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SUMMARY

Helicopter flight path trajectories in approach to a tactical landing aid were monitored,
ad hoc, by two cine cameras. Post-trial trajectory reconstruction using simple triangulation
methods was confounded by the presence of an unknown bias error in the orientation of one
camera, and by non-synchronous camerc timing. The report describes the concept, formu-
lation and implementation of an optimisation method which pools all data for a trajectory,

permits extraction of bias terms, and yields a complete trajectory smoothed in space
and time.
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1. INTRODUCTION

Tactical night approach and hover/landing in operational conditions is a particularly
difficult phase of flying operations. Various man-portable aids are available for ad hoc instal-
lation by ground troops to provide visual guidance to the pilot. The quality and value of such
aids have been subjects of interest and investigation by ARL staff for a number of years.

During a field exercise, conducted in July 1980, two Boeing CH-47C (Chinook) helicopters
operated by No.12 Squadron RAAF made several runs involving approach, near hover, and
overshoot at a site where a visual approach aid known as a PLS (Proportional Landing System)
had been erected for the purpose. Runs were made by various pilots during late afternoon, dusk,
and night conditions.

The exercise was observed and monitored by ARL staff with the aim of assessing, broadly,
by comparison with the daylight runs, the quality of the night runs, the existence of any differences
in variability between day and night trajectories, and whether difficulties with tactical night
approaches by helicopters warranted further attention from ARL.

The trajectories were recorded by ad hoc instrumentation assembled hurriedly at short
notice. The basic instrumentation took the form of two Kodak K 100 16 mm cine cameras with
film transport modified, using d.c. motors and gearboxes, to yield 1/20th second exposures at
nominally one-second intervals. One camera viewed the approaches ‘head on’ from a position
looking over the approach aid; the second camera viewed the trajectories ‘broadside’ from a
position several hundred metres off the nominal approach track. The locations of the cameras
were determined with respect to geographic landmarks by conventional surveying methods.
A full description of the exercise, instrumentation, analysis and conclusions is given in
Reference 1.

The objective in using cine camera instrumentation was to permit subsequent reconstruction
of the trajectories for detailed analysis, and assessment of flight path control in relation to the
guidance information available based on the known characteristics of the visual aid.

Trajectory reconstruction was initiated using triangulation methods on the discrete data
obtained from frame by frame analysis of the films. The results were less than satisfactory and
indicated several unexpected sources of error. Predominantly there was good evidence that one
camera ran at less than the calibrated speed, but considerable uncertainty about whether the
speed was stable and constant for all aircraft runs. Secondly, although interpolation methods
were used to obtain ‘synchronous’ data from the two cameras, one set of camera-to-aircraft
sight lines lay consistently below those for the other camera; indicating the presence of a camera
boresight angular bias, again with uncertainty about its stability.

It was recognised that the initial trajectory reconstructions, although adequate for indicating
general trends, were of doubtful accuracy for assessing flight path control vis-a-vis PLS guidance
information. For that purpose a more complex analytical procedure was required, and needed
to be one which permitted the extraction of bias terms. As such, it would need to use all trajectory
data available, at least for any one aircraft run, and preferably for the ensemble of runs.

As far as was (or is) known, no such methodological technique has been documented.
Thus more precise reconstruction of the trajectories required the evolution and formulation
of an appropriate method. This document deals with the principles underlying, and logical
development of, such a technique.

2. GENERAL METHODOLOGY

2.1 The Problem

The problem can be concisely stated as follows: given that two, time-sequenced, non-
synchronous cameras were used to observe an aircraft trajectory (i.c. that of a helicopter in an
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approach to a ‘hover’), and that from a frame by frame examination of the exposures, estimates
can be obtained of the ‘azimuth’ and ‘elevation’ of the target (i.e. the helicopter) relative to each
camera—to reconstruct the trajectory in space and time.

There are several sources of potential error. These include:

(@) systematic errors:
(i) survey: bias in the true camera locations relative to the assumed locations,

(ii) bore sight: bias in the true camera optical ‘centre-line’ relative to the assumed
centre-line, in azimuth, elevation and roll,

(iii) frame rate: average frame rate of the two cameras relative to one another (and in
absolute time if velocity and other time derivatives are to be extracted),

(iv) lens distortion: barrel/pin-cushion distortion of camera and projector lenses,

(b) random errors:
(i) stability of camera axes,
(ii) stability of film transport timing in cameras,
(iii) stability of film location in camera and projector,

(iv) resolution in data extraction from individual frames.

The survey was based on conventional triangulation techniques with one base-line length

measurement, The set of azimuthal bearings appropriate to each camera location included the

H camera to camera line and also the lines to several fixed point markers and to a geographical
landmark: Samuel Hill. No geographic reference (e.g. North-seeking) was incorporated.
Elevation measures were based on the quality of setting-up of the theodolite to a gravity referenced
bubble.

Site detail reconstitution and comparison with ordnance survey map data for the area,

i indicated a high level of accuracy in azimuthal data. Less confidence can be held on elevation
! data due to uncertainty in referencing (bubble reference) and lack of independent confirmatory
' data.

The cine cameras were fitted with externally mounted view finders, and not ‘through the
lens’ systems. [t must be assumed, therefore, that bias errots in elevation and azimuth are likely.
The cameras were set up using bubble referenced beds.

The framing rates of the two cameras were set and calibrated in the laboratory before
departure for the trial, and checked on return. One camera appeared to have remained stable
but the other had departed significantly from its calibrated speed. Initial analysis of data from
film confirmed that the camera had been running slow during the exercise. Any new analytic
procedure should seek to indicate the average relative frame rates for each aircraft run because it
cannot be assumed that the speed of the ‘slow’ camera was constant for all runs.

The distortion introduced by the camera and projector lenses can be assumed to be deter-
ministic, so that from calibration processes the data can be corrected. The camera/projector
optical laws were calibrated post-trial by, effectively, photographing a suitable large measurable
grid and comparing real world dimensions with ‘azimuth® and ‘elevation’ data extracted by the
same process as for the trials data. The lenses were, however, assumed to have axial symmetry.

It should be possible to reduce the effects of random errors, to some degree, by smoothing
processes. Also by using an appropriately chosen minimisation procedure using parametric
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descriptors for biasses and timing rate it should be possible to identify, and thereby extract,
those errors. Such a process would require ‘pooling’ the data over any one trajectory, and if
possible, the ensemble of data over all trajectories.

2.2 Methods

Assume, initially, that the exposures from the two cameras are equispaced in time and
synchronised. The data would then consist of sets of 4 sample values representing the concurrent
observations of azimuth and elevation from each camera. Each successive data set could then
be used to obtain one estimate of the position in space of the target. The succession of position
estimates represents the trajectory.

At least two different methods, described below, may be used to obtain position estimates.

Method 1

For each camera, a data pair (azimuth, elevation) defines a line in space. The two lines,
one from each camera, in general do not intersect. The shortest distance between the two lines
corresponds to that of their common perpendicular. One logically based estimate of the air-
craft position is the mid-point of that common perpendicular. This estimate may be obtained
by a different procedure (but which leads to the same result) as follows: assign parametric
values (x, y, z) for the aircraft position, determine the perpendicular distances from (x, y, z)
to each skew line, square and sum those distances to form a quadratic error function, then
minimise the error function by variation of (x, y, z). The values of (x, y, z) which yield the
minimum value of the error function is taken as the ‘best’ estimate of position.

The minimisation applies to an error function scaled to spatial quantities, (8x, 8y, 82),
and may be termed minimisation in the spatial domain.

Method 2

An alternative minimisation procedure is as follows: assign parameter values (x, y, z) for
the aircraft position; for those values, determine the parameter-dependent values of *azimuth®, ¢,
and “elevation’, «, for each camera, equivalent to the 4 values of the data set; form a quadratic
error function as the sum of squares of differences; then minimise the error function by variation
of the parameters (x, y. z). Again, the ‘best’ estimate is that set of (x, y, z) values which gives
the minimum value of the error function.

In this case the error function is scaled to data quantities, (841, day, 8¢2, az2), and may be
termed minimisation in the data (or ‘angles’) domain.

The two methods lead to approximately the same result only when the target (estimate) is
equi-distant from the two cameras. In effect Method 2 gives due allowance for the effect of range.
Method | weights spatial errors equally, regardless of the difference in range to each camera,
and of the dependence on range of the angles subtended.

In consideration of an analytical technique for pooling all data across the entire trajectory
to extract bias errors, which is also intended to find a trajectory that ‘best fits® the data, it would
seem that Method 2 is to be preferred.

The time sequence of estimates of aircraft position (obtained by either method) would not,
in general, be ‘smooth’. Each position estimate, defined by 3 parameters (x, y, 2) is derived from
the 4 data values in the data set; the 4th degree of freedom allowing the minimisation, so that each
estimated point of the trajectory may be considered to have one degree of freedom associated
with it. For many trajectory points it should be possible to incorporate constraints to smooth
the trajectory in the minimisation process.

Again by way of example, for discussion, suppose the trajectory were understood (or
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assumed) to be a straight linc constant speed trajectory. Then the complete trajectory could be
defined by the 6 parameters:

Xo. Yo, Zo, Ax. Ay, Az
defining a sequence of positions:

P = (Xo+iAx, Yo+idy, Zo+iAz) i=0...N.

The 6 parameters require a minimum of 2 data sets with 8 measured quantities (and thus also
% degrees of freedom) for the minimisation. In that case the solution for the two-point trajectory
would be the same as that obtained by separately estimating one position (each with one degree
of freedom) for each data set. For greater numbers of data sets, progressively more degrees of
freedom become available to manipulate other parameters that may be assigned (e.g. systematic
biasses) and to suppress the effects of random errors.

Where the trajectory is known to be more complex than the simple case taken above, as
would be the case for a helicopter approaching the hover, the trajectory is less easily specified
parametnically. 1t may, however, be reasonable to assume that over any short segment (a few
seconds) the true trajectory can be adequately modelled, or fitted, by a relatively simple para-
metric law or equation.

It is useful, at this point, to synthesise a notional trajectory in order to illustrate several
other aspects which raise questions about choosing the ‘domain’ and techniques for smoothing/
interpolation.

Consider a straight line trajectory. but with aircraft speed reducing to near zero, thus
approximating an approach to a hover. Define the line of the trajectory as:

and set:

depicting an aircraft approaching substantially from the *y’ direction (see Fig. 1) to a hover near
(0. 0, k). Synthesising speed decreasing linearly with time, let the sequence of positions be:

i Ay ¥y x z

| 450 45 100
--150

2 300 30 70
—120

3 180 18 46
—90

4 90 9 28
—60

5 30 3 16
—-30

6 0 0 10

Assign camera locations and sight lines: Camera 1 at (—280, 200, 0) pointing (1.0.0)
and Camera 2 at (20, -- 100, 0) pointing (0, 1, 0), so that Camera 1 is observing ‘broadside’,
whilst Camera 2 is observing near *head-on’ with significant changes in range.
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FIG.t SYNTHESISED ILLUSTRATIVE TRAJECTORY




Using simplified equations for translation and rotation to camera axes, and optical scaling:

x1 = 200—y x2=x—20

»1 = 280+x yz = y+100

=2z z2=12

$n = 10x1/3 2 = 10x2/ys

oy = 10z21/y1 ag = 10zz/y,

yields the data sets:

i U3 £ e a2
[ —7-6923 3-0769 0-4545 1-8182
2 -3-2258 2-258]1 0-2.00 1-7500
3 0-6711 1-5436 --0-0714 1-6429
4 3-8062 0-9689 -0-5789 1-4727
5 6-0071 0-5654 —1-3077 1-2308
6 7-1429 0-3571 —2-0000 1-0000

In Figure 2 are plotted the data pairs (¢, a); for the two cameras, which depict the trajectory
as seen by the cameras. Both views show the straight line characteristic of the trajectory.
Figure 2(a) showing (4. 2); for Camera 1 gives a reasonably faithful representation of the space’
time relationships with reducing speed. Figure 2(b) showing (4. x). for Camera 2 illustrates tne
effect of changing range and the resulting change of weighting of spatial distances between
positions, particularly at short range.

