
AD-R1.2 886 SPECIFICATION FOR MIDASGR MANAGEMENT OF INFORMRTION 1/1
FOR DESIGN AND ANALY. (U) TOUA UNIV IOWA CITY
APPLIED-OPTIMAL DESIGN LAB J S ARORA ET AL 83 DEC 84

UNCLASSTFIEID CAD-SS-84 24 AFOSR-TR-85-1862 AFOSR82-8122 F/G 9/2 NL

EEEEElhlhElhhE
EhEEEEEEElhEEE
EEEEEEEIIEEII
EEEEEEEE//hEEE

AQ

V1..

1L1111112.2

,,'., MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS lgb A

iA
.

it --o §,K

CMOSR-TR. 85-1062 "

Technical Report No. CAD-SS-84.24

Specification for MIDAS-GR: Management
of Information for Design and Analysis of

System: Generalized Relational Modal

* ." . By

0 J. S. Arora and S. Mukhopadhyay

Applied-Optimal Design Laboratory
I College of Engineering L..IL0 The University of Iowa ELECTE

Iowa City, Iowa 52242 DEC

D5

Prepared for the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Under Grant No. AFOSR 82-0322

Approved for pablie releeE-
wr C) distribution unlimited.

December 1984

=- -t

C44
F=..i.

Technical Report No. CAD-SS-84.24

SPECIFICATION FOR MIDAS/GR

MANAGEMENT OF INFORMATION

FOR

DESIGN AND ANALYSIS OF

SYSTEM: GENERALIZED RELATIONAL MODAL

"-1

By

J.S. Arora and S. Mukhopadhyay

-.

Applied-Optimal Design Laboratory
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

Prepared for the

AIR FORP(F FFICI (IF SCIFNTIFIC RFSFARCH
'ndier ('rdnt No. AFrO R?-0322

.1 .

...... " "". * . " ..

rrrr -. 7 -7 - . .7

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE Wtill.
REPORT DOCUMENTATION PAGE

I. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified None
t 2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

2b. ECLASSIFICATION/OWNGRADNG SCHEDULE Unlimited diii :

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORIN pQBGAATIOI R.ROAT IU

CAD-SS-84.24)FOSRTf" "

6 . NAME OF PERFORMING ORGANIZATION 6. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

Applied Optimal Design (O applicable)

Laboratory ADL AFOSR/NA

N. 6c. ADDRESS lCi'. Stlate and ZIP Code) 7b. ADDRESS (City. State and ZIP Code,
College of Engineering Boiling AFB

V.'.' The University of Iowa D.C. 20332-6448
Iowa City, Ia 52242

Be. NAME OF FUNDING/SPONSORING lBb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDEN7IFIC/A7ION NUMBEP
ORGANIZATION Air Force Office (If applicable)

" of Scientific Research ABNA Grant No. AFOSR-82-0322

Sc. ADDRESS Cil>'. Stair and ZIP Code) 10 SOURCE OF FUNDING NOS.

Aerospace Sciences TPROGRAM PROJECT S .WORK UNITo

Boiling AFB, DC 20332-6448 C - - "7 -

1.TITLE lnciude Security Classiatrion)f C4l 411, ~ ~ ' c d A'C-y ,
Specifications for MIDAS/GR.' cIeme(I-c s " ,-. "- Ce#,e'r, Ae/fc',t

12, PERSONAL AUTHOR(S) ,lc'e/
J.S. Arora and S. Mukhopadhyay

13. TYPE OF REPORT 13b. TIME COVERED 114 DATE OF REPORT Y, Mo.. Da-, 15 PAGE COUNT

Interim _TFROM 7-84 TO 12-84 1984-12-3 T 92
16. SUPPLEMENTARY NOTATION

17/ COSATI CODES IB SUBJECT TERMS 'Continuc o. r l.,r V' n '¢ssoa and i,6.ntif. 5 b(ocp nurnber,

4L GROUP T SUB. GR. Scientific Database Management System,

Generalized Relational Model, Specifications

1J ABSTRACT lConritnu. on reverse f necessa and *den tif) b> block number,

" -- This report presents specification of a database management system currently under
development. It is specially designed to meet the requirements of engineering applications
The stress in design lies on the flexibility of data definition capabilities, efficient
management of large volume of I/O, and dynamic creation and deletion of data objects. In
data definition the system takes unified approach for relational and numerical data models.

It also defines a set of frequently used special data types (sparse matrix etc.) and provide
uniform data structure for their efficient manipulation. The system also provides powerful
data language which can be used directly from a terminal on ad hoc basis or from a host
programming language. This language is non-procedural; so for a large class of problems
user need not resort to branching or loops. Also, since it is precompiled instead of being
interpreted at run time, it is inherently much faster. It is expected that this system
will play central role in design and implementation of future systems in design
optimization area.

20 DISTRIBUTION/AVAILASILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICA
T

ON

UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. O OTIC USERS 0 I r

22 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22. OFFICE SYMBOL

% lnciud, . 'A a Cod.,
Dr. A.K. Amos 202-767-4937 *UNA

'% -"DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE Unclassifie
SECURITY CLASS. ICATION OF THIS PAGE

J.I
E Z . . > ,

TABLE OF CONTENT

ABSTRACT iv v

LIST OF TABLES ..v

LIST OF FIGURES ..vi

2.0 ARCHITECTURE.oo.o oo .. . oo o o ...*.*.*********** ** * *.3o

2.1 General ...
1.2 Proposed System ...

2 1e2.0 ARCHITECTURE n.ao........ 3

2.2eer.2 ..Run.t.me Conto S. t... o..-.... 0 ... 3

2.2 Data Language Interface............................... 3
3.1. Precompiier

2.2.1.1 Opt Dzer .. 3
2.2.1.2 Code Generator 4

12.22 Run-tim Control System 5
.' '2.3 Data Storage Interfaceo...o............o.....

-3.0 DATA STRUCTUREo... o .. ~..*

31 Data Typesulation Ope. tio................a 7
--- 3.1.1 Concept of Data Types o.....o..... o.....7

3.1.2 Primitive Data Typeso..... o. 7.1
3.2.2 Structured Data Typesto....'.o. .o. o1

3.1.4 Standard Data Types 9
3.2 Relati on.........10

4 .0 DATA SUB-Language......o.......... 001

i-,4.1 General.o..o.o.o.. .. .o...... o11
4.2 Daa ani pul ationt Operati ons o....o.....o.........o...... .. 0...1

4.2.1 PrimitiveDt Operationso....o......1
4.2.2 Structured Data Operations o...... 13

"4.3 Data Management Operations ... o..... o..oo..o...._15

' 5.0 DISCUSSION..oooooo.o~.o.o-o ... o.. o-o-s . 25

• APPENDIX A. PRELIMqINARY SPECIFICATION FOR DATABASE
M ANAGEMENT SYSTEM FOR ENGINEERING APPLICATIONS 28

->A.1 Introduction o..... o .o...... o -o..... 28
A.1.1 General- o.. .. 08

SA.1.2 Proposed System o............. o........ 9
S"Ao2 Archi tecture o... . o..... o..... 30
t A .2 .1 Ge neral o 30
: A.2.2 Data System o......... 030
, +,A.2.3 Storage Systemo.... 30
• -A.3 Da ta Structure o.....o.......... o......o.32
... A.3.1 Base Table and Indexo..............3
";"A.3.2 Segment o....o..oo-- o..... ~.32

A.3.3 Field33
SA.4 Data Sub-Language-ooo .. o--o.o _ 34

APPENDIX B. ARCHITECTURE FOR MIDAS/GR MANAGEMENT OF
INFORMATION FOR DESIGN AND ANALYSIS OF SYSTEMS:

GENERALIZED RELATIONAL MODEL35

B.2 Data Language Interface 40B.2.1 General 40 .
B.2.2 Precompi let 40 .

B.2.2.1t Optimi zer 42 i'

B.2.2.2 Access Specification Language 47
B .2.2.3 Code Generator....55

B.2.3 Run-time Control System 65
B.3 Data Storage Interface 69

B.3.1 Area .. 69
\,8.3.2 Access Path 69 -

B.3.3 Concurrency Control .. 73'-B.3.4 Mapping 74-

B .3.5 Transaction Management 75
B.3.6 System Recovery.. 77

'-B.3.6.1 Soft Failure 77,,
B.3.6.2 Hard Failure82

-"REFERENCES 84 L

9- -

.-

-.

..

.o

"."

',4- , . = ,. .. •. .,, -...- , , , . - "-........... .- , .. -.. -...-. . " ". . . - •.. .-. "=',.

ABSTRACT

This report presents specification of a database management system
currently under development. It is specially designed to meet the
requirements of engineering applications. The stress in design lies on the
flexibility of data definition capabilities, efficient management of large
volume of I/0, and dynamic creation and deletion of data objects. In data
definition the system takes unified approach for relational and numerical data
models. It also defines a set of frequently used special data types (sparse
matrix etc.) and provides uniform data structure for their efficient
manipulation. The system also provides powerful data language which can be
used directly from a terminal on ad hoc basis or from a host programming
language. This language is non-procedural; so for a large class of problems
user need not resort to branching or loops. Also, since it is precompiled
instead of being interpreted at run time, it is inherently much faster. It is
expected that this system will play central role in design and implementation
of future systems in design optimization area.

Acce!ion For

NTIS CRA& 1
DTIC TAB

U, annoa.ccd U_
" .' i.......

'7 '~~~~C

, T ; D .t ib..tion!

/"'A.'.b~y Cedes

AVJ~ :i;idor

sp~iJ

[i~i i

F7 "

LIST OF TABLES

Table 4.1 Functions for PrimitiveData Type............................14

Table 4.2 Functions for Matrix and Vector Data Type 16

Table 4.3 Functions for String Data Type 17

V

LIST OF FIGURES

Figure 1.1 Architecture of MIDAS/GR 36

Figure 1.2 Structure of Data Language System DLS 38

Figure 1.3 Execution Step 39

Figure 2.1 DSI Call Structure ... 43

Figure 2.2 Scan Procedure 51

Figure 2.3 Scan and Build Procedure 51

Figure 2.4 Join using FOREACH DATA AGGREGATE 53

Figure 2.5 ASL Specification For Simple Query 56

Figure 2.6 Flow chart of the Access Routine 58

Figure 2.7 ASL Specification for Complex Query 61

Figure 2.8 Models for Implementation of Join 63

Figure 2.9 Combination of Models for Implementing Joins 64

Figure 2.10 Structure of an Access Module 66

Figure 3.1 Implementation of DaID 71

Figure 3.2 Mapping Between Pages and Slots 76

Figure 3.3 Database Representation (all Areas are Closed) 79

Figure 3.4 Database Representation (Al Nodified) 81

Figure 3.5 Save and Checkpoint Cycles 83

.-..,

:..-..:.

- *..... , ..

~v~~V-r'-w -- .r-'.- r - Tv- ~ -- -

9;

4-

S.

S - . .

11

1. INTRODUCTION

1.1 General

The need for generalized database management system for engineering
applications has been increasingly felt over the last decade, as the amount
and complexity of cata has grown. Conventional systems pose major handicaps
due to the following reasons:

.; 1. Inconsistent data storage format makes it difficult to access data
collected for different applications.

2. Associating data related to the same entity is difficult when they are
stored in different files.

3. The cost of storing data relating to the same entity in a number of
different files (to facilitate easy access by different application
programs) is excessive.

4. The inflexibility of conventional file structure and their tight
binding to application programs makes future enhancement difficult.

5. Dynamic management and control of data is difficult while safeguarding
its integrity, and ensuring rapid and secure access.

Objectives of the DBMS grew out of these limitations and may be
summarized as follows:

1. A High-level Language. It is needed to facilitate access to stored
data.

2. Control Data Integrity. Standard interface to the data sets up tight
and consistent integrity control.

3. Facility of Query Language. This allows casual users to communicate
with the system in english like language.

4. Model Complex Data Relations. System design should take this into
77 consideration.

1.2 Proposed System

In view of the absence of a suitable database management system for
scientific applications, it has been decided to develop a system to meet the
requirement in this area. As stored data and its definition is extremely
volatile in scientific applications, it has been felt that relational model
(Codd 1970, Chamberlin 1976) will be particularly suitable. As the
preliminary specification is drawn out, it is realized that conventional
relational model does not represent numerical model of data (large matrix of
various types) (Murthy, Reddy, Arora 1984) properly (for preliminary
specification, refer to Appendix A).

. %- -

L'-.-. ' .;.' " . .. , -'- •".'.-.- -"..- - -' . . - -" "- - -. . -'.....'
i " ; " "', - d " "i -'-' -" ' -"- "° " '.: -o " /, '- " '" " " ," . " " ' " ," ',-" " " , ., ..". '

2

Consequently in this proposed system, we define general data structure
which encompasses both relational and numerical data models, and name it
generalized relational model. The new system is called 'Management of
Information for Design and Analysis of Systems: Generalized Relational Model
(MIDAS/GR)'.

The design of MIDAS/GR is heavily indebted to the ideas used in
System R. However keeping in mind its primary use (engineering applications)
the stress is more on the flexibility in data definition, than the supporting
data language. The system supports following basic facilities.

1. Data Independence.

2. Dynamic Data Definition.

3. Automatic Concurrency Control.

4. Flexible Authorization Mechanism.

5. Database Recovery.

6. Tuning and Usability Features.

Data Independence. This refers to the independenc- of the organization
of data from the program. It has the advantage that the storage structure or
access strategy may be changed without having to modify existing programs.

Dynamic Data Definition. Data objects or access paths may be created,
modified, or dropped at any time. Therefore, it is possible to create and
load just a few data objects and then begin using them immediately.

Automatic Concurrency Control. Locking techniques are employed to solve
various synchronization problems, both at the logical level of data objects
and at the physical level of pages.

Flexible Authorization Mechanism. The system permits users to
selectively share data while retaining the ability to restrict data access.
The mechanism provides protection and security, permitting information to be
accessed only by properly authorized users.

Database Recovery. The system provides facilities for returning the
database to 3 consistent state in case of a system crash or disk damage.

Tuning and Usability Feature. The system isolates the physical
organization of data from logical organization. So it is possible to 1ijist
physical data layout to improve the system performance. 1

• . ~. ~ -**~ N-~~~j:~y9Q- ;.;7. . .

3

2.0 ARCHITECTURE

2.1 General

. The overall architecture of MIDAS/GR is described by its two main
components. The lower level component is Data Storage Interface (DSI), and

S- the upper level component is called Data Language interface (DLI).

1. Data Language Interface (DLI). This provides the external user
-* interface, supporting tabular data structures and their operators.

- 2. Data Storage Interface (DSI). This provides a stored record interface

" .to DLI.

Data language interface (DLI) consists of two components:

1. Precompiler. This is a compiler for high level language provided by
the system.

2. Run-time Control System. This provides the environment for executing
an application program after it has been through the precompilation

process.

The precompiler inturn has two independent modules:

1 1. Optimizer. It decides on a strategy for implementation of each
statement.

2. Code Generator. It generates machine language code to implement the
chosen strategy.

For details of the system architecture, refer to Appendix B.

2.2 Data Language Interface

2.2.1 Precompiler

The precompiler has two parts: (i) the optimizer and (ii) the code
generator. These are explained in the following paragraphs.

2.2.1.1 Optimizer

, The object of the optimizer is to find a low cost means of executing high
level statements, given data structure and available access paths. During
execution of the statement the optimizer ,ninim nI;,es fetching pages from
secondary storage into the system buffer. If necessary, the system buffer is

*- pinned in real memory to avoid additional paging activity caused by the
operating system. The cost of CPU instructions is also taken into
consideration by converting the operation of data aggregate co;,mparison to
equivalent page accesses.

I

4

Since the cost of measure for the optimizer is based on disk page
accesses, the physical clustering of data aggregates in the database is of
great importance. Each data object may have it the nost one clustering image;
i.e, data aggregates near each otier in a particular value ordering are stored
physically near each other in the database. To understand the importance of
clustering, let us suppose that we wish to scan over the data aggregates of d

data object in certain order. The size of I.he system buffer is much less than
the number of pages used to store the data object. If clustering is in
different order, the location of the data aggreydtes ill1 be independent of
each other. In general, each data aggregate will require fetching a page from
the disk. On the other hand, if the clustering order is the same, each disk
page will contain several adjacent data aggregates. The number of page
fetches will be reduced accordingly.

