives

€ cosd

= = (/1) (A+1)- A . (28)
cososu

Introducing (27) into (21) and rearranging,

X sinf,
C= = (tanf)(A+1) - tanf_ . (29)

c050su

Now introduce (27), (28), and (29) into (22)

e Tl St B dni
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0
*! — (tanf,)(A+B) - C . (30)
cosd,
From (25) and the above definitions of A,B,C,D,
tang, = 1/ [ (A+B+1) tanf, - (C+D)]. (31)

From (30) C+D of (31) is given in terms of observed variables. Solve for .

_'-‘.: 1 + (A+B)tanf tanf,

h:-l‘ tanﬂsu = . (32)
;,:—_ (A+B+l) tanﬁu

. Having found 6, find C from (29) and D from (30). Now find 6; from (27) and (29)

tanf, = C/A, (33)

and 6 from (28) and (30):

" '.,..,’m‘. T

tand,, = D/B . (34)

a s e ¥
I N |
Lt

Then x is determined from (27} by using the already determined values ol'.ﬂsu in (32)

and of 6, in (33)
X = A cosf, /cosb, , (35)

and similarly £ is found from (28) by using the values of 6, from (32) and 4, from

(34)

§ = B cosf,, /cosd, . (36)

.........................

.............................................
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) TABLE 1
Deformation of singly-grooved
u asymmetrical specimens
o Alloy : HY-100 steel 1018 normalized
o (low hardening, n=0.10) (high hardening. n=0 24)
- Observations
Projected upper flank 0.820 0.750
. ratio, ! /1l
1 u 0
' - Projected lower flank 0 900 0.870
: ratio. 4/},
' 0 0
b Upper flank angle, 39 36
l & 0,
0 0
Lower flank angle, 41 42
b
. 0 0
. Upper back angle, 'Bu 14 13
) Corresponding slip and fracture parameters
Slip angle 530 520
Slip angle 4 540 580
su
: 0 0
Cracking angle 0‘. 37 31
Cracking parameter x 2.912 1.518
Shearing parameter § 0.536 0 445
- Dependent variables -  deduced gauge deduced gauge
Growth Displ. ratio, 0.118 0.115 0 238 0.230
2 Uy’
) Growth displ. vector 569 540 60° 60°
E:, angle from transverse
>
rd




Assumed 05=0su=-esr

Alloy-

Observations

Projected flank
ratlo,lu/b=Q/%

Flank angle,
0|:_0
u

Corresponding param

95

TABLE 2

Deformation of singly-grooved
symmetrical sp%fimens
E=sl/su=1 . 0r=o :

HY-100 steel

Slip angle 05

Cracking parameter,
X

Dependent variables

Growth Displ. ratio,

uy/%

Back angle,

Py

0.780
140
eters
410
1.907
deduced observed
0.390 0.404
120 130

1018 normalized

0.740

12

31

1.579

deduced observed

0.315 0.317

15
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Deformation of singly-grooved

asymmetrical specimens

Alloy: 1018 CF steel
Observations

Projected upper flank 0.890
ratio. |/l

Projected lower flank 0.960
ratio. 4/l

Upper flank angle, 400
ou

Lower flank angle, 419
b

Upper back angle, B, 130

Corresponding slip and fracture parameters

Slip angle 6 500

Slip angle 6, 519

Cracking angle 0 390

Cracking parameter x 6.335

Shearing parameter § 0.354

Dependent variables deduced gauge
Growth Displ. ratio, 0.088 0.084
“y/%

Growth displ vector 510 520

angle from transverse

HY-80 Steel

0.850

0.930

39

41

12

520

540

3g0
3 822

0.440

deduced

0.120

56

gauge

0.115

54

ol




’ o7
Deformation of singly-grooved
symmetrical spebcimens
Assumed os'—'osu:'asl' £=sl/su=1, 01':0 :

Alloy: 1018 CF steel HY-80 steel
-

<

b Observations

A Projected flank 0.820 0 800
ratio, lu/10=ll/lo

~ Flank angle, g0 13°

N by==0,

Corresponding parameters

‘:.
S Slip argle 6 360 43°
s Cracking parameter, 2.883 2.204

X
. Dependent variables deduced observed deduced observed
Growth Displ. ratio, - 0 260 0.262 0.359 0.362

- uy/l0
o Back angle. 120 120 10° 120
:;: ﬁu
2

N
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Deformation of singly-grooved
asymmetrical specimens

Alloy: . A36 hot rolled steel 5086-H111 aluminum
Observations
Projected upper flank 0.770 0.810
ratio, { /0,
Projected lower flank 0.890 0.500
ratio, 4/l
U 0 0
pper flank angle, 36 41
by

0 2a0
Lower flank angle, 41 39
g

0 0
Upper back angle, 8 13 16

u

Corresponding slip and fracture parameters

0 0

Slip angle 0 53 51
Slip angle osu 57° 53"
C 0 0

racking angle &; 32 37
Cracking parameter x 1.834 2.821
Shearing parameter £ 0.425 4 0.507
Dependent variables deduced gauge deduced gauge
Growth Displ ratio, 0.214 0.216 0.126 0.138
“y/%

0 0 0

Growth displ. vector 61 60 55 56

angle from transverse
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Deformation of singly-grooved
': syumetrical sp%cimens _
Assumed 08=05u=-051, £=sl/su= . 01':0 . )
» Alloy: A36 hot rolled steel 5085-1{111 aluminum )
: 2
Observations —-
. Projected flank 0.780 0.760 '
. ratio, lu/10=l|/l0
Flank angle, 100 100
0|=—0u
Correcponding parameters
v Siip angle 0 320 29° -~
Cracking parameter, 2.188 1.892
T X
Dependent variables deduced observed deduced observed . ™
‘Growth Displ. ratio, 0.275 0.254 0.268 0.278
uy/l0
Back angle, 16° 159 190 16° -
3

S u
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Figure 3. Micro- and Macroscopic geometry
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CHAPTER FIVE

FINITE ELEMENT INVESTIGATION OF PLANE
STRAIN ASYMMETRIC FULLY PLASTIC SPECIMENS

TABLE OF SYMBOLS

strain hardening exponent
flow stress at unit strain
damage (eq. 3)
mean normal stress
principal. shear strain
principal shear stress
equivalent stress
equivalent strain
critical orientation
mean inclusion spacing
displacement vector angle from transverse
axial component of far field displacement vector
transverse component of far field displacement vector
mixity parameter (eq. 4)
axial component of relative
crack tip displacenment (su_'-u ")
transverse component of relative
crack tip displacenment (=ux+—u
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ABSTRACT

Crack initiation and early growth in asymmetric, fully plastic, plane strain

configurations in power-law hardening materials is investigated numerically via the
finite element method. In such asymmetric configurations a single shear band is
present instead of the two shear bands of the symmetric case. Results for two strain
hardening exponents, n=0.12 and n=0.24, indicate that cracking occurs at an angle
of 39%-43% from the transverse, smaller than 45° due to the higher triaxiality. The

direction of cracking is closer to 45° for lower strain hardening exponents and is jﬁ
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.................................................
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within 20 of those experimentally found. The stress and strain field is consistent
with the power law singularity of the HRR fields. The fer field displacement vector
is not along the shear band but at about 689-70° from the transverse at initiation,
indicating the presence of a Mode I component. Early growth, studied by successive
removal of elements reaching unit damage, results in crack growth per unit
displacement for the lower hardening case about twice that of the higher hardening

one.
INTRODUCTION

Asymmetric plane strain specimens have been used to study crack growth
along a single shear band. Such cases may occur when a weld fillet or a harder heat-
affected zone on one side of the crack suppresses the other shear zone that wouid
appear’in a symmetric specimen. Based on Shih’s extension to mixed mode [1] of the
HRR [2,3] fields, McClintock and Slocum [4] developed an approximate formulation
for the accumulation of damage directly ahead of an asymmetric crack. The crack
was assumed to follow the center of a 450 shear band and the far-field displacement
was assumed to be parallel to the shear band. It was found that the initiation
displacement was of the order of the fracture process zone size p. To study the
directional effects, several sites around the current crack tip were considered in
chapter two and the crack was assumed to advance to the direction requiring the
least far field displacement for critical damage. The far field displacement vector
was again assumed to be at 459 from the transverse. Both these solutions found only
little effect of strain hardening on the crack growth rate. However, tests have shown
that the far field displacement vector is not at 450 but more axial, at an angle of

about 60° from the transverse. In addition, a lower strain hardening exponent n was

found to increase the crack growth rate dramatically. Strain hardening causes the




deformation field to fan out. The effect of the finite width of the shear band can be

captured with a finite element investigation. In the following the finite element
method is used to study crack initiation and early growth in fully plastic plane strain

asymmetric specimens.
TECHNIQUE

The finite element grid used is indicated in Fig. 1, with the details of the
refined mesh for the first circle around the crack tip shown in Fig. 2. An increased
element concentration near the 450 line is used to account for the high strain
gradients there. Angular spacings of 3.759 for four sectors, 7.50 for two sectors, 15°
for four sectors and 30° for nine sectors are used. Minimum radial size for the 3.75°
elements is p=0.01 mm, the approximate value for the mean inclusion spacing. The
radial size ratio was s=1.155 for the 3.75? sectors becoming s for the 7.50 sectors, s*
for the 15% and s® for the 300 sectors. The net ligament of the specimen is [;=2.55
mm. 8-node plane strain isoparametric elements are used. The mesh consisted of a
total of 207 elements with 722 nodes and 1444 degrees of freedom. The nodes at the
bottom were on rollers with the center node pinned. An axial displacement with
zero shear traction was applied at the nodes of the upper end. The analysis was
carried on a Data General computer available at M.I.T. and the general purpose

finite element code ABAQUS [5] was used.

The mesh was checked by comparing the theoretical strain distribution for the
elastic and the low hardening n=1/13 HRR (2,3] fields with the linear variation of
strains within the 8-node elements. The radial variation in strain showed a

maximum deviation of 159 from the elastic solution for the first element around the

tip. For the HRR n=1/13 solution the deviation was 3395, dropping to 5.6 for the
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: second element. The angular distribution in € , showed a maximum deviation of 8%
. u from the HRR for the 30° sectors. In addition, a circular portion of the finite
element mesh with 16 radially elements at the finest sectors was tested by imposing
Mode I HRR displacement boundary conditions. The HRR singularity in ¢, was
m reproduced with no more than 5% deviation in all elements except the first one,
- where the maximum deviation was 14% at the first integration point.
” The material is modeled as isotropic power-law hardening: the stress o is given
in terms of the plastic strain ¢P, the flow stress at unit strain 0, a strain hardening
exponent n, and a pre-strain ¢, by
-
0 = g,(e+eP)" . (1)
Two cases were considered, n=0.24, 0, =826 MN/mQ, yield strength Y=333 MN/m2
| and 0=0.12, ;=009 MN/m?, Y=435 MN/m%.
The fracture criterion of McClintock, Kaplan and Berg [6] is used, by which it
R is postulated that fracture due to micro-void coalescence occurs when a quantity 7,
-{; named ‘‘damage’”’, reaches a critical value of unity. The damage is expressed in
. terms of a hole growth ratio F, the principal shear strain v, and the triaxiality
- (defined as the ratio of the mean normal stress ¢ to principal shear strain 7). In
terms of the equivalent stress and strain,
i = o VE 1= V3. @
The damage is:
. n =-l—— [ln\/l_+_'7—2'+ i sinh((l‘n)a) ] . (3)
L InF, 2(1-n) T

_— The critical displacement for growth initiation occurs when the damage becomes




unity at a point (p, 6,) where p is the fracture process zone size and 0 is the critical

orientation. To study the first steps of crack growth, successive elements were

removed as they reached a damage of unity.
RESULTS AND DISCUSSION

The axial displacement, at the upper end, Uy, was gradually increased and the
damage from (3) was calculated at each site around the tip. Cracking occurs when

the fracture criterion of n=1 is first satisfied.

The initiation conditions (critical orientation from the transverse,  , critical
strain 4, critical triaxiality o/, far-field displacement u./p) are shown in Table 1.
The crack tip initiation displacement is of the order of the mean inclusion spacing as
was also found by McClintock and Slocum [4] and in chapter 2. The critical
orientation of 39-43% from the transverse and the far field displacement vector
orientation. of about 68-70° at initiation can be compared with the values of 38-41°
for the crack direction and 58%-69° for the displacement vector at initiation from
tests. The lower hardening n=0.12 case results in fracture closer to the shear band,

as found experimentally.

For a crack at =07, a Mode I mixity parameter MP was introduced by Shih
[1], defined in terms of the near field stresses by

0 g4(r, =0) }
lim ———

10 0 4(r, 6=0)

2 1
MP = — tan"
T

(4)

The mixity parameter varies from 0 for pure Mode II to 1 for pure Mode I.  This
parameter can be referred to either the initial crack direction §=07 or the final
(critical) one =0, giving values as shown in Table 1. Notice that the above

definition of the Mode I mixity is with respect to both shearing and crack advance at

v
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=0, for both the limiting cases MP=0 or 1. In the problem at hand, pure Mode 1 is
crack advance along the line §=0 (corresponding to the symmetric case) and pure
Mode II would be relative deformation and crack advance along the 45° shear band.
Alternatively, for experiments and finite element studies, a definitition of a Mode I
mixity in terms of the displacement field is helpful:
uy(r,m) - u,fr,-m)

« 2
M, = - tan™! lim (5)
T f-.o ur(riw) - ur(r’-x)

Values for this parameter are also shown in Table 1. Notice that for the non-
hardening rigid plastic pure Mode I limit with a single slip line at =15, M;:O.B

for the crack at #=0° but M;:O for the crack at 8=45°.

Fig. 3a shows the angular variation of the o, stress component. The curve is
consistent with the Shih’s [1] curves and has a maximum near 6=65°. This
compares with the case MP=1, n=1/13 which has a maximum at an angle near 97°
and the MP=1, n=1/3 case with a maximum near 88% whereas the case of MP=0
has a maximum o, at =00, Furthermore, the maximum for n=1/13, MP=0.82 is
near 55 and for n=1/3, MP=0.79 is near 40° [1]. The 6-variation of €.g is shown in
Figs. 3b, 3c. Of the two peaks in € 4, the one for positive § is the dominant the other

peak tending to vanish during growth when the Mode I mixity is reduced (Fig. 3d).

The radial variation of the equivalent strain for n=0.12 (along the critical
orientation) is shown in Fig. 4. The asymptotic solution for power-law hardening
materials yield singularities in the stress and strain of the form ro/(n+1) 4ng
r'l/(““), respectively. The agreement between the theoretical curve and the finite

element results is within 5%.

Fig. 5 shows the axial displacement of the upper flank relative to the lower
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flank at the initiation point. The components of the relative displacement of the
crack tip u, (x=0, y=0) and uy(x=0, y=0)=CTOD are included in Table 1. A-
higher CTOD occurs in the higher hardening case. Figs. 6a and 6b show the angular
variation of the near tip displacement field for the two hardening exponents n=0.24
and n=0.12, along with the nonhardening limit. The far-field displacement
(displacement at the upper boundary) components U, and Uy at the initiation point
are also included in Table 1 together with the far field displacement vector
orientation from the transverse, ¢. The value of =68 to 70° instead of 430,
indicates that we cannot consider the far field displacement taking place parallel to
the shear band, as assumed by McClintock and Slocum [4]. We can observe that the
displacement vector at initiation is more axial for the lower hardening case with
larger MP. The higher triaxiality for angles smaller than 459 is the main reason for
the cracking direction deviating towards the transverse. The triaxiality is smaller

for n=0.24 because of the smaller Mode I mixity MP.