In Figure 3 are plotted the individual values of ¢y, a1, ¢2, «2 against time. Extending the
notional trajectory in time, the hover (zero speed) is achieved at a value of 7 of 6-5, after which
the aircraft would, in this contrived example, retrace the trajectory in the reverse direction.
Further. as time tends to infinity the data values tend asymptotically to finite limits:

gy » 100

the last two of which are realistic. whereas the first two are somewhat nebulous.

The important point illustrated by this example is that, despite the straight line nature of
the trajectory, the speed change occurring is such that when the data are plotted against time as a
master parameter, the shape of the resulting curves are in a form that, in principle, cannot be
fitted by polynomials.

Hence, smoothing and interpolation of the separate data sequences (i), i), da(i), aa(i)
by conventional techniques before processing to obtain position estimates would be ill-advised.

The alternative is to apply smoothing to the sequence of noise corrupted position estimates.
The position estimates are (at this stage) assumed to be in the form (x, y, z., t) i.e. position at a
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given time—indeed time is the variable by which data from the two cameras are to be meshed.
It would be possible to process the estimates without consideration of time, that is, as random
samples of positions on the trajectory. The fitting procedure would then take the form of first
or higher order regressions between the variables x, y and z. It might then be possible subsequently
to reassign ‘smoothed’ time.

That process would lose much of the space/time relationship that is intrinsic to the original
‘raw’ position samples. It seems preferable to apply a curve fitting procedure that uses time as a
master variable. As such, the procedure would involve the smoothing in time of spatial variables.
This could be done as a ‘single pass’ processing of the position estimates to give the trajectory
directly. An alternative approach is to incorporate a fitting procedure as part of an iterative
process which progressively refines the ‘smoothed’ trajectory estimates in a global minimisation
routine addressing the entire trajectory. The latter would allow the iterative trade-off of error
magnitudes along the trajectory, allow for the time matching of well defined texture or pertur-
bations within local segments of the trajectory, and also allow parametric identification of bias
errors common to all parts of the trajectory.

From the point of view of flight control, the pilot would be attempting to achieve a well
controlled (straight line?) flight path, with progressively decreasing speed, so that smoothing
should not suppress that trend. However, pilot corrections to deviations from the desired flight
path will involve curvature in space. The level of smoothing/fitting that should be applied is a
matter of judgement.

To fit a straight line, whilst allowing curvature in time (acceleration), requires the acceleration
vector to be constrained to be aligned with the velocity vector. Fitting requires 7 degrees of free-
dom in the assignment of 3 position components, 3 velocity components and | acceleration
magnitude. To allow for spatial curvature, all 3 components of acceleration need to be assigned
so that 9 degrees of freedom are required. This implies that the latter case would yield an exact
fit (no smoothing) if the input data consisted of 3 position estimates equispaced in time.

In general, that implication is true, but because each position estimate is itself . erived with
1 degree of freedom from a data set of 4 values, the fitting process can be embedded in a minimi-
sation routine in which 9 parameters are searched to fit the 12 initial data values corresponding
to 3 data sets.

Whilst that principle appears attractive, its extension to an error function covering the entire
trajectory would require the complete trajectory to be modelled/fitted by a set of equations
with a limited number of parameters in order for the multi-parameter search to be feasible.
So far, that approach has not been useful.

2.3 Strategy Adopted

The broad strategy adopted for development in detail was as follows:

(a) to formulate an iterative procedure which, at each iteration, would revise the
‘fitted" trajectory to improve the quality of fit to the experimentai data, and overall
would (hopefully) converge to a stable solution,

(b) within each iteration:

(i) each trajectory ‘raw’ point corresponding to a camera observation would be
updated by searching (x, y, z) to minimise a quadratic error function scaled
in the ‘data domain’ and based on both the corresponding ‘last smooth’
point from the previous iteration and the camera data.

(ii) smoothing would be by local smoothing, over a span of a few seconds, of
‘raw’ (x, y, z, ¢} values and would allow for curvature in space and time,

(c) a gross error function value, applicablc to the entire trajectory would be formed
by summing, across the trajectory, the residuals (minima) of the individual point
error functions.




Several potential problems were foreseen and are described below. Some, but not all, were
evident in the long run.

The minimisation searches would be local, with revised ‘last smooth’ points at each iteration.
There was, therefore, no guarantee that the gross error function would reduce monotonically
at every iteration.

The process would need to be started with some arbitrary ‘smooth’ trajectory. There was
no guarantee that different solutions might not result from different initial conditions.

With point by point minimisations in each iteration the procedure would be computationally
expensive, and not particularly efficient.

To extract bias error terms would require them to be assigned parametrically, and for the
gross error function asymptotic value (as a function of the parameter set) to be minimised by
variation of the values in the parameter set. In other words the iterative procedure described
above, which on convergence defines a trajectory, must itself be bedded into a higher level mini-
misation routine. In view of the potential problems mentioned above it was considered to be
unwise to attempt to make that an autonomous process, and preferable that it be operator con-
trolled interactively. :

It was also recognised that some of the parameters were likely to be inter-related. For example
with evidence that without bias correction one set of camera-to-aircraft sight lines lay consis-
tently below those for the other camera, bias correction could be applied to either camera—but
with opposite signs. Also, for the camera viewing broadside, elevation and azimuth adjustments
have rather similar effects. It was thought that final judgement of ‘quality’ of the solution would
be likely to be subjective.

What has not been dealt with so far is the question of non-synchronous timing! That can
be dealt with by the procedure proposed—in fact, it was evolved in order to do so—but not
without some added complication.

Two parameters Tp and AT are assigned, for extraction by the overall minimisation, to
define a start time and framing interval of one camera relative to the other. Having been assigned
(as bias type parameters) they remain constant over the iteration to convergence, and fix the
relative timing of exposures, and hence the meshing of the data leading to that solution.

The Jocal point by point minimisations need, however, to be redefined because data from
only one camera is, in general, appropriate to that instant in time. Without a second sight line
to give a triangulation “fix’ there is a tendency for the point minimisation to allow the search
to drift along the one sight line. This can be overcome by synthesising ‘pseudo-data’ notionally
appropriate to the other camera as those data corresponding to the ‘last smooth® point. Such a
constraint is weak in that it adaptively follows the solution through the iterations.

Finally there is a housekeeping aspect that must be incorporated into the procedure. In
principle the determination of a trajectory is possible only for the period of time for which data
from both cameras are available. Thus. having assigned Ty and AT, only the ‘overlap’ of camera
data time spans should be used. The routine must therefore select out the appropriate time
meshed data for processing.

3. FORMULATION

3.1 Quadratic Error Function

A central feature of the strategy proposed is the definition of a quadratic error function,
scaled in the "data domain’, and suitable both for optimising individual points in space relative
to the experimental data and for assessing the global quality of a trajectory fit. In turn, this
requires a procedure for transforming the spatial domain parameters (x, ), z) to equivalent ‘azi-
muth’ and ‘elevation’ values (1, a1, $2, az) for the cameras, based on the site geometry, the
assumed bias error parameters, the lens distortion laws, and the camera/projector scalings to
the data domain.
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3.1.1 Site Geometry

For the purposes of analysis and trajectory reconstruction a reference coordinate system
was defined, viz: a right hand system, having its origin at the location of Camera 2 (the ‘head-on’
camera), z-axis vertical, positive upwards, and y-axis horizontal and aligned with the nominal
optical centre-line of Camera 2, itself pointing along the pre-planned approach track.

Referenced to that coordinate system, the site/camera geometry derived from survey data

is shown in Figure 4.

To transform the coordinates of an arbitrary point (.x, y, Z) in the reference frame, defined by:

X7 =[x, 5. 2]

to coordinates [X¢,]T appropriate to the frames of observations of the cameras, requires the

translations and rotations given by:
[Xu] - [X) [Xal

(Xeid = (REWR(AzOIXs;]
where
[Xa,)T = [~615:4,327-4, 1-9]

[X,)T = [0, 0, 0]
define the camera locations in the reference frame and
[' Cos Az; Sin Az; 07
[R(Az)) = | -Sin Azy Cos Az; 0

0 0 1

L -

[1 0 0 )

[REW) = |0 Cos Bl sin Elf

LO -Sin El; Cos EI(J
provide the rotations to the camera orientations. where
Azi = Asi + AAz

Eli = ES.'+ _\Ell

are the Euler angles, in the reference frame. of the camera centre lines (optical axes), and from

the survey:
Asy = -81-5
Asz = 0
Esy =0
Ess =0

and AAzy, AAzg, AEh, AEl; are assignable parameters to synthesise bias errors during interactive

processing seeking the global minimum.
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3.1.2 Leus Distortions/Data Scalings

A basic assumption, deemed to be adequate for the purposes of trajectory reconstruction,
was that all lenses (camera lenses, wide angle lenses and projector lens) were axially symmetric.
Calibration was therefore limited to off-axis (radial) measurements taken in the horizontal
plane through the optical centre-lines.

Each camera, in turn, was set up and bubble referenced on a tripod in front of a building
with well defined. spaced. vertical pillars. The tripod was positioned accurately in front of a
central pillar and adjusted to be symmetrically located with respect to the lateral pillars. A se-
quence of exposures was taken with the camera pointing firstly at the central pillar, then at
5 degree azimuth increments across a scan equal to the field of view. The azimuth increments
were set by vernier control on the tripod moving steadily clockwise and then steadily anticlock-
wise to check for backlash. The number of angular settings compounded with the number of
pillars gave a multiplicity of points of known geometry to facilitate deduction of the calibration
laws.

Ray paths from real world objects to images on film involve tangent function relationships
in both the real world and camera spaces, and an angular compression law through the wide
angle lens/camera lens combination. On projection, similar tangent function relationships hold
for the projector space and the final screen space, with a compression/expansion of angles through
the projector lens. Final dimensions on the screen (the ‘data domain’) are directly dependent
on the arbitrary distance from projector lens to screen.

Trials data had been extracted by direct reading with the images back projected on to a
| mm by ! mm grid, and the field of view covering a lateral span of about + 180 mm. Readings
had been estimated to the nearest 0-5 mm.

Assuming that the camera/lens and projector/lens dimensions and characteristics are
reasonably well matched, then the dominant effects should be the tangent function relationships
of the real world and screen spaces, and the angle compression law of the wide angle lens. Other
effects and mismaiches should be secondary. With those assumptions, the plotting of screen
image offset distance r, against real world offset angle 0 should yield a relationship of the form:

rs = dytan { £(6)}
0 = f Ytan~YrJd.)}
where d. is scalarly related to the projector/screen spacing.

It was found possible to fit the calibration data for both cameras, to an unexpectedly high
accuracy, by means of the expression:

-
®

= ko tan {8/k;} i = |, 2 (cameras)

T

= ki tan-? {rofko}
where:

ko = 456 for both cameras
ky — 2-1 for Camera |: 84° FOV
k2 - 1-35 for Camera 2: 54° FOV.

Whilst there is a strong and appealing case for drawing further inferences about camera/
projector geometry, this would be unwise and unnecessary. [t is emphasised that the relationship
was obtained by curve fitting, not by model fitting.

