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1 Introduction ." - "j

Research on planning and problem-solving systems was begun at SRI International in

September 1979 under AFOSR sponsorship.(SRI Project 8871; Contract No. F49620-7-

• C-0188). The current project (SRI Project 7898; Contract No. F49620-85-h-0001), which

started one ear ago, continues this work. The research performed during previous years

of the project is described in papers that appeared in the April 1984 issue of the Artificial

* Intelligence Journal [10] and the February 1985 issue of the Computational Intelligence

Journal [11], as well as in five previous annual reports. The present report describes the

research conducted during the past year.

-u "main tA-& u This program -i-to>develol~powerful methods of representing, getn-

erating, and executing hierarchical plans that contain parallel actions. Execution involves

monitoring the state of the world and, possibly, replanning if things do not proceed as

expected. Over the last few years have designed and implemented a system, called

SIPE (System for Interactive Planning and Execution Monitoring) the purpose of

which is to demonstrate the heuristic adequacy of our approach to this problem. Gift basic

approach is to work within the hierarchical-planning methodology, representing plans in

procedural networks - as has been done in NOAH liand other systems. Several exten-

sions of previous planning systems have been implemented, including the development of a

perspicuous formalism for describing operators and objects, the use of constraints for the

partial description of objects, the creation of mechanisms that permit concurrent explo- ___

For

ration of alternative plans, the incorporation of heuristics for reasoning about resources,

and an implementation of a deductive capability.

- *Ouifesearch this year has concentrated on interfacing the abstract, high-level plans -

produced by SIPE with the low-level information used by the sensors and effectors that
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might interact with the real world (e.g., those installed on a robot vehicle). This has

compeilkd us to add extensions to SIPE.

2 Interfacing SIPE with Low-Level Controllers

2.1 The Problem

The problem in using SIPE-like Al planners in a mobile robot environment is the gap

that exists between the high-level reasoning of the planner and the lower-level control and

signal processing needed by a robot. The planner deals with conceptual entities, while the

lower-level routines deal with perceptual entities. The task we are undertaking is to map

the perceptual entities of current lower-level systems to the conceptual entities of SIPE,

and vice versa. We are using the planning of tasks for a mobile robot as a motivating

domain. This has resulted in certain additions to the SIPE planning system.

We might view an integrated robot-control system as shown in Figure 1. Current

robotic systems contain actuators and sensors, operating in conjunction with controllers

that interpret their output, and generate commands according to a program that has been

written specifically for the job at hand. Our research on SIPE during the last few years

has concentrated on the planning system represented by the upper box in the figure. Little

work has been done on the interface represented by the two arrows interconnecting the

two larger boxes. There is a wide disparity in the representations and techniques used

within each box; representations in the planning box are usually in some form of logic,

while representations in the latter are often iconic or procedural [4). Current perceptual

reasoning is usually accomplished by special-purpose systems, such as free~-space reasoning

programs and vision systems. These problems cannot currently be dealt with by SIPE or, -

for that matter, any other high-level planning systems.

2
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Many lowver-level control systems have been developed, each of which operates in a

0 fairly specialized domain. These include various vision systems, systems for monitoring

ultrasound sensors, programs that compute information from optical flow, programs that

plan paths or reason about free space, and the like. They are specialized because they

make assumptions about the domain. For example, model-based vision systems assume

significant a priori knowledge about the geometry of the objects to be recognized [21.

Systems for analyzing optical flow may assume rigid body motion, or they may assume

translation but no rotation in the movement of objects. Important gains in efficiency can

often be obtained by enforcing such restrictions.

