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SUMMARY

Helicopter flight path trajectories in approach to a tactical landing aid were monitored,

ad hoc, by two cine cameras. Post-trial trajectory reconstruction using simple triangulation
methods was confounded by the presence of an unknown bias error in the orientation of one
camera, and by non-synchronous camera timing. The report describes the concept, formu-

lation and implementation of an optimisation method which pools all data for a trajectory,

permits extraction of bias terms, and yields a complete trajectory smoothed in space
and time.
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1. I[NTRODUCTI1ON

Tactical night approach and hover/landing in operational conditions is a particularly
difficult phase of flying operations. Various man-portable aids are available for ad hoc instal-
lation by pround troops to provide visual guidance to the pilot. The quality and value of such
aids have been subjects of interest and investigation by ARL staff for a number of years.

During a field exercise, conducted in July 1980, two Boeing CH-47C (Chinook) helicopters
operated by No. 12 Squadron RAAF made several runs involving approach, near hover, and
overshoot at a site where a visual approach aid known as a PLS (Proportional Landing System)
had been erected for the purpose. Runs were made by various pilots during late afternoon, dusk,
and night conditions.

The exercise was observed and monitored by ARL staff with the aim of assessing, broadly,
by comparison with the daylight runs, the quality of the night runs, the existence of any differences
in variability between day and night trajectories, and whether difficulties with tactical night
approaches by helicopters warranted further attention from ARL.

The trajectories were recorded by ad hoc instrumentation assembled hurriedly at short
notice. The basic instrumentation took the form of two Kodak K 100 16 mm vine cameras with
film transport modified, using d.c. motors and gearboxes, to yield 1/20th second exposures at
nominally one-second intervals. One camera viewed the approaches 'head on' from a position
looking over the approach aid; the second camera viewed the trajectories 'broadside from a
position several hundred metres off the nominal approach track. The locations of the cameras
were determined with respect to geographic landmarks by conventional surveying methods.
A full description of the exercise, instrumentation, analysis and conclusions is given in
Reference 1.

The objective in using vine camera instrumentation was to permit subsequent reconstruction
of the trajectories for detailed analysis, and assessment of flight path control in relation to the
guidance information available based on the known characteristics of the visual aid.

Trajectory reconstruction was initiated using triangulation methods on the discrete data
obtained from frame by frame analysis of the films. The results were less than satisfactory and
indicated several unexpected sources of error. Predominantly there was good evidence that one
camera ran at less than the calibrated speed, but considerable uncertainty about whether the
speed was stable and constant for all aircraft runs. Secondly, although interpolation methods
were used to obtain 'synchronous' data from the two cameras, one set of camera-to-aircraft
sight lines lay consistently below those for the other camera; indicating the presence of a camera
boresight angular bias, again with uncertainty about its stability.

It was recognised that the initial trajectory reconstructions, although adequate for indicating
general trends, were of doubtful accuracy for assesing flight path control vis-i-vis PLS guidance
information. For that purpose a more complex analytical procedure was required, and needed
to be one which permitted the extraction of bias terns. As such, it would need to use all trajectory
data available, at least for any one aircraft run, and preferably for the ensemble of runs.

As far as was (or is) known, no such methodological technique has been documented.
Thus more precise reconstruction of the trajectories required the evolution and formulation
of an appropriate method. This document deals with the principles underlying, and logical
development of, such a technique.

2L GENERAL METHODOLOGY

2X1 7We Prolis.

The problem can be concisely stated as follows: given that two, time-sequenced, non-
synchronous cameras were used to observe an aircraft trajectory (i.e. that of a helicopter in an



approach to a 'hover'), and that from a frame by frame examination of the exposures, estimates
can be obtained of the 'azimuth' and 'elevation' of the target (i.e. the helicopter) relative to each
camera-to reconstruct the trajectory in space and time.

There are several sources of potential error. These include:

(a) systematic errors:

(i) survey: bias in the true camera locations relative to the assumed locations,

00i bore sight: bias in the true camera optical 'centre-line' relative to the assumed
centre-line, in azimuth, elevation and roll,

(iii) frame rate: average frame rate of the two cameras relative to one another (and in
absolute time if velocity and other time derivatives are to be extracted),

(iv) lens distortion: barrel /pin-cushion distortion of camera and projector lenses,

(b random errors:

(i) stability of camera axes,

(ii) stability of film transport timing in cameras,

(iii) stability of film location in camera and projector,

(iv) resolution in data extraction from individual frames.

The survey was based on conventional triangulation techniques with one base-line length
measurement. The set of azimuthal bearings appropriate to each camera location included the
cmera to camera line and also the lines to several fixed point markers and to a geographical

lnmr:Samuel Hill. No geographic reference (e.g. North-seeking) was incorporated.
Elevation measures were based on the quality of setting-up of the theodolite to a gravity referenced
bubble.

Site detail reconstitution and comparison with ordnance survey map data for the area,
indicated a high level of accuracy in azimuthal data. Less confidence can be held on elevation
data due to uncertainty in referencing (bubble reference) and lack of independent confirmatory
data.

The cine cameras were fitted with externally mounted view finders, and not 'through the
lens' systems. It must be assumed, therefore, that bias errors in elevation and azimuth are likely.
The cameras were set up using bubble referenced beds.

The framing rates of the two cameras were set and calibrated in the laboratory before
departure for the trial, and checked on return. One camera appeared to have remained stable
but the other had departed significantly from its calibrated speed. Initial analysis of data from
film confirmed that the camera had been running slow during the exercise. Any new analytic
procedure should seek to indicate the average relative frame rates for each aircraft run because it
cannot be assumed that the speed of the 'slow' camera was constant for all runs.

The distortion introduced by the camera and projector lenses can be assumed to be deter-
ministic, so that from calibration processes the data can be corrected. The camera/projector
optical laws were calibrated post-trial by, effectively, photographing a suitable large measurable
grid and comparing real world dimensions with 'azimuth' and 'elevation' data extracted by the
same process as for the trials data. The lenses were, however, assumed to have axial symmetry.

It should be possible to reduce the effects of random errors, to some degree, by smoothing
processes. Also by using an appropriately chosen minimisation procedure using parametric

2
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descriptors for biasses and timing rate it should be possible to identify, and thereby extract,
those errors. Such a process would require 'pooling' the data over any one trajectory, and if
possible, the ensemble of data over all trajectories.

2.2 Methods

Assume, initially, that the exposures from the two cameras are equispaced in time and
synchronised. The data would then consist of sets of 4 sample values representing the concurrent
observations of azimuth and elevation from each camera. Each successive data set could then
be used to obtain one estimate of the position in space of the target. The succession of position
estimates represents the trajectory.

At least two different methods, described below, may be used to obtain position estimates.

Method I

For each camera, a data pair (azimuth, elevation) defines a line in space. The two lines,
one from each camera, in general do not intersect. The shortest distance between the two lines
corresponds to that of their common perpendicular. One logically based estimate of the air-
craft position is the mid-point of that common perpendicular. This estimate may be obtained
by a different procedure (but which leads to the same result) as follows: assign parametric
values (x, y, z) for the aircraft position, determine the perpendicular distances from (x, y, z)
to each skew line, square and sum those distances to form a quadratic error function, then
minimise the error function by variation of (x, y, z). The values of (x, y, z) which yield the
minimum value of the error function is taken as the 'best' estimate of position.

The minimisation applies to an error function scaled to spatial quantities. (Sx, Sy. 8z),
and may be termed minimisation in the spatial domain.

Method 2

An alternative minimisation procedure is as follows: assign parameter values (x, y, z) for
the aircraft position; for those values, determine the parameter-dependent values of 'azimuth'.,
and 'elevation'. at, for each camera, equivalent to the 4 values of the data set; form a quadratic
error function as the sum of squares of differences; then minimise the error function by variation
of the parameters (x, y, z). Again, the 'best' estimate is that set of (x, y, z) values which gives
the minimum value of the error function.

In this case the error function is scaled to data quantities, (8bi, Sal, SO- *. , and may be
termed minimisation in the data (or 'angles') domain.

The two methods lead to approximately the same result only when the target (estimate) is
equi-distant from the two cameras. In effect Method 2 gives due allowance for the effect of range.
Method I weights spatial errors equally, regardless of the difference in range to each camera.
and of the dependence on range of the angles subtended.

In consideration of an analytical technique for pooling all data across the entire trajectory
to extract bias errors, which is also intended to find a trajectory that 'best fits' the data, it would
seem that Method 2 is to be preferred.

The time sequence of estimates of aircraft position (obtained by either method) would not.
in general, be 'smooth'. Each position estimate, defined by 3 parameters (x, y, z) is derived from
the 4 data values in the data set, the 4th degree of freedom allowing the minimisation, so that each
estimated point of the trajectory may be considered to have one degree of freedom associated
with it. For many trajectory points it should be possible to incorporate constraints to smooth
the trajectory in the minimisation process.

Again by way of example, for discussion, suppose the trajectory were understood (or

3
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assumed) to be a straight line constant speed trajectory. Then the complete trajectory could be
defined by the 6 parameters:

XO, Yo, Zo, Ax, Ay, Az

defining a sequence of positions:

P, = (Xn + iAx, Yo + iAy, Zo + iAz) i = 0 ... N.

The 6 parameters require a minimum of 2 data sets with 8 measured quantities (and thus also
8 degrees of freedom) for the minimisation. In that case the solution for the two-point trajectory
%ould he the same as that obtained by separately estimating one position (each with one degree
of freedom) for each data set. For greater numbers of data sets, progressively more degrees of
freedom become available to manipulate other parameters that may be assigned (e.g. systematic
biasses) and to suppress the effects of random errors.

Where the trajectory is known to be more complex than the simple case taken above, as
%ould be the case for a helicopter approaching the hover, the trajectory is less easily specified
parametrically. It may. however, be reasonable to assume that over any short segment (a few
seconds) the true trajectory can be adequately modelled, or fitted, by a relatively simple para-
metric laws or equation.

It is useful, at this point, to synthesise a notional trajectory in order to illustrate several
other aspects which raise questions about choosing the 'domain' and techniques for smoothing/
interpolation.

Consider a straight line trajectory, but with aircraft speed reducing to near zero, thus
approximating an approach to a hover. Define the line of the trajectory as:

x y z-h

i M n

and set:

I: m :n = I : 10 : 2

depicting an aircraft approaching substantially from the 'y' direction (see Fig. 1) to a hover near
(0, 0. h). Synthesising speed decreasing linearly with time, let the sequence of positions be:

i Ay y x z

1 450 45 100
--150

2 300 30 70
-120

3 180 18 46
-90

4 90 9 28
-60

5 30 3 16

6 30 0 0 10

Assign camera locations and sight lines: Camera I at (-280, 200, 0) pointing (1,0.0)
and Camera 2 at (20, -- 100, 0) pointing (0, 1, 0), so that Camera I is observing 'broadside',
whilst Camera 2 is observing near 'head-on' with significant changes in range.

4
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(a) Plan (b) Side elevation
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(c) Camera locations

FIG. 1 SYNTHESISED ILLUSTRATIVE TRAJECTORY
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Using simplified equations for translation and rotation to camera axes, and optical scaling:

xi = 200-y x2 = x-20

yt = 280+x yz = y+ 100

ZI Z Z2 = Z

l0 = 10X#/ 2 = lOXz/y2

Ol= lOzIyj M2 = IOz2/y 2

yields the data sets:

i 012#

l -7.6923 3-0769 0.4545 1.8182
2 -3.2258 2.2581 0.2-00 1.7500
3 0-6711 1"5436 -0"0714 1.6429
4 3.8062 0-9689 -0-5789 1'4737
5 6.0071 0.5654 -1•3077 1•2308
6 7.1429 0.3571 -2.0000 -0000

In Figure 2 are plotted the data pairs (#, e) for the two cameras, which depict the trajectory
as seen by the cameras. Both views show the straight line characteristic c,' the traject.ry.
Figure 2(a) showing (#, t)i for Camera I gives a reasonably faithful representation of the space.'
time relationships with reducing speed. Figure 2(b) showing (0. X)2 for Camera 2 illustrates the
effect of changing range and the resulting change of weighting of spatial distances between
positions, particularly at short range.

