
AD-Ri62 ifi DATABASE DESIGN METHODOLOGY AND DATABASE MANAGEMENT i4
SYSTEM FOR COMPUTER-A (U) IOWA UNIV TOUR CITY
APPLIED-OPTIMAL DESIGN LA I S MURTNY ET AL DEC 84

UNCLASSIFIED CAD-SS-84-28 AFOSR-TR-85-1071 AFOSR-82-8122 F/G 5/1 U

1...

44-

Inlib 1.0.82
11111- AL 111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDAROS-1963-A

'A'

4.

., --

>NA--Ar .. t~'):$tNX* .. ,c . <-*-~ ~~ t~'~7.5; .i

I I

FOSR-TR 85-1071 "

Technical Report No. CAD-SS-84.20

Database Design Methodology and Database
Management System for Computer-Aided

Structural Design Optimization
0

By

T. Sreekanta Murthy and J. S. Arora

I

Applied-Optimal Design Laboratory
College of Engineering
The University of Iowa I ECTE
Iowa City, Iowa 52242

3E0C0 9 e

.4 D
Prepared for the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Under Grant No. AFOSR 82-0322

December 1984 for

' d Stzlbutjon'"

65 12 -6 056

AL" v- -- -X.K. 'A

Technical Report No. CAD-SS-84.20

DATABASE DESIGN METHODOLOGY AND DATABASE MANAGEMENT SYSTEM

FOR COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION

Chief, ?sj Lnlanl l ii rmatio- Diiioni

T. Sreekanta Murthy and J.S. Arora

Applied-Optimal Design Laboratory
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

Prepared for the
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Under Grant No. AFOSR 82-0322

December 1984

~ " 'w

Unclassified

SECURITY CLASSIFICATION4 OF THIS PAGE

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None
20 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approve(,ej~,.rIae
2b, DECLASSIFICATION/DOWNGRADING SCHEDULE 1nlimitecdit',triLLti) 2,

A. PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(SI

CAD-SS-84720) AFOSR-TR. 8> . O 1

6. NAME OF PERFORMING ORGANIZATION 6o. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

Applied-Optimal Design 11fappicabde,

Laboratory ADL AFOSR/NA

6c. ADDRESS (Cit). State and ZIP Codei 7b, ADDRESS FCity, Stale and ZIP Code i

College of EngineeringBolnAF
The University of--Iowa Bo.lin AF32-44
Iowa City.__Ia 52242 ________ _________________________

8.. NAME OF FUNOING,'SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMEE
ORGANIZATION Air Force Office i(applicab c A

of Scientific Research 40W1' Grant No. AFOSR 82-0322
Sc ADDRESS Cit .Stlate and ZIP CodeI 10 SOURCE OF FUNDING NOS

Aerospace Sciences PROGRAM IPROJECT I TASK WORK UNIT

Boiling AFB, D.C. 20332-6448 EEETN. N ON

11 TI:TLE Ilnclde securlty clja~tflalon, Database Design 612 37B
Methodology & Database Management System for. I
12 PERSONAL AUTHORISI

* T. SreekantaMurthy and J.S. Arora
13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT Y,. Mla L~a ' 11 PAGE COUNT

Interim IFROM 7 84 TO 12-84 1 1984-12-31 7 147
*16. SUPPLEMENTARY NOTATION

p 17 COSATI CODES . 18 SUBJECT TERMS 'oninar.~ oIn reer". I nccrscs,,a' 010 cfnl(Nf 5% block numbc,

1E LD GROUP SUB G'R Database Design, Structural Analysis, Optimization,
I Database Management System

19. ABSTRACT iContimnue on '-everac it necessam- and identil) b% bluck numbv.,

)A study is made to integrate finite element-based-optimal structural design methods and
'-computer-science methods into a computer-based system containing a database, a program
Slibrary and man-machine communication link. Emphasis is placed upon database management

concepts for structural design. important components required to build a computer-aided
structural design system are described. A number of database management concepts --

iIerarchical, network and relational data models, conceptual, internal and external view of
data organization, normalization of data, and integrity of database are discussed with
reference to structural design data. A methodology to design a database is proposed.
Three levels of data organization-conceptual, internal and external are suggested. A
methodology to construct a numerical data model is described. A numerical data model

* supports data of various types of large matrices such as banded, skyline and hyper matrices.
REka-irements of database management system and components needed to develop it are discussed
Ia-Pjjages req1 uired to en5 et good communicat ion ,link between designer .and computer- are

20 DIiRIBUTION/AVAILABI LIT Y 0P ABSTR4ACT 21 ABSTRACT SECURITY CLASSIFICA1ONr

UNCLASSIFIED/UNLIMITED SAME AS APT OTIC USERS rUnclassified

22& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPH-cNE NUMBER 22c OFFICE SYMBOL

Dr. A.K. Amos 227743 N

DO FORM 1473,83 APR Unclassified1S BSOET

.L.jI CLASSIFICATION OF THIS PAGE

,...
%I.-

.4

% . . .

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION
1.1 Introductory Remarks 1
1.2 Computers in Structural Design - State-of-the-Art 1
1.3 Motivation for Research 0...... 2
1.4 A Survey of Literature....
1.5 Objectives of Research 6

,1.6 Scope of Work o.... o.......................7

2. COMPUTER-AIDED STRUCTURAL DESIGN.............. 8
2.1 Introductory Remarks...
2.2 Structural Design Process and a Sample Design Problem 8
2.3 Mathematical Modelling of Structural Design.....................11

2.3.1 Finite Element Analysis.................................. 11
2.3.2 Optimal Structural Design o.... 13

2.4 Components of a Computer-Aided Structural Design System 14
2.5 Database for Computer-Aided Structural Design................o..17
2.6 Communication Subsystem 18
2.7 Users of Computer-Aided Structural Design System 18

3. DATABASE MANAGEMENT CONCEPTS *****o9*99ee........21
3.1 Introductory Remarks ... 21
3.2 Definition of Various Terminologies............... 21
3.3 Views of Data and Data Models................................... 27

3.3.1 Hierarchical Model 27
3.3.2 Network Data29
3.3.3 Relational Model ... 29

- 3.3.4 Advantages and Disadvantages of Data Models29
3.4 Normalization of Data.... 32
3.5 Semantic Integrity and Consistency...... o 34
3.6 Transaction Management..36
3.7 Global and Local Databases...39

4. DATABASE DESIGN METHODOLOGY FOR STRUCTURAL DESIGN................... 424.1 Introductory Remarksg..... ecee... . .42
4.2 Development of a Conceptual Data Model 42

4.2.1 Basic Considerations..................................... 42
4.2.2 Identification of Characteristics Data 43
4.2.3 Reduction to Elementary Relations 46
4.2.4 Determination of Transitive Closure 49
4.2.5 Determination of Minimal Covers.......................... 51