2.2 Our Design

Our design for interfacing SIPE with low-level controllers involves treating the controllers

* as programmable coroutines. There will be a two-way interface language for each controller

that will allow SIPE to instruct and program the controller, while the latter, in turn, will be

able to inform and instruct SIPE. The central idea is that the controllers will not be simply

* subroutines to be called (as in the limited amount of previous work that has been done on

this problem), but will be routines running concurrently with SIPE that can send (as well

as receive) information and requests. Thus, a sensor can monitor the world continually

* and alert the planner when a certain condition arises. The planner will be able to program

such a sensor by telling it what conditions are expected and which unexpected conditions

shoild generate interrupts. For example, when the robot is moving down a hall that is

* expected to be clear, SIPE wants to be alerted by the ultrasound sensor if an object is

approached, but does not want to receive any messages if the space in front of the robot is

clear. On the other hand, if the robot is moving up against a box to push it, the sensor's

* responses should be reversed.
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Our approach allows the planner to instruct the sensors and effectors about what is

expected and what should trigger an alert. It also provides for the sensors to request

potentially useful information from the planner. One complication is that the instructions

and requests that can be supported vary with each low-level controller. In general, a

vision system will detect different situations than will an ultrasound sensor or speech

understanding system. Thus, for each controller it will be necessary to develop an interface

that provides for all the useful conditions the controller can recognize for the planner, along

with all the types of information the controller can obtain from the planner and utilize in

its processing. Furthermore, since the types of controllers needed are not available, either

commercially or experimentally, controllers designed with this interface in mind will have

to be developed.

The planner can help the controllers in many ways. Primarily, it will call these con-

* trollers in appropriate situations, given the domain restrictions imposed by the special-

purpose algorithms. For example. it could call a specialized path planner only on paths

that are expected to be clear. For other paths, the planner would plan to remove obsta-

* cles. There are various types of information that SIPE can provide these controllers to

help them perform efficiently. On the basis of its knowledge of the world, the planner

could rranipilate some specialized internal representations of a controller. This might be

* complicated enough to require a special subsystem to generate or manipulate the special-

purpose represen tat ions of the low-level systems according to predicates provided by SIPE.

For example. the planner can provide a model-based vision system with a list of objects

it expects to be in a scene, along with the expected camera angle between the robot and

these objects. The vision system can then use this information to greatly reduce the search

needled to interpret the scene.

This approach entails a rather loose coupling between the planner and the controllers.
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This is in contrast to a more integrated system in which all aspects of the systems might

be based on the same primitives. Rosenschein's use of situated automata is an interest-

ing example of a more integrated approach [6]. The loose coupling is motivated by the

desire to make maximum use of the many specialized algorithms that have been devel-

oped. SIPE operators would encode knowledge about when to apply these controllers,

what their strengths and weaknesses are, where they can be used efficiently, and other

relevant factors. The planner would then invoke a controller only in situations that match

the particular constraints on its algorithm and with suitable a priori information. If SIPE

produces reasonable plans, the controllers invoked should carry out their desired functions

efficiently.
0

2.3 Controllers

The various controllers that are being considered for our mobile robot are listed below

with a short description of each. Some of them are speculative, while others are certain

to be included in the final system. At present, none of the systems mentioned below have

been obtained, written, or interfaced with SIPE. Our research is still in the initial phases

of overall system design.

e Vi's1on Verifier

We have separated the function of verifying certain aspects of a scene from a general vision

module that interprets or monitors arbitrary scenes. This has been done to take advantage

of the fast techniques that have been developed for model-based vision. We plan to employ

a vision system such as that described by Goad [2]. Such a system precompiles information

about the objects it expects to see and then uses this for fast recognition. SiPF could help

* such a system by describing the objects it expects to be in the scente. their armicipited

6
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relationships, and the predicted viewpoint of the camera. The results of applying the

verifier could help SIPE recognize unexpected situations, as well as helping it to adjust its

model of the locations of the robot and other objects.

* Vision Monitor

The monitor is a routine for recognizing objects in a more general or unexpected scene.

As a rule, this may be very difficult and inefficient, but it is necessary when the robot

finds itself in an unexpected situation. Many techniques could be used, depending on the

domain. For example, analysis of shading may be quite useful in certain indoor domains

[5]. While measurements of motion might be included here, they are mentioned specifically

below in connection with optical flow.

U ltrasound MonitorlVerifier

[ltrasound monitoring may be simple enough to allow both monitor and verifier to be

considered as a single system. SIPE may plan to use this system to follow a wall along a

hallway. The ultrasound may also discover hitherto unknown objects whose location can

be determined: SIPE can utilize this information in planning to avoid such objects.

* Path Planner

There have been a number of routines written for path planning and free-space reasoning.