In Figure 3 are plotted the individual values of #M, 02, M2 against time. Extending the
notional trajectory in time, the hover (zero speed) is achieved at a value of I of 6-5, after which
the aircraft would, in this contrived example, retrace the trajectory in the reverse direction.
Further, as time tends to infinity the data values tend asymptotically to finite limits:

- - 100

1 20

a2- 2

the last two of which are realistic, whereas the first two are somewhat nebulous.
The important point illustrated by this example is that, despite the straight line nature of

the trajectory, the speed change occurring is such that when the data are plotted against time as a
master parameter, the shape of the resulting curves are in a form that, in principle, cannot be
fitted by polynomials.

Hence, smoothing and interpolation of the separate data sequences 01(i), cj(i). 0 2(i), G(i)

by conventional techniques before processing to obtain position estimates would be ill-advised.
The alternative is to apply smoothing to the sequence of noise corrupted position estimates.

The position estimates are (at this stage) assumed to be in the form (x, y, z, r) i.e. position at a

6
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given time-indeed time is the variable by which data from the two cameras are to be meshed.
It would be possible to process the estimates without consideration of time, that is, as random
samples of positions on the trajectory. The fitting procedure would then take the form of first
or higher order regressions between the variables x, y and z. It might then be possible subsequently
to reassign 'smoothed' time.

That process would lose much of the space/time relationship that is intrinsic to the original
.raw' position samples. It seems preferable to apply a curve fitting procedure that uses time as a
master variable. As such, the procedure would involve the smoothing in time of spatial variables.
This could be done as a 'single pass' processing of the position estimates to give the trajectory
directly. An alternative approach is to incorporate a fitting procedure as part of an iterative
process which progressively refines the 'smoothed' trajectory estimates in a global minimisation
routine addressing the entire trajectory. The latter would allow the iterative trade-off of error
magnitudes along the trajectory, allow for the time matching of well defined texture or pertur-
bations within local segments of the trajectory, and also allow parametric identification of bias
errors common to all parts of the trajectory.

Fromn the point of view of flight control, the pilot would be attempting to achieve a well
controlled (straight line?) flight path, with progressively decreasing speed, so that smoothing
should not suppress that trend. However, pilot corrections to deviations from the desired flight
path will involve curvature in space. The level of smoothing/fitting that should be applied is a
matter of judgement.

To fit a straight line, whilst allowing curvature in time (acceleration), requires the acceleration
vector to be constrained to be aligned with the velocity vector. Fitting requires 7 degrees of free-
dom in the assignment of 3 position components, 3 velocity components and I acceleration
magnitude. To allow for spatial curvature, all 3 components of acceleration need to be assigned
so that 9 degrees of freedom are required. This implies that the latter case would yield an exact
fit (no smoothing) if the input data consisted of 3 position estimates equispaced in time.

In general, that implication is true, but because each position estimate is itself., erived with
I degree of freedom from a data set of 4 values, the fitting process can be embedded in a minimi-
sation routine in which 9 parameters are searched to fit the 12 initial data values corresponding
to 3 data sets.

Whilst that principle appears attractive, its extension to an error function covering the entire
trajectory would require the complete trajectory to be modelled/fitted by a set of equations
with a limited number of parameters in order for the multi-parameter search to be feasible.
So far, that approach has not been useful.

2.3 Strategy Adopted

The broad strategy adopted for development in detail was as follows:

(a) to formulate an iterative procedure which, at each iteration, would revise the
'fitted' trajectory to improve the quality of fit to the experimental data, and overall
would (hopefully) converge to a stable solution.

(b) within each iteration:
(i) each trajectory 'raw' point corresponding to a camera observation would be

updated by searching (x, y, z) to minimise a quadratic error function scaled
in the 'data domain' and based on both the corresponding 'last smooth'
point from the previous iteration and the camera data.

(ii) smoothing would be by local smoothing, over a spun of a few seconds, of
'raw' (x, y, :-, f) values and would allow for curvature in space and time,

(c) a gross error function value, applicable to the entire trajectory would be formed
by summing, across the trajectory, the residuals (minima) of the individual point
error functions.

9
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Several potential problems were foreseen and are described below. Some, but not all, were
evident in the long run.

The minimisation searches would be local, with revised 'last smooth' points at each iteration.
There was, therefore, no guarantee that the gross error function %kould reduce monotonically
at every iteration.

The process would need to be started with some arbitrary 'smooth' trajectory. There was
no guarantee that different solutions might not result from different initial conditions.

With point by point minimisations in each iteration the procedure would be computationally
expensive, and not particularly efficient.

To extract bias error terms would require them to be assigned parametrically, and for the
gross error function asymptotic value (as a function of the parameter set) to be minimised by
variation of the values in the parameter set. In other words the iterative procedure described
above, which on convergence defines a trajectory, must itself be bedded into a higher level mini-
misation routine. In view of the potential problems mentioned above it was considered to be
unwise to attempt to make that an autonomous process, and preferable that it be operator con-
trolled interactively.

It was also recognised that some of the parameters were likely to be inter-related. For example
with evidence that without bias correction one set of camera-to-aircraft sight lines lay consis-
tently below those for the other camera, bias correction could be applied to either camera-but
with opposite signs. Also, for the camera viewing broadside, elevation and azimuth adjustments
have rather similar effects. It was thought that final judgement of 'quality' of the solution would
be likely to be subjective.

What has not been dealt with so far is the question of non-synchronous timing! That can
be dealt with by the procedure proposed-in fact, it was evolved in order to do so-but not
without some added complication.

Two parameters To and A~T are assigned, for extraction by the overall minimisation, to
define a start time and framing interval of one camera relative to the other. Having been assigned
(as bias type parameters) they remain constant over the iteration to convergence, and fix the
relative timing of exposures, and hence the meshing of the data leading to that solution.

The local point by point minimisations need, however, to be redefined because data from
only one camera is, in general, appropriate to that instant in time. Without a second sight line
to give a triangulation 'fix' there is a tendency for the point minimisation to allow the search
to drift along the one sight line. This can be overcome by synthesising 'pseudo-data' notionally
appropriate to the other camera as those data corresponding to the 'last smooth' point. Such a
constraint is weak in that it adaptively follows the solution through the iterations.

Finally there is a housekeeping aspect that must be incorporated into the procedure. In
principle the determination of a trajectory is possible only for the period of time for which data
from both cameras are available. Thus, having assigned To and AT, only the 'overlap' of camera
data time spans should be used. The routine must therefore select out the appropriate time
meshed data for processing.

34. FORMULATION

3.1 Quadratic Erro' Fuction

A central feature of the strategy proposed is the definition of a quadratic error function,
scaled in the 'data domain', and suitable both for optimising individual points in space relative
to the experimental data and for assessing the global quality of a trajectory fit. In turn, this
requires a procedure for transforming the spatial domain parameters (x, y, z) to equivalent 'azi-
muth' and 'elevation' values (01b, CE, 02, at2) for the cameras, based on the site geometry, the
assumed bias error parameters, the lens distortion laws, and the camera/projector scalings to
the data domain.

10



3.1.1 Site Geometry

For the purposes of analysis and trajectory reconstruction a reference coordinate system
was defined, viz: a right hand system, having its origin at the location of Camera 2 (the 'head-on'
camera), z-axis vertical, positive upwards, and y-axis horizontal and aligned with the nominal
optical centre-line of Camera 2, itself pointing along the pre-planned approach track.

Referenced to that coordinate system, the site/camera geometry derived from survey data
ig shown in Figure 4.

To transform the coordinates of an arbitrary point (x. y, :) in the reference frame, defined by:

[lXI [x, y, --

to coordinates [XcJ]T appropriate to the frames of observations of the cameras, requires the
translations and rotations given by:

[XB] = [XI [XAJ

[Xcil {R(EI,)I[R(Az)I[Xiii

where

IXA,]T [-615'4, 3274, 1.9]

[XA2]T [0, 0, 0]

define the camera locations in the reference frame and[ Cos Azi Sin A:, 0]

[R(Az)] = -Sin Az, Cos Azi 0

0 0 1

[R(E)J - 0 Cos Eli Sin Eli

-0 -Sin Eli Cos Eli]

provide the rotations to the camera orientations, where

A:( As, + A,4--

Eli = Esi + AEl,

are the Euler angles, in the reference frame, of the camera centre lines (optical axes), and from
the survey:

As, t- 81"5

As 2 - 0

Es= 0

Es.. - 0

and tAzt, AAz 2 , AEI, AE 2 are assignable parameters to synthesise bias errors during interactive
processing seeking the global minimum.

,1 Ii
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Coordinates Direction of view Field of view
X, Y, Z (i) DOV (deg) FOV (deg)

Camera No. 1 -615.4, 327.4, 1.9 81.5 84
Camera No. 2 0.0, 0.0, 0.0 0.0 54
Samuel Hill 621.2, 856.3, 52.3 - -

PLS 0.0, 39.6, -1.5

Nominal
helicopter
track

y

x
Z Vertical

+ve upwards

Samuel Hill

/

/ IDOV
/FOV

Camera
No. 1/

DOV/

" - FOV

PLS 44/
Camera
No. 2

FIG. 4 SITE GEOMETRY (PLAN)
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3.1.2 Lem Distortos/Data Scalngs

A basic assumption, deemed to be adequate for the purposes of trajectory reconstruction.
was that all lenses (camera lenses, wide angle lenses and projector lens) were axially symmetric.
Calibration was therefore limited to off-axis (radial) measurements taken in the horizontal
plane through the optical centre-lines.

Each camera, in turn, was set up and bubble referenced on a tripod in front of a building
with well defined. spaced, vertical pillars. The tripod was positioned accurately in front of a
central pillar and adjusted to be symmetrically located with respect to the lateral pillars. A se-
quence of exposures was taken with the camera pointing firstly at the central pillar, then at
5 degree azimuth increments across a scan equal to the field of view. The azimuth increments
were set by vernier control on the tripod moving steadily clockwise and then steadily anticlock-
wise to check for backlash. The number of angular settings compounded with the number of
pillars gave a multiplicity of points of known geometry to facilitate deduction of the calibration
laws.

Ray paths from real world objects to images on film involve tangent function relationships
in both the real world and camera spaces, and an angular compression law through the wide
angle lens/camera lens combination. On projection, similar tangent function relationships hold
for the projector space and the final screen space, with a compression/expansion of angles through
the projector lens. Final dimensions on the screen (the 'data domain') are directly dependent
on the arbitrary distance from projector lens to screen.

Trials data had been extracted by direct reading with the images back projected on to a
I mm by I mm grid, and the field of view covering a lateral span of about + 180 mm. Readings
had been estimated to the nearest 0.5 mm.

Assuming that the camera/lens and projector/lens dimensions and characteristics are
reasonably well matched, then the dominant effects should be the tangent function relationships
of the real world and screen spaces, and the angle compression law of the wide angle lens. Other
effects and mismatches should be secondary. With those assumptions, the plotting of screen
image offset distance r, against real world offset angle 0 should yield a relationship of the form:

r. d. tan If(6)1

(0 = f '{tan-(r !d.)}

where d, is scalarly related to the projector/screen spacing.
It was found possible to fit the calibration data for both cameras, to an unexpectedly high

accuracy, by means of the expression:

r k0 tan {O/kd i = I, 2 (cameras)

0 k, tan -I {r./kofl

w here:

kf, = 456 for both cameras

k- 21 - for Camera I: 84' FOV

k- 135 for Camera 2: 54'" FOV.

Whilst there is a strong and appealing case for drawing further inferences about camera/
projector geometry, this would he unwise and unnecessary. It is emphasised that the relationship
was obtained by curve fitting, not by model fitting.