Extending to three dimensions, in a camera coordinate system with camera optical axis
aligned with the y-axis, the point (x, y, z) lies at an angle offset from the axis given by # where:

fx2 4zt i
tan# ' o i
y ‘ K
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Similarly, the corresponding ‘azimuth’ and ‘elevation’ values, (1%, V), in the data domain, satisfy:

0 {u+ pfe

— i=1,2
ke P =0

tan

and

W v {u e s,

x oz ixtazmlz oy
Hence, given (x, y, z) in camera coordinates, the corresponding data domain values (w, )
are derived, using
r={x? 4 22} 2
6 = tan ! {'y}
irs = ko tan {0/k;}
o= rsir) x

v = (irs/e) =

3.1.3 Error Function

As postulated previously the iterative procedure will, within each iteration, conduct a
’: minimisation search to update each point corresponding to a camera observation. Those ‘raw’
points are then ‘smoothed’ as the last phase of the iteration. The smoothing process injects the

time structure of the observations.

The overall objective of the procedure is progressively to draw the ‘smoothed’ trajectory
away from the nominal initialising trajectory towards that time structured solution which best
! fits the experimental data. [t is therefore scen as necessary for the error function to have two
! distinguishable components: one that reflects differences with respect to the experimental data,
and one that reflects the distance between the search point and the corresponding ‘last smooth’
point. Without the latter the time structure of the observations will not be an integral component
of the adaptive process. In order to add the two components the ‘spatial’ error term requires
appropriate rescaling, as described below. The error function is therefore defined to have the

form:
Eyy == wa €5 + ws es
where
i=- 1,2 (cameras)
J=1L2... M (relevant observations per camera)
wa + we =1

and the weighting coefficients wq and w. are introduced for convenient manipulation of the
strength of the *data’ error and "spatial’ errot terms.
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In practice, as stated in 2.3, only the ‘overlap’ of camera data time spans should be used so
that, more precisely:

J=me ...+ (N = 1)
n =1
ne+ (N — 1)< N
so that of the full set N; of observations by the ith camera, only the subset n to n;+(N;' —1), of

size Ny', are used.
An appropriate ‘global’ error function for the complete trajectory can then be defined as:

33 m
|

or perhaps more rigorously in normalised form as:

n+ N —1

2
1
e~ ! Z :
NI+ N2’ Z Ey

i=1 j=m

‘Data’ Error Term: e

Assume, for the moment, that the cameras had been synchronised. The data set for a par-
ticular observation time would then be

(hy. a1s, Yoy, azg).
The corresponding ‘last smooth’ point and current search point are denoted by:
(x5*. yy* %)

and
(X5, ¥1s 29)

respectively, and the data domain set derived ‘rom the latter, by:
(g, 1V, 245, 2v)

where the leading subscripts denote the camera/geometry/distortion law for derivation of v and v.
The most obvious formulation of a data error term is:

o = {1y + (yy—ay)? + (auy—dy)? + (2vy—9)?}
and this would be adequate for synchronous observations. However, with non-synchronous

cameras the experimental data separate into the form of two time inter-meshed sequences of
data pairs:

(. a1p) (b2x, x2i)

with corresponding ‘search points’ (or ‘last raw’ points):

(X115, 15, 219) (xsk, yar, zax)
15
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and ‘last smooth’ points:
(x15*, yu*, 214%) (x2x®, yar*, z2x*)
from which can be derived the data domain sets:
(1, 1v1y, 215, 2V15) (142k, 1V2k, 2U2k, 2Vak)
and
Quis*, 1vis™, 2u1s®, 2ves®) (1uar™, 1v2k™, 2uzx®, 2vex®).

The subsets (1115, 1v15) and (zuzk, 2vai) correspond to the experimental data pairs, but (21,
2v1s) and (124, 1v24) are appropriate to the ‘alternate’ camera, for which there are, in general, no
synchronous observations and therefore no experimental data pairs.

A point error term of the reduced form:

eab = {(akiab ~Vab)? + (aVab —aab)?}

a=12
b=1,... N
would be valid, but unsatisfactory. The data pair (fia, xap) defines a sight line from one camera f

only, and thus defines a line in space and not a single point. Minimisation of the error term ean,
as defined above, would allow the search point to drift along (or close to) that sight line without

constraint. |
What is needed is a pseudo data pair that effectively synthesises a sight line from the ‘alter-

nate’ camera. It is possible to do this by using the data pair appropriate to either of the corre- i

sponding ‘last raw’ or ‘last smooth’ points from the previous iteration. By using the ‘last raw’

point there would still be a tendency to drift by increments at each successive iteration. Using the ’

‘last smooth’ point overcomes that problem and also synthesises a sight line consistent with the
‘last” smooth trajectory, both in space and time structure.
Hence the form of the data error term adopted for Camera | data was:

ety = {(tuy —Py)? + (vy—~ay)® + (2uy—auy*)? + (2v1y—2v14*)%}.
Similarly for Camera 2 data:

eak = {(uzr—1u2e®)? + (var—1var*)? + (s —an)? + (2var —aze)?).

*Spatial’ Error Term ~

The real world spatial distance between the current ‘search’ point and the ‘last smooth’
point is given by:

{(xs—xy* + (yy—yy*)? + (2—24*)P}2
However, this is not expressed in data domain scaling and requires modification to compensate
for the effect of range, or distance, from the cameras, and for camera scalings (discussed in 2.2 with

respect to Method 1/Method 2 concepts). I
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Linearising the tangent functions in the distortion/scaling relationships (see 3.1.2) and
considering one dimension only by setting z equal to zero, yields the scaling between real world
dimensions and data dimensions as:

r = {x%}l12
6 =rly
irs = ko{f/k¢}

= (yre/r)x
which reduces to:

u ko X

‘ ke y'
Note that within this set of expressions x and y are real world values within a camera based
coordinate system after translation and rotation from the reference coordinate system. The
terms ko, k; provide magnitude scaling whilst the division by y provides compensation for range.
Whether the y divisor value to be used should be that of the current search point or of the ‘last
smooth’ point is of little consequence because these should be almost the same; what is more
important is to compensate for the change of range from about 1000 metres at the commence-
ment of the helicopter approach run, down to tens of metres at the hover.

The form adopted for the spatial error term was, therefore:

f

k() 2 * *)2 *32

ey = {xg—x*) + (Py—yy*)? + (24 —2¢*)}

ki Yoy
b
where subscript ¢ denotes camera coordinate. :
It can be argued that the range divisor should be the two dimensional range (ground range) }
or three dimensional range (slant range) instead of longitudinal range, thus allowing for offsets g
from the camera centre-line. This is a matter of subjective judgement. It was considered that the

differences in reconstructed trajectories would be negligible. The fact that the term chosen was

already available from prior calculations influenced the choice. .
In retrospect the “spatial® error term exerts an effect similar to that of the synthesised sight

line in the *data’ error term, such that the pseudo data pairs (u*, v*) might be thought to be

redundant. The effects are not quite the same, and in any case it was envisaged that the weighting i

coeflicients wi and wa would be varied interactively to speed up the convergence, and to change

the relative influence of the two terms.
Thus the error function to be minimised in the point by point searches to update ‘raw’

points, against the data from Camera | was:

Eyy = wi(uns—y)? + (vyy—eans)? + (g —ouyy*) + (avyy—2vs*)} ;

ko \2
+ Wz( ’ ){(J\'u—xu")2 + 01 —=ns*)2 + (2y—2y*)?.
kiyey

—— -
The minimisation parameters are x5, y1;, 215 and the terms 14y, 1¥15, 201y, 2¥1; and yeis are r
functions of those parameters. The terms ¢ny, ay; are the original experimental observations.
The terms x15*, yi;*, z15*, as ‘last smoothed’ values, remain constant during the minimisation,
as do zuu', zvl;‘.
For Camera 2 data

Eax = wif(aze —1ax*)? + (1var—1ver®)? + (amize —van)? + (2ver — a2x)?}

2
+ Wz( Ko ) {(xar —x2x*) + (Yax—yar*)? + (zze—zax*)?).
k2 yeu
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The "global’ error for assessing the solution quality over the total trajectory was obtained
by summing all such terms after they had been individually minimised, viz:

N N2’
E_ ‘ Min{Ey} + \ Min{Ex}.
Lt tx¥2I) Lt txy2)
i k=1

£ has the dimensions of length to the power two, but could be non-dimensionalised. It has no
simple interpretation.

The global® error £ is itself a function of the parameter set (bias terms and timing constants)
input to. and held constant during. the convergence to solution. Extraction of an ‘optimum’
solution requires evaluation of E for a range of values of each parameter in the parameter set
in order to determine the particular parameter set giving a minimum value for E. 1t was con-
sidered unwise to attempt to embed this within yet another level of computational processing
for several reasons. Firstly the number of iterations required to guarantee convergence 10 a
stable solution was somewhat unknown and likely to be dependent on the complexity of the
trajectory (smooth-textured). Secondly convergence of E could not be guaranteed to be mono-
tonic. Thirdly the procedure is computationally intensive and any intuitive shortcuts or judge-
ments would be of value. Finally it was recognised that there would be significant interaction
between parameters that would require careful consideration in the interpretation of results.
For example simultaneous increases in the clevations of both cameras would result in a vertically
biassed trajectory but with little change in the error structure other than a likely increase in the
error terms at the extremes of the trajectory.

It was therefore concluded that final extraction of ‘optimum’ sofutions should be conducted
interactively so that a better ‘feel’ could be obtained across the ensemble of solutions.

3.1.4 Expected Value

From the general form of the error function as defined. it is possible to deduce a lower bound
to the value of E that could be expected for a *good’ trajectory solution.
The error function is made up of terms of the form:

£y - wilGuy - ) + vy ag)? + (g —aus*)? + (2v1y—-2vy )2}

k 2
+W~z( ’ \) {Caz—x*)2 + y—3y*PR + (25 —215%)%
Kt yer

corresponding to each camera frame. For a smooth actual flight trajectory and a ‘good’ recon-
structed solution. it can be expected that for a fully converged solution there will be only very
small differences between the “current raw’ point and the "last smooth® point values at each itera-
tion. In that case the elements (x1; - x;*)2 (p1y V1,2 (215 —21%)2, (2u1;—2t15*)2 and (av1y —2v1y*)?
will be ncgligible. Thus the significant contributors to the error function will be:

Ey > wiluns 91 + vy ay)?h

If. further. it 1s assumed that all sysiematic bias has been removed, and that the residual
domunant random contnbutions are those arising from the quantising at the data extraction
level (1.c. in film reading to the nearest 0-5mm on projection) then both (1u1;—41;) and
tivy; =y} can be taken to be random samples from a distribution that is uniform between
+ (25 mm, with vanance approximately equal to 0-02.

With A, and N data pairs (4. 2) from Camera | and Camera 2 respectively in the solution,
and a weighting value wy equal to 0-5, the expected value of the error function would be:

0-5 (M + N2'K2(0-02)}.
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This sets a lower bound on what might reasonably be expected as a value for the error function
when a "good’ solution has been found. In practice it was found that difference terms with values
greater than 1-0 occurred, indicating a probable data extraction or transcription error. Such
errors were allowed to remain and were not corrected in the experimental data listings.

For the specific case examined in detail later in this report the value of (N, + N:') is approxi-
mately 125, leading to a lower bound of 2-5 for the error function. In practice, values close to
4-0 were achieved.

3.2 Minimisation

The requirements for point by point minimisation of each individuat error term Ei(xyz)
were secn to be quite conventional, and such that a standard software package or library routine
could be used. However, the general purpose packages are themselves all iterative and structured
to seek an absolute minimum.

In the case in hand it is intended that the ‘last smooth’ point. on which the error function
is dependent. change from iteration to iteration in the process of convergence on the solution
trajectory. Again in view of the extent of computation it was decided to limit the minimisation
at each iteration to that of a single direction, steepest descent, approximation.

3.2.1 Steepest Descent

In general a minimisation can be initiated from an arbitrary starting point but if limited,
as proposed, to only one direction then it should be commenced at each iteration, from the ‘last
raw’ point from the previous ijteration.