The optimizer classifies a given statement into one of the several types
according to the presence of various language feature,, such as join, etc.
Next the optimizer ,xa:nines the system catalogues to find the set of indexes
and links pertinent to the given statement. A rough decision procedure is
then executed to find Uie set of 'reasonable' methods of execution. If there
-,s more than one reasonable method, an expected cost formula is evaluated and
the minimum-cost method is chosen. The parameters of cost formulas, such as
data object, cardinality and number of data aggregates per page are obtained
from the system catalogue.

2.2.1.2 Code Generator

After analyzing d hih level statement, the precompiler produc, s an
optimized code (OC) containing the parse tree and a plan for executing che
statement. If the statement is a query, -:he OC is used to retrieve the needed
data aggregates. If the statement is a view definition, the OC is stored in
the form of a preoptimized code (POC). Ihe POC can be fetched and utilized
whenever an access is made via the spec fied view. If any change is made to
the structure of a data object or to l.he access path (indexes and links)
maintained on it, the POCs of all views defined on that data object are
invalidated. Each view must be reoptimized fro;am ts defining high level code
to form a new POC.

V..

When a view is accessed via high level operators, the POC for the view
can be used directly to retrieve its data aggregates. Often a query or
another view definition is written in terms of an existing view. If the query
or view definition is si-iiple (P.g, a projection or restriction), it can
sometimes be composed with the existing view. Their parse trees can be merged
and optimized to form a new OC for the new query or view. In more complex
cases, the new statement cannot be composed with 1" .1 e!isting view
definition. In these cases the POC for the existing view is treated as a
formula for retrieving data aggregates. A new OC is formed for th new
stitement. It treats the existing view as a data object. Data aggregates can
he fetched from it in only one way, i.e, by interpreting the existing POC.
If the v4pws are cascaded on other views in several levels; several levels of
POCs may exist. Each level makes reference to the next.

. . .. ,.

.

5

2.2.2 Run-time Control System

The set of routines (machine lan "jage code) generated by the code
generator, together constitutes the access module for a given program. The
access module itself is stored in the database. The precompiler replaces an
embedded high level statement by an ordinary host language statement to call
the run-time control system.

When the object program is executed, it eventually reaches the statement
calling the run-time control system which replaced the high level statement
provided by DLI. Control goes to the run-time control system. It fetches
access module for the program. Finally, it calls the appropriate section of
the access module. This section in turn invokes various DSI operations to
perform the actions required originally.

2.3 Data Storage Interface

This is essentially a powerful access method. Its primary function is to
i .handle all details at the physical level. It also supports operators for data

recovery, transaction management and data definition. Invocation of the DSI
requires explicit use of data areas and access paths (indexes and links). It
also uses the DSI generated numeric identifiers for data areas, data objects,
access paths and data aggregates. The user of this system is normally the
code generdted by the DLI and not an application programmer. The DLI maps
symbolic data object names to their internal DSI identifier.

The basic data object supported is the stored file. This is the
internal representation of a data object. Rows of the data object are
represented by records of the file. Records are stored in a collection of
logically addressed spaces called areas. They are employed to control
physical clustering. However, records need not be physically adjacent in
storage.

The system depends on a user to specify the data object and the DSI
access paths to be maintained on them. Access paths include indexes and
links. The index-structures associate a value with one or more data aggregate
identifiers (DaIDs). A DaID is an internal address allowing rapid access to a
data aggregate. Indexes provide associative and sequential access on one or
more fields.

-.--. Links are access iaths in the DSI. They link data aggregates of one data
object to data aggregates of another through pointer chains, Binary links are
always maintained in a value dependent manner. The user specifies linking of
data aggregates of Data objects 1 and 2 having matching values in some
field(s). Ordering of data aggregates on the link is based on their value.

-'-. Any attempt to define links, or to insert or update data aggregates in
violation of this rule will be refused. Like an index, a link may be declared
to have the clustering property. This stores each data aggregate physically
near its neighbor in the link.

,. Each data aggregate is stored as a contiguous sequence of field values
within a single page. Field lengths are also included for variable length
fields. A prefix is stored with the data aggregate for use within the DSI.

_....

,,: .-" -. -'--- ' i- ..- -.' ---:- '-.',.-""- '-% .-. . ,-. . ,- .. - -. "'.,,.5.. ,. 'vK'. "-'. ...- -- '.'--'-..-. . "-..'Z
"L
- .- ;-. ."-.' .---"- . .- -

WW W. VI.-_L ._._ 6

The prefix contains information about the data object identifier (DoID), the
pointer fields (DaIDs) for link structures, the number of stored data fields
and the number of pointer fields. These numbers are employed to support
dynamic creation of new fields and links to existing data objects. This is
done without requiring immediate access or modification to the existing data
aggregates. Data aggregates are stored only on pages reserved for data.
Other pages within the area are reserved for the storage of index or internal
catalogue entries. A given data page may contain data aggregates from more
than one data object. In this way, extra page accesses can be avoided when
data aggregates from different data objects are accessed together. A scan can
be executed on a data object, rather than on index or link. Then, an internal
scan is generated on all non-empty data pages within the area containing the
data object. Each such data page is touched once. The prefix of each data
aggregate within the page is checked to see if it belongs to the data object.

Implementation of the data aggregate identifier is a hybrid scheme. Each
data aggregate identifier is a concatenation of a page number within the area,
and a byte offset from the bottom of the page. The offset denotes a special
entry, containing the byte location of the data aggregate in that page. This
technique allows efficient utilization of space within data pages. The space
is compacted and data aggregates moved with only local changes to the pointers
in the slots. The slots themselves are never moved from their positions at
the bottom of each data page. Thus existing DaIDs can still be used to access
data aggregates. In rare cases, when a data aggregate is updated to a longer
total value and insufficient space is available on its page, an overflow
scheme is provided to move the data aggregate to another page. In this case,
the DaID points to a tagged overflow record used to reference the other
page. If the data aggregate overflows again, the original overflow record is
modified to point to the newest location. Thus, a data aggregate access via a
DaID almost always involves a single page access. It never involves more than
two page accesses.

°°4

7

3.0 DATA STRUCTURE

3.1 Data Types

3.1.1 Concept of Data Types

It is customary to classify variables according to certain important
characteristics. This notion of classification is particularly important in
data processing, to make a choice of representation of the object in the
memory of a computer.

The primary characteristic of the concept of data type is as follows:

1. It deternines the set of values to which a constant belongs, or which
may be assumed by a variable or an expression, or which may be
generated by an operator or a function.

2. The type of a value denoted by a constant, variable, or expression may
be derived from its form, or its declaration without the necessity of
executing the computational process.

3. Each operator or function expects arguments of fixed type and yields a
result of a fixed type.

In most cases, new data types are defined in terms of previously defined data
types. Values of such a type are usually conglomerates of component values of
the previously defined constituent types. They are said to be structured. If

" there is only one constituent type, then it is known as the base type.

' 3.1.2 Primitive Data Types
There are five primitive types available on the system. They are as

- .'~ follows:

1. Integer

2. Real

3. Double precision

4. Character

5. Boolean

The type integer comprises a subset of the whole numbers whose size depends on
the computer system. All operations on this type of data are exact. They
correspond to ordinary laws of arithmetic. The four basic arithmetic
operators are addition(+), subtraction(-), multiplication (*), and division
(div). The modulus operator is defined in terms division as

(in div n)*n + (m mod n) = m

,.-.

Thus, in div n is the integer quotient of m and n, and m nod n is the
associated remainder.

The type real denotes a subset of the real numbers. Arithmetic of values
of type real is permitted to be inaccurate within the limits of round-off
errors. This is the principle distinction between integer and real types.

The division of real numbers yielding a real valued quotient is
represented by a slash (/) in contrast to div in integer division.

Double precision data is similar to real, except that twice the storage
is allocated.

The type character comprises a set of printable characters. In general,
the character set definition will be either ASCII or EBCOIC, depending on the
computer system.

The type boolean comprises two values denoted by the identifiers true and
false. the boolean operators are the logical conjunction, union, and
negation. Boolean values are also yielded as a result of comparison
operations.

3.1.3 Structured Data Types

* There are four structured data types available on the system. They are
'* as follows:

1. Record

2. Vector

3. Matrix

4. String

The type record uses the most general method to obtain structured data type.
It joins elements of arbitrary, possibly themselves structured types into a
compound.

Vectors and matrices are in contrast homogeneous structures. They
consist of all components of the same type, called the base type. The base
type in turn may be structured type. This opens up the possibility of
defining a number of special data types. For example, a matrix of complex
number, where complex number is a record of two real numbers.

A vector of a record may in general be treated as a relation, where each
component of the vector is an occurrence of the record, and each component of
the record an attribute of the relation.

If a matrix is defined as matrix of matrix, the matrix is considered made
up of a number of submatrices. Matrices may be accessed row-wise, column-wise,
or submatrixwise.

:::::: ,k

-~ - fl'"~ - -~' -~ ~ ~~' W~ ~ ' . VVWL7W 6-W L-W L ' ~ Z ~

9

String is a special structured data type designed to deal with sequence
of characters. String may be used as base type to define other structured
data types. However, no data type except character is valid to define
string. For example a 'vector of string' is quite valid; where as a 'string
of vector' is erroneous.

* Of the four structured data types, vector and string may be defined as
variable length. Records and matrices are always of fixed length. However,
they may have components which are of variable length.

3.1.4 Standard Data Type

The mechanism provided in the previous section allows users to define new
data types. Such an approach quite naturally fits in with a design
methodology based on the recognition of individual needs. Moreover such
definition, at least to some extent, mirrors the resulting database structure.

*Apart from the above mechanism, the system also provide a set of standard
built-in data types. These data types are predefined by the system for their
importance in application and are treated specially. They are as follows:

1. Relation

2. Sparse matrix

3. Upper triangular matrix

4. Lower triangular matrix

5. Banded matrix (fixed band width)

6. Banded matrix (variable band width)

7. Tri-diagonal matrix

8. Symmetric matrix

Relation is a particularly important data structure. It is defined in terms
of its domains, attributes, keys, and other constraints. All standard set
operations are available for such data structure.

A sparse matrix, in contrast to dense matrix, contains very few non-zero
terms. The system provides efficient representation for such matrices with
basic matrix operations.

Upper triangular and lower triangular matrices are the ones whose all
elements below and above (respectively) the diagonal are zero. Banded
matrices have non-zero element only within the band-width from the diagonal.- Tri-diagonal matrix is a special type of banded matrix where band width is
two. A symmetric matrix is the one which gives same matrix after transpose

operation.

i " : '" ": : - ? -; " : i " -T i .. :., 4 " .4 *_.5 - . . . - -. .° .-. -. • . , -. . - - - . - --.-
• ...-.- .. ,. . •.. -. . , ' ', . .- .. - .. '.'- .'.-.",,,., .. '-.'.". . '-,'. '. .. ,... .. ,.o,.,.Z ,
,,.- .-.-.. , .,- ..; . . - .. , ' , ;, .-.., ,.. A

: "10

3.2 Relation

The concept of relation is based on the generalization of the relational
model to suit engineering applications. A relation is essentially predefined
as a vector of record, where each component of the record is defined by the
user as relation attribute. Data type of an attribute may not be atomic.

Consider a relation with attributes a,b,c,d. It may be assumed to be

defined as follows:

Vector of record

a : integer;

b : vector of integer;

c : real;

d : record

x : integer;

y : double precision

end

end;

Each relation has one or a combination of attributes uniquely identifying a
tuple in the relation. The attribute (or the combination) is called primary
key. An attribute with non-atomic data type can not be part of a primary key.

If more than one attribute combinations possess the unique identification
p-operty, then they are called candidate key. A candidate key that is not
primary key is called an alternate key. An attribute which is primary key in
some other relation is called foreign key.

The system enforces two integrity constraints:

1. Entity Integrity. No component of a primary key value may be null.

2. Referential Integrity. Any non-null value of a foreign key must
correspond to its primary key value.

Unless the definition of a field is no null, any field can contain a null
value. It is a special value that represents unknown or inapplicable. It has
following properties.

1 1. Arithmetic expressions in which one of the operand is null, evaluate
to null.

2. Comparisons in which one of the comparands is null, evaluate to the
unknown truth value.

1W %.k..~ .:.* . * **

.4

4.0 DATA SUB-LANGUAGE

4.1 General

This high-level language is provided for the general users to perform
retrieval, update and other operations. It operates on all data objects and
views. The fundamental operation of this language is mapping from physical
stored record to logical data definition.

The language has following advantages:

1. Simplicity. Problems can be expressed more easily and concisely than
in lower-level language. Simplicity in turn means productivity; i.e,
ease of program development and maintenance.

2. Completeness. The nature of the language implies that user need not
resort to loops or branching for a very large class of queries.

3. Non-procedurality. Such languages are frequently described as non-
procedural. Its statements are high-level statement of intent on the
part of the user. It means the system is able to capture the users'
intent making search optimization feasible. Capturing intent is also
important in authorization checking.

4. Data Independence. The statements include no references to explicit
access paths such as indexes or physical sequence. Therefore, this
language provides total physical data independence.

5. Ease of Extension. The power of the basic language is extended by the
provision of built-in functions. The system permit users to define
their own built-in functions.

6. Support for High-level Languages. The system is capable of supporting
a variety of special purpose languages. Such languages are tailored
to a particular application area, supporting its terminology and
operations.

4.2 Data Manipulation Operations

-- ", 4.2.1 Primitive Data Operations

Following operations are available for integer, real, and double
precision data types:

A. Arithmetic operations

I. Exponentiation (**)

2. Multiplication (*)

3. Division (/for real, div for integer)

'S .

.e

12

4. Remainder (mod for integer only)

5. Addition(+

6. Subtraction (-)

* Following operations are available to all primitive data types, except
boolean:

B. Relational operations

1. Less than (<)

2. Less than or equal to (<=)

3. Equal to (=)

4. Not equal to (<>)

5. Greater than (>)

6. Greater than or equal to (>=)

- Following operations are available to boolean data type only

C. Boolean operations

1. Negation (not)

2. Conjunction (and)

3. Disjunction (or)

4. Exclusive or (expr)

Also the set operator IN is available for membership test. Expressions are
evaluated according to the operator precedence. Each of the operators is
assigned a precedence level. They are as follows:

Precedence level Operator
4 ** not

3 */div mod and

2 + -or exor

1 < <= = <> > >= in

The rules of evaluation of an expression are thus:

1. If all the operators in an expression have the same precedence, the
evaluation of the operations proceeds strictly from left to right 'U.

(except for ** which proceeds strictly from right to left).

,- - ,. -.-.. - - - ,. , , .'. . .. - "- . -

W _" IV T 7 -

13

2. When operators of different precedences are present then the highest
precedence operations are evaluated first (on a left to right basis),
then the next highest precedence operations are evaluated.

3. Rules (1) and (2) can be over-ridden by the inclusion of parentheses
in an expression. In this case those operations within the
parentheses are evaluated first, with the above precedence rules being
applied inside the parenthesis.

The built-in functions are listed in Table 4.1.

4.2.2 Structured Data Operations

Operators and functions available for each of the structured data types
are different, though vectors and matrices are treated somewhat similarly.
Operators are defined for records in terms of its component types. It is
possible to perform operations on a record as a whole provided all its
components conform to it. For example,

* R = record

a real

b integer

end

R <--- 5 * R is a valid operation. However,

R = record

a : real

b : character

end ,

R <--- 5 *R is illegal.

Most of the operations of vectors and matrices are similar. They are as
*' follows:

A. Scalar operations

1. Initializing to zero

2. Initializing to

3. Initializing to identity matrix

4. Initializing to null (only for vector or matrix of string)

5. Multiplication or division by scalar

.......... :.. :.......::..:-, .:.

14

Table 4.1 Functions for Primitive Data Type

Defini tion Generic Name Number ofArguments

Absolute value abs 1

% Largest value max >=I

Smallest value min >=1

Square root sqrt 1

* Square sqr 1

* Exponential (e **a) exp 1

Natural logarithm ln 1

' Common logarithm (10) log 1

Sine sin 1

Cosine cos

Tangent tan 1

Arc sine asin 1

Arc cosine acos 1

* Arc tangent atan 1

Hyperbolic sine sinh-1

* Hyperbolic cosine cosh I

Hyperbolic tangent tanh 1

Ord. no. to char. chr 1

Char. to ord. no. ord

Si+

* , • . o ' ..* - .• . * - *

~~6. Addition or subtraction by scalar :

B. Matrix/vector operations

, 1. Multiplication

2. Addition and subtraction

Functions provided for matrices and vectors are listed in Table 4.2.