" ~~~4o3 InternalMoe..........................5
~~~4.4 External Model ............................ 6

, "- ~4.5 Numerical Model ........................... 6

4.5.1 Identification of Matrices ............................... 64
4.6 4.5.2 Methodology for Design of a Numerical Model .............. 67
4 Algorithmic Model...........................................74

i .

C,-.

'p



5. DATABASE MANAGEMENT SYSTEM FOR STRUCTURAL DESIGN - A PROPOSAL....... 75
5.1 Introductory Remarks ........................................... 75
5.2 Requirements of a Database Management System .................... 76

5.2.1 Languages for DBMS Users ................................ 76
5.2.2 Comand Processor-..... .................... ...... 76
5.2.3 Input-Output Processor ................................... 78
5.2.4 Addressing and Searching ................................. 78
5.2.5 File Dfinition and File Operations ...................... 79
5.2.6 Memory Management ................................ ........ 79

5.2.7 Integrity Rule Processor .............................. 80
5.2.8 Relational Operators ..................................... 80
5.2.9 Security and Protection Schemes .......................... 80

5.3 Data Definition Language ........................................ 81
5.4 Data Manipulation Language ..................................... 82
5.5 Query Language .................................................. 84
5.6 A Review of Database Management Systems ......................... 84

6. IMPLEMENTATION OF A DATABASE MANAGEMENT SYSTEM -- MIDAS.............. 91
6.1 Introductory Remarks ............................................ 91
6.2 Implementation of MIDAS/R ....................................... 91S6.2.1 Capabilities of AS/R .................................. 91

6.2.2 Database of MIDAS/R......................... . ............ 91
6.2.3 Data Definition Commands of MIDAS/R ...................... 92
6.2.4 Data Manipulation Commands MIDAS/R....................... 95
6.2.6 Programctil ms .......................... ............. 101

6.2.7 Limitations of MIDAS/R .................................. 102
6.3 Implementation of MIDAS/N ............ ......................... 103

6.3.1 Capabilities of MIDAS/N ................................. 103
6.3.2 Database of MIDAS/N..................................... 103
6.3.3 Data Definition Subroutines of MIDAS/N .................. 103
6.3.4 Data Manipulation Commands .............................. 106
6.3.5 Matrix Operations Utilities ............................. 109
6.3.6 Equation Solvers and Matrix Decomposition............... 110
6.3.7 ProgramDeal15

6.3.8 Limitations of the MIDAS/N .............................. 117

7. SIMARY, DISCUSSION AND CONCUSLIONS ..... ....................... 118 K

7.1 suin ..................................................... 119
7.3 Conclusions .................................................... 121

APPENDIX I .....................

APPENDIX 2 ..............

,r,. APPENDIX 318'

''REFERENCES ...............

ACKNOWLEDGEMENT .............. 9..9..136

OOO OOO OO. OOO 0.. .. O~e0O. OOO OOO OOO OOO .. O O~m O t IL -



LIST OF SYMBOLS

Element cross-sectional property matrix

B Strain-displacement matrix

b, bi Design variables

C Damping matrix of a structure

D Constitutive matrix

F Body force

Fe Element forces

Ft+At Vector of nodal forces equivalent to element stresses

h Equilibrium equation

Kbb Assembled boundary stiffness matrix

K Assembled stiffness matrix of a structure

Kb Condensed stiffness matrix of a substructure

Kbi Assembled internal-boundary stiffness matrix

Ke Element stiffness matrix

Keff Effective stiffness matrix of a structure

Kii Assembled internal stiffness matrix

KNL Nonlinear geometric stiffness matrix

Kt. Linear incremental stiffness matrix or
L NTIS CRAj

K Geometric Stiffness matrix OTIC TA1

M Assembled mass matrix of a structure

Me Element mass matrix 1By ..... .....------

N Shape function matrix DLt lbjtioi/

n Element number - .ai Codes

Di~t
P Global loads on a structure

.8.Element body force-



Pb Boundary loads of a substructure

Pb* Condensed load matrix of a substructure

Pe Element load vector

Peff Effective load matrix of a structure

Pi Internal loads of a substructure

Ps Element surface loads

-t+At Vector of externally applied loads at time t+At

Po Element load due to initial strain

r Substructure number

T Transformation matrix

Ue Element Displacements

Ui  Internal displacements of a structure

Ub  Boundary displacements of a structure

V Volume

V Global displacement of a structure

Vb Boundary displacements of a substructure

Ve Element displacements

" Vi Internal displacements of a substructure

y Mode shape

z Displacement vector

Z. Allowable displacement at jth location
3

Z Displacement of jth location

AV Vector of incremental nodal displacements

Element strain

6, Initial strain

p Material density

-a Allowable stress in the member

- . .°,

" .*.* , . - .. . . - . *,*-. . 2 ; . .



a b Buckling stress of a member

Oe Element stress

a .. Stress in the member

x Eigen value

Adjoint matrix

* Constraint function

Cost function

Frequency

O Lower bound on eigen value

. . .. . . . . . . . . . .



LIST OF FIGURES

Figure 2.2.1 Conceptual Design of a Frame .....................

Figure 2.2.2 Designers View of a Frame,..... o............ ...... o...1O

Figure 2.3.1 A General Flow Diagram for Optimal Design of Structure ... 15

Figure 2.4.1 Components of Computer-Aided Structural Design System .... 16

Figure 2.7.1 Users of Computer-Aided Structural Design System ...... ..20

Figure 3.2.1 Functional Dependencies ....... . .............. o.2

Figure 3.2.2 Full Functional Dependency ........... o................... 25

Figure 3.2.3 Transitive Dependence ...... .... . ... ... . ... .... ...... 25

Figure 3.2.4 Digraph.,............................6

Figure 3.3.1 Hierarchical Data Model ........ ... o .......... o......... 28

Figure 3.3.2 An Occurrence of a Hierarchical Data Model ....... o....... 28

Figure 3.3.3 A Network Model ... ................... o%9**e.e..o.o*9..oov30

Figure 3.3.4 An Occurrence of a Network Model... ....... ....... ....30

Figure 3.3.5 Relational Model ....o.........................3

Figure 3.4.1 First Manual Form for Relation CONN ........ .9e.......*.33

Figure 3.4.2 Second Normal Form for Relation CONN....*........ *......35

Figure 3.4.3 Third Normal Form for Relation NAM-DOF..*.*.. .. *o*...35

Figure 3.7.1 Network of Databases.....o ........ ....... -- .o-o..o...o40

Figure 4.2.1 Digraph Representation of Elementary Relations ...... o.... 50

Figure 4.2.2 Connectivity Matrix C for Elementary Data ... o...... o.... o52

r.Figure 4.2.3 Digraph Representation of Minimal Cover ................ o.54

Figure 4.3.1 A Tentative Internal Model...o... o...... o ... o..... o...... 59

Figure 4.3.2 Relation TRM-D in 1NF ...... ....... ... ................. 5

Figure 4.3.3 Relations in 2NF ........... o............................. 62

Figure 4.5.1 Banded Matrix ...... .... o.. .. .. o....... ........ 6

6- V.



*Figure 4.5.2 Hyper Matrix.... ....................... .eooooeoeoo*e~~oe66

*Figure 4.5.3 Skyline Matrix ...0.0......................................66

*Figure 4.5.4 Row and Submatrix Storage Schemes ........................ 69

*Figure 4.5.5 Relation for Matrix Storage .............................. 71

Figure 4.5.6 Transforming Internal Storage to External Views .......... 72

*Figure 4.5.7 Row-Column Storage Scheme (Internal) ..................... 72

Figure 4.5.8 External View of Sparse Matrix ................. 7

Figure 5.2.1 Components of a Database Management System ........999.e.977

Figure 6.2.1 Data Type and Size of a Relation ......................... 93

*Figure 6.2.2 Layout of Data in a Typical Relation ..................... 94

*Figure 6.3.1 Logical Data organization of MIDAS/N .................... 104

Figure 6.3.2 Hierarchical Level of Database Organization ............. 116 .-

*Figure 6.3.3 Physical Sotrage Structure ............. oes.........116

. . ... . . . . .



LIST OF TABLES

Table 4.2.1 Transitive Closure for Elementary Relations .............. 53

Table 4.2.2 Deriving Minimal Cover ................................... 56

Table 5.3.1 Features of Various Database Management
Systems for Engineering Applications .................. 90

o .' J/

-- r a2i n5-r rA . - .- -,-k-



ABSTRACT

Astudy is made to integrate finite e-lemnent-based-optimal structural i
design methods and computer-science mnethods into a computer-based system

* containing a database, a program library and man-machine communication link.
Emphasis is placed upon database management concepts for structural design.
Important components required to build a computer-aided structural design
system are described. A numbe r of database management concepts -

hierarchical , network and relational data model s, conceptual , internal arid
external view of data organization, normnalization of data, and integrity of
database are discussed with reference to structural design data. A
methodology to design a database is proposed. Three levels of data
organization-conceptual, internal and external are suggested. A methodology
to construct a numerical data model is described. A numerical data model
supports data of various types of large matrices such as banded, skyline and

*hyper matrices. Requirements of database management system and components
needed to develop it are discussed. Languages required to enable good

*communication link between designer and computer are developed. A database
management system - MIDAS is i mplIeme n ted for use in structural design
applications. MIDAS supports both relational and numerical data models. It
can be used either through application program calls or interactively.

[% '%

I .

Fiay td is coclded tha winthat ithe poededtbase despignme thodouly-

Eand s the aced updatabase manaqement systmeptimu dersignu oft cmldexn"

°-dtbs aedsuse ih rfeec ostructural systegs canae.attempted

r ehdlg odsg aaae spooe. Tre lvl fdt



.- 1. INTRODUCTION

1.1 Introductory Remarks

Advances in computer technology have brought about profound changes in
the way engineering analysis and design are performed. In structural analysis
computer has become a vital adjunct to theory. Several general purpose
computer programs having a wide range of capabilities are being commonly used
for finite element analysis of structures. In the structural design field,
computer programs are being developed for optimal design. But, they are in
the early stage of development and are facing a number of problems in design
of practical structures. Problems arise due to iterative nature of optimal
design algorithms and need for reanalysis of the structure in each
iteration. Reanalysis of a structure using existing finite element programs
are difficult because they is not flexible to use modified data generated at
various design stages. Moreover, designer needs control over the program and
data in selecting appropriate algorithms and data to obtain optimum
solution. Thus, there exists a wide gap between structural analysis and
design capabilities. To bridge this wide gap, it is necessary to establish
approaches through integration of computers in the design environment. The

-term computer-aided design has evolved over years which provide a good basis
for such an integration.

Computer-aided design (CAD) means integration of engineering methods and
computer-science in a computer-based system, providing a database, a program
library and a man-machine communication link. The term computer-aided
structural design optimization is derived from the above definition to cover
structural analysis and design optimization methods. In this study a new
concept is presented for integrating structural analysis and design
optimization methodology into a computer-based systems which encompases this
meaning of CAD. Emphasis is placed upon database management concepts for
finite element analysis and st, uctural design optimization.

1.2 Computers in Structural Design - State-of-the-Art

Knowledge about the historical background provides a better understanding
of the state-of-art. Going back to 1960, Integrated Civil Engineering Systems
(ICES) development was an important milestone in the use of computers in
solving civil engineering problems. It was based on the idea of integrating
computers in the problem solving environment to provide faster, more accurate
and complete analysis and design capability to engineers. During the same
period, theory of the finite element method began to evolve and led to the

. development of several finite element analysis programs. The computer
programs such as NASTRAN, STRUDL, and ASKA are well known and widely used for
finite element analysis. Many of these programs are quite sophisticated,
large in size and are capable of analyzing a wide variety of structural
problems. With the advances in computer technology, computers are available
at a lesser cost and have additional facilities like graphic display, and
large disk capacities. Finite element programs were designed to make use of
such facilities to display finite element mesh, store large amounts of data on
disk and provide interactive facility to users. Programs like GIFTS, ANSYS,
and ADINA were developed in the seventies to provide these new features to
users.

:,, . .

• ' '.'< ',','., ' -" ," . '-". " ". " ". "" ". ... -. ".-' -.. •--,-.--... . . . . . . . . . . .. .



2

During the last decade, research activity in the area of structural
design optimization increased. Investigations on nonlinear programming
techniques in structural optirrization became one of the major topics of
research. Several computer programs were developed for solving structural
optimization problems. These include DOCS (Arora, et al., 1984a), ACCESS
(Fleury, et al., 1981), PROSSS (Sobieszczanski-Sobieski, et al., 1980) ODYSSEY
(Bennett, 1979) and others having moderate range of capabilities in solving
optimization problems. They use finite element method for analysis of
structures. DOCS program has capability to use substructuring, design damaged
structures, and to use gradient-based techniques for optimization. PROSSS
uses SPAR program for finite element analysis. Many of these programs were
developed to study problems of research interest. Therefore, applicability of
the programs to general structural problems is limited. None of these
programs is linked to any pre- or post-processor making input to program and
analysis of results extremely difficult. Studies are being made to develop
good structural design optimization programs that are comparable to generality
and capabilities of existing finite element programs.

Since, finite element analysis of structures uses large amount of data,
some routines were incorporated into finite element packages to store data on
secondary storage devices. Data management using these routines were tedious
and unorganized. Data generated by finite element packages were almost
impossible to use in other programs for further analysis and design of
structures. Development of design optimization algorithms, faced this problem
for using analysis data generated by finite element packages. Iterative
design process posed a big challenge not only in efficient use of computer
resources, but also in organization of large amount of data of finite element
analysis and design optimization methods. At this stage, engineering software
designers began to think of introducing database management concepts into the
software similar to those of business database management systems. Several
database management programs were developed in the late seventies and in the
beginning of the eighties for engineering applications. Integrated programs
for Aerospace Vehicle Design (IPAD) development is an important milestone in
engineering database management. A database management system called RIM
(RIM, 1982) was developed under IPAD project. Several application programs
such as SPAR (Giles and Haftka, 1978) BANDIT (band width minimization), PROSS,
ATLAS, and NPLOT (graphics) were tied together with a common database for
integrated design of structural systems (Fishwick and Blackburn, 1982).
However, use of a database in these application programs were limited to input
and output only. There does not exist a finite element program which directly
uses a generalized database management system such as the one developed for
IPAD project. Studies are being made to incorporate a database, a program
library and man-machine communication link as needed for computer-aided
structural design. Emphasis on blending computer-science and engineering
methodology toward arriving at efficient and economic design of structural
systems seems to be the goal of CAD today.

1.3 Motivation for Research

In optimal design of structural systems we generally use nonlinear
programming and finite element techniques. Nonlinear programming techniques
require formulation of design objectives and constraints of the system. They
use large amount of data depending on the size and complexity of problem.

%%|

.--4 . . . .: - .,, . . , , .- \, ''. : . . . ..-



3

Organization of data related to design variables, geometry, material, loads,
and intermediate computation data, generated and used in design of large
structural systems is a tedious task. Finite element techniques are usually
adopted to analyze the system within a design iteration. As such the finite
element techniques require huge amount of computation and data storage
depending on the size of problem at hand. Further, the amount of data handled
depends directly on the number of iterations performed in iterative design
optimization algorithms. Therefore, there is a need for data organization in
optimal design of structural systems.

In this regard, incorporating a database into structural design programs
look very attractive. Such a database can provide data for both structural
design optimization and finite element analysis programs. It will enable
designers to choose appropriate data from the database and use them in any
optimization algorithms to improve design. Also, data used and generated in
one program can be made available for use in another program. Since, most of
the data for finite element analysis and design optimization are common, a
centralized database will provide efficient organization of computer
resources. A centralized database allows interaction between a finite element
program and an optimization program to improve design iteratively. Such a
database will provide an option for the designer to interrupt the program
execution and provide flexibility for the designer to change the design
parameters. A good database will enable addition of new optimization and
other programs which use the common data without extensive modification of
database or existing programs. Also, several designers can be allowed to use
a common database to investigate alternate designs. Interactive graphics data
can be stored in a database to provide easy communication between computer and
designer. Therefore, a properly designed database, together with a set of
design programs and communication system, offer a considerable aid to
engineers involved in design optimization.

In view of the above observation, we will investigate design and use of a
database in structural design optimization.

1.4 A Survey of Literature

A survey of literature of data management in computer-aided structural
design is presented in this section. Also, the survey includes literature on
database management for engineering applications. The survey is broadly
classified into database management concepts and systems. Various database
management systems currently in use are reviewed in Chapter 5 and their
features tabulated there.

.4,

The meaning of computer-aided design has changed several times in the
past two decades of its usage. it was a popular idea that CAD meant a menu of
analysis programs called by the designer. Later, CAD became synonymous
with computer-aided drafting. However, a trur description of CAD is
synergistic interplay of man and computer (Allan 1972). A more appropriate
definition of CAD is given by Encarnacao and Schlechtendahl (1983): "It is a -M
discipline that provide know-how in computer-software and hardware in system
analysis and in engineering methodology for specifying, designing,
implementing, introducing, and using computer based systems for design
purpose.

• " ,_ ' -' _-,-, '. "" " . """" . " -- . """-'- .- , ', "•"/ " ' -"- " -.. ." "." "- - " -° -" - " " - - " '- - '- - .""



4

The paper by Felippa (1979) serves as an introduction to the subject of
database management for scientific and engineering applications. The paper
highlights the difference between the business data management and scientific
data management. A comprehensive list of terminology relevant to scientific
computing is given in another paper by the author (Felippa, 1980). Since, the
terminology used in business DBMS is fairly new to engineers, this list serves
as a starting point for the newcomers. It is interesting to know how
scientists actually use their data. The paper by Bell (1982) discusses some
issues about data usage and also gives comparison between data modelling for
scientific and business applications. In order to bring out difference
between the use of database for business and engineering applications,
Foisseau and Valette (1982) present a list of criteria.

The application of data management in finite element analysis and design
optimization computation is fairly new. Even though, data management in these
computations is critically needed, not much attention has been paid to develop
proper data management techniques. Only a few research studies were made on
data management for finite element analysis. Lopez (1978) and associates
studied the application of data management to structures. They pointed out
that serious drawbacks of ASKA, STRUDL and NASTRAN were due to lack of high
level database management facility, Also, these programs did not provide any
type of data structure capability. They have simple internal organization and
require many files with trivial data structures. This type of systems tends
to be I/O bound because logical operations on data are related directly to a
physical location on a serial device. For example, in generating the
stiffness matrix for the elements of a structure, most programs generate one
matrix and write onto a sequential device; and the process is repeated for all
elements of a structure. In order to access these stiffness matrices at a
later time, the program must pass serially over the entire file again. Lopez
(1974) in another paper presented a data management system for finite element
analysis. Pahl (1981) described the properties and functions of data storage
for finite element programs.

Several research studies were made on data management techniques for
computer-aided design and general engineering applications. The techniques
developed for them are also applicable for finite element analysis and design
optimization. Studies on data models, database design methodology, database
network, data definition language, data manipulation language, database
integrity and consistency and numerical database management were conducted by
several researchers. A comprehensive survey of data management in engineering
applications is given by Sreekanta Murthy and Arora (1984).

The well-known data models -- hierarchical, network and relational have
been studied by many researchers to find out their suitability for organizing
engineering data. Koriba (1983) discusses applicability of ANSI/SPARC,
CODASYL and relational approach to CAD software design. The three levels of
data view proposed by ANSI/SPARC is gaining wide acceptance and is likely to
be incorporated into future CAD systems. Relational approach is based on set
concepts and provide a sound mathematical background. This approach provides
high level of data independence, user friendly data definition and data
manipulation capabilities. Relational model is becoming popular among
database designers and users. Several researchers are currently working on
this model. Fishwick and Blackburn (1982) discuss advantage and disadvantage
of a relational model from an engineering point of view. Authors provide

..- . -,. -"' .- - . -



examples of relations for managing data of a finite element model. They also
described the development of the PRIDE systems which integrates engineering
application programs -- AD-200O, SPAR, PROSSS, NCAR, and BANDIT. SPAR and

PROSSS are finite element analysis and structural optimization packages
respectively. AD-2000 is a finite element model generator and BANDIT is
bandwidth optimization program. However, use of their database management
system was limited to interfacing application program input and output to a
common database. Modification of application programs was not made to use the
database for programs internal data organization needs. Blackburn, Storaasli
and Fulton (1982) in another paper demonstrate the use of a relational
database in engineering applications. Four sample problems -- a panel with
circular hole, a square plate, a conventional wing structure and a large area
space structure were used to evaluate the merits of managing engineering data
using a relational system. Studies on hierarchical model are mainly with
reference to organizing large matrices. Lopez (1974) use a hierarchical model
for finite element data organization. A hierarchical data structure for
organizing node, element, load and stiffness matrix data is given in the
paper. However, the DBMS uses a problem-oriented language translating
facilities in the POLO supervisor. Under which the application programs
operate. Hence, it is highly doubtful that two will ever be used
independently of each other. Pahl (1981) described hierarchical storage
structure for hypermatrix data organization. Hypermatrix stiffness and load
data are found to be most suitable to hierarchical data representation. A
paper by Elliot, Kunni, and Browne (1978) describe a hierarchical model of
data and a DBMS system design based on it. Some practical examples on
structural design and wind tunnel data management are also given in the
paper. However, this system require a precompiler to decode the data
description and data manipu7>*in commands in a source program.

Investigations have been conducted to find out a suitable way to design a
database for engineering applications. There exists basically two different
approaches to database design -- first approach generates a global schema and
then derive local views from it; the second one obtains local views of
different users and then integrate then to form a global view. Buchmann and
Dale (1979) analyze different methodologies to database design and present a
frame work for evaluating them. A comprehensive description of database

,. design methodology for business applications is given in Vetter and Maddison
(1983). Several researchers Lillehagen and Dokkar (1982), Grabowski, Eigener
and Ranch (1978), and Eberlein and Wedekind (1982) have worked on database
design for CAD applications. However, there do not exist any methodology to
design database of finite element and design optimization programs.

Development of suitable data definition (DOL) and data manipulation
languages for engineering applications have been of interest to many
researchers. One of the major considerations in the design of data definition
language was to keep the syntax concise and easy to use for application
programmers. Several other important considerations in DDL design are
described in detail by Elliot, Kunni and Browne (1978). They use special
indicators in the source program code to identify the DDL and DML commands and
translate them using a precompiler to FORTRAN statements. These DOL and DML
statements can be used to operate on a hierarchical data structure. Special
features of DDL and DML in a relational DBMS for interactive design are
described by Shenoy and Patnaik (1983).

-%,- %, W,'1,..



6

The application of data management in numerical computation is fairly
new. Finite element analysis and design optimization procedure require
substantial amount of matrix data processing. Data management system require
special facilities to deal with data of large matrices. A recognition of this
need is made by Daini (1982) and a model is developed for numerical database
arising in many scientific application to keep track of large sparse and dense
matrices. The paper presents a generalized facility for providing data
independence by relieving users from the need for knowledge of physical data
organization on the secondary storage devices. Because of the limitation of
core storage and to reduce the input-output operations involved in secondary
storage techniques, many investigations have been conducted on the efficient
use of primary memory. A detailed survey by Pooch and Nieder (1973) gives
various indexing techniques that can be used in dealing with sparse
matrices. Darby-Dowman and Mitra (1983) describe a matrix storage scheme in
linear programming. Rajan and Bhatti (1983) presented a memory management
scheme for finite element software. Sreekanta Murthy, Reddy and Arora (1983)
describe the database management concepts that are applicable to design
optimization field.

1.5 Objectives of Research

1. To study of various database management concepts applicable to computer-
aided structural design optimization field. Suitability of available
database management concepts and drawbacks associated with their use in
engineering design will be investigated.

2. To develop a suitable database design methodology for structural design
database and to develop a conceptual data model to represent the design
data. Schemes for constructing external and internal data models will be
identified. Data models for organizing matrix data will be developed.

3. To study the existing database management systems and to identify the

important features with respect to their suitability to organize
structural design data.

4. To propose a suitable data definition language, data manipulation language
and query language for engineering design database management system.

5. To implement a database management system for engineering applications
based on selected data models.

6. To design a database for finite element analysis based on the suitable
model. Use of the database, data definition, data manipulation and query
languages will be demonstrated.

7. To design a database for structural design optimization. Use of the
database in iterative design data organization, numerical data
representation and interactive design process will be demonstrated.

,'.w.i

" " ;"''.'"- ;" ' , ":" " " ". " -..-"- ,. L . ..;- .-... ' " '.'.. , .-.-, . - . " ' " "" '- "," . " . " - '



7

1.6 Scope of Work

Computer-aided structural design process is identified in Chapter 2.
Mathematical modelling for finite element analysis and structural design
optimization are given. Need for database management in structural design is
stressed. Chapter 3 deals with database management concepts. Well-known data
models are described with reference to structural design data. Various
database management concepts like normalization of data, semantic integrity,
and global and local databases are described. Database design methodology for
structural design is given in Chapter 4. Methodology for conceptual model
development for structural design database is described. Normalization
procedures are described with examples. Description of a proposed numerical
model is given there. In Chapter 5, components of a database management
system are studied. Data definition and data manipulation languages for
structural design database are proposed. Considerations in developing memory
management schemes and query language are presented. Implementation details
of a database management system for organizing structural design data are
described in Chapter 6. Relational data management procedures and numerical
data management schemes are described. Usefulness and drawbacks of this
systems are given. Implementation and evaluation of the database and the
database management systems are in progress. Results of that study will be
reported at a later date. Finally, discussion and conclusion of the present L

study are given in the last chapter.

*- -A-

,,

> ..

_ .'. ..- - .- . .- '" . ,'. ,.<. .... .- ,.....-.._. .,..-. ,, •%. -. , . > -. %- .,.. . . . . . . .. . .-. ,.. . . .... . . .-. .-.- _.-.,.... . . . . . . . ." ,.,.
[. '- ''- -' '. . '. '' ' . .. ' "": , .-. , . .".. . ; . " " -" , .- -- ' ." .. -. .-.. .'.. . " ' ' -''' '-. '.- " . . .- '



2. COMPUTER-AIDED STRUCTURAL DESIGN

2.1 Introductory Remarks

In this section, the principles, methods and tools used for computer-
aided design of structural systems are described. Structural design process
is described with the aid of a sample design problem to provide qualitative
description of the design process. In particular, mathematical modelling of
the structural design process is given in Section 2.3 to briny out various
steps. As mentioned in Chapter 1, a database, a program library and a
communication link form the important components of a CAD system. These
components are described in detail in Section 2.4. Need for data management
for structural design is emphasized in Section 2.5. Need for a good
communication subsystem is given in Section 2.6. Finally, various classes of
users of a computer-aided structural design system and their requirements are
described in the last section.

2.2 Structural Design Process and a Sample Design Problem

The purpose of studying structural design processes is to provide the CAD
system analyst with means of describing the structural system into which CAD
must fit. The design process can be described, in general, by a sequence or
chains of actions where each action passes its results on to its successors.
The complex nature of design process will have to be reflected in CAD systems
if such systems are to support the design process as a whole.

The design process begins with the identification of a need by a user of
the structural system. The needs and objectives of the system are defined
quantitatively. Functional analysis is carried out to find out operational
requirements of the structural system. The next step is the configuration or
conceptual design of the system. For example, if function to be performed is
to support the loads on a frame, the conceptual design (see Fig. 2.2.1)
includes beams, columns, plates, and bars. At the conceptual design stage
various parameters describing the system are identified and acceptable range
of values are prescribed. This preliminary design is then analyzed with
respect to the constraints and if it does not adequately satisfy the
constraints, the design is revised. This is an optimal design process, which
has its objectives the choice of undetermined parameters that were identified
in the previous step. The criterion for optimal design may be maximization of
structural system capability or minimization of cost. The analysis and
redesign cycles are repeated until a design satisfying all the constraints is
obtained.

It is common that a number of designers working on a practical design
project carry out specific subtasks. Designers are required to meet
individual goals, and may have an isolated view of the project. For example,
designer A (see Fig. 2.2.2) may work only on part of the structure in the
design project. During the process, a set of information required for
individual needs is derived to carry out the specific task. The, sharing of
information takes place, between the conceptual design level with subsystem
design levels, and among ubsystem design levels themselves. The method of
information sharing (reports, catalogues, etc. in case of convention design
process; a database in case of CAD design process) and tools for information

--- N ......



9

B

B B IIR OR I

T R R 0 0 iI
T T T II

C C 1C C

B I

I~ -BBEAM
I~ -CCOLUMN

--------------------- :~1T-TRIANGULAR PLATE
B1  jB Q -QUADRILATERAL PLATE

rC BC

Figure 2.2.1 Conceptual Design of a Frame



10

VIEW OF VIEW OFDESIGNER 
ESIGE

E 
A

SUBSTRUCTURE A

DESIGN OPTIMIZATION

FINAL DESIGN SUBSTRUCTURE B

IM

M M

BUCKLING ANALYSIS

DYNAMIC ANALYSIS

VIEW OF VIEW OF
DESIGNER DESIGNER

D C

Figure 2.2.2 Designers View of a Frame

.1"o,°

• . ° - . .



sharing (typing, printing, drafting in conventional design; interactive
computer terminals, graphics in CAD design process) are dependent on the
state-of-art of the design process.

2.3 Mathematical Modelling of Structural Design

In the previous section, a general structural design process was
described. Here, mathematical modelling for structural design is given.

. Various steps of the structural design are formulated in terms of mathematical
models. Namely, identification of objectives and constraints, analysis of the
structure by finite element method, design constraint checks, design
sensitivity calculations and design optimization process are presented. This
formulation is intended to provide CAD system analyst the information about
the sequence of computation performed, data used in design and its nature.

2.3.1 Finite Element Analysis

Finite element analysis begins with idealization of the structure using a
number of finite elements. The input data for a finite element analysis
program consists of the geometric idealization, the material properties, and
the loading and boundary conditions. Important steps of finite element
analysis (Przeinieniecki, 1968) are listed below. Depending on the type of
analysis, some or combination of the steps are used.

Element Level Computation. At the element level, stiffness matrices,
mass matrices, load matrices are computed as

TK = BTD B dV

'V.
Me f1 NTp N dV

V

Pe Po + Ps + PB

Po = f NT D dV
V

)= f NT P dA
A

) PB = N F dV
V

Substructure Level Computation. If substructures are used in the
idealization, then element stiffness matrices are assembled to fon
substructure level matrices. The equilibrium equation for the r

substructure is given by

KrUr pr

i .e. i

. .. MI -m . . ... m i ' ' r - .. . . . . . . .



12[K: i j]r {tijr p tir
i bi

The following computations are done
r

,r . r  r .= Kr  . pr
Pb bi " ii 1 •K

Keff "
r *r

P eff = " Tb  + Pb ,:
r

Structure Level Computation. Equations of equilibrium for complete
structure are solved to get response of the structure. For static
equilibrium, we have

KU =P
where :

K K e , P P Z e

n n

For dynamic response

".; + CO + KU: P"

where

N e e

For nonlinear analysis

K t pt+At Ft+At(K + KNL AU =

For buckling analysis

(K + ,Ka) U = 0

For frequency analysis

(K + XM) U = 0

Recovery of Element Level Response. After the structure level response
are computed, element level displacements, stresses, strains, and forces are
computed

u = TU

E Bue
e e

F Aa
e e

....... .. ..



"-.- 13

2.3.2 Optimal Structural Design

Optimal structural design is carried out using well-known methods given
in Haug and Arora (1979) and Arora and Govil (1977). Important steps of
optimal design consist of formulation of cost and constraint function,
checking for constraint violations, design sensitivity analysis, design change
computations and convergence checks. These steps are listed below.

Problem Formulation. Optimal structural design problem formulation is
made using a set of state and design variables. The objective is to minimize

-- the cost function

%o(z, b)

Subjected to state equation

h(z,b) = 0

K(b)y = M(b)y

and constraints

,,(z, ,b) < 0

Constraint Checks. Violated displacements, stress, frequency and other
constraints are identified. For displacement constraints_z~ao

zu -zj -zJ <0

For eigenvalue constraint

i o

For stress constraints

"i =-  aij - Oa < 0

For buckling constraint

S- b <

For design variable constraints

ii e bi - bi 1 0, or b - b ()

Design Sensitivity Analysis. Design sensitivity dnalysis is done to
determine the effect of the change in design 6b in b0 . Gradients of
function p is('-' -. q d

i 'j dz 'i d~db a)b 3 z db 3r , (lb



.- 14

The following computations are needed to calculate gradients,

1. Linear systems

dz =a for direct differentiation method
db

KT x for adjoint variable method

- (K(b)i - F(b))

2. Nonlinear systems (Ryu and Arora, 1984)

,'-K T  XJ = _ [-_L ( Ki) z] Xq "

I 3Z 3~Z)
3. Sensitivity analysis of eigenvalues

T (.LK 3M)
ab yj ab a

Design Change Computation. A change in design variable vector h is
computed to reduce the cost. Mathematical programming methods such as the
gradient projection or other methods (Arora, et al., 1984b) are used to
compute design change 6b.

bv+1i v vb °
b -= b V+ 6bv = 0,1,2 ..... iterations

A general flow diagram for optimal design of the structure is given in
Fig. 2.3.1.

2.4 Components of a Computer-Aided Structural Design System

Computer-aided structural design system consists of three important

components -- a database, a program library, and a communication subsystem.
In this study, database which is the most important component of the system is
considered in detail. A database contains data required for finite element
analysis and structural design optimization. Several users can operate on the
database either interactively or though application programs. Thus, a
database acts as a central repository of data for CAD applications. The

* second component, namely, a program library contains both the modules used for
" data management and modules containing algorithms needed for structural

analysis and design applications (matrix operation library, equation solvers,
finite element programs and optimization routines). Data management programs

- have components -- file management, input-output processor, memory management,

addressing and searching, and security and protection routines. Finally, the
* -.- communication subsystem provide link between computer and designer. They also

provide channels of data communication between the database, database
. management, and application programs. A communication subsystem consists of

interactive command processors, data definition language, data manipulation
language, and routines for graphic display. The basic components of a
computer-aided structural design system are schematically shown in Fig. 2.4.1.

Thus, we need to design and develop these three components to provide an

efficient and economic means of designing a structural systems using computer.

*1 ~-



15

2 Formiul ate
the

Design Problemj

Fiur .31 enra lo iara orOpialDein fStructure

Check fo
Constrain



16-

DATABASE0
MANAGEMENT SYST M . / ,GRAPHICS

SYSTEM

ALGORITHMS INTERACTIVE
FOR

ANALYSIS AND APHICS

DESIGN

COMMUNICATION SUBSYSTEM

APPL ICATION APPLICATION APPLICATION APPLICATION
PROGRAM PROGRAM f PROGRAM PROGRAM

1 2 3 4

Figure 2.4.1 Components of Computer-Aided Structural Design System

:"-"::"':" :"- --"~~~~~~~. .......... 'b:"-" .. :...-.:... .,- ...--. ... ..



2.5 Database for Computer-Aided Structural Design

We have described nature of the structural design process including
finite element analysis and optimization. Also, we observed that large amount
of computation is needed in the design process. Finite element analysis and
optimization programs generate large amount of data depending on the size of
the problem. The amount of data used during design optimization stage depends
directly on the number of iterations. Moreover, several application programs
are used during the design process and each of them requiring specific data.
Therefore, a careful consideration of data organization in a database is
necessary to improve design efficiency.

Need for a database in structural design optimization is more important
and demanding than that for structural analysis. It is important to realize
that design optimization and analysis are fundamentally different in nature.
In analysis, generally solution exists and algorithms use data only a few
times during solution procedure. In optimal design, existence of even a

- nominal design satisfing constraints is not assured. Several algorithms may
be needed which use similar data to arrive at optimal design. In such a case
data used by one algorithm should be made available for use in another

' algorithm. Therefore, designer needs control to select appropriate algorithm
and data to obtain optimum solution. Another important feature of design
database is that it contains both informative data such as geometry, material

- - property as well as operational data such as stiffness matrix. Informative
data remains static where as operational data gets continuously updated,
modified and deleted. A centralized database is needed which stores all the
data of analysis and design. A centralized database provides an option fo the
designer to interrupt the program execution and provides flexibility for the
designer to change the design parameters.

The question of how the database has to be organized?; what kind of
information is to be stored?; what kind of database management system (DBMS)
is suitable?; how data is manipulated?; how various applications use the
data?, have to be studied in detail. As new methods of design evolve, there
is need to incorporate the information required for them in the database.

-- Thus it is necessary for the existing database to be flexible and allow simple
modifications. The increasing size of database and complexity of information
content introduces a new dimension to the problem of in consistency of data.
The operational data creates update consistency problems. If informative data
are changed, the operational data must be invalidated. Thus, the problem of
data dependency which arises from storing operational data together with
informative data influence the design of database.

Abstract structural design informati,, must somehow be modeled into the
computer. This modelling aspect of actual design data requires a formal
approach. In this regard, there exist some guidelines that have been
developed in comirercial database management area. But the question arises as
to whether engineering data could be similarly modeled. If so, do the
structural design databases require different performance consideration from
the database of commercial applications? These questions have not yet been
adequately answered. Several different approaches have to be taken; for
example, use of commercially available database systems, and development of
special structural design database systems. Further, the data modelling
considerations depends on the type of user. Users in structural design can be
grouped into system program developers, application programmers, and

w.y , w ,
" 

-'''... - - " .- . * " " '-" - . * - . . . " ' . ". - . " ""' -" •" .-. " "-. "- "."*

%-", ' - , , - ,. . . . . . . - .. . - .. . . , . . - . . , . . , - - . . . . - .. . . - . -- . . -. . . . .



18

-. interactive users. Requirements of these users have to be considered while
designing a database system. 4.

In summary, we have identified the need for a database for structural
design and special nature of the data was highlighted. Problems associated in
providing a good database were posed. All these aspects must be considered
for providing a good database organization for structural design. -

2.6 Communication Subsystem

In this section, we emphasize the need for a good communication subsystem
- of computer-aided structural design system. A good communication link is

possible through a well defined languages for interaction between the computer
and the designer. Also, computer graphics provides an effective channel of
communication.

Languages for interaction are used either through application program or
interactively using a computer terminal. Application programs interact with
the computer to define and manipulate data in the database. Data definition
and data manipulation languages are provided for this purpose. These
languages are generally a set of commands in the host language. It is
essential to design these languages such that they are simple and easy to
use. Query language is used to define and manipulate data interactively. A
general set of interactive commands must be available in the system.
Requirement and implementation of these languages are discussed in later
chapters.

Finite element analysis and design optimization algorithms produce huge

amount of results. In order to make these results useful for interpretation
and evaluation, they need to be presented in a readily understandable form.
Long list of printed data are not suited for comprehension. Graphical
presentations are appropriate solutions. Typical tasks of computer graphics
include the selection of visual aids (graphic displays, fast plotters),
editing of data to be displayed, command interpretation and graphic database
management.

Therefore, a well-developed command language and computer-graphics can
offer considerable aid to designer to communicate effectively with the
computer during the design process.

2.7 Users of Computer-Aided Structural Design System

We have to identify different types of users and their needs in using
computer-aided structural design system. Three types of users are identified
-- (i) the system programmers (ii) application programmers and
(iii) interactive users. The difference between these users and the way they
use the system are described below.

System programmers are those who develop general purpose programs for

structural analysis and optimization. In general, persons who write these
programs are not the same as those who apply them. They work on a very high
level of data abstraction. They need a good database management system,

,s" ' " ' " " ' " , . - , ' ', -" • -' ' #- '. - - . -''.- ' - .'-.-"-J' 'wf ' ' 
-

.- e,..- , .



19

matrix operation and utility library, and a graphic system. There exists a
second category of system programs who modify the existing general purpose
finite element programs to add new capability to the programs. Some programs
like GIFTS, ADINA, and SPAR have excellent analysis capability. However, many
of these systems do not have database management capability that is capable of
sharing data outside the program environment. In some of these programs, a
local data management routines are used. These programs can be incorporated
into structural design system by providing an interface between the database
and the programs or by modification of program to retrieve essential data that
program requires. Pre- and post processing capabilities of these proyams
together with their local database may be used to integrate them in the design
process.

The application programmers are much closer to practical applications.
Their interest is not to provide means for general problem solution, but to
solve special problems; e.g., stress analysis of a structure for a certain
number of load combinations. In general the packaged programs may not have
capabilities to handle special needs of the problem. For this reason the
application programmers need capabilities to exchange data between subsystems
and add their own algorithm whenever the subsystems are not completely
covering their needs. Consider, for example a finite element package in which
capability to include special boundary condition do not exist. Application
programmer in that case selects an appropriate algorithm for assembly and
solution of system of equations to meet the needs. Design optimization
procedures have similar needs for selecting alternate application programs.
Depending on convergence and other requirements, designer switches to
appropriate optimization algorithm, but essentially using almost the same
data.

Interactive users are those who use the same application program many
* times by changing only certain parameters. This type of user does not worry

about complicated descriptive or algorithmic facilities. Their concern is
data input for many iterations with minimum effort on their side and easy-to-
perceive representation of output. An interactive user of finite element
system may like to see the effect of introducing a boundary condition at a
particular node or a load at a node. A designer using an optimization package
may like to see the convergence pattern for various values of step size
increment in the minimization path.

Thus, we have identified the various types of users of a computer-aided
structural design system. This is schematically shown in Fig. 2.7.1.

--.

4.o

• " -" . .. . . . . . . . . . . .-. .-. *. -.' - - "-.' -' ,* - * - .... , - " , - ' - - - - - .



20

0.00

Z~Gi

4J

4

V,

z a. ..

,J. cr.

NV

1IL

-.. ,v ~u



'" 21
.0"

3. DATABASE MANAGEMENT CONCEPTS

3.1 Introductory Remarks

In the previous chapter, we studied the structural design process and
emphasized the importance of database management concepts in computer-aided
structural design. Now, our problem is how to organize data in a database,
what kind of information is to be stored, what kind of database management
system is suitable, and how data is manipulated and used. If function of a
database were to merely store data, its organization would be simple. Most of
the complexities arise from the fact that it must also show association
between the various stored data. In this regard, sophisticated techniques are
available in business data management area to deal with complex data
organization problems. However, techniques used in existing finite element
programs are primitive and difficult to use. Therefore, a study of database
management concepts is made to understand various methods available for data
organization and to implement them for structural design applications. In
this chapter, the concepts are explained with reference to finite element
analysis and design optimization examples.

In Section 3.2, various database management terminologies are described,
since they are relatively new to engineering community. In Section 3.3,
commonly used data models are described. Concepts of normalization of data is
given in Section 3.4. Semantic integrity and consistency, and transaction
management concepts are explained in subsequent sections. Finally, the
concept of global and local databases is explained in Section 3.7.

3.2 Definition of Various Terminologies

A number of terminologies and definitions are given to facilitate
descriptions in subsequent chapters. They start with simple ones and move on
to more complex ones.

Database. A database is defined as a collection of interrelated data
stored together without harmful or unnecessary redundancy to serve multiple
applications. The data are stored so that they are independent of programs
which use them. A common and controlled approach is used in adding new data
and in modifying and retrieving existing data within the database. The data
is structured so as to provide a foundation for future application
development. One system is said to contain a collection of databases if they

* are entirely separate in structure (Martin, 1977).

Logical Data Structure. Data in a particular problem consists of a set
of elementary items of data. An item usually consists of single element such
as integer, real and character or a set of such items. The possible ways in
which the data items are structured define different logical data
structures. Therefore, it is the data structure as seen by the user of the
DBMS without any regard to storage details.

Model. The logical structure of data

Schema. The coded form of logical data structure is called schema.

. . - - .. K.. . ...- .. .. . -_



22

Data Independence. It is the property of being able to change the
overall logical or physical structure of data without changing the application
program's view of the data (Martin 1977).

Entity. An entity may be 'anything having reality and distinctness of
being in fact or in thought' (Vetter and Maddison, 1981). An entity may be:
(i) a real object like structure, material; (ii) an abstract concept like
finite element, nodes, a time periou; (iii) an eve,t, i.e., a situation that
something is happening (e.g., vibrating structure); and (iv) a relationship,
e.g., elements of a particular type.

Entity Set. An entity set is a collection of entities of the same type
that exist at a particular instant, e.g., set of finite elements (ELEMENTS)
and set of nodes (NODES).

Property. Property is a named characteristic of an entity, e.g., element
name, and element material type. Properties allow one to identify,
characterize, classify and relate entities.

Property Value. It is an occurrence of a property of an entity, e.g.,
'element name' has property value BEAM.

Entity Type. Entities having same kind of properties are said to be of
same type. Upper case letter is used for its name.