Commencement of the entire procedure must necessarily be somewhat arbitrary and the
initialising ‘last raw" points were set equal to the initialising "last smooth® points derived by time
interpolation of a nominal initialising trajectory. For interactive incrementing of parameters in
the parameter sct, initiation from the ‘last raw” points from the previous convergence to solution
shortens the subsequent convergence, provided the timing parameters have not been changed.
If timing parameters have been changed then the best estimates for starting can be obtained for
the non-reference camera by re-interpolating the previous solution trajectory points appropriate
to the reference camera.

The steepest descent vector direction is derived directly from the singie dimension derivatives
at the search commencement point. Because it is intended to iterate convergently into @ minimum,
it is necessary to estimate derivatives by first differencing of forward and backward steps. hence:

E = Ex, p,2)
E,. = E(x+4,y.z
E, = Ex—4,2) etc.

where step size A is prescribed

AE, = E,.—E, _ etc.
so that
dE - AE, .
ax T 24 ete.
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Defining a ‘normalising’ divisor as

V ={AE;)% + (AE,)? + (AEY2 # 0

| == AEZ[V
m = AE/V
n = AE;/V

where /, m and n are the direction cosines of the unit vector whose components are proportional
to the local derivatives. Step size A along that vector direction, towards the minimum, has

components:

Ax = ~1A = —(AEI)A etc.
v

If the search point is at the minimum, then:
AE, =0=AE, = AE, =V

leading to a divide by zero. To guard against this V was tested, and if zero the direction cosines
were declared as:

=m =0, n="1

in order to proceed with a check search in the z direction. That direction was chosen because,
in principle, the experimental data (gi. a1, ¢z, «2) yields primary redundancy in the height

dimension. ’
Step size A is prescribed, and must be chosen small enough to give reasonable estimates of

local derivatives, but not so small as to give rise to truncation problems in differencing. Also, as ;
the basic unit for search stepping, its magnitude tends to control resolution. A was therefore \
held as a member of the parameter set, for interactive manipulation. In general a value of
0125 metre was used.

3.2.2 Stepping |

To speed up the search process a coarse technique of step size doubling was used to encom-
pass the minimum (along one vector direction) within a span of three points having two equal
spacings, thus permitting guadratic interpolation. Hence:

Eio) = E(xo, yo. z0) .
Eqy = E(xo+Ax, yo+ Ay, 20+ A2)

(x0+2Ax) = 2xo+Ax)—Xxqg ete.
E2y = E(xo+ 2Ax, yo+ 20y, 2o+ 2A2).

If E, < Eqg,, such that the minimum has not been passed, then abandon E,, and repeat the
process

(x0 +2nAx) = 2(x0+ nAx)~xo
E2ny, = E(xo+ 2nAx, Yo+ 2nAx, 20+ 2nAz2)
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until Epzg, > En,, giving

Ey = E(x0, Yo, Z0)

I

En, = E{x0+nAx, yo+nAy, z¢+nAz)
Eian) = E(xo+ 2nAx, yo+2nAy, 2o+ 2nAz)

a1 equal spacing encompassing the minimum.

3.2.3 Estimation

Given the values Eq,. E(n). £.2n), estimates can then be made of the value of the minimum E,
and its (x, y. z) location. Quadratic estimation is based on the following:

E = E, +as+bs?
Emny = Egta+b
E(‘.’n) = E:O)+2a+4b

YE
- a+2bs
)

=0 when s= —aj2b
wherc 5 i a length parameter in the vector direction corresponding to step size n, then:

a {3Ew0) - 4En, + Eony}

2 2AEw0 —2Em +Ecny)
¢, say 0<exg2
The estimated location of the minimum is:

(Xo+ cndx, yo+cndy, 2o+ cnlAz)
the coordinates of which can be obtained from those of the last step:

(x0+ 2nAx, yo+2nAy, 2o+ 2nAz)
by:

{xo+cnAx} = {(xo+2n1Ax) — xo}c/2+ Xo etc.

The corresponding value of the error function may then be either estimated from the quad-
ratic fit through:

Eminlest = Eq0)+ac+be?
or calculated through the error function sub-routine using the (x, y, z) coordinates. The latter
method was chosen. partly for convenience, partly to avoid truncation problems, but pre-

dominantly to avoid mal-estimation in the event of the error function not being well fitted by
a quadratic.
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3.3 Smoothing

As stated previously, the intention is to apply a curve fitting procedure, that uses time as a
master variable, to subsets of the ‘raw’ points derived through the point by point minimisations.
This will be a single pass processing at each iteration.

3.3.1 Subsets

The curve fitting procedure was conceived to be, basically, a central estimator process,
1.e. given a sequence of values

. Xn_2, Xn_1, Xn, Xn-1, Xpn+2, Xn+3 . . .

then a smoothed value xq*, corresponding to xp, is derived from the central value xn and its
adjacent neighbours xn_1, xn,1 and Xn_s, xp+2 etc. Thus the smoothing is achieved by processing
a subset of the sequence having xy as the central value. This can be done for all values other
than those at the extreme ends. which must rely on extrapolation using derivatives.

For the case in hand, where two sequences having different timing are to be time meshed,
the process envisaged was to derive the smoothed value x;n* corresponding to x1, from

X1.n

X1 n.1, Xt nl efc.
and

X2.m

X2 m. 1. X2 m+1 etc.

where x2 ., is the member of the sequence {x2,k} closest in time to x; n (and conversely for xz n*).
The time meshing of the two sequences is such that the subset for processing will involve unequal
time infervals between points in time order.

3.3.2 Curve Fitting

Several factors influence the choice of a curve fitting routine; the two dominant factors
being the span of time (points) to be used in the central estimator, and the degree of complexity
of curve mode! being fitted. The smaller the time span, the fewer the number of degrees of
freedom available for model fitting and smoothing. The more complex the model, the greater
the number of degrees of freedom required for fitting and hence the fewer available for smoothing.

A subset of 3 points from each camera, 6 points in all, covering some 2-3 seconds of real
time, involves 6 input data pairs providing 12 degrees of freedom. Extending the subset to 5 points
from each camera, covering 4-5 seconds, provides 20 degrees of freedom.

To fit a straight line constant speed trajectory model (linear in time and space) requires
6 degrees of freedom. To allow for curvature in time only (acceleration along the straight line
path) requires 7 degrees of freedom. A constant speed trajectory with spatial curvature (accelera-
tion vector orthogonal to the velocity vector) requires 8 degrees of freedom. Full allowance
for curvature in time and space to second order requires 9 degrees of freedom.

The simple linear (time and space) model, fitted to a subset of 6 points, provides a reasonable
match of degrees of freedom between curve fitting and smoothing. It is also computationally
simple. However, with speed reduction expected in the approach to hover it is obviously not
an ideal model.
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Extending the model to include speed change along the straight line path (Appendix 1)
yields a set of relationships which are more difficult to handle than those of the further extension
to full curvature. In the latter case the x, y and z variables separate, with resulting simplification.

The basis of the curve fitting adopted was the assumption that the x, y and z components of
the trajectory could, over short segments, be fitted by second order polynomials with time as the
independent variable, viz.:

X = Xo+ Ux(t —1o) + ax{t —10)? etc.
The classical least-squares approach to solving for xo, ux. ax etc. yields the solution form:

Z 1 Z (Yl*'o) Z (Y{“’u)zq Xo Z Xg ]
i i

i i
Z (ti—to) Z (t: —10)2 Z (ti—10)® ux | = Z x¢(ti—to) ]
i

i i i

Z (¢ —to)? S< (t1 —1o)? S‘ (ti —to)? ax ZXt(I(—Io)z
! 1 1

N JL L i .

where the summation extends over the chosen subset of (¢, xi). i
The subset chosen, in the subscript notation of Section 3.3.1, was

X1,0n-2, X1.6_1 X1,n, X1 0+l X1 n+2
together with
X2,m-2, X2 m_1, X2,my, X2, m+1, X2 m+2

and their corresponding times, f, to determine the smoothed value x; o* corresponding to x; n.
A position estimate (x*, y*, z*) is thus obtained corresponding to each camera observation .

(i, «r). Adjacent estimates are strongly correlated through the smoothing, but correlation does

not extend beyond five seconds so that the texture of the trajectory is not suppressed.

3.4 Quality of Fit

Assuming that the interactive iterative procedure is convergent to a unique solution—-a
fitted trajectory—then the quality of that solution needs to be appraised to see how well it fits .
the original experimental data. Appraisal is also needed through the interactive process in order
to decide how next to increment the parameter set, in search of the absolute minimum. \

A ‘solution’, final or intermediate, yields position estimates corresponding to each camera .
observation, and for each position estimate there is a pair of data domain values (u. v) corres-
ponding to the experimental data pairs (§, «). The differences between the experimental and
fitted values are closely related to the ‘data’ error terms of the error function, but the error function
uses differences based on the ‘raw’ search points rather than the corresponding ‘smoothed’
points. Nevertheless, it is reasonable to assume that the final solution which minimises the error
function should be one for which all systematic errors have been compensated, leaving only
random errors having distributions with zero means.

The sequence of differences between (4, a); and (u, v); values will indicate any residual
uncorrected trends, e.g. all positive values (a-v) for one camera and all negative for the other
would indicate a significant elevation error. For the final solution one would like to see an absence |
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of bias at any portion of the trajectory. The ends of the trajectory can be expected to be particu-
larly sensitive.

Apart from the signs and magnitudes of individual difference terms, the means and standard
deviations of the sets of differences 8¢, 83, 842, daz provide a measure of the overall quality of
the solution.

To assist with parameter incrementing decisions in the interactive process, the program used
was structured to provide, after the desired number of iterations, the values for:

Sum of errors: Z Eyy
ij

the error function value,

Maximum error: (7, j), £y
the location and value of the largest individual error term,

Total number of points: N+ Nz’
the number of solution points/camera frames being used,

.

Mean error: N ! S‘ Ey

VN2
i
together with the four values:
N Ny’
N @ z (5} =12
i
J=1 j=

These vatues facilitate the decisions on which parameters to increment for the next iterations.
On exit from the program a complete solution is required together with the values of the
parameter set and data on the residual distribution of errors. The exit listing consisted of :
(@) for each camera:
P tpe x50y 5y g, Yy, day, j=1b...N¢

and the moments of the residual differences

Ny N

Z Bgp)n, i‘ (8a)" for n—=1,2234
L
j=1

je= 1

(b) the error data:
Sum of errors
Maximum error
Number of points
Mean Error

{c) the parameter set leading to that solution:
To. AT, AAzy, AEL, AAzs, AEL, w..
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4. IMPLEMENTATION

In this section the trials data and trajectory reconstruction for one helicopter approach are
examined in some detail in order to exhibit the nature of the original problem, the operation of
the optimisation routine, and the interactive manipulation of the parameter set.

4.1 Trials Data

The particular set of trials data to be dealt with is that which is identified in Reference 1 as
“Rockhampton 15.

The raw data, i.e. the ‘azimuth’ and ‘elevation’ values measured from the cine film, frame by
frame, projections, are given in Table 1. Although the data are listed by frame number, it should
not be assumed that the data is "matched' between cameras. In fact a cursory examination of
the elevation values shows that the ‘hover’ is in the region of Frame No. 69 for Camera 1 and
Frame No. 52 for Camera 2.

The plots of Camera | and Camera 2 data, depicting the ‘views’ as seen from those cameras,
are given in Figures 5(a) and 5(b). The troughs and peaks in the ‘head-on’ view can be sub-
Jjectively matched to phases in the ‘broadside’ view. The optimisation routine is intended to
provide a rigorous method of searching out the optimum match.