Tests have shown that, in the asymmetric case, the lower hardening alloys
exhibit a maximum crack growth rate more than twice that of the higher hardening
alloys. The finite element mesh of Figure 1 was used to study the early growth.
Crack was grown by successive removal of the most heavily damaged element. After
initiation and removal of the most damaged element, the far field displacement is
further increased until critical damage =1 occurs in the next row of elements. At
this point the next step of crack growth takes place by removing the critical
element. After growth by four steps (1.99 of the ligament} it was found that the
average displacement per unit projected crack advance Au/Alis about 8% smaller ’
for the lower hardening n=0.12 case than that of the higher hardening n=0.21 case
(Table 1). Another noteworthy result is that the far field displacement vector U Ljﬁ

becomes less axial as the crack grows. For the case n=0.12, at the end of the fourth -_;}"
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step, the angle of the displacement vector from the transverse is $=67.6° instead of
the initiation value of $==69.50. Decreasing ¢ angles with crack growth have been
experimentally observed (chapter three). During these steps the critical elements
were at the same angular sector and no appreciable accelation of the crack was

observed.
CONCLUSIONS

A finite element investigation of fully plastic asymmetric specimens with a
single slip band, as might be encountered near a weld, has provided the stress, strain
and displacement fields around the tip. Results indicate the presence of a large
Mode I component with the far field displacement vector at initiation not along the
450 shear band but at an angle about 670 from the transverse. The initiation
conditions were found by using the fracture criterion for hole growth by McClintock
Kaplan and Berg [6]. The critical direction was at 39-43°, less than 459 from the
transverse, increasing for a lower strain hardening exponent. Displacement to crack
initiation is about twice the fracture process zone size. Stress and strain fields are
consistent with the solutions for the mixed mode extended HRR fields. Early
growth, studied by successive removal of the most damaged element, resulted in
crack growth rate for the lower hardening case about twice that of the higher
hardening one. The angle of the far-field displacement vector from the transverse

was found to be decreasing with crack growth.
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TABLE 1
‘! Results of the finite element study.
2 n=0.12 n =024
Qﬂ Initiation
Conditions
" 0 0
= Critical angle 9, 43 .1 39 4
from transverse.
Far field displ. Uy/p 2.1 1.8
. components U/» 0.782 0.737
Displacemeni ¢ 69.5° 67.7°
- vector-angle
;; from transverse
Displacements  u (x=0, y=0)/p 0.134 0.192
at crack tip uy(x=0, y=0)/p 0.518 0 564
i~ Principal Shear 7, 0.246 0.327
. Strain
= Triaxiality o/t 2.18 i 1.995 -
A Mixity parameter
s Mode I Mixity MP (Shih)
defined by Shih (rel. to 6#=0%) 0.936 0.927
(based on stresses) (rel. to 6=0.) 0.717 0.710
- Displ based M, * 0.752 0 815
- Mode I Mixity
i; Early Growth
Far field displ. Au/Al 0.075 0 143

per projected crack
advance (4 steps)




e Al At Thee P S
L mea e Sed 2R St A e
s N PN .

17

L% VWl e T -

S

A

LB

R

g

h Crack

Figure 1 The finite element mesh

- -
o e ™ [N

- .y OIS
- - .. - P
et e e T A e T e T U N e :




118

Figure 2.

Detail of the finite element mesh aro

und the crack tip
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Figure 3d.

Angular variation of the stresses and strains for mixed
mode, plane strain, n=1/13 cracks from Shih [1]
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CHAPTER SIX

u_ ON THE FULLY PLASTIC FLOW PAST A GROWING ASYMMETRIC
CRACK AND ITS RELATION TO MACHINING MECHANICS

" TABLE OF SYMBOLS

hardening coefficient (eq. 9)
eq. 22
stream function
mean normal stress
. ﬁa ) displacement rates
. €5 7r'0 strain rates
8g. 8. ¢ stress deviators
equivalent strain
equivalent stress
rigid body velocity at lower flank
rigid body velocity at upper flank
lower boundary of deforming region (Fig. 2a) .
upper boundary of deforming region (Fig. 2a)
crack opening angle
strain.at upper boundar
‘‘slip angle’’ (eq. 49)
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ABSTRACT

A tensile logarithmic singularity in the mean normal stress is found for steady
flow of rigid-plastic, linearly strain-hardening material, with rigid material flowing
past straight flanks. For cracks, this indicates that the flanks of the crack tend to
deform. For the machining case it explains the tendency for precracking ahead of
the tool which contributes to a built-up edge, or the formation of a discontinuous

chip. Finally, an approximate analysis of the quasi-steady integral of the stationary

>

crack solution shows a tendency of the crack flanks to form a cusp. The strains for

a cusp field would be dominated by the elastic-plastic field which shows instead a
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vertical tangent at the crack tip.

INTRODUCTION

Fully plastic flow before fracture is desirable even in structures containing
cracks Such ductility is reduced if plastic flow is limited to one shear band, for
example, by a weld (Fig. 1). In such asymmetric mixed mode I and II configurations,
the crack accelerates as it advances into pre-strained and damaged material.
Further evidence for a lowered ductility in asymmetric cracking is the tendency to
form a shear lip at the end of a cup and cone fracture in a tensile test. Non-
hardening plasticity gives a shear band of infinitesimal thickness. Strain hardening,
however, causes the deformation field to fan out, leaving a finite strain except

possibly at the crack tip.

In orthogonal machining the geometry is similar, with the cutting tool
progressing steadily below the plastic zone. Here, again due to strain hardening,
Christopherson et al. [2] found that the plastic zone fans out over 10%-30°, as

opposed to the single plane required by the perfectly plastic solid.

STRESS SINGULARITY WITH RIGID FLANKS

Postulate a steady flow past a crack in rigid-plastic, linearly strain hardening
material. The mechanics of the problem should determine whether or not the crack
tip has a finite angle. Start by assuming a crack of finite angle w and rigid body
velocity of the material flowing along the flanks. To satisfy incompressibility assume
a stream function ¢ in polar coordinates r and 8. Seek the form of the stream

function in the immediate vicinity of the crack tip where the velocities should be

-------------------------------------
............

------
........
~ o .

......

.............



nonzero and finite. In a separable expansion of ¢ in the dominant term as r—0,

u r’F(6), the exponent s must be unity since the velocities at the tip are nonzero and

finite. Thus,

v =rF(0). (1)

The corresponding velocities are

\ 1o¢ F'(0) 2
O | = -=-— == ’
" rod (2)
: oy
Uyy=-—= -F(9) . (3)
or

oy, .

€ =—=0=-€ ’ 4
~ r ar- . o- ” ()

X du, 10u_ u F'(8) + F(9)

,,r0=_q+___r___0=_____. . (8)

rdé r r

Thus the only compbnent of strain is shear. The equivalent strain rate is

2. : Yeor2 F"(6) + F(6)
~—\/2|. 2 2 LAY
é \/3[6r + e +2 (2 ) A : (6)

The stress deviators s, are fourd from the stress-strain relations and the
equivalent stress 7 :

- = )
€. =—-—¢. 7
= " o eF

Since ¢, = ¢, = 0, from (4),
s,=s;=0and s, = /3. (8)
Assume the material is rigid-plastic, linearly strain hardening:

F=Y +Hr. (9)

....................................................
............................................
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b,

b, -
. .
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The accumulated equivalent strain €is calculated by integration along a streamline,

N N N W R R TN Ty T w T TR T "‘

where the time increment is expressed in terms of that required for an element to

traverse an increment of angle:

[ d i dé F+F dé

€= | fdt= [—rdf=- | ———db. 10)

00 u, \/§F ( R
Thus the equivalent strain is independent of radius. The same holds for the

equivalent stress o, by (9), and also for the shear stress, by (8),
S, = Sp4l0) - (11)

Now turn to the equilibrium equations. In terms of the mean normal stress o,

- ;+Z—:’-+;%f+ljﬁ=o. (12)
In'troducing (8) to eliminate s, sy, (11) to eliminate Js ,/dr, and cross-differentiation
\ to eliminate o leads to:
d2srg/d02 =0, from which ds_,/df = const. = Sr0.6 - (14) B
Now, (12) simplifies with (8), and can be integrated
do 1ds, _
; + ;- a-o— =0, o=-,,In(r/R)+ C(6). (15) -
To find C(6), differentiate (13) with respect to 6, and again note 0s,4/0r=0 from (11)
and s;=0 from (8). Equating the result to the second partial of (15) gives
&=-2f'—o=d2cw)-0(0)=-s 2+Co+C (16) :::‘:
86° 6 dé® rh.6 m
Define o(R,0) as the mean normal stress at /=0 and a convenient radius _
R.  Equation (15) then becomes:
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o{r,9) - o(R,0) = - s 4 ((In(r/R) + 6%) + C,0. (17)

Thus, the assumption of rigid flanks subtending a finite angle would require that the
mean normal stress at the crack tip (r—0) have a logarithmic singularity. Let us
now complete the study of the field specified by the stream function (1) by applying

the boundary conditions and deriving the streamlines.

Two possible flow fields are consistent with the constant rate of shear stress
from (14) and the hardening of the material (increase in equivalent stress ¢ from (8)
as it flows along the streamline). The first field, shown in Fig. 2a, is for S19.4>0.
From (17) this model gives a tensile logarithmic singularity in the mean normal
stress as r—0, and thus the field will be called “tensile’’. The second field, shown in
Fig. 2b, is for 5r0,9<0’ Here the singularity in the mean normal stress is compressive
and, accordingly, this field will be called “‘compressive”. A compressive singularity,
however, would require strains of order unity or more for fracture. Since such large
strains are not actually observed [1], th.e ‘““compressive” field is not plausible for the

growing crack.

Two other conceivable fields can be excluded. A single band being split by the
crack (Fig. 2c) would have shear stresses of the same sign, but increasing in
magnitude both above and below the line of advance due to increasing strains along
a streamline. This change in sign of Seg.6 would give tensile and compressive
singularities adjacent to each other, and a discontinuity in normal stress. If the
shear in a band being split by the crack were to change sign, on the other hand,
there would be an intermediate region below yield, and the band would separate into
two, corresponding to those of Figs. 2a,b. In the limit, the Mode I field would be

approached.

....................
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Thus only the “‘tensile” field of Fig. 2a remains. From (8) and (9) for positive

shearing,
g _ 2 d7_ 1 9 (18)
dé v3de V3 do
(18) and (14) give, with s , , = const.,
de s/ 1 d,
—_—= = . (19)
@ H V3 do
Differentiating (10) gives:
¢ F"+F
—_—=- . (20)
de V3F
Introducing (19) into (20) gives finally
F" +k’F =0, (21)
where
3s.,, . dy :
=14+ . (22)
dé
The solution of (21) is
F(0) = A coskf + B sink# . (23)

Referring to Fig. 2a we denote by V, V_ the (rigid body) velocities at the lower and

upper boundaries of the deforming region, which are at angles 0, and 0, respectively.
Then the boundary conditions are:

at the lower boundary,
ixl, = -Vosf,, and by (2), F'(0‘) = -Vlcosﬁl , (24)

u, = Vgind,, and by (3), F(8) = -Vsind,; (25)

&
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similarly, at the upper boundary,
“. F(8,) = -V cos(8, + w) ,
F(6,) = -V sin(d, + w) .

Solving (23)- (27) for w in terms of 6, 4, gives

w=tan'l[ ]-0u,
k(1 + Ptankﬂl)
where

_ k tanﬂl + tankou

T 1-k tand, tankd, ‘
Substituting back into the boundary conditions gives

Vu k sinﬂl cosf,koll + cosal sinkoll

V,  ksin(f,+w) coskf, + cos(6,+w) sinkf,

A (V,/V)sin(d,+w) sinkd, - sinkd sind,
\£} sink(0,-0))

’

B sinf coskd, - (V /V) sin(f,+w) coskd,

V,  sink(6,-0)

Assume now a critical strain 4, at the upper boundary. Then
d’yre/do = ’Yu/(ou-o[) ’

and

The streamlines for a particular example, and the equation for the rotation of

elements are given in the Appendix.

S Sast Shs S S Sast Sid el Segn st Jates ghat fhe Shss Jnst dani s
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(27)

(28)

(29)

(30)

(31)

(32)

(33)




According to Hill [7], the infinite mean normal stress by (17) cannot be
sustained at the rigid flank and this will lead to plastic yielding. For further insight,

turn to the approximate superposition of singularities for stationary cracks.

SUPERPOSITION OF STATIONARY SINGULARITIES

Shih {3] solved the mixed Mode I and II singular fields for the stationary crack
field, extending the Mode I field of Hutchinson [4], Rice and Rosengren [5] (HRR). In
terms of a stress-strain law of the form ¢ = " , for a far field defined by the path
independent integral J with Mode I mixity parameter MP and the scalar function
I /n(M"), the displacement and strain components at r,0 for the fully plastic

parameters of interest here are (see e.g. McClintock [5]):

J 1/(n+1)
{r,0) = | ———— (6, 1/u, MP) | 35
(r) 'Ll "o 7" o0, 170,10 )
J 1/(n+1) '
(00) = |——— (8, 1/n, MP) .
e Ll o 7 o, 1/m, M) @)

Superposition does not strictly apply to (35) for two reasons: it does not take the
convection of hardened material into account and it is a non-linear relation between
displacement and J.  Qualitative insights may be obtained, however, by assuming,

following (35), that the displacement increments vary with radius according to

U ro/(o+1) (37)
and that, correspondingly, the strain rates vary as

: -1/(n+1

S [lo+1) (38)

For the non-hardening material, n=0, (37) correctly indicates displacement rates
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independent of radius, which for a growing crack, integrates to displacements
w increasing linearly away from the tip. For a power law material the displacement
rate increases as a fractional root of the distance away from the tip, and its integral

gives displacements of the order

. u, = /ilgdr o rito/a+l) (39)

which indicates a cusp.

Correspondingly, integration of the strain rates from (38) with respect to the

distance as the material sweeps by the tip of the crack gives strains varying as
€ oc ro/(n+1) (40)

Thus, due to convection, the strains increase continuously behind the crack tip,

. whereas the stationary Shih solution gave strains that decrease. That is, at any
instant duriné the integration, the material behind tﬁe crack is actuaily harder than
assmhed for the displacement and strain rates of (37) and (38). Therefore, the above

. superposition exaggerates any cusp. Furthermore, the nonhardening solution with
flank yielding, for bending and tensile doubly grooved specimens gives linear
displacement increments which, when integrated, would show an increasing crack
opening angle near the crack tip [6]. For example, the normal component of the
displacement field at the flank for the doubly grooved specimens and the resulting

from integration flank shape is shown in Fig. 3.