Domain. A domain is the set of eligible values for a property. A domain
*L has same characteristics as a set, i.e., the values belonging to a domain are

distinct and their order is immaterial. A predicate is associated with each
domain allowing one to determine whether a given value belongs to the domain
in question. Thus the formal definition of domain Di is

D= {vilPi where vi represents a value satisfying the predicate.'=.I i ":.

Examples of domain are
Element Name = {BEAM, TRUSS, ............ }
Element Material type = {STEEL, ALUMINUM, ......... }
Length = {xlx > 0 and x . 1001

Attributes. Columns of a two-dimensional table are referred to as
attributes. An attribute represents use of a domain within a relation.
Attribute names are distinct from those of the underlying domains; e.g.,

Domains: NODES = fili > 0 and i < n}
DOFS = {JJ >0 and j < m}

Attributes: NODE1 - First node of an element derived from
domain NODES
DOFI - First d.o.f. derived from domain DOFS

Relation: ELEMENT(E#, NODE1, NODE2)
Attributes NODE1, NODE2 and derived from domain NODES

Entity Key. An entity key is an attribute having different values for
each occurring entity and provide unique identification of a tuple. An entity
represents a compound key if it corresponds to a group of attributes. It is
also called candidate key.

m "



23

Primary Key. If several entity keys exist for a given entity set, then
one of them is arbitrarily choosen as the primary key.

Secondary Key. It is an attribute that does not have different values
for each occurring entity, but identifies those occurring entities that have
certain property.

Relation. R is a relation on the domains (i.e., sets) DI, D2 . 0 D (not,'-'i. n]

necessarily distinct) if it is a subset of cartesian product DIX02 X*...X n . .

Thus R C DxD2x".xDn. The value n represents the degree of the relation R.

The relation R is usually written as

" "R(D I , D2, -.*. D n) '

Here D D .. D are called attributes of the relations. The values of the
attrib1tes are talen from the corresponding domains for D D ... D . Note
that domain is a set of values where as attribute is a lit oi"valuesn(Vetter
and Maddison, 1981).

* .Tuple. Rows of a relations are called tuples.

- Function. A function is a special kind of relation between two sets,
say, A and B. Each member of a set A is associated with exactly one member of
set B. A function f is denoted as

f: A+B

Functional Dependence. An attribute A is functionally dependent on the
attribute B of a relation R if at every occurrence of B-value is associated
with no more than one A-value. This is denoted as

R.B R.A

Example. As an example, consider the relation
ELEMENT (ELMT#, EL-NAME, AREA)
EL-NAME is functionally dependent on ELMT#. AREA is functionally

dependent on ELMT#. ELMT# is not functionally dependent on EL-NAME, because
more than one element could have the same name. Similarly, ELMT# is not
functionally dependent on AREA.

An attribute can be functionally dependent on a group of attributes
rather than one attribute. For example, consider the relation for a
triangular finite element:

* CONNECTION (NODEI#, NODE2#, NODE3#, ELMT#)

Here ELMT# is functionally dependent on three nodes NODEL#, NODE2#, and
NODE3#. Given any one of NOL)Et#, NODE2#, or NODE3# it is not possible to
identify FLMI#. These functional dependencies are shown in Fig. 3.2.1.

Full Functional Dependency. An attribute or a collection of attributes A
of a relation R is said to be fully functionally dependent on another
collection of attributes B of R if A is functionally dependent on the whole of
B but not on any subset of B. This is written as

2"
. - ---.



24

R.B + R.A

In the Fig. 3.2.2 for example, ELMT# in the relation CONNECTION of a
triangular finite element is fully functionally dependent on concatenated
attributes NODE1#, NODE2# and NODE3# because three nodes combined together
define an element. NODE1#, NODE2#, or NODE3# alone does not identify ELMT#.

Transitive Dependence. Suppose A, B and C are three distinct attributes
or attribute collections of a relation R. Suppose the following dependencies
always hold: C is functionally dependent on B and B is functionally dependent
on A. Then C is functionally dependent on A. If the inverse mapping is
nonsimple (i.e., if A is not functionally dependent on B or B is not
functionally dependent on C), then C is said to be transitively dependent on A

' (refer to Fig. 3.2.3). This is written as

R.A + R.
R.B * R.A
R.B + R.C

Then, we can deduce that

R.A + R.C
R.C , R.A

For example, consider the relation
EL-DISP(ELMT#, EL-TYPE, DOF/NODE)

Here, ELMT# + EL-TYPE
EL-TYPE # ELMT#
EL-TYPE + DOF/NODE

Therefore ELMT# * DOF/NODE (transitively dependent)
DOF/NODE # ELMT#

Digraph. A directed graph (refer to Fig. 3.2.4) or a digraph is a figure
with nodes and arcs. Each arc is a line with a direction. Nodes represents
attributes and arcs represent dependencies (functional, fully functional).
Length of a path is tne number of arcs in it. For example N1-A1-N2 -A3 -N3 -A,-
N2 -A5 -N4 has length 4. Distance between two nodes is the longest possib e
path between them. For example distance between N, and N4 is 4 since longest
possible path between nodes is NI-A 1-N2-A3-N3-A4-N2-A5-N4  (Vetter and
Maddison, 1981).

Connectivity Matrix. Square matrices can be used to represent
digraphs. If the digraph has n nodes then an nxn square matrix is used. Rows
and columns represents nodes. Using the value 1 to means presence of a
connection and the value 0 to mean absence of a connection, a square matrix
can represent the connection between the nodes of a digraph. For example, if
node 2 is connected to node 4, then connectivity matrix is

N1  N2  N3  N4

O 0 0 0
O 0 0 1
o 0 0 0
0 0 0 0



25

EL-NAME.~ NODE21
AREA NODEM#-

ELMT#

Figure 3.2.1 Functional Dependencies

Figure 3.2.2 Full Functional Dependency

I.-.A

.R.8

R .C

Figure 3.2.3 Transitive Dependence



-V - -. ----------. ... .. . . .......

NN 3

A4

A5

N4

Figure 3.2.4 Digraph



T - 7 

° 
7 1

27

m

Each row and column of a connectivity matrix is named the same as the
.;4corresponding node (i.e., with the name of the attribute constituting the

node). Appropriate role names are then used to distinguish multiple rows and
columns denoting essentially a single node (Vetter and Maddison, 1981).

3.3 Views of Data and Data Models

Formal description of data and associations among them are essential for
good data organization. The most elemental piece of data is a data item. It
cannot be further subdivided into smaller data type. A data item by itself is
not of much use. It becomes useful only when it is associated with other data
items. Thus, database consists of data items and the association amongthem.

STRUCTURAL MATERIAL
MEMBER

A data model is nothing but a map showing different -at1 items and their
* associations. A data model shows logical organization of data and is useful

to describe user's view of data. Layout of data on phys :1 storage devices
is known as physical organization.

A database can be viewed at various levels depending on the context. A
' level of data that represents view of interactive terminal users and

application programmers are known as external view. Conceptual view of data
deals with inherent nature of data occurring in real world information and
represent global view of data. The data organization that describe the
physical data layout is dealt at internal level. At this level, one is
concerned with efficiency and storage space details. There is one more level
of data organization below the internal level where the actual storage of data
on a particular computer system becomes the main consideration. But, this
aspect is a specialists job and has no general guidelines. Therefore, it is
not discussed here. Three levels of data - external, conceptual and internal
are used to describe various views of data. These levels of data organization
were suggested by ANSI/SPARC (Standard Planning and Requirements committee).
It is gaining wide acceptance in designing a database.

The data associations at various levels mentioned above are described by

three common approaches - viz hierarchical, network and relational. These are
described in detail in the following subsections.

3.3.1 Hierarchical Model

In this model, the data is represented by a simple tree structure. A
tree is composed of a hierarchy of elements called nodes. Every node has a
node related to it at a higher level. The node at a higher level is called a
parent node. Each node can have one or more nodes related to it at a lower
level called child nodes. A node at the top of a tree is called the root. No

- node can have more than one parent. A hierarchical model has one-to-many
relationships. In finite element analysis, we can form a hierarchical model
with data items such as structure, substructure, elements and nodes. This
model is schematically shown in Figs. 3.3.1 and 3.3.2.

.-.. 2

•.. . . . . . . . . . .

- ...W



28

STRUCTURE

SUBSTRUCTUREj

ELEMENTj

Figure 3.3.1. Hierarchical Data Modelj

STRUTURELevel I

SUBSTRUCTURE SUBSTRUCTURE Level 2

SELEMENT ELEMENT ELEMENT ELEMENT ELEMENT Level 3

Figure 3.3.2 An~ Occurrence of a Hierarchical Data Model



29

3.3.2 Network Data Model

In network data model a child in a data relationship has more than one
parent. A network is more general than a hierarchy because a given node
occurrence may have any number of immediate superiors as well as any number of
immediate dependents. The network model allows many-to-many relationships. A
network structure is said to be simple if each directed logical association is
functional in at least one direction. This means the model has no line which

4.. has double arrows in both direction. Complex network will have double arrows
in both directions. Examples of network model for a finite element and node
relation is shown in Figs. 3.3.3 and 3.3.4.

3.3.3 Relational Model

Given a collection of sets DI, D2 ... n (not necessarily distinct), R is

a relation defined on the n sets if it is a set of ordered n-tuples <dl, d2
dn> such that d, belong to D1, d2 belong to D2, ", dn belong to Dn .

Sets DI, D2 "" are the domains of R. The value n is the degree of R. A data

model constructed using relations is referred to as a relational model. A
relational data model has a tabular form of data representation. Figure 3.3.5
represent a relational model of data. The rows of the table are referred to
as tuples. The columns are referred to as attributes. Relations of degree
one are said to be unary. Similarly relations of degree two are binary,

_ relations of degree three are ternary, and relations of degree n are n-ary.
The relational model provide an easy way to represent data and is simpler to
use than hierarchical or network data model. The relations can be easily

" manipulated using special relational operators such as PROJECT, JOIN, etc.
The operator PROJECT yields a 'vertical' subset of a given relation, i.e.,
subset obtained by selecting specified attributes. The operator JOIN puts
together columns from different relations. An example of relational model in
finite element analysis is node-coordinate relation shown in Fig. 3.3.5.

3.3.4 Advantages and Disadvantages of Data Models

It was seen that various types of data models described in the previous
sections could be used for structural analysis and design optimization
applications. However, it is not possible to expect effective use of any one
of the models in all situations. Hierarchical data model is clearly superior
in organizing general engineering data which occur naturally in hierarchical
form. For example, large order matrices can be assembled using submatrices.
These submatrices can be organized at various hierarchical levels. Network
model handles more general situation than hierarchical model. The

- disadvantage of this model is the complexity associated with its use. Both
hierarchical and network data model use a fixed structure and offer little
flexibility to change for alternative structure. However, a relational data
model uses a less preconceived structure and provides user-firendly data
representation. This model can provide easy access to data for the user.
Also, the tabular structure of the model provide a convenient way of
representing structural design data that are a convenient way of representing

" .structural design data that are generally in the tabular form. It is possible

* ,- . . . . . . .. . . . . ...........

* . .

-- .. .. _. . - . . . . . . . . . , ' -.. . .... .... . . . . ,? - ,, .., , , , * , , . . ... , .- - .... . .,, . , , . ,' . , . . ' , , .*'



30

ELEMENT

BOE

Figure 3.3.3 A Network Model

ELEMENT ELEMENT ELEMENT ELEMENT
1 2 3 4

Figure 3.3.4 An Occurrence of a Network Model



- - CORD

NODE x y z
NO

Figure 3.3.5 Relational Model



32

2.; to support simple query structure in the relational model. In situations
where application programs require a complete set of related items together,
retrieving parts of information is not useful. In such a case the relational
model which is set oriented provides a suitable way to organize the design
data.

Relational data model is therefore selected for design of the database
and the development of database management system for structural analysis and
optimization applications.

3.4 Normalization of Data

It was seen in the previous section that data items are grouped together
to form associations. An issue of concern here, is how to decide what data
items have to be grouped together? In particular, using a relational model,

* determining what relations are needed and what their attributes should be? It
was emphasized in Chapter 2 that structural design data gets constantly
modified, updated and deleted. As database is changed, older views of data
must be preserved so as to avoid having to rewrite the programs using the
data. However, certain changes in data associations could force modification
of programs, and could be extremely disruptive. If grouping of data items and
keys is well thought out originally, such disruptions are less likely to
occur.

Normalization theory (Date 1982) provides certain guidlines to organize
data items together to form relations. The theory is built around the concept
of normal forms. A relation is said to be in a particular normal form if t
sahisfiesd certain specified set of constraints. Three normal forms - Is
2n  and 3r - are described below.

First Normal Form (INF). A relation is said to be in first normal form
if and only if it satisfies the constraint of having atomic values.

As an example, Fig. 3.4.1 shows the relation CONN between four attributes
ELMT#, E-NAME, NODES#, and DOF/NODE with domains D1 , D2, 03 and D4. The
relation is first shown not in INF and then it is shown in the INF.

Second Normal Form (2f). A relation is in second normal form if and
only if it is in INF and e'.:.ery non-key attribute is fully functionally
dependent on each candidate key.

Let us see if the relation CONN of Fig. 3.4.1 in the 1NF is also in
2NF. Consider a non-key attribute E-NAME:

ELMT#, NODES# + E-NAME
ELMT# +E-NAME
NODE# # E-NAME

Therefore, ELMT#, NODES# /> E-NAME, i.e., E-NAME is not fully functionally
dependent on (ELMT#, NODES#).

. ... .. .. . . ... . . . .



. -.. w.r.r .rr rjrT vr v . m S XNlNlt . ~~U .4- -

33

Domai n D1  Domain D2  Domai n D3 Domain 04

ELMT#1 BEAN NODE#1 No. of OF
NODE#2 per node

ELMT#2 TRUSS NODE#3 6
NODE#4 3

ELMT#3 PLATE NODE#5 2

Key Key Key Key

CONN ELMTJ E-NAME NODES # DOF/NODE ELMT# E-NAME NODES # DOF/NODE

1 BEAN 1 6 1 BEAM 1 6
2 1 BEAN 2 6
3 2 TRUSS 3 3
5 2 TRUSS 5 3

T PLATE 2 3 PLATE 2 2
3 3 PLATE 3 2

2 3 PLATE 4 2
5 3 PLATE 5 2

Not in 1IF In 1NF

Figure 3.4.1 First Normal Form for a Relation CONN

2":.I
- - . . . . . . ..-.

: -:: it t



W" - .- - ."x* - " S - -!

34

Similarly for the non-key attribute DOF/NODE:
ELMT#, NODES# + DOF/NODE
ELMT# + DOF/NODE
NODE# * DOF/NODE

Therefore, ELMT#, NODES# #> DOF/NODE. Since neither E-NAME nor DOF/NODE are
fully functionally dependent on candidate key (ELMT#, NODES#) the relation
CONN is not in 2NF.

Conversion of the relation CONN to 2NF consist of replacing CONN by two
of its projections (refer to Fig. 3.4.2).

NAM-DOF + CONN (ELMT#, E-NAME, NODES#, DOF/NODE)
ELMT-NODE + CONN (ELMT#, E-NAME, NODES#, DOF/NODE)

Relation ELMT-NODE does not violate 2NF because its attributes are all keys.

Third Normal Form (3NF). A relation is in third normal form if it is in
second normal form and every non-prime attribute of relation is non-
transitively dependent on each candidate key of the relation.

For example, consider the relation NAM-DOF (Fig. 3.4.2) to see if it is
in third normal form. It still suffers from a lack of mutual independence
among its non-key attributes. The dependency of DOF/NODE on ELMT#, though it
is functional, is transitive (via E-NAME). Each ELMT# value determines an E-
NAME value and in turn determines the DOF/NODE value. This relation is
reduced further into relations NAME and DOF. These relations (Fig. 3.4.3) are
in third normal form.

3.5 Semantic Integrity and Consistency

Semantic Integrity of a database has specific meaning. It refers to the
correctness of the values in the database. The problem of integrity is to -
ensure accuracy of data in the database. The structural design database is
highly volatile. Designers continuously build up the database and assign its
contents. During generation of operational information, new data items are

- added, association among them are formed, and existing definitions may be
deleted. Therefore any indicriminante grouping of data items can lead to
semantic integrity problems. The problems become more severe if a number of
users or application programs use the database without appropriate integrity
checks. This is because it is possible for a program with errors in it to
generate bad data and thus spoil other innocent programs using that data.
Thus characteristics of the design database, such as stated above, make the
maintenance of integrity both crucial and difficult.

To enforce integrity of a database, integrity rules (Date, 1982) are
imposed. The two common type of intergrity rules are entity integrity and
referential integrity. The entity integrity rule specifies that "no component
of a primary key may be null". This requirement implies that all entities

, must be distinguishable which means that they must have a unique
identification of some kind. Primary keys provide a means for unique
identification in a relation. For example if finite eleents are entities,
then element number form the primary key and hence must be unique. The second
type of integrity rule (referential integrity) deals with the inter-relational
aspects of relations. It is common for one relation to include reference to
another. Consider for example a relation ELEMENT which has attributes ELMT#,

~3%

• ~....................-............. . ... .. ,.. .. ,. .:, ,,-..
' , " ,' . . " . . . .- ' -' -. 'r ".'. • , "" -. , ,' . . " -



35

* NAM-DOF ELMT# E-NAME DOF/NODE ELMT-NODE ELNT# NODE#

1 BEAN 6 1 1
2 TRUSS 3 1 2
3 PLATE 2 2 3

2 5
3 2
3 3
3 4
3 5

"*.-* Figure 3.4.2 Second Normal Form for Relation CONN

ELMT#

E-NA4E

DOF/ NODE

NAME ELMT# E-NAME DOF E-NAME DOF/NODE

1 BEAM BEAN 6
2 TRUSS TRUSS 2
3 PLATE PLATE 2

Figure 3.4.3 Third Normal Form for Relation NAM-DOF

-. . . . .' .*. : % -'. . . , .- -.



36

and nodal connectivity NODEl, NODE2 and NODE3, and another relation NODES
which has attributes NODE# and coordinates X, Y, and Z. Here, relation
ELEMENT includes references to relation NODES via its NODE1, NODE2, and NODE3
attributes. It is clear that if a tuple of ELEMENT contains a value for NODE1
say n, then a tuple for n must exist in NODES (otherwise, the ELEMENT tuple
would apparently be referring to a nonexistent node). The referential
integrity rule is "Let D be a primary domain, and let R, be a relation with an
attribute A that is defined on D. Then, at any given time, each value of A in
R, must be either (a) null, or (b) equal to v, where v is the primary key
value of some tuple in some relation R2 (RI1 and R2 not necessarily distinct)
with primary key defined on D". These rules are enforced in practice by
providing key constraints, referential constraints and other constraints.
Primary and secondary keys are explicitly specified in database schema. It is
possible to enforce other types of constraints. An example is, "coordinates
of nodes must lie in the range of -100.0 to +100.0" in relation NODES. Thus,
there is no limit to the number of constraints that can be imposed to provide
database integrity.

Consistency is a special case of integrity and involves maintaining the
equivalence of redundant data. Storing the same data more than once leads to
data redundancy. In general, it is not desirable to have data redundancy in
database. Data redundancy occurs while catering to needs of different
application programs requiring same data in various forms. It also occurs
while providing efficient database operations. Suppose that a truss member
has area of cross-section A represented in two places in the database - say in
ELEMENT relation and DESIGN-VARIABLE relation and that the system is not awae
of this duplication. Then there can be some occasion where the two data items
will not agree. At such time the database is said to be inconsistent. It is
clear that if such redundancy is eliminated then inconsistencies cannot
occur. If redundancy cannot be eliminated, then alternate way is to provide a
control to ensure changes made to either of the two data items are
automatically made to the other. This ensures database consistency.

Integrity and consistency, then are important task in structuring design
information. These tasks have to be performed by the computer-aided
structural design system which was previously a completely manual operation.

3.6 Transaction Management

In preceding sections, various concepts for data abstraction such as
entities, data associations, data models, normalization of data, and
intergrity were discussed with reference to structural analysis and design
data. It was emphasized that maintenance of integrity of design database is
an important task in the environment of highly volatile design database and
operations on them by multiple applications. Rules for integrity maintenance
discussed in the previous sections are mainly applicable to static information

* of the data. But the design data also contains operational information which
may be classified as dynamic. For example, in finite element analysis, input
data such as finite element numbers, nodal connectivity, cross-sectional S.

details, and material property are static information for input module
(application program). This static information is used for assembly modules
which create operational information such as element stiffness and assembled
stiffness matrices. This operational information becomes static for the next

the

4'-,,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .'*, .. *: -. " ° . .. o• , . .• - -.- °° • . °



37
0

application such as solution module, since they are entry information for
it. Information content in a database stabilizes only at the end of analysis
and design, until then the database is subjected to successive refinement of
schema, values of variables modified, and accumulation of redundant
information takes place. This characteristic of the design database makes the
maintenance of complete integrity almost impossible. Therefore, schemes have

. been proposed (Kutay and Eastman, 1983) to provide partial integrity of
databases. Conceptual details of transaction management scheme to provide
partial integrity of databases are discussed in the following with reference
to finite element analysis and structural design optimization.

The transaction concept is the one that is closely related to operation
abstraction. This concept suggests that instead of allowing arbitrary
operations on a database, these operations must be structured into a set of
actions such that when each set is executed, the integrity of the database is
maintained. In this way a database has complete integrity during all quiscent
periods; loss of integrity are temporary and limited to duration of
transaction upon the database. The definition of transaction is given as
follows (Kutay and Eastman, 1981):

A database consists of data units called entities. The entities of a
database form a distinct set {e, e 2 .* enI. Each transaction performs its

processes on a set of entities called a transaction entity set (TES). A TES
has two parts which are not necessarily inclusive: A read set {e}R and a
write set {e}W. A transaction can be defined as "A collection of actions on a
database that reads entity set {e}R and potentially writes into entity set
Je}W. Prior to invokation, it requires that the set of integrity constraints

{C+}B be satisfied on the entities {e}R and {e}W. During the transaction, the

integrity constraint set {C-D on te(R and {e}W may be violated. After
successful completion of the transaction, integrity conditions on JeJW may

have been changed. These are denoted by the sets {C+} A , {C-} A , where {CI A

are the integrity constraints added by the transaction and {C'} A are those
that are eliminated.

This definition suggest that in a design database a transaction should
incorporate entities together with related integrity constraints. The
transaction can then be of the form

"-BT : [{e}R, e}W, {C} {C}D, {C}A]

Such a description is referred to a transaction class.
(Note: {e}R entity set read

.E}W entity set written

"CIB Integrity constraint before transaction

'C}ID Integrity constraint (luring transaction

ICIA Integrity constraint after transaction

-violated, + satisfied)

,|- •-* *.



38

The transaction concept is explained with reference to a structural
k- design example. Following transactions are considered:

1. A transaction class T, that defines finite element structural idealization
by identifying the element numbers, nodal coordinates, and nodal
connecti vity.

2. A transaction class T2 that defines forces in individual members.

3. A transaction class T3 that defines member cross-section details and
sizes.

4. A transaction class T4 that determines the cost of the structural system.

Integrity constraints for this system are defined as

{C1}: "Structural idealization defined"

{C2 }: "Forces in member defined"

1C31: "Member sizes defined"

.C41: "Structural cost estimated"

Then for this structural system the transaction classes are

T1 : [{Elements, Nodes}R, {Element, Nodes}W, {CID,

(1c+1, Ic-1, {c}, {c})AI

T2: [{Element}R, {ForcesjW, {C} 8  {C- D,

({c }, {c3}, [CT})A]

T3 : [JElementsIR, jSizes}W, (iC1}, {C+})B,

S{c}D, ({c-}**, {c} {c,})A

T4: [IelementsIR, {cost}W, C}B, [C}D, IC4+A]

mnarco* indicates that some entities in them are conditional. T to T4 are
marco transactions, i.e., composition of lower level transactions. For

* , example, lower level transactions in T2 defining forces in elements are
transaction for stiffness matrix, displacements, etc. A transaction graph for
structural system is given below.

Iff 1C

-
1 2

I If 1C



39

** indicates that they are conditional. If they hold after a transaction
is committed, they require that previous transaction should be repeated and
this result in iterations. Assume for instance that force in the member is
not yet defined. That is, {C2 } does not hold for its entities. If T3 is

allowed to execute, it would result in failure of transaction due to
insufficient data.

This transaction scheme also supports design iterations in a natural
way. Consider, for example, violation of cost minimization at T4 ,  In this

case, an iteration might be necessary to redefine the design variables. The
- formal definition of transaction class allows representation of iterations in

a natural way. To incorporate an iteration of design, a possible violation
of {C1 } is declared as an after effect of T4 .

These features of a transaction in a design database can be formalized by

the following rules about integrity management:

1. If the required {c conditions for a transaction class do not hold at any
point in time, no transactions of this class are allowed to execute.

2. It is the task of a transaction to satisfy a set of integrity constraints

{C+j A so that other transactions which require them are allowed to

execute.

A
3. A transaction also violates a set of constraints {C-} to indicate that

other transactions should be invoked to satisfy them.

3.7 Global and Local Databases

Concept of global and local database are important in the light of

discussion in Section 2.6 on the nature of application programs. Computer-
aided design of complex structural systems uses several application programs
during the design process. Many of these programs require common information
such as geometry of the structure, finite element idealization details,

- material properties, loading conditions, structural stiffness, mass and load
distributions, and responses resulting from analysis runs. Also, it is common
that data generated by one program is required for processing in subsequent
programs in certain predetermined pattern. These data do not include

" transitory information such as intermediate results generated during an
analysis run. The transitory information is highly unstructured and its usage
pattern is known only to applications that use them. Generally, the
transitory information is deleted at the end of a run. Therefore, there is a
need for systematic grouping of the data.

A network of databases offers a systematic approach to support data of

multiple applications. A network of databases consists of a global database
connected to a number of local databases through program data interface.
Application programs which use them may be thought as links connecting the

databases (Fig. 3.7.1). A global database contains common information
required for all applications where as a local database contains only
application dependent transitory data. Data in global database is highly
structured and integrity of the database is maintained carefully. However,

I *--'' -- '.. - b.-- .'...-* -'. - -.- ' . .. '*.., '' .- ' .- " . .- ,. "-* *. .. -..- ' , -" ",.i-.- "- ',"'

I -,. -. ,.- .-. a'-.',-' '.]" - -.-.- : .'""'""'. ,"'''i.,,. \ ' .' ' • '. ''''"-" ,

.,% " ",.,",. "" .. :-'._ " ".,' .- - ", "" - " ". ' " ' ' .-. , , .,\ %\:- ) ,.,-.k - [., - -'



40

LOCAL
DATABASE

FigureTIO 3.1NtokfDtAses TIO

............,. .2



--*.v --

41

data in local database is extremely flexible and integrity is not of
importance.

This network of databases offers considerable aid in structural design
process. Any changes made to the data in global database is immediately
available for use in other applications of the system. Any new application
program can be added to share the common data. The data views in global
database are clear to all applications and any modified views can be easily
incorporated to suit a new application. Local databases are dependent on
application programs and are highly efficient in data transfer operations
since no overhead is involved in maintaining complicated data structures. It

*supports trial and error design process by providing scratch pad work space
which can be erased from the local database at a specified design stage. Any
intermediate results can be stored in a local database. Summarized and final
results of design can be transferred to a global database.

. I



T V - - -'v 7

42

4. DATABASE DESIGN METHODOLOGY FOR STRUCTURAL DESIGN

4.1 Introductory Remarks

A methodology for designing databases for structural design is proposed
in this chapter. The methodology is based on the database management concepts
described in the previous chapter. Till now, no comprehensive study on design
of a database for structural analysis and optimization exists in the
literature. However, some researchers have discussed some possible ways of
data organization for finite element analysis of structures. Lopez (1974) and
Pahl (1981) have shown, how an hierarichal data model can be used to organize ..
data of finite element analysis. Relational data model has been recently
introduced to structural application and gaining popularity because of its
simplicity and ease of use. Fishwick and Blackburn (1982) used relational
data model with finite element program SPAR and optimization package PROSSS.
But the use of the model was limited to interfacing of these programs using a
relational database management system. It is emphasized again that the
failure of existing finite element programs like NASTRAN, ANSYS, ADINA, and
GIFTS, in providing intermediate results to users for further analysis and
design purpose, is due to nonavailability of generalized database management
support. out of core data organization in these programs were based on
intution, since no scientific database design techniques were available at the
time these programs were developed.

In the methodology proposed for database design, relational data model is
used. Three levels of data organization -- conceptual, internal and external
are suggested for structural design database. In Section 4.2, a methodology
for constructing a conceptual data model is described. The conceptual model
enables us to find out the inherent nature of structural design data
irrespective of computer program constraints. Since large amount of data
storage and speed of accessing data is required in finite element analysis and
optimization, we need to consider efficiency of storage space and I/O. This
aspect is considered in Section 4.3. A methodology for developing an internal
model is given there. In Section 4.4, a methodology for developing an
external data model is described. An external model can provide data needed
for multiple users or application programs according to their individual
perspectives of data. Matrix data constitutes a large protion of finite
element analysis and optimization data. Such data needs special considera-
tions for accomodation in a database. A methodology for organizing large
matrix data is given in Section 4.5. Finally in Section 4.6 algorithmic - -

modelling Is given.

4.2 Development of a Conceptual Data Model

4.2.1 Basic Considerations

Capability of a database to support any structural design application
depends on the effectiveness of the data model devised for the system. Our
objective now is to construct a conceptual data model at a suitable level of
abstraction regardless of whether or not the available database management
software supports such model directly. The conceptual data model should serve 7
as a central reference point for all users of the database. It changes only
if changes in the structural design process occur. Any change in the database

. * -* -



43

management software of application program should not affect the conceptual
data model. The model should be capable of supporting new applications with
the existing types of data as well as incorporating further data types as
needed. Therefore, an analysis of data used in structural design is made to
incorporate the features of data model described above. In the analysis, the
information in use or needed in future is identified, classified and
documented. This forms a basis for a conceptual data model to represent
structural design data and design process as a whole.

The following steps are proposed to develop a conceptual data model.
These steps are discussed in detail in Subsections 4.2.2 to 4.2,5.

1. Identify all the characteristics of data used in structural analysis and
design optimization.

2. Data identified are stored in a number of relations. Reduce these
relations to elementary relation which represent inherent association of
data.

3. Derive further set of elementary relations from the elementary relations
formed in Step 2. This step will uncover more relationships between basic
data collected in Step 2.

4. Remove redurdant and meaningless relations obtained in Step 3 to get a
conceptual data model.

The conceptual model obtained by this process is abstract, representing
inherent nature of structural design data and is independent of any computer
restraint or database management software support.

4.2.2 Identification of Characteristics of Data

The following steps are proposed to identify the characteristics of data
used in structural design.

Step 1. Identify each type of entity and assign a unique name to it.

- Step 2. Determine the domains and assign unique names to them. This step
identifies the types of information which will appear in some part of the

. model, such as attributes.

Step 3. Identify the primary key for each type of entity depending on the
' meaning and use.

Step 4. Replace each entity set by its primary key domains. Determine and
name relations corresponding to association between primary key domain and
other domains. This step gives a collection of relations.

Modified definition of domain and attribute are suggested as follows to
suit correct identification of structural design information.

Domain. A domain is the set of eligible values for a property. A domain
has same characteristics as a set, i.e., the values belonging to a domain are



N 44

distinct and their order is immaterial. A domain can contain vectors or
matrices. Thus domain Di is defined as

D. = {vl.P i }1_

where vi represents a value, a vector, or a matrix satisfying the predicate
1

Attribute. Columns of a two-dimensional table are referred to as
attributes. An attribute value can contain relation names and null values.

Example. We consider the sample structural design problem given in section
2.2, to describe these steps.

Step 1. The following entity sets can be identified for the structure
STRUCTURE (S)
BEAM (B)
TRUSS (T)
MEMBRANE-TRI (TR)
MEMBRANE-QD (QD)
NODE (N)

* ELEMENT (E)

Step 2. We can identify the following domains:
STRUCTURE# Structure identification number (integer)
B# Beam element identification number (integer)
T# Truss element identification number (integer)
TR# Triangular membrane element identification

number (integer)
QD# Quadrilateral membrane element identification

number (integer)

NODE# Node number (integer)
E# Element number (integer)
EL-TYPE Element type {BEM2, BEM3, TRS2, TRS3, TRM2, TRM3,

QDM2, QDM31
MATID Material identification code, e.g., {STEEL.1,

STEEL.2, ALUM.5, COMP.1). It also refers to relation
or table of material properties for example, STEEL-1
refers to relation STEEL and material subtype 1

MATPRO Material property {E,u,G,...1
CSID Cross-section type identification code; e.g., (THICK-I,

THICK.2, RECT.1, CIRC.5, ISEC.6, LSEC-15}. It also
refers to a relation of cross-sectional details. For
example, RECT.1, refers to a relation RECT and cross-
section subtype 1

CSPRO Cross-sectional property {H,W,T,R,...}
DOF# Degrees of freedom numbers
LOAD-TYP Load type [CONCENTRATED, DISTRIBUTED, TEMPERATURE,

ACCELERATION}
X X coordinate (real)
Y Y coordinate (real)
Z Z coordinate (real)
DESCRIPTION Description (characters)



i_7 - ,

I4.

45

VEC Vectors {Integer vector, Real vector, Double precision
vectors )

MATX Matrices {Integer matrices, Real matrices, Double
precision matrices}

VECID Vector identification code
[ -x.y I x = vector description, y = number);

e.g., FORCE.5, LOAD•1O
MAXID Matrix identification code

={x-yI x = matrix description, y =number};
e.g., EL-STIFF.1O, EL-MASS.5

Step 3. The following entity keys are identified
STRUCTURE# for entity set structure
BEAM# for entity set beam

.... TRUSS# for entity set truss
TR# for entity set TR
QD# for entity set QD
E# for entity set element

Step 4. In the association between entity sets and domain, the entity sets
from step 1 are replaced by their primary keys. Attribute names are derived
from domain names to provide role identification. The following relations are
identified:

For Entity Set STRUCTURE
STRUCTURE (S#, DESCRIPTION, MATXID, MATX)

The structure is identified by a structure number S#. Name of the
structure and other details are given in DESCRIPTION. Matrices associated
with the structure are identified by MATXID.
For Entity Set BEAM

BEAM (B#, E#, EL-TYP, MATID, E, p, G, NODE1#, NODE2#, CSID, H, W,
LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

A beam is identified by a beam number B#. Element number E# uniquely
identifies the finite elements of a structure. Attributes NODE1# and
NODE2# are derived from domain NODES. Similarly, E, p, and G are role
names for domain MATPRO. CSID identifies the cross-section properties H,
W. Vectors and matrices associated with the element are identified
through VECID and MAXID, respectively.

Similarly the relations TRUSS, TRM, QDM are as follows:
TRUSS (T#, E#, EL-TYPE, MATID, E, NODE1#, NODE2#, CSID, H, W

LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)
TRM (TR#, E#, EL-TYPE, MATID, E, NODE1#, NODE2#, NODE3#, CSID, T,

LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)
QDM (QD#, E#, EL-TYP, MATID, E, NODEI#, NODE2#, NODE3#, NODE4#,

CSID, T, LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)
NODE (NODE#, X, Y, Z, DOF1#, DOF2#, DOF3#,

LOAD-TYP, LOAD#, VICID, VEC)
ELEMENT (E#, NODE#)

From the above example, the following points unique to structural design
-. databases should be noted:

1. The attributes in the example contain relation names (e.g., MATID,
CSID). These relations are again association between an entity set; e.g.,
STEEL and domain of material properties.

. . . . . . . . . . . . .



- -~ ~ 'W - - - .' -V - . .- 4
.-." 46

2. Null values of domains (which are attributes in the relations) are
allowed. For example, in relation TRM, LOAD-TYP and LOAD# may be null if
no loads exists.

3. A row and a column intersection may not be a single value; it can be a
vector or a matrix.

4.2.3 Reduction to Elementary Relations

In the previous section, we described a method to identify entities,
domains and relations to produce a rough conceptual model of the structure.
Our idea is to develop a conceptual model which contains all the facts and
each fact occurring only once. In order to produce a conceptual data model,
we transform the rough model into a better model by using a set of elementary
relations which can be defined as:

A relation is irreducible if it cannot be broken down by means of project
operations into several relations of smaller degree such that these relations
can be joined to reconstitute the original relation. A relation which is not
reducible is called an elementary relation.

Elementary relations satisfy the requirement that one fact is recorded in
one place. An example of elementary relation is given below:

LOAD (N#, LC#, Fx)
where N# is node number

LC# is load case number
Fx is force in the x-direction

LOAD N# LC# Fx

Ni Li 10.0

N1 L2 15.0
Ni L3 10.0
N2 L2 20.0
N2 L3 20.0
N2 L4 10.0
N3 L3 20.0

Note that this relation describes two facts-load cases, and load values
for each node. Now, to see if this is an elementary relation, suppose we
split the relation LOAD by means of project operations into following two
relations Ri and R2

-- .. . .. . . . . . . .

". . . . . ... .' --



47

RI(N#, LC#) R2(LC#, Fx)

N# LC# LC# Fx

NI LI LI 10.0
Ni L2 L2 15.0
Ni L3 L2 20.0
N2 L2 L3 10.0
N2 L3 L3 20.0
N2 L4 L4 20.0
N3 L3 _

On joining RI and R2, RI*R2 we get

R3 N# LC# Fx

N1 Li 10.0
NI L2 15.0

+ N1 L2 20.0 + This value comes from
Ni L3 10.0 <Ni,L2> and <L2,20.0>

+ NI L3 20.0
+ N2 L2 15.0

N2 L3 10.0
+ N2 L3 20.0

N2 L4 20.0
+ N3 L3 10.0

N3 L3 20.0

The rows marked with + are not in original relation LOAD and hence not
correct. Thus, the relation is irreducible, and relation LOAD is an
elementary relation. It can be observed in the relation LOAD that the
attribute Fx is fully functionally dependent on N# and LC#. N# alone or LC#
alone does not determine Fx. Therefore, it is possible to identify such
dependencies and establish rules for reducing a relation to an elementary
relation. Using the concept of functional dependencies, full functional
dependencies, and transitive dependencies, the following steps are identified
to form elementary relations.

Step 1. Replace the original relations by other new relations to eliminate
any (nonfull) functional dependencies on candidate keys.

Step 2. Replace the relations obtained in Step 1 by other relations to
eliminate any transitive dependencies on candidate keys.

Step 3. Go to step 5 if
(a) relation obtained is all key, and
(b) relation contains a single attribute that is fully functionally

dependent on a single candidate key.

.- .- .-. ... . 1i- "'. .'', ''-:. 1. -''.., " " ., , .-'-'.- > .. , - . .. . ' -.- . ., .. -, • . ,. -. - . " •



48

Step 4. Determine primary key for each relation which may be a single
attribute or a composite attribute. Take projections of these relations such
that each projection contains one primary key and one non-primary key.

Step 5. Elementary relations obtained.

Example. We can see how these steps are applicable to relations of the
example problem in the previous section. Consider the relation TRM.

TRM (TR#, E#, EL-TYPE, MATID, E, NODEl#, NODE2#, NODE3#, CSID, T,
LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

Dependencies Remarks

TR# Primary key
TR# + E# also E# + TR# Secondary key E#
TR# + EL-TYPE Element type is functionally dependent

on TR#
TR# + MATID Material identification code MATID is

functionally dependent on TR#
MATID + E Material properly E is functionally

dependent on MATID
TR# + MATID + E Material property E is transitively

dependent on TR# through MATID
TR# + NODE1# TR# identifies NODEl#
TR# + NODE2#
TR# + NODE3#
TR# + CS-TYP * T Thickness is transitively dependent

on TR# through CS-TYP
TR# + LOAD-TYP
TR# + LOAD#
TR# + VECID + VEC Any vectors, such as load, force,

stress vector are transiLiN !
dependent on TR# via VECID

TR#+ MATXID + MATX Similarly matrices such as stiffness,
mass, are transitively dependent on TR#
via MATXID

Reducing relation TRM to elementary relations

ERi (TR#, E#)
ER2 (TR#, EL-TYP)
ER3 (TR#, NODEl#)
ER4 (TR#, NODE2#)
ER5 (TR#, NODE3#)
ER14 (E#, TR#)

Step 2.
ER6 (TR#, MATIU); ER7 (MATID, E)
ER8 (TR#, CSID); ER9 (CSID, T)
ER1O (TR#, VECIO); ER11 (VECIO, VEC)
ER12 (TR#, MAXID); ER13 (MATXID, MATX)

Step. 3 The above relations contain single attribute, so go to step 5.

................. ............................... "



49

Step. 4. Skip

Step 5. ERI to ER13 are elementary relations.

The steps can be applied co rest of the relations identified earlier to

get a set of elementary relations for the sample structural problem.

4.2.4 Determination of Transitive Closure

While deriving a large number of relations for obtaining a conceptual

data model , it is possible that some relations might have been missed. In
general, it is possible to derive further elementary relations from any
incomplete collection )f such relations. To explain in a simple way, how such -.

additional relations can he derived, consider two relations ERI(A,B) and
ER2(B,C), where

ERI: A - B
ER?: l1 C
These implies functional dependencies as

We know that product of functional dependencies leads to transitive
dependencies (Vetter and Maddison 1981). Taking product of above functional
dependencies, we get

A ~C

as indicated above. Therefore, from suitable pairs of elementary relations
representing functional dependencies further elementary relations can be
derived. Deriving all such relations from initial collection of elementary
relations yields a transitively closed collection of elementary relations
called transitive closure (Vetter and Maddison 1981). This set of relations
includes both derived and original elementary relations. It is complete in
the sense that all elementary relations equivalent to transitive dependencies
through others are included. Th-re is always a unique transitive closure for
a given set of elementary relations. A transitive closure usually contains
many redundant relations. We say that an elementary relation is redundant if
it is derivable from other relations.

" There are problems associated in iterpreting relations in transitive
closure. For example, consider relations

ERI (TR#, MATI)) where TR# , MAT).

7ER (MATIH, E) where MATID * L

Transitive closure for this set yields relation

ER (TR#, E) implies TR# identifies E

"-;'-....,.,. .. , ,"-.'-"....,.-",.""."...."'"-'" ,. . . , .".-'},. ."-T > -i ,'...-.,.... ..... ,.."... . . . .... . . ... ,.. . . .,.. .. ,.-"...
. .,. .......,. . . ..-.. .... .,....'."" '.}, v.. ....-.......... ... ,.,..... .--..... ,.. v.... -,



50

44

.00,-

'I I

IA IL

0 LAI

6 a%% 06\
'S. - .5

No

L.-

. . .. .- . ..' ' - .- . . .



Z., 51

However, this relation does not represent true information as material
property E is dependent only on material number and not on element number.
The relation could be wrongly interpreted. Therefore such semantically
freaningless dependencies must be eliminated.

It is possible to de'ermine transitive closure using directed graphs and
the connectivity matrix (defined in Section 3.2). The nodes of graph

.. correspond to eritity keys and arcs correspond to elementary relations.1 2
I 1 N•k

3
[ransitive closure is formed by adding arc 3 if arcs I and 2 already exist. A
-i, ,rtph for thp e1,.,,eotary rel at ions formed in the previous section is shown
r Fi 1. 4I.".1

A r,,e t'v iy mlttrix for this diagraph is shown in Fig. 4.2.2. In the
conrctivity matrix, we :an see for example, TR# + MATID is indicated by I in
Loe corresponding ro , 3) and column(7) of the matrix. Derived transitive
dependence of example TNo * E 'an be recorded by assigning 1 to C (3,11).
Such derived relations are denoted by I in the Fig. 4.2.2 and are denoted by
new arcs in (lotted linres of Fig. 4.2.1. An algorithm for determining

- transitive closure is given in Appendix 1.

The transitive closure for the example produces additional dependencies
given in Table 4.2.1. We have eliminated meaningless dependencies from the
list.

4.2.5 Determination of Minimal Covers

In the previous section, we derived additional elementary relations from
a set or" original ,elementary relations of Section 4.2.3. Here, we remove
redundant elementary relations to provide a minimal set of elementary

. relations. Using this process, we obtain one or, more minimal covers. A
minimal cover is a minimal set of elementary relations from which transitive
closure can be derived (Vetter and Maddison 1981).

One may wonder why we first add redundant elementary relations to
original list of elementary relation to obtain a transitive closure and in
subsequent step we remove redundant elementary relations to obtain a set of
minimal cover. Such an approach is justified because (i) minimal cover is not
unijue, (ii) deriving several alternative ninimal covers from a transitive
closure guarantees that every possible minimal cover is found, and (iii) we
can "01 oct a minimal :.over that best fits the structural design process needs

An nxample for finding a set of mi nimal cover from the transitive closure
derived in previous sections is given in Fig. 4.2.3. A set of minimal cover
for this transitive cIos er is fERI, FRR, [ R 7 E7} [R1, ERI4, [R19, ER71,
out of which one set nay he choosen to suit our requirement. In the following
paragraphs a procmdure for dtermining minimal (.over is given (Vetter and
Mdd i son).



52

1 2 3 4 5 6 7 8 9 10 11 1213 14

NHN N N
E 0 00 N C V A N

E L TODD0 A S ET E T V A
0 T RE E E TI C X E T

P 0 1 2 3 1 0 1 1 C X
# # 0 0D

-,~~~~ lE# *1111111

2 EL-TYP

3 TR 1 1 01 11111 1 1*1 *1 * 1*

4 NODElID

5 NODE2#

6 NDDE3#

7 NATID 1

8 CSID 1

9 VECID 1

10 MATXID1

11 E

12 T

13 VEC

14 MATX

- . Figure 4.2.2 Connectivity Matrix C for Elementary Data



-~W '777V .

53

Table 4.2.1 Transitive Closure for Elementary Relations

Deri ved Semantically
Relations Dependencies Composi ti on Meaningful

ER15 E# LI-TYP F# Fl# EL-FYP YES

E 1?16 F# NODEI# E# TR# NODE1# YES

ER17 E# NOD)E 2# E# TR# NOI)E?# YES

ER<18 E# NODE3# # TR# +NODE3# YES

ER19 Eft MATID F# FR MATID YES

ER20 E# GSID E# TR# +CSID YES

ER21 E#+LOAD-TYP TR# *LOAD-TYP YES

ER22 E# -MAXI [!iF# TR# MAXII) YES

ER23 TR# F TR# *MAXID + E NO

EIR24 TR# T I CS-TYP + T NO

ER25 TR# VEC T~I? VECID + VEC NO

ER2~6 TRO MATX TR# MAIXID +MATX NO



54 .

-4ER I ER 19 ER 7I

TR# E#0 MATID E

ER 14/

N -ER -ER23 - - -.- REMOVED

(1) Transitive Closure

ER1

TR* E___

Ri6 ERl

MAT ID

{ER7
E

(ii) Rearrangement

TR# _ _ E# TR# E____

MAT ID M ATI D

E E

(iii) Minimal Cover

Figure 4.2.3 Digraph Representation of Minimal Cover



.Let EI = , , , F I reProsent a list o e..neitn ary relation

' and let MC {S n'I " ht e set o ;it:, ldl -: fv; i . 7 and m are number

0 1 S in set </ ]. P t ' -C ., set i r the beyinning, n
Stands for a riu ia inj '|uiK .'"

Step 1. Find distance (seo 'Section 3._ ftr definit ,ior) for each ER in ERZ

Step 2. Remove ERr from C.' if it is a lost l stance composi tion of say

ERi and ER, i.e. provided jtat. all of

a] ( ) F R , ERj Onkl ER r h t 1 .),1 t t.-) A !(n) ER i C .]'Er Fr:

- .'I ' I "

(¢) E Rr possesses naxi im ,J i anIce

CaI! the ren.irii sst En ; If no olle:nent is +move fron ENz place FRI'

in IC and tern iinate. In yeneral one can fi nd

Step 3. Repeat Ste! )  tur- ac h ER ad obtain [ -  then add new element
t o IC

Step 4. Repeat Ste p . ,t i I '1o eleent. can he rei,,ove~d and then terminate; get
* M (s 0

We Aemonstr'ate the o ive O trl - fr Lio exa;i 1 , cortsi dered earl i er. We

- have [K' R {ER i N EN * '-i, * .. . . i a;' aro rnum!bered a s ER ER',

ER ER Lk , .. a l'' 4'

2 ER1 ,4 "  1 , - I

4lEk 1 : C( IF, 4d

-. EN, 7: -- MATTYP MAT#)

.-. They ar r14,1n .2A, , dI . K'r.ivati. (ie )f minimal Lover is given

in Tah!, 4.I.,( , t r 1 t t ii ' I * . • of r(inimnal covets)
.cois i st of

These are two 0 ternate M1i rf(113 .

',: . • " " - "-'- ' -'-' ': ' "-..'- -'.-'. -" " -" - -'.-" - . ." . : - ". - t - "- . ~ : -' - - . • . " V . -: : -' :
,- ': ": .' -:2" 2 '2 :,- .: :':, '.:- : '2: -2,: :'-:: ' ::- ':'" . :- " - 2:." -": '" :'-2: : : - ,.'2:'-: : :'- : ': ": -: . -::- -Y :' ., " - -' --. " .' .: .'



56

Table 4.2.2 Deriving Minimil Cover

Iter- E IDi graph
ationj ERZ ER IC(ERiERj) dr Remd~ed ER n- (Before Removed) K

ER5 ER1
0 E 5  ER1 - 1 TR# W- E#

ER #- 1
ER3 C(E19 R2  2 ER1  ER2  R.N
ER4 C(ERE) 2 + ER24 ~ MATI T0

5  i-s not composed of ER
other relations

1 ER1
4  ER1,- 1 TR # _ ____E#

ER2  1- 1-.MA
ER4  -- 2 4YES
ER5  -- 3

E

1 ER24  ER1  1- TR#'
ER2  -- 1 *4 M Th$~
ER3  - 2 YES
ER5  -- 2E

S.E



V:- -;--7-:; -7

57

The above procedure can be applied to other transitive closures derived
in the previous section. Thus, we can get further sets of minimal covers.
Each minimal cover is a non-redundant list of elementary relations and is an
appropriate conceptual model of the structural design data.

4.3 Internal Model

Internal model deals with the logical organization of data to be stored
on physical storage devices. The internal model specifies which attributes
have to be combined together as a unit and how the relationship between these
units are represented. Here, we are concerned about finding an internal model
which supports the conceptual model in an efficient way. Also, the internal
model must be consistent with the conceptual model.

One can build an internal model by storing all the elementary relations
that represent a conceptual model in a database. However, such an approach

*i would require a large number of accesses to the database to get data about an
entity and would be highly inefficient. Another approach would be to build an
internal model by means by a wider n-ary relations. These n-ary relations
have to be consistent with the conceptual model and they have to follow
certain rules. Any storage and update operations (insert, modify, delete)
must not lead to inconsistency in data. To avoid anomolies in storage and
update operations normalization procedure are adopted. In the following
paragraphs, we describe a methodology for building an internal model based on

* normalization procedures. Examples from structural design are used to
describe the procedures.

Design of an internal model to support element stiffness matrix
*generation is described here. Methodology for designing internal models for

other structural analysis and design process would follow similar steps. We
assume that a conceptual model for element stiffness generation is already

' dvailable. Our aim is to produce an internal model that is consistent with
the conceptual model given by the following elementary relations:

ERI (TR#, EL-TYP)
ER2 (TR#, NODE1#)
ER3 (TR#, NODE2#)
ER4 (TR#, NODE3#)
ER5 (TR#, MATID)
ER6 (MATID, E)
ER7 (rR#, CSID)
ER8 (CSID, T)
ER9 (NODE#, X)
ER1O (NODE#, Y)
ERI (NODE#, Z)
ER12 (TR#, MATXIO)
ER13 (MATXID, MATX)
ER14 (E#, NODE#)
ER15 (TR#, E#)

7,.