Extending to three dimensions, in a camera coordinate system with camera optical axis
aligned with the v-axis, the point (x, y, z) lies at an angle offset from the axis given by 0 where:

fX" + z2,4112
tan 0 +

13
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Similarly, the corresponding 'azimuth' and 'elevation' values, (ju, tv), in the data domain, satisfy:

S {1u2 + ivzl
tan - i 1I, 2

ki k3

and

iu iv {u2 + ,i2}1
,2 jr5 .

x z {x2 + z2)' 2  r

Hence, given (x, y, z) in camera coordinates, the corresponding data domain values (ju, t')
are derived, using

r = {x4 + z
2

}1 2

= tan- ,y}

ir. = ko tan 1O/k 1}

u (r.'r) x

= (jr,!r)

1.1.3 Error Function

As postulated previously the iterative procedure will, within each iteration, conduct a
minimisation search to update each point corresponding to a camera observation. Those *raw'
points are then 'smoothed' as the last phase of the iteration. The smoothing process injects the
time structure of the observations.

The overall objective of the procedure is progressively to draw the *smoothed' trajectory
away from the nominal initialising trajectory towards that time structured solution which best
fits the experimental data. It is therefore seen as necessary for the error function to have two
distinguishable components; one that reflects differences with respect to the experimental data,
and one that reflects the distance between the search point and the corresponding 'last smooth'
point. Without the latter the time structure of the observations will not be an integral component
of the adaptive process. In order to add the two components the 'spatial' error term requires
appropriate resealing, as described below. The error function is therefore defined to have the
form:

fj w1 , i + ws ell

where r ' -

i - 1,2 (cam eras)

I = I. 2 .... N, (relevant observations per camera)

1d + R.w I

and the weighting coefficients Wd and "-. are introduced for convenient manipulation of the
strength of the 'data' error and 'spatial' error terms.

14

. ft 
4



In practice, as stated in 2.3, only the 'overlap' of camera data time spans should be used so
that, more precisely:

i= nt .... nd + (Nt' - 1)

nf> I

n, + (N-' - 1) < N,

so that of the full set N of observations by the ith camera, only the subset n, to ni + (Ni'- I), of
size Nt', are used.

An appropriate 'global' error function for the complete trajectory can then be defined as:

E E,,
i j

or perhaps more rigorously in normalised form as:

2 nt+Ni'-l
=N, +N2,' 1 E

i= j=ni

'Data' Error Term: e

Assume, for the moment, that the cameras had been synchronised. The data set for a par-
ticular observation time would then be

(01, 1, 21. 0-21Yaj)

The corresponding 'last smooth' point and current search point are denoted by:

(xj*. yj*, ZJ*)

and
(xj, yj z)

respectively, and the data domain set derived -om the latter, by:

(6uj, IVI, 2UJ, 2vI)

where the leading subscripts denote the camera/geometry/distortion law for derivation of u and v.

The most obvious formulation of a data error term is:

,Ej = [(ul'qP)2 + (1v1-jj)
2 + (2u-02)' + (Wvj- 21 )Z)

and this would be adequate for synchronous observations. However, with non-synchronous
cameras the experimental data separate into the form of two time inter-meshed sequences of
data pairs:

(Oilj, all) (02k, a k)

with corresponding 'search points' (or 'last raw' points):

(XII, YIJ, Zi) (xsk, y2k, Z2k)

15
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and 'last smooth' points:

(xlj*, Yjj*, zlj*) (Xatk*, Yzk*, ZZt*)

from which can be derived the data domain sets:

(lull, Iv1I, 2Uij, 2vI) (1U2t, lV2k, 2U2k, 2Vzk)

and

(lull*, 1VIJ*, ZUj *, 2V2j*) (1u2k*, l*2*, 2142u*, 2V2k*).

The subsets (lull, ivjj) and (2u2k, 2v2k) correspond to the experimental data pairs, but (2uiJ,
0,11) and (u2k, iz ) are appropriate to the 'alternate' camera, for which there are, in general, no
synchronous observations and therefore no experimental data pairs.

A point error term of the reduced form:

cab= {(aUab--b)
2 

+ (aVab-,b)
2

}

a 1,2

b= 1,...Na'

would be valid, but unsatisfactory. The data pair (0,b, ah) defines a sight line from one camera
only, and thus defines a line in space and not a single point. Minimisation of the error term cab,
as defined above, would allow the search point to drift along (or close to) that sight line without
constraint.

What is needed is a pseudo data pair that effectively synthesises a sight line from the 'alter-
nate' camera. It is possible to do this by using the data pair appropriate to either of the corre-
sponding 'last raw' or 'last smooth' points from the previous iteration. By using the 'last raw'
point there would still be a tendency to drift by increments at each successive iteration. Using the
'last smooth' point overcomes that problem and also synthesises a sight line consistent with the
'last' smooth trajectory, both in space and time structure.

Hence the form of the data error term adopted for Camera I data was:

ell {(uj-,ljt) 2 
+ (ivlj-alj)2 

+ (2uuJ-uIJ*) 2 + (2Vu-v,*)2 )}.

Similarly for Camera 2 data:

f2k {(1Ut-U2k*)
2 + (lV2,tlv2st*)Z + (2ufs-#zs)2 + (zv2zs-&2)}.

'Spatial' Error Term

The real world spatial distance between the current 'search' point and the 'last smooth'
point is given by:

{(xjj-xtj*) 2 + (yg-yjI*)2 + (z t--Z 1:*)2}l
/2

However, this is not expressed in data domain scaling and requires modification to compensate

for the effect of range, or distance, from the cameras, and for camera scalings (discussed in 2.2 with

respect to Method I/Method 2 concepts).
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Linearising the tangent functions in the distortion/scaling relationships (see 3.1.2) and
considering one dimension only by setting z equal to zero, yields the scaling between real world
dimensions and data dimensions as:

r {x
2
}

1 2

0 = ry

Ira ko{O/ki)

=U (irs/r)x

which reduces to:

k0 x
ki y

Note that within this set of expressions x and y are real world values within a camera based
coordinate system after translation and rotation from the reference coordinate system. The
terms ko, ki provide magnitude scaling whilst the division by y provides compensation for range.
Whether the y divisor value to be used should be that of the current search point or of the 'last
smooth' point is of little consequence because these should be almost the same; what is more
important is to compensate for the change of range from about 1000 metres at the commence-
ment of the helicopter approach run, down to tens of metres at the hover.

The form adopted for the spatial error term was, therefore:

=(koe ) 2
{J(Xo--X,*)2 + (yI1_y,,*)2 + (zj-z,*)2}e o k i y e

where subscript c denotes camera coordinate.
It can be argued that the range divisor should be the two dimensional range (ground range)

or three dimensional range (slant range) instead of longitudinal range, thus allowing for offsets
from the camera centre-line. This is a matter of subjective judgement. It was considered that the
differences in reconstructed trajectories would be negligible. The fact that the term chosen was
already available from prior calculations influenced the choice.

In retrospect the 'spatial' error term exerts an effect similar to that of the synthesised sight
line in the *data' error term, such that the pseudo data pairs (u*, r*) might be thought to be
redundant. The effects are not quite the same, and in any case it was envisaged that the weighting
coefficients m-, and W2 would be varied interactively to speed up the convergence, and to change
the relative influence of the two terms.

Thus the error function to be minimised in the point by point searches to update 'raw'
points, against the data from Camera I was:

E{J = w{(tui,-Oi) + (ti'i-at,)
2 

+ (2U1J-2U1J*) 2 + (2VtI-2VII*) 2}

+ W2 k ,{(Xij -Xi,*)I + (y11y*)2 + (Zi1- Zsi

The minimisation parameters are xil. ytj, zil and the terms tuill, IVI 21111, 21'l and yei are
functions of those parameters. The terms 4j, ati, are the original experimental observations.
The terms xij*, yl,*, zlj*, as 'last smoothed' values, remain constant during the minimisation,
as do 2UlI*, 2VlJ*.

For Camera 2 data

E2k w1{(sU 2 k-t1u 2k*)
2 

+ (sr2k1v2k*)Z + (2uU-020s + (2'2k- a2k)
2

+ W2 _ .0 ) 2{ -X( ) + (y2k~y2a*)2 + (22-Zk*)
2

).

17

V



The 'global' error for assessing the solution quality over the total trajectory was obtained
by summing all such terms after they had been individually minimised, viz:

Ni' N2'

E - MinIEll + N,' Min{E~k .

iI 1k . l

E has the dimensions of length to the power two, but could be non-dimensionalised. It has no
simple interpretation.

The 'global' error E is itself a function of the parameter set (bias terms and timing constants)
input to, and held constant during, the convergence to solution. Extraction of an 'optimum'
solution requires evaluation of /. for a range of values of each parameter in the parameter set
in order to determine the particular parameter set giving a minimum value for E. It was con-
sidered unsisc to attempt to embed this within yet another level of computational processing
for several reasons. Firstly the number of iterations required to guarantee convergence to a
stable solution was somewhat unknowsn and likely to be dependent on the complexity of the
trajectory (smooth textured). Secondly convergence of E could not be guaranteed to be mono-
tonic. Thirdly the procedure is computationally intensive and any intuitive shortcuts or judge-
ments would be of value. Finally it was recognised that there would be significant interaction
between parameters that would require careful consideration in the interpretation of results.
For example simultaneous increases in the elevations of both cameras would result in a vertically
biassed trajectory but with little change in the error structure other than a likely increase in the
error terms at the extremes of the trajectory.

It was therefore concluded that final extraction of *optimum' solutions should be conducted
interactively so that a better 'feel' could be obtained across the ensemble of solutions.

3.1.4 Expected Value

From the general form of the error function as defined, it is possible to deduce a lower bound
to the value of E that could be expected for a good' trajectory solution.

The error function is made up of terms of the form:

Ell it1'(iuul Olj
2 

+ (IIi- al& + (2UlJ- 2 UlJ*)
2 

+ (21.!1 __2lJ*)
2
}

-i- w 2 Q k o )2 t 2 + (y, -- y i1* ) 2  + (z sj- z s *) 2}

corresponding to each camera frame. For a smooth actual flight trajectory and a 'good' recon-
structed solution, it can be expected that for a fully converged solution there will be only very
small differences between the 'current raw' point and the 'last smooth' point values at each itera-
tion. In that case the elements (x .i 

2 *1 , y' i*) 2, 
(Z j -ZlZ*)2, (2 uu-2Ulo*)2 and (2v11 -- 2 rViI*)2

will be negligible. Thus the significant contributors to the error function will be:

Ei -- vili(u, Oij)
2 

+ (iVln aj)2}. .

If. further, it is assumed that all systematic bias has been removed, and that the residual
dominant random contributions are those arising from the quantising at the data extraction
level i c. in film reading to the nearest 0-5 mm on projection) then both (tuifj-#tj) and
li, it,) can be taken to be random samples from a distribution that is uniform between
+t 25 mm. with variance approximately equal to 0.02.

With % and N2' data pairs (4. 2) from Camera I and Camera 2 respectively in the solution,
and a weighting value vi equal to 0-5. the expected value of the error function would be:

0-5 (Nl'+N 2'){2(002)}.
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This sets a lower bound on what might reasonably be expected as a value for the error function
when a *good* solution has been found. In practice it was found that difference terms with values

greater than 1 0 occurred, indicating a probable data extraction or transcription error. Such
errors vere allowed to remain and were not corrected in the experimental data listings.

For the specific case examined in detail later in this report the value of(N' + N2 ') is approxi-
match 125. leading to a lower bound of 2.5 for the error function. In practice, values close to
4.0 were achieved.

3.2 Minimisation

The requirements for point by point minimisation of each individual error term E1J(xyz)
%ere seen to be quite conventional, and such that a standard software package or library routine
could be used. However. the general purpose packages are themselves all iterative and structured
to seek an absolute minimum.

In the case in hand it is intended that the 'last smooth' point, on which the error function
is dependent. change from iteration to iteration in the process of convergence on the solution
trajectory. Again in view of the extent of computation it was decided to limit the minimisation
at each iteration to that of a single direction, steepest descent, approximation.