Two notable examples are those of Brooks [1land Thorpe [9). SIPE should be able to

interact readily with such systems. It can provide information about the objects that exist

in the world, and can plan to traverse unobstructed routes. (This is described in more

detail in the next section.) The problem eventually given to the path planner 'hlohild. in

most case., be solved easily.
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* Bumper Monitor/Verifier

This should be a simple routine. When the robot bumps into an unexpected object, the

bumper monitor can give SIPE the location of one edge of that object. When SIPE wants

to use the robot to push an object or locate it precisely, the robot can move until the

bumper monitor indicates that it is in contact with the object.

Optical Flow Monitor and/or Verifier

Measuring the motion of objects or the perceived motion of stationary objects while the

robot is moving is very difficult. Specialized systems that operate in this domain generally

make assumptions that impose severe restrictions on the domain to obtain some degree of

efficiency [3]. For this reason, it is unlikely that such a controller will be used in our robot

in the near future. Such a system might be useful for following along a hallway until a

door appears, and would be necessary if the robot were to interact with moving objects.

The latter does not seem feasible at present.

e Teletype or Natural-Language Monitor and/or Verifier

This is how SIPE currently accepts information about unexpected events, i.e., as predicates

typed at a terminal. This will continue to be one means of providing the robot with infor-

mation: in the long run, however, it may be replaced by a natural-language-understanding

system. so that the robot can be instructed in English.

* .4rm Planner

Eventually there will be an arm on the robot. There are many systems for controlling a

robot arm, which is a key problem in industrial robotics. SIPE will rely almost entirely on

such a special-purpose system for planning arm movements, merely giving it such higher-

8



level goals as grasping a specific object at a given location. SIPE will be responsible for

getting the robot to a location from which the object can be grasped by the arm.

3 Applying SIPE to a Robot World

To evaluate SIPE's capabilities in the context of interfacing with low-level controllers, a

substantial amount of effort was devoted to encoding a simple indoor robot world in SIPE's

formalism and using the planning system to generate plans in this domain. The generation

of reasonable and efficient plans required many extensions and improvements of SIPE.

These are described in the next section. This section describes the domain we encoded,

outlines the planning process effected, explicates the abstraction levels used, summarizes

the predicates used to encode the domain, and describes various problems encountered.

We expended considerable effort this year on converting SIPE from Interlisp, running

on a DEC-2060, to Zetalisp, running on the Symbolics 3600. While this change provides

more computing power, its major justification is the superior programming environment

on the S-mbolics machine. This enables research effort to be translated into the program
0

much more quickly and efficiently, making more productive use of the researcher's time.

3.1 The Problem and its Solution

The robot domain consists of some of the rooms in the Artificial Intelligence Center at

SRI International. The robot, the rooms, and various objects were all measured to scale.

The planning system used four levels of abstraction in the planning process, and produced

a primitive plan that provided actual commands for controlling the robot's motors. The

resulting plan was used to guide our robot simulator successfully through the task.

*l The robot world consisted of 5 rooms connected by a hallway. These were divided

9



into about 35 symbolic locations that were of interest to the planner. The world included

-multiple paths between locations, which greatly increased the amount of work done by

the planner. The initial world was described by 222 predicates, about half of which were

deduced from SIPE's deductive operators. The description of possible actions in SIPE

included 25 operators describing action and 25 deductive operators.

The symbolic locations varied in size, but any place of interest could be one. The

lhould be small enough so that the controller called to do the path planning can tasilv

solve the problem of getting from one location to the next. For example, each doorway

was a location, while long segments of the hall were also single locations. Each location

lhad various attributes within SIPE, including the actual two-dimensional extent of the

location. the coordinates of a focus, and the coordinates of a focus next to a door if one

existed. From these data the planner can compute the symbolic location of ainy givein real

coordinate that might be returned by a sensor.

The problem given the planner was to get an object located in one corner of a distant

room and deliver it to a desk in another room. The planning process required 7 levels

of planning and took 35 seconds on a Symbolics 3600. About half this time was spent

processing constraints that kept open (until the very end) the possibility of using either of

two alternative paths to the critical locations. There was no backtracking. The planner

• produced 194 goal/process nodes and 70 additional control nodes in the plan; the most

primitive level contained 58 goal/process nodes. 228 plan variables were created during

the planning, most of them for deductions.