~~~~~~~~~~~~~~~..-............ ... ..........-.-. ........ ,...... ...-....*.-. .. ,,,,-.


58

Data needed for generation of element stiffness matrix are derived from
various domains and represented in a single relation TRM-D as shown in Fig.
4.3.1. Our main intention is to get all the data required for generation of
stiffness matrix for a triangular membrane element in one access or minimum
number of accesses.

It can be observed from the relation of Fig. 4.3.1 that it is not in
first normal form. Therefore, this unnormalized relation should be replaced
by a semantically equivalent relation in 1NF as shown in Fig. 4.3.2.

The following points have to be noted for normalization procedure in
structural design context:

1. Row and column intersection of a relation in 1NF is atomic (i.e., consists
of single values). Exception to these rules are vectors and matrices and
they are considered to be atomic. In Figure 4.3.2, a set of values of
MATX is identified as a unit.

2. Values for attributes are also derived from a non-simple domain. A non-
simple domain is one which contains elements that themselves are
relations. In Figure 4.3.2, STEEL refers to another relation which
contain material properties.

The advantage of 1NF over the unnormalized relation are that operations
required for application programs are less complicated and easy to understand.

The elementary relations identified earlier contain all the information
required for generation of element stiffness matrices. This information
should be reflected in some way in the internal model that is to be
developed. There by we can ensure that internal model is consistent with the
conceptual model. Internal model of Fig. 4.3.2 has all the attributes
providing information for generation of element stiffness matrix. To check
the consistency of this model, first we identify the key attributes.
Candidate keys are compound, consisting of (E#, NODE#) and (TR#, NODE#).
Primary key is selected as (TR#, NODE#). Secondary keys are TR#, E#, MATID,
CSID, NODE#, and MATXID. These key attributes of the relation are consistent
with those in the elementary relation. Secondly, we need to identify whether
all the attributes in internal model and dependencies between them are
consistent with the conceptual model. It can be observed that attributes
NODE1#, NODE2# and NODE3# do not appear in the relation. Therefore, these

* three attributes should be included in the relation. Relation TRM-D is now
. written as

*TRM-D (TR#, E#, EL-TYP, E, CSID, T, NODES#, NODE1#, NODE2#,
NODE3#, X, Y, X, MATXID, MATX)

The functional dependencies reflected by elementary relations ER1 to ERI5 are
satisfied in the internal model with the values shown in the Fig. 4.3.2.
Therefore, at this instant the internal model is consistent with the
conceptual model. However, it would be no longer consistent, if arbitrary
changes in the values of the table are made. Also, note that many values in
the relation TRM-D are redundant. These inconsistencies and redundancies
occur because of the following anomalies in the 1NF:

• .. ° _ . . -. .. .o , - - oO - . -o o O o . . ,- - . . "° , ° . - - - • , . °

Doma (~~Doma in\ oan(oan
TCSID

NODES n

Domain Domain Domain Domain n
EL-TYP Material Property Cross-sectional Property E# MATX

TR# E# EL-TYP MATID E CSID T NODED X Y Z MATXID MATX

5 1. 5. 7.
1 15 TRM3 STEEL*5 108 THICK'6 0.1 7 3. 4. 8. STF1 [!]

8 2.6.3.

x12 5. 9. 8.

2 16 TRM3 ALUM*4 0.9x10 / THICK'4 0.2 14 7. 4. 1. STF-2 [u]
18 3. 5. 8.

Figure 4.3.1 A Tentative Internal Model

TR# E# EL-TYP MATID E CSID T NODE# X Y Z MATXID MATX

1 15 TRM3 STEEL5 108 THICK*8 0.1 5 1. 5. 7. STF-I {!]

1 15 TRM3 STEEL'5 108 THICK'8 0.1 7 3. 4. 8. STF1 [!]

1 15 TRM3 STEEL'5 108 THICK*8 0.1 8 2. 6. 3. STF- -____7
2 16 TRM3 ALUM'4 O.9x10" THICK*4 0.2 12 5. 9. 8. STF-2 [!i]

2 16 TRM3 ALUM*4 O.gxl0 7 THICK4 0.2 14 7. 4. 1. STF2]

2 16 TRM3 ALUM'4 0.9x1O / THICK'4 0.2 18 3. 5. 8. STF'2]

Figure 4.3.2 Relation TRM-D in INF 7
, : . -. . 44-..

, V::.:......

60

1. INSERT operations: User cannot store details concerning a finite element
without knowing at least one node of the element. The reason is that one
part of the primary key (E#,NODE#), i.e, NODE# is not known.

2. DELETE operations: If user deletes a particular material type - MATID,
using the material. Similarly, if user deletes a particular finite

element, then database looses data about a particular material.

3. MOlIFY operations: To change information about a particular element
number, all rows containing that element number have to be modified.
Otherwise functional dependency MATID + E will not be valid any more.

Therefore it is not desirable to use the relation in Fig. 4.3.2 to
represent the internal model. Modification of this relation to 2NF is
necessary to avoid these anomalies in the storage operations. For this
purpose, first we need to identify non-key attributes of TRM-D and check their
dependence on the candidate keys. The non-key attributes are EL-TYP, E, T, X,
Y, Z, MATX (refer to definition of full functional dependency). For example,
consider the non-key attribute EL-TYP:

E#, NODE# + EL-TYP
E# + EL-TYP
NODE# / EL-TYP

Therefore, E#, NODE# > EL-TYP

Thus, EL-TYP is not fully functionally dependent on (E#,NODE#). Note that E
is transitively dependent on E# through MATID. Similar argument leads to

E#, NODE# > E, T, X, Y, Z or MATX.

Therefore, relation TRM-D should be converted into a set of semantically
• zequivalent relations as follows:

TRM-D1 (TR#, E#, EL-TYPE, NODEI#, NODE2#, NODE3#,
,MAT1ID, E, CSID, T, MATXID, MATX)

TRM-D2 (NODE#, X, Y, Z)
TRM-D3 (r#, NODE#)

The above three relations TRM-DI, TRM-D2 and TRM-D3 are all in 2NF because
first two relations do not possess any compound candidate key and third
relation has all keys. Note that by splitting the relation, TRM-D no
information is lost and they still are consistent with the conceptual model.
However TRM-DI relation is not still satisfactory. It can lead to anomolies 2
in storage operations as follows:

1. INSERT operation: It is not possible to store the fact that a particular
material - MATID has a property - E without knowing at least one finite
element using the material.

2. DELETE operation: If only one element is using a particular material and
if that element is deleted, we loose all information about the material.

-r . - .

61

3. MODIFY operation: If several finite element use a particular material and
if the property of the material is changed, then modification must be done
to all the rows of the material used by those elements.

Therefore it is not feasible to use TRM-D1 relation in the internal
" model. Modification of this relation is necessary to 3NF to avoid anomalies

in storage operation. Non-key attributes must be non-transitively dependent
on candidate keys to avoid these anomolies. It can be observed from the
relation TRM-D1 of Fig. 4.3.3 that attributes E, T, and MATX are transitively
dependent on TR# through MATID, CSID, and MATXID, respectively. Removing

• these transitive dependencies, w, get the following relation:

TRM-D4 (TR#, E#, EL-TYP, NODEI#, NODE2#, NODE3#, MATID,
CSTD, MATXID)

TRM-D5 (MATID, E)
TRM-D6 (CSID, T)
TRM-D7 (MATXID, MATX)

The above three relations together with TRM-D2 and TRM-D3 constitute the
internal model for element stiffness matrix generation purpose. This internal
model is consistent with the conceptual model identified earlier. Also, note
that number of relations in the internal model is only 6 as compared to 15

*elementary relations in the conceptual model.

In summary, the following steps are necessary to derive an internal model
that is consistent with the conceptual model. Normalization procedures have
to be adopted at each step to reduce redundancy, to eliminate undesired
anomolies in storage operation and to ensure integrity of the stored values in
the database. At each step unsatisfactory relations are replaced by others.

Step 1. Form relations with attributes derived from a set of domains.

Step 2. Eliminate multiple values at row-column intersection of relation
table. Vectors and matrices are considered to be single data items for this
step.

Step 3. Result of Step 2 is relations in INF. Take projections of NF
relations to eliminate any nonfull functional dependencies and get a relation
in 2NF.

Step 4. Take projection of relations obtained in Step 3 to %liminate
transitive dependencies to form relations in 3NF. Thus a set of relations in
3NF is the internal model.

Implementation of these relations in actual physical storage is dependent
on the database management system. Rows of a relation correspond to stored
record occurrences in a physical storage (disk) device. Records in the disk
may be stored successively or may be connected by a links or index to records
may be provided. Details of physical storage are discussed in the next two
chapters.

. -. ~, -

'-. --..,- ". • "--% '.*'7 .-' ---...- ,'-- - - --- • - *- -*-" ' . - . . • . - . . - -- • ' "
,.-" _ . . ', ' _ , . '.- . . ,- - " - . • .. ,. . ., ,. . . • • - . - , ., ". • .-'." .*- ' *,,

62

iRM-DI

TRI Ef EL-TYP NODElf NODE2I NODE3I MATID E CSID T MATXID MATX

1 15 TRM3 5 7 8 STEEL*5 108 THICK-8 0.1 STF1 -]I

2 16 TRM3 12 14 18 ALUM04 O.9x107 THICK04 0.2 STF02 []

TRM-D2 TRM-D3

NODE# X Y Z E# NODE#

5 1. 5. 7. 15 5
7 3. 4. 8. 15 7
8 2. 6. 3. 15 8
12 5. 9. 8. 16 12
14 1. 4. 1. 16 14
18 3. 5o 8. 16 18

Figure 4.3.3 Relations in 2NF

63

4.4 External Model

One of the important requirements of a database is to provide facility
for data retrieval by different application programs depending on their
needs. Different application programmers can have different views of a
database. Data structure as seen by an application program or intera -ive
user is called an external data model. Generally, users perspective of a
database is only a subset of the actual contents of the database. Data
retrieved from actual physical storage in the database undergoes
transformation till it reaches the user. Transformation involves
rearrangement of data from internal level to external level into a form
acceptable to the application program. In the following paragraphs,
considerations required while designing an external model that is suitable to
structural design applications are given.

We have discussed the various data models - hierarchical, network and
relational in Chapter 3. Some of these models could be choosen for use as
external models. Choice of the external model depends on consideration of
simplicity of use for applications and database management system's
capability. Relational model offers excellent facility for providing simple
and easy view of data for application programmers and interactive users.
Tabular form of data offered by the relational model is convenient to
represent most of the structural design data. Hierarchical model is suitable
to organize data of a hypermatrix. A hypermatrix consists of a number of
submatrices organized at various levels. Network model is more general than

* hierarchical model, but the complicated structure of the model makes it
difficult to use. Therefore, relational and hierarchical models can be
choosen to organize structural design data. As stated earlier, the choice for
the external data model also depends on the capability of the database
management system (defined in later chapters) available to support users view
of data. It is assumed that a database management system is available to
support relational and hierarchical models for purpose of our discussion.

Some constraints have to be observed while designing an external model.
Constraints arise while rearranging data from internal data structure to an
external data structure. An important constraint is that internal data

,' structure must be consistent with the conceptual data structure. Any
retrieval and storage operations specified on external model must be correctly
transformed into corresponding operations on the internal model and at the
same time data must be consistent with the conceptual data model. Also design

* of the external model must fit the database management system capability. An
7; example of how an external model is derived from an internal model is given

below.

Suppose a particular user would like to know the coordinates of nodes of
each triangular finite element for generation of element stiffness matrices.

- This means that the external model:

EL-CORD (TR#, E#, EL-TYPE, X1, YI, Zt, X2, Y2 Z2, X3, Y3, Z3)

has to he provided for that particular user. Note that the external view EL-
CORD contains data items from two different relations -- TRM-D4, TRM-D2 (refer
Section 4.3). Therefore, a procedure is required to transform internal data
model (relations TRM-04, TRM-D2) to the external data model (relation EL-

I

.- . . .- 2i.- - . . -, -. , .
,..'.. --.--,-. ..-'-.-,-.'-.'- -- - .

64

CORD). Data from TRM-D4 and TRM-D2 have to be rearranged to obtain relation
EL-CORD. Procedure for rearrangement can be formulated by using JOIN and
PROJECT operations as follows:

TRM-A (TR#, E#, EL-TYP, NODE1#) + TRM-D4
TRN-B (TR#, E#, EL-TYP, NODE2#) + TRM-D4
TRM-C (TR#, E#, EL-TYP, NODE3#) + TRM-D4
TRM-D (TR#, E#, EL-TYP, Xl, Y1, ZI) = TRM-A*TRM-D2

, TRM-E (TR#, E#, EL-TYP, X2, Y2, Z2) = TRM-B*TRM-t2
TRM-F (TR#, E#, EL-TYP, X3, Y3, Z3) = TRM-C*TRM-D2
ELCORD (TR#, E#, EL-TYP, Xl, Y1, Zi, X2, Y2, Z2,

X3, Y3, Z3) - TRM-D*TRM-E*TRM-F
NOTE: + indicates PROJECT; * indicates JOIN

The above procedure (algorithm) yields EL-CORD relation. It can be seen
from the algorithm that we did not modify the original relations TRM-D4 and
TRM-D2 to retrieve the data required for a particular inquiry. The relations
TRM-D4 and TRM-D2 are still consistent with the conceptual model. Therefore,
pure retrieval operations for rearrangement of data does not cause any

* . inconsistency in data values.

Now, consider the reverse process of transforming external data structure
to internal data structure. Suppose, a particular user wants to insert the

.' nodal coordinates of a finite element using the external view EL-CORD. Here,
relation EL-CORD has the only key TR# and has no reference to the node number

* to which the element is connected. Insertion is not consistent with the
conceptual model which requires that coordinate of nodes which are dependent
on keys NODE#. This restriction is also reflected in the internal model --

" TRM-D2 which requires NODE# as key values for insertion. Therefore, the
transformation of relation EL-CORD into internal model is not possible. From
this example, it follows that there are restrictions for rearranging data from
external model to internal model.

4.5 Nurical Model

In finite element analysis and structural design optimization, we
encounter problem of storage of large order matrices. These matrices are

_ generally banded and sparse, and require careful consideration in organizing
them in databases. This special nature of matrix data is unique to design
database and therefore no attempts have been made to study this aspect in
business database management area. However, a few matrix schemes have been
implemented on disk files, but they are highly tailored to meet only specific
application program needs and not suitable for general use. Consequently,
there is a need for the development of a generalized and a new user-friendly
technique to deal with large order matrices. In this section, we discuss
various types of large order matrices and develop a suitable methodology for
organizing them in a database.

4.5.1 Identification of Matrices

Various types of matrices are identified and defined below. Note that
matrices considered for our purpose are of large order which implies a matrix% - ' I

* ,.,o* ". ~ .

65

A(m,n) where in and n about 1000 or more. For the purpose of our discussion,
matrices are grouped into five types and are referred by the type numbers.

(i) Square Matrix A
A - a(i,j) i = 1, 2, ... n, j = i, ... n

A square matrix A is symmetric if A = A
A square matrix A is diagonal if

a(i,j) * 0 for i = j
a(i,j) = 0 for i j

A square matrix A is upper triangular if
a(i,j) 0 0 for i 4 j

A.a(i,j) : 0 for i > j
A square matrix A is lower triangular if

a(i,j) 0 for i >
a(ij) = 0 for i < j

(ii) Banded Matrix A
a(ij) = 0 for li-Jl > m

where m << n; n = matrix size
a(i,j) 0 for ji-ij in

Consider bi = I + (j-1) for all i, where j is the column number for
last nonzero entry in row i, then semi-band width B max bi (refer
to Fig. 4.5.1).

(iii) Hypermatrix H
H _ h(k,t) k 1 1, ... p, 2t 1, ... p

where h(k,L) _z square nonnull matrix A for some, k,2-
square null matrix A for some k,X

and A -: a(ij) i = 1, ...m, j = 1, ...m
A is known as subinatrix of H. k and 9 are known as hyper-rows and
hyper-columns (refer to Fig. 4.5.2).
H is upper triangular if

h(k,t) -- A for k < .Z
= 0 for k > k

H is lower triangular if
h(k,Z) A for k , k.

0 for k < x

(iv) Sky-line Matrix S
For symmetric upper triangular matrix

S a(i,k) i = 1, ... n, k = 1, ... n
m row number of first nonzero element in column j; mj, j : 1,

n... i define the skyline.
(j-m.) = column height
a(i,) = 0 for k > (j-mj); (refer to Fig. 4.5.3).

(v) Sparse Matrix P
.'P -- a(ij) i = 1, ... n,, j = 1, ... n

P is sparse if
a(i,j) = 0 for most values of i and j. As a rule of thumb,

only about 5 to 20% of the matrix contains nonzero
values at scattered locations in the sparse matrix.

"% ." % -". F "!L" - " .' " ." " " " " , • - - ' . ."-" '. . . '." -. . ' -, . , - . .
'. - - -- . ". • - " -" - -- :..".. -" - '.. .w - . -.

66i

Figure 4.5.1 Banded Matrix

___ __ 1,2,3,4 _ _ _ _ _ _ _

2..

33

Figure 4.5.2 Hyper Matrix

Figure 4.5.3 Skyline Matrix

ka

,- ~ 67

4.5.2 Methodology for Design of a Numerical Model

We identified various types of matrices commonly encountered in finite
4 element analysis and design optimization procedures. It is necessary to

establish a methodology for organizing these matrices in a database. A
numerical model is proposed in this section which consists of conceptual,
internal and external views of large matrices. Recall that a conceptual view
represent inherent nature of data independent of any computer cuo straints.
Therefore it is necessary to first study true nature of a large order
matrix. Later, the internal representation of a matrix can be considered to
deal with storage efficiency, processing sequence, matrix operations, and
flexibility of data modification. Since different applications and users view
the same matrix in different form, suitable external views have to be
provided.