3.2.1 Steepest Descent

in general a minimisation can be initiated from an arbitrary starting point but if limited,
as proposed, to only one direction then it should be commenced at each iteration, from the 'last
raw' point from the previous iteration.

Commencement of the entire procedure must necessarily be somewhat arbitrary and the
initialising 'last raw' points were set equal to the initialising 'last smooth' points derived by time
interpolation of a nominal initialising trajectory. For interactive incrementing of parameters in
the parameter set, initiation from the 'last raw' points from the previous convergence to solution
shortens the subsequent convergence, provided the timing parameters have not been changed.
If timing parameters have been changed then the best estimates for starting can be obtained for
the non-reference camera by re-interpolating the previous solution trajectory points appropriate
to the reference camera.

The steepest descent vector direction is derived directly from the single dimension derivatives
at the search commencement point. Because it is intended to iterate convergently into a minimum,
it is necessary to estimate derivatives by first differencing of forward and backward steps. hence:

E = E(x, y, Z)

E = E(x+A.y, z)

E = E(. - A, y, z) etc.

where step size A is prescribed

AE= E. .- E. etc.

so that

E _ AE,
Zx- 2 etc.
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Defining a 'normalising' divisor as

V {4('E)2 + (AEY) 2 + (AE,)
2}"2Z 

-A 0

I AE/V

m =AEy/f'Z

n =AE/V

where 1, m and n are the direction cosines of the unit vector whose components are proportional
to the local derivatives. Step size A along that vector direction, towards the minimum, has
components:

AX (AAEz)A etc.

If the search point is at the minimum, then:

AE,=0 AE, AE, V

leading to a divide by zero. To guard against this V was tested, and if zero the direction cosines
were declared as:

1= 0, n= I

in order to proceed with a check search in the z direction. That direction was chosen because,
in principle, the experimental data (01, al, e, a2) yields primary redundancy in the height
dimension.

Step size A is prescribed, and must be chosen small enough to give reasonable estimates of
local derivatives, but not so small as to give rise to truncation problems in differencing. Also, as
the basic unit for search stepping, its magnitude tends to control resolution. A was therefore
held as a member of the parameter set, for interactive manipulation. In general a value of
0 125 metre was used.

3.2.2 Stepping

To speed up the search process a coarse technique of step size doubling was used to encom-
pass the minimum (along one vector direction) within a span of three points having two equal
spacings, thus permitting quadratic interpolation. Hence:

Ego) = E(xo, yo, zo)

Eg = E(xo + Ax, yo + Ay, zo + Az)

(xo+2Ax) 2(xo+Ax)-xo etc.

E21 =E(xo + 2Ax, Yo + 2Ay, zo + 2Az).

If E(21 < E(,,, such that the minimum has not been passed, then abandon EaI) and repeat the
process

(xo+2nAx) = 2(xo+nAx)-xo

E1201 = E(xo + 2nAx, yo + 2nAx, zO + 2nAz)
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until E(2n) > Eni, giving

Eo = E(Xo, Yo, zo)

Et. Etxo + nAx, Yo + nAy, zo + nAz)

E =2. = E(xo + 2nAx, yo + 2nAy, zo + 2nAz)

at equal spacing encompassing the minimum.

3.2.3 Estimation

Given the values E(o), En,. E,.n, estimates can then be made of the value of the minimum E.
and its (x, y. z) location. Quadratic estimation is based on the following:

E = E(0 +as+bs2

E(2n = E,o, + 2a + 4b

a + 2bs

- 0 when s = -a2b

where s is a length parameter in the vector direction corresponding to step size n%. then:

a 3EMto -4EnI + E2nd
2b 2{E(o) 2EnI + E(2 n;

c, say 0 < c < 2.

The estimated location of the minimum is:

(xo + cnAx. yo + cnAy zo + cnAz)

the coordinates of which can be obtained from those of the last step:

(xo + 2nAx, yo + 2nAy, zo + 2nAz)

by:

{xo + cnAx) = {(xo + 2nAx) - xofc/2 + xo etc.

The corresponding value of the error function may then be either estimated from the quad-
ratic fit through:

Emin1est = Eqo)±+ac +bc2

or calculated through the error function sub-routine using the (x, y, z) coordinates. The latter
method was chosen, partly for convenience, partly to avoid truncation problems, but pre-
dominantly to avoid mal-estimation in the event of the error function not being well fitted by
a quadratic.
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3.3 Smoothing

As stated previously, the intention is to apply a curve fitting procedure, that uses time as a
master variable, to subsets of the 'raw' points derived through the point by point minimisations.
This will be a single pass processing at each iteration.

3.3.1 Subsets

The curve fitting procedure was conceived to be, basically, a central estimator process,
ie. given a sequence of values

. . . Xn-2, Xn-1, Xn, Xn-l, Xn 2, Xn-,3 . . .

then a smoothed value xn*, corresponding to Xn, is derived from the central value Xn and its
adjacent neighbours Xn-1, xnt, and Xn_2, Xn , etc. Thus the smoothing is achieved by processing
a subset of the sequence having xn as the central value. This can be done for all values other
than those at the extreme ends. which must rely on extrapolation using derivatives.

For the case in hand, where two sequences having different timing are to be time meshed,
the process envisaged was to derive the smoothed value xln* corresponding to Xln from

Xtn

X.l-1 Xj~ 1  etc.

and

X-2. M

X,.n 1, X2.m,I etc.

where X .,, is the member of the sequence x2,k} closest in time to Xln (and conversely for X2.n*).

The time meshing of the two sequences is such that the subset for processing will involve unequal
time intervals between points in time order.

3.3.2 Curve Fitting

Several factors influence the choice of a curve fitting routine; the two dominant factors
being the span of time (points) to be used in the central estimator, and the degree of complexity
of curve model being fitted. The smaller the time span, the fewer the number of degrees of
freedom available for model fitting and smoothing. The more complex the model, the greater
the number of degrees of freedom required for fitting and hence the fewer available for smoothing.

A subset of 3 points from each camera, 6 points in all, covering some 2-3 seconds of real
time, involves 6 input data pairs providing 12 degrees of freedom. Extending the subset to 5 points
from each camera, covering 4-5 seconds, provides 20 degrees of freedom.

To fit a straight line constant speed trajectory model (linear in time and space) requires
6 degrees of freedom. To allow for curvature in time only (acceleration along the straight line
path) requires 7 degrees of freedom. A constant speed trajectory with spatial curvature (accelera-
tion vector orthogonal to the velocity vector) requires 8 degrees of freedom. Full allowance
for curvature in time and space to second order requires 9 degrees of freedom.

The simple linear (time and space) model, fitted to a subset of 6 points, provides a reasonable
match of degrees of freedom between curve fitting and smoothing. It is also computationally
simple. However, with speed reduction expected in the approach to hover it is obviously not
an ideal model.
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Extending the model to include speed change along the straight line path (Appendix 1)
yields a set of relationships which are more difficult to handle than those of the further extension
to full curvature. In the latter case the x, y and z variables separate, with resulting simplification.

The basis of the curve fitting adopted was the assumption that the x, y and z components of
the trajectory could, over short segments, be fitted by second order polynomials with time as the
independent variable, viz.:

x = xo + Ux(t - 1.) + a(t - o) 2  etc.

The classical least-squares approach to solving for x., ux, ax etc. yields the solution form:

i(ti-to) (ti -t)
2  

X Xi

0i to) (ti to)2 (ti -to) Ui xi(tj-o)

where the summation extends over the chosen subset of (ti, xi).
The subset chosen, in the subscript notation of Section 3.3.1, was

Xl,n-2, X1.oI_I, Xl,n, Xl~n+h, X1,n- 2

together with

X2,m_2, X2,m-l, X2.m, X2 .m+1, X2.m+2

and their corresponding times, ti, to determine the smoothed value Xi,n* corresponding to xi.n.
A position estimate (x*, y*, z*) is thus obtained corresponding to each camera observation

(0i, oi). Adjacent estimates are strongly correlated through the smoothing, but correlation does
not extend beyond five seconds so that the texture of the trajectory is not suppressed.

3.4 Quality of Fit

Assuming that the interactive iterative procedure is convergent to a unique solution-a
fitted trajectory-then the quality of that solution needs to be appraised to see how well it fits
the original experimental data. Appraisal is also needed through the interactive process in order
to decide how next to increment the parameter set, in search of the absolute minimum.

A 'solution', final or intermediate, yields position estimates corresponding to each camera
observation, and for each position estimate there is a pair of data domain values (u. W.) corres-
ponding to the experimental data pairs (4, a). The differences between the experimental and
fitted values are closely related to the 'data' error terms of the error function, but the error function
uses differences based on the 'raw' search points rather than the corresponding 'smoothed'
points. Nevertheless, it is reasonable to assume that the final solution which minimises the error
function should be one for which all systematic errors have been compensated, leaving only
random errors having distributions with zero means.

The sequence of differences between (0, rx)( and (u, vYj values will indicate any residual
uncorrected trends, e.g. all positive values (&-v) for one camera and all negative for the other
would indicate a significant elevation error. For the final solution one would like to see an absence
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of bias at any portion of the trajectory. The ends of the trajectory can be expected to be particu-
larly sensitive.

Apart from the signs and magnitudes of individual difference terms, the means and standard
deviations of the sets of differences Sol, &xl, 802, Scz provide a measure of the overall quality of
the solution.

To assist with parameter incrementing decisions in the interactive process, the program used
was structured to provide, after the desired number of iterations, the values for:

Sum of errors: Ej

ii

the error function value,

Maximum error: (i, j), Ej
the location and value of the largest individual error term,

Total number of points: N2 + N2'
the number of solution points/camera frames being used,

Mean error: I Eq
NI'±NA .-ii

together with the four values:

Nil N2'
C (NJ) (a),1 il,2.

.i I , = I

These values facilitate the decisions on which parameters to increment for the next iterations.
On exit from the program a complete solution is required together with the values of the

parameter set and data on the residual distribution of errors. The exit listing consisted of:

(a) for each camera:

j, 1j, Xj*. ).r", J* . -j . 4 1, S 
8

"j, j - 1, .... Nf'

and the moments of the residual differences

Ni" N,'

(j (Saj)" for n - 1, 2, 3, 4

j~-

(b) the error data:
Sum of errors

Maximum error

Number of points
Mean Error

(c) the parameter set leading to that solution:

To. AT, A~dzi, AAI, AAzz, AE12, w,.
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4. IMPLEMENTATION

In this section the trials data and trajectory reconstruction for one helicopter approach are
examined in some detail in order to exhibit the nature of the original problem, the operation of
the optimisation routine, and the interactive manipulation of the parameter set.

4.1 Trials Data

The particular set of trials data to be dealt with is that which is identified in Reference I as
"Rockhampton 15".

The raw data. i.e. the 'azimuth' and 'elevation' values measured from the cine film, frame by
frame, projections, are given in Table 1. Although the data are listed by frame number, it should
not be assumed that the data is 'matched' between cameras. In fact a cursory examination of
the elevation values shows that the 'hover' is in the region of Frame No. 69 for Camera I and
Frame No. 52 for Camera 2.

The plots of Camera I and Camera 2 data, depicting the *views' as seen from those cameras,
are given in Figures 5(a) and 5(b), The troughs and peaks in the 'head-on' view can be sub-
jectively matched to phases in the ' broadside' view. The optimisation routine is intended to
provide a rigorous method of searching out the optimum match.

In passing, it is of interest to note that the initial parts of the views suggest that an approach
was being made to a point well short of the landing aid, at relatively low speed. It is probable
that pilot recognition of ground-based textural features (trees?) provided the cue to correct
judgement of orientation and height.

4.2 Central Plane Projections

The nominal approach path is in the plane x = 0, which corresponds to zero azimuth for
Camera 2, the head-on camera. The raw data from Camera I implicitly define a set of sight lines

to the aircraft from that camera. Those sight lines will intersect the central plane, x =0, in a
sequence of points (o, lii 1zt) whose coordinates then define a sequence of elevation values,

Sappropriate to Camera 2, but not necessarily in time correspondence with the raw data
Oc2k for Camera 2. However, plots of the sequence of elevation values, a2Lk from Camera 2 and the
sequence of elevation values 2VI, inferred from Camera I may be compared to gain an insight
into the relative timing relationship between the two cameras.