In passing,. it is of interest to note that the initial parts of the views suggest that an approach
was being made to a point well short of the landing aid, at relatively low speed. It is probable
that pilot recognition of ground-based textural features (trees?) provided the cue to correct
judgement of orientation and height.

4.2 Central Plane Projections

The nominal approach path is in the plane x = 0, which corresponds to zero azimuth for
Camera 2, the head-on camera. The raw data from Camera 1 implicitly define a set of sight lines
to the aircraft from that camera. Those sight lines will intersect the central plane, x = 0, in a
sequence of points (o, 1y;, 12;) Whose coordinates then define a sequence of elevation values,
2¥1;, appropriate to Camera 2, but not necessarily in time correspondence with the raw data
agi for Camera 2. However, plots of the sequence of elevation values, as; from Camera 2 and the
sequence of elevation values 2vy; inferred from Camera | may be compared to gain an insight
into the relative timing relationship between the two cameras.

The equations for deriving the 2vi; values are given in Appendix 2. The resulting plots, of
elevation values (in mm) against frame number are shown in Figure 6.

4.3 Relative Timing

The ‘character’ of the plots in Figure 6 are relatively well matched, but show that Camera 2
(x symbol) ran slower than Camera | (+ symbol). This is consistent with the post-trial cali-
brations of the cameras, which indicated that Camera | had maintained calibration but that
Camera 2 was running slow.

Comparison of magnitudes of elevation values for the early frame numbers, and rough
matching of the troughs and peaks, suggest timing correspondence between

Camera | Frame No. 4 46 59 68
Camera 2 Frame No. 1 35 47 52

as plotted in Figure 7.
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Using Camera | timing as the ‘master’ timing, the times of Camera 2 exposures can be ex-
pressed in the form

tan = To+n AT

where 2 is the time of exposure of the nth frame of Camera 2. Based on Figure 7, parameter
values suitable for commencing the optimisation search are:

T()‘- 3
AT == {-25.

4.4 Trajectory Initialisation

To commence the iterative optimisation procedure requires notional initial values to be
assigned as "last raw’ values; ‘last smooth’ values are derived within the procedure.

A nominal straight line trajectory is used for initialising. by assigning end points to corres-
pond with the data span for Camera }. The end points used were the same for all trajectories, viz:

Pyr = (0, 1000, 200)
Pix - (0, 100, 15)

where Py and Pyx correspond to the first and last frames of Camera 1. The full set of Camera 1
values are then derived by direct interpolation (equivalent to a constant speed trajectory) and the
Camera 2 values by interpolating on the basis of 7o and AT.

The initialising values correspond to commencing the approach on the centre line 2000
metres out, at 200 metres in height, and descending at constant speed to a point on the centre
line. 100 metres from Camera 2 (approximate location of the PLS) at a height of 15 metres.

The possibility that a convergence solution might be dependent on the chosen initialising
trajectory was tested by using different initialising end points. In each such case the solution
appeared to be completely independent of the initialisation. The Py, Py values given above were
then adopted as standard for all trajectory reconstructions.

4.5 lteration Convergence

On entry into the procedure the value of the error function found after the first iteration
will be predominantly dependent on the mismatch between the initialising trajectory values
and the actual trajectory values. From Figure 5(a) and Figure 6 it is apparent that Camera |
data includes the final overshoot after completion of the approach. There will therefore be a
significant error function value over the first few iterations.

Entering the procedure with values in the parameter set:

Ty 13 time origin of Camera 2
AT 1-25 frame intervaf of Camera 2
we 0-5 weighting factor of error function
RY R azimuth bias, Camera |
AEL 0O elevation bias, Camera 1
Az 0 azimuth bias, Camera 2
AEL, O elevation bias, Camera 2
30
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gave an error function value in excess of 16 000 at the first iteration, with rapid convergence (as
shown in Figure 8) to less than 80 after 20 iterations and asymptotically to approximately 66-5.

Varying the weighting factor ws, and thereby varying the relative weighting given to ‘spatial’
and ‘data’ error terms did not appear to offer significant improvement in the speed of convergence.
A value of 0-5 was therefore adopted and held constant.

4.6 Parameter Search
4.6.1 (To, AT) Scan

The timing parameters (T, AT) will obviously exert a major influence on the quality of fit.
Also there should be a strong interaction between them in that as AT is increased the time span
of Camera 2 data will be increased, requiring a compensatory change in Ty to ‘centralise’ the
data with respect to Camera 1 data timing. With 54 observations (frames) from Camera 2 an
increase of 0-01 second in AT increases the time span of Camera 2 data by 0- 54 second, and would
require a change of —0-27 second in T to recentralise.

A bivariate scan of (Tp, AT) starting at (3-0, 1-25) and incrementing by (+1-0, +0-01)
searching for reduction in the error function, yielded the values given in Table 2. For an inter-
active search it would not be necessary to scan the full array. It is given here for illustrative
purposes.

TABLE 2
Results from search scan of (Ty, AT) at (AAzy, AEl, AAzs, AEl) = (0, 0, 0, 0)

| ; | | T ‘
i : ! Maximum Error ) ! {
To AT , Sum ‘\ " I No. of Mean
(second) ! (second) ‘ Errors | Loc. Value Points Error
. ! ‘ j ‘
¥ | |
30 125 | 6657 l 26 | 217 2 0:55 )
3 1126 | me6 | 26 | 22 123 0-59 |
3 127 | 71901 | 26 | 242 123 0-64 ‘
3 s 9399 L0 88l 124 0-76
| |
2 . 125 3 817 |26 .27 122 0-31
2 1126 1 4031 | 2,6 1:34 123 0-33
2 1.27 | 4340 26 | 14 1 123 0-35
2 126 ' 4817 0 2,6 149 124 0-39
| i } i ! )
L 125 2490 1,68 1 129 1 122 0-20
{ 126 | 2509 . L6 ' 115 123 0-20
1o 27 2507 0 1,64 1 095 | 23 0-20
oo | a7 [o26 | 149 D124 0-39
' | 1
o . 15 . 2% | 1L oS 122 0-22 '
0 | 126 | 248 ‘ Le | 191 23 0-20
0 1-27 21-81 L6 | 121 . 123 0-18
o ! 123 ' 2064 1 0 res 0-17 P
I 1 :
1-25 43-2) | 67 0 298 1 2 0-36
- 1-26 39-78 1, 68 3411 122 0-33
1 1-27 3367 | 1,68 202 I 0-28
1 1-28 3042 1,69 i 183 122 1 025

Note that the total number of points being fitted changes systematically as the overlapped
time span of data changes. Also the maximum individual error term switches between the early
part (2,6) of the trajectory and the ‘last’ point e.g. (1, 68). The ‘last’ point appears to provide the
maximum error in most cases and the adjustment of time span of Camera 2 progressively brings
in extra points from Camera 1 with the clear correlation:
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121 points, maximum error term (1, 67)
122 points, maximum error term (1, 68)
123 points, maximum error term (1, 69)

124 points, maximum error term (1, 70).

We must therefore, expect some discontinuity in the error function.
In array form, the bivariate scan yielded error function values at 100 iterations:

. AT
1-25 1-26 127 1-28

To
10 43-21 3978 33-67 30-42
0 2659 24-82 218 20-64
(-0 24-90 25-09 25-07 25-86
2:0 3817 40-31 43-40 4817
30 6657 72-62 7901 93-99

Plots of error function value against To, as loci of constant AT are given in Figure 9, and against
AT as loci of constant T in Figure 10. A bivariate quadratic surface corresponding to the full
array is shown in contour form in Figure 11. It must be remembered that this does not necessarily
indicate the absolute minimum of the hypersurface.

The major axis of the elliptic contours indicates the interdependence between To and AT as
predicted, but not quite in the ratio expected. The approximate slope of the major axis is

0-01 second (AT) = --0-2 second (7).
The point (To, AT) = (0, | -28) is close to the centre of the contours, and is a reasonable starting

point from which to examine other parameter changes. For those values of (Te, AT) the sums of
data domain differences, viz:

Y (8xy) = +32
2 (Sag) = - 24
X (3) = 37
X (82) =16

indicate a significant bias in elevation, but are inconclusive with respect to azimuth.

4.6.2 (AENL, AEl:) Scan

With a priori indications that an elevation error existed on one of the cameras, it is illus-
trative to examine the effects, and interactions, of perturbations of both cameras. If elevation
errors of equal magnitude and sign are introduced into both cameras then the relative spatial
relation between the two skew sight lines at about mid-trajectory is largely preserved. The spatial
relation changes significantly, however, at the ends of the trajectory due to the effects of ranges
from cameras, with the hover point end being most sensitive. A strong correlation can be
expected.
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Holding (7o, AT) at (0, 1-28), a bivariate scan of (AEh, AEl,) starting at (0, 0) and incre-
menting by (+0-1, +0-1) degrees yielded the following array of error function values at 50
iterations:

AEL, | i
‘ .=03 | 02 | -0 0
AEh \ i “
! I
0 ©1927 1584 16-88 21-32
+0-1 2206 i 1534 11-94 12-04
+0-2 325 1 20:02 12-62 9-14
+03 4559 1 3040 . 19:09 ¢ 1122
1
!

With no changes in time meshing the same number of points, 124, was involved in each
case. The maximum individual error varied between (1, 1), (2, 15) and (i, 70); and was at
(1, 70) in most cases.

Plots of error function value against AE/, as loci of constant AE/,, are given in Figure 12,
and against AEly, as loci of constant AEl, in Figure 13. Bivariate quadratic surface contours
are shown in Figure 14.

As predicted, a strong interdependence is apparent. A differential bias of about 0-25 degrees
is indicated but it is not clear at this stage which camera has the bias error; or whether errors
exist in both. Again it would be unwise to infer too much before examining other parameters.
The smallest value of error function found so far corresponds to (AEh, AElz) = (0-2,0) for
which the data domain difference sums are:

2 (8x) = 0-019

% (Baz) = 4-1
L) =17
I (842) = 0-95

with no clearcut indication of residual bias errors.

4.6.3 (AAz), AAZ2) Scan

Although there is no clear cvidence of any azimuth bias, an azimuth scan was included for
completeness and illustration. Holding (To. AT, AEh, AEl) at (0,1:28,0-2,0) a bivariate
scan of (AA4zy, AAzy) starting at (0, 0) and incrementing by ( +0-5, +0-5) degrees to 50 iterations
yielded the results given in Table 3. The array of error function values is:

™~ '
\\ AAze
. —0-5 0 +0-5 +1-0 +1-5
AAz i
-1-0 | 12:7 10-20 834 7-02 6-28
-0-5 | 10-72 8-81 7-86 6-83 7-22
0 ' 10-65 9-14 8-48 8-10 10-97
+0-5 11-29 14-53 10-20 11-45 12-45
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The value 14-53 at (AAz), Adz;) = (+0-5,0) is clearly a rogue value. The corresponding
entry in Table 3 shows a maximum individual error term of 3:55. By comparison with other
maximum error terms well below 1-0, this suggests that convergence to the necessary accuracy
was not achieved. Similar conclusions would be appropriate for the entries (AA4z;, A4z2) equal
to (0, +1-5)and (+0-5, +1:0), probably so for (+0-5, +1-5) and (+0-5, —0-5), and possibly
so for several others.

With absolute values of the error function now around 10 and less, and a shallow surface
to determine, the number of iterations needs to be increased to obtain the necessary accuracy.