Conceptually, a matrix is a two-dimensional array of numbers. These
numbers appear in a certain pattern; e.g., square, sparse, symmetric diagonal,
banded, lower triangular form, upper triangular form, unitary form,
tridiagonal form, hyper matrix form and skyline form. A matrix is uniquely
identified by a name. Rows and columns of the two-dimensional array are used
for identification of data elements in the matrix. A conceptual view of a
matrix can be represented by the following elementary relations:

ER1 (NAME, MATRIX TYPE)
ER2 (NAME, NUM-OF-ROWS)
ER3 (NAME, NUM-OF-COLUMNS)
ER4 (NAME, ROW, COLUMN, DATA-ELEMENT-VALUE)
ER5 (NAME, NUM-OF-HYPER ROWS)
ER6 (NAME, NUM-OF-HYPER COLUMNS)
ER7 (NAME, HYP-ROW, HYP-COLUMN, ROW, COLUMN, DATA-ELEM-VALUE)
ER8 (NAME, BAND-WIDTH)
ER1O (NAME, SUB-MAT-ROW-SIZE)
ERlL (NAME, SUB-MAT-COLUMN-SIZE)
ERI2 (NAME, VECTOR OF SKYLINE-HEIGHT)
ER13 (NAME, HYP-ROW, HYP-COLUMN, NULL-OR-NOT)

The attributes of these elementary relations are self descriptive. These
elementary relations completely define a matrix and provide the conceptual
structure of the matrix. Note that the data values assigned to a matrix do
not depend on whether a matrix is in banded, skyline or hyper matrix form.
But they are located using on the row and column number of a matrix.
Therefore, additional information such as banded, skyline, hyper matrix,
bandwidth, and submatrix size are useful mainly to take advantage of the
special nature of a matrix for storage and computational purpose.

Internal (storage) structure for large order matrices have to be
- developed which is consistent with the conceptual structure. The elementary

relations defined above could he stored in a database, hut it would require aml
awful number of accesses to get the reqtired matrix data. Therefore, storage
schemes have to be developed based on efficiency considerations. Also,
storage space consideration is important to save disk space. Special nature
of matrix, i.e., is sparse, dense, symmetric, should be used to provide
storage efficiency. We can classify various matrix types considered in the

.' previous section into two basic types - sparse and dense. Note that banded or

68

diagonal matrices are not to be mistaken as sparse. Many possible storage
schemes are available to store dense and sparse matrices. First, we consider
storage of large order dense matrices.

Conventional storage schemes -- row-wise, column-wise, submatrix-wise are
useful for storing dense matrices. Row and column storage are considered to
be similar for purpose of our discussion. Thus, out of these storage schemes,
only two schemes -- row-wise and submatrix wise are considered for evaluation.
Figure 4.5.4 shows the row and submatrix storage schemes. Again, it is
stressed here that we are considering the internal storage schemes and not the
users view of a matrix - such as row-wise, column-wise, submatrix wise,
skyline wise, or upper-triangular. Choice between these two storage schemes
should be based on consideration of several aspects - storage space,
processing sequence, matrix operation, page size, flexibility for data
modification, ease of transformation to other storage schemes or user's views,
number of addresses required to locate rows or submatrices, and availability
of database management system support. These aspects are considered in detail
below.

Storage Space Row storage scheme can be used for square, banded and
skyline matrix types. However, this scheme is not appropriate for
hypermatrix. Symmetric, triangular, and diagonal properties of square matrix
can be used in saving storage space if variable length of rows is used.
Similar schemes can be used for banded and skyline matrices to store data
elements that appear in a band or skyline column. Submatrix storage can be
used for all matrix types. Submatrix storage is most appropriate for
hypermatrix data. Both schemes have disadvantages when zero elements within a
row or submatrix have to be stored.

Processing Sequence Row storage requires assembly of matrices, storage
and retrieval be made only row-wise. This becomes inefficient if row-wise
processing cannot be made. Submatrix approach is suitable for all types of
processing sequence -- row-wise, column-wise, or in any arbitrary order.

Matrix Operations Operations such as transpose, addition,
multiplications and solutions of simultaneous equations are frequently carried
out at various stages of structural design. Row storage scheme is highly
inefficient for matrix transpose when column-wise storage is required. During
multiplication of two matrices A and B, a column of B can only be obtained
only by retrieving all of rows of B. Therefore, row storage scheme become
inappropriate for such operation. However, submatrix storage scheme does not
impose any such constraints in matrix operation, thus provides a suitable
internal storage scheme.

Page Size A page is a unit or block of data stored or retrieved from
memory to disk. A more detailed definition will be given in the next

"-- chapter. For a fixed page size, only a number of full rows or a number of
full submatrices together with fractional parts of them can be stored or
retrieved at a time. It is clear that fragmentation of rows or submatrices
takes place depending upon the size of rows or submatrices. Large row size
will overlap more than one page in memory and cause wastage of space.
Submatrix scheme has the advantage of providing flexibility in choosing
submatrix size to minimize fragmentation of pages.

'-.. *" :'':-: -'' .' ...-. i " : : '"

69

11,1 1,2 I,n
2

43 2,1

Figure 4.5.4 Row and Submatrix Storage Schemes

70

Flexibility for Data Modification For modifications of rows of a matrix
both row and submatrix storage schemes are suitable. But row scheme would be
more efficient than submatrix storage scheme. For modifications of a few
columns of a matrix, row storage scheme requires a large number of I/O.

Transformation to Other Schemes Submatrix storage scheme requires
minimum number of data access to transform to column-wise storage scheme.

Address Required Submatrix storage requires less number of addresses to
locate data than row storage scheme provided submatrices are reasonably large.

Thus, from various aspects considered for choice of storage scheme,

submatrix storage scheme has clear advantage over the row storage scheme.
Hence submatrix storage scheme can be used for internal storage of large order
matrices in a database.

In order that internal storage scheme be consistent with the conceptual
model, we need to store additional information about the properties of the
matrix. Those additional informations are given by the elementary relations
ERI, ER2, ER3, ER5, ER6, ER9 to ER13. They can be combined together and
stored in a relation with key attribute NAME. Relations required for internal
storage are indicated in Fig. 4.5.5.

So far we considered schemes for internal organization of large
matrices. Since different users view the same matrix in different forms -

banded, skyline, hypermatrix, triangular, diagonal, it is necessary to provide
external views to suit individual needs. Unit of transactions on various
views of a matrix may be row-wise, column-wise, submatrix-wise or data element
wise. Internal scheme is submatrix-wise, where as external view need not be

.-. submatrix wise. Therefore, transformation procedures are necessary to convert
the internal matrix data into the form required for a particular user. Such a
transformation is schematically indicated in the Fig. 4.5.6.

Next, we consider sparse matrix storage scheme. Several storage schemes I

have been suggested by Pooch (1973) and Daini (1982). They are bit-map
scheme, address map scheme, row-column scheme, and threaded list scheme. Out
of these row-column scheme is simple and easy to use. Also, row-column scheme
can be easily incorporated into relational model. Therefore, this scheme can
be considered for storing sparse matrices encountered in design sensitivity
analysis.

Row-column storage scheme consists of identification of row and column
numbers of nonzero elements of a sparse matrix and storing them in a table.
This scheme provides flexibility in modification of data. Any nonzero value
generated during a course of matrix operation can be stored or deleted by
simply adding or deleting a row in the stored table. The row-column scheme is
schematically shown in Fig. 4.5.7.

External view of row-column storage scheme can be provided through
suitable transformation procedures. An external view of this scheme is shown
in Fig. 4.5.8.

% . -

. . .-

71

MATRIX NO. OF NO. OF SUBMATRIX SUBMATRIX VECTOR OF
NAME TYPE ROWS COLUMN ROW COLUMN BANDWIDTH SKYLINESIZE SIZE HEIGHT

NAME HYP-ROW HYP-COLUMN NULL or SUBMATRIX
NO. NO. NOT

A I I

A 1 2

Figure 4.5.5 Relations for Matrix Storage

9%

- .

I~z.
• .,- -. ," V,.r ,' ',.-' .',, .. "' .- " ,-', - •"... . -,. , - I ,'

72

I- F

I!EXTERNAL VIEW EXTERNAL VIEW EXTERNAL VIEWA C

INTERNAL STORAGE SCHEME

Figure 4.5.6 Transforuing Internal Storage to External Views

ROW COLUMN VALUE
NO NO

Figure 4.5.7 Row-Column Storage Scheme (Internal)

73

BANDED MATRIX UPPER TRIANGULAR MATRIX HYPER MATRIX

EXTERNAL VIEW 1

INERA STRG

Fiur .58Exena ie f prs ati

74

4.6 Algorithmic Model

So far we considered various methods and procedures for data
organization, wherein, actual storage of data In a database was necessary.
Many procedures in structural design, such as element stiffness matrix
routines, generate huge amounts of data. Generally, it is unlikely that a
user would want them to be stored in a database at the expense of disk space
and data transportation time. The advantage of being able to query or
possibly modify individual data elements does not apply to stiffness matrices,
which are more or less meaningless, except to the analysis program for which
each matrix has been assembled. In order to save disk space and data transfer
time, it is preferable to store only those data that are required for
generation of element stiffness matrix. In general a data model may be
replaced by (i) an algorithm that generate the user requested information and
(ii) a set of (condensed) data which will be used by the algorithm to generate
the user requested information. Therefore, in an algorithmic model, data are
not stored but are generated whenever they are needed. Algorithmic model
provides a means for selecting a mixture of algorithms and stored data in a
way that is most efficient for any given application.

Study of resource aspects must be made for deciding suitability of an
algorithmic model or a data model. In cases where the items being modeled is
rich in empirically derived data (for example, steel codes for allowable
stress calculations) the algorithmic model uses a simple algorithm with a
conventional data model. At the other extreme, where all properties of an
item can be generated (for example, element stiffness matrix calculations) the
algorithmic model uses a complex algorithm with very little data. A data
model is preferable when storage capacity, processing costs, usage rates are
high and time to transport data, rate of change of data are low. An
algorithmic model is better if storage capacity, processing costs, usage rate
of data are low and transport cost are high.

Methodology for constructing an algorithmic model is based on (i) design
of a suitable algorithm, and (ii) design of a (condensed) data model. Design
of algorithms is dependent on the standard method of computational techniques
used in practice. These algorithms must be acceptable to all users of the
model. Data transfer between algorithm and (condensed) data model can be
provided through database management system support. Interface between
algorithmic model and applications must be designed based on consideration of
simplicity and ease of use. Design of (condensed) data model is dependent on
the algorithm itself. If the condensed data model uses a conventional data
model, then schemes for ensuring correctness of data values in the model must
be provided. This is necessary because if this condensed data model is
allowed to be modified arbitrarily then resulting data generated by algorithms
will become meaningless. If several algorithms are in operation each using

Sonly a portion of condensed data model, then decomposition of the data model
into several low level forms will enable efficient access of data values.

%"1

.................

/. . . -

75

5. DATABASE MANAGEMENT SYSTEM FOR STRUCTURAL DESIGN - A PROPOSAL

5.1 Introductory Remarks

We need a software to use a database that has been designed based on the
" methodology given in the previous chapter. A software that handles requests

of users to access and store data in a form compatible with data organized at
various levels between physical storage level and external level is called a
database management system. A database management system conceals the complex
data storage details and provide a simple view of database to the users. Such

*. a software enables structural design application programmers and interactive
users to store and retrieve required data in a simple way and thereby "' -

*- relieving them of unnecessary burdon of managing physical storage details.

This chapter intended to propose various components of a DBMS and their
functional requirements in view of implementation of a good DBMS for
structural design optimization. A DBMS should have many components such as
command processor, input-output processor, file operation routines, addressing

" . and searching schemes, and memory management schemes in order to provid..
simple and efficient means of data storage and retrieval. Functions and
requirements of these components are described in Section 5.2 with reference
to structural design applications. In Section 5.3 to 5.5(a) proposal of

*T syntactic rules (grammer) for languages used by structural designer to define
data view, manipulate data and query data is given. Finally in Section 5.6,

' existing database management systems are reviewed and their features
tabulated.

5.2 Requirements of a Database Management System

In this section requirements of a database management system for
structural design optimization are given. Various components necessary in a
DBMS and their functions are described. A layman's view of the workings of a
DBMS are given below to show main events that take place while an application
program uses a DBMS.

1. An application program calls a DBMS to define a database, relation, and
attributes.

2. DBMS checks the user given definition for syntax.

3. User requests DBMS to store and retrieve data.

4. DBMS transfers data from user buffer to disk and vice versa.

5. DBMS stores data on disk in files at addresses allocated for data.

6. A system buffer of DBMS is used as an intermediate storage to avoid too
many disk I/O operation for data transfer between user buffer and disk.

If a DBMS is to only perform operations as described above, then the
implementation for such a DBMS would be very simple. But the requirements of
structural design application programmer and the usage pattern are highly
sophisticated and require a general purpose DBMS to satisfy their needs. Such

.'.. -- . -- .--'. -. " "--. - .'- .°..."-'.-..°".'. " ":°"-.. ,'.....................-..........-...-...........-..-...-- ...
. ',. ,'',-%'.-.' -.--. ' , '. - '.-'. ,*- --.,. ..,.-. ..',-.-: '...'' < ' $- " ,"., " . " .7. -" " --V", ,-

76

a DBMS should have components -- command languages, command processors input-
output processors, addressing and searching routines, file definition and
operation routines, memory management routines, integrity and rule processor,
relational operators, and security and protection schemes. These are
identified in Fig. 5.2.1. In the following subsections, the functions and
requirements of these components are described.

5.2.1 Languages for DONS Users

First requirement of a DBMS is to provide users with a convenient set of
languages to give commands to DBMS to carry out users tasks. In general, a
structural design application programmer is familiar with conventional
language FORTRAN. Therefore, it is necessary to develop a DBMS so as to
provide a compatible interface with host language FORTRAN. Since, this
language alone does not answer user requirement to specify data types and
manipulate data, additional set of sublanguages are required which are derived
from FORTRAN language. Two important sublanguages are data definition
language (DDL) and data manipulation language (DML). A data definition
language is used to define database, relations and attributes. A data
manipulation language is used to store, retrieve, modify and delete data in a
database. In particular, these languages provide commands (nothing but
FORTRAN call statements) to user. These commands enable a user to use
database without any reference to the storage details. These two languages
are described in detail in Sections 5.3 and 5.4. In addition to these
languages, a query language is necessary for interactive user of a database.
A query language consists of commands given by user in a character string form
and does not have any reference to FORTRAN structure. A query language is
useful for structural designer to inspect the contents of a database and
manipulate them quickly using simple commands. The details of a query
language that is suitable for structural design are given in Section 5.5.

5.2.2 Coumand Processor

User given commands have to be checked before they are executed by a DBMS
to avoid erroneous operations on a database. Commands of DDL and DML involve
subroutine call statements where ds query language commands contain character
strings. It is necessary to verify these commands for syntax and also against
illegal use of commands in any database operations. In the case of subroutine
call statements, the number of arguments, type of arguments and value of
arguments have to be verified. For example, if user has requested operations
on a nonexistant database, command processor must issuean illegal operation
flag. Interactive user is bound to commit a large number of mistakes while
issuing commands spontaneously. Therefore, a more sophisticated command
processor is required to verify query commands. Such a processor has to
provide functions for verifying character strings, storing the strings,
separating data items from a command string, identification of integer, real
and character data types in the string, finding the length of a command line,

,.. locating next item in a command line, automatic generations of new commands,
and finding repetitions of previous command line.

"Wi ;• . . ,... ,.-* w -.,-, .,, , -,, -, ,, , .- .-.* ,.* ,.:-, - .-. -. - Ii"

77

* LNGUGESINPUT- ADDRESSING
Dot COMMIAND

ONLPRCESOROUTPUT ANDOH RCESR PROCESSOR SEARCHING
QUERY

FILEINERT
DEFINITION MEMORY ITGIY RELATIONAL
AND FILE MANAGEMENT RULETOR
OPERATIONPRCSOOEATS

SECURITY
AND

PROTECTION
SCHEMES

Figure 5.2.1 Components of a Database Management System

78

5.2.3 Input-Output Processor

Input-output processor is the basic component of a DBMS which handles all
requests of the users to store, retrieve, modify and delete data. Storage and
retrieval of data are done using data sets and relations as a basis. Data
sets are nothing but sets of data stored in row, column or submatrix order.
Relation is a two-dimensional table of data. User requests to store or

- retrieve portions (for instance a set of rows) of data set or relation at a
time by providing them in the user buffer. Functions of I/0 processor are to
verify the correctness of data manipulation operations and to perform data
transfer between user buffer and disk files. Existence of data sets, and
relations are verified before any data is transferred between user buffer and
database. If the data manipulation is based on primary keys, then I/0
processor checks the existence of key values. Many structural design
applications, also operates on rows of data set and relations. In such a
case, I/O processor is required to verify the row numbers of data sets and
.relations. If data manipulation is based on certain conditions of data value
in a data set or a relation (for example, modify coordinate values of nodes 5,

* 21, 27) then I/O processor is required to provide capability for such
manipulations.

Main function of a I/O processor is to transfer data between user buffer
and disk. A number of intermediate operations must be performed by I/O
processor before any data transfer is made. First, data from user buffer is
transferred to a system buffer of DBMS to avoid too many disk I/O. I/O
processor requests memory management schemes to allocate and control space
required in system buffer. Then, it requests addressing routines to provide
physical storage location for placement of system buffer data when it becomes
full. Also, file operation routines, integrity rule processors, relational
operator and security and protection routines are called during the operation.

5.2.4 Addressing and Searching

Input-output processors cannot directly get the required data from a data
set or a relation till the address to the stored data is determined.
Addressing routines determine the physical storage location for a data set or
a relation given a particular row number or primary key values. There are
several methods to determine the addresses. Important methods that can be
considered for implementation are indexing and hashing methods. When index is
used for addressing, address to blocks of records are maintained in a table.
A scan of address determine the block containing the required data. Then a
serial search for a required row or primary key value determine its address.
In hashing method, the primary key or row number is converted into a random

- . . number and is considered as the address for the data. Disadvantage of hashing
method is that storage utilization in disk is low and there is some chance of
clashing addresses of two data.

Index for addresses are generally large if database is big. Locating a
particular index efficiently is important to save time of search. Out of
several search techniques, B-tree search is popular. One index is placed at
each node of a tree. Search beings at the top of a tree to locate a
particular index. Depending on whether the given index is less than or
greater than the index at a node, search is made toward left or right of the
tree.

",.',-.

m~.,.

,W . -. -. -. , • ,• w •- . " . - . •..- .-.-. . -. . .,..• " • .. . °%'

79 .-,

5.2.5 File Definition and File Operations

At the physical storage level, database consists of either a single
stored file containing data or several files linked together as a unit. File
definition and file operation routines are required in a DBMS. Function of
file definition routine are naming of files, allocating logical unit numbers,
specifying type of file access (random or sequential), specifying physical
storage block size, etc.

Actual data and data definitions (name of data set, attributes, sizes)
may be stored in a single file or can be separately stored in different
files. File operations consists of opening, closing and deleting files. A
file once opened for reading and writing should be closed at the end of file
operations. File compression is done to recover unused space.

5.2.6 Memory Management

Structural design application programs use data from several data sets
and relations at a particular design stage. Also, they use data of different
portions of the same data set and relation in arbitrary sequence. In such
situations, we are faced with the problem of accommodating the required data
in the primary memory and at the same time reduce I/0 activity to lessen
computation time. Efficient use of primary memory is possible through
judicious allocation of available space. Memory management scheme dynamically
controls the available memory space. The memory is organized into pages
(which is a unit of transfer between the database and primary storage) and
page sizes are assigned. The size of the page is set to multiple of a
physical record. Larger the page size, better the performance as less I/0 is
needed to get the required data. However, space may be wasted if there are
too many partially filled pages. Small page size leads to increase in page
replacement activity and maintenance of large page size table. Variable
length pages require tedious programming effort.

7.4
Another important function of memory management scheme is page

replacement activity. Memory management scheme should keep count of the pages
in the memory. Paging scheme may adopt some page replacement algorithm.
Least recently used (LRU) page replacement is the most commonly used method.
In LRU algorithm, a page counter is maintained for each page and updated each k

time the page is used. When a page is to be replaced, the page with the
highest counter value becomes the candidate. A page replacement is done when
no free pages are available. A page not modified is over written instead of
replacement.

Memory management scheme should be developed such that user has some
control over the size of pages. This feature helps in determining the
appropriate page size while operating on larger matrices of finite element
analysis and design optimization problems. Fragmentation of large matrices on
pages can be avoided by using page size in multiples of matrix size. Matrix
operation algorithms for addition, multiplication and transpose by row
,perations can use page size in multiples of number of rows of a matrix. The
algorithms that solve large order simultaneous equations by submatrix approach -
require at least a few submatrices to be present simultaneously in the
minmory. In such a case, allocation of one submatrix per page induces fewer

-72-

80

page faults. This leads to reduction in I/O activity of iterative algorithms
and brings down the execution time.

5.2.7 Integrity Rule Processor

In Section 3.5, we observed that integrity maintenance is an important
task in structural design database. Integrity rules are enforced in practice
by providing key constraints, referential constraints and other constraints.
It Is necessary to provide facilities in a DBMS to enforce these integrity
constraints. Such a facility is possible through integrity rule processor.
Functions of rule processor are to define constraints, check constraints
during data storage and data manipulation and issue user messages in case of
violation of rules. Key constraints are imposed by the processor by assigning
various attributes to form key attributes. Referential constraints are
imposed by specifying attributes belonging to two or more relations to share
common data values. Other constraints, say for example coordinate values
should be greater than zero are imposed by specifying range of values an
attribute must take. If a large number of constraints are imposed, then time
required to check the data during data manipulation are high. Therefore, DBMS
should provide facility for the user either to check the constraints or allow
data manipulation without checks. In the later option, user is responsible
for ensuring validity of data.

5.2.8 Relational Operators

Database proposed in the previous chapter, is based on relational data
model. Therefore, a DBMS which operates on a relational database must have
relational operators to manipulate the database. Relational operators
manipulate data in terms of entire sets or relations and not in terms of
individual rows or columns at a time. Three types of relational operators are
SELECT, PROJECT and JOIN. Each of these operators take either one or two
relations as its operand and produces a new relation as its result. The
SELECT operator constructs (or lists out) a new relation by taking horizontal
subset (specific rows) of a relation. The rows that satisfy some condition
are selected. The PROJECT operator forms a vertical subset of an existing
relation by extracting specified columns and removing any redundant duplicate
rows in the set of columns extracted. The JOIN operator, joins two relations,
each having common column (attribute), and produces a new wider relation in
which each row is formed by concatenating two rows, one from each of the
original relation, such that two rows have the same value in those two
columns.

"g 5.2.9 Security and Protection Schemes

a Structural design database is used by a number of application programs

and users. It is necessary to ensure that database contents are not destroyed
or manipulated by unauthorized users. Therefore, DBMS must have special
scheme to ensure security and protection of a database. Security of a
database against unauthorized use can be provided by allocating password
schemes to access contents of a database. Users of database are provided with
read and modify passwords to use the database accordingly. These passwords

.......

81 -

can be assigned both at database level and individual dataset or relation
level. Protection of a database is necessary to guard against destruction of
a database due to computer malfunction. Periodical backup of the database
will ensure such safety.

5.3 Data Definition Language

Data definition language (DDL) is a means to declare data types and
logical relations among them. DDL can be used to define both external and
internal views of data. External views are declared either through an
application program or interactively. For the application programmer, DDL is
a conventional language like FORTRAN; for interactive user it is the query
language. Data definition facility at the internal level is provided by
special commands (internal DDL) built into a DBMS. Note that external view of
users is only a portion of internal view of data in a database. It is
necessary to build both external data definition and internal data definition
language such that they do not contain reference to physical storage details
on disk. Thus, any change in storage structure of data on disk will not force
modification of application programs.

Data definition language for the application programmers consist of those
declarative constructs of FORTRAN needed to declare database objects:
Variables and arrays, FORTRAN data types, extens ons to FORTRAN to support
objects not handled by FORTRAN. External views of data is defined by
application programmers using relational and data set constructs. Since
FORTRAN does not provide facility to express relations and data sets, we need
to provide extensions to FORTRAN to define data. Such an extension is
possible through FORTRAN CALL statements and is provided as a part of OBMS.
Arguments of the subroutine call statements, for example, specify databasename, relation name, attribute name and size, etc.

Development of a DOL for structural design application should be based on
several considerations. One of the major consideration should be to keep
syntax of DDL concise and to be easily understood by application
programmers. Furthermore, since, the DDL is used in structural design
computing, all the data types of FORTRAN must be allowed -- integer, real,
double precision and character. Data elements allowed by the DDL also include
those of FORTRAN scalars and arrays. DDL should support both relations and
data set definition. Relation definition require specification of relation
names, attributes (names, type, and size), key attributes, and variable length
attributes. Data set definition requires specification of data set name, data
set type, row size, column size and/or submatrix size. In addition to
relation and data sets, DDL should be able to define numerical data. Large
order matrices are organized in banded, hyper matrix or skyline form. Special
facilities must be provided to define these large order matrices. There are
many instances in structural design data where maximum size of data is
known. For example size of stiffness matrix is known in advance. In such a
case, provision in DDL for specification of maximum number of dat, occurrence
will enable DBMS to conserve storage space and provide maximum efficiency.
Another feature that should be included in DDL is data redefinition
capability. This can be accomplished by providing several transformation of
the same data to different application programs. It may be convenient, for

- instance, to represent a matrix in two different ways in different external
'.'. 4

i , , n . ; . _. . , -- I J.-v -r . - .----.-- .-. , _ - - •.--.- - - -- -.. .

82

views. In one view the matrix might be defined as two-dimensional array and
in another view it might be defined as a vector. One important feature that
should be incorporated in DDL of structural design application is compilation
independent data definition facility. This means that DDL must have facility
to define data types and relationships during run time. This feature is
necessary because data definition in many instances are not known till certain
stage of processing is complete. An example of this is number of degrees of
freedom which is not known to define size of assembled stiffness matrix, till
input data is processed. Finally, consideration for development of DDL should
include database security. Mechanisms for security such as read and modify
password must be provided at both relation and data set level.

Internal DDL could be again an extension to the programming language or
special commands supported by a DBMS. Considerati)ns for developing an
internal DDL are same as described above.

A proposal of DDL for structural design application is given in the
Appendix 2. The data definition language has following features:

1. Database definition with provisions to define global and local
databases. Each database can be either permanent or temporary. Temporary
meaning that database is deleted at the end of execution.

2. Database user identification provision. Database can be used either by a
owner or a user. Database access is defined either by read or modify
rights.

3. Data set definition facility with integer, real and double precision data
types. Scalars, vectors and matrices can be defined.

4. Relation with attributes of interger, real and double precision data
types. Attributes can be scalars, vectors, and matrices. Provision for
key attributes and variable length attributes are made.

5. Termination of data set definition and data redefinition facility is
available.

6. Numerical data definition with provision to define square, triangular,
banded, hyper and skyline matrix is provided.

DDL syntax of Appendix 2 uses Backus-Naur Form as a tool for defining
syntax of languages. BNF is a common tool for formally describing a
programming language syntax. A syntax is nothing but grammar of a language.

5.4 Data Manipulation Language

Data manipulation language (DML) is used to store, retrieve, modify and
delete data in a database. For application programmers DML is provided
through subroutine call statement; for interactive user it is provided through
query language. At the internal level, store connand of DML is generally
sufficient to fill the database with values. Such a command is usually
provided as a special command built into a DBMS.

, - ~ - .- .-. ." - -. . " ' " -. ," ' .' ,. - i

83

Development of a DML for structural design application should be based on
several considerations. The DML commands should be simple as they are
frequently used in an application program. The DML should not contain any
reference to the storage structure details. DML should have capability to
access data from different databases. Relation and data sets are frequently
accessed and stored row-wise. Therefore, commands in DML must facilitate this
operation. Also, it should be possible to store and retrieve rows in a
sequential order or in a random order. Further, each row can contain data
from a set of attributes each belonging to different data type -- inte/ger,
real, double precision. Therefore, commands should be designed to accommodate -

multiple data types for data manipulation operations. Many structural design
application programs require data of a particular attribute of a relation.
For example, some programs need only degree of freedom attributes in a node-
coordinate-degree of freedom relation. Consideration in design of DML should
include data manipulation in terms of single attributes or a set of
attributes. Further, it should be possible to select any required values from
an attribute that satisfies certain conditions. Special commands must be
provided in DML to specify conditions on data values that are to be
mani pul ated.

* Further consideration in the design of DML is based on matrix
manipulation requirements. Large order matrices are generally stored and
retrieved row-wise, column-wise and submatrix-wise. Data manipulation
commands must include operators to manipulate matrix data in terms of rows,
columns and submatrix order. Matrix operations such as transpose,
multiplication require column-wise retrieval of data stored in row-wise
pattern. Also, DML must be able to retrieval matrix data in various external
view such as banded, skyline as depicted in Fig. 4.5.6. Special provisions
should be made in the commands to indicate null rows (zero elements in a row),
null columns and null submatrices.

There are a number of other considerations for designing DML. Commands
should include utility and data definition list facility. Utility commands of
DML are open database, close database and error display commands. Commands
should be able to provide facility for opening and closing of a number of
databases at various stages of execution. Data definition list command will
enable application programmer to check and use detailed definition of data
objects stored in the database. Error display commands facilitates
application programmer to investigate the cause of errors.

A proposal of DML for structural design application is given in
Appendix 3. The data manipulation language has the following facilities:

1. Open and close command to open and close a database.

2. Retrieval command. This has facility to retrieve data set and relation.

3. Store command to fill data set and relations with values.

4. Delete command to delete parts of data sets and relations.

5. Modify command to modify parts of a data set or a relation.

6. Remove conand to eliminate a data set or a relation.

hI

- ~ -,-.- ~ ~ ~ * ~ * f.* . <.

84

7. Copy command to copy data from one data set or relation to another.

8. Store, retrieve, modify and delete commands for matrix data.

9. Rule command to specify conditions on data values that have to be
retrieved.

DML syntax of Appendix 3 is given in Backus-Naur Form. Description of
BNF are same as those given for DDL.