3.2 Levels of Abstraction

The operators use three different hierarchical levels below the task level. The tasks that

can be described for the robot can employ as many hierarchical levels as desired above

10



these three, depending on the complexity of the tasks involved.

The first level below the task level is the plarning of navigation from room to room. For

example, if the task is to copy a paper for Phred, the room-level plan might be to go to the

library to get the paper, then go to the copy center, and finally proceed to Phred's office.

This does not involve any reasoning aLout particular doors or passages, though it may

involve high-level predicates describing connections. These predicates would indictL- that

it is reasonable to move from one room to another, without bothering about any details as

to how this might be done or whether it is possible in the current situation. When such a

move is planned to a lower level, it may fail or many actions may have to be performed to

clear a path.

Below the room level is the NEXT-TO level, which plans movements from one impor-

tant object (that the robot is next to) to another. For example, to copy the paper, the

robot will have to get next to the door of the copy center, then pass through the doorway,

then get next to the desk of the operator, etc. This plans high-level movements within a

room but is still not concerned with actual locations.

-* The lowest level is the location level, where SIPE plans movements down to the level

of the actual locational grid it has been given. SIPE will call the path planner only when

the situation indicates that there should be a clear path between two locations. Otherwise

* SIPE would plan to move some obstacle to clear the path or would plan to take a different

path. StPE will attempt to invoke the correct controller for the current situation. For

example, an optical-flow system might be invoked if the robot is to move down a hallway

0 until it sees a door. However, it is not practical to plan at a lower level than this in SIPE,

as the system does not include a geometric representation.

11
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3.3 Predicates Used

The predicates used to describe this domain are summarized briefly below. No claim is

made that is ontology is optimal in any way - in fact, some predicates were chosen merely

to test certain capabilities of the planner. The sort hierarchy includes (among other more

obvious classes) BORDERs, which are boundaries between rooms that may or may not

have doors at. them. AREAs, which include rooms, halls, and lobbies, and LOCATIONs.

* which are the svmbolic locations described above.

The following predicates never change value as actions are performed in the world:

(CONNECT BORDER AREA AREA)

These are given or deduced initially and, for each door, specify which two rooms it connects.

Used to plan room paths.

(ADJACENT AREA AREA)

These are all deduced from CONNECT and are used for room path planning.

(AD.l LOCATION LOCATION)

• These are given or deduced for all adjacent locations (most are deduced). Used for path

planning at lowest level.

(MAILBOX HUMAN OBJECT)

These are all given initially and are used to accomplish DELIVER actions.

(ONPATtl LOCATION LOCATION LOCATION)

This gives an intermediate location between the two outermost nonadjacent locations. Used
V

for planning a path between the latter.

(DOOR-LOC BORDER AREA LOCATION)

All DOOR-LOCs are deduced. They tell which location in each room is next to the given

12
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door and are used in planning to go through a door.

In contrast to the above group, the following predicates do change as actions are per-

formed:

* (AT OBJECT LOCATION)

Most ATs must be given except that every object that is ON something has AT deduced.

AT specifies an object's location at the lowest abstraction level of symbolic locations.

* Because many deductions are made from it, it is the most important predicate at that

level.

(ADJ-LOC OBJECT LOCATION)

These are given or deduced initially for all objects. They tell which locations an object is

adjacent to and are used for getting into position next to objects. During planning these

are deduced from ATs.

(INROOM OBJECT AREA)

Most initial INROOMS are deduced. INROOM specifies an object's location at the room

level and helps solve problems of level coordination (see next section).0

(CONTAINS LOCATION AREA)

Similar to INROOM, but is added dynamically because it is used to coordinate levels of

abstraction (see next section). These predicates are posted as effects involving uninstanti-

ated LOCATION variables, so that the room containing them can be known even though J

their instantiation is not. IN ROOM could have been used, but it is clearer to separate the

• different functions performed by CONTAINS.

(OPEN BORDER)

Given initially for borders and specifies whether they are clear.