For further insight, the relative dominance of the field for a cusp will be
considered. Rigid-plastic flow past a cusp-like crack would not exhibit singularities
','7.; in the strain but, instead, in higher order terms like strain rates, as follows. For no

crack tip opening angle, the displacement rates are of the form:

.....
.
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u, = O(r™) + rigid body motion . (41)

The stream function can thus be regarded as being a superposition of steady state

rigid body translation of the material past the crack tip and a strain rate singularity:
¢ = r™IF(6) - crsind . (42)

Then the velocities are:

. 19¢ :
u, =-— =r1"F(6) - ¢ cosf, (43)
Y ror
, oy m -
u, = - 8_ = - (m+1)r™F(6) + ¢ sinfd . (44)
r

Differentiating the displacement rates would give strain rates, and hence the
equivalent strain rate, of the order O(r™!). The accumulated equivalent strain is
found by integrating along a streamline, with the time interval to traverse a given

angular increment along a streamline expressed in terms of the tangential velocity:

€= [—rdo . (45)
Y]

For small r, ilo is of order r® from (44) while € is of order r™! and so the integrand in

(45) is of order r™. Thus
6=0(r"), (46)

and vanishes for small r (unless m=0, which turns out to be the nonhardening case)
and the strains are nonsingular. Notice that no stress-strain relationship has been
used yet, which means that for any rigid-plastic law the strains are nounsingular for a
zero crack opening angle. This field would thus be dominated by any field that
exhibits any nonzero crack opening angle. For example the elastic-perfectly plastic

field shows logarithmic singularities in the strains but dé/dr is unbounded as r—0,
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giving a vertical tangent at the crack tip [10]. The strains for that field are of the

order:
AP = O[ln(R/r)] + O(r%) .

which goes to infinity for r—0, thus dominates the local strain. The large-scale view
of a fracture, however, may look like a cusp and since the strains for the cusp field

are O(r™), increasing with r, they may become larger at a sufficiently distant point.

The tendency shown above for flank yielding with any finite opening angle
leads to the need for an exact solution of the growing crack, where its shape is
unknown and the flank, a part of the deforming boundary, is traction-free. Finally,
connecting the steady-state continuum mechanics solution to the micromechanics of

hole growth would require a transition to non-steady analysis.

_DISCUSSION

In machining, a shear band with an undetermined rigid-plastic boundary breaks
through to a free surface. The problem is similar to mixed mode crack growth,
except that the deformation is larger. Christopherson et al [2] tried to assess the
effect of work hardening in the mechanics of orthogonal machining. By modifying
the slip line equations and estimating roughly the magnitude of the added term, they
pointed out that, due to hardening, the hydrostatic stress changes from compressive
at the free surface to tensile near the tool point. What they found was essentially
the qualitative effect of the logarithmic singularity derived above for fully plastic
flow. In fact, we can also deduce that, for a certain change in the flow strength
between the chip and the parent material, if the deforming region is narrower, the

angular change of the shear stress (i.e. Se9 9 in (14)) is bigger and, consequently, the

W r—" A A d el ea i bt oo o adh saiase i -4 dec alhons e




singularity stronger, in accordance with their observation that the work-hardening

effect becomes more pronounced as the plastic zone gets narrower.

It is worth considering now the region of dominance of the logarithmic
singularity in mean normal stress that would characterize the flow past rigid flanks.
Using typical data do/de = H = Y for 1020 steel and de/dd == 0.8 , gives from (8)

do de de
sr9'9=ﬁ—:—=\/3-Hd—owl.38Y. (47)

From the fully plastic flow field of Prandtl for tension of grooved plane strain
specimens (see e.g. McClintock [8]) 0 =~ 2.8Y and assuming that R is the radius at
which o(r,0) changes sign, gives from (17), r/R &= 0.1. The distance R is within the
macroscopic scale as is evident from the approximate study for machining field done
by Christopherson et al. [9]. According to their slip line theory modified to include
hardening the change in the mean normal stress Ao from the free surface to a point

in the band is roughly estimated in terms of the flow strengths in work-piece and

chip, Y, and Y, the distance s from the free surface, and the local width t of the

slipband:
Ao~ (Y-Y,) s/tV/3 . (48)

In machining mild steel, Y_ may be 40% more than Y, so Y -Y  ~ 0.4k. Since at

M %a

the free surface 0 =~ -Y/ V'3, the mean normal stress becomes positive at about
s/t =3, which for 10° angular width happens at a radius R approximately 1/3 the
total shear band length. Thus the singularity in the mean normal stress dominates

in a significant region.

N
A

Now that tension has been shown to exist near the tool point, it is possible j
that brittle (or ductile) fracture may occur at a particular history of stress and this
3

Lot
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could give rise to the characteristic fracture running ahead of the tool point and the
formation of a built-up edge or a discontinuous chip [9]. In particular, according to
the “tensile” field, the maximum strain occurs at the boundary with the chip (upper
boundary of the shear band), where cracking could occur. It should be noted,

however, that nonsteady effects have not been considered.

CONCLUSIONS

A logarithmic tensile singularity in the mean normal stress has been found for
rigid-plastic flow past a growing crack of finite angle with rigid flanks under
combined shear and tension. Applied to the machining problem, this result helps to

explain the formation of a discontinuous chip or the precracking ahead of the tool.

The tensile singularity predicts yielding of the crack flanks. Approximate
solutions for flank yielding give contradictory indic:';tions. 'A tendency to form a
cusp has been found from an order-of-magnitude analysis on the ciuasi-steady
integral of the extended near tip HRR singular field. That result indicates
decreasing strain behind the crack tip and hence overestimates any cusp. From non-
hardening solutions with flank yielding for bending and tension of doubly grooved
specimens there is an increasing crack opening angle near the tip. Furthermore, the
strains for any cusp would be dominated by the elastic-plastic singularity which
gives a blunt tip. Thus there is a need for an exact solution of a crack growing with

deforming flanks into strain-hardening material.
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APPENDIX

T Taking an example from machining (Fig. 4) for v, = 1.3, §, = 40°, 0, = 50° -

we find by using equations (28) - (34):

! AR
DA N

w=159% V [V, =073, dv,,/d0 = 7.44 %

“ 1

.
L.