5.5 Query Language

Structural designers often want to use a database interactively to find
out various parameters of design and to modify them by using simple
commands. Query language provides a simple set of commands to interactively
define and manipulate data in a database. It can be used by any
nonprogramming user and does not require knowledge of high level languages
like FORTRAN. Data definition of query language includes database, relation
and attribute definition, rule specification, and authorization procedures.
Data manipulation of query language includes store, retrieve, modify and
delete commands. In addition to these commands relational operators like
SELECT, PROJECT and MODIFY are provided.

A query language should satisfy several requirements. These are data
independence, simplicity, nonprocedurality, extendability and completeness.
Data independen-e refers to independence of logical data structure and storage
structure definition. Query language should not contain any reference to
storage structure. Nonpr. _durality means that user should be allowed to give
commands in any arbitrary order and should not restrict them to follow
procedures to query a database. Query language should be easily extendable to
incorporate any special function into it. Query language should be complete
in the sense that it possesses all the required commands to query all types of
data in the database. Query commands must be general and not limited to any
special case. Query of large order matrices requires special features in
query language so that data can be displayed in parts.

General syntax of a query language is:

<command> <Expressions clause> <conditional clause>

The command is a name interpreted by a DBMS to execute certain procedure for

defining and manipulating data. Some typ'cal commands required for structural
design are SELECT, LIST, CHANGE, RENAME, OPEN, CLOSE, LOAD, DEFINE, and

* EXIT. The second component is expression clause which is a group of words
specifying names of relation and attributes. The third component, conditional
clause, allows a user to specify a condition on the data for which command is
executed. The conditions may be, for example, GT.100; LT.20, ROWS.EQ.1O.

5.6 A Review of Database Management Systems

In this section, a review of existing database management systems is
made. This review etiables us to evaluate, select and modify a ddtabase

-

* - *.

1D812 ~ DATABASE DESIGN METHODOLOGY
AND DATABASE MANAGEMENT

22
I SYSTEM FOR COMPUTER-A (U) IOWJA UNIV IOWA CITY
I APPLIED-OPTIMAL DESIGN LAB T S MURTHY ET AL DEC 84

UNLSIID CDS-42 FS-R8-81AOR8-22FG51 N

mh1_EEEE t_

I111111-5

r .-.-.. ..-. ---, - -W'- C-- ..S .-... -.- r .. r-. r .. .-.-,-. 4- . 'p..-.-- . .. ~..- .., C-.., , C ' ..-... -. . -- -. '- . -. .,-- rrr -.r -. ,-r.. ".-

'.440

I111 = III25

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

85

management system so that it is suitable for structural analysis and design
purpose. The following fifteen database management systems are reviewed. The
capability of these systems are emphasized and important features are
tabulated.

- DELIGHT - Design Language with Interactive graphics and a Happier
Tommorow

DATHAN - A data handling program for finite element Analysis
EDIPAS - An Engineering Data Management System For CAD
FILES - Automated Engineering Data Management System
GIFTS - GIFTS Data Management System
GLIDE - GLIDE Language with Interactive graphics
ICES - Integrated Civil Engineering System
IPIP - Information Processor for IPAD
PHIDAS - A Database Management System for CAD
REGENT - A System for CAD

* RIM - Relational Information Management System
SDS - A Scientific Data Management System
SPAR - SPAR database management system
TORNADO - A DBMS for CAD/CAM system
XIO - A Fortran Direct Acess Data Management System

DELIGHT. It stands for Design Language with Interactive Graphics and a
Happier Tommorow (Nye, 1981). In its philosophy, the DELIGHT system is very
close to the GLIDE system (Eastman and Henrion, 1980). DELIGHT is an
interacive programming language. It has good extension and debugging
capability. It provides high-level graphic commands, a built-in editor and a
well-defined interface routines. A single statement, procedure or part of an
algorithm can be tested without having to write and load/link a program. The
system relies on virtual memory management of the operating system. It is
difficult to use the system with large scale programs. Multiple users are not
allowed in the system.

DATHAN. It stands for data handling program. It is written mainly for
finite element analysis applications (Sreekanta Murthy and Arora, 1983). The
program has some basic in core buffer management scheme. It has capability to

.. , store permanent and temporary data sets. Substructure files can be arranged
quite easily with same data set names for different substructures. Both
integer and real data types can be handled. Drawback of the system is that
the user has to keep track of the location from which a new data set has to
begin. The system has FORTRAN data manipulation commands which are simple to
use.

EDIPAS. It stands for Engineering Data Interactive Presentation and
Analysis System, (Heerema, and van Hedel, 1983). It is a tool for data
management, analysis, and presentation. The data management part provides a
utility to initalize a project database, input programs to load data from
files into database under user controls, and a set of routines to extract data
from and load data into database in a controlled way. EDIPAS allows users to
name a database, a data structure, and data entities. It allows user to
employ one or more hierarchical levels. The data is stored in entities called
blocks. A data block allows matrices, single values and characteristic values

-' as data elements. A database administration support provides initialization
of database, access to users, deletion of data structures, audit database

-:.:..>>..v 'x:IJZQ ,

.-.,. -.

.. 86

contents, and back-up facility. The system does not have data redefinition
facility. Improvements are being done to include redefinition facility in
order that the data structures and their levels can be manipulated. Extension
of authorization provision from database level to the level of data element is
being incorporated.

FILES. It is an automated engineering data management system (Lopez,
1974). It is extremely flexible with respect to the definition of a database
and methods of accessing it. Information storage and retrieval may be
performed using problem-oriented languages. Hierarchical data structure is
provided. For example matrix type of data encountered in finite element
application can be organized using hierarchical data structure. The first two
levels in hierarchy may contain pointers to the third level containing actual
matrix data. The program allows dynamic memory allocation. Data transfer
takes place between FORTRAN common block and database. FILES has a data
definition language. The system does not have data mapping language to
specify mapping of data items and arrays to an external device. The data
definition language (DDL) depends on the problem oriented language (POL).
Therefore DDL cannot be used independently. The system requires a distinct
data management compiler.

GIFTS. It is an interactive program for finite element analysis (Kamel,
McCabe and Spector, 1979). It is a collection of modules in a program
library. Individual modules run independently and communicate via the unified
database. The database manager processes requests for opening a file, closing
a file, storing data set in a file, and retrieving data set from a file. The
program has memory management scheme. Each data set is stored in a separate
random access file. Paging is carried out within the working storage. A
unique set of four routines is associated with a data set for opening and
initializing the working storage, for reading a data set, for
creating/modifying the data set, and for realizing the working storage.
Drawbacks of the system is that every new data set requires created four new
routines to be written. Each data set is associated with a separate common
block, thereby increasing the number of common blocks in the system. The data
manager is application dependent and cannot be used as a stand alone system.

GLIDE. It is a context-free database management system (Eastman and
Henrion, 1980). It is designed to provide a high level facility for
developing individualized CAD system. It can be viewed as a language, a
database management system, and a geometric modelling system. It allows users
to define new record types known as FORM that consist of a set of attribute
field. It provides primitive data type set to organize a database. It

-.. provides excellent geometric modelling system or a graphic system. Drawback
of GLIDE is that it does not allow multi-dimensional arrays.

b
o

.

ICES. Integrated Civil Engineering System is a computer system designed
for solving civil engineering problems (Roos, 1966). ICES consists of a
series of subsystems each corresponding to an engineering discipline. It
provides a Problem Oriented Language which can be used to write subsystem
programs (e.g., coordinate geometry program, stress analysis program).
Command Definition Language is used by a programmer to specify the structure
and required processing for each subsystem commands. A Data Definition
Language is used to specify the subsytem data structure. It uses its own
programming language cal'aA ICETRAN (ICES FORTRAN) and has a precompiler which
translates 'STRAN to FORTRAN statements.

4, 4L.* 4"
VA -1

,.w' ','..",,.'','. ', ;":" ,. ., .. ,. + '.+. ,":. /',; . .'..,'',' . .' , ,,, ,p ,. ,,+' . , . , .+, , • '. - .+ ., 'L%- .

87

Dynamic data structuring capability is provided in the system which
helps to organize dynamic arrays in the primary memory. Hierarchical data
structure is used for data modelling. Three hierarchical levels: equivalence
class, members, and attributes are provided. Data is stored on secondary
storage using random access files. Data management program uses buffers to
convert logical records to physical records. Identifier is supplied by the
programmer which is a pointer giving the position on secondary storage of
physical record. The programmer has a choice to store data using dynamic
arrays or using data management system depending on amount and use of the
data. Drawback of the system is that it uses precompiler ICETRAN to convert
to FORTRAN program instead of directly to machine language. Physical storage
of data requires knowledge of address and pointers which the programmers have
to give. Only three levels of hierarchy is adopted and it is difficult to
extend to many levels of hierarchy.

IPIP. It is a state-of-the-art database management system satisfying
engineering requirements (Johnson, Comfort and Shull, 1980). It offers a
number of capabilities ranging from support for multiple schemas and data
models to support for distributed processing, and data support for distributed
processing, and data inventory management. An integrated software
architecture supports all user interfaces: programming languages, interactive
data manipulation and schema languages. IPIP supports a multiple-schema
architecture of ANSI/SPARC database group. Three types of schemas --

conceptual, external and internal schemas are supported. IPIP schema and data
manipulation languages exhibit a high degree of integration and
compatibility. The logical schema supports both the network and relational
data models, and, functionally, the hierarchical data model. The internal
schema of IPIP is written using the internal schema language compiler. The
internal schema language overlaps that of the logical schema language to the
greatest practical extent to minimize the amount of schema language with which
the administrator must deal. IPIP software subcomponents consists of user
interface, and data manager. Software of user interface is made of
precompilers, query processor and compilers. Data manager software is made
of scheduler, message procedure interface processor, common semantic
processor, database control subsystem, data manipulation subsystem, record
translator, presentation service, access module, resource manager and stubs.

PHIDAS. It is a data management system specially designed for handling a
collection of structured data on minicomputers (Fischer, 1979). The
architecture of PHIDAS is in accordance with the ANSI-3 schema. It has an
external subschema based on network model of CODASYL and an internal schema
for physical tuning particularly suited for engineering database. The data
description language is provided to describe schema and sub-schema. PHIDAS
also has a storage structure description language. Data manipulation language

Uis FORTRAN call statements to subroutines. Drawback of the system is that it
is difficult to represent matrix type data.

RIM. It stands for Relational Information Management system (Comfort,
Erickson 1978). RIM has capability to create and modify data element
definition and relationships without recompiling the schemes or reloading the

database. RIM provides capability to define new types of data for use in
special application such as graphics. RIM supports three types of data: real,
integer, and text. Data definition and data manipulation languages are
available to define or manipulate relations. The user has capability to

..

.

t " " ' ,, " '- - . . - " ,'- .. .- * , " - '" . i" ' " . , '" . " *" .'" -, . /.

88

project, intersect, join and subtract relations. RIM has good query
language. RIM's modification commands permit the user to update relation
definition, change data values, attribute names, delete tuples and delete the
entire relation. Utility commands such as LOAD, and EXIT are provided to load
a new database and close an existing database. Drawback of RIM is that it
does not allow relation having row size more than 1024 computer words. The
application oriented FORTRAN call statements do not have capability to define
attributes, relations, rules, etc., required in defining a schema. The system
does not support management of a temporary database. Simultaneous operations
on a number of databases is not possible.

REGENT. It is a system for the support of computer-aided design
(Leinemann and Schlechtendahl, 1976). The main goal of the development was to
provide a so-called "system nucleus" in the sense of ICES. Improvement
claimed for the system is that it has a powerful base language PL/1 instead of
FORTRAN. Interactive use has been considered in system development. The
database management of REGENT provides facilities to compress a database, copy
data between databases, and to change name and size of data elements. The
database of REGENT is not a database in the usual sense. It is some sort of
partitioned data set concept, built up using a tree structure of sequential
files, but the internal structure of these files is known only to those
programs that use them.

SONS. It is a database management system developed specifically to
-- support scientific programming applications (Massena, 1978). It consists of a

data definition program to define the form of databases, and FORTRAN
compatible subroutines to create and access data within them. Database
contains one or more data sets. A data set has form of a relation. Each
column of a data set is defined to be either a key or data element. Key must
be a scalar. Data elements may be vectors or matrices. The element in each
row of the relation forms an element set. Temporary database capability that
vanishes at the end of a job is provided. A scientific data definition
language provides a program-independent data structure. Both random and
sequential access of data set is possible. Data elements include scalars,
fixed and variable length vectors, fixed and variable-size matrices. Data
element types include text, real and integer. Drawback of the system is that
it does not have a query language. Generalized database load/unload is not
available. 'Double precision data type is not allowed. The system is
implemented only on Cyber series computers.

SPAR. The computer program is a collection of processors that perform
particular steps in finite element analysis procedure (Whetstone, 1977). The
data generated by each processor is stored on a database compiler that resides
on an auxillary storage device. Each processor has a working storage area

, that contains the input and the computed data from the processor. Allocation
of spaces in the storage area is a problem dependent and is dynamically

. allocated during execution. Data transfer takes place directly between a
*specified location on disk using a set of data handling utilities. SPAR

database complex is composed of 26 data libraries or data files. Libraries 1
to 20 are available for general use. Libraries 21 to 26 are reserved for
temporary and internal use. The database manager uses a master directory to
locate the table of contents which in turn is used to locate the data sets in
the database. Physically, the auxillary storage is divided into sectors of
fixed size and each read/write operation begins at the beginning of a

, -. ,--." ...

89

sector. Drawback of the system is that it does not provide either ii

hierarchical or relational data structure. Excessive fragmentation may take
place if the sector size does not happen to be an integral multiple of the
data that is stored.

-I'.

TORNADO. It is a DBMS system developed for CAD/CAM application (Ulfsby,
Steiner and Oian, 1979). It is a CODASYL network system written in FORTRAN
and is very useful for handling complex data structures. It handles variable
object length and dynamic length records. System allows different data types
- integer, real, character, double precision, double integer, complex and -

logical data. The system has easy to use data definition language and data
manipulation language. TORNADO system is highly portable. Data in the

- database can be accessed by name. There is no restriction on data set types
and allows many-to-many relationships. Drawback of the system is that the
size of a data object defined by the system is limited by the largest integer
value that can be represented in the computer. The size of the database is
limited by the maximum size of a file. A multi-file version is not
available. The database cannot be used by multiple users at the same time.

XIO. It is a set of subroutines that provides generalized data
management capability for FORTRAN programs using a direct acces file (Ronald,
1978). The system allows arrays of integer, real double precision and
character data storage. Both random access and sequential access of data is
provided. Variable length record I/O is allowed in the system. Bit map
scheme is used to identify the unused space for storage of data to minimize
disk storage requirement. The program allows restart facility using saved
file following completion of a partial execution or after a program
termination. The system at present is only implemented on IBM360 or DEC PDP11
computing systems. The system does not provide data definition language. It

- does not provide either hierarchical or relational data structures.

Capabilities of various systems are summarized in the table.

*..4

V-°

• . .d% .? . h, " , " - " - , . . " " " - ' " . - ." '- " . " , ' - " .. ,. . , "
°

"." , " "- . . " ' . '

'.. " ,... -'' . '.. -'i . ,, ,- ._'-- ,-- , .. "- -', .! .,,' "-',"" - .--.--*-* . ., .. - . , " . ,, -" ., . ..-

90

z !4

Q -

U.

0- -c

o-4~

-LJ

c4.

Q c

-. ~ .4 4 4 .434
0 (.) 3

-~c co ..

' : .T:.-J. ;9 * . . . ' W .W -- ~-. .

91

6. IMPLEMENTATION OF A DATABASE MANAGEMENT SYSTEM -- MIDAS

6.1 INTRODUCTORY REMARKS

A database management system - MIDAS* has been implemented for finite
element analysis and structural design optimization applications. The MIDAS
implementation is based on the requirements of a database management system
given in Chapter 5. MIDAS has two subsystems - MIDAS/R and MIDAS/N. These
subsystems are capable of organizing data of relational and numerical models,
respectively. The system has been installed on PRIME computer system. It
relieves the burden of managing data for application programmers by providing
user-friendly application commands. The system has sophisticated interactive
commands to query the database. The MIDAS system can be used either
interactively or through application programs. The implementation details of
MIDAS/R and MIDAS/N are given in Sections 6.2 and 6.3, respectively.

6.2 IMPLEMENTATION OF MIDAS/R

In this section, capabilities, database organization, data definition,
data manipulation and query commands of MIDAS/R are described. Also, details
of the system architecture are given. MIDAS/R database management system is
based on relational data model. The system is developed by modifying and
extending the RIM program (Relational Information Management System).

6.2.1 Capabilities of MIDAS/R

MIDAS/R is written in FORTRAN-77. The system does not have any machine
dependent instructions and therefore it is highly portable. It has data
definition and data manipulation commands which are simple to use for

" application programmers. It has sophisticated interactive commands to query
the database, modify the database and display the database schema. The system
has capability to store, retrieve, modify and delete a database using both
application call statements and interactive commands. The data can be
integer, real, double-precision and character words. The data can be
organized in the form of relations. The system has powerful relational
algebra commands like SELECT, PROJECT and JOIN. MIDAS/R has capability to
provide access to the database simultaneously for multiple users. Database
security is provided through two level password system. Error recovery

-~ mechanisms are available.

6.2.2 Database of MIDAS/R

MIDAS/R has capability to create a number of databases. The databases
can be used one at a time. The database can be either permanent or
temporary. The size of a database is unlimited but depends only on the

V.." availability of disk space. Database of MIDAS/R can hold any number of
relations each of which is identified by a unique name. A relation can store
data of a number of attributes. An attribute value can be a single data item,
a vector or a matrix. Variable length rows of a relation can be stored.

-(-Management of Information for Design and Analysis of Systems)

. - ,.

- - -1 IV '--L-; - -V rr j~rM~r-~ ~

92

6.2.3 Data Definition Conands of HIDAS/R

Data definition commands are used in an application program to define adatabase, relations and attributes. These commands are FORTRAN subroutinecall statements. These commands were not available in RIM program. The datadefinition commands of MIDAS/R are described in the following paragraphs.

Database Initialization:

CALL ROBINT

This command initializes MIDAS/R. Before using any other commands of the
system, this command must be used.

Database Definition:

CALL RDBDFN (NAME, STAT, IERR)

V NAME = Name of the database
STAT = Permanent or temporary status of the database
IERR = Error Code

A unique database can be defined using this command. A temporary
database is deleted when it is closed.

Relation Definition:

CALL RELDFN (NAME, RNAME, NCOL, CNAME, CTYPE, IELM, JELM, KEY, IERR)

NAME = Name of the database
RNAME = Relation name
NCOL = Number of attribute columns
CNAME = A vector of attribute names
CTYPE = A vector of attribute type j
[ELM = A vector of row size of attributes
JELM = A vector of column size of attributesKEY = A vector of key attribute indicatorIERR = Error code

A relation can be defined using this command. Relation name andattribute names must be unique in a database. A row and column intersectionin a relation table can contain either a single data item, a vector or amatrix. Details of data type and layout of data in a typical rclation aregiven in Figs. 6.2.1 and 6.2.2, respectively.

Data Set Definition:

CALL ROSDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

NAME = Name of the database
DSNAME - Name of the data set

-L . .- . .

93

Description TYPE IELM JELM

Integer INT 1 1

Real REAL 1 1

Double Precision DOUB 1I

Integer Vector IVEC n 1

Real Vector RVEC n1j

Double Precision Vector DVEC n1

Integer Matrix INAT mn

Real Matrix RMAT n
Double Precision Matrix DMAT in n

Text or Character TEXT n 1

NOTE: Values of IEIM and JEIM if 0 indicate that data is of variable length.

Figure 6.2.1 Data Type and Size of a Relation

-'M

Attribute A Attribute B Attribute C Attribute D
Key Type INT IVEC IA

1x xxx x x xx x

x xx x

x xx x

x xx x

2 x xxx x x xx x

x xx x

x xx x

x xx x

r x K K x X X x x

NOTE: For Attribute A IEIM - 1, JELI4 - 1
Attribute B IEL14 = 1, JEIM = 4
Attribute C IEIM - 4, JELM - 4

Figure 6.2.2 Layout of Data in a Typical Relation

7- 7 R Z 1

95 .

OTYPE = Data type (see Fig. 6.2.1)
IELM = Row size of a attribute (see Fig. 6.2.1)
JELM = Column size of a attribute (see Fig. 6.2.1)
IERR = Error code

A data set is defined as a collection of data belonging to same data type
such as single data item, vector, or matrix. In a sense, a data set is a
relation having only one attribute. Name of data set has to be unique in I
database.

Data Set Redefinition:

CALL RDRDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

Arguments are same as in data set definition. This command redefines a
data set using new data type, and new attribute size. Old data set definition
and its data is lost.

Data Definition Ending:

CALL RDSEND (IERR)

IERR : Error Code

After database, relations and data sets have been defined, data
definition process is ended by calling this routine. During execution of this
Cdll statement, the data definition is verified and compiled internally.

6.2.4 Data Manipulation Commands MIDAS/R

Data manipulation commands open, close, store, retrieve, modify, and ram
delete data, rename a relation or a data set, rename an attribute and copy
data sets in a database. These commands were not available in the RIM
program. The function and description of these commands are given in the
following paragraphs.

Open a Database:

CALL RDBOPN (NAME, STAT, IERR)

NAME = Name of the database
STAI = Permanent or temporary status of the database
IERR = Error code

A database closed earlier can be opened using this command. A database
las to be opened before any operation on the database is performed.

-* -" .%

96

Close a Database:

CALL ROBEND (IERR)

IERR = Error code
A database is closed using this command. Execution of this command

transfers the system buffer data into the database and closes the file.

Store Data in a Relation:

CALL RDSPUT (NAME, DSNAME, KROW, UBUF, IERR)

NAME = Name of the database
DSNAME = Name of a relation
KROW = Row number
UBUF = User buffer which contain data
IERR = Error code

Data can be stored into a relation from application program work area
(user buffer) by using this command. Data is transfered from user buffer to

m the specified row of a relation. If more rows have to be stored, a FORTRAN DO
loop over the row number in the application program will transfer all the
required rows. More details of this command are given in the user's manual
(Sreekanta Murthy and Arora, 1984).

Retrieve Data from a Relation:

CALL RDSGET (NAME, DSNAME, KROW, UBUF, IERR)

Data can be retrieved from a relation into a user buffer using this
" command. Requested row of a relation is transfered from a relation into user

buffer. FORTRAN DO loop over the row number is necessary if more than one row
has to be retrieved. Data can be retrieved in the same order as it was stored
by initializing row number as zero. Data of a relation satisfing certain
condition (for example, attributes having certain values) can be retrieved
into user buffer. User specifies the condition on data values that must be
satisfied for retrieval, by using ROSRUL command (explained later). The
details for various ways of data retrieval is given in the user's manual
(Sreekanta Murthy and Arora, 1984). Arguments are the same as in RDSPUT.

Modify Data in a Relation:

6 CALL RDSMOD (NAME, DSNAME, KROW, UBUF, IERR)

Once a database is loaded using RDSPUT command, it can be modified by
calling RDSMOD. This routine modifies a row of the relation. RDSGET routine
is called before calling this subroutine. A row of a relation is retrieved
into user buffer and this row or a part of the row can be modified and stored
back using the command. Arguments are the same as in RDSPUT.

-

97

Delete Rows of a Relation:

CALL RRWDEL (NAME, DSNAME, KROW, IERR)

Rows of a relation can be deleted using this command. This is useful in
eliminating unwanted values in a relation. Arguments are the same as in
RDSPUT.

Delete a Relation: -

CALL RDSDEL (NAME, OSNAME, IERR)

This command deletes a relation from a database. Arguments are the same
as in RDSPUT.

Rename a Relation:

CALL RDRNAM (NAME, OLDNAM, NEWNAM, IERR)

NAME = Name of a database
OLDNAM = Old name of the relation
NEWNAM = New name of the relation
IERR = Error code

An existing relation's name can be changed to a new name using the
cominand.

Rename an Attribute:

CALL RRNATT (NAME, DSNAME, OLDATT, NEWATT, IERR)

NAME = Name of a database
DSNAME = Relation name
OLDATT = Old attribute name
NEWATT = New attribute name
IERR = Error code

. Copy a Relation:

CALL RDSCPY (NAME:, NAME2, DSNAM1, DSNAM2, IERR)*#AM2, IERR)

NAME1 = Name of a database containing data
NAME2 = Name of a database where data has to be copied
D USNAM1 = Relation name containing data
DSNAM2 = Relation name to where data has to be copied j

. [ERR = Error code

Using this command, data from one relation can be copied to another
relation. Both the database and relation must have been defined before

copying the data.

.' , . , , 4.. % - ,T, . . , ,. ,. , , - - .- .,

,z 98

Condition Specification for Retrieval of Data:

CALL RDSRUL (NUN, ATNAM, COND, VALUE, BOOL, IERR)

NUN - Number of conditions
ATNAM - A vector of attribute names
COND - A vector of logical operator (EQ, GT, LT)
VALUE = A vector of attribute values
BOOL = A vector of Boolean operator (AND,OR)
IERR - Error code

As mentioned in RDSGET command, data values satisfying certain conditions
can be retrieved. The conditions can be specified using RDSRUL command. This
command must be executed before calling RDSGET routine. A maximum of ten
conditions can be specified at a time. The following example, illustrates use
of this command.

Condition on a relation X:

Attribute A.GT.15.3 -AND. Attribute B-LT.20.1
Use NUN = 2; ATNAM(1) - 'A'; ATNAM(2) W 'B'

COND(1) = 'GT'; COND(2) = 'LT';
VALUE(1) = 15.3; VALUE(2) 20.1;
BOOL(1) - 'AND'

6.2.5 Interactive Consands

MIOAS/R provides interactive support for creating, updating, modifying,
and deleting a database. Interactive commands are general and can be used in
any application. The system provides terminal prompts for the users to
respond with appropriate commands. The interactive session starts with a
display of MENU and requests the user to choose one of the five options:
CREATE, UPDATE, QUERY, COMMAND and EXIT. The interactive session ends with an
EXIT command. The detailed commands for each of these options are entered at
appropriate instant. They are given in the following paragraphs.

Database Definition:

CREATE XXXX

Create command branches out to interactively define a new database.
System responds by requesting database, relation and attribute names, and
authorization access details. User can supply these data at the prompt.
Details of using this command are given in user's manual (Sreekanta Murthy and
Arora, 1984).

Loading a Database:

After a database has been successfully created, it may be loaded before
ending 'create' session, for user response 'Y' for the load prompt, the list
of existing relations that may be loaded are displayed. The values of
attributes are entered corresponding to each attribute type.

.; -V

-- -~~~~~~~~~~~~~~~~... -. •.•".. .•.- -.. " ' . . ' - - -" " - . " - . .. " " . -
• - -'- ,~~~~~~~~~~~~~~....-....-..-.... i.- .. '. •

. .:- ,-... .: ,: .

99

1.I 1

aQuerying a Database:

A database defined and loaded as specified in the previous paragraphs can
be queried. Query will be in the COMMAND mode of interactive session. There
are a number of query commands which allow users to query a database. They
are described in the following paragraphs.

1. SELECT

Select command is used for displaying data of a relation. Options to
display all or selected attributes are available. Several possible select
options are given below:

SELECT ALL FROM [relation name]
SELECT [attribute name] FROM [relation name]

SELECT ALL FROM [relation name] WHERE [attribute name] [condition]
[values] [AND/OR] ...

continuation dots indicate that upto ten conditions can be specified. The
conditions have to the one of the following

(a) [attribute name] [EQ NEIGT LTILE GE] [value]
(b) [attribute name] [EQ NE GT LT LE GEI [attribute name]
(c) ROWS [EQINEILTILEIGE [row number]

2. LISTREL

List command allows user to display information about relations and
attributes. The following options are available in LISTREL command.

LISTREL
LISTREL [relation name]
LISTREL ALL

3. CHANGE

-- Data values in a relation can be changed using this command. The
following options are available

CHANGE [attribute] TO [value] IN [relation name]
CHANGE [attribute] TO [VALUE] IN [relation name]

WHERE ...

4. DELETE

This command can be used to delete selected rows in a relation:

DELETE ROWS FROM [relation name] WHERE ...

{,-.....

K K-',K-" . -

r , .-- K -- -- ,K ',.. . - .' " 1, - *., . . -,. . " . - , . . -K. - --. *.'- -:. , ,. ,..- ..K.- . 1.. . - , . . -

100

",,.' 5. RENAME

Attributes and relations can be renamed using this comnand:

RENAME [attribute] TO [attribute] In [relation name]
RENAME RELATION [relation name] TO [relation name]

6. REMOVE

A relation can be deleted from database definition using REMOVE command:

REMOVE [relation name]

7. PROJECT

This is a relational algebra command. The function of PROJECT is to
create a new relation as a subset of an existing relation. The new relation
is created from an existing relation by removing attribues, rows or both.

7PROJECT [relation name] FROM [relation name)
USING [attribute] [attribute] ... WHERE ..

8. JOIN

The purpose of JOIN command is to combine two relations based on specific
attributes from each row. The result of JOIN command is a third relation
containing all the specified attributes from both the relations.

JOIN [relation name] USING [attribute name]
WITH [relation name] USING [attribute name]
FORMING [relation name] WHERE ...

9. INPUT

This command assigns input file for MIDAS/R to read data without user
interaction

INPUT [file name]

10. OUTPUT

The output of execution may be placed in a given file name. If file name
is TERMINAL, then all messages and data are displayed at the terminal:

OUTPUT [file name]

,5 "' .'"-.-. ..-.--.. . ..--. *.* - • • ,.. .-.- ""- , . ," . . . '"°. . " • ..- ... -... , , S. "' . ."•" - . . , -. - . '-". : ,°5 , .• -,.
** * . C.x::..--.

101

11. EXIT/QUIT

The system buffer data is transfered to database files and database is
closed.

12. HELP ""

"- User can obtain a description of the available commands on the terminal.

6.2.6 Program Details

MIDAS/R program has about 390 subroutines, 40,000 FORTRAN source
statements, and 38 common blocks. Subroutines can be grouped into (i)
initialization routines, (ii) file definition routines, (iii) input-output
routines, (iv) addressing and searching routines, (v) integrity rule
processing routine, (vi) memory management routines, (vii) command processing
routine, (viii) relational algebra routines, and (ix) security and protection
routines. A brief description of these routines is given in the following
paragraphs.