The equations for deriving the 2VIj values are given in Appendix 2. The resulting plots, of
elevation values (in mm) against frame number are shown in Figure 6.

4.3 Relative Timing

The 'character' of the plots in Figure 6 are relatively well matched, but show that Camera 2
(x symbol) ran slower than Camera I (+ symbol). This is consistent with the post-trial cali-
brations of the cameras, which indicated that Camera I had maintained calibration but that
Camera 2 was running slow.

Comparison of magnitudes of elevation values for the early frame numbers, and rough
matching of the troughs and peaks, suggest timing correspondence between

Camera I Frame No. 4 46 59 68

Camera 2 Frame No. 1 35 47 52

as plotted in Figure 7.
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Using Camera I timing as the *master' timing, the times of Camera 2 exposures can be ex-
pressed in the form

12..n To +n AT

where t.1 is the time of exposure of the nth frame of Camera 2. Based on Figure 7, parameter
values suitable for commencing the optimisation search are:

To 3

AT I -25.

4.4 Trajectory Initialisation

To commence the iterative optimisation procedure requires notional initial values to be
assigned as 'last raw' values; 'last smooth' values are derived within the procedure.

A nominal straight line trajectory is used for initialising. by assigning end points to corres-
pond with the data span for Camera ,. The end points used were the same for all trajectories, viz:

Pit (0, 1000, 200)

PIN - (0, 100, 15)

where Pi, and PIN correspond to the first and last frames of Camera I. The full set of Camera I
values are then derived by direct interpolation (equivalent to a constant speed trajectory) and the
Camera 2 values by interpolating on the basis of To and AT.

The initialising values correspond to commencing the approach on the centre line 2000
metres out, at 200 metres in height, and descending at constant speed to a point on the centre
line. 100 metres from Camera 2 (approximate location of the PLS) at a height of 15 metres.

The possibility that a convergence solution might be dependent on the chosen initialising
trajectory was tested by using different initialising end points. In each such case the solution
appeared to be complctel independent of the initialisation. The P1, PIN values given above were
then adopted as standard for all trajectory reconstructions.

4.5 Iteration Convergence

On cntr. into the procedure the value of the error function found after the first iteration
%%ill he predominantly dependent on the mismatch between the initialising trajectory values
and the actual trajectory values. From Figure 5(a) and Figure 6 it is apparent that Camera I
data includes the final overshoot after completion of the approach. There will therefore be a
significant error function %alue over the first few iterations.

Entering the procedure with values in the parameter set:

T, 3 time origin of Camera 2

A T I 25 frame interval of Camera 2

w1, 0.5 weighting factor of error function

A.4A1  0 azimuth bias, Camera I

A[/ 0 elevation bias, Camera I

AAz 2  0 azimuth bias, Camera 2

A f 2  0 elevation bias, Camera 2
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gave an error function value in excess of 16 000 at the first iteration, with rapid convergence (as
shown in Figure 8) to less than 80 after 20 iterations and asymptotically to approximately 66-5.

Varying the weighting factor W., and thereby varying the relative weighting given to 'spatial'
and 'data' error terms did not appear to offer significant improvement in the speed of convergence.
A value of 0, 5 was therefore adopted and held constant.

4.6 Parameter Search

4.6.1 (To, AT) Scan

The timing parameters (To, AT) will obviously exert a major influence on the quality of fit.
Also there should be a strong interaction between them in that as AT is increased the time span
of Camera 2 data will be increased, requiring a compensatory change in To to 'centralise' the
data with respect to Camera 1 data timing. With 54 observations (frames) from Camera 2 an
increase of 0-01 second in AT increases the time span of Camera 2 data byO -54second, and would
require a change of -0-27 second in To to recentralise.

A bivariate scan of (To, AT) starting at (3-0, 1-25) and incrementing by (± 1.0, ± 0.01)
searching for reduction in the error function, yielded the values given in Table 2. For an inter-
active search it would not be necessary to scan the full array. It is given here for illustrative
purposes.

TABLE 2

Results from search scan of (To, AT) at (AAzi, AEI1, AAz2, AEI2 ) =_ (0, 0, 0, 0)

Maximum Error
To AT Sum I No. of Mean

(second) (second) Errors I Loc. Value Points Error

3 1-25 66-57 2,6 2-17 122 0-55
3 1-26 72-62 1 2,6 2-29 123 0.59
3 1-27 79-01 2,6 2-42 123 0-64
3 1-28 93-99 1,70 8-81 124 0.76

2 1-25 38-17 2,6 1-27 122 0-31
2 1-26 40-31 2,6 1-34 123 0-33
2 1-27 43-40 2, 6 1-41 123 0-35
2 1-28 48-17 2,6 1-49 124 0-39

I - I
1 1-25 24-90 1,68 1.29 122 0-20
1 1-26 25-09 1,69 1-15 1 123 0-20

1 i'27 25-07 1,64 0-95 123 0-20
1 1-28 48-17 2,6 1-49 124 0-39

0 1-25 26-59 1,68 2-15 122 0-22

0 1-26 24-82 1,69 1-97 123 020
o 1-27 21.81 1,69 1.21 123 0.18

0 1-28 20-64 1,70 I-05 124 0"17 --

- 1-25 43-21 1,67 2-18 121 0-36
-1 1-26 39-78 1,68 3-Il 122 0-33
-1 1-27 33-67 1,68 2.02 122 0-28
-I 1-28 30-42 1,69 I 1-83 123 1 0-25

Note that the total number of points being fitted changes systematically as the overlapped
time span of data changes. Also the maximum individual error term switches between the early
part (2,6) of the trajectory and the 'last' point e.g. (1, 68). The 'last' point appears to provide the
maximum error in most cases and the adjustment of time span of Camera 2 progressively brings
in extra points from Camera I with the clear correlation:
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121 points, maximum error term (1, 67)

122 points, maximum error term (1, 68)

123 points, maximum error term (1, 69)

124 points, maximum error term (1, 70).

We must therefore, expect some discontinuity in the error function.
In array form, the bivariate scan yielded error function values at 100 iterations:

\ AT
1-25 1.26 1.27 1-28

- 1.0 43"21 39.78 33-67 30"42
0 26'59 24"82 21•81 20.64
1.0 24-90 25"09 25-07 25"86
2"0 38'17 40-31 43.40 48.17
3-0 66.57 72"62 79-01 93"99

Plots of error function value against To, as loci of constant AT are given in Figure 9, and against
AT as loci of constant To in Figure 10. A bivariate quadratic surface corresponding to the full
array is shown in contour form in Figure II. It must be remembered that this does not necessarily
indicate the absolute minimum of the hypersurface.

The major axis of the elliptic contours indicates the interdependence between To and AT as
predicted, but not quite in the ratio expected. The approximate slope of the major axis is

0.01 second (AT) m --0.2 second (To).

The point (To, AT) (0, I -28) is close to the centre of the contours, and is a reasonable starting
point from which to examine other parameter changes. For those values of(T, AT) the sums of
data domain differences, viz:

: 1 1) =- + 32

1:O2)- - 24

1,: (&k) - .7

1(602) 1.6

indicate a significant bias in elevation, but are inconclusive with respect to azimuth.

4.6.2 (MEI 1 , AEI2) Scan

With a priori indications that an elevation error existed on one of the cameras, it is illus-
trative to examine the effects, and interactions, of perturbations of both cameras. If elevation
errors of equal magnitude and sign are introduced into both cameras then the relative spatial
relation between the two skew sight lines at about mid-trajectory is largely preserved. The spatial
relation changes significantly, however, at the ends of the trajectory due to the effects of ranges
from cameras, with the hover point end being most sensitive. A strong correlation can be
expected.
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Holding (To, AT) at (0, 1 .28), a bivariate scan of (AEi, AEI2) starting at (0, 0) and incre-
menting by (-+0 1, + 0 I) degrees yielded the following array of error function values at 50
iterations:

--0-3 -0"2 -01 0
AEII

0 19-27 15"84 16"88 21-32
+0"1 22-06 15-34 11-94 12.04

+0.2 31.25 20"02 12.62 9-14
+0.3 45.59 i 30.40 19.09 11.22

With no changes in time meshing the same number of points, 124, was involved in each
case. The maximum individual error varied between (1, 1), (2, 15) and (1, 70); and was at
(1, 70) in most cases.

Plots of error function value against AE11, as loci of constant AEl2, are given in Figure 12,
and against AEI2, as loci of constant AEI1, in Figure 13. Bivariate quadratic surface contours
are shown in Figure 14.

As predicted, a strong interdependence is apparent. A differential bias of about 0 25 degrees
is indicated but it is not clear at this stage which camera has the bias error; or whether errors
exist in both. Again it would be unwise to infer too much before examining other parameters.
The smallest value of error function found so far corresponds to (AE1i, AEI2)= (0.2, 0) for
which the data domain difference sums are:

". (8) = 0.019

E (801) =4" I

E (842) 0.95

with no clearcut indication of residual bias errors.

4.6.3 (AAz1 , AAz2 ) Scan

Although there is no clear evidence of any azimuth bias, an azimuth scan was included for
completeness and illustration. Holding (To. AT, AEt, AEI1 2) at (0, 1 28, 02, 0) a bivariate
scan of (AAz, AAzz) starting at (0, 0) and incrementing by ( ± 0.5, ± 0.5) degrees to 50 iterations
yielded the results given in Table 3. The array of error function values is:

-x z --0-5 0 +0'5 +1"0 +1'5
AAzj

-1.0 12.71 10-20 8.34 7-02 6.28

-0.5 10'72 8'81 786 6'83 7.22
0 1065 914 848 810 1097

+0-5 11-29 1453 1020 1145 1245
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The value 14-53 at (AAzi, AAz2) =- (+0-5,0) is clearly a rogue value. The corresponding
entry in Table 3 shows a maximum individual error term of 3-55. By comparison with other
maximum error terms well below 1 -0, this suggests that convergence to the necessary accuracy
was not achieved. Similar conclusions would be appropriate for the entries (AAzi, AAz2) equal
to (0, + 1 -5) and (+0-5, + 1 -0), probably so for (+0-5, + 1-5) and (+0-5, -0.5), and possibly
so for several others.

With absolute values of the error function now around 10 and less, and a shallow surface
to determine, the number of iterations needs to be increased to obtain the necessary accuracy.

TABLE 3

Results from search scan of (AAz1 , AAZ2) at (To, AT, AEI1, AEI2) - (0, 1 .28, 0.2, 0)

Maximum Error
AAz AAz 2  Sum No. of

(deg) (deg) Errors Loc. Value Points

-1-0 -0.5 12-71 2,15 0-61 '24
-1.0 0 10-20 2,15 0.51 124
-10 +0-5 8-34 2, 15 0-43 124
-1-0 +1'0 7-02 2,15 0-35 124
-1 0 + 1-5 6 28 2,15 0 28 124

-0'5 -0-5 10-72 2,15 0-50 124
-0-5 0 8'81 2,15 0-42 124
-0.5 +0-5 7-86 1,70 0-59 124
-0-5 +1-0 6.83 2,15 0.27 124
-0-5 +1-5 7-22 1,70 0.69 124

0 -0.5 10-65 1,70 0.65 124

0 0 9-14 1,70 0-64 124
0 +0-5 8.48 1,70 0-53 124
0 +1-0 8-10 1,70 0-35 124
0 +1-5 10-97 1,70 2-17 124

+0-5 -0-5 11-29 1.70 0.81 124
+0-5 0 14-53 1,70 3-55 124
+0-5 +0-5 10-20 1,70 0"58 124
+0-5 +1-0 11-45 1,70 1-07 124
+0-5 +1-5 12-45 1,70 0.91 124

Repeating the exercise, over a reduced array, but to 100 iterations, yielded the results:

\' AAz 2

0 +0'5 +1-0 +1.5
AAzi "'.