The system provides a variety of string operations. They are as follows:

. C. String operations

* 1. String initialization

2. String concatenation

3. Substring designation

The string functions are listed in Table 4.3.

4.3 Data Management Operations

For efficient management of data, the system supports its own language.
The data language is a consistent english keyword-oriented syntax for query,
as well as for data definition, data manipulation, and control. It provides

'* facilities ranging from simple queries to complex data manipulation intended
for professional programmers. The same language may be embedded in a host

" language program or may be used as a stand alone system. The syntax of the
language is given in extended BNF notation.

However, it may be noted that a few minor ambiguities do exist; also this
syntax permits the generation of some statements that are not semantically
meaningful. Development of a more complete syntax is currently in progress.

*teIn this notation, square brackets [] indicate optional constructs, and

the braces { indicate repeating groups of zero or more items.

statement ::= query

I dml-statement

ddl-statement

I control -statement

query ::= query-expr [ORDER BY ord-spec-list]

* query expr ::= retrieve-clause [INTO target-list]

FROM from-list [WHERE boolean-expr]

. *.
..

" 29

-' 16

Table 4.2 Functions for Matrix and Vector Data Type

Definition Generic Names Number of
Arguments

Transpose of matrix trn 1

Inverse of square matrix inv

!' (non-zero determinant)

Determinant of a square matrix det 1

Modulus of a vector mod 1

- Largest value of a matrix max 1

* "or vector

Smallest value of a matrix min 1

or vector

Number of elements in a vector cnt i

Average of a vector avg 1

Sum of all elements of vector sum

"S.

"I

- -

17

Table 4.3 Functions for String Data Type

Definition Generic Name Number of
arguments

Starting position of pattern in pos 2
source string (source, pattern)

Length of the string len 1

String without leading or trailing trim 1blanks

String with upper case character only upc 1

String with lower case character only lwc 1

Numerics from string val 1

String from numerics str 1

-" ... -

, . "

18

retrieve-clause RETRIEVE [UNIQUE. ret-expr-list

RETRIEVE [UNIQUE *

ret-expr-list :=ret-expr {, ret-expr

ret-expr :=expr I var-name.* I obj-name.*

target-list :=var-name {, var-name

from-list :=obj-name [var-name] [,obj-name [var-name]]

[,(query-expr)]

ord-spec-list :=field-spec [direction I ,field-spec

[direction]}

field-spec field-name

Iobj-name.field-name

var-name.fiel d-name

-. direction ASC IDESC

where-clause WHERE boolean

boolean boolean-expr Iexpr rel-op expr

boolean-expr boolean-var Iboolean-const

boolean-var :=identifier

boolean-const :=true Ifalse

rel-op <>I I <I <= I>= > in

expr term Isign term Iexpr add-op term

sign :=+ -

add-op :=+ - or exor

term factor Iterm mult-op factor

nfult-op * / div I mod Iand

factor :=primary Inot factor Iprimary **factor

primary (query-expr) jfield spec Ivar-name constant

I fn-designatorl (boolean)

.477

19

fn-designator fn-identifier I fn-identifier ([UNIQUE] expr)

I fn-identifier (*)

fn-identifier identifier

literal (constant { , constant)

constant quoted-string I number ROW I COL I NULL

I USER I DATE

* . obj-name name

image-name name

link-name name

name [creator.] identifier

creator identifier

user-name identifier

.. field-name identifier [(subscript-list)]

*., subscript-list subscript {, subscript }

subscript constant I var-name

var-name identifier

integer ::= number

• - dml-statement assignment

insertion

I deletion

I update

assignment ASSIGN TO receiver query-expr

receiver obj-name [(field-name-list)]

insertion INSERT INTO receiver insert-spec

insert-spec query-expr

literal

field-name-list field-name {, field-name I

• " . " L -- ' - - .. - ' - . - .. - .. - . ,* . "- . .-' " - . - . .-. " ".. . - - -. . , - ' *' -

20

deletion DELETE obj-name [var-name][where-clause]

update :=UPDATE obj-name [var-name]set-clause-list

[where-clause]

* set-clause-list set-clause {,set-clause

set-clause :=SET [field-name Iexpr

ISET [field-name I (query-expr

ddl-statement create-obj

create-image

Icreate-link

define-view

drop

Icomment

create-obj CREATE [perrn-spec I[shared-spec]obj-defn

perm-spec :=PERMANENT ITEMPORARY

;hdred-spec :=SHARED) PRIVATE

obj-defn matrix-defn vector-defn

natrix-defn MATRIX matrix-name (integer, integer

[qualifier] field-defn-list

matrix-name :=identifier

qualifier :=SPARSE I UPRTRN ILWRTRN ITRIDGL IBANDED integer

IBANDED VAR SYMMAT

field-defn-list field-defn {,field-defn}

field-defn [field-name I(type [, NONULL I [, KEY]

type primnitive-type Istructured-type [primitive-type]

primitive-type INr[(;LR REAL

DOUUBLF PREC[SION

ICHARACTER

21

I BOOLEAN

structured-type STR C integer)

ISTR(*

I VEC (integer

I VEC (*)

MAT (integer, integer)

vector-defn VECTOR vector-spec field-defn-list

X vector-spec vector-name () I vector-name (integer)

vector-name identifier

create-image CREATE [image-mod-list] IMAGE image-name

ON obj-name (ord-spec-list)

image-mod-list image-mod { , image-mod }

- image-mod UNIQUE CLUSTERING

create-link ::= CREATE [CLUSTERING] LINK link-name

FROM obj-name (field-name-list

TO obj-name (field-name-list

[ORDER BY ord-spec-list]

define-view DEFINE [perm-spec] VIEW obj-name

[(field-name-list)] AS query

drop ::= DROP system-entity name

comment ::= COMMENT ON system-entity name : quoted-string

I COMMENT ON FIELD obj-name.field-name

quoted-string

system-entity ::= MATRIX VECTOR VIEW I IMAGE I LINK

control-statement grantI revoke

grant GRANT [auth] obj-name TO user-list

[WITH GRANT OPTION -

. -

22

auth ALL RIGHTS ON

I operation-list ON

I ALL BUT operation-list ON

user-list user-name { ,user-name I PUBLIC

operation-list ::= operation { , operation }

operation READ I INSERT J DELETE

=:i I UPDATE [(field-name-list)]
,A

" i DROP IMAGE I LINK

revoke REVOKE [operation-list ON]

obj-name FROM user-list

begin-trans ::= BEGIN TRANSACTION

end-trans ::= END TRANSACTION

save ::= SAVE save-point-name

restore RESTORE [save-point-name]

*;www.
- -~.

TT
23

EXAMPLES
A.

A. Data Definition Language

1. CREATE TEMPORARY MATRIX STIFFNESS (1000, 1000) BANDED 20
(DOUBLE PRECISION)

-. 2. CREATE PERMANENT PRIVATE VECTOR () XCOMP
NODE NO (INTEGER , KEY),
COOrD(REAL , NONULL),
FORCE (REAL)
MOMENT (REAL);

3. CREATE PERMANENT SHARED VECTOR (*) ELEMENT
ELM NO (INTEGER , KEY),
MAT-NO (INTEGER) ;

4. CREATE VECTOR (*) NODE
NODE NO (INTEGER , KEY),
COORD (VEC (3) : REAL),
ELM NO (INTEGER , NONULL)

5. CREATE UNIQUE IMAGE INODE ON NODE (NODENO)

6. CREATE CLUSTERING LINK LELM
FROM ELEMENT (ELM NO
TO NODE (ELM NO
ORDER BY NOOrNO

7. DEFINE PERMANENT VIEW YCOMP (NNO , YCRD) AS
(RETRIEVE NODE NO , COORD (2)
FROM NODE
WHERE ELMNO = 10

8. DROP VECTOR NODE

9. DROP IMAGE INODE

10. COMMENT ON VIEW YCOMP
'Limited view of node giving y-coordinate only'

.-B. Query Language

1. RETRIEVE *
FROM STIFFNESS
WHERE ROW > 5
AND COL < 70

2. RETRIEVE UNIQUE NODE NO , FORCE
FROM XCOMP
WHERE NODE NO < 50

- -. AND FORCT > 5
ORDER BY NODENO ASC

F . . . ' . w ,' , , , . . ' " " "'" , -" •~ * -. - " • * • * * * - -• " * - * . - • . . "~ *- - * .

24

C. Data Nanipulation Language

1. ASSIGN TO SUBSTIFF
RETRIEVE *
FROM STIFFNESS
WHERE COL > 5
AND COL < 50)

2. ASSIGN TO SUBXCOMP (ND ,CRD, MMT)
RETRIEVE NODE NO , COORD , MOMENT
FROM XCOMP
WHERE RESTRN > 0);

* 3. INSERT INTO ELEMENT (ELMNO , MATNO)
(RETRIEVE *
FROM ELEMENT2
WHERE ELM NO > 50)

4. INSERT INTO NODE (NODE NO , COORD , ELM NO)
10 , 2.2 , 5.7 1.72 3)

5. DELETE STIFFNESS
WHERE ROW > 100
AND COL > 100

6. DELETE NODE
WHERE NODE NO = 5

7. DELETE ELEMENT X
WHERE (RETRIEVE CNT (*)

FROM NODE
WHERE ELM NO X.ELM NO

8. UPDATE STIFFNESS
SET 25
WHERE ROW 30;

9. UPDATE NODE
SET COORD = COORD * 2.54
WHERE ELM NO IN (2, 10 , 19, 25)

D. Data Control Language

1 1. GRANT READ , INSERT
ON NODE TO PUBLIC;

2. GRANT ALL RIGHTS
ON NODE TO TOM , DICK, HARRY
WITH GRANT OPTION

3. REVOKE UPDATE , DELETE
ON NODE FROM DICK , HARRY

-'--
- - - - - -

r-,' -' ." '-.' " "i - "i" -- -'. -' " - . -'-" .. -' ". .'- .." " " - . . : " . " ." : :''' ' . '. " ' '

25

5.0 DISCUSSION

It is interesting to highlight differences between MIDAS/GR and a
previous version MIDAS/R (Management of Information for Analysis and Design of
System/Relational Model). These systems are briefly compared in the
following.

1. Data Structure

a) MIDAS/GR provides integrated data definition facility, using primitive
(integer, real, double precision, character) and structured (vector, matrix,
string, record) data types. Relation is just one of the many user defined
data types (vector of record).

MIDAS/R provides essentially a single data structure, namely relation;
only the domains are extended to have non-atomic data types (vector, matrix).

b) MIDAS/GR, because of its general approach, defines matrix as easily as any
other data type (say relation). As a result, matrix can be treated as a
distinct entity and it can have its own composite data elements.

MIDAS/R, in contrast, defines matrix as a relation with n attributes and
m occurrences. Since the maximum number of attributes in a relation (in
MIDAS/R) is limited, number of component submatrices is also limited. This
artificial definition not only leads to difficulty in organization of data,
but also makes direct access to individual data element impossible. It is
also not possible to define elements of a matrix as composite data.

c) MIDAS/GR provides several qualifier (sparse, banded, etc) to define special
types of matrices frequently used in engineering applications. This allows
efficient handling of storage without direct involvement from the user.
Moreover, this provides uniform data structure for such matrices, effectively
facilitating development and maintenance of system routines to manipulate
them.

MIDAS/R essentially treats matrices as a collection of very limited
number of submatrices, each of which is supposed to be dense. Since it is the
users responsibility to find efficient representation for special types of
matrices, there does not exist any uniformity. As a result it is not possible
to support system utilities to manipulate them, leading to multiplication of
effort and consequent loss of productivity.

2. Data Language

a) MIDAS/GR provides unifying data language. It treats vectors (relation) and
matrices similarly. It is possible to make query (or other DML operations) on
individual elements of a matrix.

MIDAS/R recognizes only relations, Hence a matrix as a whole (or a
limited number of submatrices) is identified as a data item. Therefore, query
(or other operations) related to individual component of a matrix is not
possible.

..
u-.-.. ..

[' .. . -. . . . - . o - , -• * * - . ., . . .,. -. . , - . - *- . -

• . -.' k '', . '.. ,. -" .'- -" "" " . --. -.. ., ,' -.. .' . - " . " ,- ' .'' . *-. -. -.,*. . . ,' .-. . . ,a

-i" 26

b) MIDAS/GR provides language with same syntax for both terminal users and for
those using them from a programming language. This leads to ease of

* communication between two classes of users.

MIDAS/R uses altogether different approach for terminal interface and
programming language interface.

c) MIDAS/GR provides a language which is non-procedural, i.e. its statements
are statement of intent on the part of the user. This makes search
optimization feasible. Also for a very large class of queries user need not
resort to loops or branching. This simplicity in turn means more
productivity.

MIDAS/R: Terminal interface impTiments relational algebra which is
implicit in MIDAS/GR (consequently more compact and easy to use in
MIDAS/GR). Program interface implements inefficient record at a time
construct, with limited facility to define conditions. Also, update involves

. explicit retrieve and insert operation, which is inefficient both in terms of
program construct ard computer time.

d) MIDAS/GR precompiles all its statements. This reduces runtime overhead.
Therefore, the system is inherently much faster.

MIDAS/R interprets its statements at runtime. Therefore, runtime
overhead is high, leading to slow execution.

3. Data Independence

MIDAS/GR provides multiple view of same stored record. This is made possible
by maintenance of multiple access paths. Apart from physical sequence, it
maintains indexes and links (binary and unary) for direct access and for
sequential access in a different value ordering. This leads to data
independence.

MIDAS/R provides only view obtained through physical storage sequence. There
is no facility to define or maintain other views or access paths (index or
link). This leads to inefficient handling of data and also lack of data

":" independence.

4. Concurrent Usage

MII)AS/GR allows several users to use the system concurrently, doing retrieval,
update and other operations, without conflicting with other users.

MIDAS/R allows only one user to use the system at any time. This leads to

inefficient use of the database.

5. Recovery

MIDAS/GR supports recovery in case of system failure or media crash. If the .
* on-line storage is not destroyed (i.e., no media failure), restart is

.. 6

",~ ~ ~ ~~ v --- -- :" ,",..-.- •-...-.. -. .- .i-". .- '-.-, --.-.-.--

27

automatic (i.e., without operator intervention). MIDAS/R does not support any
form of recovery.

r Apart from the major advantages in the design itself (as outlined above)
"* MIDAS/GR is free from some vital implementation drawbacks of MIDAS/R:

1. MIDAS/R requires that every attribute name be unique in a database. This
*is a redundant and difficult requirement, particularly among different users.

MIDAS/GR qualifies each attribute (field) name by data object name and user
name. Hence, an attribute has to be unique only within a data object (say
relation).

2. MIDAS/R does not provide facility to specify whether duplicates to be
removed from the result of a project operation on a relation. If it does not
remove duplicates, the system will be cumbersome to use; at the same time, if

,-" it removes them all the time (even when it is not required to do so), that
will entail avoidable overhead on the system.

MIDAS/GR solves this problem by providing a optional keyword 'UNIQUE' to
mean that duplicates are to be removed.

3. MIDAS/R requires that every database must be explicitly defined and opened
before use. This restriction is redundant fir temporary databases, as they

• can only be used in the execution environment where they were defined.

- - * . --

- * * -- -. * -.

28

APPENDIX - A

PRELIMINARY SPECIFICATION FOR

DATABASE MANAGEMENT SYSTEM

FOR

ENGINEERING APPLICATIONS

A.1 Introduction

A.1.1 General

The need for generalized database management system for engineering
application is increasingly felt, as the amount and complexity of data grew
over the last decade. The conventional systems are posing a major handicap due
to the following reasons.

1. Inconsistent data storage format makes it difficult to access data
collected for different applications.

2. Associating data, which relate to the same entity but are stored in
different files, is difficult.

3. The cost of storing data relating to the same entity in a number of
different files (to facilitate easy access by different application
programs) is excessive.

4. The inflexibility of conventional file structure and their tight
binding to application programs makes future enhancement difficult.

5. Management and controlling of data while safeguarding data integrity
and ensuring rapid and secure access to data, is difficult.

The objectives of the DBMS grew out of these limitations and may be summarized

as follows.

1. A high-level language to facilitate access to stored data.

2. Control data integrity. Standard interface to the data sets up tight,
consistent integrity control.

3. Facility of query language. This allows casual users to communicate
-, with the system in english like language.

4. Model complex data relationships. This can be taken advantage of in
system design.

, . -

..... -.....-.