TABLE 3

Results from search scan of (AAzy, AAz)) at (Tg, AT, AEL, AEl) = (0,1:28,0-2,0)

i ; Maximum Error i
AAz; . AAzs i Sum : ! “ No. of
(deg) (deg) i Errors ‘ Loc. ! Value | Points
—10 —0:5 1 1271 ¢ 2,15 0-61 194
10 0 10-20 2,15 0-51 124
~1-0 +0°5 8-34 2,15 0-43 124
—-1-0 +1-0 7-02 2,15 035 . 124
—1-0 +1-5 628 2,15 0-28 124
— |
—0-5 ~05 10-72 2,15 0-50 124
~0-5 ) 8-81 2,15 0-42 124
~0-5 405 7-86 1,70 0-59 124 \
-0-5 C 4140 6-83 2,15 0-27 124
~0-5 +1-5 7.22 1,70 0-69 124 |
0 —0-5 10-65 1,70 0-65 124 l
0 0 9-14 1,70 0-64 124
0 +0:5 8-48 1,70 0-53 124
0 +10 810 1,70 0-35 124
0 +1 10-97 1,70 217 124
+0-5 Co—05 1129 1.70 0-81 124 !
+0:5 0 1453 1,70 3-55 124
+0-5 05 | 1020 1,70 ¢ 058 124 l
+05 +#1:0 | 1145 L 107 124 |
+05 ¢ 4150 1245 0 L7009l 124

N ; 4 | -
\\AAZZ ' ,
N 0 " 405 +10 +1-5
AAzy \\;
—-1-0 10-05 8-06 666 5-90
—0-5 852 | 719 6-49 6-39
0 . 851 7-83 776 836
+0:5 . 995 9-89 1048 11:76
|
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with no value of maximum error greater than 0-60. Note that the incremental spacing of A4z,
and A4z; is 0- 5 deg. and that the changes in error function value are relatively small. The surface
shape is very shallow. Bivariate quadratic surface contours are shown in Figure 15.

From the physical arrangement of the cameras it is to be expected that sensitivity to Adz,
will be low. However, incremental adjustments of A4z should have an effect similar to that of
AElL. This is because the low sight lines from Camera 1 can be corrected, to first order, either by
a positive increment AE/ (nominal value El, = 0) or by a clockwise increment of A4z, on Az,
{nominal value 4z, = —81 -5), where the relative magnitudes of AEl) to AAz; reflect the approach
profile slope as seen from Camera 1.

4.6.4 (AElL, AAz;) Scan

On the basis of anticipated interaction between AEl; and A4z, with an approximate approach
profile siope of 1 in 6 set by the PLS, a search scan of (AEh, AAz) was made, starting at (0, 0)
and incrementing by (+0-1, —0-5) degrees to 100 iterations, with the expectation of encompass-
ing a minimum in a 4 by 4 array. The results obtained were:

. AAZ] : .
N 15, —10  —05 0
AEL : ;‘ ’
1 \ | ' 1
0 859 | 18 | 152 | 206
+0-1 8:04 | 781 | 908 . 1180
+0-2 13-14 10-05 852 8:51
+0-3 23-84 17-88 ‘ 13-53 1 1075

The value 20-64 at (AEl,, AAdz)) = (0, 0) at 100 iterations, when compared with the corre-
spoading value 21-32 at (AEh, AEL) = (0, 0) at 50 iterations in the (AEl, AEL) scan, shows
that the (AElh, AEl>) scan values (Section 4.6.2) were not fully converged at 50 iterations.

Bivariate quadratic contours appropriate to the (AEh, AAz)) data above are shown in Figure
16. The strong correlation anticipated is apparent, but at a slope closer to 1 in 10 than to the
1 in 6 of the PLS. This is a reflection of the low approach path for the case being examined.

The centre of the contours is close to (AEl, AAz;) = (0. —2-0) so that the data at this
stage would suggest an angular bias in the azimuth of Camera {. Again it must be emphasised
that absolute minimum has not yet been found. Also, a 2 degree error in azimuth seems in-
ordinately large in view of the accuracy obtainable from the theodolite survey, in which measure-
ments were taken to the nearest half minute (i.e. 2 orders better).

With respect to the reconstructed trajectory, varying the values for (AEh, AAz;) along the
axis of correlation (Fig. 16) has little effect. The mean approach path remains largely unchanged
although the textural deviations are moved towards or away from the aiming point. Hence
in drawing inferences relating to angle of approach, and approach aid guidance, the effects are
negligible.

4.7 Free Search

In practice, no rigorous procedure was adopted initially for the interactive phases. Those
approaches which, from the raw data, appeared to have the greatest texture (on which to achieve
correlation) were processed first and the interactions exhibited in Sections 4.6.1 to 4.6.4 were
quickly apparent.
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Trends, that were consistent across the ensemble, were sought in order to gauge where
steady bias errors existed, and where dependencies between parameters could be found, inter-
preted and anticipated to hold for all trajectories.

Based on the broad results described in Section 5, a free search solution, for the Rock-
hampton 15 trajectory data covered in detail in this section, was found for (7o, AT, AEl) =
(1-1,1-27,0-285) with (AEl, Adz), AAzz) = (0,0,0). The error function value, summed
over 123 points, was 4-1. Solution trajectory details etc. are given in Table 4(a).(b),(c).

4.8 Solution Data

The (x, y, z) coordinates of points on the reconstructed smoothed trajectory corresponding
to the observation times of Camera 1 exposures are listed in Table 4(a). Similarly, those for
Camera 2 are given in Table 4(b).

The original data values (from film reading) are also listed, together with the differences
between those values and the corresponding values calculated from the smoothed trajectory
coordinates. The sums of moments, to fourth power, of those differences are given in Table 4(¢)
for each camera. These moments provide indications of the distribution of residual errors.

From a cursory scan of the columns of differences in Table 4(a) and (b) it can be seen that
the majority of values lie in the range —0-3 to +0-3 (mm), and that there are few long sequences
of positive or negative sign that would indicate systematic errors. Thus although there may be
some isolated point discrepancies, there appears to be a good match of texture between the two
sets of camera data.

With respect to the isolated gross discrepancies it is revealing to review the raw data values
corresponding to those difference values with magnitudes in excess of 0-5. Film reading errors
may be inferred in many cases, and extreme sensitivity near the hover may well account for those
at the end. In particular:

(a) Camera 1, Frame No. 10, 8f; = 0-5601

The value of —123-5 for 4y is probably in error. The sequence of first differences
in the ¢ values suggests & more likely raw data value of —122-5 viz:
listed:

-134:5 —130-5 —126-5  —123-5  ~119:0 —115:0 1115
+4:0 +40 +3:0  +4:5 +4:0 +3°5

likely:
-134-5 1305 -126-5 —122:5 1190 -115-0 1S

+4-0 +4-0 +4-0 +3-5 +4-0 +3-5
(b) Camera I, Frame No. 7, 8«; = 0-5604
Frame No. 8, 8a; = 0-5540
There is no immediately obvious ‘rogue’ value in the sequence of values for ay,
but there are also large valued differences, 8«2, at approximately the same time,
viz:
Camera 2, Frame No. 5, 8a; = —0-8264
Frame No. 6, 8az = —0-8826
which point to the misreadings in the a2 sequence, and suggest that the a2 values
for Camera 2, Frame Nos. 5 and 6 should have been 70-5 and 69 -0 respectively
instead of 71-5 and 70-0.

(c}) Camera 2, Frame No. 29, 8az = —0:5437
A value 29-5 for ay is more likely than the listed value of 30-5.
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TABLE 4(a) Reconstructed Trajectory -

Y.

5n

Y
.56
.54

.99
.58

S4a
58
-1
S#
5@
5@
a¢g

CAMERA 1
Frame Time Smoothed Point

NO. x y 2 AZIM

2 2.99 -50.486 974.370 216.52% -156

3 3.890 -47.782 954.684 218.4:7 -152

4 4.99 -44.746 935.235 2P4.3L6 -147

S 5.99 -41.618 916.268 198.37'2 -142

[ 6.60 -38.993 897.634 192.3u8 -139

7 7.80 -34.751 873.476 186.4°7 -134

8 8.9 -31.999 B62.259 189.8° ! -139

9 9.0 -29.829 845.984 173.20L1 -176

te 19.96 -27.917 838.518 166.849 -123
11 11.89 -25.872 815.182 1$9.852 -119.

4 12.90 -22.782 799.798 152.287 -11%

13 13.98 ~-21.887 784.639 145.5'¢ -111
P4 14.08 -19.954 769.540 138.84%4 -107.
15 16.08 -18.227 754.542 132.3%2 -183.
16 16.96 -16.687 7498.131 126.167 -99.
17 17.98 -15.656 726.712 129.14% -96.
18 18.00 -14.896 714.011 114.216 -92.
19 19.99 -14.5988 782.233 108.439 -89.
20 208.99 -14.894 699.749 16§3.98C -86.
21 21.88 -13.527 679.192 98.103 -83.
22 22.89 -13.963 667.766 93.279 -80.
23 23.89 -12.623 656.421 88.639 -76.
24 24.90 -12.411 645.478 83.939 ~-73.
25 25.P0 -12.949 635.062 79.449 -78.
26 26.80 -11.371 624.975 75.314 -67.
27 27.09 -ip.776 615.307 71.404 -64.
28 28.99 ~18.119 686.931 67.849 -61.
29 29.00 -9.782 597.297 64.577 -59.
30 39.00 -9.652 588.965 61.635 -56.
3t 31.90 -9.536 6584.849 59.095 -54.
32 32.00 -9.291 573.894 56.845 -51.
33 33.00 -8.951 565.513 54.893 -49.
34 34.90 -8.536 568.264 53.166 -47.
35 35.9¢0 -8.199 551.188 51.562 -44.
36 26.00 -8.904 544.941 50.048 -42.
37 37.99 ~7.979 537.154 48,679 -44.
28 28.00 -8.1091 539.347 47 .16 -38.
39 39.08 -8.287 623.978 45,009 -35.
) 4¢ 49.09 -8.363 514.903 43.136 -33.
: 41 41.09 -8.331 5£6.096 41.526 =-30.
t 42 42.90 -8.151 496.574 40.308 -26.
43 43.89 -7.982 486.655 38.876 -23.
44 44.909 -7.817 476.251 37.316 -24.
45 45.900 -7.509 464.996 36.129 -16.
46 46.90 -7.151 452.834 35.337 -12.
i 47 47 .89 -6.7806 439.741 34.989 -7.
{ 48 48.09 ~6.208 425.745 35.024 -2.
: 49 49.9890 ~-5.538 411.175 35.290 2.
58 50.890 -4.639 396.432 35.596 8.
51 651.00 -3.7804 381.367 35.690 13.
52 652.98 -2.674 366.986 35.578 18.
53 63.809 -1.724 350.268 35.2580 24.
54 54,909 -9.860 334.087 34,781 34.
55 65.P88 -8.9p67 317.957 34.221 35.
56 56.990 #.655 3P1.723 33.548 41.
‘ 57 657.88 1.367 285.777 32.777 47.
58 58.00 2.837 279.3590 31.872 52.
9 59.090 2.724 255.311 39.818 57.
60 68.99 3.451 249.728 29.579 63.
61 61.60 4.196 226.523 28. 142 67.
62 62.00 5.929 212.858 26,424 72.
63 63.00 5.821 199.838 24.521 77.
64 64.00 6.585 187,395 22.456 81.
65 65.00 7.261 175.137 29.376 85.

66 66.900 7.875 163.263 18,185 89.

67 67.00 8.369 151.378 16.258 93.