(ON OBJECT SUPPORT)

13
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These are given initially and trigger many deductions. They are used for noting that an

objcct is on some support (which will determine its location and adjacencies).

(CLEAR LOCATION) (CLEAR BORDER)

All given initially, these specify whether a location is clear enough for the robot to navigate

through it.

ON-MAIN-PATH, ON-ALTERNATIVE-PATH

* These two predicates are not used in this robot application. The idea is for them to control

room-level path planning where rooms can become impassable. In the current application,

room navigation is accomplished by operators that look for two rooms connected by the

* same hallway.

3.4 Level Coordination

During this application of SIPE, a number of problems were addressed; two of the more

important of these are discussed in this section and the next. The "level coordination

problem" refers to the coordination of different levels of abstraction with different levels of

the planning process. This is a problem that occurs in all hierarchical systems and is not

unique to planners in the NOAH tradition (such as SIPE). The problem is that all necessary

information at a higher abstraction level must be accessible before planning can be done

0 at a lower abstraction level. An alternative is to produce the information on demand. But

in either case, a hierarchical planning system must ensure that the amount of detail that

will be required for reasoning in latter parts of the plan is present in its earlier parts.

The planning literature has confused what we will call abstraction levels with planning

levels. Abstraction levels, which are found in all hierarchical systems, involve a different

level of abstraction in the predicates that are being reasoned about. In the robot world

example, SIPE initially reasons about things at the room level, planning movement from

14



room to room without ever considering specific locations. This is a higher abstraction level

than the one at which the path is planned from one specific location to the next. Planning

levels occur in several planning systems; in particular, all those in the NOAH tradition

(including SIPE). A new planning level is created by expanding each node in the plan with

0 the operators that describe actions. This may or may not result in a new abstraction level,

depending upon which operators are applied. In the blocks world described by Sacerdoti

[7], there is only one abstraction level. All the hierarchical levels in the NOAH blocks world

are simply planning levels.

In a planner like SIPE or NOAH, one part of the plan can attain a lower abstraction

level than another part at the same planning level. This can cause problems because correct

information may not be available at the lower abstraction level. This situation surfaced

in the robot domain when there was a goal to get the robot AT a symbolic location later

in the plan, but the early part of the plan was still working on IN ROOM goals and did

not know the robot's location. There are many alternative vc' s to this problem. For

example, ABSTRIPS [8] solves it by assigning abstraction-level numbers to the predicates

and planning a lower level only when appropriate. This could easily be implemented in

SIPE. However, there are advantages in retaining the flexibility to plan certain parts of

the plan to lower abstraction levels. Constraints generated during lower-level planning can

narrow down the search, thus resulting in possibly large gains in efficiency. For this reason,

SIPE allows the mixing of planning and abstraction levels.

Since SIPE allows this mixing of levels, the person writing the operators must ensure

* that this will not interfere with the application of operators. In the robot domain, only the

planning of AT goals was affected when abstraction levels varied in the plan. This problem

was solved by using the operator shown in Figure 2. It delays the solving of AT goals until

* the part of the plan preceding them has been brought to the same level of abstraction. It

15



-* OPERATOR: navto-notyet
ARG UMENTS: robot 1,location2,areal .ocation 1;

PURPOSE: (at robotl location2);
PRECONDITION: (at robotl locationl),

(inroom robotl areal),
(not (contains locationl areal));

PLOT: COPY

END PLOT END OPERATOR

* Figure 2: Operator for Coordinating Levels

does this by checking whether the AT location of the robot is in the same room as the

IN ROOM location of the robot. If the precondition of this operator fails, it means that the

last AT predicate specified as an effect of an action preceded the last INIROOM predicate

specified as an effect. Consequently, the latter action must still be planned to the lower

level of abstraction.

The navto-notyet operator is applied before any other to an AT goal (this is determined

by the order in which operators are given). The plot of this operator is simply the token

COP}' that copies down the goal from the previous planning level. It was necessary to use

a special token rather than specify the AT goal in normal syntax. Normally, SIPE insert

the precondition of an operator into the plan and maintains its truth during execution

monitoring. In this case the precondition will not be true in the final plan, so the COPY

option inserts the appropriate goal without also inserting the precondition of this operator.