and, for € in radians,

(LTS

's

# . .:‘ .

......................................................
~~~~~

«te T et c et eT kT mT . T e N e s T e -

.......

: e T e T : e Tt e e e T e T et S e e T T
O e oy S S L NSk s Dy s e Y e RO RO RN




L A AP T i~

141
F(6)/V, = 0.59 cos(2.90) - 0.459 sin(2.96) .

A streamline, resulting from (1) for this particular example, has been sketched in Fig.

4. The velocity triangle shown in Fig. 2a defines a “slip” angle §_:

) (V,/V )sinw
[(V,/V)? + 1-2(V /V )eosw]!/? |

For this particular example §, = 45.060.

8, = sin” (49)

A second example of a growing crack with Yy = 025, 0, = 300, 0, = 40°, gives
— 0 — 0 —_ —
w=15%6 =352° V /V, =088 dy,/df = 1.43

and
F(8)/V, = 0.0623 cos(1.550) - 0.744 sin(1.550) .

Finally, the rotation of the material element relative to that of the stress field is
important in hole growth and thus is worth considering. The rotation of the element

-is

1/0u, u, 1du
. 9 [} r
¢ —_(_+__..__.)_ 50
m 2 \Jr r roé (50

and from (2) and (3)
y 1 "
¢ =-—(F +F". (51)
2r
while that of the stress field is
.¢r == (52)
giving a relative rotation

, 1
Prel = o (F-F"). (53)

For F(0) given by (23) and since k>1 by (22), it is found that rotation and shear




strain (given by (5)) are of different sign. The effect is to open up the holes and thus

to increase the damage.
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Fig. 1. i
g. 1. Symmetric and asymmetric shear from cracks in a plate




........

N R

- ,l’

vu Deforming

Rigid

v

q ——
/ “"‘.
/ %‘ _—

TooL

Fig. 2a. The flow field for tension in the band. The
machining case is illustrated; otherwise w
ig the crack opening angle.

v
_________




T ————~tevr

145

‘pueq eyy ut uorssaxdwodo Jo03 P1ety 8ul qz*'FtJ

% O

SO

WL RSN e

. PV
SR AN
e A

L+l
L

»? 0’ a . -’
. AN
AL PN POy

'y

Tl A TG
PR NI IR AL AT N

M S )
“e .

¥

e -
ACIE e el

., .' '.-
PRI O

TS SN




S )

-

TEIYE W

-

-

YTV WY T

[
" Qe @ SsSoade

§s311s UT A1TnuTjuOOSTP Ui Tm praty

A g0 Joa

T

RS

S i S

N

pib1y

L

.- — \

;

3 -
3 -

: =" PN

; ~ -7

: <g\ - Yz

) \

M buiwaioyaqg
pib1y

0231y

3030




.o —p——y ——y L arel ands ot e oot addsnh et et t s i atel R
i e Sre arae -V AL N A I SR A :

147

4- )
A
l. L

47N
»
2 a’ s

-
~

Fig. 3. Flank normal displacement increments and integrated N
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CHAPTER SEVEN

THE ASYMMETRIC (MIXED MODE [ AND Ii)
FULLY PLASTIC FRACTURE - OVERVIEW

TABLE OF SYMBOLS

crack opening angle

crack ductility (eq. 1)

apparent crack ductility (upper flank)

apparent crack ductility (lower flank)

modulus of elasticity

amount of fracture in shear band model

J-integral

shear yield

initial ligament

projected lower flank length

projected upper flank length

mixity parameter (eq. 4)

strain hardening exponent

load ) .
amount of slip along lower plane in shear band model
amount of slip along upper plane in shear band model
tensile strength

tearing modulus

eq. 2

eq. 2

idealized initiation displacement

initiation displacement

growth displacement

total displacement vector

growth displacement vector

mean inclusion spacing

angle of total displacement vector from transverse
fracture strain

crack direction from transverse.

fracture plane

upper and lower slip plane

fracture parameter (=f/s )

shearing parameter (=s/su) E
upper and lower flank angle from transverse




8 upper back angle

SUMMARY

In symmetric singly grooved tensile specimens the crack advances into the
relatively undamaged region between two plastic shear zones. A crack near a weld
or shoulder, loaded into the plastic range, may have only a single shear band, along
which the crack grows into prestrained and damaged material with less ductility
than the symmetrical unconstrained configurations. In this chapter, work that deals
with the effect of asymmetry in crack propagation of unconstrained fully plastic
singly grooved tensile specimens is summarized. A crack growth ductility is defined
as the minimum displacement per unit crack growth. Tests of six alloys showed
that, for the low-hardening alloys, the crack ductility in the asymmetric case is less
than a third that of the symmetric. In the higher hardening alloys the crack
ductility in the asymmetric case is smaller by a factor of 1.2 at most. A noteworthy
result is the presence of a Mode I opening component even with as'ymmet.ry, as is
skown by the far field displacement vector being more than 45° from the transverse
direction. The crack direction is less than 45°, indicating the effect of triaxiality on
cracking. A macro-mechanical model for crack advance by combined fracture and
sliding off along two slip planes gives the independent physical parameters (cracking
and two shear directions, relative amounts of cracking and shearing) in terms of the
observable quantities of the macroscopic fracture {flank angles, flank lengths, back
angle) for both the symmetric and asymmetric specimens. A finite element study of
the asymmetric specimens gave a crack direction within two degrees and a far field
displacement vector at initiation within three degrees of that experimentally found.

Stress and strain fields indicate the presence of a Mode I component. Early growth.

studied by successive removal of the most damaged element, resulted in crack
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growth rate for the lower hardening case about twice that of the higher hardening

one.

INTRODUCTION

In symmetric singly grooved tensile specimens the crack advances into the
relatively undamaged region between two symmetric shear zones. In the fully plastic
case these zones narrow into bands that traverse the section. An asymmetry,
introduced through a weld fillet or a harder, heat-affected zone or a shoulder on one
side of the crack (Fig. 1) suppresses one of the two shear bands that would appear in
a symmetrical specimen. In that case the crack advances asymmetrically, along the
remaining active slip band into previously damaged material. Thus one might expect
that the ductility would be less than that of pure Mode I unconstrained symmetric

case.

Near the tip of the grow;ving crack, strain hardening will cause the deformation
field to fan out. For power law creep or deformation theory plasticity and a
stationary crack, the asymptotic stress and strain distribution may be found from
the extended by Shih's [1] HRR [2,3] fields for the general mixed mode case. Notice,
however, that such a superposition of stationary singularities does not take into
account the hardening of the material left behind the growing crack. Indeed, the
stress and strain fields near the tips of growing cracks in ductile materials are known
to differ from the stress and strain state around stationary cracks in the same
materials as is shown from asymptotic solutions [4,5,6,7], supplemented through
finite element calculations [8,9]. Thus, more accurately, a solution for the

distribution of strain increments of a growing mixed mode crack should be used:

however such a solution is not yet available.

toa
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A test with pure shear (Mode II) loading was carried out by Chant et al. [10] of
high hardening carbon manganese steel (B.S. 1501-151-430A, Y.S.=329 MN/mQ, T.S.
= 490 MN/m?). Small specimens were subjected to both Mode II and Mode I
testing but the ductility, measured by dJ/da, was practically the same although the

microscopic features for the pure shear specimens are different than those observed

‘ in the Mode I specimens.
i Representing ductile crack propagation has been in general based on the
- introduction of d(COD)/da [11,12,13] and the tearing modulus T or dJ/da [14,15]

concepts. Such single-parameter measures are incomplete since the triaxiality and
the local distribution of strain are affected by the geometry and mode of loading.
The triaxiality and strain distribution in turn strongly affect the cleavage and hole

growth mechanisms of crack growth.

The objective of the current chapter is to summarize the important findings of
the experirﬁental, analytical, and numerical work that deals with the effect of an
asymmetry in crack propagation of unconstrained fully plastic singly grooved tensile
configurations. First, approximate solutions based on the superposition of stationary
éingularities are presented. Next, test results on symmetric and asymmetric
specimens of six alloys are summarized, along with a method for quantifying and

representing the ductility. In addition, a macro-mechanical model of crack growth

by combined fracture on one plane and sliding off along two others, describes, for
this idealization of the physical mechanisms, the ductile crack growth for both the
asymmetric and symmetric specimens. To account for the effect of the finite width

of the shear band and study the stress and strain fields at initiation, a finite element

Vo
. -

investigation of the asymmetric specimens is performed. Early growth is also studied i

by successive removal of the critical elements. o
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INTEGRATED STATIONARY SOLUTIONS

¢ |

1. Pure Mode II approximation.

N
L

A formulation for the accumulation of damage directly ahead of an asymmetric

RS

crack, based on strain increments adapted from Shih’s (1] analysis was developed
[16]. Strain increments, following a power law relation were integrated both
numerically and quasi-steadily. The crack was assumed to follow the center of a 45°
shear band of infinitesimal width with the far field displacement, u, being parallel to

the shear band (Fig. 2a). The critical fracture strain is determined from the fracture

[ criterion by McClintock, Kaplan and Berg [17].

The predicted displacement to erack initiation is found u, = O(p), of the order
. of mean incusion spacing p. The crack growth per unit displacement was predicted
de/du = O In(c/p) |, i.e. to increase approximately as the logarithm of the total
crack advance per inclusion spacing p. The growth rate was found to be practically
. unaffected by strain hardening. The increasing crack growth rate, associated with
the strain distribution flattening out in front of the crack at a decreasing rate that

does not reach a steady state, leads to size effects in crack growth.

- 2. Directional effects.

Due to the higher triaxiality on one side, there is a tendency for fracture in
- that direction. Thus the previous pure Mode Il work was extended to include sites
= at several angles ahead of the crack. Far field displacement is again assumed to take
place parallel to the shear band (Fig. 2b). Strain increments are approximated from

r the mixed mode, power-law elastic solution for a stationary crack {I] and used with

the fracture criterion for hole growth in shear bands [17] to predict the critical




direction. The crack is assumed to advance to advance in the direction that requires

the minimum far field displacement to reach critical damage.

At initiation, several sites around the tip are considered. The strain and hence
the required displacement for damage of unity is found. The critical direction is that
which minimizes the required displacement. In growth, the accumulated damage due
to initiation and prior growth is found and then the required increment in damage

and hence far field displacement is determined.

For a shear band at 459 the crack progresses at an angle of 219-300 from the
transverse, depending on the strain hardening, indicating the effect of higher
triaxiality. The crack growth rate is about 6-15% higher than with growth along the
shear band. Lower strain-hardening results in the final crack orientation being closer

to the 459 shear band and the higher crack growth rate.

EXPERIMENTAL STUDY

Tests were performed on fatigue precracked asymmetric (Fig. 3) and symimetric
(Fig. 4) specimens of six alloys: 1018 cold finished, 1018 normalized, A36 hot rolled,
HYS80, HY100 steel, 5086-H111 aluminum. The low-hardening alloys are the 1018
CF, HY80, HY 100 steel (n~0.10) and the high-hardening alloys are the A36 HR and
1018 normalized steel (n=<0.23). In addition to the load-displacement data, the
topographies of the fracture surfaces were plotted using a metallurgical microscope
with a travelling stage. A schematic of the fracture surface profile is shown in Fig. 6.
These profiles allow determining the growth displacement vector \7;, the total

displacement ¥}, and hence the initiation displacement vi =\7’1-V’, as well as the

geometry of the fracture (flank angles, flank lengths, crack orientation).
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1. Quantifying crack initiation and growth.

Initiation. As a convenient measure of crack initiation displacement from the
load-displacement curves, define the ‘‘idealized initiation displacement’, uil/l0 as the

normalized extension between initial elastic loading and steepest unloading lines at

maximum load (Fig. 5). The normalized form is used in the plots for convenience in

correlating crack growth; multiplied by {; it becomes analogous to the more familiar

COD. The tests gave:

I I
(w7 ) asy = (u;/h)sy (1)
b‘ and
I I :
(v To)nigh o == (2-9(9 /)i n - (2)
i The axial component of the initiation displacement, as imeasured from the profiles of

the fracture surfaces, “i/.lo’ has the same .behavior as the ﬁreviqusly defined

™~ ‘“‘idealized initiation displacement”, uil/lo, i.e., “i/l() is not different between

N asymmetric and symmetric cases. In addition, for the high hardening alloys it is