-1"0 10-05 8-06 6-66 5-90
-0-5 8-52 7-19 6-49 6-39

0 - 8-51 7.83 7"76 8-36
+0-5 9"95 9'89 10-48 11-76
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with no value of maximum error greater than 0.60. Note that the incremental spacing of AAzi
and AAz 2 is 0 5 deg. and that the changes in error function value are relatively small. The surface
shape is very shallow. Bivariate quadratic surface contours are shown in Figure 15.

From the physical arrangement of the cameras it is to be expected that sensitivity to AAz 2
will be low. However, incremental adjustments of AAz1 should have an effect similar to that of
AE/i. This is because the low sight lines from Camera I can be corrected, to first order, either by
a positive increment AEli (nominal value El. = 0) or by a clockwise increment of AAz 1 on Az8
(nominal value Az, -81 5), where the relative magnitudes of AE 1 to AAzl reflect the approach
profile slope as seen from Camera I.

4.6.4 (AEI, AAzi) Scan

On the basis of anticipated interaction between AE 1 and AAZ, with an approximate approach
profile slope of I in 6 set by the PLS, a search scan of (AElI, -Azi) was made, starting at (0, 0)
and incrementing by (+0.1, -0.5) degrees to 100 iterations, with the expectation of encompass-
ing a minimum in a 4 by 4 array. The results obtained were:

-1'5 -1.0 -0.5 0

0 8.59 11.18 15.21 20-64
+0"1 8.04 7'81 9-08 11-80
+0-2 13.14 10"05 8"52 8-51
+0"3 23"84 17"88 13-53 10-75

The value 20.64 at (AE1. AAz1) (0, 0) at 100 iterations, when compared with the corre-
sponding value 21,32 at (AE 1, AEI2) = (0, 0) at 50 iterations in the (AEIj, AEI) scan, shows
that the (AE/I, _%E2) scan values (Section 4.6.2) were not fully converged at 50 iterations.

Bivariate quadratic contours appropriate to the (AE 1. AAzi) data above are shown in Figure
16. The strong correlation anticipated is apparent, but at a slope closer to I in 10 than to the
I in 6 of the PLS. This is a reflection of the low approach path for the case being examined.

The centre of the contours is close to (AE11, AAzl) = (0, -2.0) so that the data at this
stage would suggest an angular bias in the azimuth of Camera I. Again it must be emphasised
that absolute minimum has not yet been found. Also, a 2 degree error in azimuth seems in-
ordinately large in view of the accuracy obtainable from the theodolite survey, in which measure-
ments were taken to the nearest half minute (i.e. 2 orders better).

With respect to the reconstructed trajectory, varying the values for (AE 1, AAz 1) along the
axis of correlation (Fig. 16) has little effect. The mean approach path remains largely unchanged
although the textural deviations are moved towards or away from the aiming point. Hence
in drawing inferences relating to angle of approach, and approach aid guidance, the effects are
negligible.

4.7 Free Search

In practice, no rigorous procedure was adopted initially for the interactive phases. Those
approaches which, from the raw data, appeared to have the greatest texture (on which to achieve
correlation) were processed first and the interactions exhibited in Sections 4.6.1 to 4.6.4 were
quickly apparent.
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Trends, that were consistent across the ensemble, were sought in order to gauge where
steady bias errors existed, and where dependencies between parameters could be found, inter-
preted and anticipated to hold for all trajectories.

Based on the broad results described in Section 5, a free search solution, for the Rock-
hampton 15 trajectory data covered in detail in this section, was found for (To, AT, AEl1 )
(I I, 1-27, 0285) with (AEI2, AAzi, AAz 2) (0, 0, 0). The error function value, summed
over 123 points, was 4 -I. Solution trajectory details etc. are given in Table 4{a),(b),(c).

4.8 Solution Data

The (x, y, z) coordinates of points on the reconstructed smoothed trajectory corresponding
to the observation times of Camera I exposures are listed in Table 4(a). Similarly, those for
Camera 2 are given in Table 4(b).

The original data values (from film reading) are also listed, together with the differences
between those values and the corresponding values calculated from the smoothed trajectory
coordinates. The sums of moments, to fourth power, of those differences are given in Table 4(c)
for each camera. These moments provide indications of the distribution of residual errors.

From a cursory scan of the columns of differences in Table 4(a) and (b) it can be seen that
the majority of values lie in the range -0. 3 to +0-3 (mm), and that there are few long sequences
of positive or negative sign that would indicate systematic errors. Thus although there may be
some isolated point discrepancies, there appears to be a good match of texture between the two
sets of camera data.

With respect to the isolated gross discrepancies it is revealing to review the raw data values
corresponding to those difference values with magnitudes in excess of 0.5. Film reading errors
may be inferred in many cases, and extreme sensitivity near the hover may well account for those
at the end. In particular:

(a) Camera 1, Frame No. 10, 4 1  0"5601

The value of - 123 5 for #, is probably in error. The sequence of first differences
in the 0q values suggests a more likely raw data value of -122 5 viz:
listed:

134-5 -130.5 -126-5 -123.5 -119-0 -115.0 111-5

+4.0 +4.0 +3.0 +4.5 +4.0 +3.5

likely:

--134-5 -130-5 - 126"5 -122"5 -119-0 -115-0 -111-5

+4.0 +4.0 +40 +35 +4.0 +3.5

(b) Camera i, Frame No. 7, 8 = 0.5604
Frame No. 8, 8al = 0-5540

There is no immediately obvious 'rogue' value in the sequence of values for a,,
but there are also large valued differences, Sa2, at approximately the same time,
viz:
Camera 2, Frame No. 5, 8a = -0-8264

Frame No. 6, 8a2 = -0-.8826
which point to the misreadings in the M2 sequence, and suggest that the M2 values
for Camera 2, Frame Nos. 5 and 6 should have been 70.5 and 69.0 respectively
instead of 71 '5 and 70'0.

(c) Camera 2, Frame No. 29, ,Sa = -0-5437
A value 29-5 for a2 is more likely than the listed value of 30-5.
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TABLE 4(a) Reconstructed 1ijdect-l, - "ime! .

CAMERA I

Frame Time Smoothed Point Pa. rat& r.1 a
NO. x y z AZIM LEW

2 2.00 -50.486 974.370 216.575 -156 Oil 59 60 0 .. 4. P
3 3.80 -47.702 954.604 210.4-' -152 Oi 58 , 0 P , 4
4 4.80 -44.746 935.235 204.366 -147 5 57.Ao -0 . '0 6 0
5 5.00 -41,618 916.260 198.3'7 -143 5 55 50 0 P.'e 0
6 6.00 -38.093 897.634 192.3k:7 -139,'o S4 dP 0 4,'* 0
7 7.00 -34.751 873.476 186.4 - -134 5O 52 . fj -0 . " 0 5'..
8 8.00 -31.999 862.259 180.0 ! -130. P 51 .30 -0 e i p J
9 9.00 -29.820 845.984 173.25i -176.5o 49,50 -0 :bl, 0 44
10 10.00 -27.917 830.518 166.49 -123.50 48.00 0 ,.; p 0 :
11 11.00 -25.872 815.182 159. '25 -119.0k, 46.50 -0 14;, -0 i .,
12 12.00 -23.782 799.798 152.287 -115.O 45.00 -0 741 15.,
13 13.00 -21.807 784.630 145.571 -111.50 43.00 0 55 -0.1 0.-
14 14.00 -19.954 769.540 138.8!,4 -107.50 41.00 0.08 1 V i ll')
I5 15.08 -18.227 754.542 132.3l2 -103.50 39.00 08 489 0 3'67
16 16.00 -16.687 740.131 126.167 -99.50 37.50 -0.096k 0.20PI
17 17.00 -15.656 726.712 120.145 -96.00 36.80 -6.0179 0.05,4
18 18.00 -14.896 714.011 114.216 -92.50 34.50 -0.1145 -0.09 il
19 19.90 -14.508 702.233 108.439 -89.50 33.00 0.0364 -0.2146
20 20.00 -14.094 690.749 103.086 -86.50 31.50 0.1655 -0.23Z1
21 21.00 -13.527 679.192 98.103 -83.0 30.00 -0.1104 -0.1591
22 22.00 -13.063 667.766 93.270 -80.00 28.50 0 108 -0.055 i
23 23.00 -12.623 656.421 88.639 -76.59 27.00 -0.1533 9.09503
24 24.00 -12.411 645.478 83.939 -73.50 25.50 -0.021A 0.2088
25 25.00 -12.040 635.062 79.449 -70.50 24.50 0.0242 -0.1326
26 26.90 -11.371 624.975 75.314 -67.50 23.50 0.9546 -0.3994
27 27.90 -10.776 615.307 71.494 -64.50 22.00 -0.0168 -0.1018
28 28.00 -10.119 606.031 67.849 -61.50 21.00 -0.1666 -0.2022
29 29.00 -9.782 597.297 64.577 -59.0 20.00 .00227 -0.2145
30 30.08 -9.652 588.965 61.635 -56.50 19.00 0.0473 -0.1236
31 31.00 -9.536 580.840 59.095 -54.0 18.0 0.0502 0.0926
32 32.00 -9.291 573.084 56.8,1; -51.50 17.08 0.0017 0.3975
33 33.00 -8.951 565.513 54.893 -49.00 16.50 -8.1241 0.2836
34 34.00 -8.536 558.264 53.166 -47.00 16.50 0.1995 -0.25E3
35 35.00 -8.199 551.100 51.5G2 -44.50 16.00 8.0013 -0.2605
36 36.00 -8.04 544.041 50.048 -42.00 15.59 -0.2329 -0.2330
37 37.00 -7.979 537.154 48.679 -40.00 15.00 -0.0266 -0.1564
38 38.00 -8.101 530.347 47.016 -38.00 14.50 0.1506 -0.1798
39 39.00 -8.287 523.078 45.OJ9 -35.50 13.50 -9.0146 0.1795
49 40.00 -8.363 514.903 43.136 -33.00 13.00 0.1447 0.0816
41 41.00 -8.331 506.096 41.526 -30.00 12.50 0.0432 0.0705
42 42.00 -8.151 496.570 40.300 -26.50 12.50 -0.2843 -0.3130
43 43.00 -7.982 486.655 38.87G -23.50 12.00 0.0391 -0.2666
44 44.00 -7.817 476.251 37.316 -20.00 11.50 0.0501 -0.2699
45 45.00 -7.509 464.996 36.129 -16.00 11.00 -0.1140 -0.1473
46 46.00 -7.151 452.830 35.337 -12.00 10.50 0.0623 0.1107
47 47.90 -6.706 439.741 34.989 -7.50 10.58 0.0895 0.0224
48 48.00 -6.20 425.745 35.024 -2.50 10.50 -0.0384 0.0670
49 49.0 -5.538 411.175 35.290 2.50 10.50 8.0689 8.1889
50 50.0 -4.639 396.433 35.596 8.00 11.00 -0.2318 -0.1818
51 51.08 -3.704 381.367 35.690 13.0 11.00 0.0975 -0.1300
52 52.00 -2.674 366.286 35.578 18.50 11.00 0.0157 -0.1556
53 53.00 -1.724 358.268 35.250 24.00 11.00 0.1269 -0.2586
54 54.00 -0.860 334.087 34.7111 30.00 10.50 -0.1319 0.0868
55 55.0 -0.067 317.957 34.221 35.50 10.50 0.0882 -8.1028
56 56.00 0.655 301.723 33.548 41.50 10.50 -0.1614 -0.3349
57 57.00 1.367 285.777 32.777 47.00 10.00 -0.0249 -0.1053
58 58.00 2.837 270.350 31.872 52.50 9.50 -0.0877 0!0737
59 59.0 2.724 255.311 30.818 57.50 9.50 0.1911 -0.3034
68 60.00 3.451 248.728 29.579 63.00 8.50 -0.2170 0.2477
61 61.00 4.196 226.523 28.102 67.50 8.00 0.2139 0.2197
62 62.00 5.029 212.858 26.424 72.50 7.50 -0.0788 0.1154
63 63.00 5.821 199.838 24.521 77.00 6.50 -0.1247 0.4327
64 64.00 6.585 187.395 22.456 81.00 6.00 8.1019 0.1946
65 65.00 7.261 175.137 28.376 85.00 5.00 0.2399 0.4540
66 66.00 7.875 163.263 18.185 89.50 4.50 -0.2787 0.1772
67 67.00 8.369 151.378 16.258 93.00 4.00 0.1858 -8.0043
68 68.80 8.668 139.183 15.090 97.00 3.50 0.2409 9.9859
69 69,00 8.798 126.805 14.529 101.50 3.50 -0.1610 -0.1162
70 70.00 8.759 114.243 14.549 105.08 3.50 0.4828 -0.1117
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TABLE 4(b) Reconstructed Trajectory - Camera 2 data