\\Vith this operator. SIPE can mix abstraction and planning levels freely without error ill

the robot domain.

16
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3.5 Constraint Efficiency

Constraint efficiency is another problem that arose during the encoding of the robot do-

main. It is fairly easy to write operators that will produce constraints that are compu-

* tationally too expensive. The person writing the operators must therefore be careful to

formulate things in such a way as to ensure that the constraints will have a reasonable

computation cost. This problem arose in the robot world during the deduction of the

* ADJ-LOC relationships. This predicate denotes all the locations that are adjacent to a

given object. In SIPE, the deduction of this relationship after an object has moved involves

both removing the old ADJ-LOCs that no longer hold and adding the new ones that have

* now become true.

The problem arose during removal of the old ADJ-LOCs that were no longer true. It

seemed natural to write a deductive operator that deduced a negated AD.J-LOC for every

O location that was not adjacent to the location just moved to by the object. This works

fine when the location being moved to is instantiated, but, when it is not, the number of

things that can be not adjacent to it is enormous. A constraint is added to the variable in

* the negated ADJ-LOC effect in SIPE that must later be processed frequently during the

matching required to determine the truth-value of predicates. The computation involved

in processing this constraint slowed the system down unacceptably.

Fortunately. we were able to find an elegant solution in SIPE by making use oF the

universal variables and the NOT-SAME constraint supplied by the system. The removal

of invalid ADJ-LOCs is now done by the same operator that deduces new AD.l-LO('.s: the
0

operator simply uses a universal variable that is NOT-SAME to the location variable that

is now ADJ-LOC. In other words, if a location is not the same as an AD.I-LOC of the

new location, then it is not AD.J-iLOC to the new location. The deductive operator that

deduces this is shown in Figure 3 as input to SIPE.

17
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DEDUCT! VE.OPERATOR: updateadj
ARG UIENTS: object 1,locationl,

location2 is not locationi,
location3 is not locationi class universal,
location4 is not location3 class universal;

TRIGGER: (at objecti locationi);
PRECONDITION: (at objecti Iocation2),

(adj locationi location3);
EF FEC,.TS: (adj-loc objecti location3),

(not (adj-loc objecti location4));
END DEDUCTIVE.OPERATOR

0

Figure 3: Operator for Coordinating Levels

0

0
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4 Extensions of SIPE
0

A number of extensions were added to SIPE to enable the robot-world problem to be

encoded efficiently. The most important addition was a complete redesign of the deductive

*Q capability to enable more powerful and useful deductions. This is described in the following

subsection. Following that, we describe other changes, most of which are of such a technical

nature that a proper understanding of them requires familiarity with planning systems.

* They are listed to illustrate the kind of detail that must be dealt with to produce an

effective implementation. Much of the theoretical work done in this field simply ignores

these practical issues.

4.1 Deduction in SIPE

In addition to operators describing actions, SIPE allows specification of deductive opera-

tors that deduce facts from the current world state. Domain-independent planners that,

have used a NOAH-like approach (as distinct from a theorem-proving approach) have not

had a deductive capability. As more complex domains are represented, it becomes in-

creasingly important to deduce the effects of actions from axioms about the world, rat her

than representing these effects explicitly in operators. Besides being necessary for execl,-

tion monitoring, deduction is important for determining both side effects and conditional

effects of an action.

SIPE maintains strict control over the application of deduction to prevent a combi-

natorial explosion, while still providing a powerful enough capability to be useful. All

deductions that can be made are performed at the time an operator is expanded. The de-

duced effects are recorded in the procedural net, and the system can proceed just as if all

the effects had been listed in the operator. Deductions are not attempted at other points

19
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in the planning process. Deductive operators have triggers to control their application.

(See Figure 3 for an example.) If the precondition of a deductive operator holds, its effects

can be added to the world model (in the same context in which the precondition matched)

without changing the existing plan.

SIPE previously allowed only one-step deductions and permitted universal variables

when they occurred only in the effects of the operator. This year, however, we expanded

these capabilities to allow multilevel deductions and the presence of universals in precon-

ditions. Initially, deductions are triggered on the effects of a node. After all deductive

operators have been applied, SIPE determines which newly deduced effects were not al-

ready true and applies the deductive operators to these recursively. This process continues

until no effects are deduced that were not already true. This allows more powerful deduc-

tions while maintaining control of the deductive process.