68 68.44@ 8.668 139.183 15,990 97.
69 69.00 8.798 126.885 14.529 141,

78 79.98@ 8.759 114.243 14.549 185.
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TABLE 4(b) Reconstructed Trajectory - Camera 2 data

CAMERA 2
Frame Time Smoothed Polint
NO. x ¥ z
1 2.37 ~49.476 967.Q010 214.2%9
2 3.64 -45.83¢ 942.162 2p06.538
3 4,91 -~41.997 917.9%2 198,914
4 §.18 -37.529 894.363 191.299
5 7.45 -33.456 871.627 183.616
6 8.72 -39.448 859.584 175.166
7 9.99 -27.938 839.674 166.1:9
g8 11.26 =-295.351 811.193 187,258
g 12.53 -22.721 791.746 148.734
18 13.8¢ -20.318 772.527 148,164
11 15,87 -18.1292 7%3.529 131.908
12 16.34 -16.273 735.458 124.084
13 17.61 ~-15.168 718.871 116,496
14 18.88 -14.573 743.661 149,104
15 29.15 -14.824 689.014 102.306
16 21.42 -13.328 674.383 g96.Q@41
17 22.69 ~-12.749 659.854 99.08%
18 23.96 ~-12.426 645.986 84.119
19 25.23 -11.926 ©32.716 78.4G8
290 26.5¢ -11.964 620.085 73.311
2y 27.77 ~-1€.227 6MA8.114 68.638
2 2%9.44 ~9.779 596.953 64,456
2 3g.31 -9.595 ©586.42S 69,799
24 31.58 -9.483 576.247 57.782
25 32.8B5 -3.900 566.630 55.179
26 34.12 -8.499 557.396 $2.962
27 35.39 -8.11g 548.341 58.964
28 36.66 -7.97% 539.5%32 49,232
29 237.93 -8.895 539.85% 47,137
39 39.29 -8.302 521.587 44,655
31 A9 .47 -8.361 61£.844 42,347
32 41.74 -8.187 499.067 49.674
33 43.91 ~7.980 486.552 38.863
34 44.28 -~7.743 473.16% 36.976
35 45.85 ~7.322 458.42!) 35.642
36 46 .82 ~6.792 442.144 35,032
37 48.89 ~6.144 424,473 35.4340
38 49.36 ~5.261 405.991 35,345
39 58.63 ~4.955% 386.972 35.677
42 51.94 ~2.770 367.649 35.598
41 %3.17 -1.572 347.566 35.189%
42 54.44 -g.%582 326.998 34.546
43 5§5.7) #.44) 306.355 33.7%2
44 56.98 1.3%3 286.899 32.794
45 58.25 2.212 266.553 31.619
46 59.52 3.997 247.679 38.197
47 ©&@#.79% 4.093% 229.45%%5 28.427
48 62.96 5.876 212.05%9 26.318
49 6£3.33 6.979 195.627 23.875
58 64.68 7.9%0 188.881 21.206
51 65.87 7.886 164.827 18.430
52 B7.14 8.421 149.682 16. 864
53 ¢€8.4! 8.742 134.138 14,793
54 69.68 8.789 118.283 14.479
47
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Raw Data
AZIM ELE
-17.99 74,
-16.50 73.
-15.590 73.
-14.08 72,
-13.08 71.
-12.90 78,
-11.50 67
-19.598 65

~9.58 63
~9.98 61
-8.00 59
-7.58 57
-7.88 54.
-7.08 52.
~-7.908 49,
-6.59 48 .
6.58 46.
~6.50 44
~6.50 a1.
-6.00 39
-5.5%8 38
-5.58 36
-5.58 35.
-5.580 34.
-5.50 33
-5.88 32
-5.908 31.
-5.80 3.
-5.989 k{4
-5.%08 28.
-5.50 ]
~-5.%9 27
~5.50 27.
~5.58 26.
~-5.50 26
~5.98 7
~5.08 27
-4.598 29
~3.58 31
-2.%0 32
-1.50 34
-9.50 35
8.5%9 37.
1.50 38.
3.90 48
4.908 41.
6.00 42
8.00 42
19.580 Al
13.0¢ 49.
16.08 38.
19.08 35
22.480 36
25 .9@ 42

Diffs (calc-raw)

-g.
2.
a.

9.
.

-7,
g.
9.

~8.
a.

~-g.
o.
~a.
8.
2.
~7.
~a.
a.
a.
~9.
~8.

-,

~-g.

~d.
a.

-g.
.
a.

-g.
2.

-8.

-9.

-g.

-9.
a.

-p.
ag.
a.

-8,

-9.

-9,

-a.

-9,
8.

-9,
a.

-g.
2.

-0,
'

-0.

-9.

-9.
[

1581

1917
1912
a798
1229
o142
2487
g4z
1433
1639
g846
584
9951

g3g2
1481

1564
9928
@185
1482
9142
1695
186
a176
Bga33
1431

1429
011z
0136
1442
1292
9223
p355
8341

vzz2e
1181

1838
11632
1271

0345
aa10
9252
arza

g141

0942

2829
2141

g734

9659
ga37
1855
9388
9392

o484

8232

8.
-g.
-g.
-8,
-a.
-2,

g.

9.

8.
-9g.
-a.
-9.

Q.

2.

8.
-4,
-9.
-2.

a.

.

2.

9.
~8.
~d.
-2,

2.

.

2.
-a.

2.
-8.
PG
L0475
.3709

2698
Q945
3376
2586
8264
8826
1378
1949
1135
210
1452 g
2567 /
205
1823
4864
ne44
gled )
1235
2919
3493 ‘
2508
4963 ‘
f381
2ae]
1548
2501
3524
2827
5437
3897 )
@291

@.2373

.2629

.3457

L1213

.1a14 '
.16r4

L1413

L1258

L1467 c—
.l4az8 f
8164

.@896

.2548

L1792

.3736

.2982

.3148

.6612

L1628

L7884
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TABLE 4(c) Reconstructed Trajectory ~ Solution data
SOLUTION DATA
Parameter Set
Timing Scale fFactor - 1.2798889
Timing Origin = 1.1800080
Perturbation of Azimutn of Camera 1 - 2.8900009
Perturbation of Elevation of Camera 1 = P.2850080
Perturbation of Azimutn of Camera 2 = 8.820808080
Perturbation of Elevation of Camera 2 = B8.0000088
Error Weighting - g.50080880
Error Data
Sum of Errors = 4.1157312
Max fmum Error Location = 2,53
Max {mum Error Value = #.3412119
Number of Points - 123
Mean Error = #.9334612
Difference Moments
Camera |
SUM (ELEV) = ~8.9741920 SUM (AZIM) = f.6983871
SUM (ELEV**2) = 3.86083144 SUM (AZIM**2) = 1.9690858
SUM (ELEV**3) = £.4464454 SUM (AZIM**3) = 8.3221848
SUM (ELEV**4) = 2.5268412 SUM (AZIM**4) = 2.2487223
Camera 2
SUM (ELEV) = P.6448631 SUM (AZIM) = 8.3471214
SUM (ELEV®*2) = 6.5682282 SUM (AZIM**2) = B.6184735
SUM (ELEV**3) = 9.2578978 SUM (AZIM**3) = 2.8203898
SUM (ELEV**4) = 3.8134278 SUM (AZIM**4) = #.9163171
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(d) Camera 2, Frame No. 52, dxz — 06612
Frame No. $3, 8x» — 1-1620
Frame No. 54, 822 = -0-7804

These correspond to points at the extreme end of the trajectory, with the helicopter
initiating an overshoot and about to fly out of the field of view of Camera 2, Apart
from the possibility of a misreading of the raw data, there is also extreme sensitivity
in the position estimates due to the time matching between cameras in combination
with the effect of short slant range from Camera 2. Further, it is probable that the
smoothing process and extrapolation to the last two points is inadequate to
model faithfully the actual trajectory flown. Thus no inference can be made
with confidence.

The sequence of individual trajectory points corresponding to the nominal 1 second timing
of camera 1 is plotied in Figures 17(a) and (b). Figure 17(a) shows the vertical profile. i.e. height,
z, against range. 1, and Figure 17(b) shows the plan positions, i.e. cross-range. x, against range, 1.

5. RESULTS

The procedure was applied to the experimental data obtained from 14 aircraft approaches.
Across the ensemble of results it was found that the values of AT corresponding to individual
‘optimum’ solutions were all close to 1-27 second, with well defined minima as A7 and T were
varied. That result indicates, with reasonable confidence, that the camera speeds were stable and
constant for all approaches. Refining AT to less than one hundredth of a second was judged
to be unwarranted and a fixed value of 1-27 second was adopted for AT in the final reconstruction
of the trajectories. Given that value for AT, time meshing of the data from the two cameras is
then directly dependent on T, Resolution of T, to less than one tenth of a second was also
judged to be unwarranted.

In general terms the individual "optima’ were found to be insensitive to AA4zs. as might be
expected, and to indicate broadly that A4z was near zero. This 1s consistent with the level of
accuracy possible from the theodolite survey of the experimental site. Small value errors of the
order of 0- | degrecs in either azimuth angle would have insignificant effects on the reconstructed
approach profile. Both A4z und A4z, were accepted as having values of zero.

The elevation values MEY and MEI; were more equivocal. The strong interaction between
these parameters, illustrated in Figure 14, results from camera/site geometry and is such that
bulk correction of bias can be achieved by parametric variation of either term. However. varying
AEl; around an optimum tends to produce sequences of residual differences of constant sign
but of opposite signs at opposite ends of the trajectory (viz: positive at the start of the approach
and negative ncar the hover end, or vice versa) indicating inability to effect complete removal
of systematic crror. Correction through AE/, was invariably more effective.

Similarly, the strong interaction between ME/, and AA:z, illustrated in Figure 16, results
from the approach slope and location of Camera 1. and is such that bulk correction by either
parameter is possiblc. Across the ensemble of trajectories, individual ‘optimum’ solutions indi-
cated a trend towards a zero value for A4 but positive values for AE/,. Particular trajectory
solutions along the line of correlation between AE/, and AAz; have little effect on solution points
as seen from the landing aid and therefore will not affect conclusions drawn about the sensitivity
etc. of the aid. Finally it was considered that potential errors in AEh of up to 0-5 degrees were
feasible but that corresponding required corrections of up to 5 degrees in A4z, were unreasonable.
The subjective conclusion from processing all trajectories was that the error lay in E/y and should
be corrected through AE},.

The family of results is given in Table 5 for the ensemble of 14 trajectory reconstructions
with the allowable perturbations limited to To and MEA. and AT held at 1-27 second. Some
marginally better ‘optimum’ solutions were possible by variation of other parameters but. across
the ensemble, there was no clear evidence that parameters other than AE/ should be varied.

The particular results given in Table 5 show a spread of values for AE/; be.+ en0-0and 0- 5 J
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degree. Errors of that magnitude would not have been noticeable to the camera operator and are
certainly feasible. The possibility that a steady bias error was present on the elevation of Camera 1
was tested by re-running the program with a fixed value of AEl equal to the mean of those in
Table 5. The results produced error function values of sufficient magnitude for that possibility
to be deemed to be invalid.

TABLE §

Data for ensembie of 14 trajectories

Ref. To AEh | Sum ' Number
No. (second) (deg) ‘ Errors | of Points
R3 —26-2 015 451 19
RS -53-0 . 0-20 5-25 121
R6 164 019 48 - 132
R8 -34.3 031 - 39 128
R9Y —-1-7 038 529 138
RI12 -9:3 1 0435 1092 168
RJ3 3.4 0-155 |  5-41 : 133
RI4 . -745 ' 043 . 833 175
R15 11 0-285 : 412 123
R16 . =70-5 023 | 965 ( 160
R17 S 742 03¢ ' 601 | 168
RI8 ~17-8 040 | 532 i 135
RI19 P -82:0 005 | 579 M
R20 . 193 0-27 631 186

No cause has yet been established for the variation in E/; although several hypotheses have
been put forward. These centre on defects in the film registering mechanism of the camera,
the external motor/gearbox used to reduce frame rate, or the mounting of the camera on its
tripod. Similar factors of inertia and,or backlash are involved in each case, and are coupled
to the stop,start action and torque drive of the electric motor. Attempts to isolate the cause
have now been abandoned.