CAMERA 2

Frame Time Smoothed Point Raw Data Diffs (calt-raw)
NO. A y z AZIM ELEV

1 2.37 -49.476 967.010 214.259 -17.00 74.0 -0.1501 0.2698
2 3.64 -45.830 942.162 206.538 -16.50 73.50 0.1917 -0.0045
3 4.91 -41.907 917.952 198.910 -15.50 73.00 0.1912 -0.3376
4 6.18 -37.520 894.363 191.299 -14.00 72.00 -0.0708 -0.2586
5 7.45 -33.456 871.627 183.6!6 -13.00 71.50 0.1229 -8.8264
6 8.72 -30.448 858.504 175.166 -12.00 78.00 -0.0142 -0.8826
7 9.99 -27.938 830.674 166.119 -11,50 67.00 0.2087 0.1378
8 11.26 -25.351 811.193 157.250 -10.50 65.00 0.0042 0.1041Y
9 12.53 -22.721 791.746 148.734 -9.50 63.08 -0.14)3 0.1135

10 13.80 -28.318 772.527 140.164 -9.00 61.00 0.1639 -0.0210
11 15.07 -18.120 753.529 131.906 -8.00 59.20 -0.9846 -0.1452
12 16.34 -16.273 735.458 124.984 -7.50 57.80 0.0584 -8.2S67
13 17.61 -15.160 718.871 116.496 -7.00 54.50 -0.0951 0.0205
14 18.88 -14.573 763,661 109.114 -7.00 52.90 0.0392 0.1823
15 20.15 -14.024 689.914 102.306 -7.00 49.50 0.1481 0.4860
16 21.42 -13.328 674.383 96.041 -6.50 48.00 -6.1550 -0.0444
17 22.69 -12.740 659.854 90.085 -6.58 46.00 -0.0028 -0.0164
18 23.96 -12.426 645.906 84.119 -6.50 44.00 0.0185 -0.1231
19 25.23 -11.926 632.716 78.460 -6.50 41.50 0.1483 0.2919
20 26.50 -11.064 620.085 73.311 -6.00 39.50 -0.0142 0.3493
21 27.77 -I.227 608.114 68.638 -5.50 38.00 -0.1695 0.0508
22 29.04 -9.770 596.953 64.45C -5.50 36.00 -0.0186 0.4063
23 30.31 -9.595 586.425 60.799 -5.50 35.80 -0.0176 -0.0381
24 31.58 -9.403 576.247 57.752 -5.50 34.00 -0.0033 -0.2001
25 32.85 -9.000 566.638 55.179 -5.50 33.00 0.1431 -0.1548
26 34.12 -8.499 557.396 5Z.962 -5.08 32.00 -0.1429 0.0501
27 35.39 -8.110 548.341 50.964 -5.00 31.80 0.0112 0.3524
28 36.66 -7.975 539.532 49.232 -5.80 30.50 0.0138 0.282,

29 37.93 -8.095 530.855 47.137 -5.08 30.50 -0.1442 -0.5437
30 39.20 -8.302 521.507 44.655 -5.50 28.50 0.129? 0.3897
31 40.47 -8.361 510.844 4Z.347 -5.50 78.00 -0.0223 -0.0293
32 41.74 -8.107 499.067 40.674 -5.50 27.50 -0.0355 0.00R6
33 43.01 -7.980 486.552 38.863 -5.50 27.00 -0.0341 -0.0475
34 44.28 -7.743 473.165 36.976 -5.50 26.00 -0.0222 0.3709
35 45.55 -7.322 458.421 35.642 -5.50 26.80 0.1101 0.2373
36 46.82 -6.792 442.144 35.033 -5.00 27.a0 -0.1836 -0.2629
37 48.09 -6.144 424.473 35.30 -5.00 27.50 0.116? 9.3457
38 49.36 -5.261 405.991 35.345 -4.50 29.50 0,1271 -0.1213
39 58.63 -4.055 386.972 35.677 -3.50 31.00 -0.0345 0.1014
4e 51.90 -2.770 367.640 35.598 -2.50 32.50 -0,0410 0.1604
41 53.17 -1.572 347.566 35.185 -1.50 34.0 -0.0252 0.1413
42 54.44 -0.502 326.998 34.546 -0.50 35.50 -0,174 0.1258
43 55.71 0,441 306.355 33.752 0.50 37.09 -0.0141 0.1467
44 56.98 1.353 286.090 32.794 1.58 38.50 0.0942 0,1430P
45 58.25 2.212 266.553 31.6i9 3,00 40.00 -0.2029 -0.0164
46 59.52 3.097 247.679 30.197 4.00 41.40 0.2141 0.0896
47 60.79 4.035 229455 28.427 6.00 42.80 -0.0734 -0.2508
48 62.06 5.076 212.059 26.318 8.00 42.00 0.9659 -0.179Z
49 63.33 6.071 195.627 23.875 10.58 41.58 -0.0437 -8.3736
50 64.60 7.000 180.001 2,.206 13.00 40.00 0.155 -0.2982
51 65.87 7.806 164.827 18.430 16.00 38.00 -0.038 -0.314
52 67.14 8.421 149.682 16.F60 19.00 35.58 -0.0392 0.6612
53 68.41 8.742 134.130 14.793 22.00 36.00 -0.0404 1.1621
54 69.68 8.789 118.283 14.479 25,00 42.98 0.0232 -0.78 .4
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TABLE 4(c) Reconstructed Trajectory - Solution data

SOLUTION DATA

Parameter Set
TIming Scale Factor - 1.2730800
Timing Origin - 1.1009806
Perturbation of Azimuth of Camera 1 - 0.0000
Perturbation of Elevation of Camera 1 0.285800
Perturbation of Azimutn of Camera Z 0.000000
Perturbation of Elevation of Camera 2 = 0.000030
Error Weighting 0 0.5008008

Error Data
Sum of Errors - 4.1157312
Maximum Error Location - Z.53
Maximum Error Value - 0.3412119
Number of Points - 123
Mean Error - 9.8334612

Difference Moments
Camera 1
SUM (ELEV) - -0.0741920 SUM (AZIM) 0ff.6803871
SUM (ELEV**2) - 3.8603144 SUM (AZIM**2) - 1.9698858
SUM (ELEV**3) = 0.4464454 SUM (AZIM**3, - 0.3221048
SUM (ELEV**4) = 8.5268412 SUM (AZIM**4) - 0.2487223
Camera 2
SUM (ELEV) = 0.6448631 SUM (AZIM) - 6.3471214
SUM (ELEV**2) = 6.5682282 SUM (AZIM**2) - 0.6194735
SUM (ELEV**3) = 0.2578970 SUM (AZIM**3) - 0.0203098
SUM (ELEV*14) - 3.8134270 SUM (AZIM**4) - 0.0163171
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(d) Camera 2, Frame No. 52, 6OC2 0-6612
Frame No. 53, 812 I •1620
Frame No. 54, 8,, -0.7804

These correspond to points at the extreme end of the trajectory, w ith the helicopter
initiating an overshoot and about to fly out of the field of view of Camera 2. Apart
from the possibility of a misreading of the raw data, there is also extreme sensitivity
in the position estimates due to the time matching between cameras in combination
with the effect of short slant range from Camera 2. Further, it is probable that the
smoothing process and extrapolation to the last two points is inadequate to
model faithfully the actual trajectory flown. Thus no inference can be made
with confidence.

The sequence of individual trajectory points corresponding to the nominal I second timing
of camera I is plotted in Figures 17(a) and (b). Figure 17(a) shows the vertical profile. i.e. height,
z, against range, Y. and Figure 17(b) shows the plan positions, i.e. cross-range, x. against range, v.

5. RESULTS

The procedure \%as applied to the experimental data obtained from 14 aircraft approaches.
Across the ensemble of results it was found that the values of AT corresponding to individual
Ioptimum solutions were all close to 1-27 second, with well defined minima as AT and To were
varied. That result indicates, with reasonable confidence, that the camera speeds were stable and
constant for all approaches. Refining AT to less than one hundredth of a second was judged
to be unwarranted and a fixed %alue of I -27 second was adopted for ATin the final reconstruction
of the trajectories. Given that value for AT, time meshing of the data from the two cameras is
then directly dependent on T(: Resolution of Tt to less than one tenth of a second was also
judged to be unwarranted.

In general terms the indisidual *optima' Aere found to be insensitive to AAZ,. as might be
expected, and to indicate broadly that AAzi was near zero. This is consistent with the level of
accuracy possible from the theodolite survey of the experimental site. Small value errors of the
order of 0I degrees in either azimuth angle would have insignificant effects on the reconstructed
approach profile. Both AAzl and AAz 2 were accepted as having values of zero.

The elevation values AE/1 and AEI2 %%ere more equivocal. The strong interaction between
these parameters, illustrated in Figure 14, results from camera/site geometry and is such that
bulk correction of bias can be achieved by parametric variation of either term. However, varying
AEI2 around an optimum tends to produce sequences of residual differences of constant sign
but of opposite signs at opposite ends of the trajectory (viz: positive at the start of the approach
and negative near the hoxcr end, or vice versa) indicating inability to effect complete removal
of systematic error. Correction through AE 1 was invariably more effective.

Similarly, the strong interaction between AEI1 and AAzl. illustrated in Figure 16, results
from the approach slope and location of Camera I. and is such that bulk correction by either
parameter is possible. Across the ensemble of trajectories, individual 'optimum' solutions indi-
cated a trend towards a zero value for A.4z but positive values for AEli. Particular trajectory
solutions along the line of correlation between AE1 and AAzl have little effect on solution points
as seen from the landing aid and therefore will not affect conclusions drawn about the sensitivity
etc. of the aid. Finally it was considered that potential errors in AEI of up to 0.5 degrees were
feasible but that corresponding required corrections of up to 5 degrees in AAzl were unreasonable.
The subjective conclusion from processing all trajectories was that the error lay in ElI and should
be corrected through AE1.

The family of results is given in Table 5 for the ensemble of 14 trajectory reconstructions
with the allowable perturbations limited to To and AE/i. and AT held at 1.27 second. Some
marginally better 'optimum' solutions were possible by variation of other parameters but, across
the ensemble, there was no clear evidence that parameters other than AEli should be varied.

The particular results given in Table 5 show a spread of values for AEI1 b k "en 0.0 and 0.5
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degree. Errors of that magnitude would not have been noticeable to the camera operator and are
certainly feasible. The possibility that a steady bias error was present on the elevation of Camera I
was tested by re-running the program with a fixed value of AE 1 equal to the mean of those in
Table 5. The results produced error function values of sufficient magnitude for that possibility
to be deemed to be invalid.