29

A.1.2 Proposed System

The proposed system is based on relational model of data structure. The L
system distinguishes between a domain and a attribute. Attributes are drawn
from a domain and represents the use of a domain within a relation.

Relations are commonly referred here as tables. There are two types of
tables.

1. Base table. These tables are physically represented in the database
by stored files.

2. View. These are virtual tables and does not really exists, instead
derived from one or more underlying base tables. In other words, no
stored file directly represent a view, instead a definition is stored
in the data dictionary.

Each relation has one or a combination of attributes, that uniquely identifies
a tuple in the relation. The attribute (or the combination) is called the
primary key.

If more than one attribute combination possess the unique identification
property, then they are called candidate key.

A candidate key that is not primary key is called alternate key.

An attribute which is primary key in some other relation is called
foreign key.

A domain may optionally be designated as primary if and only if there

exists some single attribute primary key defined on that domain.

The system enforces two integrity constraints.

1. Entity integrity. No component of a primary key value may be null.

2. Referential integrity. Any non-null value of a foreign key must
correspond to its primary key value.

.4

.N:

i-I

30

A.2 Architecture

r. A.2.1 General

The system provides following basic facilities.

1. Database recovery

2. Automatic concurrency control

3. Flexible authorization mechanism

4. Data independence

5. Dynamic database definition

6. Tuning and usability features

The system consists of two major subsystems.

1. Data system. This provides the external user interface, supporting
tabular data structures and operators on these structures.

2. Storage system. This provides a stored record interface to data
* system.

A.2.2 Data System

Data system consists of two components.

1. Precompiler. This is a compiler for the high-level language provided
by the system. For each statement, it decides on a strategy for
implementation. This process is called optimization. Having made its
decision, the precompiler generates machine language routine that will
implement the chosen strategy. The set of all such routines together
constitutes the access module.

2. Run-time control system. This provides the environment for executing
an application program that has been through the precompilation
process. It fetches the access module, and then call the appropriate
section of that access module, which in turn invokes various storage
system operators to perform required actions.

A.2.3 Storage System

This is essentially a powerful access method. Its primary function is to
handle all details of the physical level. The user of this system is normally
not a direct user, but the code generated by the data system.

The basic data object supported is the stored file i.e. the internal
representation of a base table. Rows of the table are represented by records

L -

* *. *".*

" 31

of the file. The records need not be physically adjacent in storage. It also
supports an arbitrary number of indexes over any stored file. The user of
this subsystem needs to know what stored files and indexes exist and must

[4 specify the access path to be used.

- -

32

A.3 Data Structure

A.3.1 Base Table and Index

The primary structure of the system is base table. A base table is a
table that has its own independent existence. It is represented in the
physical database by a stored file.

Using suitable statements, a base table may be created with appropriate -

fields, at appropriate segment. Just as a new base table can be created at
any time, so an existing base table can be expanded at any time by adding a
new column (field) at the right. The value of the new field will be null at
every occurrence (the specification no null is not permitted while expanding).

It is also possible to destroy an existing base table at any time. All
records in the specified base table are deleted, all indexes and views on that
table are destroyed and the table itself is then also destroyed (i.e. its
description is removed from the dictionary and its storage space is released).

Like base table, indexes are created and dropped using the DDL
statements. However, DML statements del iberately do not include any
references to the indexes. The decision as to whether to use an index or not
in response to a particular data request is made not by user but by the system
(the optimizing part of the precompiler).

The index may be defined by specifying major and a number of minor order
(ascending/descending). For indexing purpose null values are considered to be
all equal to each other and greater than any non-null value. Once created, an
index is automatically maintained by the system to reflect updates on the
indexed base table, till the index is dropped.

If a precompiled program has an access module that depends on the dropped
index, that access module is automatically marked invalid. When that access
module is next invoked, the system automatically reprecompiles the original
programn, generating a replacement access module without using the now-vanished
-index. However, this process is completely hidden from the user.

A.3.2 Segment

The database is partitioned into a set of disjoint segments. Segments
provide a mechanism for controlling the allocation of storage and the sharing
of data among users. Any given base table is wholly contained within a single
segment; any indexes on that base table are also contained in that same
segment. However, a given segment may contain several base tables and their
indexes.

There are three types of segments.

1. Public segment. They contain shared data that can be simultaneously
accessed by multiple users.

33

2. Private segment. They contain data that can be used by only one user
at a time (or data that is not shared at all).

3. Temporary segment. They contain only temporary data which is lost as
soon as the program terminates.

Data in public and private segment is recoverable (i.e. data will not be lost
in the event of a failure), but not the one in temporary segment. This
reduces the overall overhead, as the overhead associated with full support of
concurrent sharing needed for public data can be avoided for private and
temporary data. However, the type of a segment will be fixed at the time of
system installation and can not be changed.

Each segment consists of an integral number pages. The number of pages
in a given segment varies dynamically. Each segment has a predetermined
maximum size (very large), but at any given time it will occupy only as much
physical storage as it actually needs for the data objects it currently
contains. Pages are allocated to segments as necessary and are released when
the segment shrinks again.

A.3.3 Field

Each field definition of base table includes three items.

1. Field name

2. Data type for the field

3. No null specification

The field name must be unique within the base table. The permissible data-
types are as follows.

CHAR (n) Fixed length character string

CHAR (n) VAR Variable length character string

INTEGER Full word binary integer

REAL Full word floating point number

* DOUBLE PRECISION Double word floating point number

Unless the definition of the field is no null, any field can contain a null
value. It is a special value that represents unknown or inapplicable. It has
following properties.

1. Arithmetic expressions in which one of the operand is null, evaluate
to null.

2. Comparisons in which one of the comparands is null, evaluate to the
unknown truth value.

-:.:-

, . -'--:-. ..% --. - . . S *, - .-. .- ... i-- - .".: - - . ,- " -- * ", •* . . -• S .: S: . -.- '. " ---

34

A.4 Data Sub-Language

This high-level language is provided for the general users to perform
retrieval, update and other operations. It operates on both base table and
views. The fundamental operation of this language is mapping which is
effectively horizontal subsetting and vertical subsetting of a table.

Apart from being relationally complete, this language has following
advantages.

1. Simplicity. Problems can be expressed more easily and concisely than
in lower-level language. Simplicity in turn means productivity, i.e.
ease of program development and maintenance.

2. Completeness. Since the language is relationally complete, for a very
large class of queries, the user need not resort to loops or

branching.

3. Non-procedurality. Such languages are frequently described as non-
procedural. Its statements are high-level statement of intent on the
part of the user. It means the system is able to capture the users'
intent, which makes search optimization feasible. Capturing intent is
also important in authorization checking.

4. Data Independence. The statements include no references to explicit
access paths such as indexes or physical sequence. Therefore, this
language provides total physical data independence.

5. Ease of Extension. The power of the basic language is extended by the
provision of built-in functions. The system permit users to define
their own built-in functions.

6. Support for High-Level Languages. The system is capable of supporting
a variety of special purpose languages; such languages being tailored
to some particular application area and supporting terminology and
operations specific to that area.

- - . .. - - - -.-.

35

APPENDIX - B

ARCHITECTURE FOR MIDAS/GR

MANAGEMENT OF INFORMATION

FOR

DESIGN AND ANALYSIS OF

SYSTEMS: GENERALIZED RELATIONAL MODEL

B.1 Introduction

The overall architecture of MIDAS/GR is described by its two main
components. The lower level component is Data Storage Interface (DSI), and
the upper level component is called Data Language Interface (DLI).

1. Data Storage Interface (DSI). This is an internal interface which
handles access to single data elements. This interface and its
supporting system (Data Storage System (DSS)) is a complete storage
subsystem. It manages devices, space allocation, storage buffers,
transaction consistency and locking, deadlock detection, backout,
transaction recovery, and system recovery. Furthermore, it maintains
indexes on selected fields of relations and pointer chains across

- - relations.

- .2. Data Language Interface (DLI). This is the external interface which
can be called directly from a programming language. It may also be
used to support various emulators and other interfaces. This
interface and its supporting system (Data Language system (DLS))
provides authorization (Griffiths, Wade 1976), -integrity enforcement,
and support for alternative views of data. The high level data
language is embedded within the DLI and is used as the basis for all
data definition and manipulation. In addition, The DLI maintains the
catalogs of external names (Vhrowczik 1973), since the DSI uses only
system generated internal names.

- Figure 1.1 (Astrahan, Blasgen, Chamberlin et. al. 1976) gives a
functional view of the system including its major interfaces and components.

Data Language Interface (DLI) inturn has two independent modules:

1. Precomupiler. This is a compiler for high level language provided by
the system. The users' data statements are translated into machine
language code during a preprocessing phase, and this code is stored in
the database. The high level data statements in the host program are
replaced with the appropriate call to the Run-time Control System
(RCS).

36

programs to support various

interfaces (e.g Query system)

------- ---- <--- Data Language Interface (DLI)

Data Language

System (DLS)

+--------------------------+ <--- Data Storage Interface (OSI)

Data Storage

System (DSS)

+--------------------------+

Figure 1.1 Architecture of MIDAS/GR

37

2. Run-time Control System (RCS). This provides the environment for
executing an application program after it has been through the
precompilation process. When the program is run, it retrieves
appropriate object codes from the database and executes them.

The production of data access subroutines (object codes for each data
statement) involves three steps: parsing, access path selection, and code
generation. The parser checks the data statement for syntactic validity and
translates it into a conventional parse-tree representation. The parser also
returns two lists of host program variables found in data statement: a list
of input variables (values to be furnished by the calling program and used in
processing the statement) and a list of output variables (target locations for
data to be fetched by the system). The optimizer uses the parse tree as input
and performs following tasks.

1. Using the internal system catalog, it resolves all symbolic names in
the data statement to internal database objects.

2. A check is made that the current user is authorized to perform the
indicated operation on the indicated data object.

3. If the data statement operates on one or more user defined views, the
definitions of the views (stored in parse-tree form) are merged with
the data statement, to form a new composite parse tree which operates
on real stored data objects.

4. It uses the system catalog to find the set of available indexes and
other statistical information on the data object to be processed.
This information is used to choose an access path and an algorithm for
processing the statement.

The access strategy is specified in an internal language called the
Access Specification Language (ASL). It specifies completely all the access
paths that may be used in the execution of a data statement. After the ASL
structure has been produced by the optimizer, code generator produces
appropriate object code to implement the specified strategy. They are called
access modules. Figure 1.2 (Lorie and Nilsson 1979) shows the structure of
Data Language System.

When the program is run, it makes call to RCS which inturn loads and
invokes the access module for the program. The access module operates on the
database by making calls to the DSI and delivers the result to the user's

* program. This process illustrated in Figure 1.3 (Chamberlin, Astrahan, King,
et. al. 1981).

The ad hoc users are supported by a special program called the Terminal
Interface (TI), which controls the dialogue management and the formatting of
the display terminal.

The system permits many users to be active simultaneously, performing a
variety of activities. Some user may be precompiling new programs, while

m others are running existing programs. At the same time other users may be
using the TI, querying and updating the database and creating new data objects
and views. All these simultaneous activities are supported by the automatic
locking subsystem built into the DSI.

..........1 "........

38

Data Statements

-------------------- -+-------------------------------

analysisI
+---------------------------------------

parser

----------------------------------- 1

+---------------------------------------

name resolution --- +-------- DB Catalog

+---------------------------------------4

------------------------------- +-------------------------------

optimizerI
+---------------------------------------

normalI i zat ion

---------------------------------- 1

------------------------ ---------------

permutation -----
cost estimate

+---------------------------------------

----------------------------- --------------------------------

synthesisI
+---------------------------------------

ASI - generation

4-----------------------------------

------------------------ ---------------

code generation

+---------------------------------------

-------------------- -+-------------------------------

DSS

--

--- -- -- -- --- -- -- -- -- -- -

Figuref 1.2> Stuctr of~ Dat Lagug Syste DLS.

- . -. W -S V* m- - - .S t - '

39! -

.User's Object, ~ ~Program .,

I call
V

---------------------- 4--------

Execution-time Loads, then> Accue

System (R) I..........---.
,., +- ca11ls -----------. ..

"'" call
i-'- v

------- +-------4.

I I

+------------

DATA BASE iS

Figure 1.3 Execution Step

"'" '1

-S• .-. - . ..

-

40

B.2 Data Language Interface

B.2.1 General

The objective of an advanced database management system (DBMS) is to
provide high-level data definition, manipulation and control language, as well
as a high degree of data independence. Each time the DBMS is invoked, the
following operations must be performed.

1. The command string must be analyzed. This task is simple, if the
command is simple and has rigid syntax. But higher the level of
language, the more complex this task is. Irrespective of the level of
language, the analysis often involves conversion of numeric data from
external (character) format to internal (binary, decimal or floating
point) format.

2. The names of the data objects (tables or file names, field or column
names etc.) must be converted to their internal identifiers through
use of a system catalog.

3. The DBMS must determine what processing is to be done to return
data. Since, this often involves an internal search through several
records, the DBMS builds an internal table using information extracted
from the catalog. This table describes the required processing.

4. To actually return the data, an interpreter consults the internal
table and execute a call to the underlying access method. The
interpreter uses the internal table again to determine type of
processing to be performed on returned data and also to determine
which record to fetch next.

Steps (1), (2), and (3) are performed on every call to the DBMS; such
calls may often be inside loops in application programs. So the analysis must
be done repeatedly and redundantly. Step (4) may be exetuted several times
for each DBMS call, and the level of redundancy is even higher. This may lead
to severe performance degradation.

In the present system, it is decided to eliminate all execution time
interpretation. For each statement, an access routine is prepared. Thus,
much of the work is done at compilation time itself, rather than (repeatedly)
at execution time. The compiled code for each database statement is in fact a
series of calls to the DSI.

B.2.2 Precompiler

The compilation of high-level data language consists of producing a data
access routine which will invoke the access method and process the arguments
and returned values as needed. This approach enables high function database
language to perform as well as that available only at a lower access method
level (Lorie, Wade 1979, Lang, Fernandez, Summers 1976).

I A

41

The compilation of data statements is done by a preprocessor which
accepts the host language-data language source code and produces two
outputs. The first output is a program in host language, and the second
output is an executable string (machine language data access routines). This
routine is automatically stored in the database and identified by the triple
(author name, program name, data statement number). At execution time DBMS
fetches-appropriate access routines and transfers control to it. The first
output, the program in the host language may be compiled in usual way.
Consider the relation

ELEMENT (ELM NO , MAT NO , NODE NOS

Following statements may be written as part of the program.

LET S1 BE RETRIEVE ELMNO , NODENOS

INTO U , V

FROM ELEMENT

WHERE MAT NO = W

AND ELM NO < MAX (NODE NOS

This statement is like a declaration to the database system; it
associates the name SI with the given query, but causes no processing to be
performed at execution time.

The host language variables U,V,W must be declared properly. For example

U Vector of integer;

V Vector of Vector of integer;

W integer;

When a statement

FETCH Si

is issued, the variables are bound.

The query will return a tuple for each ELEMENT which has a given material
number (assuming material properties are defined elsewhere for each material
number) and whose number does not exceed a given value.

The LET SI ... statement is converted into a comment, since it is only a
- declaration to the preprocessor. Fetch statement is replaced by a group of
"*". statements.

*-.2 .- INTEGER T(2)

T(1) = LOC (U(1))

,. °, 45

42

T(2) : LOC (V(1,1))

CALL MIDAS (n, LOC(T(1)

The first argument n specifies the ordinal number of the data statement in the
program; the second argument specifies indirectly the address of the output
variables.

At execution time, the CALL MIDAS statement will invoke the DBMS, which
will fetch toe appropriate access routine (if it is not yet in memory) and

,* transfer control to it.

* .iSuppose, the ELEMENT relation is stored as one DSI relation (say relation
1005) and that an index exists on the second column (MAT NO), say index 2.
Then the statement,

CALL DSI (OPEN , SCAN STRUCTURE , ERROR CODE);

in conjunction with the structure shown in Figure 2.1 (Lorie and Wade, 1979),
defines and initializes a scan of the subset of the relation identified by the
condition

MAT NO = 50;

The statement,

CALL DSI (NEXT , SCAN STRUCTURE , ERROR CODE);

is then used on the scan identified by the SCAN STRUCTURE to fetch the
successive records.