about two to four times that of the low hardening ones for both geometries. A
noteworthy observation is the fair amount of blunting occuring in both geometries

(more blunting with higher n). An approximate relation can also be observed:

(ul78) = (15-2.2)(u/l) . (3)

In short, initiation displacement is almost the same same in both asymmetric and
symmetric cases; strain hardening affects initiation in both symmetric and

asymmetric specimens.

Growth

...............
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(1) For a measure of crack growth resistance, define the crack ductility, Dg, as
the minimum displacement, du_, per unit ligament reduction d/. The displacement
du, is associated with the crack opening stretch and consists of the gauge
displacement, du, and the elastic unloading du  , (Fig. 5). The ligament reduction,
dl, is approximated from the relative load drop, di~(dP/P__ )i Notice that
thinning of the ligament from the far side in fully plastic flow makes the reduction in
ligament rather than crack advance the appropriate measure of load drop. Thus

du_ /! du
D, = (_c_Q_) ~ (_s) , )
dP/Pmax min dl min

The crack ductility Dg is analogous to d(COD)/da and is related to the crack

opening angle (COA):
D, =~ COA/cos’,, (5)

where 0_ is the crack orientation. It is also the normalized maximum axial

compliance allowed for stability:
compliance allowed < Dglo/Pmax . (6)

Tests showed that the crack ductility of the asymmetric specimens vs. that of the
symmetric ones is primarily affected by strain hardening. For example,
(Dg)SY/(Dg)ASY = 3.37 HY-100 steel (n=0.10)

= 1.06 A36 HR steel (n=0.24)
In short, substantial reduction in crack growth duectility with asymmetry occurs in
low hardening alloys. High hardening alloys are almost as ductile in the asymmetric

configuration as in the symmetric one.

(i1) Other possible measures of growth are related to Dg. A parameter, T,

analogous to tearing modulus, T=(E/a’02)(d.l/da), can be defined. By approximating




.....................
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i J by the non-hardening limit (18],
ﬁ 1, ey=(T:S./V3uV?, Joy=2(T.S./\V/3)u , (7)
t we can define T~ in terms of Ds’ the tensile strength, T.S., and the modulus of
) elasticity, E:
* ]
T" xsy=D,(E/V3)/TS,, T"5y=D,(2E/\/3)/TSs. (8)
Tests gave:
. * »
» (T Asyhigh o/ (T aAsvhown >3
. * —_ T
= (T syhigh n = (T syhiow n
In conclusion, strain hardening does not affect the ductility of symmetric specimens;
it does affect the ductility of asymmetric specimens.
‘ (iii) The growth displacement as measured from the profiles of the fracture
e : surfaces, “g/lov has the same behavior as the crack ductility Dg: for the low
" hardening alloys it is smaller in the asymmetric configuration than the symmetric by
. a factor of more than three whereas in the high hardening alloys it is reduced by a
factor of 1.2 at most.
(iv) The displacement vector in the asymmetric specimens is more axial than

45%, suggesting a Mode I component. The angle from transverse, ¢, is between 51°

for the 1018 CF steel and 63° for the 1018 normalized steel.

(v) The crack direction in the asymmetric specimens is less than 459, indicating
the effect of triaxiality. The angle 4, is 38241 from transverse, larger values for the

lower hardening alloys.
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In conclusion, the experiments showed that while the crack initiation
displacements are similar, the growth displacement for the low hardening alloys in
the asymmetric case is much less than that of the symmetric. Triaxiality on one side
of the asymmetric crack diverts it from 159 to 38%-41% while the far field
displacement vector is more axial than 459, at 519-63°, suggesting a Mode I

component, even with asymmetry.

Table 1 compares the experimental findings with the predictions of the
integrated stationary crack field solutions. The initiation displacement is an order of
magnitude larger than the theoretical one, apparently due to blunting. The
incremental models cannot account for the big effect of strain hardening in crack
growth; notice that these models are based on a superposition of stationary
singularities and thus do not take the convection of hardened material into account.
The size effects in fully piastic crack growth that are predicted from the incremental
pure Mode II analysis -are associated with the transient behavior (increasing crack

growth per unit displacement).

Finally, fractographic observations show as noteworthy features in the
asymmetric specimens the ‘‘shear type” fracture, more evident in the lower
hardening alloys and a larger amount of sliding off in the lower flank. The
symmetric specimens, with the larger ductility, show in turn the *‘normal type"

fracture with more equiaxed voids than the corresponding asymmetric specimens.

SHEAR BAND CHARACTERIZATION OF CRACK GROWTH

To provide a physical basis for interpreting the test data, a macro-mechanical

model for crack advance by sliding off and fracture was developed. The model
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assumes in the general mixed mode case sliding off along two slip planes and fracture
. on a third and gives the independent parameters (shear and cracking directions,
relative amounts of cracking and shearing) in terms of the observable quantities of

the macroscopic fracture (flank angles, flank lengths, back angle).

To describe the development of deformation, assume cycles of sliding off on an
upper slip plane at 6 through a distance s, then on a lower at f,, through s, and
finally fracture at 6 over a distance f (Fig. 7). The limiting Mode I case with two
symmetric slip planes corresponds to 6  =-0_, 0f=0°, $,=S$; and the limiting Mode«

II single slip plane case corresponds to s=0. Thus there are 5 independent physical

w variables: the slip and fracture angles, 0, 95 Op the cracking ratio \=t'/su and the
shearing ratio é=s,/s . Observable quantities that allow solving for the physical
variables are the flank angles, 8, 0, the flank lengths normalized with the initial
ligame.nt, L, /% /Y, and the back angle, B, defined as the angle the deformed upper
back surface makes to the load axis. Closed-form expressions are given in chapter

four.

Examples (HY-100 and 1018 normalized steel) are shown in Table 2.
For the asymmetric specimens the shearing ratio £ is found to be about 0.5
indicating shearing in lower flank twice that in upper flank. SEM fractographs have
confirmed that the lower flank shows indeed more ‘“‘shear type” fracture than the
upper one. The slip angle difference 0.0, is a measure of the spreading out of
deformation and is found to be in the high hardening alloys 1069 a5 opposed to 10-2°
for the low hardening ones. The cracking ratio x is a measure of the relative amount
of fracture and sliding off on the upper surface and allows comparing with the
“apparent crack ductility”, D, -, as observed fractographically and defined as the

sliding off to total area including fracture. Thus,
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In upper flank D, = s)/(T+s) = 1/(x/€+1) . (9)
In lower flank D, ;= s,/(f+s,) = 1/(x+1) . (10)

A comparison with values observed from SEM fractographs (Table 3), shows that the
values from the fractographs are bigger by about a factor of two. Considering the
idealization of the complex hole-crack tip interaction and the difficulty in measuring
D, {from the extent of void growth) in the fractographs, the agreement is
encouraging, giving the right trend (low hardening alloys less ductile in the
asymmetric configuration than the symmetric but high hardening alloys almost

equally ductile in both geometries).

FINITE ELEMENT STUDY OF THE ASYMMETRIC SPECIMENS

For further insight, a finite element study of the asymmetric specimens is
performed. This work is needed to relax the assumption of the far field displacement
being parallel to shear band (as was presumed in the superposition of stationary
singularities), to account for the finite width of the shear band and to allow
describing the Mode I component at initiation. In this finite element work (mesh is
shown in Fig. 8) blunting was neglected. Besides initiation, carly growth was studied
by successive removal of elements reaching unit damage. To describe the Mode |

component, use the Mode I mixity parameter MP based on stresses [1].

oot =0 )
MP =~ tan"Wlim & crack’| (11)

U =0 arﬂ(r'0=0crack)

Results, compared with the superposition of stationary singularities and test
data are shown in Table 4. Notice the presence of a large Mode I component with

the far field displacement vector not along the 459 shear band but at an angle about

68? from the transverse. In addition stress and strain fields are found consistent

[

.n
)
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with the solutions for the mixed mode extended HRR fields. Displacement to crack
initiation is of the order of the fracture process zone size. The critical direction is
predicted at an angle of 39%-43% from the transverse, increasing for a lower strain
hardening exponent. Finite element study of early growth resulted in extension rate

for the lower hardening case about half that of the higher hardening one.

CONCLUSIONS

1) Low hardening asymmetric specimens are substantially less ductile than the
symmetric ones. For the crack ductility, Dg, defined as the minimum displacement

per ligament reduction,

(Dg)SY/(Dg)ASY > 3 for lower hardening alloys

< 1.2 for higher hardening alloys

| .Thus, there is a significant effect of strain hardening in mixed Mode I and II fully

plastic crack growth.

2) The initiation displacement is insensitive to geometry; however it depends
on strain hardening. Blunting of the order of 10p or 0.1mm occurs in both
geometries.

3) The displacement vector is more axial than 459, at 519-63° from transverse,
suggesting a Mode I component even with asymmetry (where nonhardening solutions
give pure shear).

4) The crack direction is less axial than 450, at 38%-41° from transverse {closer
to 452 with less hardening); this indicates the effect of triaxiality.

5) A superposition of stationary singularities gives practically no effect of
strain hardening; it overestimates the ductility of low hardening asymmetric

specimens.
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6) Finite element study of the asymmetric specimens, neglecting blunting,
predicts at initiation a critical direction at about 40°, a far field displacement at
about 68, gives HRR consistent stress and strain fields and describes the Mode I
component.

7) Early growth, studied by successive removal of critical elements shows an
effect of strain hardening; the crack growth rate for n=0.12 was twice that of
n=0.24.

8) A shear band model by fracture and sliding off on two planes describes

mixed mode crack growth; provides a physical basis of interpreting results.

SIGNIFICANCE AND RECOMMENDATIONS

Although much work has been done in the elastic and elastic-plastic fracture
mechanics, less is known for fracture under fully plastic conditions. In structures,
full}' plastic flow before fracture is desirable since large deformations help detect |
impending fracture as well as help stabilize it by load éhift-ing. Most fracture tests
use symmetric specimens (e.g. bend, compact tensile specimens). An asymmetric
configuration, however, may arise due to a weld fillet or a harder, heat-affected zone
or a shoulder on one side of the crack. The effect of asymmetry on unconstrained
tensile specimens has been quantified and analyzed for several alloys. Results
reported here show that asymmetric (mixed mode [ and II) fully plastic
configurations in low hardening alloys may be less ductile than the corresponding
symmetric singly grooved tensile specimens by more than a factor of 3, increasing
the stiffness requirements for fracture-stable design. In addition a standard way of
representing tests and comparing the two geometries is suggested. In the fully

plastic state, since geometry and mode of loading can affect the triaxiality and the

local strain fields, the crack growth ductility will not be a single parameter but a set,

S <

~ .
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each referring to a certain configuration and triaxiality.

Further work should include studying the effect of triaxiality by performing

:',:: constrained asymmetric tests. For example, tensile testing on doubly-grooved
specimens with the asymmetry introduced through varying notch angles and
v positions; or laterally constrained singly-grooved tensile tests. Fully plastic fracture
under high triaxiality could be studied by wedge-splitting of a doubly grooved
= specimen. Another extension could involve testing part-through cracks in plates
with asymmetric shoulders.
tf On the analytical side, there is a need for an asymptotic solution of mixed
mode growing cracks, coupled with finite element solutions that connect far-field and
near-fleld parameters; and possibly finding a rigid-plastic singularity for a growing
' crack with deforming flanks.
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TABLE 1
i Asymmetric fully plastic cracks
Approximate Superposition Tests
R Mode 11 soln. of Shih soln.
- ,
Initiation displacement:
u;=(0.8-0.6)p u,;=(0.6-0.4)p u,=(8-39)p
due to blunting
Crack direction:
40 070 200 g0 410
f,=45 f,=21"-30 §,=38"-41
(assumed) 0cT with n} 8,1 with n}
Growth Ductility (Dg=du WLUE
0.190-0.200 0.180-0.170 . 0.215-0.072
- no effect of n little effect of n strong effect of n