Initialization routines, initialize integer, real and double precision
variables. Hollerith constants are assigned to variables. Also, they
initialize various common blocks and system buffer arrays. Important
initialization routines are RMSTRT, BLKCLN, ZEROIT, RMCONS, and LXCONS.

File definition routines are RMOPEN, RMCLOS, F1C0 V. F2OPN, F3OPN, FICLO,
F2CLO, F3CLO, RIOOPN, SETIN, and SETOUT. Each database in MIDAS/R has three
files. The first file contains data definition details of relations and
attributes. The second file contains actual data. The third file contains
keys for locating data. File definition routines open and close database
files, assign a database to a logical unit, and assign input and output files.

Input-output routines carryout operations for storing and retrieving
data. The main routines for storing and retrieving data are RMPUT and
RMGET. They inturn call routines GETDAT and PUTDAT. These routines perform
data transfer operations between system buffer and user buffer. At the lowest
level, RIOIN and RIOOUT routines actually read and write data in database
files. RELGET, RELPUT, RELDEL, and RELADD routines, respectively, get a table
from a relation, replace current table from a relation table, delete a current
table in a relation table, and add a new tuple to the relation table.
Similarly, ATTGET, ATTPUT, ATTUEL and ATTADD routines operate on an attribute
table.

Addressing and searching routines determine the physical storage address
of data. Relations are stored in random access files. The location of a
relation in the data file is specified by a index table. Indicies are
assigned to relations by HTOI and IOTH routines. Searching of these indices
is done by using binary tree lookup. BTADD, BTGET, BTPUT and BTREP routines
add, retrieve, put and replace values in a binary tree. A call to RMFIND and
RMWHERE establishes pointers to the required rows of a relation. In turn
these routines call RMLOOK, RMSAV, and RMRES routines. These routines also
establish pointers to selected attributes of a relation.

...............................- *-.-r-'.*- . - - *- * .

102

Integrity rule processing routines help in maintaining integrity and
consistency of a database. Rules specified on attributes of relations are
checked by CHKTUP routine. At any stage of execution of DBMS, rule checking
flag can be assigned using RMRULE routine. PRULE routine prints out all rules
assigned within a database. Rules can be specified using LODRUL routine.

Memory management routines allocate the available computer memory into a
number of blocks. The system has capability to allocate 20 blocks or pages at

* a time. The data is first stored or retreived into these pages. If a page is
used completely by a relation then another available page is allocated to the
relation. If all pages are occupied then a least recently used page is
replaced. The pages not modified are overwritten by a new data. BLKDEF
routine defines a new block in memory. BLKEXT allocates size of a block in
terms of number of rows and number of columns. BLKCHG changes the dimension
of an existing block. BLKMOV moves data between arrays. GLKCLR clears a
block from memory.

Command processing routines read interactive commands in a free format,
- check the syntax of the user commands, interpret them with reference to system

conventions and store them for future use. LXLINE routine reads a new command
line. LXLENC, LXGETI, LXGETR and LXGETT identify records, integer words, real
words and character words in a command line respectively. LXID, LXITEM,
LXGEN, and LXEND get identification of the ith item, number of items in the
last command, length of a command line, and end of a command line,
respectively.

Relational algebra routines perform SELECT, JOIN and PROJECT operations
on relations in a database.

Routines for security and protection of a database make password checks,
assign passwords and modifies them. Seperate passwords are provided for
database modification access and read access. Routines used for this purpose
are HASHIN, LOOPAS, and RMUSER. HASHIN routine changes 8 character password
into a 16 character word. LODPAS processes passwords for relations. RMUSER
sets current user identification.

" ' r6.2.7 Limitations of NIDAS/R

There are a few limitations of the MIDAS/R program. One of the
limitations is that program does not have capability to operate on a number of
databases simultaneously. Secondly, the maximum size of a row in a relation
cannot exceed 1024 words. If the size of a row exceeds this limit, user
should split the row suitably and operate on portions of a row at a time.
Also, the number of attributes in a relation cannot exceed 20. The memory
management scheme has fixed block size. User has no control over the block
size to tune it according to the relation size. At present only five
relations can be operated at a time in the system buffer as only five pointers
to current relations are maintained by the DBMS. Separate external data
modelling facility is not available. User has to operate on the external
model which is same as the internal model. This means that there is one-to-
one correspondence between external model and internal model.

'.. .-.. /:... " - . :-.. ,-

103

6.3 IMPLEMENTATION OF MIDAS/N

MIDAS/N is a database management system to support data organization of
numerical computations. MIDAS/N is implemented based on numerical data
model. In this section, we describe the capabilities, database organization,
data definition and data manipulation commands of MIDAS/N. Also details of
program architecture and limitations of the system are given.

6.3.1 Capabilities of MIDAS/N

MIDAS/N program is written in FORTRAN 77. It has data definition and
data manipulation commands to define large order matrix data and manipulate
them. Large matrices such as rectangular, square, upper triangular, lower
triangular and hyper matrices can be defined in the database. Matrix data can
be arranged in row, column, or submatrix order. Data can be short integer,

- long integer, real, double-precision and character types. Data mainpulation
commands of MIDAS/N can store, retrieve, modify and delete matrices. Data can .
be accessed in row column or submatrix order. Also individual data elements
of a matrix can be accessed. Database security is provided through a password
access. Error recovery mechanisms are available.

6.3.2 Database of MIDAS/N

MIDAS/N has capability to create a number of databases, upto a maximum of
20 in the current implementation. These databases can be accessed
simultaneously. The databases can be permanent or temporary. A database can
store data of a number of matrices, upto a maximum of 20. The size of a
database and a matrix is unlimited, but only depends on the availability of
disk space. Databases can be organized at a number of hierarchical levels and
can be accessed using a path name. Databases and matrices are identified by a
unique name. Data organization of MIDAS/N is schematically shown in Fig.
6.3.1.

6.3.3 Data Definition Subroutines of MIDAS/N

Data definition subroutines of MIDAS/N can be used to define databases
and matrices. These are FORTRAN call statements and can be directly
interfaced with an application program. These are described in the following
paragraphs.

Database Definition:

CALL ND8DFN (NAME, PTHNAM, TYPE, STAT, IERR)

NAME = Name of a database
PTHNAM = Path name in database hierarchy
TYPE = Random or sequential access file type
STAT = Permanent or temporary status of a database
IERR = Error code

. . , . . • . . • " . . * . • .

! I .. J~ *. I, -I . '-. 'I,..
- '

. - . N - - " *
- L '

.. . *""-"" " "

104

MPATRI X

RECORD

Figure 6.3.1 Logical Data Organization in MIDAS/N

.-... * .-.-
*

-~ > ,- ** * * *.*. % .. **;v*.

105

This subroutine can be used to define a database. Path name specifies
the hierarchy of databases that are stored in a computer system file directory
organized at various levels.

Renaming a Database:

CALL NDBRNM (OLDBN, NEWBN, PTHNAM, IERR)

OLDBN = Old database name

NEWBN = New database rame
PTHNAM = Path name
IERR = Error code

This subroutine changes the name of a database.

Matrix Definition: X

CALL NDSDFN (NAME, DSNAME, ISUB, JSUB, ORDER, NROW, NCOL, OTYPE, IERR)

NAME = Database name
DSNAME = Data set (Matrix) name
ISUB = Row dimension of a submatrix if present
JSUB = Column dimension of a submatrix if present
ORDER = Order of data storage (explained below)
NROW = Row size of the matrix
NCOL = Column size of the matrix
DTYPE = Data type of data elements in matrix
IERR = Error code

A matrix can be defined by calling this subroutine. Order of the matrix
refers to the data storage order which can be row-wise, column-wise, or
submatrix-wise. In case of a triangular matrix, order is either row-wise or
column-wise. If submatrices are used, then size of a submatrix should be
gi ven.

Matrix Redefinition:

CALL NDSRDF (NAME, DSNAME, ISUB, JSUB, ORDER, NROW, NCOL, OTYPE, IERR)

This routine redefines a matrix in a different storage order. A matrix
which is in either row, column or submatrix order can be redefined to any of
other order (row, column, submatrix). An upper triangular matrix can be
redefined to either row or column order. Similarly a lower triangular matrix
can be redefined to either row or column order. Data types can be redefined
as integer, real and double precision (excepts characters). Arguments are
same as in mdtrix definition.

- . ~--.

• -- -- -.

*. . . * * *: -- .. ,A. -, . -, ,. . .- ,

106

*! Matrix Renaming:

CALL NDSRNM (NAME, OLDNAM, NEWNAM, IERR)

NAME - Name of a database
OLDNAM - Old name of a matrix
NEWNAM = New name of a matrix
IERR = Error code

This subroutine changes the name of a matrix.

. 6.3.4 Data Manipulation Commands

Data manipulation subroutines of MIDAS/N can be used to open, close,
delete and compress a database, store, retrieve, delete and copy a matrix.
The function and description of these commands are given in the following

paragraphs.

Open a Database: I
CALL NDBOPN (NAME, PTHNAM, IERR)

NAME - Name of a database
PTHNAM - Path name in database hierarchy
IERR = Error code

This subroutine can be used to open a database.

Close a Database:

CALL NOBEND (NAME, [ERR)

NAME - Name of a database
IERR - Error code

This subroutine closes a database. Any modification to data in system
buffer are transfered to database files.

J~

Delete a Database:

CALL NDBDEL (NAME, PTHNAM, [ERR)

This routine deletes an existing database. Arguments are same as in
NDBOPN.

L LZ

• u m • * - '". . i_. . .. , + -+ - ,_ % i . .-

107

Compress a Database:

CALL NDBCMP (NAME, IERR)

Compresses a database. Empty spaces created due to deletion or
redefinition of matrices are removed by moving data in a database. This
command helps in efficient utilization of disk space.

Store a Matrix:

CALL NDSPUT (NAME, DSNAME, NSTR, NEND, ISTR, ORDER, UBUF, IROW,
ICOL, IERR)

NSTR = Starting row or column or submatrix number for storing data
NEND = Ending row or columing)r submatrix number for storing data
ISTR = Starting element number of each row or column
ORDER = Data storage order
UBUF = User buffer (array name)
IROW = Row dimension of the user buffer
ICOL = Column dimension of the user buffer
IERR = Error code

This command stores a matrix data from user buffer into a database. Full
or part of a matrix can be stored and its size specified using NSTR and
NEND. Row or column storage order can be used for a matrix whose order is
defined as row-wise, column-wise or submatrix-wise in data definition.
Submatrix storage order can only be used for a matrix defined with submatrix
elements.

Retrieve a Matrix:

CALL NDSGET (NAME, I)SNAME, NSTR, NEND, ISTR, ORDER, UBUF, IROW,
ICOL, IERR)

A matrix can be retrieved into a user buffer from a database using this
subroutine. Arguments are the same as defined in NOSPUT. Full or part of a
matrix can be retrieved.

Retrieve a Matrix in Row Order:

CALL NDGErR (NAME, DSNAME, NSTR, NEND, ISTR, UBUFF, IROW, ICOL, IERR)

Retrieves a matrix in row order. Arguments are the same as in NOSGET. .

Retrieve a Matrix in Column Order:

CALL NDGETC (NAME, ISNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Retrieves a matrix in column order. Arguments are the same as in NDSGET.

.........

108

Retrieve a Matrix in Submatrix Order:

CALL NDGETM (NAME, OSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Retrieves a matrix in submatrix order. Matrix must have been defined to
be in submatrix order during data definition. Arguments are the same as in
NDSGET.

Store a Matrix in Row Order:

CALL NDPUTR (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in row order. Arguments are the same as in NOSPUT.

Store a Matrix in Column Order:

CALL NDPUTC (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in column order. Arguments are the same as in NOSPUT.

Store a Matrix in Submatrix Order:

CALL NDPUTM (NAME, DSNAME, NSTR, NEND, ISTR, UBUF, IROW, ICOL, IERR)

Stores a matrix in submatrix order. Matrix should have been defined to
*.-' be in submatrix order.

p..i.

Copy a Matrix:

CALL NDSCPY (NAME1, DSNAME, NAME2, IERR)

", NAME1 = Name of the database containing matrix data
DSNAME = Name of the datasset
NAME2 = Name of the database into which matrix has to be copied
IERR = Error code

This subroutine copies a matrix from one database to another database.

Delete a Matrix:

CALL NDSDEL (NAME, DSNAME, IERR)

IERR : Error code

Deletes a matrix from the database.

...:......... -V "-.-, 2 -

109 -

6.3.5 Matrix Operations Utilities

MIDAS/N has several routines to carry out operations on matrices stored
in the database. These include matrix addition, scaling and multiplication
routines. Algorithms for these utilities are developed to utilize the storage
order of the data sets; i.e., if a matrix is stored in the row order in the

*database, an algorithm is developed to use the matrix in that order. This is
* done to minimize the disk 1/0 and thus perform the operations efficiently.

*The current rout ines i n the system are descri bed i n the f ollIowi ng. More
routines will be added as need arises.

Mulitiply General Matrices:

CALL NMTPYx (NAMEl, OSNAME1, NAME2, DSNAME?, NAME3, OSNAME3, IERR)

NMTPY1 - Computes AB =C
NMTP2 - ompues AT C

NMTPY2 - Computes A7B C

* NMTPY4 - Computes ATB

Add Matrices:

CALL NMADDx (NAMEl, DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3, IERR)

NMADD1 - Computes A + B T= C
NMADD2 - Computes A + BT C

NMAD3- CmptesA'+ B=T
NMADD3 - Computes AT + BT C

Subtract Aatrices:

CALL NMSUBx (NAME1, OSNAME1, NAME2, DSNAME2, NAME3, OSNAME3, IERR)

NMSUB1 - Computes A - B =CI

NMSUJB2 - Computes A - BT
NMSUB3 - Computes AT - B =C
NMSUB4 - Computes A T - B T C

Scale a Matrix:1
CALI. NMSC:Lx (NAMEl, OSNAME1, NAME?, 0SNAME2, SCALE, [ERR)

NMSC1 - ompues ASCAL C A
NMSCL2 - Computes A*SCALE =C

T7
.Co pu e A.*S AL C.*~~

*"' ' ' ' - .-. nu _ t n ,- - ,, , - C -, , . - ' - - .

110

Transpose of a Matrix:

CALL NMTRPZ (NAMEI, DSNAME1, NAME2, DSNAME2, IERR)

Computes AT = C

Multiply a Matrix by a Diagonal Matrix:

CALL NMTDGx (NAMEI, DSNAME1, NAME2, DSNAME2, ARRAY, IERR) *

NMTDG1 - Computes ARRAY*A = C
NMTDG2 - Computes ARRAY*AT

NMTDG3 - Comptes A* RRAY = C
NMTDG4 - Computes A *ARRAY C

Rearrange Rows/Columns of a Matrix:

CALL NMSRTx (NAMEl, DSNAMEI, NAME2, DSNAME2, ARRAY, IERR)

NMSRT1 - Rearranges rows according to the order specified in ARRAY
NMSRT2 - Rearranges columns according to the order specified in ARRAY

6.3.6 Equation Solvers and Matrix Decomposition Routines

MIDAS/N has several routines to decompose and solve a linear system of
equations. The coefficient matrix may be stored in skyline or banded form.
It may also be a genral matrix. In the following, these routines are
described. Other equation solvers and eigenvalue extractors will be added at
a later date.

Decompose a symmetric matrix by skyline method.

CALL NMSKY1 (NAME1, DSNAME1, NAME2, DSNAME2, NEQ, MAXCOL, IER)

NAME1 = Database name containing the coefficient matrix

DSNAME1 = Data set name containing the coefficient matrix stored in
one dimensional form: the decomposed coefficient matrix is
also stored under this name.

NAME2 = Database name containing the addresses of the diagonal
elements of the coefficient matrix

DSNAME2 = Data set name containing the addresses of the diagonal

elements of the coefficient matrix

NEQ z Size of the coefficient matrix

MAXCOL = Maximum column height of the coefficient matrix

IER - Error parameter -.1

* -&. i7#.,"-. .\ ,.-.-.*. .

"" 111

Perform backward and forward substitutions to solve the
decomposed system of linear equation by the skyline method.

CALL NMSKY2 (NAMEI, DSNAME1, NAME2, DSNAME2, NAME3, DSNAME3, NEQ,
MAXCOL, IER)

- . NAME1 = Database name containing the decomposed coefficient matrix

DSNAME1 = Data set name containing the decomposed coefficient matrix
stored in one dimensional form

" NAME2 = Database name containing the addresses of diagonal elements
of coefficient matrix

DSNAME2 = Data set name containing the addresses of diagonal elements
of coefficient matrix

NAME3 = Database name containing the R.H.S. vector at entry
and solution vector on return

DSNAME3 = Data set name containing the R.H.S. vector at entry and
solution vector on return.

NEQ = Size of the coefficient matrix

MAXCOL = Maximum column height of the coefficient matrix

IER = Error parameter

Solve a system of linear equations by the skyline method.

CALL NMSKY3 (NAMEI, DSNAMEI, NAME2, DSNAME2, NAME3, DSNAME3, NEQ,
MAXCOL, IER)

NAMEI = Database name containing the coefficient matrix stored in
one dimensional form

DSNAME1 = Data set name containing the coefficient matrix stored in
one dimensional form at entry, and decomposed coefficient
matrix on return

NAME2 = Datibase name containing the addresses of diagonal elements
of coefficient matrix

7 - DSNAME2 = Data set name containing the addresses of diagonal elements
of the coefficient matrix

NAME3 Database name containing R.H.S. vector at entry and
solution vect)r on return

DSNAME3 = Data set name containing R.H.S. vector at entry and
solution vector on return

112

NEQ - Number of equations

MAXCOL - Maximum column height of coefficient matrix

IER - Error parameter

Decompose a symetric banded matrix by Cholesky's method.

CALL NMBND1 (NAME1, DSNAMEI, NEQ, MBNO, IER)

NAMEI = Database name containing coefficient matrix at entry and
decomposed coefficient matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry
and decomposed coefficient matrix on return

NEQ = Size of the coefficient matrix

MBND - Half bandwidth of the coefficient matrix

IER = Error parameter

Note: The coefficient matrix is banded and is stored in a squeezed form.

Performs backward and forward substitutions to solve

decomposed system of linear banded equations.

CALL NMBND2 (NAMEl, DSNAME1, NAME2, DSNAME2, NEQ, MBND, IER)

NAMEI = Database name containing decomposed coefficient matrix

DSNAMEI = Data set name containing decomposed coefficient matrix

NAME2 = Database name containing R.H.S. vector at entry and
solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and __.

solution vector on return

NEQ = Size of coefficient matrix

IER = The decomposed matrix is stored in a squeezed form

Note: The decomposed matrix is stored in a squeezed form.

Solve system of linear banded equation by Cholesky's method.

CALL NMBAND3 (NAMEL, DSNAME1, NAME2, DSNAME2, NEQ, MBND, IER)

NAME1 = Database name containing the coefficient matrix at entry
and decomposed matrix on return

-' . ..-

, flUVVV .C.N ... , d T -•. . I it S1-7- 7- 7. TS. -' - -J ,

41,, 113

DSNAME1 = Data set name containing the coefficient matrix at entry
and decomposed matrix on return

NAME2 = Database name containing the R.H.S. vector at entry and
solution vector on return.

DSNAME2 = Data set name containing the R.H.S. vector at entry and
solution vector on return

NEQ = size of the coefficient matrix

MBND = Half bandwidth of the coefficient matrix

IER = Error parameter

Decompose a general full matrix.

CALL NMGSLI (NAMEI, DSNAMEI, NEQ, IER)

NAME1 = Database name containing the coefficient matrix at entry
and decomposed matrix on return

DSNAMEI = Data set name containing the coefficient matrix at entry
and decomposed matrix on return

NEQ = Size of the coefficient matrix

=ER Error parameter

Perform backward and forward substitutions to solve a decomposed general

system of equations.

CALL NMGSL2 (NAMEI, OSNAMEI, NAME2, DSNAME2, NEQ, IER)

NAME = Database name containing the decomposed coefficient matrix

DSNAME1 : Data set name containing the decomposed coefficient matrix

NAME2 = Database name containing the R.H.S. vector at entry and
solution vector on return5,.-1"

DSNAME2 Data set name containing the R.H.S. vector at entry and
solution vector on return

NEQ = Size of coefficient matrix
IER Error parameter

Solve system of linear equations.

CALL NM(;SL3 (NAMEI, DSNAMEI, NAME2, DSNAME2, NEQ, IER)]
. - ,

.....2

114

NAME1 = Database name containing the coefficient matrix at entry
and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry
and decomposed matrix on return

NAME2 Database name containing the R.H.S. vector at entry and
solution vector on return

DSNAME2 = Data set name containing the R.H.S. vector at entry and
solution vector on return

NEQ Size of coefficient matrix

IER a Error parameter

Decompose a full symmetric matrix by modified Choleshy's method.

CALL NMSYM1 (NAMEl, DSNAME1, NEQ, IER)

NAMEI = Database name containing the coefficient matrix at entry
and decomposed matrix on return

DSNAME1 - Data set name continaing the coefficient matrix at entry
and decomposed matrix on return

NEQ = Size of coefficient matrix

IER = Error parameter

Perform backward and forward substitution to solve

a decomposed symuetric system of linear equations.

CALL NMSYM2 (NAMEI, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME1 = Database name containing the decomposed coeffcient matrix

DSNAME1 = Data set name containing the decomposed coefficient matrix

NAME2 = Database name containing R.H.S. vector at entry and
solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and

solution vector on return

NEQ = Size of the coefficient matrix

IER = Error parameter

Solve a full symmetric system of linear equations by the modified

% : Chol sky's method.

-....-. -. -... ".:,,:......................,....-...,.......................-.

- --- ,.- - -. .~~- - - - - - - -

115

CALL NMSYM3 (NAMEl, DSNAME1, NAME2, DSNAME2, NEQ, IER)

NAME1 = Database name containing the coefficient matrix, at entry
and decomposed matrix on return

DSNAME1 = Data set name containing the coefficient matrix at entry
and decomposed matrix on return

NAME2 = Database name containing R.H.S. vector, at entry and
solution vector on return

DSNAME2 = Data set name containing R.H.S. vector at entry and
solution vector on return

NEQ = Size of coefficient matrix

IER = Error parameter

6.3.7 Program Details

MIDAS/N is written in FORTRAN 77. Subroutines of the program can be
grouped into (i) file definition routines, (ii) input-output routines, (iii)
addressing routines, and (iv) memory management routines. A brief description
of these routines is given in the following paragraphs.

File definition routines open a file unit and assign database name to be
the file name. An available logical unit number is assigned to the file.

- Routine NDBDFN performs this function. File status and file types are
assigned according to user request. File organization is shown in Fig. 6.3.2.

Input-output routines perform data storage and retrieval operation.

NDSPUT, NDSGET, INMEM, INDST, D$ASIN, D$READ and D$WRITE routines do input-

output operations. These routine transfer data from user buffer to system
buffer and vice-versa. Also these routines check the matrix order, data type
and matrix size and prints out error message if data manipulation operations
are not valid.

Addressing routines IN$MEM and IN$DST allocate physical storage location
address to matrices created in the database. The system maintains an index
table to provide address of stored records. Index table provides a pointer to
data defintion block which contains details of a matrix such as name, type,
order, size. Data definition block is also stored at the beginning of actual
data in a file. Matrix data is mapped on to physical storage space in a
linear address sequence. Smallest physical data item correspond to one word
length. The physical storage structure is schematically shown in Fig. 6.3.3.

Memory management routines G$PAGE, R$MVPG and P$EXST allocate pages in
the memory to various matrices. The scheme uses fixed number of pages of same
size. The paging memory is an array in the common block MCONTNT of short
integer variable. FORTRAN equivalence statement is provided to deal with
other data types. The memory management scheme uses 'Least Recently Used'
page replacement algorithm. A counter is maintained for each page. When a
page is to be replaced the page having highest counter value becomes the

i',. Z,

116

DATABSE ALevel 1

DATABASE B DATABASE C DATABASE D Level 2

DATAASEE DAABAE FLevel 3

DATABSE xLevel n

Path nameto database F A >C> F

Figure 6.3.2 Hierarchical Level of Database Organization

INDEX TO
MATRIX DATA

Actual

f A B C0

Data Definition Block

Figure 6.3.3 Physical Storage Structure

4'0

117

-r

candidate. Page replacement is done when no free pages are available. Page
not modified is overwritten instead of replacement.

6.3.8 Limitations of the NIDAS/N

There are a few limitations in the system. Matrix size remains fixed
after it is defined. Any alteration in matrix size requires data transfer to
a new physical storage location. At present maximum of 20 matrices can be
defined in a database. However this number can be increased by changing
certain parametes in the program. The system does not support external data
modelling facility. Thus, application program view of database is tied to the
internal data model.

•"...............

-- 2

118

7. SUNIRY, DISCUSSION AND CONCLUSIONS

7.1 Sumary

Computer-aided structural design means integration of structural
engineering design methods and computer-science in a computer-based system
containing a database, a program library and a man-machine communication ,
link. With this definition in view, a new concept was presented for
integrating finite element analysis and design optimization methodology into a
computer-based system. Emphasis was placed upon database management concept
for structural design. Several reasons exist for emphasizing data management
in design. First, the iterative nature of optimal design process uses large
amount of data for computation. Secondly, existing finite element programs
are not flexible to use modified data generated at various stages of design. ii
Thirdly, designer needs control over the program and data to obtain optimum
design. Finally, a good database will enable addition of new optimization and
other programs without extensive modification of database or existing
programs. Also, several designers can be allowed to use a common database to
investigate alternate designs. 11

Structural design process was described to bring out various steps
involved in design of structures. Mathematical modeling of the design process
was presented to describe the nature of computation and data used in design.
Important components required to build a computer-aided structural design
system were described. Need for a good data management system was
emphasized. Users of computer-aided structural design system was identified
and their requirements were described.

A study of database management concepts applicable to finite element
* analysis and structural design optimization was conducted. This study was
* essential since the data managements concepts are relatively new to

engineering community. Definition of various terminologies was given and
described with reference to examples from finite element analysis and

. optimization data. Hierarchical, network and relational data models were
described. The advantages and disadvantages of these models were given.
Relational data model was found to be more appropriate for structural data
organization. The concept of normalization of data was described. This
concept provides certain guidelines to group different data items to form
associations. Importance of maintaining integrity of databases was

* emphasized. Global and local database concepts were described and their use
of design optimization was brought out.

A methodology to design a structural design database was proposed. Till
now, no such methodology was used for data organization of existing finite
element programs, since no scientific database management techniques were
available at the time those programs were developed. Three levels of datap organization -- conceptual, internal and external are suggested for structural
design databases. Data organization at the conceptual level represents
inherent characteristics of data regardless of whether or not database
management software available supports such organization directly. Various
steps were identified to develop a conceptual data model. Methodology for
including vector and matrix data in the conceptual data model was described.
A methodology for constructing an internal model was proposed. The internal
model aims to store the structural design data In an efficient way.

W', .- 5 ;

119

Consideration for reducing storage space and data access time was made.
Normalization of data was suggested to avoid various anomalies in storage
operation. Method for developing an external model was given. An external
data model enables us to provide data to several application programs
depending on their needs. One of the important aspects in the design of
database for structural analysis and optimization is the need to accomodate
large matrix data. A methodology was developed to store large matrix data in
the database. Various types of large matrices -- square, triangular, banded,
hypermatrix, skyline matrix -- were identified and their characteristics were
studied. Various aspects like storage space, processing sequence, matrix
operation, page size, flexibility of modification, etc., were considered to
develop suitable storage schemes. A numerical model was developed to
represent large order matrix data. Finally, an algorithmic model was proposed
to deal with storage and computation efficiency aspect required for structural
design optimization programs.

A proposal to develop a database management system for structural
analysis and optimal design was made. Components required for a good database
management system were described. Some important components of the database
management system are -- languages, command processors, addressing and
searching, file definition and file operation, integrity rule processor,
memory management and security and protection routines. Considerations for
developing data definition and data manipulation languages were given. Query
language was proposed for an interactive user of a database. A syntax

-" (grammer) for these languages was given.

- Implementation of a database management system -- MIDAS was done. MIDAS
program has two subsystems -- MIDAS/R, MIDAS/N. MIDAS/R is based on
relational model of data, MIDAS/N is based on numerical model of data.
MIDAS/R relieves the burden of managing data for application programmers by
providing user-friendly application commands. The program has sophisitcated

interactive commands to query the database. Relations can be defined and
manipulated using data definition and data manipulation commands of MIDAS/R.
Interactive commands of MIDAS/R can also be used to define and manipulate
relations in a database. Relational algebra commands -- SELECT, PROJECT and
Join are available to manipulate the relations. MIDAS/R has capability to
store any number of relations in a database. Numerical database management

"*. system -- MIDAS/N has capability to store matrix data of finite element
analysis and optimization programs. MIDAS/N has capability to create a number
of databases upto a maximum of 20. These databases can be accessed
simultaneously. Matrices in the database can be stored and accessed in row,
column and submatrix order. Various types of matrices -- square, rectangular,
triangular and hypermatrix can be organized in the database of MIDAS/N. In
addition to database management functions, MIDAS/N has several routines to
solve equations and decompose matrices.

1.? Discussion

The study answers several problems facing data management in finite
element analysis and optimization problems. The following questions were
addressed: (i) How the database has to be organized? (ii) What kind of
information is to be stored? (iii) What kind of database management system is
suitable? (iv) How data is manipulated? (v) How various applications use

" - - - '"''.5i" - . : " - . . ' -. - '- . . - --. -. .- . .

' -i -" -' ' . -:] -: -.I:-.:'.-I - :-: .:'II. :: - II--L --'I:, Y - I- *1-- .- ' ". 1.1.* '-s . - -. .-- , -.:. . ': : -

- - ,% ~ lW W W aW 1 d~

120

the data? Answers to these questions were not available in the structural
design field as only a few research studies have been done on the topic.
Thus, there was a need to introduce new concepts many of which are being
researched in computer-science and business data management fields. However,
the concepts were developed only for business data management application and
they were not directly applicable to engineering data management needs.
Therefore, an attempt was made to study all the relevant data management
concepts. The concepts that were found applicable were described with
reference to examples from finite element analysis and design optimization
data.