B.2.2.1 Optimi zer ,

The main advantage of non-procedural data language, besides the simple
data model, is that the access paths are not specified explicitly in the
language. In the absence of access path specification, the compilation
algorithm has to take into account the characteristics of the various access
paths existing in the database (Astrahan, Blasgen, Chamberlin 1976).
Therefore, given data object and available access paths the optimizer finds a

. low cost means of executing high level data statements. During execution of
.- the statement the optimizer minimizes page fetching from secondary storage

into the main emory buffer. If necessary, the buffer is pinned in real
*memory to avoid additional paging activity caused by the operating system.

The cost of CPU instructions is also taken into consideration by converting
operations of data element comparison to equivalent page accesses.

Since the cost of measure for the optimizer is based on disk page
accesses, the physical clustering of the related data aggregates in the
database is of great importance. A data object nay have atmost one clustering
image; i.e., data aggregates near each other in a particular value ordering
are stored physically near each other in the database. To understand the
importance of clustering, let us suppose that we wish to scan over a data
object in certain order. The size of the system buffer is much less than the

43

Scan structure

4-> 1005 relation identifier

2 index identifier

1 no. of domain in key def.

+---------------- -- * pointer to key def.

3 no. of fields to be returned

*...-+pointer to domain structure

-> 4 lnt ofky 4 <-+ length of slot for firstlengh o key --- field
+- * pointer to *----- pointer to slot for first

--+value --- field
0 second field (not needed)

+->I 501 key value 4 length of slot for third
4---.'---- field

~- -- +pointer to slot for third
field

I [c-+

4-bytes

4-bytes

Figure 2.1 051 Call Structure

44

number of pages used to store the data object. If clustering is in different
order, the location of data aggregates will be independent of each other. In
general, each data aggregate will require fetching a page from the disk. On
the other hand, if clustering order is same, each disk page will contain
several adjacent data aggregates. The number of page fetches will be reduced
accordingly.

Prior to the selection of an access strategy, a 'normalization' is
performed on the internal representation of the query. It involves
integration of views and synonyms and conversion of some queries containing
subqueries into queries containing join but no subquery. In the next phase,
the optimization process takes into consideration (in principle) potentially
all ASL programs which would yield the answer to the query. The one estimated
to be the most efficient in terms of CPU time and database access operations
is selected for synthesis.

There are two cases in the optimization process. Case 1 -involves only
one data object where as case 2 involves join of two (or mo-e) data objects
(Selinger, Astrahan, ChamberliT et. al. 1979).

Let us define some useful parameters which are obtained (directly or

computed) from the system catalogs.

C Cardinality (no. of data aggregate) of the data object.
P Number pages occupied by the data object.
A Average number of data aggregates per data page (C/P).
I Image (index) cardinality (no. of distinct sort field values in a

given image).
E Coefficient of CPU cost (I/E is the number of comparisons of data

elements that are considered equivalent in cost to one disk page
access.

An image -is said to 'match' a predicate if the sort field of the image is
. the field which is tested by the predicate. In order for an image to match a

predicate, the predicate must be a simple comparison of a field with a value.

The optimizer compares the available image with the predicates of the
query to determine which of the following eight methods are available.

1. Use a clustering image which matches a predicate whose comparison
operator is l=. The expected cost to retrieve all result data
aggregates is C/(A*I) page accesses (C/I data aggregates divided by A
data aggregates per page).

.. Use a clustering image which matches a predicate whose comparison 2
operator is not '='. Assuming half of the data aggregates satisfy the
predicate, the expected cost is C/(2*A). .77-1

3. Use a non-clustering image which matches a predicate whose comparison
operator is '=' Since each data aggregate requires a page access,
the expected cost is C/I.

4. Use a non-clustering image which matches a predicate whose comparison
operator is not '='. Expected cost to retrieve all result data
aggregate is C/2.

7 .7 .

45

5. Use a clustering image which does not match any predicate. Scan the
image and test each data aggregate against all predicates. Expected
cost is (C/A) + E*C*N, where N is the number of predicates in the
query.

6. Use a non-clustering image which does not match any predicate.
" - Expected cost is C + E*C*N.

7. Use a scan where this data object is the only one in its segment.
Test each data aggregate against all predicates. Expected cost is
(C/A) + E*C*N.

8. Use a scan where there are other data objects sharing the segment.
Cost is unknown, but greater than (C/A) + E*C*N, because some pages
may be fetched which contain no data from the pertinent data object.

The optimizer chooses a method from this set according to the following
rules:

. ,1. If method 1 is available, it is choosen.

2. If exactly one method among 2, 3, 5, and 7 is available, it is

chosen. If more than one method is available in this class, the
expected cost formulas for these methods are evaluated and the method
of minimum cost is chosen.

3. If none of the above methods are available, the optimizer chooses
method 4, if available; else method 6, if available; else method 8
(Eithe-r-method_7 or method_8 is alwaysavailable for any data object-T.

Example of such data object is given in Section 2.2 (relation ELEMENT).

For case_2 consider the earlier relation,

ELEMENT (ELMNO ,MATNO ,NODENOS

and a new relation,

NODE (NODENO , COORD , RESTRN , FORCE

suppose there is a query,

LET S2 BE RETRIEVE ELM NO , A

INTO U , V

FROM ELEMENT , (RETRIEVE MOD (COORD)

INTO A

FROM NODE

WHERE RESTRN >0)

46

WHERE MATNO = W

AND ELM NO < MAX (NODENOS)

AND ELEMENT.NODENOS = NODE.NODENO

i.e., retrieve element number of all the elements, which has material property
W and whose number is less than the highest node number on the element, and
the distances (from origin) of the corresponding nodes which are restrained.

This is an instance of join type query. In most general form, it
involves restriction, projection, and join. The general query has the form:

Apply a restriction on data object D, yielding Dl, and apply a
restriction (possibly different) to a data object E, yielding El. Join DI and
El to form a new data object F, and project (if applicable) some fields from
F. There are four possible methods to evaluate such query.

1. Use Images on Key Fields. Perform a simultaneous scan of the image on
ELEMENT.ELM NO and the image on NODE.NODE NO. Advance the ELEMENT
scan to obtain the next element which satisfy the predicate
(MAT NO = W and ELM NO < MAX (NODE NOS)). Advance the NODE scan and
fetcW all the data-ggregates whose node number matches the current
node number, and which is restrained. For each such match of ELEMENT
and NODE, compute distance of the node. Repeat until the image scans

'-," are completed.

2. Sort Both Data Objects. Scan ELEMENT and NODE using their respective
clustering images, and create two files F1 and F2. Fl contains the
ELM NO, NODE NOS from ELEMENT which satisfy the given predicate. F2
contains the NODE NO, and distance (MOD (COORD)) from NODE, which are
restrained. Sort-F1 and F2 on node number (This process may involve
repeated passes over F1 and F2, if they are too large to fit the
available main memory buffer). The resulting sorted files are scanned
simultaneously and the join is performed.

3. Multiple Passes. ELEMENT is scanned via its clustering image and
ELM NO, NODE NOS (which satisfy necessary predicates) are inserted
into a .nain memory data structure called D. If the space in main
memory is available to insert a data aggregate (say X), it is
inserted. If there is no space and if X.NODE NOS is less than the
highest NODE NOS value in D, the data aggregate with the highest
NODE NOS in D is deleted and X is inserted. If there is no room and
the-RODE NOS in X is greater than the highest NODE NOS in D, X is
discarded. After completing scan of ELEMENT, NODE is scanned via its
clustering image and a data aggregate Y is obtained where the node is
restrained. Then D is checked for the presence of Y.NODE NO. If
present, the distance (MOD(Y.COORD)) is evaluated and joined to the
appropriate data aggregate in D.

This process continues until all data aggregates of NODE have been
examined. If any data aggregate from ELEMENT has been discarded,
another scan of ELEMENT is made to form a new D, consisting of data
aggregates with NODE NOS value greater than the current highest. NODE
is scanned again and-the process is repeated.

.

47

4. IBID Algorithm. Using the image on ELEMENT.MAT NO, obtain the
identifiers of the data aggregates (DaID) from ELEMENT which satisfy
necessary predicates. Sort them and store the DaIDs in a file Fl. Do
The same with NODE, using the image on NODE.RESTRN and testing for
RESTRN>O, yielding DaID file F2. Perform a simultaneous scan over the
images on NODE.NODE NO and ELEMENT.NODE NOS, finding the DaID pairs of
data aggregates wh6se node numbers matches. Check each pair (DaIDL,
DaID2) to see if DaIDI is present in F1 and DaID2 is in F2. If they
are the data aggregates are fetched and joined, and the computed
distance is placed into the output.

A method can not be applied unless the appropriate access paths are
available. In addition, the performance of a method depends strongly on the
clustering of the data object with respect to the access paths. The optimizer
chooses one of the four methods based on the cost formula.

1. There are clustering images on both ELEMENT.ELM NO and NODE.NODE NO,
but no image on ELEMENT.MAT__NO or NODE.RESTRN.- In this situatTon,
method_1 is always choosen.

2. There are unclustered images on ELEMENT.NODE NOS and NODE.NODE NO, but
no image on ELEMENT.MAT NO or NODE.RESTRN. In this case method 3 is
chosen if the entire working area D fits into the main memory 6uiffer
at once; otherwise, method 2 is choosen. It may be noted that
unclustered images of node number are never used in this situation.

3. There are clustering images on ELEMENT.NODE NOS, and NODE.NODE NO, and
unclustered image on ELEMENT.MAT NO ani NODE.RESTRN. Tn this
situation, method 4 is always choosen.

4. There are unclustered images on ELEMENT.NODE NOS, ELEMENT.MAT NO,
NODE.NODE NO, and NODE RESTRN. In this situation method 3 is choosen
if the entire working area D fits into the main memory buffer.
Otherwise, method 2 is chosen if more than one data aggregate per disk
page expected to Tatisfy the restriction predicates. In the remaining
cases, where the restriction predicates are very selective, method 4
-is used.

It is however important to note that image is not possible on non-atomic
fields. Therefore, there will never be image on ELEMENT.NODE NOS. Hence all
methods requiring such image is unsuitable to process this query.

B.2.2.2 Access Specification Language

This language allows explicit and complete specification of the access
paths to be exploited in the execution of a data statement (similar to the one
used in System R: Lorie, Nilsson 1979). Since, the language is intended to
serve as an intermediate language in the compilation of higher level data
expressions, ASL statements are represented by tree-like structures. In view
of the close similarity between the syntax classes of the string language and
the nodes of the tree, the language is described by an equivalent string
language. Next section (Section 2.2.3 Code generation) shows examples with
figures using tree structure.

"-- -° .. - • - , , 1

--' "i - . - - -.. -- " "~ '" "v . .. • - . .' " " ".

48

Syntactically, an ASL program (in the string form) consists of procedures

producing the result of the query through mutual calls.

ASL program ::= scanproc { ASL proc }

ASL proc ::= scanproc I buildproc I buildvalueproc

The ASL procedures of a program communicate solely by explicit references
(generally via a call) to a procedure name and parameter/result transfer. It
therefore provides a decomposition of the overall task into rather independent
units.

Query Involving Single Data Object

A scan procedure is defined as follows:

scanproc

* SCANPROC scanprocid [(param param)];

{ temp-obj-defn; }
lip

SCAN scanspec [WHERE predicate];

[IF restriction THEN]

RETURN (ret-expr { , ret-expr }

END;

* When the procedure is invoked for the first time, the parameters are
S. transferred and the temporary objects that are defined in the procedure are

evaluated. Thereafter, a scan is opened on a permanent database object or on

one of the temporary objects just evaluated. The scan is dropped after all
the data aggregates are retrieved.

temp-obj-defn :: =

LET RELATION relatid (fldid { , fidid })

= buildprocid [(id { , id })] I

LET VECTOR vecid (id { id }) = buildprocid [(id { id })] '

CREATE IMAGE imageid ON aggrgtid FOR fidid

LET (id { , id }) = buildvalueprocid [(id { , id })]

The statement creates a relation, vector, image, or scalar(s) respectively.
The temporary objects are dropped when the instance of the procedure is
terminated. For the creation of the relation or vector, the data aggregates
to be inserted in the temporary objects are defined in a build procedure
identified by build-procid. Scalar values are defined using buildvalue
procedure.

. * .". . . .

Ii i. i.i~ -" ':'. -iT .. ;i:'i- 'i . II,. I LI :.. I ." ',:I" :L I. . . " . -. .. i , . - "". ;;) - i~ - " :i

49

scanspec dtobjid { imagespec I linkspec "

A scan specification specifies the object to be scanned and the type of scan.

imagespec

USING IMAGE imageid I [FROM constant] TO constant] "

USING IMAGE imageid AT constant {,constant}

linkspec ::= USING linkid (PARENT I CHLDRN) OF scanprocid

The link occurrence to be scanned is specified implicitly as the scan position
of the newest instance of the indicated scan procedure.

The where clause is used to introduce the search predicate, which can be
mapped directly on to the DSI search predicate; whereas the logical
restriction of the IF statement allows for the specification of predicates
which can be not be expressed by an DSI search predicate.

restriction restriction bool-op restriction I
NEG restriction I pred-block

bool-op AND I OR I EXOR

pred-block ({ temp-obj-defn ; I comparison)

comparison valcomp setcomp

valcomp arith-expr comp-op arith-expr

comp-op < I > I = I

setcomp ident set-op ident

set-op ::= SUBSET I PROPSUBSET I EQSET

ident ::= relid I vecid

ret-expr ::= arith-expr I aggr-expr

arith-expr ::= arithmetic expression

"-"-" aggr-expr ::: fn-id [(arith-expr (arith-expr })]

The fn-id identifies functions that are provided by the language or defined by
the user.

buildproc

BUILDPROC buildprocid [(param , param)];

- temp-obj-defn ;}

.

50

SCAN scanspec [WHERE search-predicate];

[IF restriction THEN]

INSERT INTO (RELAT I VECTOR) id { , id }

[SORTED BY id { , id } [UNIQUE]];

END;

Syntactically the build procedure is like the scan procedure except for the
INSERT clause. The semantic difference is that the build procedure does not
return the individual data aggregates during a scan, but rather accumulates
the whole result in an object. The DSI identifier of the object is returned

' to the invoker. The INSERT statement specifies the type of the object to be
created (relation or vector) and the names to be given to its fields.

Figure 2.2 shows a simple graphical representation of the main ASL
construct. The upper box represents the definition of temporary objects while
the following ones represent the scan and the restriction part of the scan
pr(cedure. The tag (main) indicates that the scan is seen by the caller of
the ASL interface.

Figure 2.3 shows a scan procedure invoking a build procedure. Note the
meaning of the arrow originating in the upper box of the scan procedure,
before opening the scan on A. A temporary object is constructed by invoking
the build procedure. This procedure is not seen by the caller of the ASL
interface and is tagged (sub) by analogy to subroutines.

Query Involving Two or More Data Objects

' Let us consider more general case of queries involving more than one data
object. The FROM clause in RETRIEVE statement specifies a cartesian product
subject to a restriction in the WHERE clause. Frequently, these restrictions

. are such that the cartesian product becomes an equi-join. Interaction among
ASL procedures for the specification of joins is specified via a new ASL
statement: FOREACH DATA AGGREGATE. The definition of the scanproc (and

-" buildproc) is as follows:

scanproc

" . SCANPROC ...

![IF restriction ...]

FOREACH DATA AGGREGATE [id { , id } UNIQUE];

[LET id { , id I = scanprocid [(id { , id })] ;]

RETURN ...

END;

51

(mai n)

scanproc A

restrict

+---------------+

Figure 2.2 Scan Procedure

(main) (sub)
+----------------+ -- >----------------+

scanproc A buildproc B

+---------------- +----------------.9

Figure 2.3 Scan and Build Procedure

52

Suppose a first scan procedure, say S, retrieves a data aggregate D,
fulfilling the search predicate and restriction. If the FOREACH DATA
AGGREGATE statement is present, the LET statement specifies a scan procedure
s', which is invoked with parameter values corresponding to the current data
aggregate D. The scan procedure s' returns a data aggregate D'. The fields
of both D and D' may participate in the return expressions specified in the
RETURN clause of s. Scan s will be advanced only after the scan s' is
exhausted. For each new data aggregate in s the scan procedure s' is
reinvoked with new parameter values, and the temporary objects are then
reevaluated. The UNIQUE attribute can be used only if the scan is done along
an access path which ensures that the data aggregates are ordered on fields
specified with the UNIQUE attribute.