Size effects in fully plastic growth:

1.5in. dia. specimens vs. 0.5in. dia. specimens:

(Dg)O.Sin/(Dg)l.Sin=1'20 (Dg)0.5in/(Dg)1.5in=1'04
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TABLE 2
Deformation of singly-grooved
asymmetric and symmetric specimens

Alloy: HY-100 1018 normalized
n=0.10 =(.24
Observations Asy Sy Asy Sy
Length ratio, lu/l0 0.820 0.780 0.750 0.740
Length ratio, 4/l, 0.900 0.780 0.870 0.740
Flank angle, 94 399 -140 369 -129
Flank angle, 6 410 149 420 129
Back angle, 8 _14°‘ (139) 1 (169)

Corresponding slip and fracture parameters

Slip angle, osl
Slip angle, fu
Cracking angle, 0f

Shearing ratio, £

Cracking ratio, x

530 .41 520 310
540 11° 580 310
370 0? 319 00
0.536 1.00 0.445 1.00
2.912 1.907 1.518 1579

‘-'T




»s

HY100 steel
Asy Dac)
DAC,u
Sy Dac)
DAC U

1018 normalized steel

Asy Dac,
Dac,u
Sy Dac)
DAC,u
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TABLE 3

Apparent crack ductility

Shear band

model

0.26
0.16

0.34
0.34

0.40
0.23

0.39
0.39

fractographs

0.68
0.52

0.67
0.67

e e s Bt
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3
{: TABLE 4
o Comparing with the finite element results.
R Finite Element Superposition Tests
3‘_ (blunting of Shih soln.
s neglected)
Initiation displacement:
u;=(0.5-0.6)p u,;=(0.6-0.4)p ui=(8-39)p
due to blunting
Mode I component at initiation, MP:
relative to initial crack direction
~ 0.93 =~ 0.50
relative to final crack direction
T =~ 0.71 : =~ 0.25
D
.‘-: Displacement vector at initiation:
_ $=~680 ¢=450 #~690-580
: (assumed)
Crack direction:
6,=39"-43° 6,=210-30° 6,=38"-41°
6.f with n| ' 6,1 with n} 6, with o] -3
~
“ Gauge extension rate =
0.158-0.075 (0.180-0.170) . (0.153-0.060) . '
:' (Early growth) 3
- strong effect of n little effect of n strong effect of n .,
N 3
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APPENDIX A - Experimental Techniques

In this section the experimental techniques used (tensile testing and
extensometer connections, microscopic surface topography mapping, fatigue-

precracking) are described.

1. TENSILE TESTS WITH MTS, 50 METRIC TON MACHINE

Preliminary
Set Console Power switch On (Master Control Panel 413).

Set Hydraulic Pump switch in Room 1-014 ON.

Check that Feedback Selector (Model 440-32 behind the 442 Controller Panel) is in
LOCAL.

Set switch in PDP-11 behind the panel under the disk drives to OUTPUT.

410 - Digital Function Generator

Set to LOCAL (to start by pressing START - if set to REMOTE then you must
start from RUN in 413).

Select rates of loading and unloading, e.g.

For 20 mm stroke range,

Rate 1 = 2.4E3 sec. means 2400 secs for 20 mm loading

Rate 2 = 2.4E2 sec. means 240 secs for 20 mm unloading

For 50 mm stroke range, same rates of loading and unloading require

Rate 1 = 6E3 sec.,

Rate 2 = 6E2 sec.

PRESS RAMP, DUAL SLOPE for monotonic loading and unloading.
Set BREAKPOINT to NORMAL and BRKPNT PERCENT to 100.




442 - Ccatroller

Press STROKE (for stroke control).

Set STROKE range as desired (e.g. £20 mm) by turning the RANGE knob behind
the panel.

Set LOAD Range e.g. to 10K by turning the RANGE knob on stroke module behind 73
the panel; 10K means 10V output correspond to 10,000 kgf=22,000 b -
Set SPAN 1 to 100%

Zero load indication (see digital indicator channel 1 in 430 panel) before inserting

specimen by turning the ZERO knob oa Load module (Model 440.21) behind the 442

panel. :

Press RETURN TO ZERO (in 410) to zero out any pre-existing function generator

signal.

Set METER at DC ERROR. Zero out error by turning SET POINT right if pointer .
is right; left if pointer is left. If whole range is not enough, use ZERO knob on

stroke module behind 442 panel.

Press INTERLOCK RESET.

413 - Master Control Panel
Press RESET.

Press HYDRAULIC PRESSURE LOW, then HIGH.

Put SET POINT in 442 to 5.0 - Ram will move. (Digital indicator channel 3 should
read 0.0). To further move the ram use ZERO knob on stroke module (Model
440.21) behind 442 (Controller) panel.

Notes: 1. Ram moves DOWN when turning SET POINT right,

2. to increase stiffness move ram up.

.,
[T

As you tighten the locknuts use SET POINT to relieve any compression: watch

digital indicator channel 1 for load (channel 3 is stroke).
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Press START in 410.

End of Test

= TO STOP: Press HYDRAUILIC PRESSURE LOW then HYD OFF on 413
To LEAVE: Set Hydraulic Pump switch in Room 1-014 OFF,

Set Console Power OFF on 413.

Intermediate Manual Unloading and Reloading

A To UNLOAD: Press HOLD in 410 (holds the test), then turn SET POINT in 442 left

to unload.

i;-t TO RELOAD: Turn SET POINT right.
To CONTINUE with preset rate: Press HOLD once more.

: Moving Crosshead
) . ’ Press HYDRAULIC LOW, then HIGH on 413.
Set switch behind the MTS to UNLOCK.

Move crosshead by turning the UP or DOWN handle as you wish.
Set switch behind the MTS to LOCK.
Press RESET on 413.

o~ MTS Plotter
V 3 channels, X,Y1 and Y2. Y1 not working

e.g. Using X channel for stroke, selecting 5% of range/in with 20 mm stroke range

corresponds to 1 mm/in on the plot.
Using Y2 chanuel for load, selecting 20% of range/in with 10K load range
. corresponds to 2000 kgf/in on the plot.
t:

Stiffness Data of the MTS.




Load Cell 33.0E6 1b/in

Load Frame 6.0E6 lb/in
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Wiring Correspondence
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2. EXTENSOMETER CONNECTIONS WITH THE VISHAY AMPLIFIER/CONDITIONER

AXIAL Extensometer —~ Full Bridge

+

+

ground

CAL A corresponds to O.

0275 in.

TRANSVERSE extensometer - Half Bridge

A out +
C exc -
B exc +
F ground

0o w»

Tt T e Tt A T e At NS
P N A A L L RN
R R - et e e, . BT IR
P TR S ~ . . . “ -

CAL A corresponds to 0.055 in. (1.397 mm)

............................
..............

(0.6985 mm)
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3. SURFACE TOPOGRAPHY MAPPING WITH THE BAUSCH AND LOMB TRAVELLING
MICROSCOPE.

The apparatus consists of the microscope, linear potentiometers, stage
extension bar and assorted rubber bands and C-clamps for fixing the potentiometers

on the microscope. One potentiometer is clamped to the side of the microscope and

one to the travelling stage.

Rubber bands are used to secure the stage extension bar to the microscope
knee. Note that some of the rubber bands go around the back of the microscope.
They serve two purposes; they keep the stage extension bar firmly against the

microscope and they act to offset its weight.

Adjust the potentiometer and the stage extension bar so that the points of the

extension bar. Use rubber bands to secure the potentiometer ends on the stage

extension bar screws.

The electric circuit employs a V=3V battery and a balancing 10-turn

potentiometer for each linear pot. The two green wires from the linear pot go to the ii';
battery terminals hooked with the balancing pot as in Fig. 1. The blue wire from
Y
the linear pot and the remaining wire from the balancing pot go to the plotter. s
Solving the circuit gives 5
R R
2 4
Yi-Ve= () Vo
1Ry Rgthy
Zero the output V-V, at the starting point by using the balancing 10-turn N
potentiometer (i.e. adjust R, so that V,-V,=0). 4
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To plot the topography use the 10x power on the microscope. The higher
u magnifications require the objective ¢~ be quite close to the surface of the specimen
and one could easily hit the objective on a peak of the viewed surface when trying to
:'.:; focus into a valley. Move slowly your specimen along the horizontal axis and get the
=~ corresponding vertical coordinate by having the centerline of the specimen always in

focus. Notice that the vertical fine scale on the microscope is 10 rev=1 mm.




4. FATIGUE PRE-CRACKING

Specimen precracking was done on the SF-1 Fatigue Machine, which is a fixed
frequency (3600 rpm) rotating mass machine. It was used with the bending fixtures.
The specimens were subjected to four-point bending. A uniform bending moment M
is applied across the span of the specimen, given in terms of the load moment arm R
(distance between rocker bearings, R = 3 or 6 inches) and the total applied force P

from
M = PR/2 . (1)

The nominal alternating stress o, can be found by using the moment of inertia
I=bh3/ 12 (b, b are specimen width, and thickness) from

M(b/2) 3PR M
=7 " bh?  bhZ/6

(2)

Notice that o does not depend on the specimen length. In terms of the specimen
length between grips,’L, (L = 3, 5, 6 or 8 inches) and the modulus of elasticity of the
specimen, E, the amplitude of the vibrating platen Y is

ML 3PRLL

Y = —_—

9EI Ebh3

(3)

The following restrictions apply
Maximum applied force, P=1,000 lb

Maximum amplitude of reciprocating platen Y=0.4 inches

As a rough approximation assume 0, ~T.S. Then from (2) find the necessary
M=(T.S.)bh%/6. For a chosen R find the required P from (1), P=2M/R. Next, for

the chosen specimen length L check that the resulting Y from (3) is less than 0.4

inches. Notice that P should be less than 1,000 Ib.




Indicative data for fatigue pre-cracking on the SF-1 with R=3 inches are:
1018 CF steel (HBN=157) 0.50"" dia. needs about 10,000 cycles with P=90 Ib to
grow 0.050" fatigue crack.
A36 steel (HBN=105) 0.50"" dia. needs about 7,000 cycles, P=80 b to grow 0.050"

n fatigue crack
5086-H111 aluminum (HBN=70) 1.50" dia. needs about 12,000 cycles, P=1,000 lb to

grow 0.150” fatigue crack.

To operate the machine (for details see instruction manual):

Turn the CONTROLLER POWER switch to STANDBY.

Turn on main power switch on wall behind machine. Wait for at least half hour to
allow warmup.

Attach tuning weights to the studs on either side of the orange cage.

Set the oscillating load P.

Check that knob of variable transformer is at zero.

Press START button. Gradually turn knob of variable transformer, increasing the
motor speed to the extreme 100 position. This should take from 20 to 80 sec.
Turn CONTROLLER POWER switch ON.

To STOP press the STOP button and turn the variable transformer back to zero.
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APPENDIX B - MESH GENERATOR
u The following FORTRAN program generates the finite element mesh for the
e asymmetric specimens for any desirable radial size ratio and anguiar spacings. Bar
denotes user input.
-
$ ¢ $
N&1% - —
. 7
|
N4 =9
N3=8
N2=<
NE=R /
N =14 - \: | .3
f_ R
Crack
NE= 19
X —>¢

i . S —
Nq_1(77/7//7//77/7/////z//7;

NYG- {3 N10=1Y




This program creates the node nos., element no<., and

the corresponding MPC constraints for the fan.

We have maximum Nr segments radially and N6 radial lines
around: here Nr=32 and N&=19.

RO=10 microns (one inclusion spacing) = 0.01 om

s 1s the size ratio in the log circular mesh=1.155

Angular spacings are (larger to smaller) thet, thetl, thet2,
thet3; here thet=30, thetl=1S, thet2=7.S, thet3=3.7S deg.

L is the node no. with coords x(L). y(L): M is the element no.
with nodes Nodl (M), Nod2(M).,...,Ned8(M).

Flle no. 15 contains the nodes, no. 16 contains the element data
and no. 17 contains the MPC constraints.

N0 O00NO0

DIMENSION x(1S000), y(1S000). Nedl(1SC00), phi(100).
- Nod2 (15000) , Nod3(1S000), Ned4(1S000), Re(100),
- NodS (15000) , Nod6 (15000) , Nod7(15000), Ned8 (15000)
I Nr = 32 Note: Bars
c Note: Nr should be a multiple of 8 (so that the minimum no. dov e
c of segments radially, corresp. to the largest angle, 1s Nr/8) . ...
e Rmax = RO(s**Nr-1)/(s-1) o
l RO = 0.01 o
s = 1.155
pi = 3.14159
thet = 30.*pl/180.
thetl = 15.*pl/180.
thet2 = 7.5*p1/180.
thetd = 3.75*pi/180.
R30 = RO® (1+S+S822+3% %3482 74457 *5+3276+32*7)
330 = g**38 :
N30 = Nr/8 . ‘
R1S = RO* (1+s+s**2+3**3)
slS = s**4
N1S = Nr/4
R7S = RO* (1+s) '
875 = g**2 : =
N7S = Nr/2
1001 FORMAT(IS,.F10.7,F10.7)
¢ Dtheta for radial lines 1-Nl1 1s 1S deg.: N1-N2: 7.5 deg.:
¢ N2-N3: 3.75 deg.:; N3-N4: 7.5 deg.:
€ N4-NS: 1S deg.; NS-N6: 30 deg.: N7: crack flank.
" N1
N2
N3
N4
NS = 11 .
N6 = 19 "
N7 = 14
¢ Input Nodes for the 15 deg. sectors
DO 90 I=1, Nl1-1 s
phia =(I-1) *thetl g
phi(I) = phia )
DO 100 J=1, N75 v
Rl = R75*( s75**J - 1 )/(s75-1)
L = S00*I + 4*J
x(L) = Rl*cos(phia) w
y(L) = Rl*sin(phia) o
WRITE (15,1001) L. x(L). y(L) "
100 CONTINUE “
90 CONTINUE ) :
DO 911 I=1, Ni1-1 i

HN
VOdw
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phia = (I-1)*thetl + thetl/2.

DO 922 J=1, N1S
R1 = R1S*( s15**J - 1 )/(s15-1)
L = 500*I + 200 + 8*J

s x(L) = Rl*cos(phia)
Ty y (L) = Rl*sin(phia)
WRITE (15, 1001) L, x(L). y(L)
- 922 CONTINUE

911 CONTINUE
¢ Input Nodes for the 7.5 deg. sector
DO 82 I=N1l, N2-1
A phia =(N1-1) *thetl + (I~N1l)*thet2
F phi(I) = phia
a DO 101 J=1, Nr
.. Rl = RO*( s**J - 1 )/(s-1)
T L = 500*I + 2*J
x (L) = Rl*cos(phia)
vy (L) = Rl*sin(phia)
WRITE (15.1001) L, x(L), y(L)
eﬁ 101 CONTINUE
k 82 CONTINUE
DO 912 I=N1, N2-1
phia = (N1-1)*thetl + (I-N1)*thet2 + thet2/2.
DO 923 J=1, N75 ,
R1 = R75*( s75**J - 1 )/(s75~1)
- L = 500*I + 200 +4*J
. x (L) = Rl*cos (phia)
v (L) = Rl*sin(phia)
WRITE (15, 1001) L, x(L). y(L)

e , 923 CONTINUE
o 912 CONTINUE
* ¢ Input nodes for the 3.7S deg. sectors
DO 83 I=N2, N3
[ ] phia =(N1-1) *thetl + (N2-N1)*thet2 + (I-N2)*thet3
© phi(I) = phia
Rlp = 0.

DO 132 J=1, Nr
Rl = RO*( s**J - 1 )/(s-1)
L = 500*I + 2*J
x{L) = Rl*cos(phia)
- y (L) = Rl*sin(phia)
: WRITE (15,1001) L, x(L). y(L)
L = 500*I +(2*J-1)
R2 = (R1+R1lp)/2.
o x (L) = R2*cos (phia)
- y{(L) = R2*sin(phia)

WRITE(1S, 1001) L, x(L). y(L)
-y Rlp = R1
o 132 CONTINUE
v 83 CONTINUE

DO 913 I=N2, N3-1
phia = (N1-1)*thetl + (N2-N1)*thet2
- + (I-N2)*thet3 + thet3/2.
DO 924 J=1, Nr