In the mid-trajectory region, at around 600 metres from each camera, an error in El; of 0-5
degrees corresponds to a height span of § metres. Resolving AEl; to 0-01 implies attempting
to resolve the aircraft height to 0- 1 metre. This would be unrealistic in terms of determining the
trajectory, but is reasonable in terms of determining bias error in the camera when the pooling
of data over 100 or more points is involved.

With respect to trajectory reconstruction, the smoothing process embedded within the
iterative procedure will reduce ‘noise’ arising from the instrumentation process and from the
true trajectory, to the extent that the smoothing model may be inadequate to represent the true
trajectory. No data is available on the ‘roughness’ of the flight paths or conditions and it is
believed that conditions were reasonably smooth. The reconstructed trajectories are therefore
likely to be faithful representations of the actual flight paths. The initial objective was to resolve
the flight paths to an accuracy of the order of + | metre, and it is believed that that has been
achieved.

The full set of trajectory plots reconstructed from the Rockhampton experiment data is
given in Reference 1. The computer program used was CAMCAL.FOR, written in Fortran 77
and run on the ARL VAX 11,780,
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APPENDIX 1
Straight Line Trajectory with Speed Variation

1. Problem

To find the *best’ straight line trajectory fit to a set of points (in three dimensions) where the
data, although representing samples equispaced in time, do not represent equal intervals in space
due to the velocity not being constant.

2. Simple Case: 3 Points

Three points define a plane; thus the problem can, without loss of generality, be reduced to
one in two dimensions:

Py (x5 y3)

Py (xyy,!

We can reasonably expect the fitted line to pass through the mean of the points, and to be
aligned close to the vector direction £3—%1.

Assuming a speed of u at time zero corresponding to the central point, Pg, together with
constant acceleration, g, the linear distances, s, along the trajectory can be expressed as:
S_1 = So—u+la
So = So
S+ = So+u+ia

for which the mean value S$* satisfies

38* = 3So+a

S* = So+4a




and
Sa=8*"—u+ia

So=8* —¢4a
St = S*+u+ia
Assign parametric values x*, y*, Ax, Ay, « which together define the three fitted points as:
(x* —Ax + jalx, y*—Ay+ }ady)
(x* —§aldx, p* —4aly)
(x*+Ax+ alx, y*+ Ay + Jady).
Any such set of three points are colinear. We require to determine the values of the parameter

set to satisfy the criteria for “best’ fit.
Using a ‘least squares’ criteria, i.e. the minimisation of an error function of the form:

E= Z (M—N)2
i

E = (x* —Ax + }aDx —x1)2+ (y* — Ay + JaAy —y1)?
+{x* —joAx—x2)2+(y*  —daly—yo)?
+{x* +Ax+ dadx—x3)2+ (3* + Ay + fady —yg).

set:

This is in fact, the sum of the perpendicular distances from the three data points (xi, y1) to the
line defined by the parameter set {x*, y*, Ax, Ay, o}.

The conditions leading to a minimum value for E are given by equating to zero the de-
rivatives of £ with respect to the parameters.

dE
gb—x* = (x*—Ax+ }aAx—x1)
+(x* —jadx—x2)
+(x*+Ax+ $aldx —x3)
= 3x* —(x1 + X2+ Xx3).
Thus
E _
X
for

3Ix* = x1+x2+x3
and similarly
QE

5}'"’ =
for
*=m+y2+ys

and, as expected, the fitted line passes through the mean of the data points.

¢ E _ 2Ax —(xg—x1)+ fa{aBbx —(xg—2xs + x1)}
dAx
3
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¥y
- '
'3
X
thus to first order, with « small
dE
ohx = O
for
2Ax ~ (xg—x1)

and similarly for Ay so that, as expected, the fitted line is aligned close to the vector direction
R3—%R1.

Note also that
x3—2xz+x1 = (X1+ X2+ x3)—3x2
= 3(x*—x2)
so that the equation dE/dAx = 0 can be expressed as
2Ax —(x3—~x1) + dofadAx —3(x* —x32)} = O
and similarly for 2/0Ay and 5/Az.
E/da = JAx{adx —3(x* —x2)} + }p{ady—3(y* —y2)}
but it is not necessary that ’

alx—3(x* —xz) = 0 = aBy—3(y*—y2)

which would imply }
a_(x*—x) _ (=) ‘
3 Ax Ay )

and thus that (xz, y2) lay on the fitted line. That condition would be appropriate only if the original
data points were colinear.
The equation can, however, be expressed as

aSE = Ja{(Ax)? +(Ay)2} —{Ax(x* —x2) + AY(y* —ya)t '
so that
3E _
da - ¢
for
o BAx el . S —
«_ JAOrr@ES 0y f
3 J@xp+(ay)r

_ it —xp)+m(y* ),
| As

Thus the numerator is the length of the projection (component) of the vector £*—% in the

direction (Ax, Ay) which has the direction cosines (/, m) of the fitted line. a is thus directly
related to the ratio of the magnitude of the vector projection to the magnitude of As.
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With a six parameter set (using x*, y*, Ax, Ay, ay, ay) an exact fit is obtained which separates
the x and y variables completely, giving

Ix* = (1 +x2+x3) Iy* = (n+y2+ys)
2Ax = (x3—x1) 20y = (ys—»1)
azBx = 3(x* —xz) ayly = 3(y* —y2).

Note that «zAx is a measure of the acceleration component in the x direction, and ayAy that of
the component in the y direction. Thus £* —f3 is a measure of the two-dimensional acceicration
vector.
In fact
3(R*--R9).
| As

a=

The straight line approximation, using a common value for « in both the x and y directions,
is one which uses that component of the acceleration vector which is in the direction of the fitted

——t—

line.

3. General Case: N Points, N Odd

wp = wo+ nAw + {(n2)adw w=x2

Zw.. woZl + AwZn + QaAwan
n ” n

n

It

=~m,...—l,0,l,...m ‘

n
4 putZl = No =2m+1 |
n

Zn =MN=0

{ n

‘ i m
an = Nz = 2§:k2
n k=

|
Zn*‘ =N3=0
n

m

Zn'* =Ny = ZZk‘
n k=1

No sequence: 1,3,5,7,9,...
Na sequence: 0, 2, 10, 28, 60, . . .
N, sequence: 0, 2, 34, 196, 708, . . .
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——

zwn = No w*

n
= No wo+ § Nealw
so that
wo = w‘-—}ﬁiaAw
No
and
N
wa = w*+nAw+ tqu(nz-— -—2)
No
giving

E * 2 Nz 2
= w*+nAw+ faAw| n N —Wan w=2xJ,z.
()

w,n

The minimum value of E is given by the simultaneous solution of the equations resulting
from differentiation with respect to the parameter set {x*, y*, z*, Ax, Ay, Az, «}.

Differentiating with respect to x*:

i;;E‘— = Z {x'+nAx+§an(n2—%z)—xn}

n :

x"‘Zl + AxZn + ian(Zn’ - g‘% l) ——an
n n

n n n

i

= x*No+ AxNy + $aAx(N2 —Nz)—zxn
n

i = Nox* —-ZXn.

n
Hence
H XE
—— = * —
i‘ =0 for Nox an
n
similarly
AE
D;; =0 for Noy" = In
n

and

dE
2 0 for Ngz* = Zzn.

n

Differentiating with respect to Ax:

) i;‘—i = {x‘ +nAx+ § nt— :’—,i)—xn} {n+ k(n’— :,—’:)}

n

[—




which, in similar fashion, reduces to

———.

%: NoAx— Z nxn+}a2M{N4—%}—k Z (nz—l%:)x.
n

n

For N = 3 as previously
Ak 28x —(xg—x1) + JaAx{2— 4} — fa{dxa — §xe + dxa}
= 2Ax—(x3—x1)+ Jo2Ax— haf{xz—2x2 + X1}

For N =35

dE
Hax

= 10Ax—(2x5+ x4 —x2—2%1) + Ja2Ax —jof2x5—xa—2x3—X2+ 2}
and similarly for

2E and 2 E
Ay Wz

Differentiating with respect to «:

&%‘-‘f = Z {x" +nAx+ Qam(nz—%z)mxn} {{Ax(nz—%lﬁ
n
N
+ z { y*+ndy+ hAy(n%-%Z) - y,,} {éAy(nz— N:)}

N
————

n
+ Z {z *+nlAz+ &azAz(n2 —%Z) —zn} {iAz(n2 ——%z)}
n

which reduces to

+Az[}aAz{N4——%2:}~i Z {(nz—%:)n}]-
n
Yer N = 3
dE
b, = Ax{hedx — Hxa—2x2+x1)]

+Apfjady —§(y3—2yz+ )]
+Az{jaAz— H(zs— 223 +21)}

= 10Ax—(2x5+ x4 —xz—2%1) + }2?Ax{34 — 190y 3ot dx5—xq —2xg— Xz +2x1}

— — -

t




|

A

ForN=5§

12 = Axffudr—H2xs—xe—2a—ra+ 220)
+Ay[Faly —¥2ys—ys—2ys—ya+2y1))
+Az[FaAz—§(225 — 24— 223 — 22+ 221)).

Summarising the 5 point case:

x* = $(x5+ x4+ X3+ X2+ x1)

and similarly for y* and z*,

e 25 = 2) + sre— x4 Dsy 4 )

(204 7a2)

and similarly for Ay and Az,

Ax(2x5—x4—2x3—x2+2x1) + AY(2ys —ys—2y8—y2 + 2)1)
+4Az(225—z4—223—22+221)

HAx2+ByR+(B2%
The combinations
(2x5+ x4 —x2—2x1)
and
(2x5—x3—2x3—x2+ 2x1)

may be regarded as higher order estimates of velocity and acceleration components, e.g.

2x5+ xa—X2—2x1 = 2(x5—Xx3)+ 3 xa —x3) + I(x3—x2) + Ax2—x1)
~ 10 Ax
2x5—Xa4—2x3—x2+ 2X1 = 2(x5—2x4+ X3) + 3(xa—2x3+ X2) + 2(xs— 2x2+ X1)

~ 7aAx.

The equations for Ax, Ay, Az, « are interdependent and non-linear, but amenable to initial
approximation and simple iterative convergence.

s pse—— T S, A
— % " .
: T
e . ey P




APPENDIX 2

Equations for Central Plane Projections

1. Sight Line

The sight lines from Camera 1 are implicitly defined by the raw data pairs (15, «15) together

with the location and orientation parameters for Camera 1.
The transforms from camera space to real world are given, without subscript j, by:

W2+ m?)2 = py
tan~! {p;/456} = 6,
2:16, =6

tan 6’ = p’ ie. tan-Ypy'/1} = 6y ' |

so that, in real world coordinates but in camera axes, the point Q on the sight line at range R
from Camera 1 is given by

Oxi = Réipr'/p1
Qv = Rpr'/;m

Q2 = Raipt’/;1

2. Intersection with Central Plane
Rotating to the orientation of the common frame
! (Qo] = [R(Az)IT[RENIT(Q:1]

and transfating to the common origin

l Ox = X1+ @xp
{

Qy = N"+0y

‘ 0= Zi+0u

But Oxo. Qyo and @y, are the vector components corresponding to vector length R along
the sight line, where R can be chosen arbitrarily. Setting R equal to 1000 (say) initially, and then
rescaling the components at this stage such that

——— -
»




———

will fix the point Q on the central plane and give the corresponding y and z values as:
Oy = N—Qy/X1

Qz = ZI'—on/XI

3. Inferred Elevation
Because, by definition, Camera 2 is located at the origin of, and aligned with, the common

reference frame, the inferred elevation value (in mm), appropriate to data scalings for Camera 2,
results from:

tan~{Q./Qy} = 6’
6y'/1:35 = 62
456 tan 02 = 2w

where 2viy is the inferred data domain value equivalent to raw data values ag.
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