Even though many sophisticated finite element programs are available,
they use only a primitive data organization routines. Several reasons exist
for non-availability of suitable data management systems in these programs.
First, database management techniques were not well understood at the time
these programs were developed. Secondly, finite element programs were
developed to be treated like a block box with certain input and output. No
provision was made in these programs to provide access to intermediate data
generated by the programs. Finally iterative analysis of structures was not
considered as design optimation techniques have been developed only
recently.

Thus, database management approach presented in the study offers solution
to many of these problems. The study shows how data of finit element
analysis and optimization can be organized using various data models. Out of
the three data models -- hierarchical, network and relational -- the latter
was found to be more appropriate. The reasons being, relational model is
simple, easy to use and all the characteristics of structural design data can
be represented in the model. Therefore, relational model was selected for a
more detailed study. Questions were posed as to how to decide what data items
have to be grouped together? In particular using a relational model, how do
we determine what relations are needed and what their attributes should be?
It was shown that normalization of data provides certain guidelines to group
data items together to form relations. First, second and third normal forms
of data were illustrated. The concepts of serdntic integrity and consistency,
transaction management, and global and local database netowrks were described

* with reference to structural design applications. However, some of the
concepts in transaction management are new and of theoretical research
interest. Program (technical) realization of integrity concepts are yet to be
seen.

Till now data organization in finite element programs was based on
intution, since no methodology was available to design a database. The study
proposes a methodology to design a database. Three levels of data

*' organization -- conceptual, internal and external levels -- were proposed.
0 This method provides clear distinction between theoretical and implementation

aspect of data organization. Conceptual data model is of theoritical nature
and represent the inherent characteristics of data. Internal model can be
independently developed to provide the storage and access time efficiency.

. Later, correctness of internal model that is to be implemented on a computer
system can be verified using the conceptual model. In the methodology
proposed, there is flexibility to choose an external model which is same as an
internal model, or develop different external models according to needs of
applications. More study is required to give a clear idea of how an external

.7I

121 j

model can be provided to answer the update problems. Numerical model provides
a scheme to organize large matrix data. Various suggestions made to organize
matrices are suitable for implementation. Efficiency of storage space and
accessing time can be realized using this model. Algorithmic model further
enables us to conserve storage space for applications like generation of
element stiffness matrices instead of storing them in a database. Thus, the
methodology enables us to design a good database for structural design
applications.

In the second part of the study, we dealt with the need of a software for
database management. What kind of database management program is suitable?
It is possible to use existing DBMS or develop a new database management
system? What modifications are required to existing DBMS so that it can be
used in structural design application? These questions were tackled by a
detailed study of requirements of a database management. It was realized that
data definition language, data manipulation language play an important role in
providing a communication link between designer and computer system. Syntax
(grarnmer) for these languages was suggested to enable suitable database
management program development. Memory management schemes suggested in the
study are useful for efficient utilization of large memory in a computer
system. Review of several database management programs has shown that most of

* the programs are not directly applicable to organize sructural design data.

MIDAS program developed was found to be very useful for data
. management. The program relieves the burdon of managing data for application

programmers. Both relations and matrix data can be organized. The command in
the program are simple to use and provide sophisticated capability to the
user. They are capable of storing, deleting and modifying data in the
database. Interactive capability of the program is useful for the designer to
change design parameters. The program satisfies requirements of the specified
database management system. The program is well documented and can be easily
be easily incorporated into structural analysis and design optimization
programs. This work is in progress and will be reported at a later date.

7.3 Conclusions

A new approach was presented in the report to integrate structural design
methods and computer-science concepts to provide a computer-based system for .:
analysis and optimization of structural systems. Several problems of data
organization for finite element analysis and optimization application can be - -

overcome by providing sophisticated database management systems. The study of
various database management concepts has shown that they are applicable to
data organization in structural design area. We can deal with special
characteristics of structural design data by suitably modifying and extending
these concepts. The methodology presented for designing a database for

* structural applications is useful and this methodology will replace the
. intutive way of data organization for finite element analysis and optimization

programs. The study has identified the requirements of a database management
programs. Syntax required for data definition, data manipulation and query

I languages was developed and are useful for providing a good communication link
between designer and computer. A sophisticated database management system --
MIDAS was implemented. The program can be used either through an application
program or interactively. MIDAS is very useful to manage data of structural

4r.

122

analysis and design optimization applications. It is concluded that with theproposed database design methodology and the advanced database managementsystem, optimal design of complex systems of today can be attempted. Thebasic tools described and developed in the study will facilitate in makingthis a reality.

.i..

4-, . . 4 * -*,-,

4 - 4-
,

4

123
"0

Appendix 1

An algorithm for determining transitive closure from a given connectivity
matrix C is as follows:

I. Form matrix J with
J(i,i) = 0 for 1 < i < n

= 1 for i s j

2. Form modified connectivity matrix CC
with CC(i,j) = C(i,j) 1 < i < n

1. j n
and CC(i,i) = 0

3. DO i = 1,n
DO k = 1,n
DO j = 1,n

" 'If If (CC(i,j)-EQ-. AND.CC(j,k).EQ.I)C(i,k) =1
End DO loop

4. Remove erroneous dependencies that were derived from the situation
N. + N. + N.

5. IS new matrix C obtained? If no, stop

6. Form modified connectivity matrix (as in step 2) using CC matrix derived~in step 3

7. Go to step 3

8. End

.. .

16 -124

APPENDIX 2

BNF Description of the Proposed Data Definition Language

<letter>:: = AIBICI""IjZ
<digits>:: = 1121.. 910
<basic symbols:: = <letters>1<digits>
<string>:: = <any sequence of basic symbols>
<variable>:: = <simple variable>l<subscripted variable>
<simple variable>:: = <identifier>
<identifier>:: = <letter>j<identifer><letter or digit>
<subscripted variable>:: = <identifer>[<subscript list>]
<subscript list>:: = <fortran subscript list>
<empty>:: = <null string of symbols>
<unsigned integer>:: = <digit>j<unsigned integer><digit>

<data definition statement>:: =
<database definition statement>
<database user specification statement>I
<database definition statement>I
<relation data definition statement>
<numerical data definition statement>I
<data definition termination statement>I
<data redefinition statement>

<database definition statement>:: =
<reserved procedure DBDEFN>
(<database definition parameter part>)

<database definition parameter part>-
<database name>
<database hierarchy>
<database status>
<database definition error code>

<database name>:: '<name>' <variable>
<database heirarchy>:: = '<heirarchy type>' <variable>
<hierarchy type>:: = GLOBALILOCAL
<name>:: = <letter><string>
<database status>:: = '<status type>' <variable>
<status type>:: = PERMANENTITEMPORARY
<database definition error code>:: : <variable>

Note: 1) Vertical bar I denotes options for choosing items to the left of the
bar or to the right of the bar

, " 2) [1 indicate items within it are optional
3) <x>:: = <y> I <x><z> denotes a recursive statement. x is used

repeatedly
4) ' ' indicates items within it taken as data

. .o . -.,

125

<database user identification statement>:: =
reserved procedure DBUSER>
(<database user identification parameter part>)

<database user identification parameter part>:: =
<database name>,
<database user type>,
<database access type>, <password>,
<user identification error code>

<database user type>:: = '<user type>'I<variable>
<user type>: = OWNER IUSER
<database access type>:: = '<access type>' I<variable>
<access type>:: = READIMODIFY
<password>:: - <letter><string>
<user identification error code>:: = <variable>

<data set definition statement>::
<reserved procedure DSDEFN>
(<dataset definition parameter part>)

<data set definition parameter part>:: =
<database name>,
<dataset name>,
<dataset type>,
<data item row size>,
<data item column size>,
<data set definition error code>

<data set name>:: = '<name>'I<variable>
<data set type>:: = '<type specification>'I<variable>
<type specifiation>:: = INTIREALIDOUB

IVECIRVEC IDVEC
IMAT RMAT IDMAT

<data item row size>:: = <size>j<empty> VAR
<data item column size:: = <size>j<empty>jVAR
<size>:: = <unsigned integer>I<variable>
<data set definition error code>:: - <variable>

<relation definition statement>::
<reserved procedure DRLDFN>
(<relation definition parameter part>)

<relation definition parameter part>:: -

<database name>,
<relation name>,
<attribute name array>,
<attribute type array>,
<attribute row size array>,
<attribute column size array>,
<attribute key specification array>,
<relation definition error code>

<relation name>:: = '<name>'I<variable>
<attribute name array>:: = '<name array>'l<variable>
<name array>:: = <name>j<name><name array>
<attribute type array>:: = '<type specification array>' <variable>
<type specification array>:: = <type specification>

I<type specification><type specification array>
<attribute row size array>:: <variable>

126

<attribute column size array>:: = <variable>
<attribute key specification array>:: =

<key specification array>l<variable>
<key specification array>:: = KEYIKEY<key specification>l<empty>
<relation definition error code>:: = <variable>

<data definition termination statement>:: =
<reserved procedure DSEND>
(<data definition termination parameter part>)

<database definition parameter part>:: = <empty>

<data redefinition statement>:: =

<reserved procedure DSRDFN>
(<data redefinition parameter part>)

<data redefinition parameter part>:: =
<data set definition parameter part>
<relation definition parameter part>

1I<numerical data definition parameter part>

<matrix data definition statement>::
* 5 <reserved procedure DSMATX>

(<matrix data definition parameters part>)

<matrix data definition part>:: ,
<database name>
<matrix identification>
<matrix characteristics>
<matrix definition error code>

<matrix identification>:: = '<name>' <variable>
<matrix characteristics>::

'SQUARE', <S. Details>
'BANDED', <B. Details>
'HYPERMATRIX', <H. Details>I
'SKYLINE, <K. Details>I
'SPARSE', <P. Details>

<S. Details>:: <matrix storage type>
<matrix ordering>,
<matrix size>,
<empty>, <empty>,
<empty>, <empty>,
<empty>, <empty>,

<matrix storage type>:: = '<matrix storage string>' <variable>
<matrix storage string>:: = UPPERILOWERIFULL
<matrix ordering>:: = '<matrix ordering string>'I<variable>
<matrix ordering string>:: = ROWICOLUMN
<matrix size>:: = <row size>,<column size>IVAR,<column size>I ,",

row size>,VARIVAR,VAR

B. Details>:: = <matrix storage type>,
<matrix ordering>,
<matrix size>,
<matrix band size>,

.

,-- -'- . , . -' . . ". - '- ".- .' ' - --- " .,. -' ' - - .,. - --. -. . . , - - - - . ' .

127

<matrix band size>:: * (umber of upper codiagonals>,
<number of lower codiagonals>

<number of upper codiagonals>:: - <unsigned integer>
<number of lower codiagonals>:: = <unsigned integer>

*<H. Details>:: a<matrix storage type>
<matrix ordering>,
<matrix size>,
<submatrix size>

<submatrix size>:: row size>I<variable>,<column slze>I<variable>

<K. Details>:: a<empty>,

<empty>,
<matrix size>, y
<skyline definition>

*<skyline definition>:: - <array of skyline height>

* <P. Details>:: =<empty>,

<empty>,
<matrix size>,
<empty> ,<empty>
<empty>,*<empty>

128

APPENDIX 3

BNF Description of the Proposed Data Nanipulation Language

<Data manipulation statement>::
<database open statement>
<database close statement>
<data retrieval statement>
<data append statement>
<data modify statement>
<data delete statement>
<data copy statement>
<matrix retrieval statement>
<matrix append statement>
<matrix modify statement>
<matrix delete statement>
<matrix copy statement>

r* <database open statement>:: =
<reserved procedure DBOPEN>
(<database open parameter part>

.'* <database open parameter part>:: =
<database name>,
<database hierarchy>
<database open error code>

<database open error code>:: <variable>

<database close statement>:: =
<reserved procedure DBCLOS>
(<database close statement>)

<database close statement>:: =
<database name>
<database hierarchy>
<database close error code>

<data retrieval statement>::
<reserved procedure DSGET>
(<data retrieval parameter part>)

<data retrieval prarmeter part>::r
<database name>,
<data set name>l<relation name>,
<identification number>I<empty>,
<user buffer>,
<data manipulation error code>

<identification number>:: = <tuple number>j<row number>
<tuple number>:: = <unsigned integer>j<variable>
<row number>:: = <unsigned integer>j<variable>
<user buffer>:: = <variable>F <data manipulation error code>:: = <variable>
<data append statement>:: =

L :

F ., " . - ' -" . " . . .- ' .L '' . . . ' . " _ " .' ' .. ' " , .- " " ., " - } ". - " ., . -. - - - , .- - '

129

<reserved procedure DSPUT>
(<data append parameter part>)

<data append parameter part>::
<data retrieval parameter part>

<data modify statement>:: -
<reserved procedure DSMOD>
(<data modify parameter part>).

<data modify parameter part>::
<data retrieval parameter part>

<data delete statement>::
<database name>,
<data set name><relation name>,
<i denti fi cati on number> [<empty>,
<data manipulation error code>

<data copy statement>:: =
<reserved procedure DSCOPY>
(<data copy parameter part>)

<data copy parameter part>::
<database name-copy from>,
<data set or relation name-copy from>
<database name-copy to>
<data set or relation name-copy to>
<data manipulation error code>

<database name-copy from>:: a <database name>
<data set or relation name-copy from>:: = <data set name>J<relation name>

<database name-copy to >:: = <database name>
<data set or relation name -copy to>:: - <data set name>I<relatlon name>
<data manipulation error code>:: z <variable>

<matrix retrieval statement>:: -
<reserved procedure MTGET>
(<matrix retrieval parameters part>)

<matrix retrieval parameter part>:: <database name>,
<matrix identification>,
<row number>,[<column number>],
<column number>,[<row number>),
I<empty>,<empty>,
<user buffer>,
<matrix manipulation error code>

. <matrix manipulation error code>:: - <variable>

<matrix append statement>:: -
<reserved procedure MTPUT>
(<matrix append parameter part>)

<matrix append parameter part>::

"* ,'j . . ".". "... € " ". " . •. • , . " . " .. -. , .- , , - ,. ,, . -- * - " . . ." - ,- -" " , •

130

<matrix retrieval parameter part>

<matrix modify statement>::
<reserved procedure MTMOD>
(<matrix modify parameter part>)

<matrix modify parameter part>:: =
<matrix retrieval parameter part>

<matrix delete statement>::,
<reserved procedure MTDEL>
(<matrix delete parameter part>)

<matrix delete prmtrpart>::
parmeer<database name>

<matrix identification>
<row number>,[<column number>],
~<column number>,[crow number>],
j<empty> ,<empty>,

<matrix manipulation error code>

<matrix copy statement>::=
<reserved procedure MTCOPY>(<marix opy aramter art>
(<matrix copy parameter part>)
<database name-copy from>,
(matrix identification-copy from>,
<database name-copy to>,
'CMdtrix identification-copy to>,
(matrix manipulation error code>

<matrix identification-copy fromu>:: <matrix identification>
<mnatrix identification-copy to>:: <matrix identification>

U.

9..

-142

131

,'-'."REFERENCES

Allan III, J.J., 1972, "Foundations of the Many Manifestations of Computer
Augmented Design," Computer-Aided Design, Proceedings of International
Federation of Information Processing, pp. 27-58.

Arora, J.S. and Govil, A.K., 1977, "An Efficient Method for Optimal Structural
Design by Substructuring," Computers and Structures, Vol. 7, pp. 507-515.

Arora, J.S., Ryu, Y.S. and Wu, C.C., 1984a, "A User's Manual for the Computer
Program DOCS: Level 3.0," Applied-Optimal Design Laboratory, The
University of Iowa.

Arora, J.S., Thanedar, P.B., Tseng, C.H. and Hwang, R.S., 1984b, "User's
Manual for Program IDESIGN Version 3.1," Applied-Optimal Design
Laboratory, The University of Iowa.

Afimiwala, K.A. and Mayne, R.W., 1979, "Interactive Computer Methods for
Design Optimization," Computer-Aided design, Vol. 11, No. 4, pp. 201-208.

Bell, Jean, 1982, "Data Modelling of Scientific Simulation Programs," Int.
Conf. On Management of data, ACM-SIGMOD, pp. 79-86.

. Bennett, J.A. and Nelson, M.F., 1979, "An Optimization Capability for
Automotive Structures," SAE Transactions, Vol. 88, pp. 3236-3243.

Blackburn, C.L., Storaasli, 0.0. and Fulton, R.E., 1982, "The Role and
Application of Database Management in Integrate Computer Design," Journal
of American Institute of Aeronautics and Astronautics, pp. 603-613.

Browne, J.C., 1976, "Data Definition, Structures, and Management in Scientific
Computing," Proc. Of ICASE Conference on Scientific Computing, pp. 25-56.

Bryant, J.C., 1978, "A Data Management System for Weight Control and Design-
to-Cost", NASA Conference Publication 2055. pp. 65-84.

Buchmann, A.P. and Dale, A.G., 1979, "Evaluation Criteria for Logical Database
Design Methodologies," Computer-Aided Design, pp. 121-126.

Comfort, D.L. and Erickson, W.J., 1978, "RIM-A Prototype For A Relational
Information Managemer. System," NASA Conference Publications 2055, pp.
183-196.

Czekalinski, L. and Zgorzelski, M., 1982, "Design Database Organization and
Access Problems in Large Scale Machine Manufacturing Industry," File
Structures and Databases for CAD, Proceedings of International Federation
of Information Processing, pp. 297-308.

Daini, O.A., 1982, "Numerical Database Management System: A Model," Int.
Confer. On Management Of Data ACM-SIGMOD.

Darby-Dowmnan, K. and Mitra, G., 1983, "Matrix Storage Schemes In Linear
Programming," SIGMAP bulletin ACM, No.32, pp. 24-38.

. .w

-%. . .

132

Date. C.J., 1977, An Introduction To Database Systems, Addison-Wesley,
Reading, Mass., 1977.

Derwa, G.T., 1978, "Advanced Program Weight Control System," NASA Conference
Publication 2055, pp. 55-64.

Eastman, C.M. and Henrion, M., 1980, "The Glide Language for CAD," J. Of the
Technical Councils Of ASCE, Vol. 106, No. TC1, pp. 171-184.

Eastman, C.M. and Fenves, S.J., 1978, "Design Representation and Consistency
Maintenance Needs in Engineering Databases," NASA Conference Publication
2055, pp. 1-18.

Eastman, C.M., 1978, "The Representation of Design Problems and Maintenance of
Their Structure," Artificial Intelligence and Pattern Recognition in
Computer-Aided Design, Proceedings of International Federation of
Information Processing. pp. 335-366.

Eberlein, W. and Wedekind, H., 1982, "A Methodology for Embedding Design
Databases into Integrated Engineering Systems," File Structures and
Databases for CAD, Proceedings of International Federation of Information
Processing- pp. 3-37.

Elliott, L., Kunti, H.S., and Browne J.C., 1978, "A Data Management System For
Engineering and Scientific Computing," NASA Conference Publications 2055,
pp. 197-222.

Emkin, L.Z., 1978, "ICES Cocepts-A Modern System Approach," Computing In Civil
Engineering pp. 89-107.

Encarnacao, J. and Schlechtendahl, E.G., 1983, Computer-Aided Design,
Springer-Verlag, Berlin.

Felippa, C.A., 1979, "Database Management In Scientific Computing-I General
Description," Computers and Structures, Vol. 10, pp. 53-61.

Felippa, C.A., 1980, "Database Management In Scientific Computing-Il, Data
structures and Program architecture," Computers and Structures, Vol. 12,
pp. 131-145.

Felippa, C.A., 1982, "Fortran-77 Simulation of Word-addressable Files,"
Advances in Engineering software- Vol. 4, No. 4, pp. 156-162.

Fischer, W.E., 1979 "PHIDAS -a Database Management System for CAD/CAM
Software," Computer-Aided Design, Vol 11, No. 3, pp. 146-150.

Fishwick, P.A. and Blackburn, C.L., 1982, "The Integration Engineering
Programs using a Relational Database Scheme," Computers In Engg, Int.
Comp. Engg. Confer., pp. 173-181.

Fleury, C., Ramanathan, R.K., Salana, M. and Schmit, Jr., L.A., 1981, "ACCESS
Computer program for the Synthesis of Large Structural Systems,"
Proceedings of the International Symposium on Optimum Structural Design,
University of Arizona, Tucson.

%2...... J....

133

Foisseu, J. and Valette, F.R., 1982, "A Computer Aided Design Data Model:
FLOREAL," File Structures and Databases for CAD, Proceedings of
International Federation of Information Processing, pp. 315-30.

Fulton, R. E. and Voigt, S.J., 1976, "Computer-Aided Design and Computer
Science Technology," Third ICASE conf. on Scientific Computing, pp. 57-82.

Galletti, C.U. and Giannotti, E.I., 1981, "Interactive Computer System
Functional Design Of Mechanisms," Computer-Aided Design, Vol. 13, No. 3,pp. 159-163.

.. Giles, G.L. and Haftka, R.T., 1978, "SPAR Data Handling Utilities," NASA
Technical Memorandum 78701.

.Grabowski, H. and Eigner, M., 1982, "A Data Model for a Design Database,' File
Structures and Databases for CAD, Proceedings of International Federation
of Information Processing, pp. 117-144.

Grabowski, H., Eigner, M. and Rausch, W., 1978, "CAD Data-Structures For
Minicomputers," Third Int. Conf On Computers and Engg., pp. 530-548.

Grabowski, H. and Eigner, M., 1979, "Semantic Datamodel Requirements and
Realization with a Relational Data Structure," Computer-Aided Design, Vol.
11, No. 3, pp. 158-167.

Haskin, R.L. and Lorie, R.A., 1982, "On extending the Functions Of a
Relational Database System," Int. Conf. On Management of Data ACM, pp.
207-212.

Haug, E.J. and Arora, J.S., 1979, "Applied Optimal Design," John Wiley and
Co..

Heerema, F.J. and van Hedel, H., 1983, "An Engineering Data managemet System
for Computer-Aided Design", Advanced in Engineering Software, Vol. 5, No.
2, pp. 67-75.

Jefferson, D.K. and Thomson, B.M., 1978, "Engineering Data Management:
Experience and Projections," NASA Conference publication 2055, pp. 223-
242.

Jenne, R.L. and Joseph, D.H., 1978, "Management of Atmospheric Data", NASA
Conference Publication 2055, pp. 129-140.

Johnson, H.R., Comfort, D.L. and Shull, D.D., 1980, "An Engineering Data
Management System for IPAD," IPAD: Integrated Programs for Aerospace-
vehicle Design, NASA Conference Publication 2143, pp. 145-178.

Jumarie, G., 1982, "A Decentralized Database via Micro-computers a Preliminary
Study," Computers in Engineering, Int. comp. Engg. Confer. ASME, pp. 183-
187.

Kamel, H.A., McCabe, M.W. and Spector, W.W., 1979, GIFTS5 System Manual",
University of Arizona, Tucson.

.,"% " ". ' ' ' .- % " L '' . " ',"- ' . ' " . -- ".". " ". . " . . " - " * 2 . ' -" . " " . • . " • .'," ., , 'V .' v,. ' ''' w,. . -" , •. .- , .'.. , .-', , . ' . .: .-. ' ",' .-C..V..,... -.
-", , ,,, ,,',"r,,'W. '',,.',. -,i.,,, ~ r,." - " . ',. ,, .''" , . .,.a.. " " .° '. .-' . ",'. ,' " , ., •- -' - ".'. "-

I - ---:,, - *-: ;.t : . : , .-. _',~ ~-. - -. -. . -.- "- *".-: - .- . - - .- - -; : • 7 ' " - -

134

Koriba, M., 1983, "Database Systems: Their Applications to CAD Software
Design," Computer-Aided Design, Vol. 15, No. 5, pp. 277-288.

Kunni, T.I. and Kunni, H.S., 1979, "Architecture of a Virtual Graphic Database
System For Interacive CAD", Computer-Aided Design, Vol. 11, No. 3, pD.
132-135.

Kutay, A.R. and Eastman, C.M., 1983, "Transaction Management in Engineering
Databases," Engineering Design Aplications, Proceedings of Annual Meeting,
Database Week, ACM SIGMOD, pp. 73-80.

Lafue, G., 1978, "Design Database and Data Base Design, Third It. Conf. On
compters in Engg. and Building Design CAD78, Brighton Metropole, Sussex,i U.K.,14-16.

Lafue, G.M.E., 1979, "Integrating Language Database for CAD Applications,"
Computer-Aided Design, Vol. 11, No. 3, pp. 127-129.

.- Leinemann, K. and Schlechtendahl, E.G., 1976, "The Regent System for CAD," CAD
Systems, Proceedings of International Federation of Information
Processing, pp. 143-168.

Lillehagen, F.M., and Dokken, T., 1982, "Towards a Methodology for
Constructing Product Modelling Databases in CAD," File Structures and
Databases for CAD, Proceedings of International Federation of Information
Processing, pp. 59-88.'

Lopatka, R.S. and Johnson, T.G., 1978, "CAD/CAM Data Management Needs,
Requirements and Options," NASA Conference Publications 2055, pp. 25-40.

Lopez, L.A., 1974, "FILES: Automated Engineering Data Management System,"
Computers in Civil Engineering, Electronic Computation, pp. 47-71.

Lopez, L.A., Dodds, R.H., Rehak, D.R. and Urzua, J.L., 1978, "Application of
Data Management to Structures," Computing in Civil Engineering, pp. 477-
498.

Managaki, M., 1982, "Multi-layered Database Architecture for CAD CAM Systems,"
File Structures and Databases for CAD, Proceedings of International
Federation of Information Processing, pp. 281-290.

Martin, J., 1977, "Computer Database Organization", Prentice-Hall. Inc.,
Englewood Cliff, N.J.

Massena, W.A., 1978, "SOMS - A Scientific Data Management System," NASA
Conference Publication 2055, pp. 143-154.

Nye, W., 1981, "DELIGHT- Design Language with Interactive Graphics and a
Happier Tomorrow," Electronics Research Laboratory, University of
California, Berkeley, CA.

Pahl, P.J., 1981, "Data Management in Finite Element Analysis," Nonlinear
Finite Element Analysis in Structural Mechanics, Wunderlich, W., Steit:n,.r"
and Bathe, K.J., Eds., Springer-Verlag, Berlin, pp. 714-716.

,- ~~~~~~~~~~~~~~~~~~~......-.... -.... ,-,,:: :..... :.,,
[° . . .• o . o . , . - % %.o . * '. o - ° - . . . * o

.-. ~ 135

Pooch, U.W. and Neider, A., 1973, "A Survey Of Indexing Techniques For Sparse
Matrices," Computing Surveys, Vol. 5, No. 2, pp. 109-133.

4 Przemieniecki, J.S., 1968, "Theory of Matrix Structural Analysis", McGraw-Hill
Book Company, New York.

Rajan, S.D. and Bhatti, M.A., 1983, "Data Management in FEM-based Optimization
software," Computers and Structures, Vol. 16, No. 1-4, pp. 317-325.

RIM User's Guide, 1982, Boeing Commercial Airplane Company, P.O. Box 3707,
Seattle, Washington, 98124.

Ronald, D.P., 1978, "XIO-A Fortran Direct Access Data Management System," NASA
Conference Publication 2055, pp. 155-162.

Roos, D., 1966, "ICES System Design", The M.I.T. Press, Massachusetts.

Roussopoulos, N., 1979, "Tool for Designing Conceptual Schemata of Databases,"
Computer-Aided Design Vol. 11, No. 2, pp. 119-120.

Ryu, Y.S. and Arora, J.S., 19E4, "A Study of Nonlinear Structural and Design
Sensitivity Analysis Methods," Technical Report, Applied-Optimal Design
Laboratory, The University of Iowa.

Schrem, E., 1978, "Functional Software Design and its Graphical
Representation," Computers and Structures Vol. 8, pp. 491-502.

Shenoy, R.S. and Patnaik, L.M., 1983, "Data Definition and Manipulation
Languages for a CAD Database," Computer-Aided Design, Vol. 15, No. 3, pp.
131-134.

Sobieszczanski-Sobieski, Jaroslaw, 1980, "From a Black-Box to a Programming
System: Remarks on Implementation and Application of Optimization
Methods," Proceedings of a NATO Advanced Study Institute Session on.
Structural Optimization, Sart-Tilman, Belgium.

Somekh, E. and Kirsch, U., 1979, "Interactive Optimal Design of Truss
Structures," Computer-Aided Design pp. 253-258.

Southhall, J.W., 1980, "Requirements for Company-Wi de Management of
. Engineering Information," IPAD: Integrated Programs for Aerospace-vehicle

Design, NASA Conference Publication 2143, pp. 59-74.

Sreekanta Murthy, T., Reddy, C.P.D. and Arora, J.S., 1984, "Database
Management Concepts in Engineering Design Optimization," Proceedings of
AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Material
Conference.

Sreekanta Murthy, T. and Arora, J.S., 1983, "A Simple Database Management
Program (DATHAN)," Technical Report, Division of Material Engg., The
University of Iowa.

,- ,-~ .- j: -,.. , I 2 .X

136

Sreekanta Murthy, T. and Arora, J.S., 1983, "Database Management Concepts In
Design Optimization," Technical Report, Division of Mdterial Engg., The
University of Iowa.

Sreekanta Murthy, T., Reddy, C.P. and Arora, J.S., 1983, "User's Manual For
Engineering Database Management System EDMS," Technical Report, Division
of Material Engg., The Univrsity of Iowa.

Sreekanta Murthy, T. and Arora, J. ., 1984, "A Survey of Database Management
in Engineering," Technical Report, Dept. of Civil Ergineering, The
University of Iowa.

Ulfsby, S., Steiner, S. and Oian, J., 1979, "TORNADO:A DBMS for CAD/CAM
Systems," ded Design, pp. 193-197.

Valle, G., 1976, "Relational Data Handling Techniques in Computer-Aided Design
Process," CAD Systems, Proceedings of International Federation of
Information Processing, pp. 309-326.

Vetter, M. and Maddison, R.N, 1981, "Database Design Methodology",
Prentice/Hall International.

Whetstone, W. D., 1977, SPAR STructural Analysis System Reference Manual,
System Level II, Vol. I, NASA CR-145098-1.

ACKNOWLEDGEMENT

This research is supported by the Air Force Office of Scientific

Research, Grant No. AFOSR 82-0322.

.. '

-.. -.) -- -. . - - . . _ : , , *, . .

FILMED

DIC

-4e