Figure 2.4 shows graphical representation of such join mechanism. The
tag (co) is used by analogy to coroutines.

For insert, delete, and update the RETURN statement in the (main) scan
procedure is replaced by a insert, delete, or update statement respectively.
It specifies that the returned data aggregates must be inserted into a
previously defined data object or deleted from a data object or updated in a
data object.

Examples

Consider the relations ELEMENT, XCOMP.

ELEMENT (ELMNO , MAT NO , NODENO)

XCOMP (NODE NO , COORD , RESTRN , FORCE , MOMENT

As an example of single relation query, let us consider following statement.

RETRIEVE ELM NO

FROM ELEMENT

WHERE MAT NO = 10;

If a relation scan is used in connection with a search predicate the ASL
program becomes,

SCANPROC A

SCAN ELEME'IT WHERE MAT NO : 10

RETURN (ELM NO

". E ND ;

This procedure specifies a relation scan to be opened on ELEMENT using the
search predicate MAT NO = 10. The scan procedure A performs a OSI next
operation till the sca-n is exhausted.

'.."...-.-- - - "--- - .--.-.-- .- - - -- .- - . .- - .--'' " -'-..- " .'..%"
" ' ' '

""'' ' "''"' . ' -* ." ,. .- ". .-.. . . .-.. . . .'... -' "''" '''' '

53

(wain) (co)
4-------------- -- +----------------

scanproc A scanproc A

------------- I
+---------------- *----------------

Figure 2.4 Join using FOREACH DATA AGGREGATE

::z.

54

Suppose that there is an image on MAT NO. Then the program becomes,

SCANPROC A

SCAN ELEMENT USING IMAGE ELEMENT.MAT NO AT 10

RETURN (ELMNO);

END;

As an example of query using two relations, let us consider following
statement.

RETRIEVE ELMNO, COORD

FROM ELEMENT X , (RETRIEVE NODENO , COORD

FROM XCOMP

WHERE RESTRN > 0

WHERE Y = (RETRIEVE FORCE

FROM XCOMP

WHERE ELEMENT X.NODENOS XCOMP.NODENO

AND SUM (Y) > MAX (Y)

i.e., retrieve element numbers and x-coordinate of its nodes (which are
restrained in x-direction), from those elements which have sum of forces (in
x-direction) on its nodes greater than the largest force (in x-direction) on
any of its nodes.

One way of expressing the above query in ASL will be as follows:

SCANPROC A

LET RELATION R (ND, CRD) = B

SCAN ELEMENT

IF (LET Y = C (NODENOS) : SUM (Y) > MAX (Y)) THEN

FOREACH DATA AGGREGATE LET COORD = D (NODENOS) ;

RETURN (ELM NO, COORD)

END

BUILDPROC B; .

SCAN XCOMP WHERE RESTRN > 0

' -I-
. .*. '.]

..| I. * . . |..... 7 NI . . w , 71.7 11.7 s w .11. 1V-T71R; . . - -
;-

i

L~5 5

INSERT INTO RELAT NODE NO , COORD SORTED BY NODE NO

END

BUILDPROC C (NDNUMS)

SCAN XCOMP WHERE NODE NO = ANY (NDNUMS)

INSERT INTO VECTOR FORCE

END

SCANPROC f (NfNUMS)

SCAN R WHERE ND = ANY (NDNUMS)

RETURN (COORD) ;

END

It is clear that associated with every RETRIEVE statement, there can be a
number of ASL programs, depending on the availability of access paths.
Assuming that the optimizer part of the compiler is able to make suitable cost
estimation, the generation of ASL program is straight forward.

B.2.2.3 Code Generator

The code generator translates the ASL structure produced by the optimizer
into a machine language routine, which implements the chosen access path.
Compilation of data language consists of producing data access routines which
will invoke access method and process the arquments and returned values as
needed. The subroutine consists almost entirely of instructions needed to
invoke the access method (Lorie & Wade, 1979).

Consider the relation XCOMP,

XCOMP (NODENO , COORD , RESTRN , FORCE , MOMENT

and a simple query,

RETRIEVE COORD , (COORD + RESTRN)

FROM XCOMP

WHERE RESTRN < 50

AND FORCE < MOMENT

Suppose the optimizer produces the ASL structure as shown in Figure
2.5. The predicate restrn<50 is omitted because it is incorporated into the
access method. The DSI will ensure that any data aggregate it returns meets
that test.

IL% . •

-. ~ ~ ~ ~ ~ ~ ~ ~ ~ j V-wvw 17 1 W f.t t~ N~' ~ -- '

56

I SCAN
- +---------

IDATA-OBJ

-------------- -------

FIELD Icoord <
-------------- + ----

--------I4------- ------- 4' --------------------
COMPUTATION II FIELD I I FIELD I L
------- +--------------+- ---------------

force moment

+---- ---------- +

I+I

-------------- % ----

I FIELD II FIELD
+--------------+- ---------------

coord restrn

Figure 2.5 ASI Specification For Simple Query

b7! 7

Figure 2.6 (Lorie & Wade 1979) shows the flowchart of the access routine,
" which should be written to evaluate such query. Box 0 establishes the normal

subroutine linkage. Box 1 tests the type of the caTl. If it is a call for
open, the input variable's bound in box 2. Then in box 3 the DSI is invoked
to open the scan. If it is not an open-call, box 4 invokes the DS1 to fetch

" the next record. Once the WHERE clause is evaluated (box 5), box 6 tests the
result; if it is false, the code branches back to get thenext dara aggregate
from DSI. If the fetched data aggregate satisfies the WHERE clause, the
computation of the values to be returned is performed in box 7. In box 8 the
obtained values returned to the program variables. Box 9 contains all the
exits, normal and abnormal.

Boxes 1, 3, 4, 6, and 9, together forms the basic process. The skeleton
of a basic process is called a model. The pieces of code in individual boxes
in the flowchart are called fragments. These fragments are written as
assembler routines. They are never executed in place, but are relocated when
used by a particular model.

The code generator uses a general tree-walking algorithm. When the SCAN
node is encountered, it is placed on the top of the stack, and a semantic
routine (corresponding to 'place SCAN on stack') is invoked. This routine
produces fragments corresponding to boxes 0 and 1, and generates instructions
for copying data values from user's program to pre-allocated storage (slots)
in the data area. It then produces fragments corresponding to boxes 3, 4, and
5. The tree-walk continues with the right branch of the SCAN node; and code
is generated which evaluates WHERE clause. When the right branch is fully
traversed, the nodes of the right branch is popped off the stack, and the SCAN
node is again at the top of the stack. However, the SCAN node is not removed,
instead a semantic routine is called to produce the fragments corresponding to
box 6, and then the left branch of the SCAN node is traversed. During the
processing of the left branch, code is generated to compute the values in the
RETRIEVE-list and to return them to the user's program. When the left branch
is fully traversed, the SCAN node reappears at the top of the stack; the
fragments for box 9 is produced and the SCAN node is popped off the stack. It
may be noted that some fragments branch to labels in other fragments. These
external references are resolved using symbol table.

The main characteristics of this model (model 1) is that it contains an
internal loop; inside the loop an action is applied to every data aggregate
returned by the SCAN. However, other models are needed to support the
following families of queries. Model 2 is used to generate routines which
compute a function (MAX, MIN, AVG, CNT-etc.) on a set of data elements.

Two models described above compile queries that use a single data
object. In both the cases a single routine is produced by the code
generator.

For complex queries (queries involving join), consider the relations
ELEMENT, and MATERIAL,

ELEMENT (ELM NO , MAT NO , NODE NOS

MATERIAL (MATNO ,ELMTYP ,MATPROP)

T.T
~~~~~~~~~."................. . .... .-.......... .,....-... ..-. -.... ,,•..-. . " . .

l-. .". ' "". ."- "-" " < "- "." . • , ." . ". - '' -',,"• ''-. , ? . .-L .-. .- -, -... " ... - - - ... " ". .



I prologue I<O>

-v-- ------
is it OPEN

<1>
FETCH or FETCH

------ +---------------

OPEN

------------ V------------

I BIND input I<2>
I variables I

------- +---------------

+---------V----- ----------

call DSI I<3>

for OPEN

O----------- NO- --

----- YES --

--------------------------

call 051 for <4>

---------- +---------------

OK? ---- NO --------- <5>

IYES
+---------V----- ----------

WHERE clause

----------------

Figure 2.6 Flowchart of the Access Routine (continued on next page)



S 59

FALSE
4-----------Resul t? <6>

TRUE

4.---------- V--------
ICompute output I<7>
doata aggregate -

---- - -- -

---------- v ----------

Move to < 8>

~output variable

--------------- I
4----------------

4.---------------------
I Set up return f<-----+9

CO code----
+---------------------

--------------v---------
Ex it)

Figure 2.6 Flowchart of the Access Routine (continued from previous page)



60

and the query,

RETRIEVE ELM NO , MAT PROP

FROM ELEMENT X , MATERIAL Y

WHERE X.MATNO = Y.MATNO

AND ELM TYP < ( RETRIEVE ELMTYP

FROM MATERIAL

WHERE MAT NO 7

AND ELM NO > ( RETRIEVE AVG (ELM NO)

FROM ELEMENT

WHERE MAT NO X.MAT NO

i.e, retrieve element number and material property of those elements, so that
the element type is less than the element type of material number 7 and
element number is greater than average element number with corresponding
naterial number.

A possible strategy is computing the value, say a, of the first subquery
before initiating the scan on ELEMENT; then for each data aggregate in the
scan the first predicate can be handled as if it were ELM TYP<a. However, the
second predicate refers to the value of a subquery which-is correlated to the
outer-level query (X.MAT NO), and therefore, that subquery must be evaluated
for every data aggregate-that satisfies the first predicate. For every data
aggregate that passes through both the predicates, the matching data aggregate
in MATERIAL must be retrieved by using, for example, a scan along the index on
the field MAT NO.

The ASL representation for such a strategy is shown in Figure 2.7 (Lorie,
Wade 1979). The subtree (I) defines the main scan on the relation ELEMENT. A
list of nodes can appear between the QUERY and DUMMY nodes. They define the
actions to be taken at open time of the scan. Here a single action is to be
performed which consists of computing a unique value a. The subtree (3)
defines the strategy to be used to compute a. In subtree(1) the first
predicate uses a as a constant.

The second predicate in subtree(1) contains a pointer to a QUERY node
; (subtree (4)). This construct indicates that the value of the subquery can

not be conputed once at the beginning of the scan; but needs to be evaluated
for every data aggregate in the scan on ELEMENT.

The DUMMY node points also to a FOREACH node, which itself points to
SCAN 2. This construct is used to specify how a join is computed. In this
case, for each data aggregate D in the scan on ELEMENT (SCAN 1), the scan in
subtree (2) is executed. It returns one MATERIAL dat,, aggregate D' at a
time. This 0' concatenated with D, provide a data aggrega.o of the join. It
may be noted that in SCAN 2, the fields from both data aggregates D and D' are
available.

~~~~~~~... ...... .... ..........;,,. ..... . .. ...... _..................,... . . -:
. _., ., # ,, . ¢ , , - - .', . L . % % . ' .' . '. " . . ., " " " " " , .,. . .. ' . , ." ' ,

61

Subtree (1) main routine to
retriei ELEMENT tuples
+------------------------------- Subtree (3) subquery

----------- to retrTeve ELMTYP of
IQUERY N AT NO= 7

IBUILD

--------------------------~ -
BUNNY

SCAN

SCAN I(3)

+--------~- +-----------------------

I FOREACH I ----- o
+ I AND I

Ia IIFIELD I
---------- ----- ----------

ELM NO

IFIELD

ELM TYP
.-------- ---------------------- \+

-------- ---------------- -------------------------- -

SCAN IQUERY

SCAN

(4)

-------- ------------------------ -----------------------
ISubtree (2): to retrieve Subtree (4) :subquery toMATERIACtpe retrievie average ELM NO

Figure 2.7 ASI Specification for Complex Query

The ASL constructs SCAN, DO AT OPEN, SUBQUERY, and FOREACH can be used to
specify arbitrarily complex strategies. ASL decomposes the complex strategy
into simple, virtually independent blocks, each of which has the same
complexity as the ASL structure used in Figure 2.5. However, we will require
different models to compile such strategies.

SCAN 1 implements essentially the same function as model 1 except that it
requires a slightly more complex model because of join. Mode1_3 knows how to
call the routine for SCAN_2 to implement the join.

The routine corresponding to SCAN 2 must know that it is being called by
model 3 routine. Although its structure is similar to model 1 routine,
model-4 is introduced. Model 4 assumes that the join is between two objects
only. In a join of several objects model 5 is used; it is called by model 3
routine, but needs to call a routine to iplement the next leg of the join.
SCAN 3 uses model 1 to return its value. SCAN 4 uses model 2 to return the
value of a functi6n. Figure 2.8 shows the models used to implement joins.

The code generation proceeds as follows: The first QUERY node identifies
the beginning of the subtree corresponding to the main routine. The list of
nodes between the QUERY node and the DUMMY node is analyzed. For each
subquery rooted at these nodes a block of virtual ,nemory is reserved, and an
entry is made in the SUBQUERY TABLE. This block of memory subsequently
receives the corresponding generated code. Each such entry consists of a
pointer to the reserved memory and a pointer to the QUERY node. Next, the
SCAN node following the FOREACH node (SCAN 2) is traversed. Its corresponding
routine is therefore generated first. The-second SCAN node to be traversed is
SCAN I and the main routine is therefore generated next. During this process
"the ragments for model 3 are output. The instructions for calling the

subroutine corresponding to SCAN 3 are inserted before the fragment for
opening SCAN 1 is copied into the o-tput area. Similarly, the instructions to
call the su6routine corresponding to SCAN 4 are introduced at the appropriate
place, during compilation of the WHERE -Tause. Also a block of storage is
reserved, and an entry is made in the SUBQUERY TABLE. The address of the area
is used for calling the routine even though t-e called subroutine has not yet
been generated.

When the generation of the main routine is completed the SUBQUERYTABLE
is analyzed to see if it still contains a subquery to be processed; if it
does, the entry is removed from the table and the corresponding code is
generated. Code generation process is repeated until no entry remains in the
SUBQUERYTABLE.

There is one more way to join two data objects. Suppose, the data
aggregates in both data objects are ordered on join field(s), then a merge-
like scan is used to find the matching data aggregates. Controlling this
process calls for specific models. Model_6, 7, and 8 are substituted for
models 3, 4, and 5. In a join of more than two objects, each join can employ
either -method. To support all combinations, two more models are introduced.
Model 9 and 10 understand how to be called by a routine for implementing a
(methoTd I) join. Figure 2.9 illustrates some possible combinations of the

models . The number on each arrow refers to to the join method used for that
particular 'leg' of the join.

.........-

36

5

131 11 14

Fiur 2. odl frImlmettinofJi

64

3L3

22

76 86 101

2 4KL

Figure--- ---obiainofMdlsfrIplmnin on

i.
% '

' Z"

65

These access routines are called sections. After all the statements in a
program have been translated into sections, the sections are collected
together to form an access module. In the header of the access module is
placed a Section Location Table which lists the relative byte offset of each
section within the access module. Each section has a Relocation Directory
which lists the offsets within the section of all -internal pointers which must
be relocated before the section can be used. In addition to machine language
code, each section holds the parse-tree structure of the original data
statement. The structure of the access module is shown in Figure 2.10.

The data access subroutines generated, relies on the existence of
particular access paths. Therefore, if that access path is deleted from the
database, the access routine becomes invalid. The system includes dependency
cross reference mechanism which forces the automatic regeneration of a data
access routine which depended on a deleted access path. Since the parse tree
structure is also stored in the database, only the access path selection and
code generation phases must be redone. In no case is it necessary to
recompile the application program itself. The entire process is totally
transparent to the end user.

B.2.3 Run-time Control System (RCS)

The system supports two different types of programming against a

database.

1. Ad hoc queries and updates, which are usually executed only once, and

2. Canned programs, which are installed in a program library and executed
hundreds of times.

The same data language is available in both these environments. These
features include statements to query and update a database, to define and
delete database objects such as matrix, vector, relation and views, and
-indexes, and to control access to the database by various users.