R1 = RO*( s**J - 1 )/(s-1)
= 500*I + 200 +2*J
x(L) = Rl*cos (phia)
y (L) = Rl*sin(phia)
r WRITE (1S, 1001) L, x(L). y(L)
b 924 CONTINUE

.
L]

.
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913 CONTINUE
c Input nodes for the 7.5 deg sector
DO 84 I=N3+1, N4
phia =(N1-1)*thetl + (N2-N1) *thet2
g - + (N3-N2) *thet3 + (I-N3)*thet2

Cul)
L .
LA

y phi(I) = phia .
K| DO 133 J=1, Nr .
y R1 = RO*{ s**J - 1 )/(s-1)
L = S00*I + 2*J i
x(L) = Rl*cos (phia) i

vy(L) = Rl*sin(phia)
- WRITE (15,1001) L, x(L). y(L)
N 133 CONTINUE
[ 84 CONTINUE
DO 914 I=N3, N4-1
_ phia = (N1-1)*thetl + (N2-N1)*thet2
3 - + (N3-N2) *thet3 + (I-N3)*thet2 + thet2/2.
DO 925 J=1, N75
Rl = R75*%( s75**J - 1 )/(s75-1)
L = 500*I + 200 + 4*J
x (L) = Rl*cos(phia) ot
vy (L) = Rl*sin(phia)
WRITE (15, 1001) L, x(L). y(L)
925 CONTINUE
914 CONTINUE
¢ Input nodes for the 15 deg. sectors
DO 85 I=N4+1, NS
phlia =(Ni-1) *thetl + (N2-N1)*thet2
- + (N3-N2) *thet3 + (N4-N3) *thet2 + (I-N4)*thetl
phi(I) = phia ‘ -
DO 134 J=1, N75
- Rl = R75*( s75**J - 1 )/(s75-1)
- L = 500*I + 4*J
: x(L) = Rl*cos(phia) -
Y (L) = Rl*sin(phia) -
WRITE(15,1001) L, x(L)., y(L)
134 CONTI IUE
8s CONTINUE
DO 915 I=N4, N5-1
phia = (N1-1)*thetl + (N2-N1) *thet2
= + (N3-N2) *thet3 + (N4-N3)*thet2 + (I-N4)*thetl + thetl/2.
DO 926 J=1, N15
Rl = R15#%( s15**J - 1 )/(sl15-1)
L = S00*I + 200 + 8*J
x (L) = Rl*cos(phia)
y(L) = Rl*sin(phia) A
WRITE (15, 1001) L, x(L)., y(L) -

Fu

_ 926 CONTINUE

K 915 CONTINUE -
. ¢ Input nodes for the 30 deg. sectors :
- DO 86 I=NS5+1, N6

. phia =(N1-1)*thetl + (N2-N1l)*thet2 + (N3-N2)*thet3 -
", - + (N4-N3) *thet2 + (N5-N4)*thetl + (I-NS)*thet <
pht (I) = phia ~
DO 135 J=1, N1S
R1 = R15#%( sl15**J - 1 )/(s13-1)
L = S00*I + 8*J
x(L) = Rl*cos(phia)
y(L) = Rl*sin(phia)
WRITE(1S,1001) L, x(L). y(L) "
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135 CONTINUE
-86 CONTINUE
DO 916 I=NS. N6
phla = (N1-1)*thetl + (N2-N1)*thet2
- + (N3-N2) *thet3 + (N4-N3)*thet2
- + (NS-N4) *thetl + (I-N5)*thet + thet/2.
DO 927 J=1, N3O
Rl = R30*( s30**J - 1 )/(s30-1)
L = S00*I + 200 + 15*J
x(L) = Rl*cos(phia)
vy (L) = Rl*sin(phia)
WRITE (1S, 1001) L, x(L). y(L)
927 CONTINUE
916 CONTINUE
¢ Nodes for crack flank
I=N7
phia = pi
phi(I) = phia
DO 11 J=1, N15
Rl = R15*( s15**J - 1 )/(s15-1)
L = SO00*I + 100 + 8*J
x(L) = Rl*cos(phia)
y(L) = Rl*sin(phia)
WRITE(15.1001) L, x(L). y(L)
11 CONTINUE
¢ Nodes for crack tip
DO 87 I=1. N6
L = S00*I
x(L) = Q.
y(L) = 0.
WRITE (15.1001) L, x(L), y(L)
L = 500*I + 200
x(L) = 0.
y(L) = G.
WRITE (15,1001) L, x(L). y(L)
87 CONTINUE
L = S00*N7 + 100
x(L) = 0.
y(L) = 0.
WRITE (15,1001) L, x(L), y(L)
c
C Elements - M is the element no.
1002 FCRMAT(IS. 8IS)
c

N8
N9
N99 =
N1Q0 = 18
xc = 3.81
phia = (N7-N8) *thet
Rey = 3.81/cos (phia)
yc = Rey*sin(phia)
Notice: Fpr the shoulder, the following constraint
should be fullfilled:
(xcl + rad = xc)**2 + dy**2 = rad**2
with dy=xcl*tan (thet)
| rad = 1.49
alpha = 1. + tan(thet) *tan(thet)
beta = xc - rad
gamma = (xc-rad)*(xc-rad) - rad*rad
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delta = Leta*beta ~ alpha*
xcl = ( beta + SQRT(delta) ) / alpha
dy = xcl*tan(thet)

= Nadd = 2* (Nr+1)

N Nadl = 2*Nr+1

) ¢ In each sector, first determine boundary nodes
~:- ¢ and then input elements

X DO 151 I=N1, N2-1

Re(I) = xcl/cos(phi(I))
arg = ( Rc(I)*(s75-1)/R7S ) + 1
Nri = NINT( LOG(arg) /LOG(s75) )
L1 = 500*I + Nadd
- x(L1l) = xcl
3 y(L1) = Rc(I)*sin(phi(I))
WRITE (15.1001) L1, x(L1), y(L1)
L2 = 500* (I+1) + Nadd
Rc(I+1l) = xcl/cos(phi(I+1))
x(L2) = xcl
Y (L2) = Rc(I+1l)*sin(phi(I+1))
WRITE (15,1001) L2, x(L2), y(L2)
L3 = L1 + 200
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = (y(L1) + y(L2) )/2.
WRITE(15,1001) L3, x(L3), y(L3)
DO 141 J=1, Nri-1

= 100*J +
Nodl (M) = S00*I + 4*(J-1)
Nod2 (M) = SO0*I + 4*J
Nod3 (M) = 500*(I+1) + 4*J
Nod4 (M) = S00* (I+1) + 4*(J-1)
NodS (M) = SO0*I + 2% (2*J-1)
Nod6é (M) = S500*I + 200 + 4*J
Nod7 (M) = 500* (I+1) + 2*(2*J-1)
Nod8(M) = S00*I + 200 + 4*(J-1)

WRITE (16,1002) M, Nodl(M), Nod2 (M), Nod3 (M),
- Nod4 (M) . NodS (M), Nod6 (M), Nod7 (M), Nods8 (M)
141  CONTINUE

. J = Nri
- L1 = 500*I + 4*(J~1)
L2 = 500*I + Nadd
L3 = 500*(I+1) + Nadd
L4. = S00* (I+1) + 4*(J-1) T

L12 = 500*I + Nadl

x(L12) = ( x(Ll) + x(L2) ) / 2.
y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE (15,1001) L12, x(L12), y(L12)

L34 = 500*(I+1) + Nadl

x(L34) = ( x(L3) + x(L4) ) / 2.

y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE (15,1001) L34, x(L34), y(L34)

M = 100%J + I

Nodl (M) = L1
Nod2 (M) = L2
Nod3 (M) = L3
Nod4(M) = La
NodS (M) = L12
- Nod6é (M) = S00*I + 200 + Nadd
- Nod7 (M) = L34
: Nod8(M) = SCO*I + 200 + 4= (J-1)

WRITE (16,1002) M, Nodl(M). Nod2(M). Nod3(M).
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- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
151  CONTINUE ‘ :
DO 152 I=N2, N3-1
Re (1) = xcl/cos (phi(I))
arg = ( Re(I)*(s-1)/RO ) + 1
Nri = NINT( LOG(arg)/LOG(s) )
Ll = S00*I + Nadd
] x(Ll) = xcl
* y(L1) = Rc{I)*sin(phi(I))
; WRITE(15,1001) L1, x(Ll1l), y(L1)
L2 = S00*(I+1) + Nadd
Rc(I+1l) = xcl/cos (phi(I+1l))
x(L2) = xcl
y(L2) = Rc(I+1l)*sin(phi(I+1))
WRITE (15,1001) L2, x(L2)., y(L2)
L3 = L1 + 200
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(L1) + y(L2) )/2.
WRITE (15.,1001) L3, x(L3)., y(L3)

e e 4lw_a- 4
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DO 142 J=1, Nri-1
, M=100*J + I
o Nodl (M) = 500*I + 2*%(J-1)
v Nod2 (M) = SOC*I + 2*J
o Nod3 (M) = SOO*(I+1) + 2*J
K Ned4 (M) = S00* (I+1) + 2*(J-1)
L NodS (M) = SO0*I + (2*J-1)
. Nod6 (M) = S00*I + 200 + 2*J
T Nod7(M) = S00* (I+1) + (2*J-1)
S . Nod8 (M) = SO0*I + 200 + 2*(J-1)
F. o WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
- - - Nod4 (M) . NodS (M), Nod6 (M), Nod7 (M), Nods (M)
. 142 CONTINUE
Nri
- L1 = SO0*I + 2*(J-1)
A L2 = 500*I + Nadd
e L3 = S00* (I+1) + Nadd
L4 = 500* (I+1) + 2*(J-1)
e L12 = S00*I + Nadl
< x(L12) = ( x(L1) + x(L2) ) / 2
~ - y(L12) = ( y(Ll) + y(L2) ) / 2.
'3 WRITE (15,1001) L12, x(L12), y(L12)
L34 = 500%(I+1) + Nadl
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2
o WRITE(IS 1001) L34, x(L34). (L34)
~ M =100*J + I
Nodl(M) = L1
b Nod2 (M) = L2
YR Nod3 (M) = L3
y Nod4 (M) = L4
e NodS(M) = L12
E Nod6 (M) = 500*I + 200 + Nadd
Nod7 (M) = L34
: Nod8 (M) = S00*I + 200 + 2*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),

- Nod4 (M) , NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
o 152 CONTINUE
DO 153 I=N3, N4-1

Rc(I) = xcl/cos(phi(1))

arg = ( Re(I)*(s7S-1)/R75 ) + 1
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Nri = NINT( LOG(arg) /LOG(s7S) )
L1 = S00*I + Nadd

. x{Ll) = xcl
. y(L1l) = Re(I)*sin(phi(I))
a WRITE (15,1001) L1, x(L1l). y(L1)
o L2 = 500*(I+1) + Nadd
» Rc(I+1) = xcl/cos (phi(I+1))
W x(L2) = xcl
y(L2) = Rc(I+1l)*sin(phi(I+l))
¥ WRITE (15,1001) L2, x(L2). y(L2)
v L3 = L1 + 200
) x(L3) = ( x(L1) + x(L2) )/2.
’ y(L3) = ( y(L1l) + y(L2) )/2.
' WRITE (15.1001) L3, x(L3). y(L3)

DO 143 J=1, Nri-1
M=100*J + I

> Nodl (M) = SO0*I + 4*(J-1)
- Nod2 (M) = SO0*I + 4*J
- Nod3 (M) = S00*(I+1) + 4*J
- Nod4 (M) = S00*(I+1) + 4*(J-1)
» NodS (M) = SO0*I + 2*(2*J-1)
Nod6 (M) = SOO*I + 200 + 4*J
Nod7 (M) = SOO0* (I+1) + 2*(2*J-1)
Nodg8 (M) = S0O0*I + 200 + 4*(J-1)
- WRITE (16,1002) M, Nodl(M). Nod2 (M), Nod3(M).
e - Nod4 (M), NodS (M), Nod6(M). Nod7(M). Nod8 (M)
143 CONTINUE
J = Nri
= L1 = S00*I + 4*(J-1)
~ L2 = S00*I + Nadd
2 L3 = S00*(I+1) + Nadd
[ L4 = 500* (I+1) + 4*(J-1)
™ L12 = S00*I + Nadl

x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1l) + y(L2) ) / 2.
WRITE (15,1001) L12, x(L12), y(L12)
L34 = S00+(I+1) + Nadl
x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2
WRITE (15, 1001) L34, x(L34), y(L34)
M= 100*J + I
Nod1 (M)
Nod2 (M)
y Nod3 (M)
v Nod4 (M)
. NodS (M)
- Nod6 (M) = SO0*I + 200 + Nadd ' =
Nod7 (M) = L34
Nod8(M) = S00*I + 200 + 4*(J-1) :
WRITE (16.1002) M. Nodl (M), Nod2 (M), Nod3 (M), v,
- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
153  CONTINUE -
DO 154 I=NS, N8-1 :31

oo+
[
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Re(I) = ye/sin(phi(I))
arg = ( Re(I)*(s30-1)/R30 ) + 1
- Nri = NINT( LOG(arg)/LOG(s30) )
5 L1 = S00*I + Nadd
- x(L1) = Rc(I) *cos(phi(I))
y(Ll) = ye .
WRITE (1S,1001) L1, x(Ll), y(L1) \
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144

L2 = 500*(I+1) + Nadd
Re(I+l) = yc/sin(phi(I+1))
x(L2) = Rc(I+1)*cos (phi(I+1))
y(L2) = ye
WRITE (1S,1001) L2, x(L2). y(L2)
L3 = L1 + 200
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Ll) + y(L2) )/2.
WRITE (15,1001) L3, x(L3). y(L3)
DO 144 J=1, Nri-1
M= 100*J + I

Nodl (M) = 500*I + 16*(J-1)

Nod2 (M) = S00*I + 16*J

Nod3 (M) = S00*(I+1) + 16*J

Nod4 (M) = S500*(I+1) + 16*(J-1)
NodS (M) = 500*I + 8% (2*J-1)

Nod6 (M) = SO0*I + 200 + 16%J
Nod7 (M) = SO0*(I+1) + 8% (2%J-1)
Nod8(M) = S00*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M) . Nod2(M). Nod3 (M),
Nod4 (M) , NodS (M), Nodé (M), Nod7 (M) . Nod8 (M)
CONTINUE
J = Nri
SQ0*I + 16*(J-1)

L2 = 500*I + Nadd
L3 = S00*(I+1) + Nadd
L4 = 500* (I+1) + 16*(J-1)

L12 = SO0*I + Nadl
x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(Ll) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12), y(L12)
L34 = SO0* (I+1) + Nadl

x(L34) = ( x(L3) + x(L4) ) / 2.

y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE (15,1001) L34, x(L34), y(L34)

= 100*J + I

Nodl (M) = L1

Nod2 (M) = L2

Nod3 (M) = L3

Nod4 (M) = L4

NodS (M) = L12

Nod6 (M) = S00*I + 200 + Nadd
Nod7 (M) = L34

Nod8 (M) = 500*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2(M). Nod3 (M),
Nod4 (M), NodS(M), Nod6 (M), Nod7 (M), Nods (M)

CONTINUE

DO 185 I=N8, N7-1

Rec(I+l) = -xc/cos(phi(I+1))

arg = ( Rc(I+1)*(s30-1)/R30 ) + 1
Nri = NINT( LOG(arg)/LOG(s30) )
L1 = S00*(I+1) + Nadd

x(Ll) = -xc

y(Ll) = Rc(I+l)*sin(phi(I+1))
WRITE (15,1001) L1, x(L1), y(L1)
L2 = 500*I + Nadd

Rc(I) = -xc/cos (phi(I))

x(L2) = -xc

y(L2) = Rc(I)*sin(phi(l))

WRITE (15,1001) L2, x(L2). y(L2)
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L3 = L2 + 200
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Ll) + y(L2) )/2.
WRITE (15,1001) L3, x(L3), y(L3)
DO 145 J=1, Nri-1
M= 100*J + I
Nodl(M) = S00*I + 16*(J~1)
Nod2 (M) = 500*I + 16*J
Nod3 (M) = S00*(I+1) + 16+J
“ Nod4 (M) = 500*(I+1) + 16%(J-1)
N NodS (M) = 500*I + 8+ (2+J-1)
e Nod6 (M) = S00*I + 200 + 16*J
N Nod7 (M) = 500* (I+1) + 8% (2*J-1)
Y

’:’:’a Fd }-,

Nod8 (M) = S00*I + 200 + 16*(J-1)
WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
. - Nod4 (M), NodS (M), Nodé (M). Nod7 (M), Nod8 (i)
145 CONTINUE
J = Nri
) 500*I + 16*(J-1)
500+ + Nadd
500* (I+1) + Nadd
500* (I+1) + 16*(J-1)
L12 = S00*I + Nadl
x(L12) = ( x(L1) + x(L2) ) / 2.
Y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12), y(L12)
» L34 = 500*(I+1) + Nadl
' x(L34) = ( x(L3) + x(L4) ) / 2.
Y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE (15,1001) L34, x(L34), y(L34)
M=100*J + I -
Nodl(M) = L1
Nod2(M) = L2
Nod3(M) = L3
Nod4(M) = L4
Nod5(M) = L12
Nod6 (M) = S00*I + 200 + Nadd
Nod7 (M) = L34
Nod8(M) = SO0*I + 200 + 16* (J-1) .
WRITE (16,1002) M, Nodl(M). Nod2(M), Nod3 (M),
- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nods (M) -
- 155 CONTINUE o
DO 156 I=N7+1, N9-1 W
Rec(I) = -xc/cos(phi(I))
arg = ( Re(I)*(s30-1)/R30 ) + 1 : -
Nri = NINT( LOG(arg)/LOG(s30) ) T
L1l = 500*1 + Nadd :
x(Ll) = -xc
- y(Ll) = Rc(I)*sin(phi(I)) A
WRITE(15,1001) L1, x(L1), y(L1) b
L2 = 500*(I+1) + Nadd
Re(I+1l) = -xc/cos (phi(I+1)) ,
x(L2) = -xc Y
y(L2) = Rc(I+1)*sin(phi(I+1)) |
WRITE (15,1001) L2, x(L2)., y(L2)
L3 = L1 + 200
Lo x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Ll) + y(L2) )/2.
5 WRITE (15,1001) L3, x(L3), y(L3)
- DO 146 J=1, Nri-1
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M= 100*J + I

Nodl (M) = S00*I + 16*(J-1)

Nod2 (M) = 500*I + 16*J

Nod3 (M) = S00* (I+1) + 16%J

Nod4 (M) = S500* (I+1) + 16*(J-1)
Nod5 (M) = S00*I + 8% (2+J-1)

Nod6 (M) = SO0*I + 200 + 16%J
Nod7 (M) = 500% (I+1) + 8% (2%J-1)
Nod8(M) = 500*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2(M). Nod3(M).

Nod4 (M), NodS (M), Nod6 (M), Nod7(M). Nods (M)
CONTINUE
J = Nri

L1 = 500*I + 16*(J-1)

L2 = S00*I + Nadd

L3 = S00*(I+1) + Nadd

L4 = 500*(I+1) + 16*(J-1)

L12 = S00*I + Nadl

x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1l) + y(L2) ) / 2.
WRITE (15,1001) L12, x(L12), y(L12)
L34 = 500* (I+1) + Nadl

x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE (15,1001) L34, x(L34), y(L34)
M= 100*J + I

Nodl(M) = L1

Nod2 (M): = L2

Nod3 (M) = L3

Nod4 (M) = L4

NodS (M) = L12

Nod6 (M) = 500*I + 200 + Nadd
Nod7 (M) = L34

Nod8(M) = S00*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
Nod4 (M) , NodS (M), Nod6 (M), Nod7 (M), Nods (M)

CONTINUE
DO 157 I=N9, N99-1
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Rec(I+l) = -yc/sin(phi(I+1))

arg = ( Rc(I+1)*(s30-1)/R30 ) + 1
Nrl = NINT( LOG(arg)/LOG(s30) )
L1 = 500*(I+1) + Nadd

x(L1) = Rc(I+1)*cos(phi(I+l))
y(Ll) = -yc

WRITE (15,1001) L1, x(L1), y(L1)
L2 = 500*I + Nadd

Re(I) = -yc/sin(phi(I))

x(L2) = Rc(I)*cos(phi(I))

y(L2) = -yc

WRITE (15,1001) L2, x(L2). y(L2)
L3 = L2 + 200

x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Ll) + y(L2) )/2.
WRITE (15,1001) L3, x(L3)., y(L3)

DO 147 J=1, Nri-1

M=100*3 + I

Nodl (M) = S00*I + 16*(J-1)

Nod2 (M) = SO00*I + 16*J

Nod3 (M) = S00*(I+1) + 16*J

Nod4 (M) = SO0*(I+1) + 16*(J-1)
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Nod6 (M)

S00*I + 8*%(2+J-1)
S00*I + 200 + 16*J
Nod7 (M) = S00* (I+1) + 8¢ (2+J-1)
Nod8 (M) = SO0*I + 200 + 16*(J-1)
WRITE (16.1002) M, Nodl (M), Nod2 (M), Nod3 (M),
- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
147  CONTINUE
J = Nri
S00*I + 16*(J-1)