The use of universals in preconditions involves a major change in the basic matching

process of the planning system. The semantics of a universal in the precondition differs

significantly from the use of universal quantifiers in formal logic. It does not mean that

the system must prove that the precondition is true for all objects. It means rather that

the system should generate constraints enabling the variable to match all and only those

objects for which the precondition is true. This is a very useful and powerful capabiliv.

For example. in the deduction of ADJ-LOCs by the operator in Figuire 3, the LO(.TIt N8:

universal variable has constraints that allow it to match only those locations that are

adjacent to the object. This effectively picks out the subset of locations we are ititerested

in and allows their efficient representation.

This use of universals involved a major change in the way SIPE determines the truth

of a predicate. Before this extension, a universal variable matched any other variable in its

class exactly. Thus, the matcher need look no further for possible matches of a predicate.

20



Allowing constraints on universals means that they no longer match exactly, but are rather

only potential matches that depend on the instantiations of variables in the predicate being

matched. The matching process must therefore continue collecting other potential matches

and let the system generate additional constraints upon the possible ways the predicate

could be made true.

SIPE includes a check for NOT-SAME universals, such as are generated by the operator

in Figure 3. When looking for potential matches of a predicate, SIPE checks for two possible

matches being negations of each other, with exactly the same arguments save one. If thlis

one argument is a universal variable in both possibilities, and if the variables are constrained

to be NOT-SAME to each other, then the system knows that this covers all possibilities

and therefore ends its search for possible matches. The fact that this application of NOT-

SAME universals is of general utility justifies inclusion of tie foregoing cheek. This check for

* NOT-SAME universals illustrates the type of detail that an implementation must address

in order to be efficient.

4.2 Other Extensions

This sections describes briefly some of the other extensions added to SIPE during the past

year.

e Predicates can be specified as not changing while actions are being exccutr,, thereby

enhancing efficiency.

l 9 • Input syntax was improved, becoming more concise and readable.

9 A new menu-based package was designed for controlling the planner interactively.

* Menu controllers were implemented for the whole system, allowing SIPE to be run

interactively or automatically through menus. Menus also control the display of
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information, the setting of parameters, and the execution monitor.

* A new method for encoding plan rationale was incorporated. This resillted in per-

vasive modifications of the execution monitor; problems can now be perceived and

remedied more accurately than was possible hitherto.

' The matcher now puts more effort into checking whether NOTPRED constraints can

be satisfied. This requires posting these constraints during the matching procc,;s.

* which means that they must be removed later if the match fails. More effort is Spent

in the matching process, but the system can find some failures immediately that

would otherwise have been discovered only much later in the planning process.

" Parallel postconditions were correctly implemented in the planner, along with an

ability to replan after the failure of parallel postconditions.

* * The matcher now posts PRED constraints during the matching process. By posting

constraints after the matching of the first predicate in a condition, the planner can

shorten the search involved in matching the other predicates. Several complications

*had to be dealt with, however. The constraint must be removed if the match of

a later predicate fails. The reason for not adding constraints originally is that the

most concise constraint cannot be formulated until all predicates have been matched.

* Thus, the constraints added earlier might be large and could slow down all future

matching. This was averted by implementing a check for constraint subsumption.

The concise constraints are still computed and added after all predicates have been

* matched, but, if they subsume (or are subsumed by) any constraint already present,

the subsumed constraint is removed.

* The resource allocation routine was made more efficient by incorporating the ability
S

to improve the ordering of constraints for checking.
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%* Operators can now include the COPY option in their plot. This allows goals to be

copied down without the insertion of preconditions (see Section 3. 1).

e Constraint propagation in SIPE can now convert NOTPRED constraints to 1iiore

* •efficient NOT-SAME constraints under appropriate circumstances.

* The whole system was made more robust, including more checks for errors and de-

buggings.

5 Publications

10 During the past year, a paper describing execution-monitoring and replanning capabilities

within the SIPE planning system appeared in the Computational Intelligence Journal [11].
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