When a user invokes a program which has been precompiled, the normal
facilities of the operating system are used to load and start the object
program. MIDAS becomes aware of the program, when it makes its first call to
RCS. On the first such call, RCS checks the authority of the current user to
invoke the indicated access module, and checks that the access module is still
valid. If these checks are successful, the access module is loaded from the
database into virtual memory. Its internal pointers are adjusted using the
relocation directory of each section. Then the control is passed to the
indicated section. On subsequent calls to the same access module, the
authorizatior. check, loading and relocation steps are bypassed, and control
passes directly to the indicated section. The machine language code in the
section examines the operation code of the cali (e.g. OPEN or FETCH) and
process the original statement from which it was compiled, using as needed the
host program variables which were passed with the call.

Since all name binding, authorization checking, an access path selection
are done during the precompilation step, the resulting access module is
dependent on the continued existence of the data objects it operates on, the

66

Descriptor --------------- +----------------

in system I Program name I Creator IDate I Valid? ILocation
catalog --- -

+--------------------------------------

v
+------------------------+--------------------------------

Section Location Table
---- ---- --- ---- --- ---- ---- --- ---- ---

Section 1I Type j Offset
-- +-----------------------

1 typel 1-------------
--- ----------------- ---------------- I I

2 type 2 *---------------

--- ----------------- ---------------- I
3 ~ ~~~ ty --------------------

Section 1<+
iuachiiie code + rel. dir. + parse-tree

Section 2
rel. dir. + parse-tree

*--+

Figure 2.10 Structure of an Access Module

67

indexes it uses as access paths, and the privilege of its creator. Therefore,
whenever a data object or index -is dropped or a privilege is revoked, the
system automatically performs a search in its internal catalogs to find access
modules which are affected by the change. If the change involves dropping a
data object or revoking a necessary privilege, the access module is erased
from the database. However, if the change involves only dropping an index
used by the access module, it will be possible to regenerate the access module
by choosing an alternative access path. In this case, the access module is
marked 'invalid'. When the access module is next invoked, the invalid marking
is detected and the access module is regenerated automatically, based on the
currently available access paths. The newly regenerated access module is
stored in the database and also loaded into virtual memory for execution. The
user is unaware of the regeneration process, except for a slight delay during
the initial loading of the access module.

The user may try to change the database in such a way that would
invalidate an access module while the access module is actually running. To
prevent this from occurring, the 'transaction' mechanism is used. A
programmer can declare transaction boundaries in his program by the BEGIN
TRANSACTION and END TRANSACTION statements. The end of a transaction
indicates that the database is in a consistent state. While a transaction is
in progress, the loaded access module protects itself by holding a lock on its
own description in the system catalog. Therefore, any database change that
invalidates the access module must wait until the lock is released. At the
end of each transaction, the running access module releases the lock on its
own description, allowing any database changes which awaiting the lock to
proceed. At the beginning of the next transaction, the access module tries to
reacquire the lock on its own description. There are four possible outcomes
(Chamberlin, Astrahan, King, et. al. 1981).

1. The description is still marked 'valid', and the timestamp in the
description is unchanged. In this case, execution of the access
module proceeds normally.

2. The description is gone. The access module has been destroyed by loss
of an essential data object or privilege. An appropriate code is
returned to the user's program, which is to continue.

3. The description is present but marked 'invalid'. This indicates that
an -index used by an access module is dropped. The access module is
regenerated on the spot, choosing a new access path to replace the
missing index. The user program then continues without interruption.

4. The description is marked 'valid', but its timestamp has changed (i.e
another user has caused a regeneration). The new access module is

7 loaded into virtual memory and the user program continues.

For certain statements, no significant choice of access path is
required. These statements include those which create and drop data objects
and indexes, begin and end transactions, and grant and revoke privileges. The
process of creating a data object, for example, involves placing its
description in the system catalogs. Since, this process takes place
essentially the same way for each new data object, it is possible to build
standard routines for creating data objects. It is then unnecessary to

.......- , . .'.•.-.. ..*~ L'" ' -'.-"..' -,.'- '.*" : . - - '.-". - ",- ...

68

generate new machine code in an dccess module whenever a new object is
created. Instead the standard program is invoked with necessary parameters.

A user may write a program that creates a temporary data object,
processes it, then destroys it at the end of the run. When such program is
precompiled, the optimizer is unable to choose an access path for processing
such data object, because it does not yet exist. Whenever, the optimizer
discovers that some object referenced in a statement does not exist, it places
the parse-tree in a special section which indicates that the normal process of
compilation has been terminated after the parsing step. At run-time RCS can
not give control directly to this section, instead it makes another attempt to %
invoke the optimizer. This time, since the temporary data object is obout to
be operated on, it should be in existence. If the optimization is
successful, the code generator is invoked and the machine language routine
is generated and the version of the access nodule in virtual memory is
updated. However, if the optimization fails because the indicated data object
does not exists, a code is returned to the calling program indicating 'non-
existent data object reference'.

Some programs execute statements that were not known at the time of
,recompilation. An example is Terminal Interface, which allows users to type
data statements on ad hoc basis at a terminal and execute them and display the

* result. Such features are supported by PREPARE statement.

PREPARE <statement name> AS <string variable>

* String variable contains a valid data statement. When the precompiler
encounters a PREPARE statement, it creates a special zero-length section. At
run-time RCS pass it through the parser, optimizer, and code generator. After
the machine language code is generated the statement is ready for execution.

............

. *,

*

.7....

7.'77

69

8.3. Data Storage Interface

48.3.1 Area

The storage interface provides one potentially infinite linear address
space. However, it is preferable to partition a large database into areas
(Lorie 1977). Such a partition allows for smaller addresses to be used. It
improves flexibility for controlling access to the database, and provides a
means of factoring out some common attributes of a collection of data. It is
also useful for selectively saving and restoring information.

The database consists of a set of disjoint areas, each of which
-. ' constitutes a linear address space (Ak, 1 <= k <= N). These areas are used

for storing user data, access path structure, internal catalog information,
and intermediate results. All the elements of a data object must reside
within a single area; however, a given area may contain several data objects,
indexes etc.

Areas are classified in three major types, depending on the combination
of functions supported and overhead incurred.

1. Public area: They contain shared data that can be simultaneously
accessed by multiple users.

2. Private area: They contain data that can be used by only one user at
a time (or data that is not shared at all).

3. Temporary area: They contain only temporary data which is lost as
soon as the program terminates.

Data in public and private area is recoverable (i e. data will not be
lost in the event of a failure), but not the one in temporary area. This
reduces the overall overhead, as the overhead associated with full support of
concurrent sharing needed for public data area, can be avoided for private and
temporary data.

The addressing of a particular location in an area could be done at the
byte level, by using a relative address from the beginning of the area.
However, such a continuous space must be stored on auxiliary storage in
records. We therefore, decompose the address space into logical pages,
knowing that these pages will be stored on disk in physical slots of identical
size.

An area Ak is therefore defined as an ordered set of pages of equal
length. A page is referred to by its ordinal number in the segment, say i,
with 1 <= i <= Mk, where Mk is the maximum number of pages in area Ak.

8.3.2 Access Path

Each data object is represented as a stored file. Like an area, a stored
file is identified at the DSI by a numeric identifier called DoID (Do for data
object). The DLI is responsible for mapping user given object names to DoIDs.

06 , ,

-'.i .? " " ' ' o "v '-- - - " " - .- - ' . .' -.. . . ", - . .. -,

70

Like areas and files, individual records have their own numeric
identifier, called DaID (Da for data aggregate). They are used within the DS!
to build indexes and links. The DaID access method to data object is a hybrid
scheme, which combines the speed of a byte address pointer with the
flexibility of indirection. Each DaID is a concatenation of a page number
within the area, along with a byte offset from the bottom of the page. The
offset denotes a special entry or 'slot' which contains the byte location of
the data aggregate in that page. This technique allows efficient utilization
of space within data pages, since space can be compacted and data aggregates
moved with only local changes to the pointers in the slots. The slots
themselves are never moved from their positions at the bottom of each data
page, so the existing DaIDs can still be employed to access the data
aggregates.

In the rare cases when a data aggregate is updated to a longer total
value and insufficient space is available on its page, an overflow scheme is
provided to move the data aggregate to another page. In this case the DaID
points to a tagged overflow record, which is used to reference the other
page. If it overflows again, the original overflow record is modified to
point to the newest location. Therefore, access via a DaID almost always
involves a single page access, and never involves more than two page
accesses. Figure 3.1 shows how DalDs are implemented.

In order to tune the database to particular environment, the DSI accepts
hints for physical allocation during INSERT operations. These hints are in

2.. the form of a tentative DaID. The new data aggregate is inserted in the page
associated with that DaID, if sufficient space is available. Otherwise, a
nearby page is chosen by OS!. Use of this facility enables the DLI to cluster
data aggregates with respect to some criteria such as value ordering on one or
more fields. Another use is to cluster data aggregates of one object near
particular data aggregate of another object, because of matching values in
some of the fields. This clustering rule results in high performance for
relational join operations, as well as for the support of hierarchical and
network application.

Images

An image is a logical ordering with respect to value in one or more sort
fields. Images combined with scans provide the ability to scan data objects
along a value ordering. Also, an image provides associative access
capability. The DLI can rapidly fetch data aggregate from an image by keying
on the sort field values. The DLI can also open a scan at a particular point
in the image, and retrieve a sequence of data aggregates with a given range of

.B sort values.

" A new image can be defined at any time on any combination of fields; only
" restriction being that felds must he atomic. Furthermore, each of the fields

m nay be specified as ascending or descending order. Once defined, an image is
maintained automatically by the OSI. An image can also be dropped at any
t ime.

The DSI ma~ntains each image through the use of a nultipage index
structure (Bayer, McCreight 1972, Wainer 1973). An internal interface is used

• .. (i- " •. "

174 7T.7T-

71

---------------- > ---

4------I--

DaID Record R
-------- -------------

------- --

Page Offset from
no. bottom of

page +-------------------

------------------ 4-----------------

I I I I I * I I I
4.---

Figure 3.1 Implementation of DaID

72

for associative or sequential access along an image, and also to delete or
insert index entries when data aggregates are deleted, inserted or updated.
The parameters passed across this interface include the sort field values
along with the DaID of the given data aggregate.

Each index is composed of one or more pages withnin the area containing
the data object. A new page can be added to an index when needed as long as
one of the pages within the area is marked available. The pages for a given
index are organized into B-tree structure. Each page is a node and contains
an ordered sequence of index entries. For nonleaf nodes, an entry consists of

*a <sort value, pointer> pair. The pointer addresses another page in the same
- structure, which may be either a leaf page or another nonleaf page. In either

case the target page contains entries for sort values less than or equal to
the given one. For the leaf nodes, an entry is a comb~nation of sort values
along with an ascending list of DaIDs for data aggregates having exactly those
sort values. The leaf pages are chained in a doubly linked list, so that -

sequential access can be supported from leaf to leaf.

Links

A link is an access path which is used to connect data aggregates in one
* or two data objects. The DLI decides which data aggregates will be on a link
" and determines their relative position. The DSI maintains internal pointers

so that newly connected data aggregates are linked to previous and next twins;
*-. previous and next twins are linked to each other when a data aggregate is

disconnected.

A unary link involves a single data object and provides a partially
defined ordering of data aggregates. Unary links can be used to maintain
ordering specification (not value ordered) of data aggregates, which are not

* supported by USI. It also provides an efficient access path through all data
aggregates of an object without the time overhead of an internal page scan.

The more important access path is a binary link. It provides a path from
* single data aggregates (parents) in one object to sequences of data aggregates

(children) in another object. The DLI determines which data aggregates will
be children under a given parent, and the relative order of children under a
given parent. A data aggregate may be parents and/or children in an arbitrary
number of different links. The only restriction ;s that a given data

h- aggregate can appear only once within a given link.

The main use of binary links is to connect child data aggregates to a
parent data aggregate, based on value matching in one or inore fields. With
such a structure the DLI can access data aggregates in one object based on the
matching field in a data aggregate in a different object. This function is
specially important for supporting relational join operations, and also for
supporting navigational processing through hierarchical and network models of
data. A striking advantage is ganed over images when the children are ..

clustered on the same page as the parent. Another important feature is that
links provide reasonably fast associative access without the use of an extra
index.

",.. . * .. W *

.

0 73

- The links are maintained in the DSI by storing DaIDs in the prefix of
data aggregates. New links can be defined at any time. When a new link is
defined, a portion of the prefix is assigned to hold the required entries. An
existing link can be dropped at any time. When this occurs, each data
aggregate in the corresponding data object(s) is accessed by DSI, in order to
invalidate the existing prefix entries and make space available for
subsequent link definition.

B.3.3 Concurrency Control

MIDAS is a concurrent user system. It employs locking techniques to
solve various synchronization problem, both at the logical level of data
objects and at the physical level of pages (Gray, Lorie, Putzolu 1975). If
the transactions are not synchronized, the second update will overwrite the
first, and the effect of one update will be lost. Similarly, a user may wish
to read only clean data (in contrast to dirty data which have been updated by
a transaction and which may be backed out). Also, if transaction recovery is
to affect only the modifications of a single user, then mechanisms are needed
to ensure that data updated by some ongoing transaction is not updated by
another.

At the physical level of pages, locking technique is used to ensure that
internal components of OSI give correct results. For example, a data page may
contain several data aggregates, accessed by their identifiers, which require
following a pointer within the data page. Even if no logical conflict occurs
between two transactions, because each is accessing a different data object or

. different data aggregate of the same object, problems can occur at the
physical level if one transaction follows a pointer to a data aggregate on
some page while the othi'r transaction updates a second data aggregate on the
same page, and causes a data compaction routine to reassign data aggregate
location.

Both logical and physical locking is handled by DSI. Physical locking is
handled by setting and holding locks on one or more pages during the execution
of a single DSI operation. Logical locking is handled by setting locks on
such objects as areas, data objects, DaIDs and key value intervals, and
holding them until they are explicitly released or to the end of the
transaction. The level of locking in an area can be expanded to an entire
page of data, rather than a single dat3 aggregate. This allows pages to be
locked for both logical and physical purposes, by varying the duration of the
lock.

DSI employs a single lock mechanism to synchronize access to all
objects. This synchronization is handled by a set of procedures in every
activation of the DSI. It maintains a collection of queue structures called
gates. Some of these gates are numbered and are associated with resources
like table of buffer content. However, in order to handle locks on a
potentially huge set of objects (like data aggregates), DS! includes named
gate. Internal components can request a lock by giving a name for the object,
using such names as DaID, index value, or page number. If the named resource
is already locked, it will have a gate. The named gate will be deallocated
when its queue becomes empty.

*. * , :. - *-* . . .- * --.

14

Locks are defined using several parameters such as shared, exclusive
etc. If data elements are inserted or updated by a transaction, then an
exclusive lock must be held on the data aggregate until the transaction has
ended. If a data aggregate is deleted, then an exclusive lock must he held on
the DaID of that data aggregate for the duration of the transaction. This
guarantees that the deletion can be undone correctly during transaction
backout. For any of these cases, an additional lock is set on the page itself
to prevent conflict of transaction at the physical level; however, these page
locks are released at the end of the DSI call.

Data items can be locked at various granularities. For example, locks on
a single data aggregates are effective for transactions which access small
amounts of data, while locks on entire data objects or even entire area are
more reasonable for transactions which cause DLI to access large amounts of
data. To accommodate these differences, a dynamic lock hierarchy protocol is
used so that a small number of locks can be used to lock both few and many
objects. This scheme essentially associates separate locks with each
granularity ot object.

Since locks are requested dynamically, it is possible for two or more
concurrent activations of the OSI to deadlock. The DSI checks for deadlock
situation by looking for cycles in a user-user matrix, every time a request is
blocked. If a deadlock is detected one or more transactions are backed out.
The selection of victim is based on the relative ages of transactions, and the
duration of the locks. In general, the DSI selects the youngest transaction
whose lock is of short duration. This transaction :s then backed out to the
save point preceding the offending lock request.

* B.3.4 Mapping

There are several ways to map logical pages into physical slots. The
easiest way is to allocate Mk contiguous slots to area Ak and mapping page j
into the jth slot. This is advantageous if sequential processing is frequent
on that area. In general, however, this simple static allocation scheme

. cannot be used, because it is impossible to foresee and preallocate space
. required for each area; also it leads to reservation of slots for yet unised

pages.