TABLE 5

Data for ememble of 14 trajectories

Ref. TO AEI1  Sum Number
No. (second) (deg) Errors of Points

R3 -26.2 0"15 4-51 119
R5 -53.0 0.20 5-25 121
R6 - 16.4 0.19 4.85 132
R8 -34.3 0.31 3.99 128
R9 -1.7 0.38 5'29 138
R12 -9-3 0.435 10.92 168
RI3 3.4 0.155 5-41 133
R14 --74.5 0.43 8.33 175
RI5 i.1 0.285 4.12 123
R16 -70-5 0.23 9"65 160
R17 -74.2 0.34 6"01 168
R18 -- 17.8 0.40 5"32 135
R19 -82.0 0'05 5'79 177
R20 -19.3 0.27 6'31 186

No cause has yet been established for the variation in Ell although several hypotheses have
been put forward. These centre on defects in the film registering mechanism of the camera,
the external motor/gearbox used to reduce frame rate, or the mounting of the camera on its
tripod. Similar factors of inertia and/or backlash are involved in each case, and are coupled
to the stop, start action and torque drive of the electric motor. Attempts to isolate the cause
have now been abandoned.

In the mid-trajectory region, at around 600 metres from each camera, an error in Ell of 0.5
degrees corresponds to a height span of 5 metres. Resolving AEl1 to 0-01 implies attempting
to resolve the aircraft height to 0 -I metre. This would be unrealistic in terms of determining the
trajectory, but is reasonable in terms of determining bias error in the camera when the pooling
of data over 100 or more points is involved.

With respect to trajectory reconstruction, the smoothing process embedded within the
iterative procedure will reduce 'noise' arising from the instrumentation process and from the
true trajectory, to the extent that the smoothing model may be inadequate to represent the true
trajectory. No data is available on the 'roughness' of the flight paths or conditions and it is
believed that conditions were reasonably smooth. The reconstructed trajectories are therefore
likely to be faithful representations of the actual flight paths. The initial objective was to resolve
the flight paths to an accuracy of the order of ± I metre, and it is believed that that has been
achieved.

The full set of trajectory plots reconstructed from the Rockhampton experiment data is
given in Reference I. The computer program used was CAMCAL.FOR, written in Fortran 77
and run on the ARL VAX 11/780,
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APPENDIX 1

Straight Line Trajectory with Speed Variation

1. Probem

To find the 'best' straight line trajectory fit to a set of points (in three dimensions) where the
data, although representing samples equispaced in time, do not represent equal intervals in space
due to the velocity not being constant.

2. Simple Case: 3 Points

Three points define a plane; thus the problem can, without loss of generality, be reduced to
one in two dimensions:

P3 (x3 V3 )

P1 (XJYl)

~P2 I(2 Y2)

We can reasonably expect the fitted line to pass through the mean of the points, and to be
aligned close to the vector direction 13-.2

Assuming a speed of u at time zero corresponding to the central point, P2, together with
constant acceleration, a, the linear distances, s, along the trajectory can be expressed as:

S-i = So-u+ la

So = So

S+i = So+ u+ &a

for which the mean value S* satisfies

3S* = 3So+a

.1
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and
S-i = S*-u+ ia

So = S* -a

S+i = S* +u+ Ia.

Assign parametric values x*, y*, Ax, Ay, which together define the three fitted points as:

(x*--Ax+ ImAx, y*-Ay+ JaAy)

(x* -latx, y* - Ay)

(x*+Ax+ JCIAx, y*+Ay+ oAy).

Any such set of three points are colinear. We require to determine the values of the parameter
set to satisfy the criteria for 'best' fit.

Using a 'least squares' criteria, i.e. the minimisation of an error function of the form:

E = (A 1 1 ')
2

set:

E (x* -Ax+ kaAx-xi)2 + (y* -Ay+ iaAy-y) 2

+(x* -ioCAx-x 2)2 +(y* - AYy - Y2)2

+ (x* + Ax + ALXx- X3)2 + (y* + Ay + orAy -ys) 2 .

This is in fact, the sum of the perpendicular distances from the three data points (xi, yi) to the
line defined by the parameter set {x*, y*, Ax, Ay, a}.

The conditions leading to a minimum value for E are given by equating to zero the de-
rivatives of E with respect to the parameters.

I E = (x* -AX + JaAx-xl)
(x*~ A+a xx)

+(x* -jAx--x2 )

+ (x* + Ax + JCiAx -X3)

= 3x*-(Xt+X2+X3).

Thus

DE
_ = 0

Zbx*
for

3x* = xI+X2+x3
and similarly

bE
- = 0,ay*

for
3y* = yl +y2 +ys

and, as expected, the fitted line passes through the mean of the data points.

= 2Ax-(xs-xj)+ a{*Ax-(xs-2x2+x)

-1 - --
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thus to first order, with o small

bE

i Ax

for
2Ax ", (xs-xI)

and similarly for Ay so that, as expected, the fitted line is aligned close to the vector direction
23-21.

Note also that

x 3 -2X2+Xl = (xI+x2+xs)-3x2

= 3(x* -x2)

so that the equation bEibAx = 0 can be expressed as

2Ax-(xs-xI)+a{ ocAx-3(x*-x2)} = 0

and similarly for D/bAy and D/bAz.

JDI~ lAxiAx-3(x* -X2)) + AylaAy-3(y* -y2))

but it is not necessary that

mAx-3(x* -x2) = 0 = MAy-3(y*-y2)

which would imply

S(x*-x2) _(y -y2)3 Ax Ay

and thus that (x2, y2) lay on the fitted line. That condition would be appropriate only if the original

data points were colinear.
The equation can, however, be expressed as

=E *c(Ax)2 + (Ay) 2} -{Ax(x* -X) + Ay(y* -y2)1

so that

bE
-=0

for
AxAy ,_ys

AX x*- xs)+ .()2+(Ay),0Y2)-
(A)

2 
+ (Ay)

I(x* -x2) +m(v* -y).
lAsi

Thus the numerator is the length of the projection (component) of the vector P*-22 in the
direction (Ax, Ay) which has the direction cosines (I, m) of the fitted line. a is thus directly
related to the ratio of the magnitude of the vector projection to the magnitude of As.
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With a six parameter set (using x*, y*, Ax, Ay, at, ac) an exact fit is obtained which separates
the x and y variables completely, giving

3x* = (xl+x2+xs) 3y* = (yl+ys+Ya)

2Ax = (xs-x) 2Ay = (y -ys)

-X = 3(x*-x) MaAY 3W -yz).

Note that mzAx is a measure of the acceleration component in the x direction, and away that of
the component in the y direction. Thus * -. 2 is a measure of the two-dimensional acceieration
vector.

In fact
3(2*--22)

A=

The straight line approximation, using a common value for a in both the x and y directions,
is one which uses that component of the acceleration vector which is in the direction of the fitted
line,

3. General Case: N Points, N Odd

W. = wo+nAw+ j(n)MAw w = x, y, z

Ewtk =woO + Awln + ffAwjn2

n -m,.. -1, 0, 1 .... m

putl, =No=2m+1

n

n
m

In2 = N2 = 2 k2

n k=I

n3 =Ns=0

n

m

= - N4 = 2Zk4
n k=l

No sequence: I. 3, 5, 7, 9,

Na sequence: 0, 2, 10, 28, 60,

N4 sequence: 0. 2, 34, 19, 708,...

a +.-

-- I . . , . ....

.,C .*7..++



w o = No w*

n
= No wo+ NsAw

so that
WO = W*-N2AW

'N-

and

wn=w* +nAw+k-Aw n2 -N)

giving

E =: Iw*+nAw+ aA+ n2- Z -- 2 w =X,y, Z.

w, n

The minimum value of E is given by the simultaneous solution of the equations resulting
from differentiation with respect to the parameter set {x*, y*, z*, Ax, Ay, Az, a.

Differentiating with respect to x*:

i {x * + nAx + jac \No/

n

- * x* + Ax:jn + JAx(Z. 2 N )
n n n n n

=x'No + AxNj + €,Ax(N2 -N2) - xn

n

Nox*Zxn..

n

Hence

E 0 for Nox* = Xin

n

similarly

d0 for Noy* = iyn

n

and

-=0 for Noz* = I .

Differentiating with respect to Ax:

tN
n {n{

- A ;



which, in similar fashion, reduces to

zE NoJ NoV

n

For N = 3 as previously

ZE =2ax-(xs-xi)+ *a2Ax{2-)-I-{*X3*X+ iXI)

-2Ax-(x -xi) + joe2 Ax- *acxa-2 x2 + xi}

For N =5

4-- = IO~x-(2xi +x4 -xz-2xi) +iaAx(34-1'i
5 } o2X5-Xs -2Xs--X2 +2xil

l OAx-(2x + x4 -xz-2xi) +ic2AX-jP{2x-x4 -2X3 -X2 +2x1)

and similarly for

E bE
M- and-~-~Y iAz*

Differentiating with respect to a:

n) 
xn

+ y* + n*+n+ I-Ay(ns OY) y.1 JiAY+n-)j

n

+ ~z+ Az + CeAz p
2  I-zo n -~l~

n

which reduces to

zE N22AJ N2I Nv)JZ.]

+-= A [*A {N4 -- -' In -

n

n

';N -3

bE
i - =Ax[*aAx-j(xs-2X2+X1)]

+ Ay( J-Ay - i(Y - 2Y2 +Y)

+ Az~ivAz - W - 2z2 + zi)J



For N = 5

i = Ax[ix- (2x5-x 4-2xs-x2 + 2x)]

+ Ay[&Ay- (2y -Y4 -
2
ys -y2 + 2

yI)I

+ Az[JAz-J(2z5 -z 4 -2zs -z2 + 2z1)J.

Summarising the 5 point case:

x* = (x5 + x4 + xs + X2 + xI)

and similarly for y* and z*,

= (2(2x 5-+X4-X2 -2XI) + -(2X5-x4-2x8-X+2x1))

(20 + 7a2)

and similarly for Ay and Az,

[ -Ax 2x5- x4- 2x3-x + 2x,)+ A y2y5- y-- 2 y--y + 2y,)
= [Az __ __2z_ -2--y z+ 2  

... .]

7{(Ax)
2 + (Ay)

2 + (AZ)-

The combinations

(2xs + x4-X2-2xI)
and

(2x5-x4 -2xs - 2+ 2xi)

may be regarded as higher order estimates of velocity and acceleration components, e.g.

2X5 + X4 -X2 -2XI 2(X5 -x4) + 3(x4 -xs) + 3(x3 -x2) + 2(x2 -x)

SlOAx

2xs - x4 - 2x - X2 + 2x,= 2(x5-2x4+xa)+ 3
(x4-2xs+x2)+2(xs- 2

x2+xl)

7 aAx.

The equations for Ax, Ay, Az, a are interdependent and non-linear, but amenable to initial
approximation and simple iterative convergence.
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APPENDIX 2

Equations for Central Plane Projections

1. Sight Line

The sight lines from Camera I are implicitly defined by the raw data pairs (#Oi, all) together
with the location and orientation parameters for Camera 1.

The transforms from camera space to real world are given, without subscript i, by:

(0,: +0E12)II2 = p,

tan - 1 {pi/ 4 5 6) = 01

2'1 01 = 01'

tan 01' = p' i.e. tan-{p'/} = 01'

so that, in real world coordinates but in camera axes, the point Q on the sight line at range R
from Camera I is given by

Q., = R Ipi'iP1

Qyl = RpI'/pl

Qzl = Rlpl'/pl

2. Intersection with Central Plane

Rotating to the orientation of the common frame

[Qoj = [R(Azl)]T [R(E~l) T [QIJ

and translating to the common origin

Q x = + Qxo

Q = Y + QyO

Qz = Z1 + Q.0

But Qxo, Qyo and Q. are the vector components corresponding to vector length R along
the sight line, where R can be chosen arbitrarily. Setting R equal to 1000 (say) initially, and then
rescaling the components at this stage such that

Qx 0

QxO - Xi

.. ...... ._."



will fix the point Q on the central plane and give the corresponding y and z values as-

QY = Y1 -QYO/X

Qz = ZI -QI*/xI

3. Inferred Elevation

Because, by definition, Camera 2 is located at the origin of, and aligned with, the common
reference frame, the inferred elevation value (in mm), appropriate to data scalings for Camera 2,
results from:

tan-{Qz/'Qyj = 62'

02'/I .35 = 082

456 tan 08 = 2vI

where 2vIJ is the inferred data domain value equivalent to raw data values 2k.

7I
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