S00*I + Nadd
500* (I+1) + Nadd
500% (I+1) + 16*(J-1)
L12 = S00*I + Nadl
x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12), y(L12)
L34 = 500*(I+1) + Nadl
: x(L34) = ( x(L3) + x(L4) ) / 2.
B y(L34) = (y(L3) + y(L4) ) / 2.
-;. WRITE (1S,1001) L34, x(L34), y(L34)
- M= 100*J + I
Nod1 (M)
Nod2 (M)
Nod3 (M)
Nod4 (M)
Nods (M)
Nod6 (M)

e
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k77
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L1

L12
S00*I + 200 + Nadd
Nod7 (M) = L34 :
- Nod8 (M) S500*I + 200 + 16*(J-1)
e WRITE (16.1002) M, Nodl (M), Nod2 (M), Nod3 (M),
. - Nod4 (M) , Nod5(M), Nodé (M), Nod7 (M), Nod8 (M)
- 157 CONTINUE
DO 158 I=N99, N10-1
Re(I) = -yc/sin(phi(I))
arg = ( Re(I)*(s30-1)/R30 ) + 1
Nri = NINT( LOG(arg)/LOG(s30) )
L1 = 500*I + Nadd
x(L1l) = Rc(I)*cos(phi(I))
7(L1l) =-yc
WRITE (1S,1001) L1, x(L1), y(L1)
L2 = 500*(I+1) + Nadd
S Re(I+l) = -yc/sin(phi(I+1))
> x(L2) = Rc(I+l)*cos(phi(I+1))
- y(L2) = -yc
WRITE (15,1001) L2, x(L2), y(L2)
L3 = L1 + 200 <)
x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(L1) + y(L2) )/2.
WRITE (15,1001) L3, x(L3). y(L3)
DO 148 J=1, Nri-1 -2
M= 100*J + I
Nodl (M) = SOO*I + 16+ (J-1) -
Nod2 (M) = SO0*I + 16+J
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Nod3 (M) = SO0*(I+1) + 16*J

Nod4 (M) = S00*(I+1) + 16*(J-1)
: NodS (M) = S00*I + 8¢ (2%J-1) >
Nod6 (M) = SO0*I + 200 + 16*J v
- Nod7 (M) = S00* (I+1) + 8*(2+J-1) '
: Nod8 (M) = S00*I + 200 + 16+ (J-1)

WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
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) ' - Nod4 (M), Nod5(M). Nod6 (M), Nod7(M), Nods (M)
NUE

J = Nri
S00*I + 16*(J-1)
S00*I + Nadd
S00* (I+1) + Nadd
500* (I+1) + 16*(J-1)
K L12 = S00*I + Nadl
oy x(L12) = ( x(L1l) + x(L2) ) / 2.
y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12), y(L12)
L34 = S00*(I+1) + Nadl
x(L34) = ( x(L3) + x(L4) ) / 2.
Y(L34) = ( y(L3) + y(L4) ) / 2.
] WRITE (15, 1001) L34, x(L34). y(L34)
- M= 100*J + I
Nod1 (M)
Nod2 (M)
- Ned3 (M)
Nod4 (M)
Nod5 (M)
Nod6 (M)
Nod7 (M) = L34
Nod8 (M) S00*I + 200 + 16*(J-1)
WRITE (16.1002) M., Nodl (M), Nod2 (M), Nod3 (M),
.. - Nod4 (M) . NodS(M). Nod6 (M), Nod7 (M), Nods (M)
Il 158 CONTINUE
DO 159 I=N10, N6-1
Rc(I+1l) = xc/cos (phl (I+1))
arg = ( Re(I+1)*(s30-1)/R30 ) + 1
Nri = NINT( LOG(arg)/LOG(s30) )
Ll = S00*(I+1) + Nadd
x(L1l) = xc
[ y(Ll) = Rc(I+1)*sin(phi(I+1))
ot WRITE(15,1001) L1, x(L1l), y(L1)
- L2 = SO00*I + Nadd
A Re(I) = xc/cos(phi(I))
x(L2) =
y(L2) = Rc(I)'sin(phi(I))
i WRITE(15.1001) L2, x(L2), y(L2)
= B2 L3 = L2 + 200
o x(L3) = ( x(L1) + x(L2) )/2.
- y(L3) = ( y(L1) + y(L2) )/2.
. WRITE (15,1001) L3, x(L3). y(L3)

g W8 v 3

[
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L12
SO00*I + 200 + Nadd

oo DO 149 J=1, Nri-1l
LG M=100*J +
S00*I + 16*(J-1)
500*I + 16+J
S00* (I+1) + 16*J
S00* (I+1) + 16*(J-1)
SO00*I + 8*(2*J-1)
SQ0*I + 200 + 16*J
SO0* (I+1) + 8*(2*J-1)
g SO0*I + 200 + 16*(J-1)
j . WRITE (16,1002) M, Nodl(M). Nod2 (M), Nod3 (M) .
S - Nod4 (M) , NodS (M) . Nod6 (M), Nod7 (M), Nods (M)
o 149 CONTINUE
‘ J = Nri
THFIN Ll = SQ0*I + 16*(J-1)
{, L2 = SQ0*I + Nadd

:
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L3 = 500%(I+1) + Nadd
L4 = S00*(I+1) + 16*(J-1)
L12 = 500*I + Nadl

N x(L12) = ( x(L1) + x(L2) ) / 2.
- y(Li2) = ( y(L1) + y(L2) ) / 2.
x WRITE (15.1001) L12, x(L12), y(L12)
2, L34 = S00*(I+1) + Nadl
G x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.
- WRITE (15.1001) L34, x(L34). y(L34)
< M= 100*J + I
Nodl (M) = L1
Nod2 (M) = L2
Nod3 (M) = L3
Nod4 (M) = L4
NodS (M) = L12
- Nod6 (M) = S00*I + 200 + Nadd
Nod7 (M) = L34
G Nod8 (M) = S00*I + 200 + 16*(J-1)
o4 WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
- - Nod4 (M), NodS(M). Nod6(M). Nod7 (M), Nod8 (M)
159 CONTINUE
I=N7
Rc(I) = —xc/cos (phi(I))
arg = ( Re(I)*(s30-1)/R30 ) + 1
- Nri = NINT( LOG(arg)/LOG(s30) )
- L1 = 500*I + 100 + Nadd
x(Ll) = -xc
- y(L1) = Rc(I)*sin(phi(I))
WRITE (15,1001) L1, x(Ll)., y(Ll1)
. L2 = 500*(I+1) + Nadd
~ Rc(I+1) = -xc/cos(phi(I+l))
5 x(L2) = -xc
- y(L2) = Rc(I+1)*sin(phi(I+1))
WRITE (15,1001) L2, x(L2). y(L2)
N L3 = S00*I + 200 + Nadd
= x(L3) = ( x(L1) + x(L2) )/2.
A y(L3) = ( y(L1) + y(L2) )/2.
. WRITE (15,1001) L3, x(L3)., y(L3)
. DO 161 J=1, Nri-1
7 M= 100*J + I
T Nodl (M) = SO0*I + 100 + 16*(J-1)
- Nod2 (M) = SO0*I + 100 + 16*J
L Nod3 (M) = SO0+ (I+1) + 16%J
S Nod4 (M) = S00*(I+1l) + 16*(J-1)
e NodS(M) = S00*I + 100 + 8*(2*J-1)
L2y Nod6é (M) = 500*I + 200 + 16*J
Nod7 (M) = S00* (I+1) + 8*(2*J-1)
Nod8 (M) = SOQ*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2(M). Nod3 (M),
- Nod4 (M) , NodS (M), Nod6 (M), Nod7 (M) . Nod8 (M)

161 CONTINUE

J = Nri

L1 = S00*I + 100 + 16*(J-1)

L2 = 500*I + 100 + Nadd
~ L3 = S00*(I+1) + Nadd
- L4 = S00*(I+1) + 16*(J-1)
» L12 = 500*I + 100 + Nadl
. x(L12) = ( x(L1) + x(L2) ) /
y(L12) = (y(L1) + y(L2) ) /




‘ WRITE (15,1001) Li2, x(L12). y(L12)

" L34 = S00* (I+1) + Nadl

) x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.

R WRITE (15,1001) L34, x(L34). y(L34)
;).' M= IOO'J + I
Nodl(M) = L1
» Nod2 (M) = L2
. Nod3 (M) = L3
b Nod4 (M) = L4
3 NodS (M) = L12
Y Nod6 (M) = SO0*I + 200 + Nadd
N Nod7 (M) = L34
Nod8 (M) = 500*I + 200 + 16*(J-1)

WRITE (16.1002) M, Nodl(M). Nod2 (M), Nod3(M).
- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nods (M)
- I=N6
Rc(l) = xc/cos(phi(l))
arg = ( Re(1)*(s30-1)/R30 ) + 1
Nri = NINT( LOG(arg) /LOG(s30) )

L1 = 500*1 + Nadd

i x(L1l) = xc

- Y(Ll) = Re(l)*sin(phi(1))

. WRITE (15,1001) L1, x(L1l), y(L1)
L2 = 500*I + Nadd

Re(I) = xc/cos(phi(I))

. x(L2) = xec
y(L2) = Rc(I)*sin(phi(I))

WRITE (15,1001) L2, x(L2), y(L2)
" L3 = L2 + 200

= x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(L1l) + y(L2) )/2.
WRITE (15,1001) L3, x(L3), y(L3)

[ DO 162 J=1., Nri-1

M= 100*J + I
Nodl(M) = S00*I + 16*(J-1)

- Nod2 (M) = SO0*I + 16*J

o Nod3 (M) = 500*1 + 16*J

: Nod4 (M) = S00*1 + 16* (J-1)

NodS (M) = S00+I + 8% (2*J-1)

£ Nod6 (M) = SOO+I + 200 + 16*J

o Nod7 (M) = SO0*1 + 8% (2*J-1)
NodS8(M) = SOO*I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2(M), Nod3(M),
- Nod4 (M), NodS (M), Nod6 (M), Nod7(M). Nod8 (M)
162  CONTINUE
J = Nri
L1 = S00*I + 16*(J-1)

L2 = 500*I + Nadd
L3 = 500*1 + Nadd
L4 = 500*1 + 16* (J-1)

< L12 = 500*I + Nadl

& x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1l) + y(L2) ) / 2.

- WRITE (15,1001) L12, x(L12), y(L12)

= L34 = 500*1 + Nadl

- x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.

- WRITE (15,1001) L34, x(L34). y(L34)

oy M = 100%J + I
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Nodl(M) = L1

Nod2 (M) = L2

Nod3 (M) = L3

Nod4 (M) = L4

NodS (M) = L12

Nod6 (M) = 500*I + 200 + Nadd
Nod7 (M) = L34

Nodd (M) = S00+I + 200 + 16*(J-1)

WRITE (16,1002) M, Nodl (M), Nod2(M). Nod3 (M),
- Nod4 (M) . NodS (M), Nod6é (M), Nod7 (M), Nod8 (M)

I=NS-1

Re(I) = yc/sin(phi(I))

arg = ( Re(I)*(s15-1)/R1S ) + 1
Nri = NINT( LOG(arg) /LOG(s15) )
L1 = 500*I + Nadd

x(L1) = Rc(I)*cos(phi(I))

y(Ll) = yc

WRITE(15,1001) L1, x(L1)., y(L1)
Rc(I+1l) = yc/sin(phi(I+1))

L2 = 500*(I+1) + Nadd

x(L2) = Rc(I+1)*cos(phi(I+1))
y(L2) = yc

WRITE (15,1001) L2, x(L2). y(L2)
L3 = L1 + 200

x(L3) = ( x(L1) + x(L2) )/2.
y(L3) = ( y(Ll) + y(L2) )/2.
WRITE (15,1001) L3, x(L3), y(L3)
DO 163 J=1, Nri-1
M="100* + I

Nodl (M) = SOO*I + 8% (J-1)

Nod2 (M) = SO0*I + 8%J

Nod3 (M) = 500%(I+1) + 8*J

Nod4 (M) = 500*(I+1) + 8*(J-1)
NodS (M) = S00*I + 4*(2*J-1)
Nod6 (M) = S00*I + 200 + 8*J
Nod7 (M) = SO0*(I+1) + 4*(2%J-1)
Nod8 (M) = S0G*I + 200 + 8*(J-1)

WRITE (16,1002) M. Nodl (M), Nod2 (M), Nod3 (M),
- Nod4 (M), NodS(M), Nod6 (M), Nod7(M), Nods (M)
163  CONTINUE

J = Nri

L1 = 500*I + 8*(J-1)

L2 = S00*I + Nadd

L3 = 500*(I+1) + Nadd
L4 = S00*(I+1) + 8*(J-1)

L12 = S00*I + Nadl

x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE(15,1001) L12, x(L12), y(L12)
L34 = S00* (I+1) + Nadl
x(L34) = ( x(L3) + x(L4) ) / 2. )

Y(L34) = ( y(L3) + y(L4) ) / 2. -
WRITE (15,1001) L34, x(L34), y(L34) 43
M= 100*J + I

Nodl (M) = L1

Nod2 (M) = L2

Nod3(M) = L3

Nod4 (M) = L4

L12 "4

§

Nod6 (M) = S00*I + 200 + Nadd
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Nod7 (M) = L34
Nod8 (M) = SO0*I + 200 + 8*(J-1)
WRITE (16.1002) M, Nedl (M), Nod2 (M), Nod3(M).
- Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nod8 (M)
I=N4
Rc(I) = xcl/cos(phi (1))
arg = ( Re(I)*(s15-1)/R15 ) + 1
Nri = NINT( LOG(arg)/LOG(sl1S) )
L1 = S00*I + Nadd
x(Ll) = xcl
y(L1) = Re(l)*sin(phi(I))
WRITE (15.1001) L1, x(L1), y(Ll)
L2 = S00*(I+1) + 8*Nri
x{L2) = Rc(I) *cos(phi(I+1))
y(L2) = Rc(I)*sin(phi(I+1))
o WRITE (15,1001) L2, x(L2). y(L2)
b L3 = L1 + 200

- x(L3) = ( x(L1) + x(L2) )/2.
RS y(L3) = ( y(L1) + y(L2) )/2.
S WRITE(15,1001) L3, x(L3), y(L3)
L La = 500*I + 2% (Nr+3)
x(L4) = xcl
y(L4) = yc

WRITE (15,1001) L4, x(L4). y(L4)
LS = S00*(I+1) + Nadd

* L6 = L& + 1
. : . x(L6) = ( x(L4) + x(L1) )/2.
y(L6) = ( y(L4) + y(L1) )/2.

WRITE (15,1001) L6, x(L6). y(L6)
L7 =L& + 2
x(L7) = ( x(L4) + x(L5) )/2.
y(L7) = ( y(L4) + y(LS) )/2.
WRITE (15,1001) L7, x(L7). y(L7)
K I8 =12 + 8
: x(L8) = ( x(L2) + x(LS) )/2.
y(L8) = ( y(L2) + y(LS) )/2.
WRITE (15,1001) L8, x(L8). y(L8)
DO 166 J=1, Nri-1
M= 100+ + I

Nodl (M) = S00*I + 8*(J-1)
- Nod2 (M) = 500*I + 8+J
Nod3 (M) = S00* (I+1) + 8%J
Nod4 (M) = 500* (I+1) + 8% (J-1)
Nod5(M) = S00*I + 4*(2*J-1)
- Nod6 (M) = 500*I + 200 + 8+J
. Nod7 (M) = 500* (I+1) + 4*(2*J-1)
Nod8 (M) = 500*I + 200 + 8% (J-1)

WRITE (16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
N - Nod4 (M) . Nod5 (M), Nodé (M), Nod7 (M), Nod8 (M)
o 166  CONTINUE

N J = Nri
T M= 100*J + I
& Nodl (M) = SO0*I + 8*(J-1)
; Nod2 (M) = 500*I + Nadd
3 Nod3 (M) = 500*(I+1) + 8%J
Nod4 (M) = 500+ (I+1) + 8*(J-1)

S NodS (M) = 500*I + 4*(2*J-1)

. Nod6 (M) = 500*I + 200 + Nadd
.o Nod7 (M) = 500% (I+1) + 4*(2*J-1)
- Nod8 (M) = 500*I + 200 + 8% (J-1)
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WRITE (16,1002) M, Nodl(M). Nod2 (M), Nod3 (M),
Nod4 (M), NodS(M). Nod6 (M), Nod7 (M), Nod8 (M)
J=Nrt + 1

Nodl (M) = L2
Nod2 (M) = L1
Nod3 (M) = L4
Nod4 (M) = LS
NodS (M) = L3
Nod6 (M) = L6
Nod7 (M) = L7
Nod8 (M) = L8

WRITE (16,1002) M, Nodl(M). Nod2 (M), Nod3 (M),
Nod4 (M), NodS (M), Nod6 (M), Nod7 (M), Nods (M)

DO 164 I=1, N1-1

beta = (xcl+rad)*cos(phi(I+1l)) + dy*sin(phi(I+1))
gamma = (xcl+rad)* (xcl+rad) + dy*dy - rad*rad
Rc(I+1l) = beta - SQRT (beta*beta-gamma)
arg = ( Re(I+1)*(s15-1)/R15 ) + 1
Nri = NINT( LOG(arg)/LOG(slS) )
L1 = 500*(I+1) + Nadd
x(L1l) = Rc(I+1)*cos(phi(I+1))
Y(L1l) = Rc(I+l)*sin(phi(I+1))
WRITE (15,1001) L1, x(L1). y(L1)
L2 = S00*I + Nadd
phi3 = ( phi(I) + phi(I+1) ) / 2.
beta = (xcl+rad)’cos(ph13) + dy*sin(phi3)
gamma = (xcl+rad)*(xcl+rad) + dy*dy - rad*rad
Rc3 = beta - SQRT(beta'beta—gamma)
L3 = L2 + 200
x(L3) = Rc3*cos (phil)
Y (L3) = Rc3*sin(phil)
WRITE (15,1001) L3, x(L3). y(L3)
DO 165 J=1, Nri-1
M = 100*J + I

Nodl (M) = SOO*I + 8% (J-1)

Nod2 (M) = SCO*I + 8*J

Nod3 (M) = SOO*(I+1) + 8%J

Nod4 (M) = S00*(I+1) + 8% (J-1)
NodS (M) = 500+I + 4% (2*J-1)
Nod6 (M) = 500+I + 200 + 8+
Nod7 (M) = SOC* (I+1) + 4*(22J-1)
Nod8 (M) = SO0*I + 200 + 8% (J-1)

WRITE(16,1002) M, Nodl (M), Nod2 (M), Nod3 (M),
Nod4 (M) . NodS (M), Nod6 (M), Ned7 (M), Nod8 (M)
CONTINUE
J = Nrl
L1 500*I + 8*(J-1)

=
L2 = S00*I + Nadd
L3 = 500 (I+1) + Nadd
L4 = 5007 (I+1) + 8*(J-1)

L12 = SOO*I + Nadl

x(L12) = ( x(L1) + x(L2) ) / 2.
y(L12) = ( y(L1) + y(L2) ) / 2.
WRITE (15.1001) L12, x(L12), y(L12)
L34 = 500* (I+1) + Nadl

x(L34) = ( x(L3) + x(L4) ) / 2.
y(L34) = ( y(L3) + y(L4) ) / 2.
WRITE (15.1001) L34, x(L34)., y(L34)
M = 100*J + I
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Nodl (M) = L1

l Nod2 (M) = L2

o Nod3 (M) = L3

. Nod4a (M) = L4

s NodS (M) = L12

Ny Nod6 (M) = 500+I + 200 + Nadd
Ned7 (M) = L34

" Nod8(M) = SQ0*I + 200 + 8*(J~1)

WRITE (16,1002) M, Nodl (M), Nod2(M). Nod3(M).
- Nod4 (M) , NodS (M), Nod6 (M) . Nod7 (M), Nod8 (M)
164 CONTINUE
X c
: ¢ This portion of the program creates the MPC constraints
i} 2001 EORMAT (SIS)
L=2

c
¢ 15-30 interface
¢ Nri referes to the 30 i.e. 4 elements
oo, I =11
E! Nri = 4
DO 111 J=1, Nri-1
5 Ll = S500*I + 4*(4*J-3)
W L1l = S500*I + 4*(4*J-1)
o 500*1 + 16*(J-1)
S00*1I + 16*J
SO0*I + 8% (2*J-1)
Il WRITE(17,2001) L, L1, L2, L3, L4
: - WRITE(17.2001) L, L11, L2, L3, L4
111 CONTINUE
I =1
Nri = 4
DO 12 J=1, Nri-1 .
L1l = 500*I + 4*(4*J-3)
[ 4 L1l = S00*I + 4*(4*J-1)

[
w
W a

- L2 = S00*I + 16*%(J-1)
L3 = 500*1 + 16*J
) L4 = 500*I + 8*%(2*J-1)

o WRITE(17,2001) L, L1, L2, L3, L4

- WRITE(17.2001) L, L11, L2, L3, L4
12 CONTINUE

LA c

1S ¢ 7.5-1S interface

q N € Nri referes to the 15 i.e. 7 elements

S I = 3

-\ Nri =7

i DO 13 J=1, Nri-l

Ll = 500*I + 2*(4*J-3)

L1l = S00*I + 2*(4*J-1)

= L2 = 500*I + 8%*(J-1)
S L3 = 500*I + 8*J
- L4 = S00*I + 4*(2*J-1)
A WRITE (17.2001) L, L1, L2, L3, L4
- WRITE(17.2001) L, L11, L2, L3, L4

13 CONTINUE
I =9
Nri =8
DO 14 J=1, Nri-1
L1 = 500*I + 2*(4+J-3)
c: L1l = SO0*I + 2*(4*J-1) |
L2 = S00*I + 8*(J-1)




L3 = S00*I + 8%J

L4 = SOO*I + 4*(2+J-1)

WRITE(17,2001) L, L1, L2, L3, L4

WRITE(17,2001) L, 11, L2, L3, L4
14  CONTINUE

¥, c

-\3 ¢ 3.75-7.5 interface

» ¢ Nri referes to the 7.5 i.e. 13 elements
4 = 4

Nri = 13

DO 1S J=1, Nri-1

oy L1 = S500*I + (4*J-3)

C L11 = 500*I + (4*J-1)

N L2 = 500*I + 4*(J-1)
L3 = S00*I + 4*J
L4 = S00*I + 2*(2+J-1)

WRITE(17,2001) L, L1, L2, L3, La
_ WRITE(17,2001) L, L1l, L2, L3, L4
- 1S  CONTINUE
I=8
Nri = 15
DO 16 J=1, Nri-1
L1 = 500*I + (4*J-3)
L11 = S00*I + (4*J-1)
L2 = 500*I + 4*(J-1)
N L3 = 50041 + 4*J
- L4 = 500¢I + 2*(2*J-1)
WRITE (17,2001) L, L1, L2, L3, L4
WRITE(17.2001) L, L11, L2, L3, L4
16  CONTINUE :
STOP
END
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