A new -. neme is j-c~d where limited contiguity of pages is maintained. A
set of contiguous pages is first allocated; when more pages are needed, a new
set (extent) of contiguous pages is allocated. No contiguity exists between

different extents. The mapping information is organized as follows: If the
entire disk volumes are used, then the mapping information can be kept as a
small table containing a sequence of disk addresses. If portions of the
volumes are used, then the table should also contain the extents. Ignoring

the transition from one disk extent to another, we can consider the sequence
of slots as being physically sequential . We partition the sequence of slots
into sequences of n slots referred to as physical clusters in such a way that
the seek time between two slots in the same cluster is small compared to the
seek time between two slots in different clusters (e.g. a disk cylinder). We
also partition the logical sequence of pages in an area into sequences of in
logical pages referred to as logical clusters.

-A.

-o|

.

7. . .,

75

When the first slot allocation is done for a page in a logical cluster,
the system associates a physical cluster with this logical cluster. Later on,
any slot required for a page in the same logical cluster will be acquired from
the same physical cluster, if possible. If a slot cannot be found in the
right physical cluster, it will be allocated from a different physical cluster
not yet allocated to a logical cluster.

For each area the mapping is implemented by using a vector Vk (page
table) and MAP (bit map). Vk contains a sequence of slot numbers. The ith
element indicates which slot is used to store the contents of page i. A null
value indicates undefined page. MAP is defined as a vector of L bits (if
there is a maximum of L slots available in the system) such that,

MAP (j) 1 if slot j is busy.

MAP (j) = 0 if slot j is free.

The mapping technique is illustrated in Figure 3.2.

The size of Vk is one word per addressable page. The map is generally
larger than the physical record size, and it is therefore splitted into blocks

- of equal size, each block covering a portion of Vk. Similarly, MAP is also
splitted in a number of blocks.

Therefore, the database is stored by using the bit map MAP, the vectors
Vk (1 <= k <= N), and the contents of slots j for all j in a Vk. The
consistency constraint, which is strictly maintained is that the jth bit in
MAP is ON if j appears in some Vk and is OFF otherwise.

B.3.5 Transaction Management

The main memory is divided into two main buffers; one pool of block
buffer (BB) and one pool of page buffer (PB) (Lorie 1977). Accessing page i
of area Ak implies,

1. FETCH Vk block covering Vk(i);

2. FIND j = Vk(i);

3. FETCH page stored in slot j in PB.

If the page is modified, the buffer in PB is flagged (MOD bit ON).

Sometimes the block is also modified. For example, when a new page i is
defined. As the page was previously undefined, Vk(i) was null. The system
finds an available slot, say j. A buffer is chosen in PB to contain page i.
No fetching is needed as the page does not yet contain any meaningful
information. The block has to be updated, so that Vk(i) = j. The block is
also flagged in BB as modified (MOD bit ON).

When all buffer gets full and still more space is needed, the least
recently used unmodified page is chosen for replacement. In case, all the
pages are modified, the one least recently used among them is chosen. If the

76

vi V2

Al 1310111 1010101 IL10lij 1010101 AZ

---- +- ---- --- ---- ---- -- t

jjjj Slots

1 23 j L

1 1 0 1 I 1 I0 I1 IMap
L slots

*1 Figure 3.2 Mapping Between Pages and Slots

77-

page was not modified, the buffer can be reused immediately; whereas if the I
page is modified, then its content has to be written back onto disk before it.... can be used. "

When processing of area Ak is completed, Vk blocks and Ak pages are
- written back on disk if they are modified (MOD bit ON). This ensures that all

modifications have been permanently stored in the database on disk.

B.3.6 System Recovery

Let us suppose area Ak is in a state of integrity (Dk) at time t and that
a series of changes are made to Ak between time t and t + dt. At time t + dt,
we store the new state D'k onto disk. If the system failure occurs between t
and t + dt, we should be able to return to the state Dk. If no failure occurs
in that interval, the new state D'k is recorded and Dk is forgotten. In case
of subsequent failure one should be able to return to state D'k. Therefore,
we identify two basic requirement of a recovery feature.

1. One should be able to save the current state of the database as the
new consistent state.

2. In case of failure, one should be able to return to the last state of
integrity.

There may be two kinds of failure,

1. Hard failure: A disk volume may be physically damaged.

2. Soft failure: A hardware or software failure causes the contents of
main memory to be lost, before the updates in buffer can be made
permanent in database.

Transactions as described in previous section is highly vulnerable to a
system failure. If the failure occurs after the area has been modified, the
integrity of the area is lost. There may be two kinds of loss of integrity,

1 . If some bit map or page table block has not yet been copied on disk,
the mapping between pages and slots is lost, and therefore, the
content of the database is lost.

2. If only some pages have not yet been written back on disk, the
contents of these pages will be different from what the user expects.

B.3.6.1 Soft Failure

The essence of this method is to support immediate updates of the
database (Lorie 1977) instead of deferring update till some later time
(Severance, Lohman 1976). We retain original state Dk during the interval
(t+dt), and construct in parallel a new state D'k. At time t + dt, we perform
a single atomic operation (which cannot fail) to switch to D'k.

:**. -......................

78

Let us assume that at time t, the database is permanently stored on
disk. For all k the state Dk is recorded in Vk, and the corresponding slots.

We define a second record for every block in Vk and third for MAP. We
rename original page table as VkO and the original bit map as MAPO; and name
the alternate records Vkl, and MAPI and MAP2. We also define a record of N+1
bits called master as follows

MASTER Record

STATUS Array (I..N) of BIT(1);

MAP SWITCH :BIT(1)

End;

The MAP SWITCH indicates which of MAPO or MAPI is used. The STATUS bit
indicates if the areas are open or closed. We assume that initially all the
areas are closed and MAPO contains the bit map,

i.e, MAP SWITCH = 0

and STATUS (h) = 0 (1 <= h <= N)

Such a situation is shown in Figure 3.3 (content of V11, V21, and MAP1 is
irrelevant).

While the areas a-e opened, following operations are performed.

1. Copy VkO to Vkl. VkO holds the current sets of values and Vkl is
saved as backup.

2. Copy MAPO to MAPI and MAP2. MAPO is saved as backup and MAPI is used
for save operation. MAP2 holds the current version of the bit map.
MAP2 may be stored same way as MAPO and MAPI on disk; however, if
there is enough room in the main memory there is no need to copy it to
the disk.

3. Update MASTER so that STATUS (K) = 1.

The last operation implies reading the master into the main memory,
changing the kth STATUS bit, and rewriting the record. There is a possibility
that the system crashes while the master is being rewritten. Such failure
would be responsible for the loss of possibly the whole database. The
solution is to have two copies of the master. Every write operation on the
master triggers a second write if the first write is successful. If the first
write fails, the second record still contains the previous master and the
backup version is still available. Therefore, with this nechanism writing of .-.
master can never fail.

. .4.

Suppose we want to modify page i of the area Ak. The entry j= VkO (i)
is found and the appropriate page is brought into PB and modified.
Eventually, it will be swapped out and rewritten on disk. At that time it is
not written back into its original slot but into into a new free slot j'. VkO

-2.- ' .' .*

79

Al A2

V10b 1310111 1010101 ILlolil 1010101 V20

--- +--- -+-- - --- - - -- - +-

I I I jMaster :2

Slots 0Status

0
1 23 L L-

+

1 1 10 1 1 1 NlI apo +

------ 101 map switch
11 0 1 1 L Mapi

Figure 3.3 Database Representation (All Areas are Closed)

80

is updated so that Vko (i) j'. The old slot j is not released but kept as a
shadow slot, pointed to by Vkl. Then VkO (i) is flagged (shadow bit ON).
Therefore, VkO (i) <> Vkl (i) if and only if the shadow bit for VkO (i) is
ON. Finding a free slot involves the use and modification of the bit map.
MAP2 is used to find a free slot and mark it as busy.

Later, if the same page is modified again, it can be written back into
the slot j' because the backup version of that page is stored in slot j.
Figure 3.4 illustrates a possible situation after modification of Al (content
of V21 and MAPI is irrelevant).

By interrogating shadow bits, we find out the values of i for which VkO
(i) <> Vkl (i). When this is true, MAPO must be updated to reflect the fact
that slot j' = VkO (i) is now busy and slot = Vkl (i) is now free. The
current bit map already has j' busy, j can be freed. As the system could fail
during the updating of MAPO, the new bit nap value is instead developed into
MAPI. When this operation is completed, the master is updated so that,

STATUS (k) = 0

and MAP SWITCH = 1

This indicates that the area is closed and MAPi now contains the bit nap. The
content of MAPO is now irrelevant.

Suppose there is a system failure (content of main nemory is wiped out)
before the current state could be saved in database. The system interrogates
master if an area is open. If not it is in a state of integrity. If the
area is open, the page table Vkl reflects the last state of integrity and can
be recopied into VkO. A system failure during the restore operation does not
destroy any vital information. The procedure can just be reinitiated. Then
the master is updated so that,

STATUS (h) = 0 (1 <= h <= N)

MAP SWITCH is unchanged and the integrity is restored.

To selectively restore one or more areas to their last state of
integrity, we do as follows:

1. Use shadow bits to release slots in the current bit ,nap.

2. Copy Vkl into VkO.

3. Recopy the master with STATUS (k) 0

Several areas can be restored or saved concurrently and the master can be
updated in the end by one atomic operation. If one wants to resume processing
on a saved or restored area, it must be opened again, but the system takes
advantage of the fact that VkO and Vkl are already equal and no copying is
necessary.

C. .
,. -'.-.- a-.--.--. -- -. -'..- ". '' ! '' 21 ." -i '-" '-- "

N. 81

A2 (closed) ------ --------

Al (open) ----------------------------------+
+- -+- - - .++-+. -+-+- - --- -+,.

V11 1310111 1010101 ILIOIJI 1010101 V21
+-+-+-+-- -+.F.- - - --- - -+-+ - -

vo 1210111 1010101 ILlOlij 1010101 V20
-+-+-+ - -+-+ --- -- - "+-+-+-+

'-- .. Master
I[..,,' ~+-v-+-v- -,-+- +-v-+---t-v-+ +- +i

li i I ISlots 1 Status"" i l II I
"-g" --- +---+---+- +---+---+---+ 0 "

1 2 3 j ---

1 10 11 I1lIol apO +

-+---01Mapswtch
I I I I I I MapI+---+---+---+- +---+---+---+ +...I0IHpwth.-

L ? --- +---+---+- --- +--- --- +.,

11 1 111 0 1 Map2 (current bit map)
F ++r+a +_.+---+---+

,:.',.. Figure 3.4 Database Representation (Al Modified) .

~It

I.

-

-° •.*

.0'i :32

8.3.6.2 Hard Failure

The only protection against disk damage is to maintain two copies of the
data on different volumes, i.e another disk or a tape. The probability of
destroying both copies at the same time is typically small.

Jf

A method (Lorie 1977) consists in making a second copy of the changed
pages only when a save is performed. But this increases seriously the time
taken by the save operation. As the probability of damaging a disk is far
smaller than the probability of a systemq failure, long term checkpoints (less
frequent than save) are defined. Typical checkpoint cycle is illustrated in
Figure 3.5. The length of the cycle can be dynamically changed.

Suppose, the state of the database at time 0 is saved on a tape T. This
state is entirely defined by the bit -ap, the page table, and the contents of
the used slots.

In this mechanism, we associate three flags with every Vk(i), instead of
one shadow bit. These flags are called the shadow bit, the cumulative shadow
bit, and the long term shadow bit. Everytime a shadow bit is turned ON, the
cumulative shadow bit is also turned ON. But although the shadow bits are
turned off at every save, the cumulative shadow bits are not. When a long
term checkpoint is taken the contents of the Vk which have atleast one
cumulative bit ON are saved in an easily accessible work area. They are also
copied onto T together with the bit map which has just been updated by the
save. The cumulative shadow bits are then copied to long term shadow bits and
turned off. From then on, an independent process p is activated which copies
onto T the pages for which long term shadow bits are ON; p uses the copy of Vk
in work area.

When the slots are being copied, the activity on the database can go on
normally. Only restriction is that the slots being copied by p cannot be
released by a following save before p completes. The first time a save wants
to release a slot, it does not do so if the long term shadow bit is ON;
instead it turns OFF the long term shadow bit. This is because any subsequent
release of that page will refer to a slot which is not being copied during
this checkpoint operation. When p completes, those slots which have been
updated and saved since p started, are released.

* ..'Z N,,

. .. .

83

SaveO0 1 2 3 4 5

Ic-----Checkpoint cycle --------->1
Checkpoint Checkpoint

Figure 3.5 Save and Checkpoint Cycles-

KO

-- 5

-i -~ - ; . , .. .-,.. .. . _I]l L. '

84

REFERENCES

'U

1. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., et. al., (1976), "System
R: Re'-tional Approach to Database Management", ACM Trans. on Database
Systems 1, 2 (June), pp: 97-137.

2. Bayer, R., McCreight, M., (1972), "Organization and Maintenance of Large
Ordered Indexes", Acta Informatica 1, pp: 173-189.

3. Chamberlin, D.D. (1976), " Relational Database Management Systems",

Computing Surveys 8, 1 (March), pp: 43-66.

4. Chamberlin, D.D., Astrahan, M.M., Eswaran, K.P., et. al., (1976), "SEQUEL
2: A Unified Approach to Data Definition, Manipulation and Control", IBM
J. Res. Development (November), pp: 560-575.

5. Chamberlin, D.D., Astrahan, M.M., King, W.F., et. al., (1981), "Support
for Repetitive Transactions and Ad Hoc Queries in System R", ACM Trans.
on Database Systems 6, 1 (March), pp: 70-94.

6. Codd, E.F., (1970), "A Relational Model of Data for Large Shared Data
Banks", Comm. ACM 13, 6 (June), pp: 377-387.

7. Comfort, D.L., Erickson, W.J., (1978), "RIM - A Prototype for a
Relational Information Management System", NASA Conference Publications
2055. pp: 183-196.

8. Fry, J.P., Sibley, E.H., (1976), "Evolution of Database Management
Systems", Computing Surveys 8, 1 (March), pp: 7-42.

9. Gray, J.N., Lorie, R.A., Putzolu, G.R., (1975), "Granularity of Locks in
a Shared Database", Proc. Int. Conf. on Very Large Databases 1, 1
(September), pp: 428-451.

10. Griffiths, P.A., Wade, B.W., (1976), "An Authorization Mechanism for a
Relational Database System", ACM Trans. on Database Systems 1,3
(September), pp: 242-255.

11. Lang, T., Fernandez, E.B., Summers, R.C., (1976), "A System Architecture
for Compile-time Actions in Databases", IBM Los Angeles Scientific
Centre, G320-2682 (December).

12. Lorie, R.A., (1977), "Physical Integrity in a Large Segmented Database",L:
L ACM Trans. on Database Systems 2, 1 (March), pp: 91-104.

13. Lorie, R.A., Wade, B.W., (1979), "The Compilation of a High Level Data
Language", Research Report RJ2598, IBM Res. Lab., San Jose, Cal. 95193.

14. Lorie, R.A., Nilsson, J.F., (1979), "An Access Specification Language for
a Relational Database System", IBM J. Res. Development 23, 3 (May), pp:
286-298.

-. -: - - *

85

15. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., et. al., (1979),
"Access Path Selection in a Relational Database Management System",
Research Report RJ2429, IBM Res. Lab., San Jose, Cal. 95193.

16. Severance, D.G., Lohman, G.M., (1974)" Differential Files: Their
Application to the Maintenance of Large Databases", ACM Trans. on
Database Systems 1, 3 (September), pp: 256-267.

17. SreekantaMurthey, T., Reddy, C.P.D. and Arora, J.S., (1984), "Database
Management Concepts in Engineering Design Optimization", Proceedings of
the 26th AIAA/ASME/ASCE/AHS SOM Conference, Palm Springs, CA (May).

18. Stonebraker, M., Wong, E., Kreps, P., et. al., (1976), "The Design and
Implementation of INGRESS", ACM Trans. on Database Systems 1, 3
(September), pp: 189-222.

19. Taylor, R.W., Frank, R.L., (1976), "CODASYL Database Management Systems",
Computing Surveys 8, 1 (March), pp: 67-103.

20. Uhrowczik, P.P., (1973), "Data Dictionary/Directories", IBM System
Journal 4, pp: 332-350.

21. Wagner, R.E., (1973), "Indexing Design Considerations", IBM Systems
Journal 4, pp: 351-367.

*.".

w ..vA,

v77,17 _77. -7. 7 77

FILMED

--86

' DTIC

